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RESEARCH

Comparing single and multiple imputation 
strategies for harmonizing substance use data 
across HIV-related cohort studies
Marjan Javanbakht1*, Johnny Lin2, Amy Ragsdale1, Soyeon Kim3, Suzanne Siminski3 and Pamina Gorbach1 

Abstract 

Background: Although standardized measures to assess substance use are available, most studies use variations 
of these measures making it challenging to harmonize data across studies. The aim of this study was to evaluate the 
performance of different strategies to impute missing substance use data that may result as part of data harmoniza-
tion procedures.

Methods: We used self-reported substance use data collected between August 2014 and June 2019 from 528 
participants with 2,389 study visits in a cohort study of substance use and HIV. We selected a low (heroin), medium 
(methamphetamine), and high (cannabis) prevalence drug and set 10–50% of each substance to missing. The data 
amputation mimicked missingness that results from harmonization of disparate measures. We conducted Monte 
Carlo simulations to evaluate the comparative performance of single and multiple imputation (MI) methods using the 
relative mean bias, root mean square error (RMSE), and coverage probability of the 95% confidence interval for each 
imputed estimate.

Results: Without imputation (i.e., listwise deletion), estimates of substance use were biased, especially for low 
prevalence outcomes such as heroin. For instance, even when 10% of data were missing, the complete case analysis 
underestimated the prevalence of heroin by 33%. MI, even with as few as five imputations produced the least biased 
estimates, however, for a high prevalence outcome such as cannabis with low to moderate missingness, performance 
of single imputation strategies improved. For instance, in the case of cannabis, with 10% missingness, single imputa-
tion with regression performed just as well as multiple imputation resulting in minimal bias (relative mean bias of 
0.06% and 0.07% respectively) and comparable performance (RMSE = 0.0102 for both and coverage of 95.8% and 
96.2% respectively).

Conclusion: Our results from imputation of missing substance use data resulting from data harmonization indicate 
that MI provided the best performance across a range of conditions. Additionally, single imputation for substance use 
data performed comparably under scenarios where the prevalence of the outcome was high and missingness was 
low. These findings provide a practical application for the evaluation of several imputation strategies and helps to 
address missing data problem when combining data from individual studies.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Large-scale prospective cohort studies of those at risk 
for or living with HIV have been instrumental in inves-
tigating research questions that could not otherwise 
be accomplished through smaller studies. A number of 
cohorts have been established going as far back as the 
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start of the HIV epidemic in the mid-1980s [1–6]. Some 
of the cohorts such as the multicenter AIDS cohort study 
(MACS) were set up as a single study across multiple 
sites, implementing the same protocol with standard data 
collection tools, while other studies such as the North 
American AIDS Cohort Collaboration on Research and 
Design (NA-ACCORD) were designed as a collabora-
tive in which 25 cohorts collect and integrate a com-
mon set of core information [1, 3]. Smaller cohorts have 
an important role in addressing questions in sentinel 
populations. In the absence of a common data collection 
effort such as those in MACS and NA-ACCORD, strate-
gies that allow us to compile data across these individual 
studies can help us achieve comparable effects, increas-
ing the impact of the data collected.

The Collaborating Consortium of Cohorts Produc-
ing NIDA Opportunities (C3PNO) was established in 
2017 by the National Institutes of Health/National Insti-
tutes of Drug Abuse (NIH/NIDA) to stimulate the use of 
NIDA longitudinal cohorts and to address high priority 
research on HIV/AIDS in the context of substance use 
(www. C3PNO. org). This consortium includes nine dif-
ferent cohorts located in the United States and Canada. 
All cohorts were established before the consortium was 
established, with the oldest having started in 1988 and 
the newest in 2015 [7, 8]. All cohorts focus on HIV and 
substance use, however the target population, participant 
sampling strategies, as well as data collection tools differs 
for each of these cohorts. Some of the cohorts are com-
munity-based, while others specifically focus on clinical 
populations. Furthermore, some cohorts are focused on 
young men who have sex with men (MSM) with others 
focused on persons who inject drugs. In order to allow 
for cross-cohort analyses, we implemented a rigorous 
data harmonization process for a core set of data ele-
ments. The specifics of the process have been described 
elsewhere [9], but briefly, we requested data dictionar-
ies from each of the cohorts and identified a core set of 
variables including sociodemographic factors, clinical 
characteristics, and substance using behaviors. Common 
data elements were first reviewed by the consortium data 
team both qualitatively and quantitatively and the subse-
quent harmonized data sets were further reviewed with 
each cohort data team in order to ensure fidelity in the 
harmonization process. Given the consortium’s focus on 
substance use, we were particularly interested in main-
taining as much information and specificity as possible 
related to substance use. While standardized measures 
of substance use were utilized by each cohort, the choice 
of measures differed across cohorts. Even when measures 
overlapped, most studies used variations making it chal-
lenging to harmonize data across studies. For instance, 
substance use was assessed with various time frames, 

including 30-day, 3-month, and 6-month recall periods. 
Combining these data to obtain substance use in the past 
six months could lead to misclassification bias particu-
larly for occasional users who may not have used a given 
drug in the shorter recall periods.

This challenge to harmonizing substance use data – a 
key variable for the consortium – resulted in a patchwork 
pattern of missing data. There are a number of strate-
gies to deal with missing data resulting from the harmo-
nization processes where disparate measures cannot be 
collapsed into one variable. One common strategy is to 
ignore the missingness and use only participants with 
complete data in the analyses, which is well known for 
its potential for bias and inefficiency. A strategy to over-
come this issue, which is widely used when dealing with 
missing data is imputation (i.e., replacing unknown or 
missing values with an estimate) then analyzing the full 
data set as if imputed values were observed. In recent 
years, as a result of significant advances in computing 
power, a wide array of techniques for producing imputa-
tions has emerged including regression based techniques 
that allow for specification of multivariable models, hot-
deck techniques, as well as multiple imputation methods 
[10–12]. Additionally, strategies to evaluate the statisti-
cal properties of imputation techniques have also been 
explored, though few studies have taken a more applied 
and translational approach [13–15]. The objective of this 
study was to move beyond consideration of the statisti-
cal properties of these methods and present an applied 
overview of the performance of different imputation 
strategies when used for data harmonization. We used 
data from one of the cohorts participating in the con-
sortium as a validation set and created missing data in 
such a way as to mimic the missingness that results dur-
ing the harmonization process. We then applied three 
imputation strategies that vary in complexity including 
logistic regression, single hot-deck imputation, and mul-
tiple imputation and evaluated the performance of each 
strategy.

Methods
Data source
Data for this analysis were based on those collected from 
participants in the mSTUDY – one of the nine partici-
pating cohorts in the C3PNO consortium. The mSTUDY 
– an NIH/NIDA funded longitudinal study designed to 
assess the epidemiological and immunological impact of 
substance use and HIV on MSM – started study enroll-
ment in August 2014 (and is ongoing) [16, 17]. Partici-
pants were recruited from two different study sites in Los 
Angeles, CA: a community-based organization providing 
services for the lesbian, gay, bisexual, and transgender 
community and a community-based university research 

http://www.C3PNO.org
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clinic. Participants are eligible for mSTUDY if they are: 
(1) age 18 to 45 years at enrollment; (2) male at birth; (3) 
if HIV-negative, reported condomless anal intercourse 
with a male partner in the past 6-months; and (4) capable 
of providing informed consent. By design, half of the par-
ticipants were people living with HIV. As well, half of the 
participants were substance users (self-report confirmed 
by urine drug screen).

Data collection and substance use measures
At baseline and subsequent follow-up visits, which 
occurred at least six months apart, participants com-
pleted a self-administered, computer-based question-
naire. The questionnaire included questions on a number 
of domains ranging from sociodemographic characteris-
tics, sexual risk behaviors, as well as an extensive battery 
of questions related to substance use. In this analysis we 
used substance use data collected as part of a modified 
version of the Alcohol, Smoking and Substance Involve-
ment Screening Test (ASSIST) [18]. Specifically, for each 
substance participants were asked how often they have 
used it in the past six months. Substances of interest were 
cocaine, crack, ecstasy, heroin, cannabis, methampheta-
mine, poppers, and prescription drugs. Response options 
included never, once, monthly, weekly, and daily/almost 
daily. For the purpose of this analysis, all those who 
reported using a given substance at least once in the past 
six months were categorized as having used the particu-
lar drug, with all others being categorized as non-users. 
We selected drugs which were reported at low, medium, 
and high prevalence of use including heroin (prevalence 
3%), methamphetamine (prevalence 38%), and cannabis 
(prevalence 52%), respectively. This allowed us to evalu-
ate the performance of the imputation strategies under 
various prevalence estimates of the outcome.

Analytic strategy
Data collected from August 2014 through June 2019, 
from 528 participants and the resulting 2,389 study vis-
its were used in this analysis. A Monte Carlo simulation 
study with 500 iterations was run to assess the relative 
performance of each imputation method. At each itera-
tion, first a proportion of the data was set to missing (i.e., 
data amputation) [19] with this step intended to mimic 
the missingness that results when we attempt to har-
monize disparate measures across studies that measure 
substance use. Second, using the amputated data, three 
strategies including logistic regression scoring, single 
hot-deck, and multiple imputation were used to impute 
the missing data. Each imputation generated an esti-
mated prevalence and confidence interval which was 
stored until 500 iterations were achieved. Finally, sum-
mary statistics across the 500 iterations allowed us to 

compare the performance of each strategy against the 
prevalence from the original data. Details of each of the 
steps in the process are described below.

Data amputation
Data amputation – the process of generating the miss-
ing data – involved simulations such that the original 
dataset (n = 2,389) was sampled with replacement (boot-
strapped) and amputated giving consideration to sev-
eral factors including the missing data mechanism, the 
amount of missing data, as well as the pattern of missing-
ness [20]. The primary consideration for the missing data 
mechanism was whether the missingness was related to 
the underlying value for that variable. This is relevant 
given that strategies to handle missing data are largely 
reliant on correct assumptions of the mechanisms which 
caused the missingness [21]. For the purpose of this anal-
ysis we gave consideration to three different missing data 
mechanisms including missing completely at random 
(MCAR), missing at random (MAR), and missing not at 
random (MNAR) [22]. MCAR indicates there is no rela-
tionship between the missing data and any observed or 
unobserved variables. In this scenario, the probability of 
missing is the same for all cases in a given data set. MAR 
indicates a missing data mechanism in which there is a 
systematic relationship between the probability of miss-
ing and some observed data, but not the missing data 
itself. More specifically, under MAR the missingness is 
conditionally independent of unobserved outcomes (i.e. 
the missing data) but there is dependence on observed 
outcomes (i.e., auxiliary variables). The premise of MAR 
is that once the analyst controls for these auxiliary vari-
ables, the missingness is ignorable. Finally, MNAR sug-
gests that there is a relationship between missingness 
and unobserved outcomes (i.e., the missing data), which 
makes it the most difficult mechanism to handle properly.

The level of missingness used in the amputation was 
set at 10, 30, and 50% in order to assess low to high rates 
of missing data. Additionally, the pattern of missingness 
was varied by substance use in order to allow for any one 
of the following scenarios: (1) missing heroin only; (2) 
missing cannabis only; (3) missing methamphetamine 
only; or (4) missing all three drugs simultaneously. The 
ampute package in R was used to generate the missing-
ness [19, 23]. In addition to the three drug use variables 
(i.e., heroin, methamphetamine, and cannabis use) age 
and employment status were used to generate miss-
ingness in the substance use data. The reason age and 
employment status were chosen as auxiliary variables 
is because in the context of this project, these variables 
serve as a proxy for the specific characteristics of cohorts 
across which we intend to harmonize data and will help 
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in replicating the most plausible missing data pattern in 
the context of our work.

Data imputation
After the missing data were generated in such a way as 
to simulate ‘real world’ missing data scenarios that may 
result during the data harmonization process, various 
data imputation strategies were used to impute the miss-
ing data. The imputation methods used included two 
different single imputation strategies as well as multiple 
imputation including: (1) logistic regression; (2) single 
hot-deck imputation; and (3) multiple imputation with 
five and twenty imputations. These imputation strate-
gies were chosen since they reflect a range of strategies 
from simple to complex, both from the technical exper-
tise required to implement as well as the computational 
resources needed to execute. Specifics of each of the 
imputation strategies are described below.

Imputation with logistic regression is a single impu-
tation strategy that produces predicted probabilities 
obtained by regressing the missing variable on other 
variables [24]. In this case, the specific drug (e.g., meth-
amphetamine) was an outcome variable and age, employ-
ment status, and cannabis and/or heroin use served as 
predictor or auxiliary variables. This strategy is techni-
cally relatively simple, preserves relationships among 
variables involved in the imputation model, and may pro-
vide a more informed estimate of the missing value that 
moves beyond a strategy that ignores other auxiliary vari-
ables. Hot-deck imputation is a computationally simple 
imputation strategy that uses data from an individual in 
the sample who has similar values on other variables to 
impute the missing values [11]. Observations imputed are 
labeled recipients and observations drawn from a pool of 
matching candidates are labeled donors. For this analy-
sis, donors were matched based on age, employment sta-
tus, and other substance use information. For example, if 
a recipient with missing data on methamphetamine was 
25 years of old, employed, and reported cannabis use (but 
no heroin), then all 25  year old, employed participants 
who reported cannabis use other than the recipient were 
considered donors and a random observation was taken 
from this pool and the methamphetamine use status of 
the selected donor was used for the recipient. Instead of 
using actual observed values from a donor pool, multiple 
imputation uses a stochastic logistic regression model to 
generate n-sets of data – in this analysis n was either five 
or twenty – given pre-specified auxiliary variables [25, 
26]. Each of the resulting datasets were used for analysis 
and the results are then pooled for inference. The aux-
iliary variables used were the same as those described 
above. For example, five predicted data sets were gener-
ated for missing cannabis data using a stochastic logistic 

regression model composed of age, employment status, 
as well as reported methamphetamine and/or heroin use. 
Multiple imputation is expected to result in lower bias, 
however, this strategy is computationally intensive and 
requires technical expertise that may makes its regular 
application less practical. Finally, in order to allow for 
direct comparison between the various imputation strat-
egies, the auxiliary variables were the same in all strate-
gies. The Monte Carlo simulation study from amputation 
to imputation was conducted using R (version 4.1.1).

Evaluation of the performance of imputation strategies
The data amputation and subsequent imputation was 
repeated 500 times in order to generate a simulated dis-
tribution that allowed for calculations to assess the per-
formance of each strategy. We calculated the prevalence 
estimate resulting from the simulations as an average 
estimate across the 500 simulations. First, we report 
prevalence estimates for each of the substances given 
10%, 30%, and 50% missingness based on listwise dele-
tion. Listwise deletion, also known as complete case 
analysis, is the default strategy in most analytic software 
and provides an estimate of the prevalence and potential 
magnitude of bias if imputation is not employed. Next, 
we estimated the magnitude of the potential bias (i.e., 
mean bias) based on the average difference between the 
prevalence estimate from the original data and the mean 
of the prevalence estimate across the 500 simulation rep-
licates. We also provide calculations for the root mean 
squared error (RMSE) as well as coverage of the 95% 
confidence interval, which was calculated based on the 
proportion of times the 95% confidence interval of the 
estimated summary estimate contained the prevalence 
estimate from the original data. Each of these statistics 
were defined as follows:

Mean Bias = 1

500

∑
500

i=1
(p̂i − p) where p is the preva-

lence from the original data of n = 2,389 and p̂i is the 
estimated prevalence for the i-th replication across 500 
simulation runs.

Relative Mean Bias = p−p
p

× 100%  where p is the preva-
lence from the original data of n = 2,389 and p =

1

500

∑
500

i=1
p̂i

RMSE = 
√

1

500

∑
500

i=1

(
p̂i − p

)2
  where  p̂i is the esti-

mated prevalence for the i-th replication across 500 sim-
ulation runs.

Coverage = 1
500

∑
500

i=1
I(p ∈ CIi) ×100% where CIi is the 

i-th confidence interval.

Results
Study population characteristics
At baseline, the average age of participants included 
in this analysis was 31.2  years, 42.4% identified as Afri-
can American, 37.9% as Hispanic/Latino, and 13.4% as 
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white (Table 1). Nearly half of the participants reported 
being unemployed and 35.5% reported unstable housing 
defined as not having a regular place to stay for at least 
one night in the past six months. Differences in these 
characteristics were also noted by HIV status, with HIV-
positive participants reporting a higher prevalence of 
unemployment (55.3%) at baseline as compared to HIV-
negative participants (35.6%; p value < 0.01). Across all 
study visits (n = 2,398), the prevalence of self-reported 
substance use in the past six months was 51.8% (95% CI: 
50.0%-54.0%) for cannabis, 37.5% (95% CI: 35.5%-39.4%) 
for methamphetamine, and 3.0% (95% CI: 2.3%-3.7%) for 
heroin. Differences in substance use patterns were noted 
by HIV status. Participants living with HIV reported 
higher prevalence of methamphetamine use as compared 
to participants who were HIV-negative (48.8% vs. 25.3% 
respectively; p value < 0.01) but lower prevalence of can-
nabis use (47.5% vs. 56.6% respectively; p value < 0.01).

Imputation results for a low prevalence substance – the case 
of heroin
Assuming data were MCAR with 10% missing, estimates 
without imputation (i.e., listwise deletion) resulted in 
minimal bias of heroin prevalence estimates when com-
pared to the prevalence in the original data (relative 
bias + 0.11%)(Table  2). Furthermore, the complete case 

analysis performed comparable if not better to both sin-
gle and multiple imputation strategies, even when the 
missingnes increased to a high of 50%. For instance, the 
percent relative bias was -0.23% for listwise deletion 
with 94.2% coverage and 6.03% for multiple imputation 
(m = 20) with 93.6% coverage of the 95% confidence 
interval. However, under conditions where data were 
missing at random multiple imputation provided the 
least biased estimates while maintaining optimal cover-
age and lowest RMSE. For instance, assuming 30% miss-
ingness MI with 5 imputations resulted in relative bias 
of 3.95%, with 95.4% coverage, with comparable per-
formance noted for MI with 20 imputations even when 
missingness increased to 50% (Table 2). Under conditions 
of MNAR, all strategies performed poorly in providing an 
estimate for the prevalence of heroin.

Imputation results for a medium prevalence substance – 
the case of methamphetamine
Assuming an MCAR missing data mechanism, the 
amount of bias resulting from missingness in metham-
phetamine prevalence estimates was low. For instance, 
the prevalence of methamphetamine use in the origi-
nal data was 37.5% and without imputation (i.e., listwise 
deletion) prevalence estimates ranged from 37.4% (cov-
erage: 95.6%; RMSE: 0.0105) under conditions with 10% 

Table 1 Sociodemographic and substance use characteristics of mSTUDY participants (8/2014—06/2019)

Abbreviations, SD Standard deviation
a Defined as not having a regular place to stay in the past 6 months

Total HIV-positive HIV-negative p value

n % n % n %

Baseline characteristics 528 100.0 264 100.0 264 100.0 –

 Age, years (mean, SD) 31.2 (6.8) 33.5(6.5) 29.0 (6.5)  < 0.01

 Race/ethnicity 0.61

 African American 224 42.4 106 40.2 118 44.7

 Hispanic/Latino 200 37.9 101 38.3 99 37.5

 Other 33 6.3 13 4.9 20 7.6

 White 71 13.4 44 16.7 27 10.2

Education 0.04

 Less than High School 64 12.2 40 15.4 24 9.1

 High School Graduate 189 36.1 94 36.2 95 36.0

 More than High School 271 51.7 126 48.5 145 54.9

Unemployed 242 45.6 146 55.3 94 35.6  < 0.01

Unstable Housing, past 6  monthsa 190 35.5 91 35.4 92 35.7 0.95

Total visits with self-reported substance 
use data

2,389 100.0 1,249 100.0 1,140 100.0 –

Substance use, past 6 months

 Heroin 75 3.0 33 2.6 42 3.7 0.15

 Methamphetamine 897 37.5 609 48.8 288 25.3  < 0.01

 Cannabis 1,238 51.8 593 47.5 645 56.6  < 0.01
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Table 2 Relative bias, RMSE and coverage probability for heroin use comparing validation data to imputed data

Abbreviations, LD Listwise deletion, LR Logistic regression, HD Hot-deck, MI Multiple imputation, MCAR  Missing completely at random, MAR Missing at random, MNAR 
Missing not at random, RMSE Root mean square error

Method % Missing Estimate Mean Bias % Relative Bias RMSE Coverage

Missing Data Mechanism: MCAR 

 LD 10% 3.0% 0.00003 0.11% 0.0036 94.6%

 LR 10% 3.0% 0.00006 0.19% 0.0036 94.6%

 HD 10% 3.0% 0.00001 0.04% 0.0036 94.0%

 MI (M = 5) 10% 3.0% 0.00034 1.14% 0.0036 94.8%

 MI (M = 20) 10% 3.0% 0.00033 1.09% 0.0036 95.0%

 LD 30% 3.0% 0.00009 0.29% 0.0042 94.6%

 LR 30% 3.0% 0.00010 0.34% 0.0038 92.2%

 HD 30% 3.0% 0.00006 0.19% 0.0042 89.6%

 MI (M = 5) 30% 3.1% 0.00108 3.60% 0.0040 94.2%

 MI (M = 20) 30% 3.1% 0.00105 3.50% 0.0039 94.2%

 LD 50% 3.0% -0.00007 -0.23% 0.0049 94.2%

 LR 50% 3.0% -0.00006 -0.20% 0.0039 90.0%

 HD 50% 3.0% 0.00006 0.20% 0.0044 88.6%

 MI (M = 5) 50% 3.2% 0.00183 6.09% 0.0045 93.8%

 MI (M = 20) 50% 3.2% 0.00181 6.03% 0.0043 93.6%

Missing Data Mechanism: MAR

 LD 10% 2.0% -0.00999 -33.33% 0.0105 14.0%

 LR 10% 2.9% -0.00110 -3.66% 0.0037 91.8%

 HD 10% 2.9% -0.00049 -1.65% 0.0037 92.8%

 MI (M = 5) 10% 3.0% 0.00031 1.03% 0.0037 95.0%

 MI (M = 20) 10% 3.0% 0.00034 1.12% 0.0037 94.2%

 LD 30% 1.4% -0.01554 -51.84% 0.0158 1.0%

 LR 30% 2.7% -0.00256 -8.55% 0.0044 83.4%

 HD 30% 2.9% -0.00132 -4.40% 0.0043 87.2%

 MI (M = 5) 30% 3.1% 0.00118 3.95% 0.0042 95.4%

 MI (M = 20) 30% 3.1% 0.00121 4.02% 0.0041 95.2%

 LD 50% 1.1% -0.01871 -62.41% 0.0189 0.0%

 LR 50% 2.7% -0.00337 -11.25% 0.0051 75.6%

 HD 50% 2.8% -0.00151 -5.03% 0.0048 82.8%

 MI (M = 5) 50% 3.2% 0.00201 6.69% 0.0048 93.6%

 MI (M = 20) 50% 3.2% 0.00205 6.83% 0.0046 93.8%

Missing Data Mechanism: MNAR

 LD 10% 1.6% -0.01361 -45.41% 0.0139 0.8%

 LR 10% 1.8% -0.01181 -39.41% 0.0122 3.4%

 HD 10% 1.9% -0.01131 -37.73% 0.0117 7.0%

 MI (M = 5) 10% 1.9% -0.01101 -36.74% 0.0114 11.4%

 MI (M = 20) 10% 1.9% -0.01099 -36.67% 0.0114 10.8%

 LD 30% 1.2% -0.01799 -60.03% 0.0182 0.0%

 LR 30% 1.8% -0.01192 -39.77% 0.0123 3.2%

 HD 30% 1.9% -0.01127 -37.59% 0.0117 6.8%

 MI (M = 5) 30% 2.0% -0.01016 -33.91% 0.0106 20.6%

 MI (M = 20) 30% 2.0% -0.01023 -34.13% 0.0106 18.6%

 LD 50% 1.0% -0.02032 -67.82% 0.0205 0.0%

 LR 50% 2.0% -0.00994 -33.15% 0.0105 13.8%

 HD 50% 2.1% -0.00934 -31.16% 0.0101 22.8%

 MI (M = 5) 50% 2.3% -0.00687 -22.91% 0.0077 69.8%

 MI (M = 20) 50% 2.3% -0.00688 -22.97% 0.0077 65.8%
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missingness, 37.5% (coverage: 95.2%; RMSE: 0.0117) 
under conditions of 30% missingness, and 37.4% (cover-
age: 94.6%; RMSE: 0.0148) under conditions with 50% of 
the data missing (Table 3). Additionally, under conditions 
of MCAR all imputation strategies performed compara-
bly. However, differences were noted across the various 
imputation strategies when the missing data mechanism 
under consideration was MAR. Lack of imputation with 
MAR data resulted in increasing levels of bias as the lev-
els of missingness increased. Of note, with regards to 
multiple imputation, similar results were obtained from 
imputations with five and twenty data sets. For instance 
methamphetamine prevalence was estimated at 37.5% for 
MI with five imputations and 30% missingness (relative 
bias: 0.12%; coverage: 95.6%; RMSE: 0.0110) as compared 
to 37.5% for MI with twenty imputations (relative bias: 
0.14%; coverage: 96.0%; RMSE: 0.0109) (Table 3).

Imputation results for a high prevalence substance – the case 
of cannabis
Comparable to the scenarios with low and medium prev-
alence outcomes, both single and multiple imputation 
strategies with lower levels of missingness with an MCAR 
missing data mechanism performed well (Table 4). Addi-
tionally, none of the strategies were effective under cir-
cumstances where data were MNAR. For all levels of 
missingness and assuming data were MAR, multiple 
imputation outperformed all strategies with both five and 
twenty imputed data sets resulting in comparable out-
comes. For instance, with 50% missingnes, MI with five 
and twenty data sets resulted in a prevalence estimate of 
52%, minimal bias (0.06% and 0.05%, respectively) and 
otherwise comparable in terms of coverage (95.5% and 
94.4%, respectively) and RMSE (0.0122 in both cases).

Discussion
We evaluated the performance of different imputation 
strategies used to address missingness in key variables 
that thwart efforts to harmonize data collected as part of 
HIV-cohort studies. Our findings suggest that while mul-
tiple imputation is an effective tool for re-creating unbi-
ased prevalence rates of substance use under MAR, single 
imputation strategies may also be effective if the missing 
data mechanism is MCAR. Furthermore, we demonstrate 
that when the missing data mechanism is MAR (which 
is the likely case in these harmonization efforts), ignor-
ing the missingness can result in underestimation of the 
prevalence estimates and that single imputation strate-
gies are ineffectual in correcting this bias, especially in 
cases where the prevalence of the outcome is low. Finally, 
we demonstrate that none of the imputation strategies 
are effective if missingness is not at random (i.e., MNAR).

Most of the imputation strategies resulted in a sig-
nificant improvement in estimates of substance use data 
when compared to estimates relying on complete case 
data, which was especially true in the case of a ‘rare’ out-
come such as heroin use. However, MI performed the 
most favorably (assuming the data were not MNAR) 
regardless of the prevalence of the outcome or the level 
of missingness. Missing data resulting from combining 
data across cohorts more plausibly resembles an MAR 
data mechanism given that missing substance use data 
is related to other observed data, namely cohort charac-
teristics such as age and HIV status. We used plausible 
proxy cohort characteristics such as age, employment 
status, and other substance use variables to inform the 
imputation process, which likely results in both gains in 
efficiency and reductions in bias [27]. The finding that 
five imputation data sets performed nearly as well as 
multiple imputation with twenty data sets addresses the 
practical decision of how many imputations are needed. 
While some of the original work in this area suggests that 
between two and ten imputations are sufficient, others 
have suggested that more than ten and up to 100 impu-
tations may be needed if the fraction of missing infor-
mation is large [25, 27–29]. Our findings suggest that 
efficiency can be maintained with smaller imputed data 
sets, even under circumstances where up to 50% of the 
data are being imputed.

We recognize that if MI works in all scenarios, then 
having to make a decision to use another imputation 
strategy may be unnecessary. However, because the 
goal is to implement these strategies in the context of 
cross protocol analyses requiring harmonization across 
multiple cohorts with thousands of observations this 
can create a number of practical issues. First, research-
ers conducting cross-cohort analyses will need to have 
the technical expertise needed to analyze MI data sets 
which requires running statistical models on each of the 
imputed data sets and then pooling the resulting model 
parameter estimates. So, assuming twenty imputations 
are done, then this step will result in running statisti-
cal models on twenty sets of data, obtaining the twenty 
resulting parameter estimates, which then are pooled 
into a single pooled estimate. Furthermore, practical 
considerations also come in to play given the potentially 
large sample sizes along with imputations creating up to 
twenty data sets. The potential impact on computer pro-
cessing power or statistical programming requirements 
may make such analyses difficult for many investigators.

The findings of this study should be interpreted in 
light of some of the limitations. We utilized a cross 
sectional view of the data and did not give considera-
tion to a monotone missing data pattern resulting from 
loss to follow-up given that imputation for missing data 
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Table 3 Relative bias percentage, RMSE and coverage probability for methamphetamine use comparing validation data to imputed 
data

Abbreviations, LD Listwise deletion, LR Logistic regression, HD Hot-deck, MI Multiple imputation, MCAR  Missing completely at random, MAR Missing at random, MNAR 
Missing not at random, RMSE Root mean square error

Method % Missing Estimate Mean Bias % Relative Bias RMSE Coverage

Missing Data Mechanism: MCAR 

 LD 10% 37.4% -0.00055 -0.15% 0.0105 95.6%

 LR 10% 37.5% -0.00031 -0.08% 0.0105 94.2%

 HD 10% 37.4% -0.00035 -0.09% 0.0108 94.0%

 MI (M = 5) 10% 37.5% -0.00013 -0.03% 0.0115 95.0%

 MI (M = 20) 10% 37.5% -0.00013 -0.04% 0.0128 95.2%

 LD 30% 37.5% -0.00003 -0.01% 0.0117 95.2%

 LR 30% 37.4% -0.00035 -0.09% 0.0110 93.2%

 HD 30% 37.5% -0.00017 -0.04% 0.0115 92.2%

 MI (M = 5) 30% 37.5% 0.00040 0.11% 0.0115 95.4%

 MI (M = 20) 30% 37.5% 0.00021 0.06% 0.0128 95.4%

 LD 50% 37.4% -0.00064 -0.17% 0.0148 94.6%

 LR 50% 37.5% -0.00005 -0.01% 0.0117 89.4%

 HD 50% 37.5% 0.00002 0.01% 0.0128 87.8%

 MI (M = 5) 50% 37.6% 0.00071 0.19% 0.0115 95.2%

 MI (M = 20) 50% 37.6% 0.00071 0.19% 0.0128 94.2%

Missing Data Mechanism: MAR

 LD 10% 34.9% -0.02540 -6.78% 0.0276 30.8%

 LR 10% 36.7% -0.00818 -2.18% 0.0133 83.8%

 HD 10% 37.3% -0.00216 -0.58% 0.0108 93.0%

 MI (M = 5) 10% 37.5% 0.00034 0.09% 0.0104 94.6%

 MI (M = 20) 10% 37.5% 0.00036 0.10% 0.0103 94.4%

 LD 30% 30.8% -0.06707 -17.89% 0.0680 0.0%

 LR 30% 35.7% -0.01803 -4.81% 0.0210 56.0%

 HD 30% 37.1% -0.00338 -0.90% 0.0121 88.6%

 MI (M = 5) 30% 37.5% 0.00044 0.12% 0.0110 95.6%

 MI (M = 20) 30% 37.5% 0.00054 0.14% 0.0109 96.0%

 LD 50% 26.9% -0.10551 -28.15% 0.1063 0.0%

 LR 50% 35.2% -0.02289 -6.11% 0.0257 37.4%

 HD 50% 37.1% -0.00364 -0.97% 0.0134 86.6%

 MI (M = 5) 50% 37.6% 0.00082 0.22% 0.0120 94.4%

 MI (M = 20) 50% 37.6% 0.00076 0.20% 0.0118 93.0%

Missing Data Mechanism: MNAR

 LD 10% 35.0% -0.02520 -6.72% 0.0274 32.6%

 LR 10% 35.5% -0.01959 -5.22% 0.0223 50.2%

 HD 10% 35.8% -0.01650 -4.40% 0.0197 61.6%

 MI (M = 5) 10% 35.8% -0.01651 -4.41% 0.0196 61.4%

 MI (M = 20) 10% 35.8% -0.01651 -4.40% 0.0196 62.2%

 LD 30% 35.0% -0.02520 -6.72% 0.0274 32.6%

 LR 30% 35.5% -0.01959 -5.22% 0.0223 50.2%

 HD 30% 33.5% -0.04014 -10.71% 0.0417 3.0%

 MI (M = 5) 30% 35.8% -0.01651 -4.41% 0.0196 61.4%

 MI (M = 20) 30% 33.5% -0.03958 -10.56% 0.0410 3.6%

 LD 50% 27.9% -0.09619 -25.66% 0.0971 0.0%

 LR 50% 31.6% -0.05870 -15.66% 0.0598 0.0%

 HD 50% 32.4% -0.05061 -13.50% 0.0521 0.8%

 MI (M = 5) 50% 32.6% -0.04917 -13.12% 0.0505 2.2%

 MI (M = 20) 50% 32.6% -0.04914 -13.11% 0.0504 1.6%
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Table 4 Relative bias percentage, RMSE and coverage probability for cannabis use comparing validation data to imputed data

Abbreviations LD Listwise deletion, LR Logistic regression, HD Hot-deck, MI Multiple imputation, MCAR  Missing completely at random, MAR Missing at random, MNAR 
Missing not at random, RMSE Root mean square error

Method % Missing Estimate Mean Bias % Relative Bias RMSE Coverage

Missing Data Mechanism: MCAR 

 LD 10% 52.0% 0.00046 0.09% 0.0299 95.6%

 LR 10% 52.0% 0.00042 0.08% 0.0285 95.8%

 HD 10% 52.0% 0.00033 0.06% 0.0253 94.2%

 MI (M = 5) 10% 52.0% 0.00056 0.11% 0.0328 95.6%

 MI (M = 20) 10% 52.0% 0.00050 0.10% 0.0311 96.2%

 LD 30% 52.0% 0.00021 0.04% 0.0201 94.8%

 LR 30% 52.0% 0.00029 0.06% 0.0238 93.0%

 HD 30% 52.0% 0.00034 0.07% 0.0256 92.0%

 MI (M = 5) 30% 52.0% 0.00032 0.06% 0.0247 95.8%

 MI (M = 20) 30% 52.0% 0.00036 0.07% 0.0262 95.6%

 LD 50% 52.0% 0.00070 0.14% 0.0368 94.2%

 LR 50% 52.0% 0.00072 0.14% 0.0373 91.0%

 HD 50% 52.0% 0.00057 0.11% 0.0332 87.4%

 MI (M = 5) 50% 52.0% 0.00064 0.12% 0.0351 95.4%

 MI (M = 20) 50% 52.0% 0.00079 0.15% 0.0389 95.0%

Missing Data Mechanism: MAR

 LD 10% 51.0% -0.00991 -1.91% 0.0145 85.4%

 LR 10% 52.0% 0.00032 0.06% 0.0102 95.8%

 HD 10% 51.8% -0.00134 -0.26% 0.0107 93.6%

 MI (M = 5) 10% 52.0% 0.00027 0.05% 0.0101 96.2%

 MI (M = 20) 10% 52.0% 0.00034 0.07% 0.0102 96.2%

 LD 30% 49.5% -0.02443 -4.70% 0.0273 48.8%

 LR 30% 52.2% 0.00207 0.40% 0.0112 93.2%

 HD 30% 51.7% -0.00241 -0.46% 0.0118 91.2%

 MI (M = 5) 30% 52.0% 0.00054 0.10% 0.0110 95.8%

 MI (M = 20) 30% 52.0% 0.00038 0.07% 0.0111 95.0%

 LD 50% 48.0% -0.03969 -7.64% 0.0421 21.0%

 LR 50% 52.3% 0.00340 0.65% 0.0124 90.4%

 HD 50% 51.7% -0.00280 -0.54% 0.0137 86.0%

 MI (M = 5) 50% 52.0% 0.00029 0.06% 0.0122 95.0%

 MI (M = 20) 50% 52.0% 0.00028 0.05% 0.0122 94.4%

Missing Data Mechanism: MNAR

 LD 10% 49.9% -0.02029 -3.90% 0.0230 53.8%

 LR 10% 50.4% -0.01557 -3.00% 0.0188 69.0%

 HD 10% 50.5% -0.01480 -2.85% 0.0183 70.4%

 MI (M = 5) 10% 50.5% -0.01495 -2.88% 0.0183 72.6%

 MI (M = 20) 10% 50.5% 0.47888 92.16% 0.0183 72.2%

 LD 30% 46.1% -0.05821 -11.20% 0.0596 0.0%

 LR 30% 47.7% -0.04286 -8.25% 0.0444 1.8%

 HD 30% 47.9% -0.04112 -7.91% 0.0429 3.6%

 MI (M = 5) 30% 47.9% -0.04078 -7.85% 0.0423 4.0%

 MI (M = 20) 30% -1.5% -0.04075 -7.84% 0.0423 4.0%

 LD 50% 42.2% -0.09781 -18.82% 0.0988 0.0%

 LR 50% 45.9% -0.06050 -11.64% 0.0616 0.0%

 HD 50% 46.1% -0.05828 -11.22% 0.0597 0.0%

 MI (M = 5) 50% 46.3% -0.05702 -10.97% 0.0582 0.0%

 MI (M = 20) 50% 0.0% 0.00013 0.02% 0.0582 0.0%
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resulting from loss to follow-up was not the goal of this 
study [30]. Assessment of substance use was based on 
self-report and any response bias introduced as part 
of the data collection are not corrected for as part of 
these analyses. However, our use of computer assisted 
self-interview (CASI) may have helped to improve the 
validity of the self-reported information [31, 32]. None-
theless, our imputations were strengthened by the use 
of auxiliary variables. In particular our use of other 
substance use data is particularly relevant in that it will 
allow us to use participants’ reported substance use 
patterns to inform our imputations. A restrictive strat-
egy that does not make use of auxiliary variables is less 
informative and as others have noted the more inclu-
sive strategy reduces the chance of inadvertent omis-
sion of important causes of missing data with resulting 
gains in efficiency and reduction in bias [27]. The only 
cost here is the availability of data for the selected aux-
iliary variables.

Conclusions
In conclusion, our analyses reveal that while MI with 
as few as five imputations provided the best perfor-
mance across a range of conditions, single imputation 
using logistic regression or the hot-deck method for 
substance use data was a robust strategy under certain 
circumstances where the data are assumed to be miss-
ing completely at random or the level of missingness is 
low. Ignoring the missingness will bias our results and 
limit the utility of combining data collected as part of 
the individual studies. While we can uniformly advo-
cate the use of MI, we also suggest that under certain 
circumstances single imputation may be a viable option 
given its relatively low bias and ease of implementation.
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