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Abstract 

Many studies have shown that observers can accurately 
perceive and evaluate the statistical summary of presented 
objects’ attribute values, such as the average, without 
attending to each object. However, it remains controversial 
how the visual system integrates the attribute values (e.g., 
information on size) of multiple items and computes the 
average value. In this study, we tested how distributions of 
item sizes affect the precision and bias in judging average 
values. We predicted that if observers utilize all of the 
available size information equally, the distribution would 
have no effect, and vice versa. Our results showed that, with 
novice observers, judgement precision differed among size 
distributions and that the observers overestimated the size of 
the average value compared to the actual size under all 
conditions. These results imply that observations of some 
items in a set could be weighted more easily than others, with 
the possibility that this process is easier for larger items than 
smaller ones. However, this was not the case for experienced 
observers, who showed no effects of distribution type on 
average assessment performance. Our findings imply that the 
process of representing the average value may not be 
explained by a single definitive mechanism and, is rather 
mediated by a mixture of multiple cognitive processes. 

Keywords: average size; statistical summary representation; 
size distribution 

Introduction 
It has been shown that observers are able to quickly and 

accurately extract average values over a range of visual 
properties, including size (Chong & Treisman, 2005；Oriet 
& Brand, 2013), brightness (Bauer, 2009), orientation 
(Dakin and Watt, 1997; Parkes, Liend, Angelucci, Solomon 
& Morgan, 2001), emotional expression (Haberman & 
Whitney, 2009, 2011). This ability is not limited to static 
and simultaneous events; it has been observed in 
sequentially presented events (Albrecht, Scholl, & Chun, 
2012; Corbett & Oriet, 2011; Hubert-Wallander & Boynton, 
2015） and dynamic objects, such as expanding and 
contracting disks (Albrecht ＆ Scholl, 2010). Moreover, the 
ability to represent statistical properties is not limited to 
visual cues but is also observed in perceptions from auditory 
input, such as extracting frequency information from 
sequences of sounds (Piazza, Sweeny, Wessel, Silver, & 
Whitney, 2013) and temporal details of sounds (McDermatt, 
Schemisch, & Simoncelli, 2013). 

These representations of statistical summary 
representations (SSRs), have been proposed to assist our 
judgment and behavior and more efficiently than attending 
to each objects and/or events individually (e.g., Alvarez, 
2011; Ariely, 2001, 2008; Chong & Treisman, 2003; 
Robitaille & Harris, 2011). Although there is a general 
understanding that human observers can accurately 
represent sets of features, the mechanism by which people 
extract summary statistics is yet to be fully understood.  

One of the debates over the mechanism of SSRs is 
whether the average value is computed using the entire 
information on display or using a subset of items in a set; 
ideas on this have been classified into three types based on 
findings from and discussions in previous studies.  

The first idea is based on the claim that SSRs are 
computed without computing individual items. Many 
studies have provided the evidence that people can estimate 
the average size of a set of items without relying on focused 
attention on individual items when attention is distributed 
across a set of similar items (e.g., Attarha, Moore, & Vecera, 
2014; Chong & Treisman, 2003, 2005; Oriet & Brand, 
2013; Oriet & Hozempa, 2016; Tokita, Ueda, & Ishiguchi, 
2016).  

In the second idea, the assertion is that all items in a set 
are processed but not all items contribute equally to the 
mean. This idea suggests that if some measures are very 
reliable and others are not, observers may give the more 
reliable measures more weight when combining them 
(Alvarez, 2011). For example, Haberman and Whitney 
(2010) tested how the deviant emotional expression was 
utilized in averaging emotion shown on multiple faces and 
suggested that people implicitly and unintentionally 
discount the emotional outliers, thereby computing a 
summary representation that involves the majority of the 
information present. Hubert-Wallander and Boynton (2015) 
tested how SSRs were computed when stimuli were 
sequentially presented across time and found that they do 
not incorporate all items equally. 

 The basis of the third idea is that average size is 
computed using a limited sampling strategy which does not 
necessitate an ensemble representation computed in parallel 
across all items on display (Myczek & Simons, 2008; 
Fockert & Marchant, 2008; Marchant, Simons, & Fockert, 
2013). For example, Fockert and Marchant (2008) claimed 
that observers do not always accurately average together the 
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entire set and that the average is either biased by features of 
the attended item or based on the practical strategy of 
extracting the mean of a smaller subset. In line with this 
argument, Marchant, Simons, and Fockert (2013) tested 
how the regularity of the item sizes affects the performance 
of average size perception and demonstrated that judgments 
of average size become less accurate with increases in the 
set size and heterogeneity of the item sizes. 
   In this study, we further explored the mechanism of 
estimating the average size of items in a set by manipulating 
the frequency distribution of items. This is a useful 
approach for determining whether observers utilize 
information on all items equally, they weight the 
information of some items and less of others, or they use a 
limited number of items in a set (Chong & Treisman, 2003; 
Duffy, Huttenlocher, Hedges & Crawford, 2010; Marchant 
et al., 2013). For example, Duffy et al. (2010) used 
asymmetric (skewed) distributions in which there was more 
than one possible central value and demonstrated that 
observers adjusted estimates toward the category’s running 
mean.  
   We tested how frequency distributions of item sizes affect 
the precision and bias in representing average size. Four 
types of the distributions were used: uniform, negatively 
skewed (i.e., Asym1), positively skewed (i.e., Asym2), and 
pseudo-normal distributions. Figure 1 shows the sizes and 
numbers of items in the stimulus set for each distribution. 
We measured the Weber fraction of the discrimination task 
to assess precision and also measured the point of subjective 
equality (PSE) to test the accuracy of the estimation.  
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Figure 1: Four types of distributions were introduced: 
uniform, negatively skewed (i.e., Asym1), positively 
skewed (i.e., Asym2), and pseudo-normal distributions. 
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Figure 2: Simulated performances (Weber fraction and 
standardize PSE) for each distribution expressed as a 
function of the number of sampled items under different 
noise conditions: a. High internal noise, b. Low internal 
noise  
 
 
      To predict the performance of size average estimation, 
we used a computer simulation for calculating Weber 
fractions and the PSEs for each distribution expressed as a 
function of the number of sampled items, as shown in 
Figure 2. Two levels of noise were used in the simulation, 
with the values of the noise in each level being obtained 
from previous research (Tokita et al., 2016). As shown in 
the left-hand-side figures, when the average value was 
computed in parallel across all items in the display, 
performance was unaffected by the distribution of item size. 
When a limited number of items in the set were used to 
compute the average value, the performance was influenced 
by item distribution. Under Asym2 and normal distributions, 
precision was found to be better than that under uniform and 
Asym1 distributions. Precision under Asym1 was higher 
than under uniform. As shown in the right hand side of 
Figure 2, the PSE results show that observer accuracy was 
unaffected by distribution. 
   In addition, we conducted experiments with to two types 
of observer: novice and experienced. Since some studies 
have suggested that there are considerable individual 
differences in simultaneous visual tasks (Tokita & Ishiguchi, 
2010; Herbert & Whitney, 2015), we considered it 
important to test how the effect of distribution differs 
between novice and experienced observers. Note that “the 
observers” refer to novice observers in this paper. 
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Experiment  
We tested how the distributions of item sizes affect 
performance and bias in representing the average sizes. To 
examine the performance, we obtained Weber fractions that 
would indicate the precision in the participants’ estimation 
of average sizes. To examine bias, we obtained PSEs, which 
indicate the constant error in estimation. In deriving the 
Weber fractions and PSEs, we used the method of constant 
stimuli, in which the observers in each trial decided which 
size of stimuli—the average size of a displayed item set (i.e., 
standard stimuli) or a single item size (i.e., comparison 
stimuli)—had larger.  

Method 
Participant As for novice observers, fourteen 
undergraduate volunteers from Mejiro University 
participated in exchange of course credit. All observers were 
naïve as to the purpose of the study. Three experienced 
observers including one of the authors, who have 
participated in many psychophysical experiments such as 
average estimation experiments were added. Two of the 
observers did not know the purpose of the study. All had 
normal or corrected-to-normal vision. 

 
Apparatus Stimuli were displayed on the iMac desktop 
computer monitor (21-inch) controlled by a Macintosh 
computer (Mac OS X). Stimuli were generated using the 
Psychophysics Toolbox Version 3 (Brainard, 1997; Pelli, 
1997) for MATLAB (Version 8.4, Mathworks, MA). 
Participants viewed the screen with both eyes and seated 
approximately 65 cm from the screen. 
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●�
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Figure 3: A schematic view of the stimulus presentation. 
Each trial started with a fixation cross for 500ms. The items 
in a set were presented first for 200 ms. The comparison 
item was presented for 200ms after blank for 500 ms, and 
then a blank screen until response.  
 

Design Distributions of item sizes were manipulated. There 
are four distribution types; uniform distribution, negatively 
skewed distribution (Asym1), positively skewed distribution 
(Asym2), and pseudo-normal distribution. A set of items 
(i.e., standard stimuli) was presented in the first interval and 
a comparison item was presented in the second interval.  

 
Stimuli The standard stimuli consisted of fifteen of filled 
light gray disks of various seizes, which were presented on 
dark gray background. The disk sizes were equally spaced 
on a log scale separated by a factor of 1.25. The comparison 
stimuli was a single disk with a given levels. There were 
five comparison levels, -0.14, -0.07, 0, 0.07, and 0.14 
diameter differences on the power function scale. Three of 
participants needed wider range of stepwise levels (i.e., -
0.16, -0.08, 0, 0.08, and 0.16) due to the low accuracy.  
   The items were arranged on the array. The array was 
divided into 4 × 4 matrix. Each item was displayed at the 
center of each cell with a position jitter.  
   In each trial, all of the disks shown were randomly scaled 
by a small multiplicative factor to discourage the 
participants from basing heir judgments on previously seen 
items. Three multiplicative factors (0.9, 1, 1.1) were used 
and the same factor scaled all items in any one trial. 
  
Procedure A schematic view of the stimulus presentation is 
shown in Figure 3. Observers completed one 65-min session 
that consisted of a practice block of 24 trials, followed by 
five experiment blocks of 100 trials each (4 distribution 
types × 5 comparison level × 5 repetitions). There are 500 
trials in total. The distribution types and the comparison 
level and the order of trials were all randomly mixed. 
     Each trial started with a fixation cross for 500ms. The 
items in a set were presented first for 200 ms. The 
comparison item was presented for 200ms after blank for 
500 ms, and then a blank screen until response. The next 
trial automatically began 500ms after the response. 
     Observers’ task was to decide whether the comparison 
item was larger or smaller than the average size of item in a 
set. A two-alternative (larger or smaller) forced choice 
procedure was used. When they thought that the comparison 
item is smaller than the average size of items in a set, they 
pressed ‘1’, otherwise, they pressed ‘3’.  No feedback about 
the correctness of responses was provided.  

 
Analysis The PSEs and Weber fractions were measured 
using the method of constant stimuli. First, the relative sizes 
for the comparison item were plotted on the x-axis, and the 
proportion of greater responses for each comparison 
stimulus was plotted on the y-axis, and fits were done for 
individual data. The plotted data points constructed the 
psychometric function approximated by a cumulative 
Gaussian function for individual data.  
   This discrimination threshold was defined as the smallest 
amount of the stimuli number change, for which a correct 
response rate of 75% was achieved. The PSEs were 
obtained as the values of the locations on the psychometric 
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function at which the standard and comparative choice 
probabilities were equal to 50%. 
 

Results 
The fits of the data points to the psychometric functions 

were generally good, and the Pearson product–moment 
correlation coefficient exceeded .9 in most cases. The data 
of three novice observers were not satisfactory fitted to the 
psychometric functions, thus, we excluded their data form 
further analysis.  

    Figure 4a shows the results of Weber fractions in each 
distribution types. The precision of representing average 
size appeared to be partly affected by the size distribution. 
Figure 4b shows the standardized PSEs in each distribution 
condition. The average size of the set of items seems to be 
overestimated as compared with the comparison item in all 
distribution conditions with the novice observers.  

 
Novice observers To test whether and how the size 
distributions affect the precision of representing average 
values, one way (4 distribution conditions) repeated 
measures analysis of variance was conducted on the 
individual Weber fraction. This yielded significant main 
effect of distribution, F(3,11)= 2.94, p<.05. Bonfferoni 
Post-hoc analysis revealed that the judgment in Asym2 
condition (positively skewed distribution) gave higher 
precision than uniform, p< .05, and Asym1 (negatively 
skewed distribution) p< .05 conditions.  

    In a similar way, to test how the distribution affected 
the accuracy of representing average sizes, one way (4 
distribution conditions) repeated measures analysis of 
variance was conducted on the individual PSE. This yields 
no main effect of distribution, F(3,11)= .554,  p>.1. This 
suggests that the accuracy of representing average size was 
not affected by the size distribution. As average of PSE 
seems larger than the 0, we conducted a one-sample t test to 
compare the mean standardized PSEs of each condition with 
a PSE of 0. The analysis revealed that the mean of the PSE 
was significantly larger than 0 at the standard stimuli in the 
uniform, t(10) = 4.99, p < .01, Asym1, t(10) = 2.63, p < .05, 
Asym2, t(10) = 4.40, p< .01, and normal distribution, t(10) 
= 3.30, p < .01. This suggests that average size were 
overestimated as compared with the actual size in all 
distribution condition. 
 
Experienced observers To test whether and how the size 
distributions affect the precision of representing average 
values, one way (4 distribution conditions) repeated 
measures analysis of variance was conducted on the 
individual Weber fraction of the experienced observers. 
This analysis revealed no significant effect of distribution, 
F(3, 2)= .523, p >.1.  

    To test how the distribution affected the accuracy of 
representing average sizes, one way (4 distribution 
conditions) repeated measures analysis of variance was 
conducted on the individual PSE. This yields no main effect 

of distribution, F(3, 2)= 1.342,  p >.1. This suggests that the 
accuracy of representing average size was not affected by 
the size distribution. This suggests that in experienced 
observers there is no sign of bias average size were 
overestimated as compared with the actual size in all 
distribution condition.  

Discussion 
   We tested how the distribution of item size would affect 
the precision and bias in the judgement of average size of 
items in a set by observers. Four types of distributions, 
namely uniform, negatively skewed, positively skewed, and 
pseudo-normal, were examined. We predicted that, if all 
items in a set were processed equally, the performance of 
the observers in judging the average would be unaffected by 
item distribution conditions. Our results demonstrated three 
significant findings. First, precision was significantly higher 
under Asym2 (i.e., positively skewed distribution) 
compared to the others, among which there were no 
significant differences. 
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Figure 4: a Mean Weber fraction for each distribution 
condition. Error bars represent standard deviations. b. Mean 
PSEs for each distribution condition. Error bars represent 
standard deviation. 
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Second, the estimated average values of the items in a set 
were overestimated relative to the actual values under all 
item distributions. Third, the accuracy and precision of the 
experienced observers was unaffected by distribution type 
when carrying out the averaging task.  
   The first set of results implies that observers may not use 
all of the available information equally when assessing the 
average value of the items in a set, which could be because 
of two alternative processes. One possibility is that a limited 
number of elements could be being used to calculate 
average values. Another possibility is that all of the 
information on size in a display may not be weighted 
equally when judging averages. Instead, some of the items 
could be being weighted more than others. The results 
partially support those of Marchant et al. (2013), who 
indicated that the difference in the component of the item 
sizes affects the performance of perceiving the average.  
   The finding that overestimation of the average size 
relative to the actual size under all distributions is intriguing. 
Bias in the judgment of the average has rarely been 
investigated, and no consistent pattern of bias has yet been 
observed. There are two possible causes for the bias. One is 
the observer’s perceptual saliency of large stimuli; the 
observer may process the large items more attentively than 
the small ones, and thus, it is possible that observers utilize 
the information of larger items relatively more frequently in 
computing the average size. Another possibility is that 
observers may automatically give more weight to the larger 
items than to the smaller ones, irrespective of their saliency.  
   The fact that experienced observers were unaffected by 
distribution type suggests that they may process all the 
items in a set equally when elucidating their average value. 
These results support the idea that people can extract the 
average size of a set of items without relying on focused 
attention to individual items in the set. Taken together with 
the results for novice observers, it is implied that how we 
represent the average value may not be accounted for just 
from a single process but from a variety of processes that 
depend on individual cognitive characteristics. The 
implication is somewhat consistent with the findings of 
Haberman, Brady, and Alvarez (2015). They pointed out 
that the mechanism of representation of summary statistics 
may involve various levels of processes, and individual 
differences may reveal those levels. As our data shows, with 
a wide variety of item distributions, it is important to 
explore the basis of those differences. 
      In conclusion, our results demonstrate that average 
judgement precision differs with distribution and the size of 
the average value was overestimated by the observers under 
all conditions. However, the results for experienced 
observers showed that the performance of their judgement 
of the average was unaffected by distribution type. Our 
findings imply that the process of assessing the average 
value may not be explained by a single definitive 
mechanism but is rather mediated by a mixture of multiple 
cognitive processes.  
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