Lawrence Berkeley National Laboratory

Recent Work

Title

THE XENON DIFLUORIDE COMPLEXES XeF oXeOFuj XeFp'XeF6< AsFg AND XeF2*eXeF6*2AsF[- AND THEIR RELEVANCE TO BOND POLARITY AND FLUORIDE ION DONOR ABILITY OF XeF AND XeF.

Permalink

https://escholarship.org/uc/item/2d08c5q6

Authors

Bartlett, Neil Wechsberg, Manfred.

Publication Date

1971-04-01

UCRL-20572 e.2

DOCUMENTS SECTION

THE XENON DIFLUORIDE COMPLEXES XeF₂·XeOF₄; XeF₂·XeF₆·AsF₅ AND XeF₂·2XeF₆·2AsF₅ AND THEIR RELEVANCE TO BOND POLARITY AND FLUORIDE ION DONOR ABILITY OF XeF₂ AND XeF₆

Neil Bartlett and Manfred Wechsberg

April 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY UNIVERSITY of CALIFORNIA BERKELEY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

The Xenon Difluoride Complexes XeF₂·XeOF₄; XeF₂·XeF₆·AsF₅ and XeF₂·2XeF₆·2AsF₅ and Their Relevance to Bond Polarity and Fluoride Ion Donor Ability of XeF₂ and XeF₆

By Neil Bartlett and Manfred Wechsberg

Inorganic Materials Research Division, of the Lawrence Radiation Laboratory, and the Department of Chemistry,
University of California,
Berkeley, California

ABSTRACT

Xenon diffuoride forms a 1:1 complex with XeOF₄ (m.p. 29°), which is isostructural with XeF₂·IF₅. The unit cell is tetragonal with a = 7.56(2), c = 11.36(3) Å, V = 647 Å³, z = 4. Reman data prove it to be a molecular complex, the structure of which is compatible with appreciable bond polarity in XeF₂. Similar interactions of XeF₂ with the XeF₅ cation are indicated by the Raman spectra of the complexes which XeF₂ forms with [XeF₅] [AsF₆]. The spectrum of the 1:2 complex indicates that the XeF₂ molecule is undistorted but the spectrum of the 1:1 complex suggests that the XeF₂ molecule is distorted by interaction with XeF₅ ions. The occurrence of molecular XeF₂ in the XeF₅ AsF₆ lattice comfirms the superiority of XeF₆ to XeF₂ as a fluoride ion donor.

The bonding in xenon difluoride may be accounted for by the resonance hybrid $(F-Xe)^+F^-$ and $F^-(Xe-F)^+$. (This description maintains both classical valence concepts: the octet and the electron pair bond.) High bond polarity is associated with such a description since the negative charge borne by each F ligand must therefore be -1/2. Hence the polarity $\frac{1}{2}$ - $F-Xe^{1+}$ - $F^{\frac{1}{2}-}$ may be anticipated. It is impressive that the lattice enthalpy of 13.3 kcal/mole⁻¹ calculated by Jortner, et al. for $XeF_2(cryst)$ on the basis of exactly this charge distribution, is remarkably close to the experimental enthalpy³ of sublimination, of 13.2 kcal/mole⁻¹. Other physical data, including nuclear magnetic resonance and Mossbauer spectroscopy⁵ have also indicated considerable bond polarity in the XeF_2 molecule.

The close approach of the ligands of the XeF₂ molecule to the xenon atom of neighboring XeF₄ molecules, as seen in the structure of the compound XeF₂·XeF₄, indicates that this molecular complex results from the mutual interaction of molecules of high bond polarity. The compound XeF₂·IF₅, the structure of which has been reported, is similarly a 'semi-ionic' lattice: the fluoride ligands of the XeF₂ molecules are close to the iodine atom of surrounding IF₅ molecules and the F-ligands of IF₅ are close to the xenon atoms of the nearest XeF₂ molecules. Even though these close interactions occur, the XeF₂ molecule in these adducts is almost indistinguishable from the XeF₂ molecule in crystalline XeF₂ itself.

In contrast with its behavior towards IF₅, xenon diffuoride does not form a compound, stable under normal conditions of temperature and pressure, with BrF₅. We have attributed this ⁷ to the higher electronegativity of bromine and the consequent lower bond polarity in BrF₅ compared to IF₅.

It was evident that to some extent this should also be true of the structurally related species XeF₅⁺ and XeOF₄ although we considered the positive charge of the former to favor significant interaction with XeF₂. Adducts of XeF₂ with both XeF₅⁺ and XeOF₄ have been prepared.

The 1:1 adduct with XeOF4 is probably isostructural with XeF2.1F5.7 It therefore probably consists of layers of XeOF4 molecules alternating with layers of XeF2 molecules with each molecule having eight molecules of the other kind about it in a distorted cube arrangement. Since the melting point of XeF2·XeOF4 is 29°C, whereas that of XeF2·IF5 is 98°C, the bonding interactions between the component molecules must be greater in the iodine compound. This is compatible with the greater separation of the layers of molecules in the XeOF4 compound than in XeF2. IF5. The perpendicular distance between a sheet of XeF2 molecules and an adjacent sheet of IF5 molecules in the XeF2·IF5 structure is approximately 2.7 Å. In XeF_2 . $XeOF_4$, c/2 = 2.84 Å. The geometrical arrangements are compared in Figure 1. The interaction of XeF2 with IF5 molecules in the 1:1 adduct has been interpreted on the basis of a pseudo-octahedral model for the IF5 molecule. This assumes that the iodine(V) non-bonding valenceelectron-pair projects along the fourfold axis of the molecule, trans to the unique (or axial) fluorine ligand (see Figure 1). It is assumed, since the Raman spectrum attributable to the IF5 component is very similar to the spectrum of pure IF5, that this molecule in the adduct is similar, in all essentials, to the free molecule. Similarly, for XeF2 XeOF4, it is probable that the free molecule and the adduct molecule are alike, since, as Figure 2 shows, the Raman spectrum is almost a composite of the component spectra.

It is notable in the XeF₂·IF₅ structure that the fluorine ligands of XeF2, in making their close approach to the iodine atom of the pseudooctahedral IF5 molecule, are each directed towards a pseudo-octahedron face, at the 'non-bonding-pair' end of the molecule. Figure 1 illustrates this model. Evidently the non-bonding electron pair screens the ligandinduced positive charge on the iodine atom very well along the 4-fold To account for the observed dispositions of F-ligands of the XeF2 molecules however, this screening must be less effective off axis. Now, for XeOF4, Martins and Wilson have shown the four fluorine ligands to be very nearly coplanar with the xenon atom. It is our belief that the weaker bonding of XeF2 to XeOF4 compared to IF5 is due primarily to the greater shielding of the central atom charge in XeOF4 as a consequence of the near-coplanarity of the xenon (VI) atoms and its four fluorine ligands. The abutment of XeOF4 molecules apex to apex, i.e., oxygen ligand opposed to oxygen ligand (F4Xe0...OXeF4) must also be more unfavorable than the fluorine-fluorine conjunction in the IF5 analogue.

The shape of IF₅ in XeF₂·IF₅ is very similar to [XeF₅]⁺in [XeF₅]⁺[PtF₆] and to [TeF₅] in KTeF₅. In particular, the bond angle F(axial) I-F(equatorial) = 81° is equal (within one degree) to the comparable angle in the other ions. The similarity of the XeF₅⁺ and IF₅ geometries and the likelihood of a greater positive charge on the central atom in XeF₅⁺ than in XeOF₄ suggested that the interaction of XeF₂ with XeOF₅⁺ should be greater than in XeOF₄.

Earlier work 11 had demonstrated that although XeF₂ is a superior fluoride ion donor to XeF₄ it was inferior to XeF₆, but the interaction of XeF₂ with XeF₅ salts was not studied. Since the XeF₂/AsF₅ and XeF₆/AsF₅ systems have both been characterized crystallographically (see

Table 1), we chose to study the XeF₂/XeF₆/AsF₅ system. Two adducts, a l:1:1 and 1:2:2, have been isolated and although suitable single crystals for structural analyses have not been obtained, the Raman spectra provide good evidence for their formulations.

Two compounds have been identified previously in the XeF2/AsF5 system: a 1:1 compound (unstable at room temperatures) presumed to be XeF (AsF6). and a 2:1 compound [Xe₂F₃] + [AsF₆] -. 12 Two crystalline forms of the latter are known and the structure of the form stable at 20°C is known in detail. In the XeF₆/AsF₆ system, again a 1:1 and 2:1 compound are known. crystal structure of the former shows it to be [XeF5] [AsF6]. Although two crystalline modifications of the 2:1 compound have been identified, a structural analysis has not been completed. However, the vibrational spectroscopic data indicate the formulation Xe₂F₁₁ [AsF₆], the cation being a fluoride bridged species [F₅Xe...F...XeF₅]⁺. 13 The single crystal unit cell data are given for these compounds along with that for $XeF_2 \cdot 2[XeF_5]^{\dagger} 2[AsF_6]^{-}$ in Table 1. The formula unit volume of the adduct is seen to be approximately equal to the sum of the formula unit volumes of XeF₂ plus twice the formula volume of ([XeF₅] + [AsF₆]). Note that the formula volumes are also additive for $[Xe_2F_{11}]^+[AsF_6]^- (\approx V_{XeF_c} +$ $V_{[XeF_5]}^+$ [AsF₆] -) and indeed for all compounds, if the effective volume of one formula unit of AsF₆ is taken to be $\approx 90 \text{ Å}^3$.

As may be seen from Figure 3, the Raman spectrum of the compound $XeF_2 \cdot 2XeF_6 \cdot 2AsF_5$ shows a prominent peak at 498 cm⁻¹, which has no

This formula volume additivity is simply a corollary of the observation, first documented extensively by Zachariason, 14 that fluoride molecular volumes are primarily determined by the fluorine ligand packing volume, which is usually 18 ± 1 Å³ per atom.

counterpart in the spectra of [XeF₅] + [AsF₆], [F₅Xe...F...XeF₅] + [AsF₆] or [Xe₂F₃] [AsF₆]. The peak coincides almost exactly with the symmetric stretching frequency of molecular XeF₂ (497 cm⁻¹). 15 Presumably in the 1:2:2 compound the XeF2 molecules are symmetrically surrounded by [XeF5] ions, as in XeF2'XeOF4 and XeF2. IF5. The other features of the 1:2:2 adduct spectrum are attributable to the [XeF₅] and [AsF₆] species. [XeF₅] and [AsF₆] fundamentals occur in the spectrum of the compound XeF₂·XeF₆·AsF₅ and in [XeF₅] [AsF₆] itself (although slightly modified). In the 1:1:1 adduct spectrum there is no peak in the vicinity of 500 cm⁻¹. However, there are two new bands at 557 and 429 cm⁻¹, which do not have counterparts in the XeF2.2[XeF5] 2[AsF6] spectrum. It may be significant that the mean frequency for this pair of bands is 493 cm⁻¹. We believe that this pair of bands represents the two stretching frequencies for a distorted XeF2 molecule. So far only linearly distorted XeF2 molecules have been observed, as illustrated in Figure 4, and we believe that a linear distortion will also be found here.

If we consider the effect of bringing an XeF_5^+ ion up to one end of an XeF_2 molecule it is reasonable to suppose that the highly polarizing cation will tend to remove a fluoride ion from the molecule. Available data ¹⁶ do not give a clear indication of the ability of the cation to remove F from the XeF_2 molecule since as may be seen from Table 2, the enthalpy for the ionization $XeF_2(g) \rightarrow XeF^+(g) + F^-(g) = 218 \text{ kcal/mole}^{-1}$, whereas $\Delta H(XeF_5^+(g) + F^-(g) \rightarrow XeF_6(g) = -213 \text{ kcal/mole}^{-1}$. Furthermore, the lattice energy for $[XeF_3^+(AsF_6]^-$ is anticipated to be more exothermic [†]The observed superiority of XeF_6 over XeF_2 as a fluoride ion donor indicates that the lattice energy of $XeF^+MF_6^-$ salts cannot exceed that of its $XeF_5^+MF_6^-$ relative by more than 5 kcal/mole ⁻¹, if the quoted enthalpies of ionization are correct.

than for [XeF₅]⁺[AsF₆]⁻, since [XeF]⁺ is smaller than [XeF₅]⁺.

Withdrawal of F from the XeF₂ molecule must result in a shortening of the remaining Xe-F bond, i.e., one of the resonance forms, (F-Xe)⁺F assumes greater weight. This effect is well illustrated by the data given in Figure 4.

Since the Xe^{II}-F stretching frequencies in the 1:1 compound deviate by only 60 cm⁻¹ from the $\nu_{(\mathrm{symm})}$ value it appears that the distortion from a symmetrical molecule cannot be great. It is possible to set limits. The "terminal" XeF stretch in the compound FXe-FRuF₅ (in which XeF_{term}. = 1.88 Å)¹⁷ has a mean value ¹² of 602 cm⁻¹. In the Xe₂F₃ + cation ¹⁸ the terminal Xe-F bond, where the internuclear distance is 1.90 Å, has a mean stretching frequency of 594 cm⁻¹. ¹² In XeF₄ (bond length 1.95 Å) the symmetric stretching frequency ¹⁹ is 543 cm⁻¹. Therefore, even if the removal of the fluoride ligand from XeF₂ were sufficiently complete to justify the attribution of the 557 cm⁻¹ bond to $(Xe^{II}_F)^{\delta+}$, this residual species would be unlikely to have a bond length less than 1.94 Å. Therefore, although it is probable that the XeF₂ molecule in XeF₂ [XeF₅]⁺[AsF₆]⁻ will be distorted (and probably linearly) it seems unlikely that either bond length will depart by more than 0.06 Å from 2.00 Å.

The molecular nature of the XeF₂ adducts with [XeF₅] [AsF₆], do support the earlier claims that XeF₆ is a superior fluoride ion donor to XeF₂. This emphasizes the 'strange' behavior of the hexafluoride. The tetrafluoride is an inferior fluoride ion donor ll to XeF₂ and this is in accord with anticipated poorer donor properties of the higher oxidation state species. Presumably the unusually good donor properties of XeF₆ are associated with a peculiar stabilization of the pseudo-octahedral

 XeF_5^+ ion. (This ion is so favorable that XeF_6 occurs essentially as $XeF_5^+F^-$ in the solid phase.²⁰) Recently, Berkowitz has given¹⁵ more direct thermodynamic evidence of this strange behavior of XeF_6 . His ionization data given in Table 2, give quantitative expression to the earlier¹¹ qualitative results.

EXPERIMENTAL PART

The Compound XeF₂·XeOF₄

Xenon oxide tetrafluoride²¹ was vacuum distilled on to xenon difluoride²² (0.67 m mole) contained in a Kelf weighing bottle, of ~ 10 ml capacity, provided with a Kelf valve. Excess XeOF₄ was removed under vacuum with the bottle and its contents at 0°C. The white solid residue, m.p. 29°C corresponded to an XeOF₄ uptake (0.67 m mole) commensurate with the composition XeF₂·XeOF₄.

X-ray powder photographs of the solid showed a close similarity to those of XeF₂·IF₅ and were indexed on the basis of a body-centered tetragonal cell with $a_0 = 7.56$, c = 11.34 Å, V = 647 Å³, z = 4. Single crystals were grown by sublimation at room temperatures. The tetragonal symmetry and the systematic absences: h k l, h + k + l = 2n, indicate the space group is one of I4/m, I4 or I4. Furthermore, the photographic precession data, collected using Zr filtered MoKa radiation, shows a very close intensity relationship to the like data for XeF₂·IF₅, the structure of which has been satisfactorily completed in space group I4/m. The compounds are probably isostructural. The x-ray powder data, for XeF₂·XeOF₄, is given in Table 3.

For the Raman spectra, the sample was kept at ~ -10°C by a stream of dry ditrogen, cooled by liquid air. An x-ray powder photograph of the sample was obtained subsequently to establish that the spectrum was attributable to the compound XeF₂·XeOF₄. The spectrum is illustrated in Figure 2, and is seen to be a near-composite of the spectra of XeF₂ and XeOF₄. The data is given in Table 4.

The Compound [XeF₅]⁺[AsF₆]⁻

Aman spectra and the melting characteristics, all showed this material to be identical to the product from hydrogen fluoride as solvent. (Hydrogen fluoride is a poorer solvent for this system than BrF₅.) The solid sintered at 127°C but was not completely molten until 134°C. The melt was mobile (in contrast with that of the XeF₂ adducts).

Single crystals of the 1:1 compound, were grown by sublimation under dry nitrogen (1 atmosphere) and proved to be monoclinic, with a = 5.886(3); b = 16.564(10); c = 8.051(4); β = $91^{\circ}34^{\circ}(2)$; V = 784.4 Å^3 ; z = 4. This unit cell provided for complete indexing of the x-ray powder data. The crystal structure has been satisfactorily completed in space group $P2_1/c$ and is consistent with the formulation $[XeF_5]^+[AsF_6]^{-}.26$

The Raman spectrum of $[XeF_5]^+[AsF_6]^-$ is illustrated in Figure 3. The bands, with relative intensities in parentheses, are: 741(17); 726(8); 689(21); 673(32); 663(29); 630(100); 622(sh); 551(sh); 545(12); 412(9?); 395(14); 383, 375, 365(7); 345(5?); cm⁻¹(20).

The Compound XeF₂·2([XeF₅]⁺[AsF₆]⁻)

The 1:2 adduct of XeF₂ with [XeF₅]⁺[AsF₆] was most conveniently prepared by mixing the components in appropriate molar rates (in a typical example, 1.64 m mole [XeF₅]⁺[AsF₆] and 0.89 m mole of XeF₂ were taken). The mixture, which was prepared in KelF containers, in a Vacuum Atmospheres Corporation 'Drilab', was heated to 85°C, at which temperature a homogenous melt was obtained. Quenching of this material, to 0°C, produced a colorless solid which melted sharply at 65°C. The melt is very viscous in contrast to that of [XeF₅]⁺[AsF₆].

Single crystals of the solid were grown by holding quartz capillaries charged with microcrystalline samples, at $\sim 60^{\circ}\text{C}$. Single crystal precession photographs established the compound to be dimorphic, the form stable at room temperature being monoclinic, with a = 15.436(10); b = 6.849(4); c = 17.241(10) Å; $\beta = 93^{\circ}12(4)^{\circ}$; V = 1800 Å³; z = 4. The systematic absences: $\underline{h} \underline{k} \underline{\ell}$, $\underline{h} + \underline{k} = 2n$; $\underline{h} = 0 \underline{\ell}$, $\ell = 2n$, indicate either space group C2/c or Cc. Unfortunately, as a consequence of frequent twinning or crystal deformation, no suitable crystals for a structural analysis have been obtained so far. The single crystal data provided for the indexing of the powder diffraction data as indicated by the low angle data given in Table 5. At temperatures above $\sim 40^{\circ}\text{C}$, the compound adopts a related monoclinic unit cell with a = 16.82(2); b = 7.00(1); c = 15.40(2) Å; $\beta = 95^{\circ}30^{\circ}(10)$; V = 1808 Å³; z = 4.

The Raman spectrum of a single crystal sample, which was characterized by x-ray precession data, as the form stable at room temperature, showed no significant differences from the spectra from microcrystalline samples. The bands, with relative intensities in parentheses, are: 719(25); 667(102); 620(100); 574(21); 523(sh?); 498(66); 393(12); 373(10); 298 cm⁻¹(17). The spectrum is illustrated in Figure 3.

The Compound "XeF2 [XeF5] [AsF6]"

As in the case of the 1:2:2 adduct, the 1:1:1 adduct was best made by fusing XeF_2 with $[XeF_5]^+[AsF_6]^-$. The diffuoride (1.90 m mole) and $[XeF_5]^+[AsF_6]^-$ (1.89 m mole) were mixed in the 'Drilab', as powdered solids, and contained in a Kelf weighing bottle, closed with a Kelf valve. The solids were well mixed by vigorous shaking and heated to 75°C until fully molten. The fused mixture was quenched in liquid air. The white solid so obtained, did not melt sharply (m.p. $54.5 \rightarrow 57^{\circ}C$) and it is possible that the compound melts incongruently.

The distinctive powder photographs showed no trace of [XeF₅][†][AsF₆] or XeF₂·2[XeF₅] [†][AsF₆]. Single crystals have not been obtained and the complex pattern has not been indexed.

The Raman spectrum, shows a marked similarity to that of $XeF_2 \cdot 2[XeF_5]^+$ [AsF₆], but for the appearance of two new bands, at 557 and 429 cm⁻¹ and the loss of the band at 498 cm⁻¹. The characteristic bands are: 718(10); 691(13); 668(144); 616(100); 606(62); 585(14); 557(159); 537(24); 429(67); 407(24); 393(11); 367(13); 339(11?); 293(16). The spectrum is illustrated in Figure 3.

Other XeF₂ - [XeF₅] [†][AsF₆] Compounds

Raman and x-ray powder spectra of samples with compositions between XeF₂·[XeF₅]⁺[AsF₆] and XeF₂·2([XeF₅]⁺[AsF₆]) proved to be composites of the spectra of these compounds.

Crystallographic Data

Debye-Scherrer photographs were obtained, using Cuka radiation from a graphite crystal monochromator. All samples were sealed in thin-walled quartz capillaries.

Single crystals (all grown in closed quartz capillaries) were characterized by the precession method using 'Polaroid' photography.

Accurate cell parameters were obtained from a least squares fit to high angle diffractometer data.

Raman Spectra

Raman spectra were obtained from a spectrometer using Helium-Neon laser excitation, the instrument being similar to that previously described. ¹² All samples were enclosed in thin walled quartz capillaries (suitable for x-ray work). Although x-ray powder tube samples were satisfactory, best results were obtained with tubes of 1-2 mm diameter. Except for XeF₂·XeOF₄, all spectra were recorded at ~ 20°.

Acknowledgments

This work was supported by the United States Atomic Energy Commission, under Contract Number W-7405-eng-48.

We are indebted to Dr. P. A. Bulliner, who obtained some of the Raman spectra, and to Dr. J. Scherrer of The Western Regional Laboratories of The United States Department of Agriculture, Albany, California, for making the Raman spectrometer freely available to us.

References

- 1. C. A. Coulson, J. Chem. Soc. [London], 1964, 1442.
- 2. J. Jortner, E. Guy Wilson, and S. A. Rice, J. Amer. Chem. Soc., 85, 814 (1963).
- 3. F. Schreiner, G. N. McDonald, and C. L. Chernick, <u>J. Phys. Chem.</u>, 72, 1162 (1968).
- 4. C. J. Jameson, and H. S. Gutowsky, J. Chem. Phys., 40, 2285 (1964);
 D. K. Hinderman, and W. E. Falconer, J. Chem. Phys., 50, 1203 (1969);
 "Noble Gas Compounds", H. H. Hyman Ed., The University of Chicago
 Press, Chicago and London (1963) pp. 251 and 263.
- G. J. Perlow, and M. R. Perlow, <u>J. Chem. Phys.</u>, <u>48</u>, 955 (1968);
 G. J. Perlow, and H. Yoshida, <u>J. Chem. Phys.</u>, <u>48</u>, 1474 (1968).
- 6. J. H. Burns, R. D. Ellison, and H. A. Levy, Acta Cryst, 18, 11 (1965).
- 7. G. R. Jones, R. D. Burbank, and Neil Bartlett, <u>Inorg. Chem.</u>, 9, 2264 (1970).
- 8. F. O. Sladky, and Neil Bartlett, J. Chem. Soc. [London], A, 1969, 2188.
- 9. J. F. Martins, and E. B. Wilson, Jr., <u>J. Mol. Spectroscopy</u>, <u>26</u>, 410, (1968).
- 10. N. Bartlett, F. Einstein, D. F. Stewart, and J. Trotter, J. Chem. Soc., [London], A, 1967, 1190; A. J. Edwards, and M. A. Mouty, J. Chem. Soc., [London], A, 1969, 703.
- 11. Neil Bartlett, and F. O. Sladky, J. Amer. Chem. Soc., 90, 5316 (1968).
- 12. F. O. Sladky, P. A. Bulliner, and Neil Bartlett, J. Chem. Soc., 1969, 2179.
- 13. Neil Bartlett, P. A. Bulliner, and F. O. Sladky, unpublished work.

- 14. W. H. Zackariason, Acta Cryst, 2, 390 (1949).
- 15. D. L. Smith in "Noble Gas Compounds", H. H. Hyman, ed., The University of Chicago Press, Chicago and London, 1963, p. 295.
- 16. Dr. J. Berkowitz, Argonne National Laboratory, Argonne, Ill., personnal communication.
- 17. N. Bartlett, D. Gibler, M. Gennis and A. Zalkin, to be published.
- 18. F. O. Sladky, P. A. Bulliner, Neil Bartlett, B. G. DeBoer, and Allan Zalkin, Chem. Comms., (1968), 1048.
- 19. H. H. Claassen, C. L. Chemick, and J. G. Malm, <u>J. Amer. Chem. Soc.</u>, 85, 1927 (1963).
- 20. R. D. Burbank, and G. R. Jones, Science, 168, (1970) 241.
- 21. D. F. Smith, Science, 140, 899 (1963).
- 22. S. M. Williamson, Inorganic Syntheses, XI, 147 (1968).
- P. Selig, Science, 144, 537 (1964); N. Bartlett, S. P. Beaton, and N. K. Jha, Abstracts 148th National Meeting, Amer. Chem. Soc., 1964, No. K3.
- 24. I. Sheft, T. M. Spittler, and F. H. Martin, Science, 145, 701, (1964);
 C. L. Chernick, J. Y. Malm, and S. M. Williamson, Inorganic Syntheses,
 VIII, 258, (1966).
- 25. G. M. Begun, W. H. Fletcher, and D. F. Smith, <u>J. Chem. Phys.</u>, 42, 2236 (1963).
- 26. F. Hollander, D. Templeton, M. Wechsberg and Weil Bartlett, to be published.

TABLE I. Crystallographic Data for XeF2 and XeF6 and Their Adducts with AsF5

		Space	Formula Unit	·
Formula	Unit Cell	Group	Volume (A ³)	References
XeF ₂	Tetragonal a, 4.315(3); b, 6.990(4) Å; V, 130.15 Å ³ z, 2	I4/mmm	65.1	(a),(b)
XeF ₆	Cubic a, 25.06(5) Å V, 1,574 Å ³ z, 144	Fm3c	109.3	(c)
[XeF ₅] ⁺ [AsF ₆] ⁻	Monoclinic a, 5.886(3); b, 16.564(10); c, 8.051(4) Å; β, 91.57(3)° V, 784.4Å ³ ; z, 4	P2 _{1/} c	196.1	(d)
[Xe ₂ F ₁₁] ⁺ [AsF ₆] ⁻	Monoclinic a, 15.63(1); b, 8.96(1); c, 8.37(2) A; β, 91.5(2)°; V, 1170 Å ³ ; z, 4		292. 5	(e)
[Xe ₂ F ₃] [†] [AsF ₆] ⁻ (20°C)	Monoclinic a, 15.443(9); b, 8.678(4); c, 20.888(12)Å; β, 90.13(3)°; V, 2799 Å ³ ; z, 12	12/a	2 33•3	(f)
(>50°)	Trigonal a, 8.68(1); c, 10.70(2) Å; V, 636.9 Å ³ z, 3		232	(g)
XeF ₂ ·2[XeF ₅] ⁺ [AsF ₆] ⁻	Monoclinic a, 15.436(10); b, 6.849(6); c, 17.241(11)Å; β, 93.2(3)°; V, 1800 Å ³ ; z, 4	c2/c or Cc	450	present work

Table 1 References

- (a) S. Siegel, and E. Gebert, J. Amer. Chem. Soc., 85, (1963) 240.
- (b) H. A. Levy, and P. A. Agron, J. Amer. Chem. Soc., 85, (1963) 241.
- (c) R. D. Burbank, and G. R. Jones, Science, 168, (1970) 248.
- (d) F. Hollander, D. Templeton, M. Wechsberg and Neil Bartlett, to be published.
- (e) N. Bartlett, and F. O. Sladky, to be published.
- (f) F. O. Sladky, P. A. Bulliner, Neil Bartlett, B. G. DeBoer, and Allan Zalkin, Chem. Comms., (1968) 1048.
- (g) N. Bartlett and M. Wechsberg, unpublished result.

Table 2. Enthalpies of Fluoride Ion Formation for

The Xenon Fluorides 15

	ΔH (eV)	(kcal/mole^{-1})
$XeF_2(g) \rightarrow XeF^+(g) + F^-(g)$	9.45	218
$XeF_4(g) \rightarrow XeF_3^+(g) + F^-(g)$	9.66	2 23
$XeF_6(g) \rightarrow XeF_5^+(g) + F^-(g)$	9.24	213

Table 3. Partial X-ray Powder Data for the Molecular Adduct XeF2-XeOF4

 $10^4 \cdot \frac{1}{d^2}$

1.			
Observed	Calculated	<u>h</u> <u>k</u> <u>£</u>	1/10
664	661	112	100
701	700	200	90
1249	1245	00)1	80
1394	1400	550	40
1949	1945	50/1	40
2066	2161	312	80
5155	2120	105	30
2 652	2645	55/1	10
2802	{28 00 {28 01	906}	30
3160	{3150 3151	330 } 1.16 }	50
3501	(3501 (3500	51+0} 5061	50
3991	3987	107	10
4047	4045	404	25
4553	{ 4551 { 4550	136 } 510 }	50
4743	4745	244	50
4870	4861	152	40
4980	4980	800	10
			and the second second

Table 4. Raman Data for XeF2 · XeOF4 (microcrystalline)

ν(cm ⁻¹)		903	573	532	494	378	301	254	188	125
I/I _o		19	>100	39	>100	12	2	4	2	10
Aggignment g	XeF ₂				נע					Lattice
Assignments	XeOF4	νı	ν ₂	٧4		νε	V3	ν ₅	ν,9	Mode

^{*}Corresponding frequencies for the pure components are given in Figure 2.

Table 5. Partial X-ray Powder Data for XeF₂·2([XeF₅]⁺[AsF₆]⁻)

104. 1

Served Calculated	~	,		
165 168 200 vw 257 255 110 vw 285 111 v 293 111 v 286 202 vw 374 382 112 vv 399 398 112 v 540 004 548 113 573 571 113 s 573 571 113 s 615 613 311 vs 641 639 311 vv 674 400 s 674 400 s 704 702 312 vv	Ce	lculated *	<u>h k <i>L</i></u>	I/I _o [†]
257 255 110 vw 285 111 293 111 286 202 314 320 202 374 382 112 vvw 379 398 112 540 004 548 113 573 571 113 s 592 310 615 613 311 vs 674 {674 400 } 674 {673 204} 704 702 312 vvw		135	002	WW.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		168	200	VW
295		255	110	AA .
286 202 314 320 202 374 382 112 vvw 399 398 112 540 004 548 113 573 571 113 s 573 571 113 s 615 613 311 vs 641 639 311 vv 674 {674 400 8 674 400 8 704 702 312 vvw		285	111,	
314 320 202 vvw 374 382 112 vvw 399 398 112 v 540 004 548 113 573 571 113 s 592 310 615 613 311 vs 641 639 311 vvw 674 {674 400 } 674 400 } 704 702 312 vvw	•	293	1117	v .
374 382 112 399 398 $11\overline{2}$ 399 398 3		286	202)	
399 398 $11\overline{2}$ v 540 004 548 113 573 571 $11\overline{3}$ s 592 310 615 613 311 vs 641 639 $31\overline{1}$ vvw 674 $\{674$ $400\}$ s 704 702 312 vvw		320	202	VVW
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		382	112	VVW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		398	112	. ¥
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	540	004	. "
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*	548	113	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	٠	571	113	s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		592	310	
674 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		613	311	vs
704 702 312 vvw		639	311	VVW
704 702 312 vvw		5674	400 }	R
ml.a ool		1673	204	_
741 204)		702	315	VVW
$742 \qquad \begin{cases} 741 & 204 \\ 752 & 312 \end{cases} $ vw		${741 \choose 752}$	31 <u>2</u> }	VW

^{*}Calculated on the basis of the unit cell a = 15.439; b = 6.849; c = 17.241 Å; with extinctions for space groups C2/c or Cc.

tVisually estimated: vs > s > w > vw > vvw.

FIGURE CAPTIONS

Figure 1: A Comparison of the Probable Molecular Arrangement in XeF₂·XeOF₄ with that in XeF₂·IF₅.

Figure 2: The Raman Spectrum of the Molecular Adduct XeF2 XeOF4.

Figure 3: The Raman Spectra of $XeF_2 \cdot [XeF_5]^{\dagger} [AsF_6]^{-}$; $XeF_2 \cdot 2[XeF_5]^{\dagger} 2[AsF_6]^{-}$; $[XeF_5]^{\dagger} [AsF_6]^{-}$; $[Xe_2F_{11}]^{\dagger} [AsF_6]^{-}$ and $[Xe_2F_3]^{\dagger} [AsF_6]^{-}$.

Figure 4: Ligand Coordination in Xe(II)Fluoride derivatives.

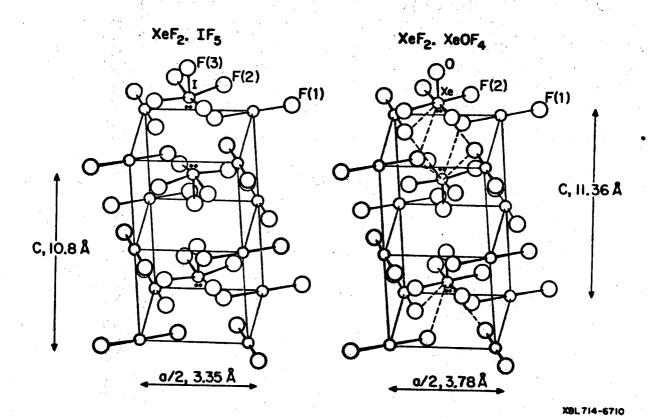


Figure 1

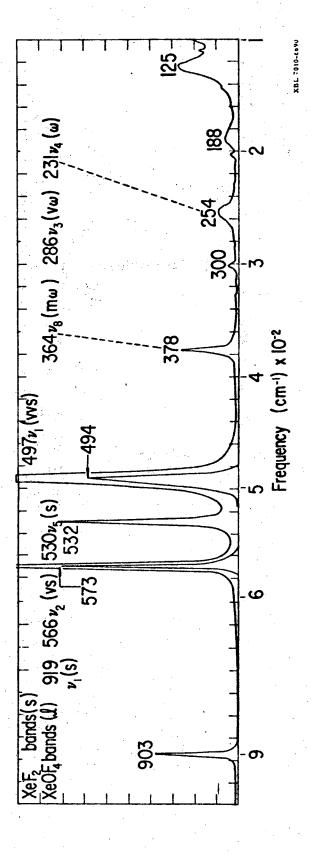
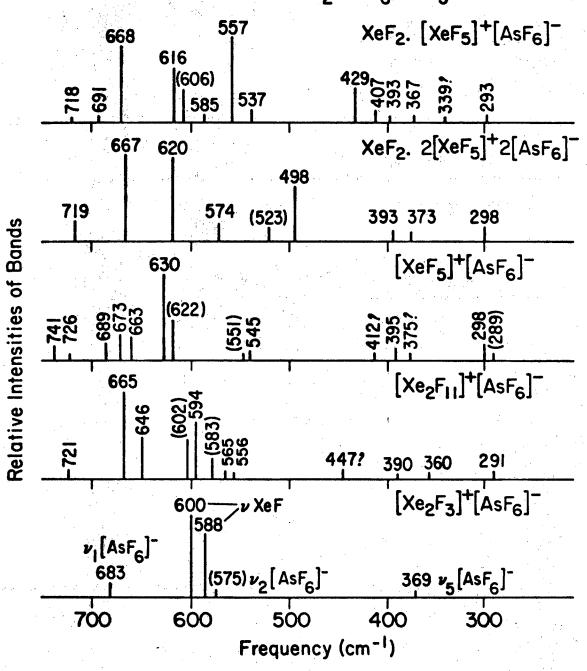



Figure 2

RAMAN SPECTRA OF XeF₂, XeF₆, AsF₅ COMPLEXES

XBL 714-6708

Figure 3

MOLECULAR PARAMETERS FOR XeF₂ AND ITS DERIVATIVES (Internuclear Distances in Angstrom Units)

Molecule	Possible Contributing Canonical Forms	References for Parameters
F 2.010(6) Xe F	(F-Xe) ⁺ F ⁻ ; F ⁻ (Xe-F) ⁺	(a)
F 2.007(9) Xe F. IF ₅	(F-Xe)+F IF ₅ ; F-(Xe-F)+. IF ₅	(b)
	(i) + Xe) (Xe + (F F)	
2.14(3) F	(F, + Xe) Xe) (F F	(c)
	(iii) (Xe (Xe + F + F) (i) >> (ii) = (iii)	
F 1.882(16) Xe 2.186(17) F 178(2) 138(2) RuF ₅	(F-Xe) ⁺ (RuF ₆) ⁻ ; plus possibly, F ⁻ (Xe-F) ⁺ . RuF ₅	(d)
F 1.84 Xe 2.35 F Sb ₂ F ₁₀	(F-Xe) ⁺ (Sb ₂ F ₁₁) ⁻ ; plus possibly, F ⁻ (Xe-F) ⁺ . Sb ₂ F ₁₀	(e)

References (Figure 4)

- a. H. A. Levy, and P. A. Agron, J. Amer. Chem. Soc., 85, (1963) 241.
- b. G. R. Jones, R. D. Burbank, and Neil Bartlett, <u>Inorg. Chem.</u>, 2, 2264 (1970).
- z. F. O. Sladky, P. A. Bulliner, Neil Bartlett, B. G. DeBoer, and Allan Zalkin, Chem. Comms., (1968). 1048.
- d. N. Bartlett, D. Gibler, M. Gennis, and A. Zalkin, to be published.
- e. V. M. McRae, R. D. Peacock, and D. R. Russell, Chem. Comms., 1968, 62.

LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION LAWRENCE RADIATION LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720