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Long-Term Characterization of Axon Regeneration
and Matrix Changes Using Multiple Channel Bridges

for Spinal Cord Regeneration

Hannah M. Tuinstra, PhD,1 Daniel J. Margul,2 Ashley G. Goodman,1 Ryan M. Boehler, PhD,1

Samantha J. Holland,1 Marina L. Zelivyanskaya,1 Brian J. Cummings, PhD,3,4

Aileen J. Anderson, PhD,3,4 and Lonnie D. Shea, PhD1,5–7

Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited
available therapies. The host response to SCI is typified by limited endogenous repair, and biomaterial bridges
offer the potential to alter the microenvironment to promote regeneration. Porous multiple channel bridges
implanted into the injury provide stability to limit secondary damage and support cell infiltration that limits
cavity formation. At the same time, the channels provide a path that physically directs axon growth across the
injury. Using a rat spinal cord hemisection injury model, we investigated the dynamics of axon growth, mye-
lination, and scar formation within and around the bridge in vivo for 6 months, at which time the bridge has fully
degraded. Axons grew into and through the channels, and the density increased overtime, resulting in the
greatest axon density at 6 months postimplantation, despite complete degradation of the bridge by that time
point. Furthermore, the persistence of these axons contrasts with reports of axonal dieback in other models and is
consistent with axon stability resulting from some degree of connectivity. Immunostaining of axons revealed
both motor and sensory origins of the axons found in the channels of the bridge. Extensive myelination was
observed throughout the bridge at 6 months, with centrally located and peripheral channels seemingly mye-
linated by oligodendrocytes and Schwann cells, respectively. Chondroitin sulfate proteoglycan deposition was
restricted to the edges of the bridge, was greatest at 1 week, and significantly decreased by 6 weeks. The
dynamics of collagen I and IV, laminin, and fibronectin deposition varied with time. These studies demonstrate
that the bridge structure can support substantial long-term axon growth and myelination with limited scar
formation.

Introduction

Spontaneous regeneration of severed axons does not
occur in the adult mammalian central nervous system

(CNS). The failure to regenerate after injury is caused by a
combination of factors, including inflammation, formation of
the glial scar, release of myelin associated inhibitory factors,
and an insufficient supply of growth promoting factors.
However, CNS neurons are able to regrow when presented
with a permissive environment.1,2 Biomaterial scaffolds en-
gineered to promote nerve regeneration, termed bridges, are
able to provide a permissive environment for CNS regener-
ation. Bridges overcome barriers to regeneration by stabi-
lizing the injury site, providing physical guidance for axons,

preventing cavity formation, recruiting supportive cell types,
and acting as a vehicle for the delivery of therapeutic factors
or cells.3–5

The host response to spinal cord injury (SCI) is typified by
limited endogenous repair6–9 and is relatively slow.10,11 By 2
weeks postinjury, contusion and compression injuries in rats
result in a fluid-filled cavity11 that expands rostrally and
caudally from the epicenter with the onset of secondary in-
jury and associated cell death.12 A glial scar develops, which
contains growth-inhibiting molecules that act as both phys-
ical and biochemical barriers to regeneration. A dense con-
nective tissue scar composed of fibronectin, collagen fibers,
laminin, Schwann cells, fibroblasts, and blood vessels also
develops at the injury site.10,13 Spared axons near the injury
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start demyelinating within 24 h of contusion with increasing
demyelination out to 2 weeks.10 Remyelination of spared
axons by Schwann cells and oligodendrocytes through 22
weeks is limited.14,15 Axons are rarely able to regenerate into
the initially repaired tissue, are infrequently myelinated by
Schwann cells, and form small bundles encased in fibro-
blasts.10,11,16 Functional recovery after contusion injuries is
mostly attributed to plasticity and sprouting of spared axons
at the lesion site.17 Implantation of a biomaterial bridge
provides the opportunity to manipulate this host response
observed in contusion and compression injuries. Bridges that
are highly porous have been reported to support host cell
infiltration that limits cyst formation.5,18,19 Furthermore,
many bridges have channels that support directed axonal
growth into and through the injury.5,20

In this report, our objective was to characterize the dy-
namic host response following SCI to an implanted bioma-
terial bridge and regeneration in terms of the number and
types of axons entering the bridge for more than 6 months
following implantation. A 6-month time course represents a
comprehensive time period that includes the acute and the
chronic response as well as time points before, during, and
after bridge degradation, which has not been previously
characterized for bridges. A porous, degradable, multiple
channel bridge, with an interconnected porous structure,
was implanted in a rat thoracic spinal cord lateral hemisec-
tion injury model immediately postinjury. The number of
axons was quantified at multiple time points in the rostral,
middle, and caudal regions of the bridge, with staining to
assess whether ascending and descending fibers were pres-
ent. Furthermore, we investigated myelination of these axons
by endogenous oligodendrocytes and infiltrating Schwann
cells as a function of the channel location. Finally, the ex-
tracellular matrix (ECM) composition was characterized
overtime. Histological analysis was used to characterize the
dynamic host response from the time of bridge implantation
to after complete degradation and is essential to identify
targets for subsequent intervention to promote regeneration.

Materials and Methods

Rat spinal cord hemisection injury model

Porous multiple channel bridges (Fig. 1b) were fabricated
by a gas foaming/particulate leaching method as previously
described.19,21,22 A rat spinal cord hemisection injury model
was applied to analyze the host response to the implanted
bridge. Surgery was performed as previously described19,22,23

on female Long-Evans rats (180–200 g; Charles River) that
were treated according to the Animal Care and Use Com-
mittee guidelines at the Northwestern University and the
University of California Irvine. Animals were deeply
anesthetized using isoflurane (3% in O2), and a T9-T10 lami-
nectomy was performed to expose the spinal cord. A 4-mm-
long hemisection lateral of midline was removed, and the
bridges were implanted in the injury space and covered by
Gelfoam (Fig. 1). The muscles were sutured, and the skin was
stapled. Postoperative care consisted of the administration of
Baytril (enrofloxacin 2.5 mg/kg SC, once a day for 2 weeks),
buprenorphine (0.01 mg/kg SC, twice a day for 2 days), and
lactate ringer solution (5 mL/100 g, once a day for 5 days).
Bladders were expressed twice daily until bladder function
recovered (7–14 days).

Histological procedures

Spinal cord tissue was collected at 1, 2, 4, 6, 8, 9 weeks,
and 6 months postimplantation with n ‡ 3 at each time point.
Rats were euthanized and spinal cord segments were snap
frozen in isopentane and embedded (OCT; Sakura Finetek).
Cords were sectioned either transversely or longitudinally to
the long axis of the bridge in 12-mm-thick sections.

Immunostaining

Neurofilament, choline acetyltransferase, calcitonin gene-
related peptide, and CS-56. Tissue sections were postfixed
in 4% paraformaldehyde (PFA) for 15 min, and endogenous
peroxide was blocked with 0.3% hydrogen peroxide in
methanol for 30 min. Primary antibodies used were NF200
(1:5000; Sigma-Aldrich N4142), calcitonin gene-related pep-
tide (CGRP, 1:10,000; Chemicon AB5920), choline acetyl-
transferase (ChAT, 1:200; Chemicon AB5042), and CS-56
(1:2000; Sigma-Aldrich C8035). The secondary antibody used
for these stains was biotin-SP-conjugated AffiniPure F(ab)¢2
donkey anti-rabbit (1:250; Jackson 711-066-152) except for
CS-56 when a biotinylated horse anti-mouse (1:200; Vector
BA2001) was used. Slides were incubated with an avi-
din:biotin enzyme complex (ABC Kit; Vector SK6100) and
developed with DAB (Vector SK-4100) or for ChAT with
NovaRed (NovaRED Kit; Vector SK4800).

ECM proteins. For collagen, tissues were fixed in pre-
chilled acetone for 10 min and then incubated in primary
antibody overnight at 4�C. The primary antibodies used
were anti-rat collagen I (1:75; Sigma SAB4500362) or anti-rat
collagen IV (1:500; Abcam ab6586), and the secondary anti-
body used for both was Alexa Fluor 555 goat anti-rabbit
(1:500; Invitrogen A21424).

For laminin and fibronectin, tissues were fixed for 12 min
in 4% PFA, washed with phosphate-buffered saline (PBS),
and then incubated as above. The primary antibodies used
were anti-rat laminin (1:500; Sigma-Aldrich L9393) or anti-rat
fibronectin (1:250; Millipore AB2040), and the secondary
antibody used for both was Alexa Fluor 555 goat anti-rabbit
IgG (1:500; Invitrogen A21424). For laminin, 0.5% Triton-
X100 in PBS was used to dilute the primary antibody and for
washes. For all ECM proteins, four tissues from two animals
were stained for analysis.

MBP/P0/NF200 triple staining

Tissues were fixed for 30 min in prechilled methanol, de-
hydrated, and rehydrated in graded ethanol and washed
with PBS. Slides were incubated in a blocking solution for 1 h
(1:20 BlockHen II, Aves BH-1001 in 5% normal goat serum in
PBS) and washed with 0.1% Tween-20 in PBS. Simultaneous
primary incubation was performed overnight at 4�C using
the following primary antibodies: anti-p-zero myelin protein
(1:100; Aves PZ0), anti-MBP (1:500; Millipore MAB382), and
anti-NF200 (1:50; Sigma-Aldrich N4142). The secondary an-
tibodies used were FITC goat anti-chicken IgY (1:500; Aves
F1005), Alexa Fluor 546 goat anti-mouse (1:500; Invitrogen
A11030), and Alexa Fluor 647 goat anti-rabbit (1:500; In-
vitrogen A21245). Fluorescence images were captured with a
Photometrics CoolSNAP HQ2 camera using a Leica DMIRB
microscope.
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Axon quantification

Cords were retrieved for the quantification of axon num-
bers at 1 week (n = 3), 2 weeks (n = 6), 4 weeks (n = 6), 6 weeks
(n = 4), 9 weeks (n = 4), and 6 months (n = 3). The bridge was
divided into three regions based on location: rostral, middle,
and caudal (Fig. 1). Three sections per animal located at
300 mm (rostral), 2000 mm (middle), and 3500 mm (caudal)
from the rostral bridge/tissue boundary were stained for
neurofilament. Axons were counted in channels at 40 · by a
blinded researcher.

Glial scar quantification

Cords were retrieved at 1 week (n = 6), 2 weeks (n = 4), 6
weeks (n = 2), and 9 weeks (n = 4) postimplantation, frozen,
sliced longitudinally in 12-mm-thick sections. Every eighth
tissue section was immunostained for CS-56. Images were
captured using a Leica DFC290 camera and Leica DMIL
microscope at 2.5 · and stitched together using the stitching
software, PTGui. Using ImageJ, the CS-56 immunopositive
area directly rostral and caudal to the bridge was determined
for eight tissue sections per animal. An average area was
calculated for both locations at all time points.

Statistics

For multiple comparisons, pairs were compared using
an ANOVA with post hoc Bonferroni test with a p-value
< 0.05 defined as significant. The error bars represent stan-
dard errors.

Results

Temporal and spatial characterization of axon growth
within the bridge

Multiple channel poly(lactide-co-glycolide) (PLG) bridges
(Fig. 1a) were implanted in a rat spinal cord hemisection (Fig.
1b) to investigate the dynamics of axon growth into and
through the bridge. The average axon number per channel
was quantified in transverse sections at the rostral, middle,
and caudal regions at indicated times (Fig. 1c). Neurofila-
ment staining was localized overwhelmingly within the
channels, suggesting that the channels orient axon growth
and limit sporadic turning into the bridge pores (Fig. 2a).

The extent of axon growth increased significantly with
time and was a function of bridge region (Fig. 2f ). Few
neurofilament positive axons were observed within the
channels 1-week postsurgery (Fig. 2). Starting at 2 weeks,
substantial numbers of axons were observed within the
channels, with no significant difference between channels
(data not shown). Axon number in the rostral region in-
creased significantly at week 2 relative to week 1 but did not
differ thereafter. Through 6 weeks, the average number of
axons was lower in the middle of the bridge than in the
rostral and caudal regions. At 2 weeks, the rostral and caudal
regions had approximately 60 axons per channel, with only
*13 in the middle. At 6 weeks, the difference was smaller,
yet still significant, with *100 axons per channel in the
rostral and caudal regions and *35 in the middle region. In
the middle region at 9 weeks, axon density was significantly
greater than earlier times. Average axon density in the
middle and caudal regions continued to increase from 9

weeks to 6 months. At 9 weeks, no significant differences
were observed between any two regions. At 6 months, the
rostral region had fewer axons than the middle and caudal
regions, with no significant difference in axon number be-
tween the middle and caudal regions (Fig. 2). Additionally,
after the bridge had fully degraded, at least five intact neu-
rofilament bundles were observed within the regenerated
tissue (Fig. 2b).

ChAT- and CGRP-positive axons within the channels

Longitudinal tissue sections were immunostained for
motor and sensory axon markers. Long ChAT-positive axons
were observed within the channels of the bridge (Fig. 3a).
These ChAT-positive putative motor axons appeared in

FIG. 1. Multiple channel bridges for spinal cord regenera-
tion. (a) Photomicrograph of a multiple channel bridge
showing seven channels, each 250 mm in diameter. Scale bar
is 500mm. (b) Schematic representation of PLG bridge im-
plantation in a spinal cord hemisection. (c) Schematic rep-
resentation of the regions in which the bridge was divided
for analysis. Rostral analysis was performed at 300mm,
middle at 2000 mm, and caudal at 3500mm from the rostral
edge of the bridge/tissue boundary. Color images available
online at www.liebertpub.com/tea
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bundles along the length of the channels. Sensory axons
immunolabeled for CGRP were also present in the bridge
channels (Fig. 3b). Qualitative observation suggested that
fewer CGRP-stained axons were present in the channels
relative to ChAT-labeled axons.

Myelination of axons within the channels

Myelination of axons and the source of myelination were
subsequently investigated at 6-week and 6-month time
points. An antibody against myelin basic protein (MBP) was
used to identify all myelin (red), while an antibody against
myelin protein zero (P0) was used to identify myelin from
Schwann cells (blue) (Fig. 4). Sections were stained with
NF200 to visualize axons (green) (Fig. 4). At 6 weeks, MBP
was observed in several channels that contained regenerat-
ing axons (Fig. 4a). However, little to no P0 staining was
observed at 6 weeks. In contrast, at 6 months, abundant MBP
and P0 staining surrounding NF200-stained axons was ob-

served throughout the bridge (Fig. 4b, c). MBP and P0 co-
localized (purple) around axons in some areas, with other
areas having only MBP or only P0 staining surrounding the
axons (Fig. 4b). Generally, channels in the center of the
bridge and near the midline of the spinal cord (channels 4, 6,
and 7, Fig. 1a) had MBP-positive myelin without co-locali-
zation with P0. The channels located closer to the outer
curved surface of the bridge had increased co-localization of
MBP and P0 (Fig. 4b, c).

Temporal and spatial characterization
of ECM molecules

Chondroitin sulfate proteoglycans. The glial scar is
widely recognized as an inhibitor to regeneration24–26; thus,
we subsequently characterized the dynamics of chondroitin
sulfate proteoglycans (CSPGs) around the bridge. Long-
itudinal tissue sections from 1, 2, 6, and 9-week animals
were immunostained for CS-56, which recognizes intact

FIG. 2. Time course of axon growth in channels of the bridge. (a) NF200-stained cross section of the bridge at 9 weeks with
seven channels indicated by dashed circles (b) NF200-stained cross section of the injury site at > 6 months with a fully
degraded bridge and at least five remaining neurofilament bundles outlined with dashes. Axons were stained at 1, 2, 4, 6, 9
weeks, and 6 months at (c) rostral (300 mm), (d) middle (2000 mm), and (e) caudal (3500 mm) regions of the bridge. (f )
Quantification of axonal regeneration as a function of time and position within the bridges was performed by counting the
number of NF200-positive axons inside the channels. Axon density was a function of time (ANOVA, F = 56.8, p < 0.0001) and
location within the bridge (ANOVA, F = 9.8, p < 0.0001). Slides analyzed were selected from the NF200-stained cross sections
as in (c–e). Statistical analysis was carried out by an ANOVA with Bonferroni post-test with a p < 0.05 found to be signifi-
cantly different. ‘‘*,’’ significant difference compared to other locations at the same time point; ‘‘1, 2, 4, 6, 9,’’ significant
difference compared to 1, 2, 4, 6, and 9 weeks (respectively) and previous at the same location. Scale bar in (a, b) is 250mm and
in (c–e) is 50 mm. Color images available online at www.liebertpub.com/tea
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chondroitin-4-sulfate and chondroitin-6-sulfate proteogly-
cans.27 The pattern of CS-56 labeling postinjury, far from the
bridge, was similar to uninjured cord (Fig. 5a–f). CS-56
staining was strongest at the host/bridge interface at early
time points (Fig. 5b) and declined overtime (Fig. 5b–e). CS-56
staining area was quantified at the rostral and caudal ends of
the bridge, where axons enter and/or exit the channels. The
CS-56-labeled area significantly decreased with time at both
ends. By 6 weeks, the CS-56 area significantly decreased by
more than twofold at the rostral end and almost threefold at
the caudal end. This trend continued at 9 weeks with a
greater than twofold decrease relative to 2 weeks in CS-56
area observed at both locations. No significant difference in
CS-56 staining was observed between the rostral and caudal
ends of the bridge at any time point (Fig. 5g).

Collagen IV and laminin. We subsequently investigated
the distribution of laminin, which promotes axon growth,
and collagen IV, which are upregulated following CNS in-

jury and associated with fibrous scars and angiogenesis.28

Immunostaining for collagen IV and laminin revealed similar
patterns of expression postinjury (Figs. 6 and 7). Similar to
CS-56 staining, the tissue far from the bridge was compara-
ble to uninjured cord. At 1 week, dense positive staining was
observed bordering the bridge, which corresponded to the
CS-56-positive area, with little to no labeling inside the
bridge (Figs. 5b, 6b, and 7b). The thickness of the collagen IV
and laminin-positive border around the bridge decreased
overtime. Starting at 2 weeks, collagen IV and, to a lesser
degree, laminin labeling was observed within the bridge.

Collagen I and fibronectin. Collagen I and fibronectin are
not principal components of the native CNS yet are involved
in scar formation and can influence axon growth.29 Thus, we
characterized these factors at the implantation site. At 1
week, collagen I labeling increased slightly throughout the
tissue and bridge, compared to uninjured tissue, with a thin
positively stained border surrounding the bridge that

FIG. 3. Motor and sensory axons within channels of the bridge at 8 weeks. (a) ChAT-positive axons (red) within the
channels of the bridge indicated by the arrowheads. Scale bars are 1000, 100, and 50 mm from left to right. (b) CGRP-positive
axons (brown) within the channels of a bridge indicated by the arrows. Scale bars are 50 mm. Color images available online at
www.liebertpub.com/tea

FIG. 4. Myelination of axons within the injury site overtime. Transverse tissue sections were stained with MBP (red), P0
(blue), and NF200 (green). (a) Cross section of a channel at 6 weeks stained positive for MBP but no P0 myelin. (b, c) At 6
months, extensive myelination was observed throughout the injury site. Co-localization of P0 and MBP myelin was observed
around the outer curved surface of the bridge, indicated by open arrowheads in (b) and throughout in (c). While mostly MBP,
only myelin was observed toward the midline and center channels (numbered 4, 6, and 7 in Fig. 1a) indicated by the closed
arrowheads in (b). Scale bar is 100 mm. Color images available online at www.liebertpub.com/tea

AXON REGENERATION AND MATRIX CHANGES 1031



disappeared by 9 weeks (Fig. 8). Positive collagen I staining
was maximal within the bridge area at 2 to 6 weeks and
decreased at 9 weeks.

Compared to uninjured spinal cord (Fig. 9a), at 1-week,
diffuse positive staining for fibronectin was observed in tis-
sue adjacent to and within the bridge area (Fig. 9b). Between
weeks 2 and 9, this diffuse staining surrounding and in the
bridge decreased (Fig. 9c–e). At 9 weeks, only a thin faint
border of positive staining was visible around the bridge
(Fig. 9e).

Discussion

In the present study, porous biodegradable PLG bridges
containing seven channels with a diameter of 250 mm were
implanted in a rat spinal cord hemisection injury. Bridge

implantation prevented the formation of the fluid-filled
cavity reported in rats after contusion injury. Structural in-
tegrity of the bridge was maintained through 9 weeks post-
implantation, with the polymer borders visible for all seven
channels. At 6 months, the polymer was completely de-
graded, and discrete individual bundles of axons were visi-
ble, consistent with an organization induced by the channels.
Taken together, these bridges provided a structural support
that initially guides regeneration and does not disrupt re-
generated tissue through degradation.

The bridge supported robust axonal ingrowth into and
across the bridge following implantation, consistent with
other bridges. This axon growth indicates that the bridge tilts
the balance of chemical and physical cues toward a more
permissive environment, likely through physical support,
secretion of trophic factors by host cells, and support from

FIG. 5. Chondroitin sulfate proteoglycans (CSPG) staining over time. (a) CS-56-stained tissue section at 1 week with
location of inset b* indicated by dashed lines. (b–e) Caudal sections at 1, 2, 6, and 9 weeks postimplantation with positive
staining indicated by dashed lines. (f ) Uninjured cord-negative control. (g) Quantification of the CS-56-positive area directly
rostral and caudal to the bridge. ‘‘a,’’ statistically different from 1 week at the same location; ‘‘b,’’ statistically different from 2
weeks at the same location, p < 0.05. Color images available online at www.liebertpub.com/tea

FIG. 6. Collagen IV-stained tissue sections of uninjured cord (a) and 1, 2, 6, and 9 weeks postimplantation (b–e). Scale bar is
1 mm.
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myelinating cells. Previous work indicates that the bridge’s
pores allow for infiltration of endogenous supportive cell
types (i.e., Schwann cells, fibroblasts) that can express
growth factors and deposit growth-promoting ECM, allow-
ing long-term growth of axons.19,22,23,30 The Oudega labo-
ratory reported bridges formed by phase separation with
longitudinally oriented macropores (75–300 mm) with vary-
ing lengths and degrees of interconnectedness.31 These
bridges were used in combination with either neuro-
trophins31 or neurotrophins and Schwann cells.32 Neurofi-
laments were observed near the rostral end, with few axons
entering scaffolds from the caudal end,31,32 and no significant
directional growth across the bridge. The Yaszemski and
Windebank collaboration has produced poly (lactic-co-
glycolic) acid (PLGA) (85:15 co-polymer ratio) scaffolds with
seven longitudinally oriented channels (450mm diameter)
formed by injection molding in conjunction with rapid sol-
vent evaporation.33–37 Their channels have interconnected
pores with a controllable void fraction within 75–85%.34 At 1
month postinjury, *185 neurofilament-positive fibers were
found within each 450mm channel of Schwann cell seeded
scaffolds, exceeding the numbers within 650mm channels.36

They have also used structurally similar bridges of
oligo(polyethylene glycol) fumarate, which enhanced these

numbers nearly twofold.38 Bridges from other groups with
similar longitudinal architectures fabricated from hydrogels
(e.g., agarose,39–41 pHEMA42) have provided directional
alignment of axons, but these studies do not provide axonal
counts or have minimal axonal ingrowth. Importantly, these
other axon counts were calculated for bridges in conjunction
with neurotrophin delivery or cell transplantation, which
were not used in the present study. The number of re-
generating axons reported herein is similar to the maximal
number achieved with the other systems that also used ad-
ditional measures. Considering axon density (axons/mm2 of
channel area), these bridges had a threefold higher density of
neurofilament relative to Krych et al.36

In contrast to reports for these other bridge systems, the
PLG bridges reported herein had an increasing number of
axons following implantation through the 6-month time
point (Fig. 2). Axon density was maximal at 6 months in the
middle and caudal regions of the bridge, indicating that the
axons are stable as the material degrades and suggesting
some degree of functional synapse formation with inter-
neurons or other targets that stabilizes the axons and pre-
vents dieback.43 Furthermore, axon survival after bridge
degradation has been speculated to be a potential pitfall
for biodegradable scaffolds. As the bridge degrades, the

FIG. 7. Laminin-stained tissue sections of uninjured cord (a) and 1, 2, 6, and 9 weeks postimplantation (b–e). Scale bar is
1 mm.

FIG. 8. Collagen I-stained tissue sections of uninjured cord (a) and 1, 2, 6, and 9 weeks postimplantation (b–e). Scale bar is
1 mm.
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potential exists for damage to regenerated axons as their
mechanical support is lost. Instead, we observed intact
bundles of neurons at time points after bridge degradation,
which supports the use of biodegradable bridges long-term
and demonstrates the integration of the regenerated tissue
with the host. While results from other studies are described,
direct comparisons between bridges are complicated by
differences in study design (such as surgical model) and
endpoint analyses. The Oudega laboratory’s bridge de-
graded between 4 and 6 weeks,32 which may not have been
sufficient to support the sustained presence of axons. The
hydrogel bridges have not been investigated beyond 1
month. The bridges by Yaszemski and Windebank produced
185 axons per channel at 1 month, yet this count was reduced
to *80 by 2 months and remained at this level at 3
months.36,38 Axons entering the caudal end were able to re-
enter the host tissue at the rostral end.35 Their studies were
performed in a transection model, which can retract relative
to our hemisection model, and may lead to the reduction in
axon counts. The thoracic lateral hemisection model used
herein is a good model for investigating axon growth
through the injury; however, this model is not appropriate
for the analysis of functional recovery. Despite being per-
formed in other studies, functional analysis was not per-
formed herein as the thoracic hemisection model has
significant plasticity and spontaneous recovery, disguising
the source and degree of functional improvement. Taken
together, the PLG bridges used herein were stable for at least
9 weeks and supported axon growth through the injury that
increased throughout the study.

Both descending motor neurons and ascending sensory
neurons extended axons into the bridge. Previous reports
with bridges or peripheral nerve (PN) grafts indicated that a
large percentage of the axons observed within the channels
originated from neurons in the dorsal root ganglions (DRGs)
adjacent to the bridge.44,45 Since 66% of DRG neurons are
CGRP positive in rodents,46 the CGRP-positive axons within
the channels likely originated from DRGs (Fig. 3b). However,
a relatively small fraction of axons present within the bridge
channels were CGRP positive, indicating that the majority of
the axons originated from other neuron types. A portion of
the axons in the channels at 8 weeks was identified as ChAT-
positive putative motor neurons demonstrating a CNS origin

of at least a percentage of the regenerated axons (Fig. 3a).
Spontaneous compensatory sprouting of injured spinal mo-
tor systems occurs in the adult CNS and can result in func-
tional recovery.47,48

Extensive myelination was observed at 6 months post-
implantation as demonstrated by both positive MBP and
positive P0 staining surrounding NF-positive axons. De-
myelination and the lack of remyelination of regenerated
axons are considered limiting factors in functional recovery.
The extent of myelination was similar to previous reports,23

yet the myelin source appears to shift over time from mostly
MBP-positive and P0-negative at 6 weeks, indicating an oli-
godendrocyte origin, toward co-localization of MBP and P0
at 6 months, indicating a Schwann cell origin, particularly
around outside the bridge. MBP only myelin staining was
still observed in the bridge, near the midline, at 6 months.
Both Schwann cell and oligodendrocyte remyelination have
been associated with the recovery of saltatory conduc-
tion49,50; however, it is not yet known if both can promote
axon survival51,52 or carry signals across the injury. Multiple
methods have been investigated to promote remyelination,
including PN grafts or transplantation of Schwann cells or
progenitor cells that can develop into oligodendrocytes to
remyelinate axons.44,53–56 Herein, we report extensive mye-
lination by endogenous cells that migrated into the channels
of the bridge, with myelination increasing through 6 months
postinjury. While myelination is occurring, additional ther-
apies that target oligodendrocyte recruitment or differentia-
tion could further increase the extent of axon regeneration
and remyelination.

CSPG staining at the bridge-tissue interface peaked at 1–2
weeks after injury and subsequently declined, consistent with
studies in rat CNS.57,58 Likewise, in contusion models, CSPGs
normally surround the lesion.59–62 Early deposition of CSPGs
may limit the number of axons entering the bridge at early
time points. The declining glial scar is consistent with our
observations of increasing axon numbers with time. In a full
transection injury model, bridges with channels of 440–660mm
diameter developed a fibrous scar-like rim inside each channel
that was thicker and inhibited axon growth in the larger di-
ameter channels,36 a phenomenon not observed herein.

Collagen, laminin, and fibronectin are components of the
fibrous scar that are deposited after injury to the CNS by cells

FIG. 9. Fibronectin-stained tissue sections of uninjured cord (a) and 1, 2, 6, and 9 weeks postimplantation (b–e). Scale bar is
1 mm.
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invading the bridge (e.g., Schwann cells, fibroblasts, macro-
phages).19,23 The increase in ECM proteins and other scar
components is similar to contusion injuries15 and reflects the
normal response to injury of reestablishing the CNS blood–
brain barrier.63 Laminin and fibronectin are axon growth
promoting and have been used in various biomaterial im-
plants for spinal cord regeneration.29,64–69 Collagen IV and
laminin deposition dynamics are consistent with reports of
contusion injuries that indicate maximal staining 1–3 weeks
postinjury.28,63 Collagen I and fibronectin expression pat-
terns were similar and correspond with infiltration of fibro-
blasts into the bridge, which have been reported to express
these proteins after rat spinal cord contusions.70

Conclusion

In this report, we demonstrate that the bridge structure can
support the growth of axons into an SCI. The bridge stabilizes
the injury and prevents the formation of the fluid-filled cav-
ity, common to contusion injuries.71 In addition, we observed
robust sustained axon growth with significant myelination
out to beyond 6 months postimplantation when the bridge
had completely degraded. Both putative sensory and motor
axons were identified within the bridge, suggesting that CNS
regeneration occurred. Decreasing levels of CSPGs sur-
rounding the bridge suggest the potential to support axonal
crossing. This characterization of the dynamic host response
to the bridge suggests opportunities for combining additional
therapies with implants to further enhance regeneration.
Axon density and myelination are less within the bridge than
in native uninjured tissue and could be increased with the
delivery of neurotrophic factors.23 However, even a small
number of connections could result in significant gains in
functional recovery.4,72 The bridge supported improved re-
generation beyond the limited spontaneous response to con-
tusion injuries. Taken together, these results demonstrate the
efficacy of a degradable multiple channel bridge to limit the
inhibitory glial scar deposition and provide a permissive
environment for long-term axon growth with myelination.
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