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Major contributions to our understanding of gene functions 
in photosynthetic organisms have been made by studying 
microbial models, including the discovery and character-

ization of the Calvin–Benson–Bassham CO2 fixation cycle1 as well 
as the structures2, order3 and cloning4 of complexes in the photosyn-
thetic electron transport chain. Advances in technology now pro-
vide opportunities for microbes to serve as powerful complements 
to land plants in the characterization of gene functions by enabling 
substantially higher experimental throughput5.

The single-celled green alga Chlamydomonas (Chlamydomonas 
reinhardtii) is a well-established model system for studies of key 
pathways, including photosynthesis, primary metabolism, interor-
ganelle communication and stress response6. Furthermore, ame-
nability to microscopy and biochemical purifications have made 
Chlamydomonas a leading model system for studies of cilia7–9. 
Despite promising progress with the development of clustered 
regularly interspaced short palindromic repeats (CRISPR)-based 
reagents to generate targeted mutants10,11, low editing efficiencies 
currently prevent large-scale CRISPR single guide RNA library 
screens in Chlamydomonas. The recent generation of a barcoded 
Chlamydomonas mutant collection facilitates the study of individual 
genes and enables forward genetic screens12. In the present work, 

we leverage the amenability of Chlamydomonas to high-throughput 
methods to connect genotypes to phenotypes on a massive scale, 
allowing placement of genes into pathways and discovery of con-
served gene functions in land plants.

Results
Systematic genome-scale phenotyping. To connect genotypes to 
phenotypes, we measured the growth of 58,101 Chlamydomonas 
mutants representing 14,695 genes (83% of all genes encoded in the 
Chlamydomonas genome, based on the current genome annotation, 
v5.6) under 121 environmental and chemical stress conditions (both 
control and experimental conditions are given in Supplementary 
Tables 1 and 2). We pooled the entire Chlamydomonas mutant col-
lection from plates into a liquid culture and used molecular barcodes 
to quantify the relative abundance of each mutant after competi-
tive growth (Fig. 1a–f). Growth conditions included heterotrophic, 
mixotrophic and photoautotrophic growth under different photon 
flux densities and CO2 concentrations, as well as abiotic stress con-
ditions such as various pH and temperatures. We also subjected 
the library to known chemical stressors, including DNA-damaging 
agents, reactive oxygen species, antimicrobial drugs such as paro-
momycin and spectinomycin and the actin-depolymerizing drug 
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latrunculin B (LatB). To further expand the range of stressors in 
the dataset, we identified 1,222 small molecules from the Library 
of AcTive Compounds on Arabidopsis (LATCA)13 that nega-
tively influence Chlamydomonas growth (Extended Data Fig. 1, 
Supplementary Table 3 and Supplementary Data 1) and performed 
competitive growth experiments in the presence of 52 of the most 
potent compounds. We chose to screen the LATCA library for 
active compounds in Chlamydomonas because we believed that 
these compounds would be more likely to impact pathways both 
in Chlamydomonas and in plants, thus providing more general 
insights into gene functions in the green lineage. Taken together, 
this effort represents, to the best of our knowledge, the largest 
mutant-by-phenotype dataset to date for any photosynthetic organ-
ism, with 16.8 million data points (Supplementary Table 4).

Mutants show genotype–phenotype specificity. To identify 
mutants with growth defects or enhancements due to a specific 
treatment, we compared the abundance of each mutant after growth 
under the treatment condition to its abundance after growth under 
a control condition (Fig. 2a). We called this comparison a screen 
and the ratio of these abundances the mutant phenotype (Fig. 2b,c). 
Mutant phenotypes were reproducible between independent repli-
cates of a screen (Fig. 2c,d).

Individual mutants exhibited genotype–phenotype speci-
ficity. For example, mutants disrupted in the DNA repair gene 
POLYMERASE ZETA (POLZ, encoded by Cre09.g387400) exhib-
ited growth defects in the presence of the DNA crosslinker cisplatin, 
and these mutants did not show growth defects in unrelated screens 
(Fig. 2d). We observed similar genotype–phenotype specificity for 
other genes and phenotypes, including sensitivity to low CO2, cilio-
genesis and LatB sensitivity (Fig. 2d).

In many screens, mutants that exhibited phenotypes were 
enriched for disruptions in genes with expected function. In 46 
out of 223 screens, at least one Gene Ontology (GO)14 term was 
enriched (FDR < 0.05) in the genes disrupted in mutants whose 

growth was perturbed in the screen (Fig. 2e, Extended Data Fig. 
2 and Supplementary Table 5). These enriched GO terms corre-
sponded to functions known to be required for survival under the 
respective treatments. For example, screens with DNA-damaging 
agents resulted in GO term enrichments such as ‘DNA replica-
tion’, ‘Nucleotide binding’ or ‘Damaged DNA binding’. These GO 
term enrichments suggest that the phenotypic screens are correctly 
identifying genes required for growth under the corresponding 
treatments.

In total, 10,380 genes (59% of all Chlamydomonas genes) are rep-
resented by one or more 5′ untranslated region (UTR), coding DNA 
sequence (CDS) or intron insertion mutant that showed a pheno-
type (decreased abundance below our detection limit) in at least one 
screen (Fig. 2f). Although a lone mutant showing a phenotype is not 
sufficient evidence to conclusively establish a gene–phenotype rela-
tionship, we anticipate that these data will be useful to the research 
community in at least three ways. First, they can help prioritize the 
characterization of candidate genes identified by other means, such 
as transcriptomics or protein–protein interactions. Second, they 
facilitate the generation of hypotheses about the functions of poorly 
characterized genes. Third, they enable prioritization of available 
mutant alleles for further studies, including to establish a gene–
phenotype relationship by complementation and/or backcrossing. 
The genotype–phenotype specificity of individual mutants and the 
enrichment of expected functions suggest that our data can serve 
as a guide for understanding the functions of thousands of poorly 
characterized genes.

High-confidence gene–phenotype relationships. The availability 
of multiple independent mutant alleles for individual genes allowed 
us to identify high-confidence gene–phenotype relationships. 
When multiple independent mutant alleles for the same gene show 
the same phenotype, the confidence in a gene lesion–phenotype 
relationship increases, because it is less likely that the phenotype is 
due to a mutation elsewhere in the genome (on average, there are 1.2 
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integration events per mutant, and the mutants can also carry other 
mutations such as point mutations) or that there was an error in 
mapping of the mutation12. Using a statistical framework that lever-
ages multiple independent mutations in the same gene (Methods), 
we identified 1,218 high-confidence (FDR < 0.3) gene–phenotype 
relationships involving 684 genes (Fig. 3a and Supplementary Tables 
6 and 7), including hundreds of genes with no functional annotation 
in the green lineage (Supplementary Table 8). Our gene–phenotype 
relationships include 302 high-confidence (FDR < 0.3) interactions 
involving 195 genes and 39 LATCA drugs, providing clues to the 
drugs’ targets and improving the value of these drugs as tools for 
perturbing specific pathways (Supplementary Table 7). Based on the 
highest-confidence (FDR < 0.05) phenotypes, we suggest names for 
89 previously unnamed genes (Supplementary Table 9).

As an example of how individual gene–phenotype relationships 
advance our understanding, we made the unexpected observa-
tion that mutants in the gene encoding the chloroplast unfolded 
protein response (cpUPR) kinase, MUTANT AFFECTED IN 
CHLOROPLAST-TO-NUCLEUS RETROGRADE SIGNALING 
(MARS1)15, were sensitive (FDR < 10−9) to the DNA-damaging 

agent methyl methanesulfonate (MMS) (Fig. 3b). We validated 
this phenotype in a separate growth assay and showed that the 
MMS sensitivity of these mutants is rescued by complementation 
with a wild-type copy of MARS1, but not by a kinase-dead version 
(Fig. 3c,d). We also determined that treatment with MMS led to 
induction of VESICLE-INDUCING PROTEIN IN PLASTIDS 2 
(VIPP2), a highly selective cpUPR marker, in wild-type cells but 
not in mutants lacking MARS1 (Fig. 3e). These results illustrate 
the value of our high-throughput data and suggest the intrigu-
ing possibility that the cpUPR is activated via MARS1 upon DNA 
damage or protein alkylation and has a protective role against  
these stressors.

From phenotypes to pathways. To facilitate data visualization and 
predict the functions of poorly characterized genes in our dataset, 
we used the principle that mutant alleles with similar phenotypes 
tend to occur in genes that function in the same pathway5. We clus-
tered the 684 genes with high-confidence phenotypes based on the 
similarity of their phenotypes across different treatments (Fig. 4a 
and Supplementary Data 2). The correlation of phenotypes was 
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largely unrelated to transcriptional expression correlation16, sug-
gesting that the two approaches provide complementary informa-
tion (Extended Data Fig. 3 and Supplementary Table 10). We named 
some of our gene clusters based on the presence of previously char-
acterized genes or based on the conditions that produced the most 
dramatic phenotypes in a cluster (Fig. 4b–f and Supplementary 
Table 9). Below, we provide examples of how the data recapitulate 
known genetic relationships and provide insights into the functions 
of poorly characterized genes.

Essential DNA repair pathways are conserved in green algae. 
DNA damage repair pathways are among the best-characterized 
and most highly conserved across all organisms17,18; thus, they 
serve as a useful test case of the quality of our data. In our dataset, 
homologues of known DNA repair proteins are present in a large 
cluster (Fig. 4e), demonstrating the quality of our phenotypic data, 
validating our ability to identify that these genes work in a com-
mon pathway and extending the conservation of their functions to  
green algae.
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Mutants for various DNA repair genes exhibit expected  
differences in their sensitivities to different types of DNA dam-
age: (1) DNA double-strand breaks (zeocin and bleomycin), (2) 
DNA crosslinks (mitomycin C and cisplatin) and (3) DNA alkyla-
tion (MMS). For example, mutants exhibiting sensitivity to all 
DNA damage conditions included mutants lacking upstream 
DNA damage-sensing kinase ATAXIA TELANGIECTASIA AND 
RAD3-related protein (ATR, encoded by Cre10.g467200) (ref. 19), 
as well as mutants lacking the cell cycle checkpoint control protein 
RADIATION SENSITIVE 9 (RAD9, encoded by Cre16.g682950) 
or its binding partner HYDROXYUREA-SENSITIVE 1 (HUS1, 
encoded by Cre12.g524350) (ref. 20). Mutants specifically sensi-
tive to the double-strand break-inducing agents zeocin and bleo-
mycin included the upstream sensor of double-strand breaks, the 
kinase ATAXIA-TELANGIECTASIA MUTATED (ATM, encoded 
by Cre13.g564350) (ref. 21) (Supplementary Table 6) and DNA 
POLYMERASE THETA (POLQ, encoded by Cre16.g664301), which 
facilitates error-prone double-strand break repair and can maintain 
genome integrity when other repair pathways are insufficient22,23 
(Supplementary Table 6). Mutants specifically sensitive to the DNA 
crosslinker cisplatin included cells with genetic lesions in the heli-
cases REGULATOR OF TELOMERE ELONGATION HELICASE 
1 (RTEL1, encoded by Cre02.g089608) (ref. 24) and FANCONI 
ANEMIA COMPLEMENTATION GROUP M (FANCM, encoded 
by Cre03.g208833) and in the crossover junction endonuclease 
METHANSULFONATE UV SENSITIVE 81 (MUS81, encoded by 
Cre12.g555050).

Our data suggest several instances where a given factor is 
required for the repair of a specific class of DNA damage in 
Chlamydomonas, but not in Arabidopsis, or vice versa, suggesting 
lineage-specific differences in how DNA damage is repaired. For 
example, Chlamydomonas fancm mutants are sensitive to the DNA 
crosslinker cisplatin, whereas Arabidopsis fancm mutants are not25. 
Conversely, Arabidopsis mus81 mutants are sensitive to the alkylat-
ing agent MMS and the DNA crosslinker mitomycin C26, whereas 
Chlamydomonas mus81 mutants were not.

Taken together, our data suggest that the core eukaryotic DNA 
repair machinery defined in other systems is generally conserved 
in green algae. Moreover, the observation of expected phenotypes 
illustrates the quality of the presented data and the utility of the plat-
form for chemical genomic studies.

Classification of genes based on photosynthesis phenotypes. 
Our data allowed the classification of 38 genes whose disruption 
leads to a photoautotrophic growth defect into two clusters. One 
cluster consisted of genes whose disruption confers sensitivity to 
light when grown on medium supplemented with acetate, whereas 
the other contained genes whose disruption does not (Fig. 4b,c and 
Supplementary Data 2).

The light-sensitive cluster (Fig. 4c) included genes encoding 
core photosynthesis components and biogenesis factors such as 
the mRNA trans-splicing factors RNA MATURATION Of PSAA 
(RAA1)27, RAA328, OCTOTRICOPEPTIDE REPEAT 120 (OPR120) 
and OPR10429; photosystem II biogenesis factor CONSERVED IN 
PLANT LINEAGE AND DIATOMS 10 (CPLD10)29,30; the chloro-
phyll biogenesis factor Mg-CHELATASE SUBUNIT D (CHLD)31; 
the ATP synthase translation factor TRANSLATION DEFICIENT 
ATPase 1 (TDA1)32; the Rubisco mRNA stabilization factor 
MATURATION OF RBCL 1 (MRL1)33; and the Calvin–Benson–
Bassham cycle enzymes SEDOHEPTULOSE-BISPHOSPHATASE 
1 (SEBP1)34 and PHOSPHORIBULOKINASE 1 (PRK1)35. Several 
highly conserved but poorly characterized genes are also found 
in this cluster, including the putative Rubisco methyltransfer-
ase encoded by Cre12.g52450036, the putative thioredoxin Cre01.
g037800, the predicted protein with a domain of unknown function 
(DUF1995) Cre06.g281800 (which we named LIGHT SENSITIVE 

AND/OR ACETATE-REQUIRING 4 (LSAR4)) and Cre13.g572100 
(which we named LIGHT GROWTH SENSITIVE 4 (LGS4)), as well 
as four Chlorophyta-specific genes. The mutant phenotypes of these 
poorly characterized genes and their presence in this light-sensitive 
cluster together suggest that their products could mediate the bio-
genesis, function or regulation of core components of the photosyn-
thetic machinery.

The low CO2-sensitive cluster (Fig. 4b) contains known and new 
components of the algal CO2-concentrating mechanism (CCM), as 
detailed below.

New CCM components. The CCM increases the CO2 concentra-
tion around the CO2-fixing enzyme Rubisco, thus enhancing the 
rate of carbon uptake. The mechanism uses carbonic anhydrases in 
the chloroplast stroma to convert CO2 to HCO3

−, which is trans-
ported into the lumen of the thylakoid membranes that traverse 
a Rubisco-containing structure called the pyrenoid37. There, the 
lower pH drives the conversion of HCO3

− back into concentrated 
CO2 that feeds Rubisco37. Mutants deficient in the CCM are unable 
to grow photoautotrophically in air, but their photoautotrophic 
growth is rescued in 3% CO2 (ref. 37). We observed this phenotype 
for one or more alleles of genes whose disruption was previously 
shown to disrupt the CCM (Supplementary Table 4), including 
genes encoding the chloroplast envelope HCO3

− transporter LOW 
CO2 INDUCIBLE GENE A (LCIA)38, and the thylakoid lumen 
CARBONIC ANHYDRASE 3 (CAH3) (ref. 39), the stromal carbonic 
anhydrase LOW CO2 INDUCIBLE GENE B (LCIB)40, the master 
transcriptional regulator CCM1/CIA5 (refs. 41,42) and the pyrenoid 
structural protein STARCH GRANULES ABNORMAL 1 (SAGA1) 
(ref. 43) (Supplementary Table 6).

We observed similar high CO2 rescue of photoautotrophic 
growth defects for mutants in multiple poorly characterized genes 
in the light-insensitive cluster, suggesting that many of these genes 
are new components in the CCM. These genes formed a cluster 
with SAGA1 (ref. 43), the only previously known CCM gene with 
enough alleles to be present in the cluster. We named one of these 
genes, Cre06.g259100, SAGA3 (STARCH GRANULES ABNORMAL 
FAMILY MEMBER 3) because its protein product shows homol-
ogy to the two pyrenoid structural proteins SAGA1 and SAGA2 
(ref. 44) (Extended Data Fig. 4). Consistent with a role in the CCM, 
SAGA3 localizes to the pyrenoid45. We also observed this phenotype 
in mutants lacking the pyrenoid starch sheath-localized protein 
STARCH BRANCHING ENZYME 3 (SBE3) (ref. 46), suggesting 
that this enzyme plays a key role in the biogenesis of the pyre-
noid starch sheath, a structure surrounding the pyrenoid that was 
recently shown to be important for pyrenoid function under some 
conditions47. Our cluster also contains the gene encoding FUZZY 
ONIONS (FZO)-like (FZL), a dynamin-related membrane remod-
eling protein involved in thylakoid fusion and light stress; mutants 
in this gene have pyrenoid shape defects48. Our results suggest that 
thylakoid organization influences pyrenoid function. The clus-
ter additionally includes genes encoding CLV1 (Cre13.g574000), 
a predicted voltage-gated chloride channel that we hypothesize is 
important for regulating the ion balance in support of the CCM or, 
alternatively, may directly mediate HCO3

− transport; a protein con-
taining a Rubisco-binding motif44 (Cre12.g528300, which we named 
LOW CO2 SENSITIVE 1 (LOCO1)); and a predicted Ser-Thr kinase 
HIGH LEAF TEMPERATURE 1 (HT1) (Cre02.g111550). The 
kinase is a promising candidate for a regulator in the CCM, as mul-
tiple CCM components are known to be phosphorylated49–51, but no 
kinase had previously been shown to have a CCM phenotype.

Also in this cluster are genes encoding the predicted PYRUVATE 
DEHYDROGENASE 2 (PDH2) (Cre03.g194200) and the pre-
dicted DIHYDROLIPOYL DEHYDROGENASE (DLD2) (Cre01.
g016514). We hypothesize that these proteins are part of a gly-
cine decarboxylase complex that functions in photorespiration,  
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a pathway that recovers carbon from the products of the Rubisco 
oxygenation reaction. PDH2 was found in the pyrenoid proteome52, 
suggesting the intriguing possibility that glycine decarboxylation 
may be localized to the pyrenoid, where the released CO2 could be 
recaptured by Rubisco.

New genes with roles in cilia function. Chlamydomonas cells swim 
using two motile cilia. To identify mutants with abnormal cilia 
function, we separated cells based on swimming ability by placing 
the mutant pool in a vertical column and collecting the supernatant 
and pellet. In this assay, mutants with altered swimming behavior 
were enriched in GO terms such as ‘dynein complex’, which com-
prises motor proteins involved in ciliary motility (Fig. 2e). Eighteen 
genes were represented by enough alleles to provide high confidence 
(FDR < 0.3) that their disruption produces a defect in swimming 
(Fig. 4d). These genes were enriched (P = 0.0075, Fisher’s exact test) 
in genes encoding proteins found in the Chlamydomonas flagella 
proteome53. Half of these genes or their orthologs have previously 
been associated with a cilia-related phenotype in Chlamydomonas 
and/or mice (Supplementary Table 11).

In our analysis, these 18 genes formed four clusters that appeared 
to subclassify their function (Fig. 4d). The first cluster is enriched in 
known regulators of ciliary membrane composition and includes the 
gene encoding NEPHROCYSTIN-4-LIKE PROTEIN (NPHP4)54; 
the gene encoding its physical interactor TRANSMEMBRANE 
PROTEIN 67 (TMEM67, also named MECKEL SYNDROME TYPE 
3 (MKS3) in mammals), which has been implicated in photorecep-
tor intraciliary transport55; and the gene encoding CENTRIOLE 
PROTEOME PROTEIN 290 (CEP290) (ref. 56). We validated the 
swimming defect of tmem67 and observed that the mutant has 
shorter cilia (Extended Data Fig. 5). The poorly annotated gene 
Cre15.g638551 clusters with these genes, suggesting that it may also 
regulate ciliary membrane composition.

The second cluster contains genes encoding BARDET-BIEDL 
SYNDROME 1 PROTEIN 1 (BBS1) and BBS9, components of the 
Bardet–Biedl syndrome-associated complex that regulates target-
ing of proteins to cilia57. The poorly annotated gene Cre15.g640502 
clustered with these genes, suggesting that it may also play a role in 
targeting proteins to cilia.

The third cluster contains eight genes, four of which relate to 
the dynein complex, including the ciliary dynein assembly fac-
tor DYNEIN ASSEMBLY LEUCINE-RICH REPEAT PROTEIN 
(DAU1) (ref. 58,59), OUTER DYNEIN ARM (ODA), DYNEIN  
ARM INTERMEDIATE CHAIN 1 (DIC1) (ref. 60), DYNEIN 
HEAVY CHAIN 1 (DHC1) (ref. 61) and TUBULIN-TYROSINE 
LIGASE 9 (TTLL9), which modulates ciliary beating through the 
addition of polyglutamate chains to alpha-tubulin62. The predicted 
thioredoxin peroxidase gene Cre04.g218750 and three poorly anno-
tated genes (Cre07.g338850, Cre01.g012900 and Cre16.g675600) 
clustered with these genes, suggesting possible roles in dynein 
assembly or regulation.

The fourth cluster contains three poorly characterized genes, 
FLAGELLA ASSOCIATED PROTEIN2 (FAP2), FLAGELLA 
ASSOCIATED PROTEIN 81 (FAP81) and TEF24. The protein encoded 
by FAP81 (Cre06.g296850) was identified in the Chlamydomonas 
cilia proteome53, and its human homologue DELETED IN LUNG 
AND ESOPHAGEAL CANCER PROTEIN 1 (DLEC1) localizes to 
motile cilia63. We validated the swimming defect of the fap81 mutant 
and established that it has shorter cilia (Extended Data Fig. 5). The 
localization to motile cilia in humans and our finding that mutating 
the encoding gene leads to a ciliary motility defect together suggest 
the intriguing possibility that impaired cilia motility contributes to 
certain lung and esophageal cancers.

New genes required for actin cytoskeleton integrity. Our analysis 
revealed a group of genes that render cells sensitive to LatB when 

any are mutated (Fig. 4f). LatB binds to monomers of actin, one of 
the most abundant and conserved proteins in eukaryotic cells, and 
prevents actin polymerization64 (Fig. 5a). LatB was first discovered 
as a small molecule that protects the sea sponge Latrunculina mag-
nifica from predation by fish65 and is an example of the chemical 
warfare that organisms use to defend themselves and compete in 
nature (Fig. 5b).

Chlamydomonas protects itself against LatB-mediated inhibition 
of its conventional actin INNER DYNEIN ARM5 (IDA5) by upregu-
lating the highly divergent actin homologue NOVEL ACTIN-LIKE 
PROTEIN 1 (NAP1), which appears to perform most of the same 
functions as actin but is resistant to inhibition by LatB66. Upon inhi-
bition of IDA5 by LatB, IDA5 is degraded and the divergent actin 
NAP1 is expressed66. The expression of NAP1 is dependent on three 
other known genes, LatB-SENSITIVE1-3 (LAT1–LAT3) (Fig. 5c); 
thus, mutants lacking any of these four genes are highly sensitive 
to LatB66.

Our phenotype data revealed three new components of this 
F-actin homeostasis pathway, which we named LAT5 (encoded 
by Cre17.g721950), LAT6 (encoded by Cre15.g640101) and LAT7 
(encoded by Cre11.g482750). LAT5 and LAT6 clustered together 
with three previously known components of the pathway (NAP1, 
LAT2 and LAT3), and disruption of all six genes rendered cells sen-
sitive to LatB (Supplementary Table 6). Mutants in all three new 
components show a relatively mild phenotype when compared to 
those mutants in LAT1–LAT3 (Fig. 5d), illustrating the sensitivity of 
our phenotyping platform.

Ubiquitin proteasome-mediated proteolysis of IDA5 has been 
hypothesized to drive the degradation of IDA5 and promote the for-
mation of F-NAP1 (ref. 67), but the factors involved were unknown. 
LAT5 and LAT6 encode predicted subunits of a SKP1, CDC53/
CULLIN, F-BOX RECEPTOR (SCF) E3 ubiquitin ligase complex, 
whose homologues promote the degradation of target proteins68. 
The disruption of LAT5 and LAT6 impaired degradation of IDA5 
upon LatB treatment, suggesting that LAT5 and LAT6 mediate IDA5 
degradation (Fig. 5e). LAT7 encodes a predicted importin, and its 
disruption impairs IDA5 degradation after LatB treatment (Fig. 5e), 
suggesting that nuclear import is required for IDA5 degradation.

It was previously not clear how broadly conserved this F-actin 
homeostasis pathway is. We found that the land plant model 
Arabidopsis has homologs of IDA5, NAP1, LAT3, LAT5, LAT6 and 
LAT7. We observed that Arabidopsis mutants disrupted in LAT3, 
LAT5 and LAT6 are sensitive to LatB treatment (Fig. 5f,g), which 
was not expected a priori, suggesting that this pathway for actin 
cytoskeleton integrity and the gene functions identified here are 
conserved in land plants.

Discussion
In this work, we determined the phenotypes of 58,101 
Chlamydomonas mutants across a broad variety of growth condi-
tions. We observed a phenotype for mutants representing 10,380 
genes, providing a valuable starting point for characterizing the 
functions of thousands of genes. Mutant phenotypes are searchable 
at chlamylibrary.org, and individual mutants can be ordered from 
the Chlamydomonas Resource Center.

We provided several examples of how the data enable discovery 
of gene functions and phenotypes in algae and plants. We validated 
our discovery of three new genes in the actin cytoskeleton integ-
rity pathway, obtained insights into their molecular functions and 
found that this pathway appears to be conserved in land plants. We 
validated our discovery of cilia function defects for two new genes 
and our observation of an unexpected sensitivity of the chloroplast 
unfolded protein response to the alkylating agent MMS. We also 
discussed how our data provide insights and candidate genes in 
other pathways, including DNA damage repair, photosynthesis and 
the CCM.
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Altogether, 58% of the high-confidence gene–phenotype inter-
actions involve a Chlamydomonas gene with a predicted Arabidopsis 
homologue (Supplementary Table 8); for approximately 79% of 

the corresponding Arabidopsis homologues, our data predict a 
new gene–phenotype relationship. This work illustrates the value 
of using a microbial photosynthetic organism for discovering gene 
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functions on a large scale. We hope that the genotype–phenotype 
relationships identified here will guide the characterization of thou-
sands of genes, with potential applications in agriculture, the global 
carbon cycle and our basic understanding of cell biology.
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Methods
Library maintenance. The Chlamydomonas mutant collection12 was maintained 
by robotically passaging 384-colony arrays to fresh medium using a Singer RoToR 
robot (Singer Instruments, 704). The mutant collection was grown on 1.5% agar 
Tris-acetate-phosphate (TAP) medium with modified trace elements69 in complete 
darkness at room temperature. The routine passaging interval of 4 weeks for library 
maintenance was shortened to 2 weeks during the time period of pooled screens to 
increase cell viability.

Screening of LATCA to identify Chlamydomonas growth inhibitors. LATCA13 
was used to identify molecules capable of inhibiting growth in wild-type 
Chlamydomonas (cMJ030). We found that 1,222 of these 3,650 LATCA compounds 
reduce growth by 90% at 25 μM (Supplementary Table 3). Due to resource 
limitations, we could not perform competitive growth experiments with all 1,222 
active chemicals. Hence, we further selected the most active compounds and 
analyzed their structural similarity to identify the most diverse set of compounds 
for the competitive growth experiments. Dose–response experiments with 1,140 
compounds validated activity for 954 compounds, and identified 136 chemicals 
that reduce growth at 2 µM or less (Supplementary Table 3). We then used the 
extended-connectivity fingerprint algorithm70 to convert all LATCA compound 
structures into numerical fingerprints. Extended-connectivity fingerprints were 
then used to compute structural similarity of pairs of compounds on a scale of 0 
to 1 using Tanimoto coefficients71. The set of Tanimoto coefficients between all 
pairs of inhibitors was visualized using Cytoscape72. We then used the most active 
inhibitors to further reduce the similarity network to 28 clusters of structures 
exhibiting high levels of biological activity and selected 52 of these chemicals for 
subsequent treatment of the Chlamydomonas mutant library (Extended Data Fig. 1, 
Supplementary Table 3 and Supplementary Data 1).

Library pooling and competitive growth experiments. The first two rounds 
of mutant library screening (R1 and R2) were performed with the entire mutant 
collection (550 384-mutant array plates) in 20-liter carboys (Supplementary Table 
1 and Supplementary Table 2). Mutants were pooled from 5-day-old 384-colony 
array plates into liquid TAP medium at room temperature and low light. In R1, 
the pool included nine additional copies for each of three plates (668–670) in 
the collection to test how quantitatively we can track the relative abundance 
of mutants in the starting population. In R2, we pooled a subset of the mutant 
collection (plates 597–670) from 384-colony array plates and another subset from 
1,536-colony array plates (101–596) to test the performance of denser colony arrays 
for pooled screens.

Subsequent rounds of mutant library screening (R3–R6) were performed on 
the rearrayed library (245 384-mutant array plates) in 2-liter bottles. Mutants were 
pooled from 5-day-old 1,536-colony array plates. Condensing the library from 384 
to 1,536-colony array plates helped to both homogenize colony growth and reduce 
the laborious pooling procedure.

We produced subpools each containing cells from eight 384 or 1,535-colony 
array plates by using sterile glass spreaders to pool cells from the plates into 50-ml 
conical tubes containing 40 ml TAP medium. These subpools were mixed by 
pipetting to break cell clumps using a 10-ml serological pipette with a P200 tip 
attached to it. Then, all subpools were combined into the final mutant collection 
pool by pipetting the subpools through a 100-µm cell strainer (VWR, 10054-
458). The final pool was mixed using a magnetic stir bar, and the cell density 
was measured (Invitrogen, Countess) and adjusted to 1 × 105 cells ml−1. For 
experiments not performed in TAP medium, cells were pelleted (1,000× g, 5 min, 
room temperature) and washed twice with the actual medium used for the pooled 
growth experiment.

Aliquots of 2 × 108 cells were pelleted (1,000× g, 5 min, room temperature) by 
centrifugation and frozen to determine the relative abundance of each mutant in 
the starting population. These samples are denoted as ‘initial’.

Cultures were inoculated with 2 × 104 cells ml−1 in transparent 20-liter 
carboy tanks (R1 and R2) or standard 2-liter bottles (R3–R6) using aliquots of 
the final mutant pool. Cultures were inoculated with 2 × 104 cells ml−1, and most 
experiments were performed in 2-liter vessels (4 × 107 cells total) with ~58,000 
mutants (Supplementary Tables 1 and 2), resulting in ~700 cells per mutant on 
average in the 2-liter competitive growth experiments. Cultures were grown under 
a broad variety of conditions (Supplementary Table 2) of which 49 had two or 
more replicates. Unless otherwise indicated, cells were grown in TAP medium with 
modified trace elements at pH 7.5 under constant light (100 µmol photons m−2 s−1 
using Lumigrow Lumibar lights, catalog number 8100-5502; equal levels of red, 
blue and white light) at 22 °C, aerated with air and mixed using a conventional 
magnetic stirrer at 200 rpm. The cell density of competitive growth experiments 
was tracked, and aliquots of 2 × 108 cells were pelleted by centrifugation after 
approximately seven doublings, when the culture reached approximately 2 × 106 
cells ml−1. We sought to avoid letting the cultures reach stationary phase, where 
experiments are less reproducible. At seven divisions, the mutant pool was typically 
in the late exponential growth phase. Cell pellets were frozen for subsequent DNA 
extraction and barcode quantification. Algal predator experiments were performed 
with Daphnia magna, Philodina sp. (Rotifer) and Hypsibius exemplaris (Tardigrade) 
purchased from Carolina Biological Supply.

DNA extraction. Total genomic DNA was extracted from frozen cell pellets 
representing 2 × 108 cells of each sample (initial, control and treatment).

First, frozen pellets were thawed at room temperature and resuspended in 
1.6 ml resuspension buffer (1% SDS, 200 mM NaCl, 20 mM EDTA and 50 mM 
Tris-HCl, pH 8.0).

Second, 2 ml phenol/chloroform/isoamyl alcohol (25:24:1) was added to  
each sample and mixed by vortexing. This solution was then transferred  
into 15-ml Qiagen MaXtract High Density tubes (catalog number 129065) 
and centrifuged at 3,500 rpm for 5 min. Subsequently, the aqueous phase was 
transferred to a new 15-ml conical tube, 6.4 µl RNase A was added and the  
solution was incubated at 37 °C for 30 min. The phenol/chloroform/isoamyl  
alcohol extraction was then repeated, and the aqueous phase was transferred into 
a new 15-ml Qiagen MaXtract High Density tube before adding 2 ml phenol/
chloroform/isoamyl alcohol (25:24:1). This solution was mixed by vortexing and 
centrifuged at 3,500 rpm for 5 min; then, 400-µl aliquots of the aqueous phase were 
transferred to 1.5-ml reaction tubes for DNA precipitation (typically four aliquots 
per sample).

Third, 1 ml ice-cold 100% ethanol was added to the solution to precipitate 
DNA. The tubes were gently mixed and incubated at –20 °C overnight. The DNA 
was pelleted at 13,200 rpm and 4 °C. The supernatant was discarded and the pellet 
washed in 1 ml 70% ethanol. The supernatant was discarded again, and the pellet 
was air-dried before resuspension in 50 µl water. Subsequently, the elution fractions 
of each sample were pooled and the DNA concentration was measured using a 
Qubit fluorometer (Invitrogen).

Internal barcode amplification and Illumina library preparation. Internal 
barcodes were amplified using Phusion Hot Start II (HSII) DNA Polymerase 
(Thermo Fisher, F549L) using previously described primers12.

The 50-µl PCR mixture for 5′ barcode amplification contained 125 ng genomic 
DNA, 10 µl GC buffer, 5 µl DMSO, 1 µl dNTPs at 10 mM, 1 µl MgCl2 at 50 mM, 
2.5 µl of each primer at 10 µM and 1 µl Phusion HSII polymerase. Eight tubes of the 
PCR mixture were processed per sample and incubated at 98 °C for 3 min, followed 
by 10 three-step cycles (98 °C for 10 s, 58 °C for 25 s and 72 °C for 15 s) and then 11 
two-step cycles (98 °C for 10 s and 72 °C for 40 s).

The 50-µl PCR mixture for 3′ barcode amplification contained 125 ng genomic 
DNA, 10 µl GC buffer, 5 µl DMSO, 1 µl dNTPs at 10 mM, 2 µl MgCl2 at 50 mM, 
2.5 µl of each primer at 10 µM and 1 µl Phusion HSII polymerase. Eight tubes of the 
PCR mixture were processed per sample and incubated at 98 °C for 3 min, followed 
by 10 three-step cycles (98 °C for 10 s, 63 °C for 25 s and 72 °C for 15 s) and then 11 
two-step cycles (98 °C for 10 s and 72 °C for 40 s).

The PCR products of each sample were pooled for further processing. First, 
successful PCR was confirmed on a TBE 8% agarose gel in 1x Tris Borate EDTA 
before concentrating the PCR products on a Qiagen MinElute column and 
measuring the DNA concentration on a Qubit fluorometer. Second, 200–250 ng 
of up to 16 3′ or 5′ PCR products was combined into an Illumina HiSeq2000 
library. Third, the internal barcode bands of the Illumina HiSeq2000 libraries were 
gel-purified and subjected to quality control on an Agilent Bioanalyzer. In addition, 
DNA concentration was determined on a Qubit fluorometer. Fourth, HiSeq2000 
libraries were sequenced at the Genome Sequencing Service Center at Stanford 
University (Palo Alto, CA).

Data analysis. Initial reads were trimmed using cutadapt version 1.7.1  
(ref. 73) using the command ‘cutadapt -a <seq > -e 0.1 -m 21 -M 23 input_file.
gz -o output_file.fastq’, where <seq> is GGCAAGCTAGAGA for 5′ data and 
TAGCGCGGGGCGT for 3′ data. Barcodes were counted by collapsing identical 
sequences using ‘fastx_collapser’ (http://hannonlab.cshl.edu/fastx_toolkit) 
and denoted as ‘_read_count’. Across all experiments conducted, ~62 million 
barcode read counts were determined. Barcode read counts for each dataset 
were normalized to a total of 100 million and denoted as ‘_normalized_reads’ 
(Supplementary Table 12). Replicate control treatments performed in the same 
screening round were averaged by taking the mean of the normalized read counts 
to generate the average normalized read count (denoted as ‘_average_normalized_
reads’). To calculate a ‘_read_count’ (nonnormalized) for the averaged samples, 
the read counts for all of the averaged samples were summed and denoted as the 
‘_average_read_count’. Control treatments that were averaged are denoted with 
‘average’ and can be found in Supplementary Table 13.

Mutants in the library contain on average 1.2 insertions12, each of which 
may contain a 5′ barcode, a 3′ barcode, both barcodes or potentially more than 
two barcodes if multiple cassettes were inserted at the loci. To represent a given 
insertion within a mutant, we selected a single barcode to represent it. All barcodes 
associated with the same gene and deconvoluted to the same library well and plate 
position were assumed to be from the same insertion and were then compared to 
identify the barcode with the highest read counts in the initial samples (R2–R6) to 
serve as the representative barcode.

To identify mutants with growth defects or enhancements due to a specific 
treatment, we compared the abundance of each mutant after growth under the 
treatment condition to its abundance after growth under a control condition. 
We called this comparison a ‘screen’ and the ratio of these abundances the 
‘mutant phenotype’. In order for a phenotype to be calculated, we required the 
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control treatment to have a read count above 50, which allowed for 16.8 million 
phenotypes to be determined.

To identify high-confidence gene–phenotype relationships we developed 
a statistical framework that leverages multiple independent mutant alleles. 
For each gene, we generated a contingency table of the phenotypes, Φ, by 
counting the number of alleles that met the following thresholds: [Φ < 0.0625, 
0.0625 ≤ Φ < 0.125, 0.125 ≤ Φ < 0.25, 0.25 ≤ Φ < 0.5, 0.5 ≤ Φ < 2.0, 2.0 ≤ Φ < 4.0, 
4.0 ≤ Φ < 8.0, 8.0 ≤ Φ < 16.0]. Only alleles that were mapped with confidence level 
4 or less (corresponding to a likelihood of correct mapping of 58% or higher)12 had 
an insertion in CDS/intron/5′ UTR feature, and had greater than 50 reads in the 
control condition were included in the analysis. The frequency of cassette insertion 
location based on gene feature was intron 25%, 3′ UTR 23%, CDS 19%, not 
mapped 14%, intergenic 6%, 5′ UTR 5% and multiple or others 8%. The insertion 
cassette used to generate the mutants contains two transcriptional terminators; 
thus, we reasoned that insertions in 5′ UTRs, introns and exons will lead to 
transcriptional disruption and loss-of-function mutants. Mutants with cassette 
integrations in the 3′ UTR were not expected to result in transcriptional disruption 
so were excluded from our statistical framework. A P value was generated for 
each gene by using Fisher’s exact test to compare a gene’s phenotype contingency 
table to a phenotype contingency table for all insertions in the screen. An FDR 
was performed on the P values of genes with more than two alleles using the 
Benjamini–Hochberg method74.

To determine a representative phenotype for a gene, the median phenotype 
for all alleles of that gene that were included in the Fisher’s exact test was used. 
For clustering, these gene phenotypes were normalized by setting the median 
value of all gene phenotypes in a screen to zero. Clustering was performed with 
Python (2.7.11) packages SciPy (0.17.0) (ref. 75) and visualized with Seaborn 
(0.7.1). To generate the hierarchical cluster in Fig. 4a, the pairwise distance was 
calculated using the ‘correlation’ metric, which calculates the correlation (Pearson) 
distance. The linkage matrix was calculated using the ‘average’ method. Pairwise 
Pearson correlation coefficients between gene phenotypes (Extended Data Fig. 3 
and Supplementary Table 10) were calculated in Pandas (0.18.1). Transcriptome 
correlation data was collected, curated and analyzed in the Merchant laboratory16. 
Data were plotted and visualized with the Python packages Matplotlib (1.5.1) and 
Seaborn (0.7.1).

To determine if biological functions were associated with specific screens, 
we performed a GO term enrichment analysis. Using the same approach as with 
genes, we generated contingency tables of mutant phenotypes for each GO term. 
If a mutant’s insertion is within a gene that had multiple GO term annotations, the 
mutant’s phenotype data was added to each GO term’s contingency table. A P value 
was generated for each GO term by using Fisher’s exact test to compare a GO term’s 
phenotype contingency table to a phenotype contingency table for all GO terms in 
the screen. An FDR was performed on the P values using the Benjamini–Hochberg 
method74. Clustering was performed (Extended Data Fig. 2) in Seaborn using the 
‘Euclidean’ metric to calculate the pairwise distance and the ‘average’ method to 
calculate the linkage.

All analysis was performed using JGI Phytozome release v5.0 of the 
Chlamydomonas assembly and v5.6 of the Chlamydomonas annotation76.  
Gene identifiers (CreXX.gXXXXXX) can be used to link data found in the 
supplemental tables to gene annotation updates. All data have been deposited 
in Dryad Digital Repository (https://doi.org/10.6086/D1Q96Z). Custom code 
used for data analysis has been deposited in Zenodo (https://doi.org/10.5281/
zenodo.6340170) (ref. 77).

MMS growth assays and VIPP2 immunoblot analysis. The following strains were 
used15: WT = CC-4533; mars1 = mars1-3; mars1:MARS1-D = mars1-3 transformed 
with the MARS1-D transgene containing a 3×-Flag epitope after Met139; and 
mars1:MARS1-D KD = mars1-3 transformed with a catalytically-inactive MARS1-D 
bearing the kinase active site D1871A mutation. Before starting liquid cultures 
in TAP medium, all strains were restreaked in fresh TAP plates and grown in 
similar light conditions (i.e., ~50–70 µmol photons m−2 s−1, ~22 °C) for about 
5–6 days. Before starting the MMS treatment, all strains were preconditioned in 
liquid cultures for 3 or 4 days. Next, cell cultures were equally diluted to ~5 µg 
chlorophyll ml−1 and incubated in the presence or absence of MMS for 48 h. A 
1% (vol/vol) MMS stock solution (Sigma-Aldrich, 129925) was freshly prepared 
in double-distilled H2O at the beginning of each experiment. This MMS stock 
solution was further diluted 200 times directly into TAP medium to a final 
concentration of 0.05% (vol/vol). All chlorophyll concentration measurements 
were performed using a previously described methanol extraction method78.

VIPP2 and alpha-TUBULIN immunoblot analyses were carried out as 
described previously15 using denatured total protein samples prepared from liquid 
cultures incubated for 27 h in the presence or absence of 0.05% (vol/vol) MMS.

Cilia-related mutant phenotyping. Cilia mutants were grown in liquid TAP 
medium until they reached exponential phase. Cells were then mounted in u-Slide 
8-well chambers (Ibidi, 80826) with 2% low-melting-point agarose (Sigma-Aldrich, 
A9414). Cilia defects were scored using a Leica DMi8 inverted microscope. Cilia 
length was measured using Fiji. Cilia swimming behavior was scored using TAP 
agar plates with 0.15% agar.

Chlamydomonas lat mutant phenotyping. Mutants used in this study are listed 
in Supplementary Table 14, and sequence information for all genotyping primers 
is summarized in Supplementary Table 15. Individual mutants were grown with 
gentle agitation at 100 µmol photons m−2 s−1. Disruption of LAT5, LAT6 and 
LAT7 genes (Cre17.g721950, Cre15.g640101 and Cre11.g482750) in the original 
isolates of lat5-1, lat6-1 and lat7-2 were confirmed by PCR. These mutants were 
then backcrossed with CC-124 or CC-125 three times, with perfect linkage of 
paromomycin resistance and LatB sensitivity in at least 10 tetrads observed after 
each round. The backcrossed strains and the previously established lat1-5, lat2-1, 
lat3-1 and nap1-1 mutants in the CC-124 background66 were spotted on TAP agar 
containing 0.1% DMSO with or without 3 µM LatB (Adipogen, AG-CN2-0031, lot 
A00143/J) as 5× serial dilutions.

Immunoblot materials IDA5 and NAP1 immunoblot analyses. Cells were grown 
in liquid TAP medium at 21 °C with gentle agitation under 100 µmol photons 
m−2 s−1 and collected by centrifugation. Pellets were frozen in liquid nitrogen and 
subsequently resuspended in 100 µl ice-cold PNE buffer (10 mM phosphate, pH 7.0, 
150 mM NaCl2 and 2 mM EDTA) supplemented with 2× concentration of complete 
protease-inhibitor cocktail (Roche, 11697498001) and disrupted by vortexing with 
acid-washed glass beads. These samples were mixed directly with SDS–PAGE 
sample buffer, boiled for 3 min and cleared of debris by centrifugation at 12,000× 
g for 10 min at 4 °C before electrophoresis. SDS–PAGE was performed using 11% 
Tris-glycine. Blots were stained using a mouse monoclonal anti-actin antibody 
(EMD Millipore, clone C4, MAB1501), which recognizes IDA5, but not NAP1, and 
a rabbit anti-NAP1 antibody (generous gift from R. Kamiya and T. Kato-Minoura), 
which recognizes NAP1, but not IDA5. Horseradish peroxidase-conjugated 
anti-mouse IgG (ICN Pharmaceuticals, 55564) or anti-rabbit IgG (Southern 
Biotech, 4050-05) were used as secondary antibodies, respectively.

Arabidopsis lat mutant phenotyping. Mutants used in this study are listed in 
Supplementary Table 14 and sequence information for all genotyping primers is 
summarized in Supplementary Table 15. Seeds were surface-sterilized in 20% bleach 
for 5 min. Seeds were then rinsed with sterile water four times and stored at 4 °C for 3 
days in the dark. After stratification, seeds were sown into square 10 cm × 10 cm petri 
plates containing full-strength Murashige and Skoog medium (MSP01-50LT), 1% 
agar (Duchefa, 9002-18-0), 1% sucrose and 0.05% MES and adjusted to pH 5.7 with 
1 M KOH. Seedlings were grown in the presence of LatB (Sigma, L5288) or mock 
control containing an equivalent volume of the LatB solvent, DMSO. Plates were 
imaged using a CanonScan 9000 flatbed scanner. Root lengths were quantified using 
Fiji. Two-way analysis of variance and data visualization were done using Python.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Mutant barcode read count data (Supplementary Table 12) and mutant phenotypes 
across all screens (Supplementary Table 4) can be found at https://doi.org/10.6086/
D1Q96Z in the Dryad Digital Repository. Source data are provided with this paper.

Code availability
Custom code used for data analysis has been deposited in Zenodo (https://doi.
org/10.5281/zenodo.6340170)77. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | A screen of the chemical library ‘LAtCA’ identified 1,222 inhibitors of Chlamydomonas growth, 136 of which are active at 2 μM or 
less. Phase 1 of the LATCA screen is depicted in A–E: The growth rate of wild-type Chlamydomonas (cMJ030) was evaluated in TAP and TP in the presence 
of 3,650 LATCA compounds. 1,222 out of the 3,650 LATCA compounds reduced growth by 90% or more at 25 μM (a–c). Dose-response experiments 
were performed in TAP medium with 1,140 out of the 1,222 highly active compounds that reduced growth at 2 μM or less (d,e). Phase 2 of the LATCA 
screen is depicted in F–J: Structural data files (SDFs) were acquired for all LATCA inhibitors (f) and converted into numerical fingerprints (extended-
connectivity fingerprints; ECFPs) (g, h). ECFPs were then used to compute the structural similarity of pairs of compounds using Tanimoto coefficients (i). 
The set of Tanimoto coefficients between all pairs of inhibitors was condensed into a usable network (j). Phase 3 of the LATCA screen is depicted in K 
and L: Data from A–E was used to further reduce the similarity network from J to 28 clusters of structures exhibiting high levels of growth inhibition along 
with a group of singleton structures (*) that did not cluster. Supplementary Table 3 summarizes data A–E and shows cluster annotations from L; see also 
Extended Data File 1 for all chemical structures from L.
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Extended Data Fig. 2 | Full GO term enrichments. Gene Ontology term analysis reveals enrichment of biological functions observed for specific screens. 
GO; FDR < 0.05.
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Extended Data Fig. 3 | Comparison of phenotypic and transcriptomic correlations. a, 684 genes were clustered based on the similarity of their 
phenotypes across 120 screens. b, Spearman correlation matrix of phenotypes (FDR < 0.3). c, Transcriptome correlation of gene with phenotype 
(FDR < 0.3). d, 194 genes were clustered based on the similarity of their phenotype across 120 screens. e, Spearman correlation matrix of phenotypes 
(FDR < 0.05). f, Transcriptome correlation of gene with phenotype (FDR < 0.05). Data can be found in Supplementary Table 10.
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Extended Data Fig. 4 | SAGA protein alignments. a, Alignments of SAGA1, SAGA2, and SAGA3. Domain annotation was based on three different tools 
under the Geneious visualization platform. b, BLOSUM90 alignments between SAGA proteins.
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Extended Data Fig. 5 | Validation of cilia mutant phenotypes. a, Bright-field microscopy microscope images of cilia mutants show defects in ciliary length. 
Scale bar: 10 µm. b, Quantification of cilia length. n =number of samples (WT n = 60, tmem67-1 n = 112, tmem67-2 n = 46, fap81-1 n = 139). c, Swimming 
behavior of mutants, as determined by growth on TAP medium solidified with 0.15% agar. Scale bars: 5 cm.
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Sample size We empirically determined the sample sizes based on published research.

Data exclusions Data from screens where the conditions were extremely harsh, such as camptothecin, that resulted in population bottlenecks where the 
majority of mutants/barcodes are lost were excluded from analysis.

Replication Replicates of many screens were performed. Most mutants have similar phenotypes in screen replicates (Fig. 2C).

Randomization Randomization was not applicable for this study.

Blinding Blinding and randomization were not used for this study.
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Antibodies
Antibodies used anti-actin antibody (clone C4, EMD Millipore, MAB1501); HRP-conjugated anti-mouse IgG (ICN Pharmaceuticals; 55564); anti-rabbit 

IgG (Southern Biotech; 4050-05); rabbit anti-NAP1 antibody (generous gift from Ritsu Kamiya and Takako Kato-Minoura  
PMID:12796293). The following dilutions were used: Anti-actin, 1:500; Anti-mouse HRP, 1:5000; Anti-NAP1, 1:1000; Anti-rabbit HRP, 
1:20,000.

Validation We observed decreasing abundance of IDA5 upon addition of LatB, conversely we observed increased abundance of NAP1 consistent 
with these antibodies recognizing their intended targets.
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Cell line source(s) CC-4533 CW15 MT- [JONIKAS CMJ030] www.chlamycollection.org

Authentication N/A

Mycoplasma contamination N/A
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Laboratory animals Predators of algae were purchased from Carolina Biologic and cared for based on their recommendations.

Wild animals N/A

Field-collected samples N/A

Ethics oversight No institutional ethical approval was required because the animals were invertebrates (Daphnia, rotifers, and water bears)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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