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The rapid deployment of renewable energy has been driven by cost reductions, public 

policy for reducing greenhouse gases and societal strides towards sustainability. 

However, the intermittent nature of renewable energy systems imposes challenges in its 

design and operation due to operational constraints, system limitations, and in some 

cases conflicting objectives. Energy storage systems have become an essential part in 

supporting the further penetration, reliability and resiliency of renewable energy. In this 

dissertation, a novel Zinc Bromine Flow Battery (ZBFB) energy storage system is 

researched and demonstrated as a controllable distributed energy resource. Analysis, 

optimal design, modeling and control algorithms are used to optimize performance and 

demonstrate practical use case applications. 

Although ZBFB systems are a promising energy storage technology, specific operational 

constrains based on their unique design and inherent characteristics raise new practical 

challenges. Specifically, the main operating constrains of ZBFB described in this 

dissertation are with regards to two main aspects: 1) the requirement for constant 
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charging power during charging period, and 2) the need for a refresh mode (cleaning 

cycle) that is required to prevent energy capacity loss over multiple charge/discharge 

cycles.  

The main motivations in this dissertation are to optimize control, improve system 

performance, maximize benefits and perform field-demonstrations in practical use case 

applications, while accounting for constraints specific to ZBFBs. The work includes 

aspects of modelling of the ZBFB refresh mode, emission reduction control algorithms, 

techno-economic analysis and control algorithms for specific use cases. Chapter 1 

introduces the main motivations and problem statement of this dissertation. Chapter 2 

describes the research background of this dissertation and conducts a literature review 

on several related topics; including ZBFB technologies, battery system control 

algorithms, methods and modeling of the ZBFB refresh mode, and emission reduction 

control strategy of PV-battery hybrid systems. Chapter 3 introduces the control 

algorithm for a large-scale ZBFB system coupled with two biogas combined heat & 

power generators to prevent minimum import violations, minimize the operational 

power buffer, and maximize the amount of on-site renewable generation. Chapter 4 

introduces a techno-economic analysis between ZBFB and Li-ion battery in a microgrid 

topology for a load shifting application is carried out. Chapter 5 describes a novel model 

for ZBFB systems based on their specific physical and operational characteristics. A 

control algorithm for reducing both emissions and energy costs based on the developed 

ZBFB model is presented. Chapter 6, conclusions of this dissertation. 
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1. INTRODUCTION 

1.1 Motivation 

With increasing global population and industrialization of societies worldwide, 

the growing electricity demand has been met through an increased consumption of fossil 

fuels. According to the International Energy Agency (IEA) data from 1990 to 2018, the 

world overall energy use grew by 60.6% while the world population increased 44.2% 

[1]. Thus, the average energy use per person increased 11.5% from 1990 to 2018. Fossil 

energy resources played an import role in meeting electric energy demand, accounting 

for 84.3% of total electricity generation. However, a number of negative consequences 

related to the excessive use of fossil fuels have become more evident. The global rising 

temperatures due to increased greenhouse gas emissions (GHG) has been a trigger for 

catastrophic climate events around the world. For instance, the devastating wildfire in 

California [2], the rapidly disappearing Arctic ice caps [3] and accelerated sea level rise 

[4] are just a few examples. Global climate change, energy shortage and increasing GHG 

emissions have raised awareness and put emphasis on the need to reduce fossil fuel 

energy use. Thus, the challenge at hand is to meet increasing global energy demand 

while reducing the use of fossil fuel resources. 

To address the aforementioned issues, numerous technology solutions aim at 

finding a pathway that enables electricity systems to meet two important goals, 

affordability of electric energy and reduction in air pollution. One prominent example 

are Distributed Renewable Energy Systems (DRES), commonly paired with an energy 

storage system. DRES refers to a variety of renewable energy generation systems, which 

generate and deliver electricity at or near the location where it is used. The end-user has 

the flexibility to adjust the system size based on site specific requirements. Although 
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renewable energy generation has various advantages from an environmental and 

sustainable point of view, the intermittent, fluctuating, and uncontrollable nature of 

renewable energy creates several challenges for incorporating renewable energy directly 

into the existing electric grid or support the daily energy demand on its own.  

Fortunately, energy storage systems (ESS) with the appropriate control 

algorithms can offset the inherent constraints and challenges of renewable energy 

resources [5]. ESSs have become an essential part of renewable power generation and 

utilization. Among the various types of ESS technologies, flow battery has become an 

attractive option for DRES. In particular, the Zinc Bromine Flow Battery (ZBFB), as a 

member of the flow batteries family has several advantages including long lifetime, 

independent scaling of energy and power characteristics, use of relatively inexpensive 

and abundant raw materials, very deep depth of discharge levels without significantly 

impacting total cycle life, and safety features such as the ability of completely stopping 

battery operation by simply shutting down the pumps [5]. Although ZBFB is identified 

as a promising electrochemical energy storage technology, the unique features and 

physical operational constrains of ZBFB create new challenges for practical applications 

and widespread use. Since the ZBFB technology has not yet been deployed on a large 

scale, currently, there is limited research on the particular features and practical 

requirements on ZBFB in real applications. 

By appropriately controlling the ZBFB as the energy storage component in 

DRES applications, several benefits can be verified or tested: 1) evaluate feasibility of 

ZBFB utilized in real applications within specific design and operational constrains; 2) 

test and compare the technological and economic performance of ZBFB compared to 

most commonly used energy storage system; 3) present a model that performs 
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simulations to deepen the understanding of the operation of ZBFB, its performance, and 

benefits achieved through the proposed applications; and 4) identify control algorithm 

for reducing GHG emissions by utilizing the above mentioned battery model. 

1.2 Problem statement and contribution of the dissertation research 

It is well recognized that ZBFBs have a great potential to serve as the energy 

storage system in DRES, due to a long lifespan and high depth of discharge without 

damaging battery performance. However, there is only a limited number of research 

reports focused on the specific characteristics inherent to ZBFB. As a result, the existing 

understanding and modelling of ZBFB systems are not complete or accurate, since they 

do not take into consideration some operating constrains arising from the principle of 

operation of ZBFB.  

In this dissertation, two main constrains of ZBFBs in use cases are presented 

and discussed. First, a ZBFB is utilized as an ESS to implement and demonstrate new 

support functions, taking into consideration size optimization, control algorithm, 

revenue-maximization, and emission reduction, while considering the “constant 

charging power” limit constraint. Second, the need for a “refresh mode” is researched 

by developing a model to simulate the refresh process of ZBFB with an equivalent 

counting cycle algorithm. This model allows to simulate ZBFB operation, by focusing 

on the operating principles of ZBFB by using a mixed integer linear programming 

(MILP) approach.  

The specific contributions of the dissertation can be summarized as: 

 Develop a novel model to incorporate the “refresh mode” and “constant charging 

power” operational constraints of ZBFB. 

 Develop a control algorithm for two conflicting objectives, minimizing DRES 
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energy cost, while reducing system GHG emission with ZBFB “refresh mode”. 

 Develop a cooperative control of multiple ZBFB systems with “constant charging 

power” operational constrains to prevent minimum import violation. 

 Develop a techno-economic analysis model for the optimal solar PV and ZBFB 

energy system size considering “constant charging power”. 

1.3 Organization of the dissertation research 

The dissertation is organized as follows: Chapter 2 describes the research 

background of this dissertation and conducts a literature review on several related topics, 

including information about solar energy, the general architecture and basic chemical 

reactions involved in the ZBFB, the specific operational constraints of ZBFB in real 

applications, and the principles behind those constraints. Chapter 3 introduces the 

control algorithm for a large-scale ZBFB system coupled with two biogas combined heat 

& power generators to prevent minimum import violations, minimize the operational 

power buffer, and maximize the amount of on-site renewable generation. Chapter 4 

carries out a techno-economic analysis between ZBFB and Li-ion battery in a microgrid 

topology for a load shifting application. Chapter 5 describes a novel model for ZBFB 

systems based on their specific physical and operational characteristics. A control 

algorithm for reducing both emissions and energy costs based on the developed ZBFB 

model is presented. ZBFB actual data is utilized to develop an operational model and 

perform simulations to further advance the understanding of ZBFB system, their 

performance and benefits achieved through the proposed use case applications. Chapter 

6, concludes this dissertation.  
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2. RESEARCH BACKGROUND AND LITERATURE REVIEW 

Distributed generation is defined as “electric power generation within 

distribution networks or on the customer’s side of the network” [6]. DRES is one type 

of distributed generation, which mainly utilizes renewable energy generation as the 

electric power source. DRES could not only reduce the influence of fluctuation of 

available renewable energy [7], but also could upend traditional transmission and 

distribution (T&D) installation, reduce conduction loss, all the while increasing the 

reliability and resiliency against unforeseen blackouts caused by natural disasters, 

provide arbitrage, and facilitate voltage/frequency correction on the customer side of the 

meter [8]. DRES are commonly utilized in residential and commercial applications. The 

renewable energy technology and energy storage system are the main components of 

DRES. The detailed information of features and characteristics of main components 

deployed in this study are discussed in this chapter. 

2.1 Renewable energy resources 

Driven by the adverse impacts by fossil fuels on the environment and climate, 

renewable energy resources have become the main alternative energy source of interest. 

Renewable energy resources are increasingly being utilized in the energy market for 

meeting energy needs and environmental sustainability goals. According to the 

Department of Energy (DOE), in 2018, renewable energy made up 20.5% of total 

installed electricity generating capacity and 17.6% of total annual generated electricity 

in the United States, as shown in Figure 2-1. In the past 25 years, natural gas, renewable 

energy and hydro have accounted for over 94% of U.S. capacity additions. The new 

installations of renewable energy generation capacity consist of wind and solar 

harnessing technologies, whose combined capacity reached 19.5GW in 2018 [9]. 
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Figure 2-1 indicates hydro power, wind and solar power are the three dominant energy 

sources in renewable energy sector.  

 

 

Figure 2-1. U.S. Electric Nameplate Capacity and Electric Net Generation (2018) [6] 

 

In practical applications, the three main renewable energy generating 

technologies possess various advantages and some drawbacks.  

Hydropower is a reliable and significant renewable power source, while its 

optimal utilization is challenged by geographical locations, capital investment and 

potential environmental impacts [10][11][12][13].  

Wind energy is one of the least expensive energy sources, which makes it 

competitive with some conventional energy generation [14], however, it raises some 

concerns in terms of potential destruction to flying and gliding animals [15], and life 

cycle GHG emission [16]. The wind energy harnessing technology has an inherent 

peculiarity - larger turbines can capture higher wind power compared to the small 

turbine, making them much more efficient [17]. Due to this characteristic, the small-
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scale wind energy generation system usually come with efficiency limitations, making 

them less cost competitive, which constraints vast deployment of small-scale wind 

generation systems [18].  

Solar energy is harnessed by two main technologies: concentrating solar power 

(CSP) and photovoltaic (PV) solar [19]. Nowadays, CSP which utilizes solar thermal 

energy, are at the beginning of their commercial stage [20]. One of the merits of solar 

PV is its modular nature. Solar PV can be installed in urban homes to provide several 

kW output with a few modules or millions of panels can be used in MW utility-scale 

PV plant to support regional demand [21]. Solar PV technology is paving the way for 

various scale and dynamic energy applications. 

Due to its geographical location, natural climate, financial incentives and the 

mature industrial capacity, California has became the leading state in the U.S. in the 

deployment of solar energy. Based on a report from the DOE [22], the cumulative solar 

capacity and annual solar capacity additions in California in 2018, reached 22,498 

MWdc and 2,913 MWdc, respectively.  

Beyond the reasons mentioned above, rising electricity prices coupled with the 

decreasing solar PV system prices, have driven the proliferation of solar energy use 

among residential and commercial customers [23]. Based on an EIA report, the 

electricity retail price has increased around 54% in last decade. While the PV module 

price has dropped 79% [24]. The renewable energy generating systems discussed in this 

dissertation belong to the PV technology type.  

Many studies provide PV solar panel generation model, which is based on the 

Global Horizontal Irradiance (GHI) and other environmental variables including 

outdoor temperature [25][26]. Here a general photovoltaic generation model based on 
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maximum power point tracking is used. The solar panel system output power is given 

by Eq. 2-1 

Ppv = CpvFpv (
It

It,stc
) [1 + αc(TC − TC,STC)]                                                             (2-1) 

where Cpv denotes PV rated power capacity (kW), Fpv is the de-rating factor, It is the 

solar radiation incident on the PV array in (kW/m2), It,stc represents the solar incident 

radiation at standard test conditions (STC) (1 kW/m2), αc is the temperature coefficient 

of power (%/°C), TC is the PV array temperature (°C), TC,STC represents the PV panel 

temperature under standard test conditions (25 °C). The PV array temperature can be 

calculated by Eq. 2-2 

Tc = Ta + [
Tc,NOCT−Ta,NOCT

It,NOCT
] It                                                                                   (2-2) 

Tc and Ta denote the panel temperature and ambient temperature, respectively. It,NOCT 

indicates solar irradiation at nominal operating cell temperature (NOCT), which is 

taken to be 0.8 kW/m2, Tc,NOCT denotes the nominal operational cell temperature, which 

is generally 45°C to 47°C [27], Ta,NOCT denotes the atmospheric temperature at NOCT 

condition, which is chosen as 20°C in this study. The weather data and irradiation 

information are obtained from the National Solar Radiation Database (NSRDB) [28].  

The System Advisor Model (SAM) is a free software model developed by the 

National Renewable Energy Laboratory (NREL) for predicting the performance of 

various renewable energy systems and providing analysis of financial feasibility, which 

is used to evaluate financial and technical performance over a project’s life for 

renewable energy deployment projects [29]. SAM utilizes hourly weather files in 

typical meteorological year (TM2, TM3) or NSRDB weather data to predict annual 
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performance of the solar system. The hourly solar energy prediction has been employed 

in this study.  

2.2 ZBFB electrochemical process 

The ZBFB shares many of the overall advantages of flow batteries. ZBFB also has its 

own advantages as well: 1) one of the longest cycle life battery among all batteries types 

(e.g. >10,000 cycles); 2) 100% depth of discharge (DOD); 3) Higher theoretical energy 

density (440Wh/kg); and, 4) a relative low cost of primary materials [30].  

The ZBFB is a modular system comprised of a cell stack containing functional 

electrodes attached to the two current collectors (separated via membranes), electrolyte 

storage tanks, delivery pumps and pipes. The ZBFB relies on the electrolyte circulation 

system to deliver electrochemically active species to electrode surfaces in order to 

achieve charge transfer and cause electrical current to flow. The main electrolyte used 

in ZBFB is zinc bromide (ZnBr2) dissolved to form an aqueous solution, with the same 

formulation being used in circulatory loops servicing both the cathode and anode during 

operation [31]. A simple ZBFB unit cell is illustrated in Figure 2-2, with multiple cell 

stacks combined in series to form a battery.  
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Figure 2-2. A basic ZBFB unit cell during charging process [31] 

 

As shown in Figure 2-2, the zinc half-cell of the ZBFB behaves very similarly to an 

electroplating system. During the charging process, cationic zinc is removed from the 

aqueous solution to be deposited onto the negative electrode, as shown by Eq. 2-3: 

𝑍𝑛2+ + 2𝑒− → 𝑍𝑛, 𝐸0 = -0.76 𝑉 𝑣𝑠 𝑆𝐻𝐸                                                                 (2-3) 

Meanwhile, bromide anions are converted to bromine, as shown by Eq. 2-4: 

2𝐵𝑟− → 𝐵𝑟2 + 2𝑒−, 𝐸0 = 1.08 𝑉 𝑣𝑠 𝑆𝐻𝐸                                                                 (2-4) 

And the overall battery electrochemical reaction is shown by Eq. 2-5: 

𝑍𝑛2+ + 2𝐵𝑟− → 𝑍𝑛 + 𝐵𝑟2, 𝐸0 = 1.84 𝑉 𝑣𝑠 𝑆𝐻𝐸                                                      (2-5) 
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where SHE means standard hydrogen electrode and E0 is the reduction potential. 

During discharging process, zinc and bromide are generated at the respective electrodes 

[32]. 

In this dissertation, an innovative ZBFB system has been researched and 

evaluated. The new ZBFB utilizes an activated solid titanium electrode as the Zn plating 

surface, which allows for the use of a single flow loop of electrolyte as opposed to dual 

flow loops. This novel design also eliminates the need for an ion exchange membrane. 

This innovative design employs three main improvements [33]: 1) simplify the general 

zinc bromine flow battery structure with only one electrolyte tank, as shown in Figure 

2-3, 2) improve the operating time of ZBFB without membrane exchange operation by 

using a solid titanium electrode, 3) provide higher energy density (3.1 kWh/ft2) 

compared with traditional design (1.7 kWh/ft2). Metallic electrodes are deployed in 

ZBFB due to their lower internal resistance, but it also results in higher costs and some 

degradation, such as corrosion or dissolution, which is detrimental to the long-term 

performance and operation of the flow battery [34]. Even though the novel ZBFB has 

very unique structure and comparatively higher energy density, the dendrite formation 

which is the main reason for the specific operational constraints of flow batteries, also 

applies to this ZBFB. 
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Figure 2-3. Schematic of a Zinc Bromine Flow Battery System [33] 

 

2.3 ZBFB operational constrains 

In this study, there are two notable constraints of ZBFB, which present new 

challenges compared with the well-known battery systems. The two operational 

constraints are: 1) constant charging power during charging period and 2) refresh 

operation after discharge cycle. The first constraint, restricts the battery to charging 

with constant power until the target state of charge (SOC) is reached. The second one 

is a unique process requirement for the ZBFB, forcing the battery to remain offline until 

the refresh process is completed. It is worth noting that both constraints are very unique 

requirements compared to other commonly used battery systems, like Li-ion battery or 

lead-acid battery systems.  

The ZBFB stores and releases electricity though a reversible electrochemical 

reaction. The main electrolyte used in ZBFB is zinc bromide  dissolved in an aqueous 

solution to form an electrolyte, with the same formulation being used in circulatory 

loops servicing both the cathode and anode during operation [31]. During charging 

process, zinc is deposited at the negative electrode, and bromine is produced at the 

positive electrode. The charging process stores chemical energy in separate locations, 

inside the battery block as zinc metal and outside the battery block in the electrolyte 
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tank [30]. During discharge, zinc metal oxidizes reforming the zinc ion and bromine is 

reduced to bromide ion, then the bromine is subsequently complexed with the organic 

poly-bromide in solution [35]. To improve the performance and cycle life of these 

batteries, this review paper provides fundamental information on zinc electrodeposition 

and summarizes recent developments in the relevant flow battery chemistries, along 

with recent applications. The future challenges and opportunities for this technology 

are discussed [36]. 

2.3.1 Dendrite formation 

As mentioned above, the zinc is deposited at the negative electrode during the 

charging process. During this process dendrite formation of zinc is formed due to non-

uniform distribution of active reacting species and charge density. The non-uniform 

conditions play a leading role in the formation of dendrites [37]. 

Dendrite formation does not only decrease the battery efficiency, but also 

damages the membrane and can reduce the distance between electrodes causing channel 

blockage and short-circuiting. Several research studies state that dendrite formation of 

Zn has become one of the biggest obstacles hindering its further commercialization [38] 

[39] [40]. Dendrite formation does not only impede the further utilization of ZBFB, but 

it is also common in other battery technologies, like the commonly used Li-ion batteries 

[41] [42] [43] [44]. 

Some research efforts have focused on improving the uniformity of zinc 

deposition and de-plating in ZBFBs during the charging and discharging phases, 

respectively [31]. Generally, the zinc dendrite formation includes an initiation and a 

growth stage. The over potential is the dominant factor for the initiation stage, while 

the initiation time and the deposition morphology of further growth are largely related 
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to the localized current density [45]. Published research study [46] reviewed the 

fundamental stages of dendrite formation in electrochemical reactions and their role in 

this process. Another study [47] confirmed the growth of zinc dendrite precursors in 

ZnBr2 solutions and concluded that the propagation rate of the precursors was constant 

within the limits of the diffusion layer boundary. The report [48] studied the mechanism 

of dendrite growth and defined the critical current density and over-potential for 

dendrite tip growth, and divided the formation process into an initiation phase and 

growth phase. Another study [45] analyzed the initiation time of dendrites and 

concluded the initiation of zinc dendrites have relationship with over-potential, 

electrolyte concentration, and temperature. Other scientific reports have explored the 

dendrite formation from different perspectives such as the electrolyte, electrode, and 

battery properties. One research study [49] found the dendrite height is related to zinc 

loading, current density and electrolyte flow rate. Another research study [39] claimed 

the Br/Br− redox reaction was coupled with the zinc deposition reaction, the uneven 

redox reaction on the positive electrode was accompanied by non-uniform zinc 

deposition and zinc dendrite formation, which degraded battery stability. The dominant 

strategies for preventing dendritic growth include reducing the concentration gradient 

of ions, eliminating the non-uniform localized current density, and changing the nuclear 

potential of zinc ions. Improving the electrolyte and electrode performance as well as 

managing the physical properties of the battery would be of great importance to the 

above-mentioned strategies [45]. 

Furthermore the researchers outline the distinctive operational requirements 

based on their unique updated ZBFB design. Other published research works [50] [51] 

concluded that the ZBFB battery needed to be charged with constant current density. 
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Another research report [52] required battery to be charged at constant current. Another 

study [53] employed the charging mechanism with constant electrolyte flow rate on 

positive and negative sides. However, one published study [54] claimed the battery 

should be charged at constant voltage. In this study, actual operation of the battery 

requires that the constant charging power is adopted. 

2.3.2 Stripping operation 

The nature of the dendrite formulation requires that the ZBFB should be 

completely discharged to prevent further dendrite growth and maintain the health of the 

batteries. The operating mode that requires that the ZBFB be periodically stripped to 

properly clean and maintain battery system is referred to as refresh mode (also stripping 

mode or self-cleaning mode). This is handled automatically by the Battery Manage 

System (BMS). However, this requires that the ZBFB is periodically taken offline [33]. 

In the current technology development state, the stripping operation maybe one 

effective method to release or eliminate the influence of dendrite formation. 

Refresh operation is desirable to remove the deposited (plated) solid Zinc from 

electrode. This operation is repetitively forced by the BMS and to be initiated it needs 

a battery to be fully discharged [55]. During this process, the ZBFB is in an idle state, 

therefore it cannot respond to any requests from an outside controller. During refresh 

cycle, the battery system is disconnected from the output terminals, but the external 

energy source has to be connected to supply the circulation pumps and BMS controller. 

When using ZBFB as energy storage system, there are two big drawbacks. The first 

one, the ZBFB refresh mode must be scheduled or be carefully controlled to prevent 

conflicts arising from energy demand from the battery while operating in refresh mode. 

Although it is trivial and convenient for test batteries in the laboratory, stripping cycle 
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maybe be difficult to perform on every battery operating cycle in real applications. For 

instance, if ZBFB system needs to do a load-shifting during the workdays, this battery 

should operate at least five cycles without stripping cycle, because this battery must be 

required to provide energy to meet the local DRES load, whenever the system needs it 

[56]. The second disadvantage is the requirement of external energy to support system 

operation, which suggests ZBFB comes at higher capital investment cost and lower 

round-trip efficiency [57]. Refresh mode ensures that zinc is deposited on a fresh 

surface in the subsequent cycle, which is helpful to generate uniform and smooth 

electroplating on the electrodes’ surface. However, the first new cycle efficiency would 

be slightly lower, due to the base coat of zinc being re-plated [30]. There are some 

research have been shown implement of refresh mode is very significant and general 

process in zinc bromine flow battery operating no matter in both laboratory experiment 

and practical applications [49] [56].  

A published study [58] revealed the current efficiency (or coulombic efficiency) 

stays about 90% for each electrode after about 15 cycles without the need for electrode 

stripping. Yet another research study [59] claimed the standard zinc/bromine battery 

operating conditions consist of charging and discharging, followed by complete 

stripping of any zinc remaining on the anode. The refresh mode was important for the 

reproducibility of the battery operating cycles. The report [60] indicated that Zinc 

Bromine battery deploying one more period to strip the stacks of all zinc after SOC has 

reached 0%. Therefore, the battery system has the ability to operate to 100% depth of 

discharge on a daily basis, utilizing its full rated capacity. 

There are several methods to implement the refresh mode in practical 

applications and simulations. First and most trivial is implementing refresh cycle after 
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every battery charge-discharge cycle. Some reports [33] [61] require that the batteries 

be completely discharged to prevent dendrite growth and maintain the health of the 

batteries. This requires that the batteries be periodically stripped to properly clean and 

maintain them. However, this requires that energy storage system periodically stay 

offline. The author [62] stated the stripping cycle is repetitively forced every 120 hours. 

One report [49] indicated the battery efficiency would decline after a number of cycles. 

Within a set of no-strip cycles, this efficiency loss is exhibited as decreasing capacity. 

A different report [63] indicated stripping procedure should be performed once every 

four or five full charge-discharge cycles. The author of another study [30] suggested 

ZBFB strip cycle should be performed after five operating cycles. 

Considering the time battery is not available during stripping cycle, the question 

about how long should stripping cycle take is an important one to ask. One study [62] 

reported one complete maintenance cycle takes from 2 h up to as many as 20 h 

depending on the means of discharge. Another report [49] claimed this process needed 

more than 500 minutes. However, battery discharge would stop when reaching cut-off 

voltage, and since the battery should be fully discharged, the output voltage of the 

battery should be finally 0V. In order to further discharging battery energy to make 

battery voltage drop from cut-off voltage to 0V, one designed strip resistor should be 

connected with battery terminal. By doing so, the battery can fully discharge until it 

reaches 0V, while the stripping cycle time can be controlled [64].  

One researcher claims that if the next generation of ZBBs is to have significantly 

better operating efficiencies, there is an imperative that electroplating and de-plating 

processes at the zinc-side electrode be fully understood and subsequently optimized to 

make significant improvement in electro-chemistry field [65].  
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2.4 Emission performance of DRES 

There is no doubt that renewable energy generation holds the key in reducing 

the environmental impact of fossil fuels, and decreasing reliance on traditional energy 

sources [66]. While at the same time, energy storage systems have been touted as a 

promising solution for the intermittent nature of renewable resources, and therefore a 

valuable contribution towards broader utilization of renewable energy and distributed 

energy resource systems. For a hybrid system, end-users are not only focused on 

economic benefits of the system, but also its de-carbonization potential. Many studies 

have proposed renewable portfolio standards, requirement of GHG emission reduction. 

For example, Self-Generation Incentive Program (SGIP) provides incentive for GHG 

emission reduction, which requires qualifying prospective projects to achieve 5 kg 

CO2/kWh without significantly impacting energy bill saving [67]. Unfortunately, while 

renewable energy generation combined with storage system is effective in meeting 

electricity power demand and energy, it remains unclear how effective a hybrid system 

can be in reducing GHG emissions, under current market structure and grid-connected 

system.  

There are two main operation mechanisms of energy storage that can cause 

increased emissions for grid-connected hybrid system [68]. The first is caused by the 

market electricity retail price incentives, which encourage users to charge the system 

during off-peak hours and discharge during peak afternoon or evening periods. In 

general, the marginal electricity generation during off-peak times is often produced by 

coal fired plants and the marginal generation during peak periods is produced by natural 

gas plants, which means that storage is effectively displacing cleaner natural gas-

generated electricity with coal fired generated electricity. Using an average GHG 
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emissions factor for grid energy, when assessing the impacts of energy storage system, 

would ignore the difference of GHG emission rates associated with the grid energy used 

for charging and discharging at different times. Second, all storage technologies 

experience energy losses due to their internal resistance, defined by their round-trip 

efficiency. This inefficiency means that storage effectively loses some of the energy 

that it stores, requiring the system to store extra electrical energy, and consequently 

generate more GHG emissions related to these losses. These two characteristics of 

energy storage operation remain true, whether the storage system is operated with a 

revenue-maximizing goal in mind or operated with load-shifting or demand response 

goal in mind. But researchers have not yet agreed on which one of them plays the 

primary role in the emission process [69] [70]. 

Prior research has focused on the economic benefits of storage systems, which 

emphasize revenue-maximization or cost of energy minimization, without concern for 

the GHG emissions effect. As the result, the utilization of energy storage could increase 

the hybrid system’s overall CO2 emission level [71]. The study examines the social 

benefits provided by energy storage systems on the Texas electricity market with quite 

limited renewable penetration. Under current storage technologies’ limitations, 

utilizing battery would increase daily CO2 emissions [72]. The study simulates the 

emissions impacts of wind generation paired with energy storage, within a market-

based electric power system. Another research study indicates that storage can have a 

negative impact on GHG emissions [73]. One research study tested the role of 

residential energy storage system in GHG emissions. The grid-connected residential 

energy storage system operated under either optimizing economic benefit mode or 

GHG emission reduction mode. Residential energy storage system mostly increases 
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GHG emissions when users seek to minimize their electricity cost. However, when the 

system was operated in minimizing GHG emissions mode, the system could reduce 

average emissions by 2.2−6.4% [74]. This study provides optimized schedules of plug-

in electric vehicle charging, for either standard or vehicle-to-grid use, which were 

compared with charging schedules to characterize the potential for GHG emission 

reductions across charging characteristics, regional driving, and marginal energy 

generation trends. It determined that optimized charging could reduce CO2 emissions 

[75]. Utility-scale energy storage provides operational flexibility for managing 

electricity demand, integrating renewable energy, and improving system reliability. 

However, it has been established that revenue-maximizing utility-scale energy storage 

tends to increase system GHG emissions in the current US electricity grid [76]. One 

study found that the impacts of adding energy storage are highly case-dependent. In 

electric distribution systems with high renewable generation penetration levels and 

significant renewable curtailment, adding energy storage reduces GHG emissions; in 

other systems, the impacts on emissions could be positive, neutral, or negative [77]. 

Furthermore, ignoring of the environmental impact of hybrid system consisting of 

renewable energy generation and storage system is incompatible with the original 

purpose of renewable energy resources. A research article [78] proposed a control 

scheme, which deploys energy storage to perform load-shifting in a medium scale 

microgrid network. Simulation results prove that the proposed control scheme can 

improve annual profits from 4.3% to 24% of the annual cost without storage. 

Meanwhile, this control strategy can yield positive impacts on GHG emissions. The 

research paper establishes a bi-level optimization model for optimizing dispatch of 

thermal units and the demand side’s reaction while considering energy-saving and 
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emission-reduction potentials on generation and demand sides [79]. One methodology 

is presented to implement electric thermal storage (ETS) with hydro-electric and wind 

resources to meet load growth in isolated grid networks. ETS when properly controlled 

and dynamically responsive on the smart grid, is found to be effective in reducing diesel 

consumption, and thus GHG emissions [80]. At the current electricity market state and 

the pursuit towards maximizing economic benefits, the hybrid microgrid system 

comprised of energy storage is more likely to increase GHG emission. However, when 

taking GHG emissions into consideration during microgrid control, one has to consider 

the microgrid system design problem.   
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3. REAL-TIME CONTROL OF FLOW BATTERY FOR PREVENTING 

MINIMUM IMPORT VIOLATION 

3.1 Introduction and background 

Due to increase of electricity retail prices and environmental impact of fossil 

fuels, renewable energy sources are becoming more popular among end user. However, 

incorporating renewable power sources into the existing electricity grid is challenging, 

due to the variable and uncontrolled nature of many renewable sources. With continual 

renewable energy deployment growth, the utility companies and grid operators employ 

various regulation methods aimed to maintain the main power grid resilience and 

stability. California Rule 21 is one such example of regulatory guidelines. According 

to Rule 21 non-export agreement requirements [81], self-generating utility customer 

should import a minimum of 5% of nominal total generation capacity power from the 

grid. Whenever this requirement is not satisfied, the utility company considers the event 

a minimum import violation. The consequences of such import violations are 

decoupling the connection between customer and the on-site renewable generation from 

the utility grid. The use of electrical energy storage (EES) could be one solution to this 

issue, by absorbing energy during import violation.  

The Victor Valley Wastewater Reclamation Authority (VVWRA) located in 

Victorville, California, provides wastewater treatment for an area populated by nearly 

400,000 residents. Wastewater treatment is an energy intensive process. VVWRA has 

an average power demand of more than 1 MW and its annual electric energy 

consumption exceeds 9,000 MWh. In accordance with VVWRA’s vision for 

environmental preservation, sustainable energy future, affordable and predictable 

energy costs, the authority deployed two onsite 800 kW biogas Combined Heating and 
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Power (CHP) generators [82]. The CHP generators utilize biogas that is produced as a 

by-product of the wastewater treatment process to generate energy and offset the 

majority of their electrical energy needs. To accommodate future facility expansion and 

related forecasted increase in energy consumption the onsite power generation capacity 

is more than the average load demand of the entire facility. Therefore, VVWRA receives 

power from two sources: 1) onsite biogas CHP generators, and 2) Southern California 

Edison (SCE) utility company. Based on the definition of minimum import violation 

discussed in the previous section, for VVWRA, the minimum import violation is 

triggered when imported power from SCE drops below 80 kW for more than 2 seconds. 

The consequences of a violation are an automatic decoupling of the onsite CHP 

generators and a portion of the facility’s wastewater treatment equipment from the grid. 

This results in a temporary power loss to critical equipment, followed by increased grid 

power import, demand peak, and flaring of unused biogas, as well as the discarding of 

water that was in the process of being ultraviolet (UV) treated.  

In order to effective preventing the import violation, one energy storage system 

has been decided to implement to increase load or absorbed renewable energy to solve 

this issue. The ZBFB, one member of RFBs, has become more appealing and promising 

candidate due to its high energy density, high cell voltage and use of abundant and low-

cost materials [83] [84]. One of the great benefits of the ZBFB as a potential future low-

cost EES is the low cost of electrolyte. Both bromine and zinc are common chemical 

materials, already manufactured at industrial scale [85] [86]. In this study, an innovative 

flow battery is utilized as the battery energy system to prevent the minimum import 

violations. Unlike conventional flow batteries that use two low loops (two tanks, two 

pumps) interacting across a set of membranes, this new type flow battery uses activated 
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solid titanium electrodes, and a system design with a single flow loop without 

membranes [87]. The aforementioned improvements greatly reduce both system and 

operating costs, enabling longer system life and improved energy density [88]. In 

general, flow batteries are a promising battery energy storage system solution, which 

have inherent advantages due to their chemistry, including 1) one of the longest cycle 

life among all battery types; 2) the ability to independently scale energy and power 

characteristics; 3) good energy density characteristics for stationary applications; and, 

4) a broad operating temperature range. According to a report by the International 

Renewable Energy Agency (IRENA) [89], by 2030, the cost of flow batteries is 

expected to decrease to one third of its current cost, to a range about $300/kWh along 

with a cycle life of about 10,000 cycles. 

The VVWRA system layout is shown in Figure 3-1. The VVWRA system 

consists of two onsite biogas CHP generators, two ZBFB packs, and an Energy 

Management System (EMS) controlling the flow battery.  

 

Figure 3-1. VVWRA System Layout 
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The EMS acquires and archives the flow battery system status data and SCE 

power import measurement data through TCP/IP. A Schweitzer Engineering 

Laboratories (SEL) meter SEL-735 provides SCE imported power measurements at 10 

Hz. Each of the two flow battery packs, consists of four flow batteries and is rated at 

100 kW/500 kWh. In order to efficiently integrate the flow battery and EMS with the 

onsite CHP generators, the CHP control algorithm is modified by changing SCE import 

power threshold values.  

3.2 Problem statement 

To avoid minimum import violations, the onsite CHP generators employ control 

logic through Programmable Logic Controllers (PLCs). The PLCs employ real-time 

SCE imported power measurements to adjust CHP generator output power in response 

to load fluctuation. However, due to the slow response rate of generator power output (1 

kW/s), the PLC control strategy employs a buffer of 120 kW. The threshold value 

triggering a decrease in output power is 200 kW, while the import power value triggering 

the increase of the generator output is 250 kW. For example,  

(i) If imported power < 200 kW, generator ramps down at 1 kW/s, 

(ii) If imported power > 250 kW, generator ramps up at 1 kW/s, 

(iii) If 200 kW ≤ imported power ≤ 250 kW, generator maintains its output. 

The range from 80 kW to 200 kW for the imported power is used as a power 

buffer. While for the most part, this power buffer provides the ability to respond to rapid 

load fluctuations, at the same time, it also decreases the utilization of biogas generated 

power and leads to the underutilization of biogas. However, if the generator trigger set 

points are shifted from 200 kW and 250 kW, down to 150 kW and 200 kW 

(respectively), it would not only result in a power import reduction of 50 kW (up to 400 
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MWh per year),  but also increase the renewable energy usage. Minimizing the power 

buffer could bring more benefits from economic and environmental perspectives. 

Based on the previous discussion, the primary purpose of this study is to prevent 

the minimum power import violation. Although there are efforts in doing this via biogas 

generators implemented Programmable Logic Controllers, the ZBFB as energy storage 

system coupled with the two onsite biogas generators could be more beneficial. Through 

controlled battery system charging power 𝑃𝑐(𝑖) and discharging power 𝑃𝑑(𝑖) to prevent 

the minimum power import violation, the plant can increase renewable energy utilization 

by reducing power buffer and directly utilizing renewable energy.   

3.3 Control algorithm 

3.3.1 ZBFB constraint 

In general, ZBFB has various advantages such as long cycle life, good energy 

density, a broad operating temperature range, and independently scalable energy and 

power characteristics. Nevertheless, some limitations for all flow battery chemistries 

exist, such as high self-discharge rate during dwell, the requirement for auxiliary systems 

for electrolyte circulation and temperature control, and relative low energy conversion 

efficiency [90]. Apart from the merits and disadvantages mentioned above, a specific set 

of operational constraints are used in this project, as listed below:   

During charging period, the charging power 𝑃𝑐: 

𝑃𝑐 = {
𝑏𝑐,         0% ≤ 𝑆𝑂𝐶 ≤ 75%
0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                             (3-1) 

where bc denotes the value of charging power, which is one constant value, indicated by 

negative number 𝑏𝑐 ∈ 𝑅−. During this period, the battery must be charged to 75% SOC 

before switching to another working mode.  
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During discharging period, the discharging power 𝑃𝑑: 

Pd= {
𝑏𝑑,     25% ≤ 𝑆𝑂𝐶 ≤ 75%
𝑃𝑚𝑎𝑥 ,                𝑆𝑂𝐶 ≤ 25%

                                                                              (3-2)                                                                 

where bd denotes the value of discharging power, indicated by positive number 𝑏𝑑 ∈ 𝑅. 

bd can be  any value, even negative value, which means ZBFB can be charged in a short 

time in discharging period.  

After each full charge-discharge cycle, it is recommended that the flow battery 

completes a refresh cycle, which is intended to fully remove the residual Zn plating from 

the Ti electrodes. The refresh cycle is commanded by the Battery Management System 

(BMS). During the refresh cycle, the BMS takes control over the battery. At this stage, 

the flow battery neither receives nor responds to any external commands. 

3.3.2 Mixed integer linear programming control algorithm 

The primary purpose of this study is to prevent the minimum power import 

violation, while at the same time, to increase renewable energy utilization. The presented 

approach allows for the implementation at VVWRA site, by utilizing the onsite biogas 

CHP generators in combination with the energy storage capacity of the flow batteries. 

The control algorithm principle for VVWRA focuses on maintaining the SCE import 

power above 80 kW, while reducing the power buffer, as shown in Figure 3-2. The EMS, 

employing this control algorithm, commands the flow battery charging/discharging 

power based on the SCE import power measurement data [91].  
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Figure 3-2. Proposed Control Algorithm targets 
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can provide a more complexed solution and respond to a wider range of load variation. 

One drawback of this design is that it while one ZBFB stores the renewable energy, the 

other one releases it, which leads to decreased system energy efficiency due to losses. 

To ensure that one battery pack is always available to absorb a sudden drop in 

facility load without triggering a minimum import violation, the algorithm operates two 

battery packs in opposing modes. This approach is used to balance the facility net load 

by adjusting the discharging rate to maintain the minimum power import requirement. 

The developed real-time battery control scheme consists of four battery operation stages 

described in detail below. They are 1) charging stage; 2) discharging stage; 3) pre-

refresh stage; 4) refresh stage. One operational challenge is the requirement for the two 

ZBFB systems to interchange their working instantaneously. The proposed mothed 

posed a challenge on operating time: 

𝑡𝑑 ≥ 𝑡𝑐+𝑡𝑝𝑟𝑒𝑅 + 𝑡𝑟𝑒𝑓                                                                                          (3-3) 

where  𝑡𝑑 denotes the time of discharging stage, 𝑡𝑐 denotes the charging stage time,  

𝑡𝑝𝑟𝑒𝑅  denotes the pre-discharging stage time, 𝑡𝑟𝑒𝑓 denotes the refresh stage time. In 

order to provide the power support for whole time period, the time of discharging stages 

should be stay online longer than the other three stages. And those time variables are 

related with the ZBFB parameters. Taking the charging stage time as example is shown 

in Eq. 3-4 

𝑡𝑐 = ∑
𝑊

𝑃𝑐(𝑖)

𝑛
𝑖=1                                                                                                          (3-4) 

where W denotes the ZBFB capacity, which is equal to 500 kWh in this study.  𝑃𝑐(𝑖) 

denotes the charging power rate, which is constant value in the range between -100 and 

0.  Based on the above function, Eq. 3-3 could be re-written in Eq. 3-5 
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0.5𝑊

𝑃𝑑
≥

0.75𝑊

𝑃𝑐
+

0.25𝑊

𝑃𝑝𝑟𝑒𝑅
+ 0.5                                                                                        (3-5) 

where discharging stage operates in the SOC range between 25% and 75%, which only 

accounts for half of ZBFB’s energy storage capacity. The charging stage operates in 

the SOC range between 0% and 75%, which only accounts for 75% of ZBFB’s energy 

storage capacity.  Additionally, the pre-refresh stage operates in the SOC range between 

0% and 25%, which only account for 25% of ZBFB’s energy storage capacity. Finally, 

the refresh mode needs half hour to complete this stage. After substitution and 

simplification, the relationship between 𝑃𝑐 and 𝑃𝑑 is derived in equation 3-6.   

𝑃𝑑 ≤
2

3
𝑃𝑐                                                                                                                    (3-6) 

Taking into account the ZBFB round trip efficiency of 70%, the charging power 

rate is set to -86 kW, and the discharging power is set up to 40 kW. The more details 

about this algorithm are provided in following sections. 

3.3.2.1 Charging Stage 

Following initialization, the EMS chooses the battery pack with the lower SOC 

as the discharging pack (see discharging stage below). The other pack acts as the 

charging battery pack in the charging stage. There are three scenarios for the battery 

pack working in the charging stage:  

The charging power is maintained at -86 kW constant rate until the SOC reaches 

the upper limit 75% (a negative power value represents charging, while a positive value 

represents discharging). 

𝑃𝑐(𝑖) =  −86, (0% ≤ SOC𝑖 < 75%)                                                                      (3-7) 

The charging power progressively increases at 1 kW/s until it reaches 0 kW, 

allowing sufficient time for the CHP generators to decrease power output, after the SOC 
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reaches 75%. This averts a sudden drop in SCE import power that could be caused by 

the instantaneous increase in charging power from -86 kW to 0 kW. 

𝑃𝑐(𝑖) =  𝑃𝑐(𝑖 − 1) + 1, (SOC𝑖 < 75% and 𝑃𝑐(𝑖 − 1) < 0)                                     (3-8) 

When the charging pack SOC is beyond 75% and the charging power reaches 0 

kW, the battery pack is kept in standby mode until the discharging battery pack is ready 

for the pre-refresh stage. At this point, the charging battery pack will transition to the 

discharging stage and assume the role of the discharging battery pack. 

𝑃𝑐(𝑖) =  0, (SOC𝑖 < 75% and 𝑃𝑐(𝑖 − 1) = 0)                                                         (3-9)                                           

3.3.2.2 Discharging Stage 

As mentioned above, the discharging stage is the critical stage, which regulates 

the total output of the flow battery system to guarantee that the SCE import power is 

maintained above 80 kW. Considering the restricted power operation range and energy 

capacity, generators need to play an active role in the facility net load regulation process 

[92]. When a potential import violation is detected, the total flow battery system output 

is adjusted to trigger the onsite biogas CHP generators to ramp down their output. The 

discharging stage contains four phases shown in Figure 3-3.  
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Figure 3-3. Discharging Stage Scheme 
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If SCE import power is more than 90 kW, the discharging battery maintains discharge 
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(𝑆𝐶𝐸(𝑖) > 90 kW ∩ SOC𝑖 ≥ 25% ∩ 𝑃𝑑(𝑖 − 1) < 40)                                          (3-12) 

When the discharging battery pack SOC reaches the discharging stage lower 

limit of 25%, the discharging battery pack will transition to pre-refresh stage, while the 

charging battery pack will switch to discharging stage. 

3.3.2.3 Pre-refresh Stage 

When the SOC of the discharging battery pack reaches 25%, while the SOC of 

the charging battery pack reaches the 75%, the discharging pack is ready to transition 

to pre-refresh stage and the charging pack switches to the discharging stage. The battery 

pack in pre-refresh stage will continue to discharge at a 100kW power rate. In this stage, 

the two battery packs exchange their working modes, where the original discharging 

pack gets into the pre-refresh stage, while the charging pack switches to the discharging 

stage. Therefore, there is always one battery working in the discharging stage, ensuring 

that the flow battery system output can compensate for fluctuations in the facility load 

and maintain SCE import power above 80 kW.  

3.3.2.4 Refresh Stage 

When the SOC of the battery in the pre-refresh stage reaches 1%, the battery 

BMS will send out the requirement “Refresh is needed”. If the system is in steady sate, 

i.e. SCE import power is more than 100 kW and onsite generators provide constant 

output power, the EMS will send a binary value 1 to the BMS. The BMS will take over 

control of this battery pack until completion of the refresh phase. 

The control algorithm is presented in more detail and more intuitively in Figure 

3-4. The graphs show two battery systems running in opposing charging/discharging 

cycles. As shown in Figure 3-4, battery 2 works in discharging mode initially. The 

discharging pack reduces discharging power to increase total net power demand, thus 
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preventing the minimum import violation. When a rapid load fluctuation happens, the 

discharging battery pack can shift into charging mode for further power demand 

increase. Meanwhile, battery 1 works in charging mode initially, and transfers into 

standby status until the discharging battery pack is ready to transition into the pre-refresh 

stage. The battery pack in the pre-refresh stage discharges at 100 kW, until fully 

discharged, while the charging battery pack switches to the discharging stage. 

 

Figure 3-4. Flow Battery Simulation Output Profile 

 

3.4 Simulation and result 

This section presents numerical simulations to verify the effectiveness of the 

proposed control algorithm for preventing minimum import violations with different 

scenarios, which are based on the following three scenarios with different 

configurations and parameters of the system. These three scenarios stand for different 

methods for the primary purpose of this study. 

Scenario 1: onsite biogas generators 
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With respect to scenario 1, the onsite biogas generators are utilized to prevent 

the minimum import violation. The biogas generated as byproduct of wastewater 

treatment has been full used to support the local electricity energy needs, while their 

operation logic is aimed to prevent the minimum import violation. The simulation 

results are shown in Figure 3-5. In Figure 3-5 (a), the profile of load and generation 

appear to be of similar magnitude. Figure 3-5 (b) shows the average import power keep 

in the range between 200 kW and 250 kW, but there are several times when import 

violations occurred, that is indicated by lower than 80 kW line.  

 

Figure 3-5. Simulation of control algorithm scenario 1. 

 

The main limitation in utilizing only the onsite biogas generators for preventing 

import violation is obvious. The onsite biogas generators have large power capacity, 

but the rate of power change is too slow, and therefore they cannot respond quickly 
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enough to the sudden drop of local load. As seen by the first two import violations 

shown in Figure 3-5. More details are shown in Figure 3-6. Figure 3-6 (a), (b) indicated 

the first violation condition, Figure 3-6 (c), (d) indicated the second violation condition. 

SCE power value less than 200 kW triggered generators to ramp down the output, to 

increase the net load. However, the response rate is too slow and cannot match up the 

rate of change of the load.  

 

Figure 3-6. Conditions analysis of two violation examples (scenario 1)  

 

Scenario 2: ZBFB assisted with biogas generators 
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With respect to scenario 2, one ZBFB is utilized to assist onsite biogas 

generators to prevent the minimum import violation. ZBFB stores biogas energy 

whenever SCE power drops below 120 kW. Due to the constant charging power 

constraint and in agreement with maximizing the absorbed power capacity, the 

maximum charging power of -86 kW is deployed when SCE power is triggered. During 

the discharging period, the battery can switch from charging to discharging mode 

quickly. This control scenario fully utilizes this characteristic to avoid the import 

violations. 

 

Figure 3-7. Simulation of control algorithm scenario 2 

 

The simulation results of scenario 2 are shown in Figure 3-7, where Figure 3-7 

(a) denotes the profile of load and generation, Figure 3-7 (b) shows the ZBFB power 
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profile. With the use of ZBFB in scenario 2, the generator trigger threshold has been 

modified to 150 kW and 200 kW. As the result, Figure 3-7 (c) shows import power is 

kept in the range between 150 kW and 200 kW. However there are still several times 

when import violation happened, that is indicated by lower than 80 kW line. 

 

Figure 3-8. Conditions analysis of two violation examples (scenario 2) 

 

The same time period data have been taken for analysis in Figure 3-8. Due to 

SCE power not dropping below 120 kW, the ZBFB stays in idle state. Figure 3-8 (a), 

(b), (c) show when SCE trigger is reached (38210 time index), ZBFB works in 

discharging mode to provide the negative power to prevent the import violation. Figure 

3-8 (d), (e), (f) show, although the SCE trigger signal is sent to ZBFB, and ZBFB begins 

to absorb the renewable energy, the maximum constant charging power rate combined 
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with slow response of the biogas generator are no match for the sudden change in load 

power. However, in spite of violation occurrence, there are some improvements with 

scenario 2 compared to scenario 1. 

Scenario 3: Proposed control algorithm with two ZBFBs and biogas generators 

The proposed control algorithm with two ZBFBs combined with onsite biogas 

generators has been discussed in detail in previous sections. Here, Figure 3-9 details 

the control algorithm simulation results, and provides one use case to explain the two 

ZBFBs working patterns. 

 

Figure 3-9. Simulation of control algorithm scenario 3. 
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The same time period data have been taken for analysis for the proposed control 

algorithm as in scenario 1 and 2, and are shown in Figure 3-10. In order to compare the 

simulated results between scenario 2 and proposed control algorithm in scenario 3, the 

same biogas generators trigger value has been adopted, which starts at 150 kW, while 

the battery response trigger has been set to 120 kW. Figure 3-10 (a), (b), (c) show when 

the SCE trigger is reached (38210 time index), the generator ramps down the output to 

increase net load in Figure 3-10 (a), ZBFB 2 works in charging mode, which provides 

the constant -86 charging power, while the ZBFB 1 remains in the discharging mode. 

However, not enough power is absorbed to compensate for the demand drop Figure 

3-10 (b). As data show in Figure 3-10 (c), one violation ocurred.  

 

Figure 3-10. Conditions analysis of two violation examples (proposed control algorithm) 
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Figure 3-10 (d), (e), (f) show when the SCE trigger is reached (153458 time 

index), the generator ramps down the output to increase net load, as seen in Figure 3-10 

(d). During this time, ZBFB 1 works in charging mode, while the ZBFB 2 is in 

discharging mode. Comparing scenario 3 results to results in Figure 3-6 and Figure 3-8, 

more renewable energy has been utilized with the proposed algorithm. One benefit is 

the load drop gap is smaller, since ZBFB 2 could provide enough power to offset the 

power deficit as seen from Figure 3-6 (e). Thus on violation has been eliminated in 

Figure 3-6 (f). In spite of violation occurring with scenario 3, there are some 

improvements compared to scenarios 1 and 2. Although this violation happened with 

the proposed control algorithm in scenario 3, it did not occur in scenario. This does not 

indicate that scenario 2 is better than scenario 3. However, the advantages of scenario 

2 and 3 are hardly distinguishable in these two examples.  

 

Figure 3-11. Simulation result comparison for 3 control scenarios 
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One month simulation is introduced to check the long term performance of 

various control scenarios, as shown in Figure 3-11. The minimum import violation is 

the primary target in this study. In terms of preventing import violation, the proposed 

control algorithm outperforms the other two scenarios. 

However, the proposed control algorithm improved results a little compared to 

scenario 1. This can be attributed to the two ZBFBs always working in the charging 

stages alternately, which is equal to absorb the biogas generation. Although the onsite 

renewable generation and utilization is higher with the proposed control algorithm than 

the other two (indicated in Figure 3-6 (c), Figure 3-8 (d) and Figure 3-10 (d)), the 

increment of available renewable generation for proposed control algorithm with ZBFB 

consumption is limited. 

3.5 Conclusion 

The objective of this study is to design and deploy a real-time battery control 

algorithm utilizing a flow battery for the VVWRA facility to deal with minimum power 

import violations, while maximizing renewable energy utilization. The proposed 

control algorithm consists of four operational modes: charging, discharging, pre-refresh, 

and refresh. Through the combination of two flow battery packs working in opposing 

modes the system can: 1) absorb more power from the grid when there is the potential 

for a minimum import violation; 2) realize increased renewable energy generation by 

reducing the facility load power buffer; and, 3) leverage the inherent rapid power 

adjustment capability of the flow battery to compensate for the slow response of CHP 

generator output. This intuitive real-time control algorithm could not only significantly 

curtail the frequency of minimum power import violations, from the 19 times of original 

system to 2 times, but also provide some additional economic benefits by increasing 
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the onsite renewable generation. The proposed control algorithm could be widely 

applicable to other facilities that generate onsite renewable power, and face similar 

utility export restrictions. 
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4. TECHNO-ECONOMIC ANALYSIS OF A GRID CONNECTED PV-

BATTERY SYSTEM WITH CONSTANT CHARGING POWER 

CONSTRAINS 

4.1 Introduction and background 

With the increasing concerns over the impact of fossil fuels on the environment, 

renewable energy has become an important aspect of the power generation sector. 

According to a report by the IRENA [93], the total renewable energy generation 

capacity reached 2,351 gigawatts (GW) at the end of 2018, accounting for one third of 

total installed electricity capacity.  

Solar energy, spurred by technology innovation, reduction in costs and policy support, 

continues to be one of the most attractive sustainable energy resources [94]. However, 

due to their intermittent nature high penetration of renewable energy (i.e. PV and wind) 

into the power grid creates challenges in balancing supply and demand. Specific to 

solar, there is a mismatch between the time of peak solar generation and the time of 

peak demand.  

ESSs can address intermittency by storing energy and making it available during times 

of high demand. In the last decade, ESSs have been recognized as a main component 

in power system distribution networks to provide grid stability support, energy system 

efficiency improvements, voltage-frequency regulation services, and reduce 

environmental impact through the deployment of renewable energy [95]. 

Several articles have investigated the techno-economic viability of microgrids using 

renewable energy combined with some form of energy storage as possible alternative 
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solutions to replacing or reducing the energy generated by conventional high-polluting 

generators.  

A large-scale hybrid microgrid system consisting of solar, wind and battery was 

developed to provide energy for a remote off-grid island [96]. The results of this study 

showed that an off-grid power system with a small loss of power supply probability 

(LPSP) can meet optimal balance between energy reliability and economic cost. In 

another study, a diesel-solar hybrid system to provide electrical power to an isolated 

resident was investigated [97]. The Hybrid Optimization of Multiple Energy Resources 

(HOMER) simulation results indicated that this hybrid system could reduce cost of 

energy by 70%. The study in [98] presents the design of a backup PV-diesel microgrid, 

intended to supply electricity to a rural system with frequent blackouts. The author 

found the beneficial system is strongly dependent on the load level and durationof 

blackouts after examined economic viability of different scenarios. The study in [99] 

compared diverse technological options (wind, PV, and biomass) integrated with the 

grid, and analyzed their ability to improve the reliability of dispatch energy and the cost 

effectiveness of these hybrid systems for rural electrification. The study in [100] 

compared two performance scenarios of a large-scale wind farm with and without 

pumped hydro storage (PHS), by calculating the levelized cost of energy (LCOE). The 

results demonstrated that the scenario of the wind farm with added PHS generated 

additional economic benefits with slightly lower LCOE. All of the above mentioned 

articles aimed at assessing the viability of different energy storage systems for 

providing reliable power supply, while overlooking the value creation potential of 

combining applications such as power quality and frequency support. Capital 
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investment and economic benefits are the major factors in the decision making for 

implementing energy storage systems for single house or small-scale utilization. 

Article [101] evaluated the feasibility of off-grid operation of a fully electric house with 

three operational energy source scenarios: PV plus battery, PV only, and PV plus 

generator. The study concluded that PV plus generator is financially the better choice. 

Another research study [102] examined the potential of lead-acid and lithium-ion 

battery systems each combined with solar PV generation for a single home under 

multiple energy tariffs in Switzerland. The study showed that constant retail tariffs 

throughout day is the best option for consumers deploying PV plus battery system. One 

study [103] addressed the economic viability of solar home systems in the UK, 

considering battery degradation. In this study, a comprehensive battery degradation 

model is developed based on long-term ageing test. Normally residential electricity 

tariffs only consider electricity energy component, while ignoring maximum power 

demand, which limits the battery maximum financial performance. The author in [104] 

proposed a method to pre-select the optimal group of applications for residential PV 

plus battery system, by employing the economic benefits and cost, and utilizing 

different strategies in power applications: PV self-consumption, load shifting, 

avoidance of PV curtailment and peak shaving. 

There is a wide range of ESS technologies available on the market. A study prepared 

by the Energy Storage Systems Program for the U.S. DOE gives an overview of storage 

value propositions including several applications [104][105]. Many articles have been 

published in the last years on the technical and economic performance of battery 

systems. One study [106] performed the techno-economic analysis and compared the 
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performance of lithium-ion and lead-acid batteries in a microgrid consisting of solar 

PV, wind and diesel generation.  

 

4.1.1 System configuration and basic parameters 

The Chemehuevi Indian Tribe’s Chemehuevi Community Center (CCC) is located in 

Havasu Lake, CA, which is a remote community with a single transmission line 

connected to the power grid. A deployed microgrid project at the CCC integrated 

advanced pre-commercial PV and the ZBFB system, providing economic benefits and 

reliable energy support to the community at the CCC building. In addition, the 

microgrid system was designed to meet demand response and energy management 

requests, while supplying energy to support critical load at the CCC, minimizing 

operational impacts to the Community Center.  

Figure 4-1 shows the electricity use profile of CCC building for the summer and winter 

seasons. 

 

Figure 4-1. CCC building load for a summer and a winter day. 
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The method of solar generation prediction was introduced in section 2.1. Here, the main 

parameters and assumptions about the solar panel are introduced. Due to aging and an 

increasing internal resistance, PV systems cannot maintain the same output profile 

during their lifetime. Based on a published study [107], the individual modules or entire 

system have a mean degradation rate of 0.8%/year and a median value of 0.5%/year 

based on their analysis and literature review. In this study, 0.8%/year degradation rate 

is used. The main parameters of PV module are given in Table 4-1. 

Parameter PV  

Solar panel cost $2.29/ W [108]   

Maintenance cost 1% of capital investment 

Annual Capacity Degradation 0.8% 

Calendar life 20 years  
Table 4-1. PV parameters for economic analysis 

 

As stated above, the ZBFB is a promising technology as an energy storage system, 

characterized by its ability to independently scale its energy and power characteristics, 

achieving 100% depth of discharging (DOD) without battery damage, having a broad 

operating temperature range, and long cycle life. But the specific operational constraints 

requiring the constant charging power, and respective lower energy efficiency of ZBFB 

raised the question that performance of ZBFB as energy storage system in energy cost 

reduction applications.  

In order to maintain high battery storage capacity and prolong operating life, we adopt 

a slower charging rate near the end of the charging cycle. The threshold SOC value is 

set up as 95% and 85% for Li-ion battery and ZBFB, respectively. As for parameters 

used in the economic analysis, the lifespan and DOD of the battery systems are the main 

variables that determine the return on investment. Other battery parameters are also 
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selected for the techno-economic model. The cost values adopted in the present analysis 

are $350/kWh for battery energy capacity and $400/kW for inverter power capacity 

[104]. Since ZBFB is an emerging battery storage technology, there is limited cost 

information available. Based on the studies [5][109], the capital investment for ZBFB 

is $600/kWh for battery energy capacity and $650/kW for inverter power capacity. 

Additional information is presented in Table 4-2. 

Parameter Li-ion  ZBFB 

Round trip efficiency (%) 90 75 

Depth of discharge (DOD) (%) 80 100 

Battery cost ($/kWh) 350  600 

Inverter cost ($/kW) 400  650 

Maintenance cost (% of capital investment) 1.5 1.5 

Lifetime Energy Capacity Degradation (%) 30 5 

Lifetime Power Capacity Degradation (%) 10 10 

Annual Energy Capacity Degradation (%) 3.5 0.35 

Annual Power Capacity Degradation (%) 1 1 

Calendar life (years) 10  20 

Table 4-2. The main parameters of Li-ion battery and ZBFB for analysis 

 

4.2 Problem statement 

It is a common application for energy storage system to minimize energy cost of local 

DRES by performing load shifting or peak demand. ZBFB as one promising battery 

energy storage system has a lot of advantages. However, the constant charging power 

operating constrains, respective lower energy efficiency raised new challenges when 

utilizing the ZBFB as energy storage system of local DRES. This chapter focuses on the 

testing and assessing the techno-economic aspects of ZBFB. In order to perform a 

comparative analysis, two different battery systems types are compared from a 
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technological and economical perspective under the same simulating conditions. By 

analyzing and comparing the performance between the ZBFB and the widely-spread Li-

ion battery technology. 

4.3 Control algorithm 

The purpose of DRES is to support the building with an environmental friendly energy 

source, reduce building energy costs, and add extra distributed power flexibility. 

Despite its intermittent power output, the solar PV system has a longer lifespan with 

lower degradation rate compared to most battery chemistries. Alternatively, the battery 

system can dispatch power to meet demand. However, battery systems have a relative 

high capacity decline rates over long-time period. From economic performance, the 

capital investment and operating cost are mainly depended on the PV-battery system 

size and unit prices. However, the system revenue depends on the utilizing of the stored 

energy effectively, and therefore it could vary significantly. However, the peak demand 

charge requires that energy consumption, power demand and the operating period are 

considered. Through the optimal control of battery operation, the operating cost can be 

optimized. In this study, both Li-ion and ZBFB are utilized as energy storage system to 

do load shifting and demand response. Based on their different parameters and 

constrains to build model to simulate the technologic performance, while testing two 

system economic performance. Due to the addition of a microgrid system requires 

additional capital and maintenance costs, the PV-battery system is an attractive option 

to investors and customers only if the system provides economic benefits.  

4.3.1 Economic assessment 

In order to evaluate the system’s economic performance, the long-term profitability of 

PV-battery system is quantified through some well-established methodologies for the 
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evaluation of investments. In this study, the economic assessment methodology LCOE 

has been chosen as the economic assessment parameter, which have to be considered 

both benefits and costs associated with the PV-battery system described above. 

Typically, the LCOE is one commonly employed economic indicator. It is calculated 

as the long-term cost of energy (usually electricity) for a particular system, including 

all the costs over its lifetime, such as the initial capital investment, the cost of system 

operation and maintenance, and the energy fuel cost [104]. However, one drawback is 

that the original LCOE calculation for conventional power station, does not consider an 

energy storage system. One published study [110] proposed a method for a microgrid 

system employing energy storage system, in which LCOE calculation considering the 

energy storage system is demonstrated by Eq. (4-1): 

LCOEsys = LCOEpv + LCOEess                                                                        (4-1) 

A battery system is considered a generation system which has no ability to generate 

electrical energy. As a consequence, the energy dispatch is based on how much energy 

is stored in the system.  

Combining with [111] a simple formula to calculate LCOE is shown in Eq. (4-2): 

LCOE = 
∑ (CAPsys+

OPsys
n +Elec_costsys

n

(1+r)n
)n

y=1

∑
Energysys

n

(1+r)n
n
y=1

                                                             (4-2) 

Where CAPsys  is the system capital investment, OPsys
n is the annual operating 

expenditure, Elec_costsys
n  is the annual fuel expenditure (electricity cost to support the 

building load), Energysys
n  is the generation of total microgrid system, in which 

Energysys
n  equal to PV and battery dispatch energy, and r means the discount rate, 

which is defined as 5%.  
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The total system capital investment, which is based on the battery and the solar panel 

rated energy and power capacity is calculated using Eq. (4-3). 

CAPsys = CbatE × PbatE + CbatP × PinvP + CPV × PPV                                    (4-3) 

where, CAPsys ($) contains the battery system and solar panel system capital investment 

cost, CbatE   (kWh) indicates battery nominal capacity, CbatP  (kW) denotes inverter 

power capacity of battery system, CPV  (kW) indicates solar system power capacity, 

PbatE  ($/kWh) refers to the storage unit price, PinvP  ($/kW)  and PPV  ($/kW) 

corresponds to the battery inverter power capacity unit cost, and the unit price 

associated with the solar PV system generation rated capacity, respectively. 

There are many published studies which address the maintenance and operation cost 

for the whole system. For example, one study makes the assumption that annual costs 

of maintenance are 1.25% of the system capital cost [112]. Another research study uses 

1.5% as annual maintenance cost relative to initial investment [113]. The annual 

operational expenditure (OPsys) used in this analysis is a constant value equal to 1.5% 

of capital investment. The maintenance cost is calculated using Eq. (4-4) 

OPsys = CAPsys × 1.5%                                                                                    (4-4) 

In general, the fuel energy cost is calculated based on how much oil or gas is used to 

support the whole system running. However, for the case in which a microgrid 

consisting of PV-battery system is grid connected, only the cost of grid electricity 

consumption is considered. In the grid electricity cost calculation, the value of demand 

power and the energy consumption must be functions of time, since the unit price rates 

for power and energy are variable, dependent on the time of day, as indicated in the 

Time of Use (TOU) rate.  
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The yearly electricity cost is calculated by Eq. (4-5). 

Elec_costsys =∑ (Rde
p
×Max(Powerm) + ∑ Ren

p
× Enconsume

3
p=1  )

12

m=1
            (4-5) 

Where in the above equation, Rde
p

indicates the TOU demand rates (the superscript p 

indicate the different time period), Powerm is the monthly peak demand (m indicates 

the month index), Ren
p

indicates the energy price rate, Enconsume  stands for the 

respective energy consumption during each specific time period. 

4.3.2 Optimization model 

The aim of this study is to derive an optimal microgrid design, which involves finding 

the optimal size of energy storage and PV. Meanwhile, the operating cost should be 

minimized to satisfy the objective of energy cost reduction. As the introduced in the 

LCOE method, the operating cost of the system is one essential part during the LCOE 

calculation. At the same time, the operating cost is dependent on the response of the 

ZBFB charging power and discharging power, 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖), respectively. A bi-level 

optimal program is proposed for this microgrid design optimization problem. The 

battery operating algorithm that constrains the battery charging/discharging is the 

lower-level optimization problem, which provides optimal operating cost of each 

system respectively. The minimizing LCOE that limits the size of system components 

is the upper-level optimization problem. The objective function is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐿𝐶𝑂𝐸 (𝑁𝑠, 𝑁𝑏) 

However, the introduced LCOE method is non-linear and non-convex, evaluating the 

quality of candidate solutions is not straightforward. Therefore, a heuristic method is 

introduced to find the minimum LCOE value for each systems.  
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Figure 4-2. Pseudo-code of heuristic LCOE solution algorithm 

 

The detail process for this algorithm is shown in Figure 4-2. Based on the proposed 

system size, the capital investment is calculated first. System size variables are used to 

drive the battery operating control algorithm to get optimal charging power 𝑃𝑐(𝑖) and 

discharging power 𝑃𝑑(𝑖) , while the operating cost and system distributed energy 

calculations are collected. The LCOE (i, j) acts as a one candidate solution, calculated 

by the above collected values. In the end, the minimum LCOE (i, j) value is selected 

from the all candidate solutions.  

The operating cost depends on the modelling of battery systems. Three battery model 

has been present in following parts. Minimizing Eq. 4-5 is the only objective function 

for all of battery models. 
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4.3.2.1 Li-ion battery model 

Li-ion battery as energy storage system is deployed to meet practical applications, the 

response of battery are 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖). However, there are some limiting constrains for 

the battery operational performance. In general, constrains for Li-ion battery are: 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑐(𝑖) ≤ 𝑃𝑚𝑎𝑥                                                                                                (4-6) 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑑(𝑖) ≤ 𝑃𝑚𝑎𝑥                                                                                               (4-7) 

𝑃𝑐(𝑖) ∗ 𝑃𝑑(𝑖) = 0                                                                                                      (4-8) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑖) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                                                 (4-9) 

𝑆𝑂𝐶(𝑖) = 𝑆𝑂𝐶(𝑖 − 1) +
(𝑃𝑐(𝑖) × 𝑒𝑓𝑓 − 𝑃𝑑(𝑖) 𝑒𝑓𝑓) × ∆𝑡⁄

𝐵𝑎𝑡𝑐𝑎𝑝
⁄                     (4-10) 

where 𝑆𝑂𝐶(𝑖) , 𝑒𝑓𝑓  and 𝐵𝑎𝑡𝑐𝑎𝑝  denote the state of charge at time index of i, 

charging/discharging efficiency and battery capacity, respectively.  𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥 

denotes the minimum and maximum battery power, 𝑃𝑚𝑖𝑛 = 0, and 𝑃𝑚𝑎𝑥 = 100. 

𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 denotes the minimum and maximum value of SOC. The Li-ion 

battery has been designed with 80% DOD,  𝑆𝑂𝐶𝑚𝑖𝑛 = 20%, and 𝑆𝑂𝐶𝑚𝑎𝑥 = 100%. A Eq. 

4-8 imposes a restriction on 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖), preventing the battery from charging and 

discharging at the same time. 

4.3.2.2 Scheduled ZBFB control model for constant charging power 

Due to the specific constant charging requirement, the scheduled control algorithm 

needed to be adjusted. The general scheduled control algorithm is designed to charge 

battery when the renewable energy is more than the local load, and released the stored 

energy to support the local demand at a later time. The only constrain on the charging 

power and discharging power is the maximum allowable power range. Considering the 
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constant charging power, the new scheduled control algorithm is designed to constrain 

the charging power with constant value. The designed method is shown in Figure 4-3. 

 

Figure 4-3. Pseudo-code of rule-based ZBFB constant charging power constrain 

 

Based on the demand and renewable generation, each timeslot potential charging 

energy is calculated and recorded. Then, the maximum potential charging energy is 

chosen to compare with battery capacity. If the maximum potential charging energy is 

larger than battery capacity, then the constant charging power is set to equal the battery 

capacity divided by the processing time. Otherwise, the constant charging power is the 

maximum potential charging power divided by the processing time. 

4.3.2.3 MILP ZBFB model for constant charging power 

The Mixed Integer Linear Programming (MILP) ZBFB model is subject to the following 

constrains: 

0 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑖) ≤ 𝑃𝑢𝑛𝑚𝑒𝑡(𝑖)                                                                                        (4-11) 
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if  𝑃𝑙𝑜𝑎𝑑(𝑖) ≥ 𝑃𝑠𝑜𝑙𝑎𝑟(𝑖),  

 𝑃𝑢𝑛𝑚𝑒𝑡(𝑖) =  𝑃𝑙𝑜𝑎𝑑(𝑖) − 𝑃𝑠𝑜𝑙𝑎𝑟(𝑖)                                                               (4-12)    

else  

 𝑃𝑢𝑛𝑚𝑒𝑡(𝑖) = 0  

0 ≤ 𝑃𝑐(𝑖) ≤ 𝑃𝑠𝑜𝑙𝑎𝑟_𝑒(𝑖)                                                                                            (4-13) 

if  𝑃𝑠𝑜𝑙𝑎𝑟(𝑖) ≥ 𝑃𝑙𝑜𝑎𝑑(𝑖),  

 𝑃𝑠𝑜𝑙𝑎𝑟_𝑒(𝑖) =  𝑃𝑠𝑜𝑙𝑎𝑟(𝑖) − 𝑃𝑔𝑟𝑖𝑑(𝑖)                                                              (4-14)    

else  

 𝑃𝑠𝑜𝑙𝑎𝑟_𝑒(𝑖) = 0  

where 𝑃𝑢𝑛𝑚𝑒𝑡(𝑖) denotes the unmet demand that renewable energy cannot support in 

instances like during the morning (sunrise) and the evening (sunset). 𝑃𝑠𝑜𝑙𝑎𝑟_𝑒(𝑖) denotes 

surplus renewable energy when generation is larger than demand (e.g. noon period). Eq. 

4-11 and Eq. 4-12 indicate that grid power supports the unmet power. Eq. 4-13 and Eq. 

4-14 indicate that renewable energy is the primary energy source to charge the battery. 

For ZBFB operation, Eq. 4-6 to Eq. 4-10 should also be satisfied. 

𝑃𝑐(𝑖) ≤ 𝑀(1 − 𝑢(𝑖))                                                                                               (4-15) 

𝑃𝑔𝑟𝑖𝑑(𝑖) ≤ 𝑀𝑢(𝑖)                                                                                                     (4-16) 

𝑢(𝑖) ∈ {0,1} 

Eq. 4-15 and Eq. 4-16 are constrained grid power to charge battery system [114]. 

𝑃𝑔𝑟𝑖𝑑(𝑖) + 𝑃𝑠𝑜𝑙𝑎𝑟(𝑖) − 𝑃𝑐(𝑖) + 𝑃𝑑(𝑖) = 𝑃𝑙𝑜𝑎𝑑(𝑖)                                                    (4-17) 

𝑃𝑔𝑟𝑖𝑑(𝑖) + 𝑃𝑑(𝑖) = 𝑃𝑢𝑛𝑚𝑒𝑡(𝑖)                                                                                 (4-18) 

𝑃𝑐(𝑖) = 𝑝 × 𝑐(𝑖)                                                                                                       (4-19) 

𝑐(𝑖) ∈ {0,1}, 𝑝 ∈  𝑅 
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Eq. 4-19 introduced one way to describe 𝑃𝑐(𝑖) is constant charging power with 𝑝 and 

𝑐(𝑖). 𝑝 is one value variable, and 𝑐(𝑖) is one binary variable. However, this equation is 

not linear programming, which cannot directly apply to MILP ZBFB optimal model. 

Here, the McCormick relaxation has been utilized to transfer the Eq. 4-19 into Eq. 4-20 

to Eq. 4-23. 

𝑃𝑐(𝑖) ≥ 0                                                                                                                  (4-20) 

𝑃𝑐(𝑖) ≥ 𝑝 + 100 × 𝑐(𝑖) − 100                                                                               (4-21) 

𝑃𝑐(𝑖) ≤ 100 × 𝑐(𝑖)                                                                                                  (4-22) 

𝑃𝑐(𝑖) ≤ 𝑝                                                                                                                  (4-23) 

𝑐(𝑖 − 1) ≥ 1 − 0.001 −𝑀 × (1 − 𝑦1(𝑖))                                                             (4-24) 

𝑐(𝑖 − 1) ≤ 1 +𝑀 ×  𝑦1(𝑖)                                                                                     (4-25) 

𝑐(𝑖) ≥ 1 − 0.001 −𝑀 × (1 − 𝑦2(𝑖))                                                                    (4-26) 

𝑐(𝑖) ≤ 1 +𝑀 × 𝑦2(𝑖)                                                                                             (4-27) 

𝑦2(𝑖) ≥ 𝑦(𝑖)                                                                                                            (4-28) 

𝑦2(𝑖) ≥ 𝑦(𝑖)                                                                                                            (4-29) 

𝑦(𝑖) + 1 ≥ 𝑦1(𝑖) + 𝑦2(𝑖)                                                                                       (4-30) 

𝑠𝑒𝑞𝑢(𝑖) = 𝑠𝑒𝑞𝑢(𝑖 − 1) + 𝑦(𝑖)                                                                               (4-31) 

𝑐, 𝑦1, 𝑦2 𝑎𝑛𝑑 𝑦 ∈ {0, 1}, 𝑠𝑒𝑞𝑢 ∈  𝑅+ 

Eq. 4-24 to Eq. 4-31 make sure that the charging power in a series timeline. 

The optimization problem is solved in the MATLAB® environment [129] by using the 

MOSEK solver [130]. 

4.4 Simulation and results 

In this study, the primary purpose is to find the optimal size for different system 

configurations using two different battery systems by minimizing the LCOE value. The 
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operating cost plays a significant influence in the LCOE calculation, while operating 

cost is dependent on battery charging power 𝑃𝑐 and discharging power 𝑃𝑑 , which are 

constrained by the battery model. In this section, the operating cost of battery model 

under the various system size has been simulated. Before introducing the simulation 

results, there are several scenarios that need to be established. For Li-ion battery 

systems, there is only one Li-ion battery model. The scheduled control algorithm of 

ZBFB is defined as scenario 1, and the MILP ZBFB model with constant charging 

power is scenario 2.  

4.4.1 Optimal system size with various system configurations  

Due to the operating constrains, retail rates and control method are different, optimal 

size for these systems is diverse. The optimal system size for different system are shown 

in Table 4-3. 

Main Variables Li Scenario 1 Scenario 2 

Solar size(kW) 100 104 100 

Battery size (kWh) 200 108 90 

LCOE 0.346 0.516 0.485 

Table 4-3. Simulation result for different system configurations 

 

From the above table, the li-ion battery system has the greater energy capacity while 

achieving the lowest LCOE. There are several reasons that make the Li-ion battery 

system as the best option in this simulation. The first one is the lower capital cost of 

battery system. Another point that cannot be ignored is the flexibility of Li-ion battery 

operation. In contrast with ZBFB, the only drawback is the narrower DOD when the li-

ion battery is utilized to reduce energy cost. However, this constraint has been offset by 
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increasing the battery system size, while taking advantage of the economies of scale to 

keep capital investment under control.  

The LCOE result of MILP ZBFB model is better than the schedule control method. 

Although the MILP ZBFB model has a smaller scale battery capacity, this system could 

get better operating cost due to a comparable discharging power that reduces the 

potential peak demand. Additional the smaller scale battery system has less capital 

investment of MILP ZBFB system, comparing with the scheduled one. Although 

scenario 1 in above table indicated the minimum LCOE value, the performance of 

scheduled control algorithm for ZBFB with constant charging power constraint is not 

as good as the others. This is due to an inherent lower energy efficiency compared to 

Li-ion and higher capital cost compared to the MILP approach.  

In order to indicate the influence of system components in the optimal system, the main 

results of the simulation are presented in Table 4-4. 

 

Main Variables Li-ion Scenario 1 Scenario 2 

Solar PV 

Energy(kWh) 76260.5 79832.7 79350.7 

Capital (%) 63.5% 74.8% 77.4% 

Battery 

Energy(kWh) 66023.7 32107.7 26345.2 

Capital (%) 36.5% 25.2% 22.6% 

PV-battery Operating($) 13381.8 15339.1 15682.1 

Table 4-4. Results comparison. 

 

4.4.2 Comparative analysis of ZBFB models  

The two models develop for ZBFB: scheduled control algorithm and MILP 

modelling method, both charged the ZBFB with constant charging power. The battery 
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curve are shown in Table 4-4. In Table 4-4 (a), (c) denote the ZBFB with scheduled 

control algorithm with 108 kWh battery capacity, while (b), (d) denote the ZBFB with 

MILP optimal control algorithm with 90 kWh battery capacity. Both scenarios are 

working under the optimal system size. When the renewable energy is larger than 

system load, the scheduled control algorithm gets the maximum charging energy from 

all candidate solutions. For the MILP ZBFB model, due to a smaller scale battery size, 

the constant charging power is only 15.6 kW. During the discharging period, the 

drawback of the schedule method is observable, because this control method discharges 

energy to support the system load without concern economic performance. In contrast, 

the MILP ZBFB model discharges energy to reduce the whole system energy cost, 

decreasing the LCOE value for the whole system.  
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Figure 4-4. ZBFB operating curve for optimal system size (scenario 1 and scenario 2) 

 

4.5 Conclusion 

The techno-economic analysis of PV-battery DRES with two different battery 

technologies reveals that the economic benefits of DRES are encouraging, both in terms 

of reduced on-grid energy consumption, and in terms of support of increasing 

deployment of renewable energy. The comparative analysis of different optimal size 

configurations of PV-battery system with the two types of batteries, indicated that 

lithium-ion batteries are characterized by excellent investment performance from both 

technological and economic perspective, under the current market price and application 

purpose. For both two ZBFB control algorithm considering the constant charging power 
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constraint, the MILP optimal control algorithm provide the better result. The ZBFB 

shows lower economic performance, explained by its higher projected capital 

investment. Under this simulation, ZBFB could compete with Li-ion battery in 

economic assessment at least with 60% capital investment decreasing.  
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5. PROFITABLE EMISSION CONTROL STRATEGY FOR PV-ZBFB 

HYBRID MICROGRID WITH MODELLING OF REFRESH MODE 

5.1 Introduction the Background 

The proliferation of DRES is strengthened by global awareness that urges all of its 

participants to reduce their GHG emissions. Besides, environmental concerns and 

relative positive financial returns are identified as major motives for adopting DRES. 

California has declared an ambitious plan to reduce its emission by 26–28% below the 

2005 levels by 2030 [115]. In California, a significant amount of renewable energy is 

generated from small scale solar PV systems which add 19.6% of total renewable energy 

generation. There is no doubt that renewable energy generation holds the key in reducing 

the environmental impact of fossil fuels, and decreasing reliance on traditional energy 

sources [66]. While at the same time, energy storage systems have been touted as a 

promising solution for the intermittent nature of renewable resources, and therefore a 

valuable contribution towards broader utilization of renewable energy and distributed 

energy resource systems. For a hybrid system, the typical end-user is not only focused 

on economic benefits of the system, but also its de-carbonization potential. Many studies 

have proposed renewable portfolio standards, requirement of GHG emission reduction. 

For example, SGIP provides incentive for GHG emission reduction, which requires 

qualifying prospective projects to achieve 5 kg CO2/kWh without significantly 

impacting energy bill saving [67].  

Significant efforts have been made around the world to address these GHG emission 

reduction issues. Many propose that the hybrid system with deployed renewable energy 

can reduce the whole system GHG emission. However, based on the discussion and 

literature review in previous chapter, the hybrid system may not reduce emission, but 
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instead exacerbate environmental impacts. The main reason for that is the control 

algorithms and specific strategies used to manage energy storage systems.  

There are two main operation mechanisms of energy storage that can cause increased 

emissions for grid-connected hybrid system [68]. The first is caused by the market 

electricity retail price incentives, which encourage end-users to charge the energy 

storage system during off-peak hours and discharge during peak afternoon or evening 

periods. In general, the marginal electricity generation during off-peak times is often 

produced by a coal-fired plants and the marginal generation during peak periods is 

produced by natural gas plants, which means that storage is effectively displacing 

cleaner natural gas-generated electricity with coal-fired generated electricity. So, when 

assessing the impacts of energy storage system with utilizing an average GHG emission 

factor value, would ignore the difference of GHG emission rates associated with the grid 

energy used for charging and discharging at different times. As the result, the average 

GHG emissions factors or signals are discarded in this study.  

Second, all storage technologies experience energy losses due to their internal resistance 

or self-discharge, defined by their round-trip efficiency. This inefficiency means that the 

storage system would effectively lose some of the energy when system operates. 

Additionally, due to the energy storage system use the whole hybrid system is required 

to use extra electrical energy in a passive way, and consequently generate more GHG 

emission related to these losses. These two characteristics of energy storage operation 

remain true, whether the storage system is operated with a revenue-maximizing goal in 

mind or operated with load-shifting or demand response goal in mind. However, 

researchers have not come to an agreement as to which one of these two mechanisms 

plays the primary role in emission effect [69] [70]. 
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Unfortunately, while renewable energy generation combined with storage system is 

effective in meeting electricity power demand and energy, it remains unclear how 

effective a hybrid system can be in reducing GHG emissions, under current energy 

market structure and the mentioned battery operating mechanisms.   

5.2 Problem statement 

Under the primary motivation of reducing energy consumption and pollutant emissions, 

researchers have been investigating reducing energy consumption and pollutant 

emissions of hybrid systems. One study [116] proposed a dynamic control algorithm to 

solve optimization problem with target of reducing the economic cost and CO2 

equivalent emissions. The author of a published report [117] utilized bi-level 

optimization and Pareto analysis and found that renewable generation from microgrids 

can significantly reduce the negative impacts of the policies. Another research study 

[118] proposed an advanced demand-side management and control strategy for an 

efficient energy management system in smart grid and indicated this method effectively 

reduced the energy cost, emission cost, and peak-to-average ratio of the smart grid. 

Although those research studies have indicated the target of emission reduction can be 

realized with proper control method, the unique characteristics of ZBFB may raise new 

challenges. The refresh mode is the one critical constraint for control algorithm and 

optimization.  

Although ZBFB is a promising battery technology with appealing advantages, its 

drawbacks should not be ignored. As mentioned previously, the battery round-trip 

efficiency is one factor, which plays a significant role in the GHG emission effects. 

However, the ZBFB has the respective lower efficiency, which means extra energy 

(more emissions) would be produced. Another concern is the refresh mode, which raises 
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a new challenge for the hybrid system control algorithm, which in turn takes minimizing 

economic cost as primary objective.  

There are some papers proposed simulating models or methods to implement the refresh 

mode in practical applications and simulations. First and easily implement is do refresh 

cycle after every daily usage. The papers [33] [61] require that the batteries be 

completely discharged to prevent dendrite growth and maintain the health of the 

batteries. This requires that the batteries be periodically stripped to properly clean and 

maintain them. However, this requires that Energy storage system periodically stay 

offline. The author [62] mentioned the stripping cycle is repetitively forced every 5 

workdays. If above mentioned methods have been deployed, there are some subtle 

features would be neglected. For example, the report [30] found the first cycle 

efficiency would be slightly lower after refresh cycle, due to the base coat of zinc is 

being re-plated. If one refresh cycle per day schedule has been used, the performance 

of ZBFB would be negative effect comparing with the normal utilized way. 

There are some researches indicated another way to implement the refresh mode in 

simulation model or real applications. The report [49] indicated the battery efficiency 

would decline after a number of cycles. Within a set of no-strip cycles, this efficiency 

loss is exhibited as decreasing capacity. As a report [63] indicated stripping procedure 

should be taken once in every four or five full charging and discharging cycles. The 

author [30] prefer ZBFB should do one strip cycle after five operating cycles. However 

based on the limited knowledge, the ZBFB model with refresh mode based on operating 

cycle has not been introduced. 

In this section, the control algorithm of PV-ZBFB hybrid system based on a novel 

battery model with refresh mode has been proposed, which aims to maximize revenue, 
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while reducing emission of whole system. The refresh mode is executed dependent on 

the number of operating cycles.  

5.3 ZBFB model 

Modelling of ZBFB is highly relevant to provide necessary tools for research, simulation 

and practical application to improve their performances. Different types of models for 

ZBFB have been proposed with different end goals. Several battery models have been 

developed for improving battery design, parameter identification and performance. One 

study [119] reported a model aimed to optimize system parameters to reduce losses. 

Several studies 0[120][121] reported improved models focusing on electrochemical 

reaction kinetics and charge transfer losses in the electrolyte. Most of these models have 

focused on the modelling of electrochemical reactions or species transport, there are 

requirements of battery model, which can simulate battery performance and operating 

constraints in actual applications. Some efforts have been made by researchers to address 

this type of battery model. Published research accounts [33] reported battery model used 

to simulate refresh mode after daily usage. The author of a study [62] has demonstrated 

one model in MATLAB Simulink environment, which runs refresh mode once every 5 

days. These models focus on simulating refresh mode on time interval, but the model 

created to closer mimic actual operation requires more accurate control and operation, 

based on smaller time intervals, like, hours, minutes even in seconds. In this part, 

modelling of ZBFB for simulating refresh mode in real application has been proposed. 

This strategy of ZBFB model is built based on the number of battery operating cycle.  

5.3.1 Basic strategy and implement method of refresh mode 

Before introducing the details about the modelling of ZBFB with refresh mode, the 

assumptions and design method should be investigated first. The reason for 
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implementing a forced stripping cycle after every five charge/discharge cycles is the 

sharp decrease of energy efficiency [30]. According to a research report [64], the author 

indicated that the refresh time could be a constant value, if the power conversion 

component of ZBFB is well designed. Based on practical operating experience and 

mentioned research reports, the stripping cycle can be done after each charge/discharge 

cycle or after several cycles. However, after five cycles the stripping cycle would be 

enforced, which requires one hour per stripping cycle to complete.  

ZBFB as energy storage system is deployed to meet practical application needs, the 

response of ZBFB are charging power and discharging power, 𝑃𝑐(𝑖)  and 𝑃𝑑(𝑖) , 

respectively. However, there are some limit constraints of the battery operational 

performance. In general, the basic constraints are: 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑐(𝑖) ≤ 𝑃𝑚𝑎𝑥                                                                                                (5-1) 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑑(𝑖) ≤ 𝑃𝑚𝑎𝑥                                                                                               (5-2) 

𝑃𝑐(𝑖) ∗ 𝑃𝑑(𝑖) = 0                                                                                                      (5-3) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑖) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                                                  (5-4) 

𝑆𝑂𝐶(𝑖) = 𝑆𝑂𝐶(𝑖 − 1) +
(𝑃𝑐(𝑖) × 𝑒𝑓𝑓 − 𝑃𝑑(𝑖) 𝑒𝑓𝑓) × ∆𝑡⁄

𝐵𝑎𝑡𝑐𝑎𝑝
⁄                        (5-5) 

where 𝑆𝑂𝐶(𝑖) , 𝑒𝑓𝑓  and 𝐵𝑎𝑡𝑐𝑎𝑝  denote the state of charge at time index of i, 

charging/discharging efficiency and battery capacity, respectively.  𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥 

denote the minimum and maximum of battery power, 𝑃𝑚𝑖𝑛 = 0, and 𝑃𝑚𝑎𝑥 = 100, here. 

𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 denote the minimum and maximum value of SOC. Due to ZBFB’s 

ability of 100% DOD, 𝑆𝑂𝐶𝑚𝑖𝑛  = 0%, and 𝑆𝑂𝐶𝑚𝑎𝑥  = 100%, are used here. Eq. 5-3 

imposes restriction of 𝑃𝑐(𝑖)  and 𝑃𝑑(𝑖) , which requires battery not be charged and 

discharged synchronously. 
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Additionally, the refresh mode has specific constraints. Based on previously described 

reasons, refresh is carried out if SOC reaches 0%, while the number of battery 

operational cycles equals 5. The battery cycle counting algorithm will be presented in 

details next. 

5.3.1.1 Battery cycle counting algorithm 

Cycle-counting is a major topic in battery degradation field. Equivalent full cycle 

counting and Rainflow cycle counting are two main methods. According to the 

literature, Rainflow cycle counting is the most widely adopted algorithm for material 

fatigue analysis [122], lifetime assessment of power switches [123] as well as for battery 

degradation analysis [124][125]. Although the Rainflow method is suitable for so many 

applications, it’s not a good method in this application. For example, the Rainflow 

approach was expressed the information of peak points and valley points, which ignored 

the real time power characteristics [126]. However, the power value at each time interval 

is import for the simulation the operating of ZBFB. Therefore, a cycle estimation method 

that could processes real time data is needed.  

A battery cycle counting method is proposed for approximate evaluation of 

charge/discharge operating cycle of grid-tied BESS, which is created based on 

equivalent battery full charge-discharge cycles method. The proposed operating cycle 

counting method, as shown in Figure 5-1, is used to count the number of full cycles a 

battery has endured by real time battery operating data. 



  71 

 

Figure 5-1. Flowchart of the cycle counting algorithm 

 

The method is described as following: estimating the battery charging or discharging 

operation based on the change of SOC between the adjacent time nodes. When the SOC 

value increases, battery is being charged. Based on this classification, calculating the 

charging energy and discharging energy of battery by using the power at time i 

separately, as shown in Eq. 5-6, 5-7: 

𝐸𝑐(𝑖) = 𝐸𝑐(𝑖 − 1) + 𝑃𝑐(𝑖) ∗ 𝑒𝑓𝑓 ∗ ∆𝑡                                                                        (5-6) 

𝐸𝑑(𝑖) = 𝐸𝑑(𝑖 − 1) + 𝑃𝑑(𝑖)/𝑒𝑓𝑓 ∗ ∆𝑡                                                                        (5-7) 
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When both battery charging energy and discharging energy equal battery storage 

capacity, one fully charging/discharging cycle is completed. Once a full cycle is counted, 

the cycle value is incremented by 1.  

Thus, 𝐸𝑐(𝑖)  and 𝐸𝑑(𝑖) , the charging energy and discharging energy, need to be 

evaluated to determine when they equal the battery capacity at every time node, as 

indicated by Eq. 5-8, 5-9, respectively. 

y1(𝑖) = 𝐸𝑐(𝑖) − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒(𝑖 − 1) ≥ 𝐵𝑎𝑡𝑐𝑎𝑝                                                  (5-8) 

y2(𝑖) = 𝐸𝑑(𝑖) − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒(𝑖 − 1) ≥ 𝐵𝑎𝑡𝑐𝑎𝑝                                                  (5-9) 

y1(𝑖), y2(𝑖) ∈ {0,1}, 𝐸𝑐(𝑖), 𝐸𝑑(𝑖)  ∈ 𝑅+ 

where y1(𝑖) and y2(𝑖) are the binary variable, which indicate the increment of charging 

energy or discharging energy are more than the battery capacity, if more than battery 

capacity, the y1(𝑖), y2(𝑖) are set to 1, others are 0. Only if both y1(𝑖) and y2(𝑖) equal 

to 1, then 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) are updated as Eq. 5-10 shows, 

𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) = 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖 − 1) + 1                                                                                (5-10)                                  

𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) ∈ 𝑍+ 

where 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) denotes the cumulative cycle value, which will continuously increase, 

beyond the original design. As above equations show, there are three types of variables, 

y1(𝑖), y2(𝑖) are the binary variables, 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) is an integer variables, and the 𝑃𝑐(𝑖), 

𝑃𝑑(𝑖), 𝐸𝑐(𝑖), 𝐸𝑑(𝑖) belong to the positive real number group (R+). As stated above, it is 

impossible that charging and discharging occurs at the same time. As a result, at any 

time index, there is only one equation used between Eq. 5-6, 5-8 and Eq. 5-7, 5-9.  

5.3.1.2 Refresh mode implement method 

There are two prerequisites of refresh mode implementation. The first one is that 

operating cycle is reached at the recommend maximum operating cycle, another one is 
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SOC of battery system is closer (less than 0.1%) or equal to 0%. Based on the designed 

strategy of refresh mode, extra steps are required to complete implementation of refresh 

mode. The primary target is verifying the fourth operating cycle (𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) = 4) is 

complete, which is used in the original value of cycle (𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) = 0). The transfer 

function is shown by Eq. 5-11. 

𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) = 5 ∗ 𝑛𝑢𝑚𝐶(𝑖) + 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖)                                                                  (5-11) 

𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) ∈ {0,1,2,3,4} 

Eq. 5-11 is used to transfer this cumulative cycle value to the desired one, 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖). 

The modulo method is adopted here. 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖)  is an integer variable with range 

between 0 and 4.  Besides this transfer function, one indicator 𝑟1(𝑖) that indicates the 

ZBFB already met the requirement of maximum operating cycle is requisite. 

𝑟1(𝑖) = 1 ←   𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) = 0′  

𝑟1(𝑖) = 0,         𝑜𝑡ℎ𝑒𝑟𝑠                                                                                               (5-12) 

where  𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) = 0′ means the operating cycle transfer from 4 to 0, which indicated 

maximum operating cycle is reached.  0′ is used to show the difference between the 

transfer function and the operating cycle value at the beginning. 

During the same time, another signal 𝑟2(𝑖) denoted the SOC is closer to 0% is designed 

as following Eq.5-13 

𝑟2(𝑖) = 1 ←   𝑆𝑂𝐶(𝑖) ≤ 0.1% 

𝑟2(𝑖) = 0,        𝑜𝑡ℎ𝑒𝑟𝑠                                                                                             (5-13) 

Only if both indicators 𝑟1(𝑖) and 𝑟2(𝑖) are equal to 1, which is signified as true, the 

refresh mode is initiated. During refresh mode process, ZBFB has no ability to respond 

to any power commands from the end-user of designated controller. In order to simulate 
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this process of refresh mode, the charging power 𝑃𝑐(𝑖) and discharging power 𝑃𝑑(𝑖) are 

set to 0. 

 

Figure 5-2. Pseudo-code of ZBFB model with refresh mode 

 

The main procedures of refresh mode has been discussed in above subsection and 

equations. However, those part is based on the idea, the equations are nor suitable 

directly applied in optimal questions.     

5.3.2 Battery model 

The focus of this chapter is on the problem of determining simultaneously the behavior 

and operation of ZBZB with refresh mode to meet energy operation needs. Which is 

formulated here as an optimization due to the complexity of the problem and the need 

to select from among the many possible solutions one that meets a particular objective, 

minimizing energy cost and GHG emissions. 
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Based on the designed strategy of refresh mode, there are two type of variables of choice: 

discrete (binary and integer) and continuous. The discrete variables denote whether the 

requirement is met and the cycle counting value; whereas the continuous variables 

typically represent the energy capacity, power response and SOC. This optimization 

problem is clearly not original convex for the discrete variables and the logic operations. 

However, the Mixed Integer Programming (MIP) is one method to describe and solve 

this type of optimization problems. Actually, MIP can further be classified into Mixed 

MILP and Mixed Integer non-Linear Programming (MINLP). In this dissertation, MILP 

is utilized to describe and solve the optimization problem of ZBFB control with refresh 

mode. Due to all constraints and the objective function being linear function, the main 

advantages of MILP are normally quicker solution and the linear constraints resulting in 

a convex feasible region, which means that one is in principle guaranteed to obtain a 

global optimum [127]. Furthermore, the integer variables are typically determined using 

a branch-and-bound algorithm [128]. Although several mathematical formulations in the 

model are not linear functions, some tools and technical methods are utilized to transfer 

the non-linear into linear functions.  

The modelling of ZBFB is designed to simulate battery behavior in the condition 

utilizing battery to meet practical applications. Due to the complexity of the model and 

practical application recorded data, the pre-conditions should be declared before getting 

into the ZBFB model. In this model, the time interval is 1 hour (∆𝑡 = 1), the index i 

denotes hours (𝑖 ∈ {1…24}), and every simulation time period is 1 day, the information 

is stored and turned over to the next daily simulation. The ZBFB model is created in 

MATLAB environment [129] and in MOSEK optimization solver [130]. 

The detail formulations of ZBFB model are expressed as follows: 
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𝑒𝑐 + ∑ 𝑃𝑐(𝑖) ∗ 𝑒𝑓𝑓 ∗ ∆𝑡
𝑛
𝑖=1 − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒

𝐶(𝑖 − 1) ≥

                                    𝐵𝑎𝑡𝑐𝑎𝑝 + 0.001 −𝑀 ∗ (1 − 𝑦1(𝑖))                                        (5-14)   

𝑒𝑐 + ∑ 𝑃𝑐(𝑖) ∗ 𝑒𝑓𝑓
𝑛
𝑖=1 ∗ ∆𝑡 − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒

𝐶(𝑖 − 1) ≤ 𝐵𝑎𝑡𝑐𝑎𝑝 +𝑀 ∗ 𝑦1(𝑖)     (5-15) 

𝑒𝑑 + ∑ 𝑃𝑑(𝑖)/𝑒𝑓𝑓
𝑛
𝑖=1 ∗ ∆𝑡 − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒

𝐶(𝑖 − 1) ≥

                                     𝐵𝑎𝑡𝑐𝑎𝑝 + 0.001 −𝑀 ∗ (1 − 𝑦2(𝑖))                                        (5-16) 

𝑒𝑑 + ∑ 𝑃𝑑(𝑖)/𝑒𝑓𝑓
𝑛
𝑖=1 ∗ ∆𝑡 − 𝐵𝑎𝑡𝑐𝑎𝑝 ∗ 𝑐𝑦𝑐𝑙𝑒

𝐶(𝑖 − 1) ≥ 𝐵𝑎𝑡𝑐𝑎𝑝 +𝑀 ∗ 𝑦2(𝑖)      (5-17) 

where 𝑒𝑐 and 𝑒𝑑 denote the prior charging energy and discharging energy before the 

current simulation period, respectively, because 𝑒𝑐  or 𝑒𝑑  may not exceed 𝐵𝑎𝑡𝑐𝑎𝑝  in 

one-day simulation. However, this prior energy information is significant for the 

posterior decision. This important information is transmitted in the daily simulation. 

The Eq. 5-14 to Eq.5-17 show how to detect the increment of 𝑒𝑐 and 𝑒𝑑. The increment 

of 𝑒𝑐 means higher battery capacity by comparing with prior cycle value that means 

𝑦1(𝑖) = 1, otherwise, 𝑦1(𝑖)=0 as Eq. 5-14 and 5-15 present. 

Only if both 𝑦1(𝑖)  and 𝑦2(𝑖)  equal to 1, then ZBFB accomplishes one full 

charging/discharging cycle (𝑦(𝑖) = 1). Here a logic operation and is demanded.   

𝑦1(𝑖) ≥ 𝑦(𝑖)                                                                                                                (5-18) 

𝑦2(𝑖) ≥ 𝑦(𝑖)                                                                                                               (5-19) 

𝑦(𝑖) + 1 ≥ 𝑦1(𝑖) + 𝑦2(𝑖)                                                                                         (5-20)  

𝑦(𝑖), 𝑦1(𝑖), 𝑦2(𝑖) ∈ {0,1} 

Eq. 5-18, 5-19 and 5-20 are the implement method using the logic and operation [131]. 

The default values of these binary variables are 0. Additional details are shown in Table 

5-1. 
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𝑦(𝑖) 𝑦1(𝑖) 𝑦2(𝑖) 

0 0 0 

0 0 1 

0 1 0 

1 1 1 

Table 5-1. Correlation table of 𝑦(𝑖) and 𝑦1(𝑖), 𝑦2(𝑖) 
 

𝑦(𝑖), 𝑦1(𝑖) and 𝑦2(𝑖) are momentary variables, which turn into the default value 0. As 

a result, there is an updated version of Eq. 5-10 as shown in Eq. 5-21. When 𝑦(𝑖) default 

value is 0, there is no difference between 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖 − 1) and 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖). 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) only 

updated value when 𝑦(𝑖) = 1. 

𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) = 𝑐𝑦𝑐𝑙𝑒𝐶(𝑖 − 1) + 𝑦(𝑖)                                                                         (5-21) 

𝑐𝑦𝑐𝑙𝑒𝐶(𝑖) = 5 ∗ 𝑛𝑢𝑚𝐶(𝑖) + 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖)                                                                   (5-22) 

where  𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) is calculated by Eq. 5-22. After this transfer, the 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) equals an 

integer value in the range of 0 to 4, after 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) = 4, this value would automatically 

change to 0, which indicates the system restart count the equivalent operating cycle. 

𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) ≥ 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) − 0.001 −𝑀 ∗ 𝑟1(𝑖)                                                (5-23) 

𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) ≤ 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) − 0.001 +𝑀 ∗ (1 − 𝑟1(𝑖))                                      (5-24) 

In order to find the time period where the designed conditions are met, the time slot 

should be identified when battery remains in the required conditions [132]. Eq. 5-23 

and 5-24 are used to detect the maximum value of operating cycle is met by comparing 

the current 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖)  and previous timeslot 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) . When 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) >

 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) , which means the 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) follows designed order to count the 

operating cycle, and 𝑟1(𝑖) = 0 . If 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) <  𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) , that indicated the 
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battery resets operating cycle count to 0, tantamount to completing the maximum cycle 

value 4. At the same time the trigger 𝑟1(𝑖) is set to 1. The function of the cycle value 

is listed in Table 5-2. Correlation table of 𝑟1(𝑖) and 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1), 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖).  

𝑟1(𝑖) 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1) 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) 

0 0 1 

0 1 2 

0 2 3 

0 3 4 

1 4 0 

Table 5-2. Correlation table of 𝑟1(𝑖) and 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖 − 1), 𝑐𝑦𝑐𝑙𝑒𝐴(𝑖) 
 

Eq. 5-25 and 5-26 are used to detect whether the ZBFB SOC value is less than 0.1% or 

not. When 𝑆𝑂𝐶(𝑖) < 0.1%, then the trigger 𝑟2(𝑖) is set equal to 1, otherwise, 𝑟2(𝑖) =

0. 

𝑆𝑂𝐶(𝑖) ≥ 0.1 − 𝑀 ∗ 𝑟2(𝑖)                                                                                      (5-25) 

𝑆𝑂𝐶(𝑖) ≤ 0.1 + 0.001 +𝑀 ∗ (1 − 𝑟2(𝑖))                                                              (5-26) 

Eq. 5-27, 5-28 and 5-29 perfrom the logic and operation as the Eq. 5-18, 5-19 and 5-20 

did. After those steps, all timeslots which meet the above requirements are marked out 

with the trigger variable 𝑟(𝑖) = 1. 

𝑟1(𝑖) ≥ 𝑟(𝑖)                                                                                                                (5-27) 

𝑟2(𝑖) ≥ 𝑟(𝑖)                                                                                                                (5-28) 

𝑟(𝑖) + 1 ≥ 𝑟1(𝑖) + 𝑟2(𝑖)                                                                                            (5-29)  

After the all timeslots have met the requirements marked out, the refresh mode should 

be deployed as soon as possible. After refresh mode completes, the battery system could 
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resume normal operation. Based on this strategy, the first timeslot among the all met 

required timeslot needs to be identified. That is what the Eq. 5-30 and 5-31 are used for. 

These functions detect the value changing from 0 to 1. If 𝑟(𝑖) from 0 → 1, then 𝑧(𝑖) =

1, otherwise, 𝑧(𝑖) = 0. 

𝑟(𝑖) ≥ 𝑟(𝑖 − 1) + 0.001 −𝑀 ∗ (1 − 𝑧(𝑖))                                                             (5-30) 

𝑟(𝑖) ≤ 𝑟(𝑖 − 1) + 0.001 +𝑀 ∗ 𝑧(𝑖)                                                                       (5-31) 

Finally, 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖) equal to zero dependent on the design. However, the Eq. 4-3 is 

not linear function that cannot be implemented in MILP model. Extra transfer of those 

non-linear function into linear one, the Eq. 5-1, 5-2 and 5-3 are replaced by Eq. 5-32, 

5-33 and 5-34. And 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖) are set to zero by Eq. 5-35. 

0 ≤ 𝑃𝑐(𝑖) ≤ 𝑃𝑚𝑎𝑥 ∗ 𝑐(𝑖)                                                                                          (5-32) 

0 ≤ 𝑃𝑑(𝑖) ≤ 𝑃𝑚𝑎𝑥 ∗ 𝑑(𝑖)                                                                                         (5-33) 

0 ≤ 𝑐(𝑖) + 𝑑(𝑖) ≤ 1                                                                                                (5-34) 

0 ≤ 𝑐(𝑖) + 𝑑(𝑖) ≤ 1 ∗ (1 − 𝑧(𝑖))                                                                            (5-35) 

The ZBFB model with refresh mode dependent on operating cycle counting has been 

established and outlined by Eq. 5-14 to Eq.5-35. 

5.3.3 Simulation and result 

The novel ZBFB model with specific refresh mode has been presented in previous 

sections of this chapter. In this section, this model is tested and verified by simulation 

based on real practical applications. 

Many efforts have been made in utilizing renewable energy and battery hybrid systems 

in residential [133] and commercial [134] applications with minimizing the electricity 

energy cost. The simulation based on the ZBFB model is applied towards the general 

target of microgrid. 
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The objective function is shown in Eq. 5-36 

Minimize: ∑ (Rp
grid

×Max(𝑃𝑔𝑟𝑖𝑑) + Re
grid

× 𝑃𝑔𝑟𝑖𝑑 × ∆t )
n

i=1
                            (5-36) 

where Rp
grid

 and Re
grid

 denote the electricity demand rates and electricity energy rates, 

respectively. 𝑃𝑔𝑟𝑖𝑑 denotes the electricity energy coming from grid, which depends on 

the original building load, renewable energy generation and the battery 

charging/discharging power based on the ZBFB model.  

The constraints contain the modelling of ZBFB with refresh mode (Eq. 5-14 to Eq. 5-

35) and PV-battery system power balance (Eq. 5-37).   

𝑙𝑜𝑎𝑑(𝑖) = 𝑟𝑒𝑛𝑒𝑤(𝑖) + 𝑃𝑑(𝑖) + 𝑃𝑔𝑟𝑖𝑑(𝑖) − 𝑃𝑐(𝑖)                                                   (5-37) 

where 𝑙𝑜𝑎𝑑(𝑖) represents the building load, 𝑟𝑒𝑛𝑒𝑤(𝑖) denotes the renewable energy 

generation, 𝑃𝑔𝑟𝑖𝑑(𝑖) indicates the electricity energy from utility, and 𝑃𝑐(𝑖) and 𝑃𝑑(𝑖) 

denote ZBFB charging power and discharging power, respectively. This equation sets 

a constraint on energy balance during the simulation period.  

The simulation is tested with the one year historic load data of a commercial building. 

The main parameters of the battery are shown in Table 5-3. 

Parameter name value 

ZBFB capacity 400 kWh 

ZBFB maximum power 100 kW 

Table 5-3. ZBFB main parameters in simulation 

 

Here, the main objective is to verify the modelling of ZBFB with refresh mode function. 

Many efforts have been made by other researchers that focused on the prediction of 

renewable generation and load. In this part, all system recorded values are directly 

utilized in simulations. Thus, the verification is tested by observing whether ZBFB 
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behaviors can follow the designed strategy. In one month simulation for July, there are 

4 times total when refresh mode ocurred. 

 

Figure 5-3. Cycle counting function result of ZBFB model 

 

Figure 5-3 indicates the cycle counting function of the model. Because the battery 

capacity is 400 kWh, from Figure 5-3 (a) (b), which shows the charging energy/ 

discharging energy has already exceeded 600, it can be concluded that the current cycle 

value of ZBFB current is 1. With the battery operating, the charging energy in Figure 

5-3 (a) is more than 800 kWh, while the y1(i=12) trigger step is 1.  

However, due to battery discharging energy not being large enough for changing the y2 

trigger, the value of variable y didn’t change Figure 5-3 (c). With the ZBFB releasing 
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energy to grid during 5 pm to 8 pm, the discharging energy meets the threshold value 

800 kWh, which triggeres the y2(i=20) value to 1, as seen in Figure 5-3 (b). At the same 

time, the y value changes to 1. That means the cycle value is 2 after 9 pm. As defined 

by the Eq. 5-14 to Eq.5-17, y(i=20) value automatically returns to 0 after changing to 1 

in Figure 5-3 (c). 

 

Figure 5-4. Refresh mode implementation function of ZBFB model 

 

As Figure 5-4 (a) shows, the cycle value equals 4 until 7 pm, after that the cycle reset 

trigger r1(i=19) is set to 1, while the cycle value transfers to the initial cycle 0. Figure 

5-4 (b) demonstrates SOC value changing from 80% at 12 pm to less than 0.1% at 11pm. 

At 11 pm, the SOC value meets the requirement of Eq. 5-25, 5-26. The r2(i=23) trigger 
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is set to 1. Meanwhile, the refresh enable value r(i=23) is set to 1. During the refresh 

enable time period, the BMS automatically runs ZBFB in refresh mode to strip all zinc 

deposited on electrodes. 

 

Figure 5-5. A simulation result for July 17th from ZBFB model 

 

Figure 5-5 demonstrates the battery function of reducing energy cost. The ZBFB 

releases energy to support a little peak due to the decrease in renewable generation 

(Figure 5-5 (b)), and store energy again afternoon. The reason is higher rates during the 

period of 4 pm to 9 pm. At the beginning of this simulated day, SOC of ZBFB is less 

than 0.1%, as a result, r2(i=0,1) equals 1. However, current cycle value is 4, which 

cannot trigger r1 variable. So, the refresh enable trigger stays in idle state (Figure 5-5 



  84 

(c)). Only when both r1(i=22) and r2(i=22) equal 1, the refresh enable trigger is set to 

1.  

5.4 Emission reduction control algorithm 

Based on the International Energy Agency report [135], the total global energy 

consumption in 2019 was about 120 million tons of oil equivalent (Mtoe), which 

accounts for around 33.2 gigatons (Gt) carbon dioxide (CO2) emissions. Furthermore, 

according to the U.S. Energy Information Administration [136], total electricity energy 

consumption in the U.S. in 2019 was about 4.12 trillion kilowatt-hours (kWh), which 

equals to about 1.82 Gt CO2 emissions. The global climate change, energy shortage and 

exponentially growing greenhouse gas emissions have raised awareness and put 

emphasis on utilizing sustainable and environmental friendly energy sources. One 

significant motivation of widely deployed DRES is to reduce GHG emission [137]. 

There is no doubt that the renewable energy could reduce the GHG emission compared 

to traditional energy. However, battery system charging adds more complexity. That is 

due to the battery inherent efficiency loss and the emission amount difference between 

the charging energy and discharging energy due to the emission rate and operating time 

[68]. Many studies focused on the positive influence of renewable energy on the 

environment, have neglected the negative effects of battery systems in the grid-

connected hybrid system [138]. In this dissertation, a control algorithm for grid-

connected hybrid system has been created, which makes maximizing revenue and 

minimizing emissions its main targets, by quantify battery influence with modelling of 

ZBFB with refresh mode.  
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5.4.1 Introduction and background 

This simulation utilizes a large official building located in Southern California with solar 

PV generating system, as the project and demonstration site. The building is under 

Southern California Edison large commercial Time of Use rate schedule. Electricity cost 

contains two components: energy (kWh) and peak demand (kW).   

 

Figure 5-6. The Building Monthly Energy Distribution 

 

According to TOU provisions, the energy cost is dependent on how much energy is 

consumed during specific periods in terms of time of day, day of the week, and time of 

year. While the peak demand cost is determined by the maximum power demand during 

those respective periods. Figure 5-6 shows the building consumes as much as 400,000 

kWh in July, and the monthly average consumption is around 350,000 kWh, and is 

relatively constant throughout the year. 
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Figure 5-7. The Building Peak Demand Distribution 

 

Another significant data is the maximum value of demand, which is relevant with the 

demand cost portion. More details are shown in Figure 5-7. From this figure, the 

majority of demand peaks (96.3%) occurred between 10 AM to 9 PM in one-year 

recorded data. Some demand peaks occurred within the on-peak demand period of the 

TOU rate schedule, defined from 4 PM to 9 PM. There are two examples, one peak 

occurred on a working day, around the 700 kW, another one on the weekend, around 

400 kW. Due to TOU tariff rates, the peak demand cost could equal or even exceed 

energy cost in the summer. Taking the August bill as an example, the peak demand cost 

was $34,577, almost equal to the energy cost of $34,918. During the winter season, the 

demand cost could be more than 30% of total electricity bill. According to above 

information, it is unrealistic to only utilized local renewable energy to support the 

energy requirement of this commercial building. As a result, grid-connected DRES is 



  87 

an optional choice, which can bring in cleaner energy, while reducing the high 

electricity bill.  

5.4.2 Emission factor 

Much of research works have begun to focus on reducing GHG emissions. Among 

those works, there is one essential and unavoidable problem which needs more attention; 

that is how to quantify the GHG emissions. The measurement of GHG emissions 

require professional equipment and tests in various application scenarios. Most research 

reports utilized the equivalent conversion method, which derives emissions value by 

calculating the consumption of fuel or electricity energy [139][140][141]. There are 

two parameters which can be used to convert the electricity energy into GHG emission 

value. They are average emission factor (AEF) and marginal emission factor (MEF). 

The AEF is defined as the total direct CO2 emissions of the electricity generation sector, 

divided by the total electricity generation around a given region over a certain period 

[142]. In this evaluation method, the emission value is evenly distributed over all 

generation facilities, which overlooks the difference between the fuel resources, such 

as coal- and natural gas-fired power plants. However, this is not in line with the 

functioning of electricity markets, since in practice a decrease in requested supply 

results in decreased electricity generation of facilities operating at the margins. Usually, 

AEF is used to estimate the emissions of the replaced electricity generation [143]. 

For reducing GHG emissions of the whole system, Marginal Emission Factor 

(MEF) has been employed to assess system emission performance [144]. MEF could 

embody the emissions rate from the marginal generator used to meet demand [145]. 

MEF is regarded as the incremental change in GHG emissions as a result of a change 

in demand [146][147]. The marginal GHG emission factor (MEF) used in this work has 
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been derived from the SGIP, which aims at providing incentives to support clean 

distributed energy systems [148]. The MEF is updated or recorded at 5-minute 

intervals, which can approximately reflect the real time emissions rate of power 

demand. According to the data of SGIP marginal GHG emission signal, emission rates 

for a winter and a summer day, respectively, are shown in Figure 5-8.  

 

Figure 5-8. Marginal Emission Signal cases of a summer and a winter day 

 

Figure 5-8 shows the difference between the two seasons is indiscernible. However, the 

MEF reflects the emission rates based on the entire electricity market system demand 

at that moment. As the result, the MEF value is rapidly changing.  
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Figure 5-9. Marginal Emission Signal hourly distribution 

 

Based on the MEF value in 2019, the hourly distribution has been shown in 

Figure 5-9. In this figure, the MEF value during peak period (4 pm-9 pm) is generally 

lower than other periods based on MEF historical data. The main reason is that with 

huge increments of energy requirement during that period, generators fueled by natural 

gas will be utilized in this situation. As previously stated, the emission performance of 

natural gas is better than other fossil fuels. This means charging battery during night 

and releasing the stored energy during peak time period has probability to increase 

GHG emission. This is one reason grid-connected PV-battery hybrid system could 

result in increased net GHG emissions. 

Considering local DRES energy requirement is quite small compared with the 

total energy consumption of the entire market, the assumption has been made that 

demand of this local DRES cannot cause fluctuation of whole electricity market. The 
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dynamic MEF has been chosen to represent the GHG emissions based on power 

demand of the microgrid. 

5.4.3 Control algorithm 

In this control algorithm, there are two targets for the optimization problem that 

are minimizing microgrid system operating cost and reducing  GHG emissions. One 

study [140] found GHG emissions reduction is one benefit of minimizing the system 

annual energy cost. Another research study [141] presented a multi-objective 

optimization model for cost-emission performance of PV/battery/fuel cell hybrid 

energy system, but neglected the positive influence of battery system. A study [149] 

conducted optimization for the LCOE and CO2 emission using the multi-objectives GA 

approach to optimize the size of a hybrid system. Another report [150] optimized a 

PV/WT/Diesel/Battery unit for minimizing the energy cost and CO2 emissions using a 

multi-objective optimization. The multi-objective optimization is widely utilized by 

researchers with two or more targets, due to its simplicity and efficiency without 

transferring the objectives of different field into one unit or the same field. To account 

for the GHG emissions cost component, the Social Cost of Carbon (SCC) has been 

introduced. Based on published reports [151][152], the SCC value [153] is equal to 

$123/Mt CO2. 

Therefore, the objective function is defined as one objective function with two 

parts:  Minimize ( Operating cost +   Emission cost)                            

where operating cost is  the cost of grid energy usage: 

∑ (Rp
grid

×Max(𝑃𝑔𝑟𝑖𝑑) + Re
grid

× 𝑃𝑔𝑟𝑖𝑑 × ∆t )
n

d=1
                                             (5-38) 

The emission cost is: 
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0.123 ×∑ [R𝑝
emis × (𝑃𝑔𝑟𝑖𝑑 + (𝑃𝑐 × (1 − eff) + 𝑃𝑑 × (1 𝑒𝑓𝑓⁄ − 1))) × ∆t ]

n

i=1
  

                                                                                                                                (5-39) 

Where Rp
grid

 is the TOU price rate of grid power, Re
grid

 is the TOU price rate of grid 

energy, 𝑃𝑔𝑟𝑖𝑑  is the grid electricity power, 𝑃𝑐  is the battery charging power, 𝑃𝑑 

indicates the battery discharging power, eff  represents ZBFB charging/discharging 

efficiency, which equals the square root of the round-trip efficiency, and R𝑝
emis denotes 

the MEF value with unit CO2 kg/kWh. The local DRES operating constraints and ZBFB 

model have been discussed in Eq.5-1 to Eq. 5-35. 

 

Figure 5-10. Pseudo-code of Cost and Emission reduction with ZBFB model with refresh mode 

 

In this study, the simulation method is presented to determine the optimal 

control battery charging/discharging power 𝑃𝑐 and 𝑃𝑑 in this PV-battery hybrid system 
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with consideration of the specific ZBFB operational constraints, as shown in Figure 

5-10. Pseudo-code of Cost and Emission reduction with ZBFB model with refresh 

mode, which represents pseudo-code of cost and emission reduction with ZBFB model 

with refresh mode. All simulations are based on real data. The presence of integer 

decision variables with constraints in the optimization problem leads to a mixed-integer 

nonlinear programming problem. MOSEK solver is used to solve this optimization 

problem under the MATLAB environment.  

5.5 Simulation and result 

In this section, numerical simulations to verify the effectiveness of various 

control scenarios and different refresh strategies for primary emission reduction 

purpose are presented. For modelling of battery with refresh mode, the simulation 

results between refresh mode after daily usage strategy and the refresh mode employed 

based on cycle usage, are compared and analyzed. For emission reduction, the widely 

utilized maximizing system revenue approach is employed as the baseline control 

scenario. Then, the control algorithm including ZBFB refresh mode is introduced, 

which is based on the refresh mode with different settings and parameters of the system.  

5.5.1 Refresh mode of ZBFB model control simulation 

In this section, one simulation is introduced based on the two main refresh mode 

strategies, 1) refresh mode after daily usage 2) refresh mode after specific equivalent 

cycle usage.  

For the refresh mode after daily usage, the prerequisite for refresh cycle is same 

as previously described, which requires the SOC value reach 0%. In this refresh mode 

strategy, the ZBFB performs refresh cycle after one day operation and the SOC value 

matches the requirement.   
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The refresh mode after specific equivalent cycle usage strategy is more complex 

because the refresh mode can be done by specific equivalent cycle. In a previous section, 

the simulation for ZBFB model was set to drive refresh mode after 4 equivalent cycles, 

was created to test whether it could meet the expectations of modelling. However, the 

equivalent cycle value could in reality vary from 1 to 4. For example, the ZBFB can 

perform refresh mode after one equivalent cycle instead of the four equivalent cycles. 

The performance for ZBFB model with different specific cycle values is verified in this 

section. Furthermore, the cycle value has an impact on the ZBFB energy efficiency. 

One study [30] reported the first new cycle efficiency being slightly lower, due to the 

base coat of zinc being re-plated. The specific cycle energy efficiency of ZBFB is 

presented in Table 5-4, which is constructed based on the aforementioned report. 

Parameter name cycle 0 cycle 1 cycle 2 cycle 3 cycle 4 

ZBFB efficiency 0.72 0.78 0.76 0.74 0.72 

Table 5-4. Specific cycle energy efficiency of ZBFB [30] 

 

Using these efficiency values and the created ZBFB model, one month 

simulation results for minimizing energy cost and GHG emission (Eq. 5-39 and Eq. 5-

39) with those two main strategies are obtained and presented in Table 5-5.  
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Simulation 

result 

Refresh 

times 

Energy cost 

($) 

Emission (kg) Total cost ($) 

Cycle = 1 6 46333.17 87680.72 56854.86 

Cycle = 2 5 46349.05 87660.15 56868.26 

Cycle = 3 5 46349.00 87681.53 56870.78 

Cycle = 4 4 46361.37 87705.23 56886.00 

Daily refresh - 46389.59 87754.22 56920.10 

Table 5-5. Simulation result with two refresh mode strategies 

  

Based on the results shown in the Table 5-5, performing refresh mode after the 

first equivalent cycle is completed, results in the minimum cost for both energy cost 

and emission cost. The refresh process duration varied depending on the cycle value 

setting. When specific cycle value is 1, there are 6 refresh occurrences over the span of 

one month simulation. There is a negative correlation between the cycle value and the 

refresh frequency. The higher the specific cycle value is, the less frequently refresh 

mode happens. From the above data, it appears there is only limited difference for each 

case. Cycle value equal to 1 outperforms other cases with a little advantage for a month 

long simulation. However, the simulation results of each day varied based on the cycle 

value setting. Even when using the same load data as input, the results would be 

different due to the different cycle value setting and the current cycle status. 

Considering the emission rates of 0.123 $/kg, the emission component plays a limited 

role in determining operation. From the data in Table 5-5, it is not obvious that the 

simulated results difference is entirely due to the specific cycle value. Given that the 
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refresh mode with one equivalent cycle has the best long term cost performance, this 

specific cycle value has been chosen as the default setting in in following simulation. 

5.5.2 Emission control simulation 

Scenario 1: using original building load data 

The original building load data has been chosen as the baseline for simulation and 

analysis in this section.  

Scenario 2: Maximizing the system revenue as only objective function 

With respect to scenario 1, the Eq. 5-38 

∑ (Rp
grid

×Max(𝑃𝑔𝑟𝑖𝑑) + Re
grid

× 𝑃𝑔𝑟𝑖𝑑 × ∆t )
n

d=1
                                            (5-38)  

as the only objective function to minimize the whole system energy cost using the two 

main refresh mode strategies, which consist of the daily refresh and the refresh mode 

with one equivalent cycle usage. In this scenario, the ZBFB paired with solar PV has 

been utilized to reduce energy cost as the only objective function.  

Scenario 3: Minimizing the energy cost and Emission cost as objective function 

With respect to scenario 3, the Eq. 5-38 and Eq. 5-39 as objective functions to 

0.123 ×∑ [R𝑝
emis × (𝑃𝑔𝑟𝑖𝑑 + (𝑃𝑐 × (1 − eff) + 𝑃𝑑 × (1 𝑒𝑓𝑓⁄ − 1))) × ∆t ]

n

i=1
 

                                                                                                                                (5-39) 

minimize the whole system energy cost and emission cost, using the two main refresh 

mode strategies.  

In the following section, the emission results with three mentioned scenarios are 

presented and discussed.  
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5.5.2.1 Comparative analysis of three scenarios 

Compared to the original building system (baseline), the control algorithm 

scenario 2 and scenario 3 for PV-ZBFB with refresh mode could reduce the whole 

system energy cost and GHG emission. In order to compare those cases, the energy and 

emission data are converted to cost in USD, which are shown in Figure 5-11. 

 

Figure 5-11. Simulation result of scenarios with two refresh mode strategies 

 

As shown in above figure, for one-year simulation, there is only limited 

difference in economic performance between the refresh mode with one equivalent cycle 

and daily refresh mode strategy. They provide similar results in this type of optimization 

problem.  
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5.5.2.2 Simulation results of scenarios 2 and scenario 3 with refresh mode after one 

equivalent cycle  

For scenario 2, one primary target is minimizing the energy cost which is only 

utilized in Eq. 4-38 as objective function. Scenario 3 pursues minimizing the energy 

cost, while also aiming at minimizing the emission cost for the whole system. In scenario 

3, there are two unavoidable contradictory conditions, which arise from the negative 

effects of battery operation on emission cost. In the first one, for example, higher 

charging/discharging battery operation leads to more energy losses due to the inherent 

battery’s less than perfect efficiency. The second reason is the mismatch in the electricity 

rates and the marginal emission factor. In this section, the same refresh mode with one 

equivalent cycle has been utilized in scenario 2 and scenario 3. By comparing the 

simulation results, the essential role of emission component can be further understood 

and explained. 

All objective functions have been transformed into the economic cost, from 

energy (kWh) and GHG emission (kg). The economic performance with these two 

scenarios is first examined and discussed. The corresponding results are presented in 

Table 5-6.  

 Energy cost ($) Emission cost ($) Objective value 

Minimize  

Energy & Emission 
408412.6 102823 511235.6 

Minimize  

Energy only 
407697.8 105295.1 407697.8 

Table 5-6. Objective energy and emission cost of scenario 3 and scenario 2 

 

Due to these two scenarios’ objective functions being different, comparison 

between the results of these objective functions less rigorous in objectivity. From Table 
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5-6, it is evident that if comparing the objective function results, scenario 2 is better in 

terms of economic performance. However, the emission value should not be neglected, 

by minimizing the energy cost without considering the influence of emission. The 

calculated emission cost based on optimal battery operational power, under scenario 2 

objective function is present in Table 5-6. From the perspective of energy cost, scenario 

2 has slightly better performance. From the point of emission cost, scenario 3 has a 

small advantage. After combining these values, total economic performance in scenario 

3 is better. Despite the fact that scenario 2 has better performance in energy cost, 

scenario 3 performs better overall for total cost, considering emission cost. 

For this chapter, the major topic is reducing the emission, while minimizing the 

energy cost. The local renewable energy has positive impact on reducing emission 

compared to the original system. However, energy storage system, as the main factor 

in decreasing the energy cost, has negative effect on GHG emission. Based on above 

mentioned, there are two ways a battery can increase the local microgrid GHG emission. 

In order to build a numerical and intuitionistic comparison and analysis, Eq. 5-40 and 

Eq. 5-42 have been created to quantify the emission influence with different control 

algorithm scenarios.   

∑ [R𝑝
emis × (𝑃𝑐 − 𝑃𝑑) × ∆𝑡]

n

i=1
                                                                              (5-40) 

∑ [R𝑝
emis × (𝑃𝑐 × (1 − eff) + 𝑃𝑑 × (1 𝑒𝑓𝑓⁄ − 1))) × ∆t ]

n

i=1
                               (5-41) 

Where R𝑝
emis is the MEF with unit of kg/kWh, 𝑃𝑐 denotes the charging power from grid 

(kW), 𝑃𝑑  denotes the discharging power from grid (kW). eff  denotes the battery 

efficiency.  
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Eq. 5-40 indicates emission variation due to battery charging/discharging 

operation. When ZBFB stores energy from grid, the GHG emission increases with 

higher power consumption. During ZBFB release of energy to decrease the local 

demand, GHG emission is reduced by indirectly decreased grid power demand. The 

MEF and battery charging/discharging operations are determinants of the annual 

emission. Eq. 5-41 indicates emission increasing due to battery efficiency. From this 

equation, two elements, efficiency and battery charging/discharging operations, play a 

significant role in determining the final emission result. Both scenarios utilize the 

refresh mode with one equivalent cycle strategy, which extremely attenuates the 

function of efficiency. 

Figure 5-12 represents emission results of battery emission under scenario 3 and 

scenario 2. The left column stands for scenario 3, and the right column stands for 

scenario 2. From this figure, it is evident that the scenario 3 has better ZBFB emission 

performance, when compared with scenario 2. There is roughly 20.6 metric ton 

equivalent CO2 reduction for the entire local microgrid.   
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Figure 5-12. Comparison of battery emission with scenario 3 and scenario 2 

 

Emission associated with ZBFB operation is based on Eq. 5-40. More details 

are shown in Figure 5-13 and Figure 5-14. The blue line indicates the daily numerical 

emission from ZBFB charging/discharging operation. The red curve denotes the 

accumulated value of the daily emission. Due to lack of any emission constraints on 

ZBFB operation, the ZBFB operation result in enormous increasing of annual emission 

curve under scenario 2. The simulation used the same recorded data with scenario 3, 

the daily emission by ZBFB operations is less than the one under scenario 2.  
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Figure 5-13. Annual emission for battery operation under scenario 3 

 

Figure 5-14. Annual emission for battery operation under scenario 2 
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Figure 5-13shows that accumulated emission value is initially less than 0. A 

counterintuitive condition occurred where ZBFB discharging operation caused 

emission increase. The statistic distribution of MEF indicated lower numerical emission 

factor during peak time in Figure 5-9. However, it does not mean all MEF shared this 

pattern. The first 3 most minimum negative values were collected on specific dates (9th, 

54th and 202nd). To elaborate these result, the data is shown in Figure 5-15. In this figure, 

discharging power combined with the higher MEF value resulted in ZBFB having 

positive effects on emission reduction.  

 

Figure 5-15. Negative daily emission analysis for specific dates (a). 9th date in one-year 

simulation, (b) 54th date in one-year simulation and (c) 202nd date in one-year simulation 

 

As for emission increase due to ZBFB efficiency, under both scenarios utilizing 

the refresh mode with one equivalent cycle strategy, its influence between these two 

scenarios is limited. The main reason for a large variation of emission is the annual 
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energy volume of battery operation. Table 5-7 shows the ratio of annual emission 

performance under the two scenarios is close to the ratio of annual energy by battery 

operations. 

 

Annual Emission 

value by efficiency 

loss (t) 

Annual ZBFB 

charging/ discharging 

Energy (MWh) 

Minimize  

Energy & Emission 
5.711 189.58 

Minimize  

Energy only 
9.324 296.46 

Ratio 0.612 0.639 

Table 5-7. Annual emission performance and battery operation under scenario 3 and scenario 

2 

 

5.6 Conclusion 

In this chapter, one novel MILP model of ZBFB systems based on equivalent 

cycle counting method has been presented. This modelling method differs from the 

method using refresh mode after daily usage. By utilizing the ZBFB model into 

minimizing the conflicting objectives, local DRES energy cost and emission, several 

control scenarios have been created and simulated. Based on simulation results, ZBFB 

performance can be improved, when emission reduction is an objective function used 

to constrain the battery operation.   

 

 

 

 

 



  104 

 

6 CONCLUSION 

In this dissertation, two limiting constrains in Zinc Bromine Flow Batteries, 

namely the requirement for a “refresh mode” and “constant charging power” have been 

investigated and resolved by developing an optimization method to control the 

operation of ZBFBs in practical use cases. These operational constrains are necessary 

to manage and reduce the risk of dendrite formation during ZBFB operation, which is 

a potentially harmful process leading to critical failure. To mitigate risks and optimize 

operational performance, while accounting for the above constrains, different ZBFB 

models and control algorithms, have been proposed and evaluated through simulations, 

analysis and field demonstration. Specifically, this dissertation outlines the following 

achievements:  

The modeling of ZBFB considering the operational constrains is developed by 

using a Mixed Integer Linear Programming method. First, the modeling of the ZBFB 

“refresh mode” uses an equivalent charging/discharging cycle counting algorithm. 

Second, utilizing this model to simulate and evaluate the ZBFB performance in terms 

of reducing energy cost and GHG emission is performed by considering the influence 

of the control algorithms and battery constrains. 

Unique to ZBFBs, the modelling of the constraint for constant charging power 

is developed by using a relaxation method. The model is demonstrated and utilized in 

two real use case applications: minimum import violations and load shifting. The 

simulation results demonstrate that operational efficiency and performance is 

improved, while the function of design is satisfied.  
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