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M-MATRICES SATISFY NEWTON’S INEQUALITIES

OLGA HOLTZ

(Communicated by Lance W. Small)

Abstract. Newton’s inequalities c2n ≥ cn−1cn+1 are shown to hold for the
normalized coefficients cn of the characteristic polynomial of any M - or inverse
M -matrix. They are derived by establishing first an auxiliary set of inequalities
also valid for both of these classes. They are also used to derive some new
necessary conditions on the eigenvalues of nonnegative matrices.

1. Introduction

The goal of the paper is to prove a conjecture made in [4] about a set of inequali-
ties satisfied by (the elementary symmetric functions of) the eigenvalues of any M -
or inverse M -matrix.

Let 〈n〉 denote the collection of all increasing sequences with elements from
the set {1, 2, . . . , n}, let #α denote the size of the sequence α, and let α′ denote
the complementary or ‘dual’ sequence whose elements are all the integers from
{1, 2, . . . , n} not in α. Given a matrix A ∈ C

n×n, the notation A(α) (A[α]) will be
used for the principal submatrix (minor) of A whose rows and columns are indexed
by α. By convention, A[∅] := 1.

A matrix A is called a P -matrix if A[α] > 0 for all α ∈ 〈n〉. A is called a (nonsin-
gular) M -matrix if it is a P -matrix and its off-diagonal entries are nonpositive. If in
this definition the positivity of all principal minors is relaxed to nonnegativity, one
obtains the class of all M -matrices, including the singular ones. The class of inverse
M -matrices consists of matrices whose inverses are M -matrices. The M -matrices
are an important class arising in many contexts (see, for example, [2, Chapter 6]).

Given a matrix A, let cj(A) denote the normalized coefficients of its characteristic
polynomial:

cj(A) :=
∑

#α=j

A[α]/
(

n

j

)
, j = 0, . . . , n.

The inequalities

(1) c2
j(A) ≥ cj−1(A)cj+1(A), j = 1, . . . , n − 1,
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712 OLGA HOLTZ

are known for real diagonal matrices, i.e., simply for sequences of real numbers
(see [13] and references therein), as was first proved by Newton. Since the numbers
cj are invariant under similarity, Newton’s inequalities (1) also hold for all diago-
nalizable matrices with real spectrum, and therefore also for the closure of this set,
viz. for all matrices with real spectrum.

It was conjectured in [4] that Newton’s inequalities are also satisfied by M - and
inverse M -matrices (and by matrices similar to those). The next section contains
proofs of several results on M -matrices and symmetric functions culminating in the
proof of this fact.

2. Proof of Newton’s inequalities

Let us begin by establishing a set of auxiliary inequalities first. Given an n × n
matrix A and nonnegative integers m1, m2, k, define functions Sm1,m2,k as follows:

(2) Sm1,m2,k(A) :=
∑

α∈〈n〉,#α=m1,
β∈〈n〉,#β=m2,#α∩β=k

A[α]A[β].

Theorem 1. For any M - or inverse M -matrix A of order n and nonnegative
integers m < n, k < m,

(3) Sm,m,k(A)/Sm,m,k(In) ≥ Sm+1,m−1,k(A)/Sm+1,m−1,k(In),

where In denotes the identity matrix of order n.

Proof. By induction.
Case 1 (induction base). If k = 0, n = 2m, then (3) is a special case of Theo-

rem 1.3 from [6]. Indeed, since n = 2m, the functions Sm.m,0 and Sm+1,m−1,0 are
immanants, λ :=(m, m) and µ :=(m+1, m−1) are partitions of n, and µ majorizes
λ. Then the normalized immanant corresponding to µ does not exceed the one cor-
responding to λ (beware a typo in [6], where the sign is reversed). If an M -matrix
A is nonsingular, then A−1[α] = A[α′]/ detA (see, e.g., [3, Section 1.4]). Hence
Sm,m,0(A−1) = Sm,m,0(A)/(det A)2, Sm+1,m−1,0(A−1) = Sm+1,m−1,0(A)/(det A)2,
so the inequality (3) holds for the matrix A−1 as well.

Now assume (3) holds for all M - and inverse M -matrices of order smaller than
n.

Case 2 (induction step of the first kind). Suppose 2m − k < n and A is an
M - or inverse M -matrix. Then both normalized functions Sm,m,k(A)/Sm,m,k(In)
and Sm+1,m−1,k(A)/Sm+1,m−1,k(In) can be obtained by first averaging the terms
A[α]A[β] over submatrices of order n−1 and then taking the average of the obtained
n quantities:

Sm,m,k(A)
Sm,m,k(In)

=
1
n

∑
α∈〈n〉,#α=n−1

Sm,m,k(A(α))
Sm,m,k(In−1)

,

Sm+1,m−1,k(A)
Sm+1,m−1,k(In)

=
1
n

∑
α∈〈n〉,#α=n−1

Sm+1,m−1,k(A(α))
Sm+1,m−1,k(In−1)

.

But principal submatrices of M - (inverse M -) matrices are again M - (inverse M -)
matrices ([5, p.113, p.119]). Therefore the inductive assumption holds for all sub-
matrices A(α), #α = n − 1. This implies (3) for the matrix A itself.

Case 3 (induction step of the second kind). Let 2m − k = n and k > 0. First
assume A is a nonsingular M - or inverse M -matrix. Switch to the dual case: Each
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A[α]A[β] in the right-hand side of (2) equals A−1[α′]A−1[β′]/(detA)2, the index
sets α′ and β′ do not intersect, and #α′ + #β′ = 2(n − m) < n. Hence

Sm,m,k(A) =
Sn−m,n−m,0(A−1)

(det A)2
, Sm+1,m−1,k(A) =

Sn−m+1,n−m−1,0(A−1)
(detA)2

and the functions Sn−m,n−m,0(A−1), Sn−m+1,n−m−1,0(A−1) are as in Case 2 above.
Thus (3) holds for the matrix A−1 and hence for the matrix A. So, the induction
step of this kind is now proved for nonsingular M -matrices and their inverses. But
the set of all M - matrices is the closure of the set of nonsingular M -matrices (see,
e.g., [5, p.119]), which justifies the induction step for singular M -matrices as well.

With all possible cases considered, the theorem is proved. �
Now, the theorem can be used to replace Newton’s inequalities by a stronger

(but simpler) set of quadratic inequalities in the variables A[α].

Lemma 2. Let m ∈ {1, . . . , n} be fixed and let t(m) be the column vector

t(m) :=(tα)α∈〈n〉,#α=m.

Let Ψm denote the Hermitian form

(4) t(m) �→ t(m)∗Ψmt(m) :=
m∑

j=0

(m(n−m)−(m+1)(n−m+1)
m − j

m − j + 1
)

∑
#α=#β=m
#α∩β=j

tαtβ .

If Ψm is nonnegative definite, then the mth Newton’s inequality (1) holds.

Proof. Expanding both sides of the mth Newton’s inequality yields

c2
m(A) =

m∑
j=0

Sm,m,j(A)/
(

n

m

)2

,

cm−1(A)cm+1(A) =
m−1∑
j=0

Sm+1,m−1,j(A)/
(

n

m + 1

)(
n

m − 1

)
.

So, the mth Newton’s inequality is equivalent to

(5) m(n − m)
m∑

j=0

Sm,m,j(A) ≥ (m + 1)(n − m + 1)
m−1∑
j=0

Sm+1,m−1,j(A).

On the other hand, straightforward counting gives

Sm,m,j(In) =
(

n

j

)(
n − j

m − j

)(
n − m

m − j

)
,

Sm+1,m−1,j(In) =
(

n

j

)(
n − j

m − j − 1

)(
n − m + 1
m − j + 1

)
.

Hence the inequalities (3) are equivalent to

(m − j)Sm,m,j(A) ≥ (m − j + 1)Sm+1,m−1,j(A).

Thus, upon replacing each Sm+1,m−1,j in the right-hand side of inequality (5) by
(m−j)

(m−j+1)Sm,m,j, one obtains a set of inequalities stronger than Newton’s. Precisely,
these stronger inequalities assert that

m∑
j=0

(m(n − m) − (m + 1)(n − m + 1)
m − j

m − j + 1
)Sm.m.j ≥ 0,
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or, recalling the definitions of Sm,m,j and of Ψm,

a(m)∗Ψma(m) ≥ 0 where a(m) :=(A[α])α∈〈n〉,#α=m.

So, if Ψm is nonnegative definite, then the mth Newton’s inequality is satisfied. �

Thus, it remains to prove the following.

Lemma 3. With the notation of Lemma 2, t(m)∗Ψmt(m) ≥ 0 for all t(m) and all
m = 1, . . . , n − 1.

Proof. Consider first the Hermitian form

Φm : t(m) �→ t(m)∗Φmt(m) :=
m∑

j=0

j
∑

#α=#β=m
#α∩β=j

tαtβ .

The representation matrix
(#α ∩ β)α,β

of this Hermitian form is the Gramian, with respect to the standard inner product,
for the system of vectors (vα)α where

vα(i) :=

{
1 if i ∈ α,

0 otherwise,

hence is nonnegative definite. Moreover, the vector e of all ones (of appropriate
length) is an eigenvector of Φm. Now consider a form

Φ̃m : t(m) �→ t(m)∗Φ̃mt(m) :=
m∑

j=0

(m − j + 1)
∑

#α=#β=m
#α∩β=j

tαtβ .

Its representation matrix is obtained by subtracting Φm from a positive multiple of
the Hermitian rank-one matrix ee∗ (precisely (m+1)ee∗). Therefore all eigenvalues
of Φ̃m are nonpositive except for the one corresponding to the eigenvector e, which
is strictly positive. Therefore, by [1], the Hadamard inverse Ψ̃m of the matrix Φ̃m,
i.e., the matrix (

1
m − #α ∩ β + 1

)
α,β

is nonnegative definite. Finally, Ψm is obtained from (m + 1)(n − m + 1)Ψ̃m by
subtracting the rank-one matrix ee∗, this time multiplied by (n+1). The eigenvalue
of Ψm corresponding to e is equal to zero, since

e∗Ψme = m(n − m)

m∑
j=0

Sm,m,j(In) − (m + 1)(n − m + 1)

m∑
j=0

m − j

m − j + 1
Sm,m,j(In)

= m(n − m)

m∑
j=0

Sm,m,j(In) − (m + 1)(n − m + 1)

m−1∑
j=0

Sm+1,m−1,j(In) = 0.

All the other eigenvalues of Ψm are nonnegative, so Ψm is nonnegative definite. �

This lemma finishes the proof of Newton’s inequalities.

Theorem 4. Let A be similar to an M - or inverse M -matrix. Then the normalized
coefficients of its characteristic polynomial satisfy Newton’s inequalities (1).
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Also note that a by-product of Lemma 3 is a binomial identity:

Corollary 5.
∑m

j=0(m(n − m) − (m + 1)(n − m + 1) m−j
m−j+1 )

(
m
j

)(
n−m
m−j

)
= 0.

3. Newton’s inequalities and the inverse eigenvalue problem

for nonnegative matrices

As possible applications of Theorem 4 one can envision eigenvalue localization
for M - and inverse M -matrices as well as inverse eigenvalue problems. In the rest
of the paper the focus will be on the latter problem for nonnegative matrices.

The nonnegative inverse eigenvalue problem (NIEP) is that of determining nec-
essary and sufficient conditions in order that a given n-tuple be the spectrum of
an entrywise nonnegative n × n matrix. For details and history of the problem,
see [2], [8], [12], and references therein.

Two known necessary conditions that an n-tuple Λ :=(λ1, . . . , λn) be realizable
as the spectrum of a nonnegative matrix are formulated in terms of its moments

sk(Λ) :=
n∑

j=1

λk
j ,

viz.

sk ≥ 0, all k,(6)
sm

k ≤ nm−1skm, all k, m.(7)

The condition (6) follows simply from the fact that tr(Ak) is the kth moment of the
eigenvalue sequence of A, while the condition (7) is due to Loewy and London [10]
and, independently, Johnson [7].

Newton’s inequalities proven above result in a third set of conditions necessary
for realizability of a given n-tuple. Precisely, if Λ = (λ1, . . . , λn) is the spectrum
of a nonnegative matrix A and λ1 = max |Λ| is its spectral radius, then the set
(0, λ1 − λ2, . . . , λ1 − λn) is the spectrum of an M -matrix λ1I − A and should
therefore satisfy Newton’s inequalities (1).

Newton’s inequalities are independent of (6) and (7). First of all, it is clear
that (1) and (6) are independent: for example, the triple (1,−1,−1) does not sat-
isfy (6) but its shifted counterpart (0, 2, 2) satisfies (1), while the triple (

√
2, i,−i)

satisfies (6) but the corresponding shifted triple (0,
√

2 − i,
√

2 + i) does not sat-
isfy (1).

Moreover, neither the two conditions (6) and (1) together imply (7) nor the two
conditions (6) and (7) together imply (1).

Indeed, the conditions (6) and (1) can be satisfied while the conditions (7) may
fail. To show this, consider the 10-tuple Λ :=(3, 1, 1, 1, 1, 1,−2,−2,−2,−2). Its first
and third moment are equal to zero, while the rest are positive. Now, consider its
perturbed version Λt :=(3 + t1, 1 + t2, 1, 1, 1, 1,−2 + t3,−2,−2,−2), where the t’s
are real and

t1 + t2 + t3 > 0,

(3 + t1)3 + (1 + t2)3 + (−2 + t3)3 = 20,
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which is always possible according to the Linearization Lemma [11, p.163], since
the system

t1 + t2 + t3 > 0,

9t1 + t2 + 4t3 = 0

is solvable arbitrarily close to the point (0, 0, 0). The first moment of Λt is thus
positive, while the third is still zero. All the other moments remain positive if
(t1, t2, t3) is sufficiently small. So, (6) is satisfied. The Newton conditions (1) are
satisfied as well, since Λt is real. But the condition (7) with k = 1, m = 3 fails.

To construct an example where (6) and (7) are satisfied but (1) fails, consider
the sequence of zeros of the polynomial p(x) = x6 − 6x5 + 14x4 − 20x3. It does not
satisfy (1): This polynomial is obtained by cutting the expansion of (x−1)6, whose
coefficients satisfy (1) with strict equalities, and then decreasing slightly the value
(originally 15) of one coefficient. Then the second Newton’s inequality fails. The
nonzero roots of p are approximately 3.6702 and 1.1649±2.0229i. By shifting back
by the largest absolute value ≈ 3.6702, one obtains the 6-tuple Λ :=(a, a, a, 0, b, b)
with a ≈ 3.6702, b ≈ 2.5054+2.0229i. It is not hard, though a bit tedious, to check
that Λ satisfies (7). Since s1(Λ) > 0, this also implies that all moments of Λ are
positive. This shows that (1) cannot be derived from (6) and (7).

In the case that the first moment of an n-tuple is zero, Laffey and Meehan [9]
established another necessary condition, viz.,

(n − 1)s4 ≥ s2
2.

It is also not implied by (6), (7) and (1). An example is provided by the 5-tuple
(3, 3,−2,−2,−2).

Note, however, that the condition (7) with k = 1, m = 2 is exactly equivalent to
the Newton inequality (1) for j = 1.

Acknowledgements

I am grateful to Hans Schneider, Thomas Laffey, and an anonymous referee for
helpful remarks and suggestions.

References

[1] Bapat, R. B. Multinomial probabilities, permanents and a conjecture of Karlin and Rinott.
Proc. Amer. Math. Soc. 102 (1988), no. 3, 467–472. MR 0928962 (89k:15008)

[2] Berman, Abraham; Plemmons, Robert J. Nonnegative matrices in the mathematical

sciences. Computer Science and Applied Mathematics. Academic Press [Harcourt Brace
Jovanovich, Publishers], New York-London, 1979. MR 0544666 (82b:15013)

[3] Gantmacher, F. R. The theory of matrices. Vol. 1. Translated from the Russian by K.
A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
MR 1657129 (99f:15001)

[4] Holtz, Olga; Schneider, Hans. Open problems on GKK τ-matrices. Linear Algebra Appl.
345 (2002), 263–267. MR 1883278

[5] Horn, Roger A.; Johnson, Charles R. Topics in matrix analysis. Corrected reprint of the
1991 original. Cambridge University Press, Cambridge, 1994. MR 1288752 (95c:15001)

[6] James, Gordon; Johnson, Charles R.; Pierce, Stephen. Generalized matrix function in-

equalities on M-matrices. J. London Math. Soc. (2) 57 (1998), no. 3, 562–582. MR
1659833 (2000b:15005)

[7] Johnson, Charles R. Row stochastic matrices similar to doubly stochastic matrices. Linear
and Multilinear Algebra 10 (1981), no. 2, 113–130. MR 0618581 (82g:15016)

http://www.ams.org/mathscinet-getitem?mr=0928962
http://www.ams.org/mathscinet-getitem?mr=0544666
http://www.ams.org/mathscinet-getitem?mr=1657129
http://www.ams.org/mathscinet-getitem?mr=1883278
http://www.ams.org/mathscinet-getitem?mr=1288752
http://www.ams.org/mathscinet-getitem?mr=1659833
http://www.ams.org/mathscinet-getitem?mr=0618581


M-MATRICES SATISFY NEWTON’S INEQUALITIES 717

[8] Laffey, Thomas J. Inverse eigenvalue problems for matrices. Proc. Royal Irish Acad. 95 A
(Supplement) (1995), 81–88. MR 1649820 (99h:15011)

[9] Laffey, Thomas J.; Meehan, Eleanor. A refinement of an inequality of Johnson, Loewy
and London on nonnegative matrices and some applications. Electron. J. Linear Algebra 3
(1998), 119–128. MR 1637415 (99f:15031)

[10] Loewy, Raphael; London, David. A note on an inverse problem for nonnegative matrices.
Linear and Multilinear Algebra 6 (1978/79), no. 1, 83–90. MR 0480563 (58:722)

[11] Mangasarian, Olvi L. Nonlinear programming. Classics in Applied Mathematics, 10.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. MR
1297120 (95j:90005)

[12] Minc, Henryk. Nonnegative matrices. Wiley, New York, 1988. MR 0932967 (89i:15001)
[13] Niculescu, Constantin P. A new look at Newton’s inequalities. JIPAM. J. Inequal. Pure Appl.

Math. 1 (2000), no. 2, Article 17, 14 pp. (electronic). MR 1786404 (2001h:26020)

Institut für Mathematik, MA 4-5, Technische Universität Berlin, D-10623 Berlin,

Germany

E-mail address: holtz@math.TU-Berlin.DE

Current address: Department of Mathematics, University of California-Berkeley, 821 Evans
Hall, Berkeley, California 94720

E-mail address: holtz@math.berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=1649820
http://www.ams.org/mathscinet-getitem?mr=1637415
http://www.ams.org/mathscinet-getitem?mr=0480563
http://www.ams.org/mathscinet-getitem?mr=1297120
http://www.ams.org/mathscinet-getitem?mr=0932967
http://www.ams.org/mathscinet-getitem?mr=1786404

	1. Introduction
	2. Proof of Newton's inequalities
	3. Newton's inequalities and the inverse eigenvalue problemfor nonnegative matrices
	Acknowledgements
	References



