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Abstract: The introduction of the partial information decomposition generated a flurry of
proposals for defining an intersection information that quantifies how much of “the same
information” two or more random variables specify about a target random variable. As of
yet, none is wholly satisfactory. A palatable measure of intersection information would
provide a principled way to quantify slippery concepts, such as synergy. Here, we introduce
an intersection information measure based on the Gács-Körner common random variable
that is the first to satisfy the coveted target monotonicity property. Our measure is imperfect,
too, and we suggest directions for improvement.
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1. Introduction

Partial information decomposition (PID) [1] is an immensely suggestive framework for deepening our
understanding of multivariate interactions, particularly our understanding of informational redundancy and
synergy. In general, one seeks a decomposition of the mutual information that n predictors X1, . . . , Xn

convey about a target random variable, Y . The intersection information is a function that calculates the
information that every predictor conveys about the target random variable; the name draws an analogy with
intersections in set theory. An anti-chain lattice of redundant, unique and synergistic partial information
is then built from the intersection information.

As an intersection information measure, [1] proposes the quantity:

Imin (X1, . . . , Xn :
Y ) =

X

y2Y

Pr(y) min
i2{1,...,n}

DKL

h
Pr

�
Xi|y

����Pr(Xi)
i

, (1)

where DKL is the Kullback–Leibler divergence. Although Imin is a plausible choice for the intersection
information, it has several counterintuitive properties that make it unappealing [2]. In particular, Imin is
not sensitive to the possibility that differing predictors, Xi and Xj , can reduce uncertainty about Y in
nonequivalent ways. Moreover, the min operator effectively treats all uncertainty reductions as the same,
causing it to overestimate the ideal intersection information. The search for an improved intersection
information measure ensued and continued through [3–5], and today, a widely accepted intersection
information measure remains undiscovered.

Here, we do not definitively solve this problem, but explore a candidate intersection information
based on the so-called common random variable [6]. Whereas Shannon mutual information is relevant to
communication channels with arbitrarily small error, the entropy of the common random variable (also
known as the zero-error information) is relevant to communication channels without error [7]. We begin
by proposing a measure of intersection information for the simpler zero-error information case. This is
useful in and of itself, because it provides a template for exploring intersection information measures.
Then, we modify our proposal, adapting it to the Shannon mutual information case.

The next section introduces several definitions, some notation and a necessary lemma. We extend and
clarify the desired properties for intersection information. Section 3 introduces zero-error information
and its intersection information measure. Section 4 uses the same methodology to produce a novel
candidate for the Shannon intersection information. Section 5 shows the successes and shortcoming of
our candidate intersection information measure using example circuits and diagnoses the shortcoming’s
origin. Section 6 discusses the negative values of the resulting synergy measure and identifies its origin.
Section 7 summarizes our progress towards the ideal intersection information measure and suggests
directions for improvement. Appendices are devoted to technical lemmas and their proofs, to which we
refer in the main text.

2. Preliminaries

2.1. Informational Partial Order and Equivalence

We assume an underlying probability space on which we define random variables denoted by capital
letters (e.g., X , Y and Z). In this paper, we consider only random variables taking values on finite
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spaces. Given random variables X and Y , we write X � Y to signify that there exists a measurable
function, f , such that X = f(Y ) almost surely (i.e., with probability one). In this case, following the
terminology in [8], we say that X is informationally poorer than Y ; this induces a partial order on the set of
random variables. Similarly, we write X ⌫ Y if Y � X , in which case we say X is informationally
richer than Y .

If X and Y are such that X � Y and X ⌫ Y , then we write X

⇠= Y . In this case, again following [8],
we say that X and Y are informationally equivalent. In other words, X

⇠= Y if and only if one can relabel
the values of X to obtain a random value that is equal to Y almost surely and vice versa.

This “information-equivalence” can easily be shown to be an equivalence relation, and it partitions
the set of all random variables into disjoint equivalence classes. The � ordering is invariant within these
equivalence classes in the following sense. If X � Y and Y

⇠= Z, then X � Z. Similarly, if X � Y

and X

⇠= Z, then Z � Y . Moreover, within each equivalence class, the entropy is invariant, as shown
in Section 2.2.

2.2. Information Lattice

Next, we follow [8] and consider the join and meet operators. These operators were defined for
information elements, which are �-algebras or, equivalently, equivalence classes of random variables. We
deviate from [8] slightly and define the join and meet operators for random variables.

Given random variables X and Y , we define XgY (called the join of X and Y ) to be an informationally
poorest (“smallest” in the sense of the partial order �) random variable, such that X � X g Y and
Y � X g Y . In other words, if Z is such that X � Z and Y � Z, then X g Y � Z. Note that X g Y

is unique only up to equivalence with respect to ⇠=. In other words, X g Y does not define a specific,
unique random variable. Nonetheless, standard information-theoretic quantities are invariant over the
set of random variables satisfying the condition specified above. For example, the entropy of X g Y is
invariant over the entire equivalence class of random variables satisfying the condition above. Similarly,
the inequality Z � X g Y does not depend on the specific random variable chosen, as long as it satisfies
the condition above. Note, the pair (X, Y ) is an instance of X g Y .

In a similar vein, given random variables X and Y , we define X f Y (called the meet of X and Y ) to
be an informationally richest random variable (“largest” in the sense of ⌫), such that X f Y � X and
X f Y � Y . In other words, if Z is such that Z � X and Z � Y , then Z � X f Y . Following [6], we
also call X f Y the common random variable of X and Y .

An algorithm for computing an instance of the common random variable between two random variables
is provided in [7]; it generalizes straightforwardly to n random variables. One can also take intersections
of the �-algebras generated by the random variables that define the meet.

The g and f operators satisfy the algebraic properties of a lattice [8]. In particular, the following hold:

• commutative laws: X g Y

⇠= Y g X and X f Y

⇠= Y f X;
• associative laws: X g (Y g Z) ⇠= (X g Y )g Z and X f (Y f Z) ⇠= (X f Y )f Z;
• absorption laws: X g (X f Y ) ⇠= X and X f (X g Y ) ⇠= X;
• idempotent laws: X g X

⇠= X and X f X

⇠= X;
• generalized absorption laws: if X � Y , then X g Y

⇠= Y and X f Y

⇠= X .
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Finally, the partial order � is preserved under g and f, i.e., if X � Y , then X g Z � Y g Z and
X f Z � Y f Z.

Let H(·) represent the entropy function and H
�
·|·
�

the conditional entropy. We denote the Shannon
mutual information between X and Y by I(X :

Y ). The following results highlight the invariance and
monotonicity of the entropy and conditional entropy functions with respect to ⇠= and � [8]. Given that
X � Y if and only if X = f(Y ), these results are familiar in information theory, but are restated here
using the current notation:

(a) If X

⇠= Y , then H(X) = H(Y ), H(X|Z) = H(Y |Z), and H(Z|X) = H(Z|Y ).
(b) If X � Y , then H(X)  H(Y ), H(X|Z)  H(Y |Z), and H(Z|X) � H(Z|Y ).
(c) X � Y if and only if H(X|Y ) = 0.

2.3. Desired Properties of Intersection Information

We denote I (X :
Y ) as a nonnegative measure of information between X and Y . For example, I

could be the Shannon mutual information; i.e., I (X :
Y ) ⌘ I(X :

Y ). Alternatively, we could take I to
be the zero-error information. Yet, other possibilities include the Wyner common information [9] or the
quantum mutual information [10]. Generally, though, we require that I (X :

Y ) = 0 if Y is a constant,
which is satisfied by both the zero-error and Shannon information.

For a given choice of I, we seek a function that captures the amount of information about Y that is
captured by each of the predictors X1, . . . , Xn. We say that I\ is an intersection information for I if
I\(X :

Y ) = I (X :
Y ). There are currently 11 intuitive properties that we wish the ideal intersection

information measure, I\, to satisfy. Some are new (e.g., lower bound (LB), strong monotonicity (M1),
and equivalence-class invariance (Eq)), but most were introduced earlier, in various forms, in [1–5]. They
are as follows:

• (GP) Global positivity: I\(X1, . . . , Xn :Y ) � 0.
• (Eq) Equivalence-class invariance: I\(X1, . . . , Xn :Y ) is invariant under substitution of Xi (for

any i = 1, . . . , n) or Y by an informationally equivalent random variable.
• (TM) Target monotonicity: If Y � Z, then I\(X1, . . . , Xn :Y )  I\(X1, . . . , Xn :Z).
• (M0) Weak monotonicity: I\(X1, . . . , Xn, W :

Y )  I\(X1, . . . , Xn :Y ) with equality if there
exists a Z 2 {X1, . . . , Xn} such that Z � W .

• (S0) Weak symmetry: I\(X1, . . . , Xn :Y ) is invariant under reordering of X1, . . . , Xn.

The next set of properties relate the intersection information to the chosen measure of information
between X and Y .

• (LB) Lower bound: If Q � Xi for all i = 1, . . . , n, then I\(X1, . . . , Xn :Y ) � I (Q :
Y ). Note that

X1 f · · ·f Xn is a valid choice for Q. Furthermore, given that we require I\(X :
Y ) = I (X :

Y ),
it follows that (M0) implies (LB).

• (Id) Identity: I\(X, Y

:
X g Y ) = I(X :

Y ).
• (LP0) Weak local positivity: For n = 2 predictors, the derived “partial information” defined

in [1] and described in Section 5 are nonnegative. If both (GP) and (M0) are satisfied, as well as
I\(X1, X2 :Y ) � I (X1 :Y ) + I (X2 :Y )� I (X1 g X2 :Y ), then (LP0) is satisfied.
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Finally, we have the “strong” properties:

• (M1) Strong monotonicity: I\(X1, . . . , Xn, W :
Y )  I\(X1, . . . , Xn :Y ) with equality if there

exists Z 2 {X1, . . . , Xn, Y } such that Z � W .
• (S1) Strong symmetry: I\(X1, . . . , Xn :Y ) is invariant under reordering of X1, . . . , Xn, Y .
• (LP1) Strong local positivity: For all n, the derived “partial information” defined in [1]

is nonnegative.

Properties (LB), (M1) and (Eq) are introduced for the first time here. However, (Eq) is satisfied
by most information-theoretic quantities and is implicitly assumed by others. Though absent from
our list, it is worthwhile to also consider continuity and chain rule properties, in analogy with the
mutual information [4,11].

3. Candidate Intersection Information for Zero-Error Information

3.1. Zero-Error Information

Introduced in [7], the zero-error information, or Gács–Körner common information, is a stricter variant
of Shannon mutual information. Whereas the mutual information, I(A :

B), quantifies the magnitude of
information A conveys about B with an arbitrarily small error ✏ > 0, the zero-error information, denoted
I0(A :

B), quantifies the magnitude of information A conveys about B with exactly zero error, i.e., ✏ = 0.
The zero-error information between A and B equals the entropy of the common random variable A f B,

I0(A :
B) ⌘ H(A f B) .

Zero-error information has several notable properties, but the most salient is that it is nonnegative and
bounded by the mutual information,

0  I0(A :
B)  I(A :

B) .

3.2. Intersection Information for Zero-Error Information

For the zero-error information case (i.e., I = I0), we propose the zero-error intersection information
I0f(X1, . . . , Xn :Y ) as the maximum zero-error information, I0(Q :

Y ), that a random variable, Q, conveys
about Y , subject to Q being a function of each predictor X1, . . . , Xn:

I0f(X1, . . . , Xn :Y ) ⌘ max
Pr(Q|Y )

I0(Q :
Y )

subject to Q � Xi 8i 2 {1, . . . , n} .

(2)

In Lemma 7 of Appendix 7.3, it is shown that the common random variable across all predictors is the
maximizing Q. This simplifies Equation (2) to:

I0f(X1, . . . , Xn :Y ) = I0(X1 f · · ·f Xn :Y ) = H(X1 f · · ·f Xn f Y ) . (3)

Most importantly, the zero-error information I0f(X1, . . . , Xn :Y ) satisfies nine of the 11 desired
properties from Section 2.3, leaving only (LP0) and (LP1) unsatisfied. See Lemmas 1, 2, and 3
in Appendix 7.3 for details.
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4. Candidate Intersection Information for Shannon Information

In the last section, we defined an intersection information for zero-error information that satisfies the
vast majority of the desired properties. This is a solid start, but an intersection information for Shannon
mutual information remains the goal. Towards this end, we use the same method as in Equation (2),
leading to If, our candidate intersection information measure for Shannon mutual information:

If(X1, . . . , Xn :
Y ) ⌘ max

Pr(Q|Y )
I(Q :

Y )

subject to Q � Xi 8i 2 {1, . . . , n} .

(4)

In Lemma 8 of Appendix 7.3, it is shown that Equation (4) simplifies to:

If(X1, . . . , Xn :
Y ) = I(X1 f · · ·f Xn :Y ) . (5)

Unfortunately, If does not satisfy as many of the desired properties as I0f. However, our candidate,
If, still satisfies seven of the 11 properties; most importantly, the coveted (TM) that, until now, had not
been satisfied by any proposed measure. See Lemmas 4, 5 and 6 in Appendix 7.3 for details. Table 1
lists the desired properties satisfied by Imin, If and I0f. For reference, we also include Ired, the proposed
measure from [3].

Table 1. The I\ desired properties that each measure satisfies. (The appendices provide
proofs for If and I0f.)

Property Imin Ired If I0f

(GP) Global Positivity X X X X

(Eq) Equivalence-Class Invariance X X X X

(TM) Target Monotonicity X X

(M0) Weak Monotonicity X X X

(S0) Weak Symmetry X X X X

(LB) Lower bound X X X X

(Id) Identity X X

(LP0) Weak Local Positivity X X

(M1) Strong Monotonicity X

(S1) Strong Symmetry X

(LP1) Strong Local Positivity X

Lemma 9 in Appendix 7.3 allows a comparison of the three subject intersection information measures:

0  I0f(X1, . . . , Xn :
Y )  If(X1, . . . , Xn :

Y )  Imin (X1, . . . , Xn :
Y ) . (6)

Despite not satisfying (LP0), If remains an important stepping-stone towards the ideal Shannon I\.
First, If captures what is inarguably redundant information (the common random variable); this makes
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If necessarily a lower bound on any reasonable redundancy measure. Second, it is the first proposal to
satisfy target monotonicity. Lastly, If is the first measure to reach intuitive answers in many canonical
situations, while also being generalizable to an arbitrary number of inputs.

5. Three Examples Comparing Imin and If

Example UNQ illustrates how Imin gives undesirable (some claim fatally so [2]) decompositions
of redundant and synergistic information. Examples UNQ and RDNXOR illustrate If’s successes and
example IMPERFECTRDN illustrates If’s paramount deficiency. For each, we give the joint distribution
Pr(x1, x2, y), a diagram and the decomposition derived from setting Imin or If as the I\ measure. At
each lattice junction, the left number is the I\ value of that node, and the number in parentheses is the I@

value (this is the same notation used in [4]). Readers unfamiliar with the n = 2 partial information lattice
should consult [1], but in short, I@ measures the magnitude of “new” information at this node in the lattice
beyond the nodes lower in the lattice. Specifically, the mutual information between the pair, X1 g X2 and
Y , decomposes into four terms:

I(X1 g X2 : Y ) = I@(X1, X2 : Y ) + I@(X1 : Y ) + I@(X2 : Y ) + I@(X1 g X2 : Y ) .

In order, the terms are given by the redundant information that X1 and X2 both provide to Y , the
unique information that X1 provides to Y , the unique information that X2 provides to Y and finally, the
synergistic information that X1 and X2 jointly convey about Y . Each of these quantities can be written in
terms of standard mutual information and the intersection information, I\, as follows:

Redundant I@(X1, X2 : Y ) = I\(X1, X2 :Y )

Unique I@(X1 : Y ) = I(X1 : Y )� I\(X1, X2 :Y )

Unique I@(X2 : Y ) = I(X2 : Y )� I\(X1, X2 :Y )

Synergetic I@(X1 g X2 : Y ) = I(X1 g X2 : Y )� I(X1 : Y )� I(X2 : Y ) + I\(X1, X2 :Y )

These quantities occupy the bottom, left, right and top nodes in the lattice diagrams, respectively. Except
for IMPERFECTRDN, measures If and I0f reach the same decomposition for all presented examples.

5.1. Example UNQ (Figure 1)

The desired decomposition for example UNQ is two bits of unique information; X1 uniquely specifies
one bit of Y , and X2 uniquely specifies the other bit of Y . The chief criticism of Imin in [2] was that Imin

calculated one bit of redundancy and one bit of synergy for UNQ (Figure 1c). We see that unlike Imin, If
satisfyingly arrives at two bits of unique information. This is easily seen by the inequality,

0  If(X1, X2 :Y )  H(X1 f X2)  I(X1 :X2) = 0 bits . (7)

Therefore, as I(X1 :X2) = 0, we have If(X1, X2 :Y ) = 0 bits leading to I@(X1 :
Y ) = 1 bit and

I@(X2 : Y ) = 1 bit (Figure 1d).



Entropy 2014, 16 1992

Figure 1. Example UNQ. This is the canonical example of unique information. X1 and X2

each uniquely specify a single bit of Y . This is the simplest example, where Imin calculates
an undesirable decomposition (c) of one bit of redundancy and one bit of synergy. If and
I0f each calculate the desired decomposition (d). (a) Distribution and information quantities;
(b) circuit diagram; (c) Imin; (d) If and I0f.

X1 X2 Y

a b ab 1/4
a B aB 1/4
A b Ab 1/4
A B AB 1/4

I(X1 g X2 :Y ) = 2

I(X1 :Y ) = 1

I(X2 :Y ) = 1

Imin(X1, X2 :Y ) = 1

If(X1, X2 :Y ) = 0
(a)

½  a
½  A

½  b
½  B

(b)

2 (1)

1 (1)

1 (0) 1 (0)

(c)

2 (0)

0 (0)

1 (1) 1 (1)

(d)

5.2. Example RDNXOR (Figure 2)

In [2], RDNXOR was an example where Imin shined by reaching the desired decomposition of one bit
of redundancy and one bit of synergy. We see that If finds this same answer. If extracts the common
random variable within X1 and X2—the r/R bit—and calculates the mutual information between the
common random variable and Y to arrive at If(X1, X2 :Y ) = 1 bit.
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Figure 2. Example RDNXOR. This is the canonical example of redundancy and synergy
coexisting. Imin and If each reach the desired decomposition of one bit of redundancy and
one bit of synergy. This is the simplest example demonstrating If and I0f correctly extracting
the embedded redundant bit within X1 and X2. (a) Distribution and information quantities;
(b) circuit diagram; (c) Imin; (d) If and I0f.

X1 X2 Y

r0 r0 r0 1/8
r0 r1 r1 1/8
r1 r0 r1 1/8
r1 r1 r0 1/8

R0 R0 R0 1/8
R0 R1 R1 1/8
R1 R0 R1 1/8
R1 R1 R0 1/8

I(X1 g X2 :Y ) = 2

I(X1 :Y ) = 1

I(X2 :Y ) = 1

Imin(X1, X2 :Y ) = 1

If(X1, X2 :Y ) = 1

(a)

XOR

½  r
½  R

½  0
½  1

½  0
½  1

(b)

2 (1)

1 (1)

1 (0) 1 (0)

(c)

2 (1)

1 (1)

1 (0) 1 (0)

(d)
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5.3. Example IMPERFECTRDN (Figure 3)

IMPERFECTRDN highlights the foremost shortcoming of If: It does not detect “imperfect” or “lossy”
correlations between X1 and X2. Given (LP0), we can determine the desired decomposition analytically.
First, I(X1 g X2 :Y ) = I(X1 :Y ) = 1 bit, and thus, I

�
X2 :Y |X1

�
= 0 bits. Since the conditional

mutual information is the sum of the synergy I@(X1, X2 :Y ) and unique information I@(X2 :Y ), both
quantities must also be zero. Then, the redundant information I@(X1, X2 :Y ) = I(X2 :Y )� I@(X2 : Y ) =

I(X2 :Y ) = 0.99 bits. Having determined three of the partial informations, we compute the final unique
information: I@(X1 :Y ) = I(X1 :Y )� 0.99 = 0.01 bits.

Figure 3. Example IMPERFECTRDN. If is blind to the noisy correlation between X1 and
X2 and calculates zero redundant information. An ideal I\ measure would detect that all
of the information X2 specifies about Y is also specified by X1 to calculate I\(X1, X2 :Y ) =

0.99 bits. (a) Distribution and information quantities; (b) circuit diagram; (c) Imin; (d) If;
(e) I0f.

X1 X2 Y

0 0 0 0.499

0 1 0 0.001

1 1 1 0.500

I(X1 g X2 :Y ) = 1

I(X1 :Y ) = 1

I(X2 :Y ) = 0.99

Imin(X1, X2 :Y ) = 0.99

If(X1, X2 :Y ) = 0
(a)

0.998  0
0.002  1

½  0
½  1

X1

X2

Y

OR

(b)

1 (0)

0.99 (0.99)

1 (0.01) 0.99 (0)

(c)

1 (-0.99)

0 (0)

1 (1) 0.99 (0.99)

(d)

1 (0)

0 (0)

1 (1) 0 (0)

(e)
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How well do Imin and If match the desired decomposition of IMPERFECTRDN? We see that Imin

calculates the desired decomposition (Figure 3c); however, If does not (Figure 3d). Instead, If

calculates zero redundant information, that I\(X1, X2 :Y ) = 0 bits. This unpleasant answer arises
from Pr(X1 = 0, X2 = 1) > 0. If this were zero, then both If and Imin reach the desired one bit of
redundant information. Due to the nature of the common random variable, If only sees the “deterministic”
correlations between X1 and X2; add even an iota of noise between X1 and X2, and If plummets to zero.
This highlights the fact that If is not continuous: an arbitrarily small change in the probability distribution
can result in a discontinuous jump in the value of If. As with traditional information measures, such as
the entropy and the mutual information, it may be desirable to have an I\ measure that is continuous over
the simplex.

To summarize, IMPERFECTRDN shows that when there are additional “imperfect” correlations between
A and B, i.e., I(A :

B|A f B) > 0, If sometimes underestimates the ideal I\(A, B

:
Y ).

6. Negative Synergy

In IMPERFECTRDN, we saw If calculate a synergy of �0.99 bits (Figure 3d). What does this mean?
Could negative synergy be a “real” property of Shannon information? When n = 2, it is fairly easy to
diagnose the cause of negative synergy from the equation for I@(X1 g X2 : Y ) in Equation (7). Given
(GP), negative synergy occurs if and only if,

I(X1 g X2 :Y ) < I(X1 :Y ) + I(X2 :Y )� I\(X1, X2 :Y ) = I[(X1, X2 :Y ) , (8)

where I[ is dual to I\ and related by the inclusion-exclusion principle. For arbitrary n, this is
I[(X1, . . . , Xn :

Y ) ⌘
P

S✓{X1,...,Xn}(�1)|S|+1 I\
�
S1, . . . , S|S| :Y

�
. The intuition behind I[ is that

it represents the aggregate information contributed by the sources, X1, . . . , Xn, without considering
synergies or double-counting redundancies.

From Equation (8), we see that negative synergy occurs when I\ is small, probably too small.
Equivalently, negative synergy occurs when the joint random variable conveys less about Y than the
sources, X1 and X2, convey separately; mathematically, when I(X1 g X2 :Y ) < I[(X1, X2 : Y ). On the
face of it, this sounds strange. No structure “disappears” after X1 and X2 are combined by the g operator.
By the definition of g, there are always functions f1 and f2, such that X1

⇠= f1(Z) and X2
⇠= f2(Z).

Therefore, if your favorite I\ measure does not satisfy (LP0), it is too strict.
This means that our measure, I0f, does not account for the full zero-information overlap between

I0(X1 :Y ) and I0(X2 :Y ). This is shown in the example, SUBTLE (Figure 4), where I0f calculates a
synergy of �0.252 bits. Defining a zero-error, I\, that satisfies (LP0) is a matter of ongoing research.
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Figure 4. Example SUBTLE. In this example, both If and I0f calculate a synergy of �0.252

bits of synergy. What kind of redundancy must be captured for a nonnegative decomposition
for this example? (a) Distribution and information quantities; (b) circuit diagram; (c) Imin;
(d) If and I0f.

X1 X2 Y

0 0 00 1/3
0 1 01 1/3
1 1 11 1/3

I(X1 g X2 :Y ) = 1.585

I(X1 :Y ) = 0.918

I(X2 :Y ) = 0.918

I(X1 :X2) = 0.252

Imin(X1, X2 :Y ) = 0.585

If(X1, X2 :Y ) = 0.0
(a)

⅔  0
⅓  1

½  0
½  1

X1

X2

Y

OR

(b)

1.585 (0.333)

0.585 (0.585)

0.918 (0.333) 0.918 (0.333)

(c)

1.585 (-0.252)

0 (0)

0.918 (0.918) 0.918 (0.918)

(d)

7. Conclusions and Path Forward

We made incremental progress on several fronts towards the ideal Shannon I\.

7.1. Desired Properties

We have expanded, tightened and grounded the desired properties for I\. Particularly,

• (LB) highlights an uncontentious, yet tighter lower bound on I\ than (GP).
• Inspired by I\(X1 :Y ) = I (X1 :Y ) and (M0) synergistically implying (LB), we introduced (M1)

as a desired property.
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• What was before an implicit assumption, we introduced (Eq) to better ground one’s thinking.

7.2. A New Measure

Based on the Gács–Körner common random variable, we introduced a new Shannon I\ measure. Our
measure, If, is theoretically principled and the first to satisfy (TM). A point to keep in mind is that our
intersection information is zero whenever the distribution Pr(x1, x2, y) has full support; this dependence
on structural zeros is inherited from the common random variable.

7.3. How to Improve

We identified where If fails; it does not detect “imperfect” correlations between X1 and X2. One
next step is to develop a less stringent I\ measure that satisfies (LP0) for IMPERFECTRDN, while still
satisfying (TM). Satisfying continuity would also be a good next step.

Contrary to our initial expectation, SUBTLE, showed that I0f does not satisfy (LP0). This matches
a result from [4], which shows that (LP0), (S1), (M0) and (Id) cannot all be simultaneously satisfied,
and it suggests that I0f is too strict. Therefore, what kind of zero-error informational overlap is I0f not
capturing? The answer is of paramount importance. The next step is to formalize what exactly is required
for a zero-error I\ to satisfy (LP0). From SUBTLE, we can likewise see that within zero-error information,
(Id) and (LP0) are incompatible.
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Appendix

By and large, most of these proofs follow directly from the lattice properties and also from the
invariance and monotonicity properties with respect to ⇠= and �.
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A. Properties of I0f

Lemma 1. I0f(X1, . . . , Xn :Y ) satisfies (GP), (Eq), (TM), (M0), and (S0), but not (LP0).

Proof. (GP) follows immediately from the nonnegativity of the entropy. (Eq) follows from the
invariance of entropy within the equivalence classes induced by ⇠=. (TM) follows from the monotonicity
of the entropy with respect to �. (M0) also follows from the monotonicity of the entropy, but now applied
to fiXi f W f Y � fiXi f Y . If there exists some j, such that Xj � W , then generalized absorption
says that fiXifW fY

⇠= fiXifY , and thus, we have the equality condition. (S0) is a consequence of
the commutativity of the f operator. To see that (LP0) is not satisfied by the I0f, we point to the example,
SUBTLE (Figure 4), which has negative synergy. One can also rewrite (LP0) as the supermodularity law
for common information, which is known to be false in general. (See [8], Section 5.4.)

Lemma 2. I0f(X1, . . . , Xn :Y ) satisfies (LB), (SR), and (Id).

Proof. For (LB), note that Q � X1f · · ·fXn for any Q obeying Q � Xi for i = 1, . . . , n. Then, apply
the monotonicity of the entropy. (SR) is trivially true given Lemma 7 and the definition of zero-error
information. Finally, (Id) follows from the absorption law and the invariance of the entropy.

Lemma 3. I0f(X1, . . . , Xn :Y ) satisfies (M1) and (S1), but not (LP1).

Proof. (M1) follows using the absorption and monotonicity of the entropy in nearly the same way that
(M0) does. (S1) follows from commutativity, and (LP1) is false, because (LP0) is false.

B. Properties of If
The proofs here are nearly identical to those used for I0f.

Lemma 4. If(X1, . . . , Xn :Y ) satisfies (GP), (Eq), (TM), (M0), and (S0), but not (LP0).

Proof. (GP) follows from the nonnegativity of mutual information. (Eq) follows from the invariance of
entropy. (TM) follows from the data processing inequality. (M0) follows from applying the monotonicity
of the mutual information I(Y : · ) to fiXi f W � fiXi. If there exists some j, such that Xj � W ,
then generalized absorption says that fiXi f W

⇠= fiXi, and thus, we have the equality condition. (S0)

follows from commutativity, and a counterexample for (LP0) is given by IMPERFECTRDN (Figure 3).

Lemma 5. If(X1, . . . , Xn :Y ) satisfies (LB) and (SR), but not (Id).

Proof. For (LB), note that Q � X1f · · ·fXn for any Q obeying Q � Xi for i = 1, . . . , n. Then, apply
the monotonicity of the mutual information to I(Y : · ). (SR) is trivially true given Lemma 8. Finally,
(Id) does not hold, since X f Y � X g Y , and thus, If(X, Y

:
Y f Y ) = H(X f Y ).

Lemma 6. If(X1, . . . , Xn :Y ) does not satisfy (M1), (S1), or (LP1).

Proof. (M1) is false due to a counterexample provided by IMPERFECTRDN (Figure 3), where
If(X1 :Y ) = 0.99 bits and If(X1, Y :

Y ) = 0 bits. (S1) is false, since If(X, X

:
Y ) 6= If(X, Y

:
X).

Finally, (LP1) is false, due to (LP0) being false.
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C. Miscellaneous Results

Lemma 7. Simplification of I0f.

I0f(X1, . . . , Xn :Y ) ⌘ max
Pr(Q|Y )

I0(Q :
Y ) subject to Q � Xi 8i 2 {1, . . . , n}

= H(X1 f · · ·f Xn f Y )

Proof. Recall that I0(Q :
Y ) ⌘ H(Q f Y ), and note that fiXi is a valid choice for Q. By definition, fiXi

is the richest possible Q, and so, monotonicity with respect to � then guarantees that H(fiXi f Y ) �
H(Q f Y ).

Lemma 8. Simplification of If.

If(X1, . . . , Xn :Y ) ⌘ max
Pr(Q|Y )

I(Q :
Y ) subject to Q � Xi 8i 2 {1, . . . , n}

= I(X1 f · · ·f Xn :Y )

Proof. Note that fiXi is a valid choice for Q. By definition, fiXi is the richest possible Q, and so,
monotonicity with respect to � then guarantees that I(Q :

Y )  I(fiXi :Y ).

Lemma 9. If(X1, . . . , Xn :Y )  Imin (X1, . . . , Xn :
Y )

Proof. We need only show that I(fiXi : Y )  Imin (X1, . . . , Xn :
Y ). This can be restated in terms

of the specific information: I(fiXi : y)  mini I (Xi : y) for each y. Since the specific information
increases monotonically on the lattice (cf. Section 2.2 or [8]), it follows that I(fiXi : y)  I(Xj : y) for
any j.
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