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 The ability to control when, and how much of the genetic code is being 

expressed is the underlying principle behind gene regulation. Control of gene production 
is able to influence a cell's phenotype by determining which structural components of the 
cell's observable traits (shape, growth, and behavior) are made. In multicellular 
organism’s different cell types are able to arise from the same genetic code due to a 
difference in the patterns of genes being expressed.  Essentially anywhere in the process 
of gene expression from transcription, RNA processing, translation, and post-translational 
modifications of the protein is subject to regulation. As transcription is the first step in the 
process of gene expression, it is the first level of regulation for influencing the cell 
phenotype. The actions of transcription factors, histone modifiers, and other proteins 
work together to influence RNA polymerase's ability to complete the process of 
transcription. The actions of transcription factors are able to influence transcription by 
controlling the ability of RNA polymerase to be recruited to the start of a protein coding 
region and histone modifiers can rearrange the histones of the chromatin causing entire 
regions of a chromosome to become exposed or sequestered. These transcriptional 
regulators are able to work in a combinatorial fashion with one another to either activate 
and/or repress wide repertoires of transcriptional targets. Mapping out a network of 
interactions between these transcriptional regulators in gene expression programs allows 
researchers to understand how each protein is able to influence the phenotype of the cell, 
and how mutations to any of these transcriptional regulators are able to drive the cell into 
a diseased state. In the case of cancer, changes in the mechanisms of gene regulation 
brought on by mutations to these transcriptional regulators may drive the cell's hyper 
proliferative state. With the creation of next generation sequencing researchers are now 
better able to define where regulation is taking place in the genome, and how much it is 
able to influence gene expression. This gives researchers the ability to build these gene 
regulatory networks and evaluate their impact on gene expression. The subsequent 
chapters of this dissertation are a reflection of my published work investigating the 
contribution of oncogenic processes to gene regulatory networks in cancer through the 
study of hyperactivating somatic mutation of a histone modifier, changes in transcription 
factor response element specificity, epigenetic regulation of transcription factor signaling, 
and a transcription factor coactivation network. 
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Chapter One: Introduction 

1.1 Overview of gene regulation contributing to Cancer biology 
 The World Health Organization defines cancer as an abnormal cell growth that 
can arise from any normal tissue within the human body. All cells that have undergone 
the transformation into cancer gain eight hallmark characteristics of cancer: Cell growth 
without the proper stimulation from their environment, independence from anti-growth 
signals from their environment, developing mechanisms for ignoring programmed cell 
death, the ability to undergo limitless cell division, gaining the ability to promote the 
grow of new blood vessels, the ability to invade tissue in other locations in the human 
body, changing the rules for how energy is utilized within the cell, and avoiding detection 
from the immune system[1, 2]. The progression of these traits from a healthy cell to a 
cancerous one occurs through the accumulation of multiple alterations that are either 
genetic or epigenetic in nature and can cause the physiological circuitry of the cell to go 
haywire. Genetically speaking these alterations called mutations can create the activation 
and inactivation of two classes of genes found in cancer biology: oncogenes and tumor 
suppressors. Alterations in the epigenetic regulation of genes within a cell are achieved 
without making changes to the DNA sequence itself [3]. The current state of the field for 
cancer biology is building an understanding of the overlap and intersection of both 
genetic and epigenetic modifications for the development of cancer. It is becoming well 
accepted that the transformation of a cell's phenotype to a cancerous one is achieved both 
through changes in genetic and epigenetic regulation. 

1.1.1 Oncogenes 
An oncogene is defined as a gene that assists a cell with growth but then is altered 

through changes in its coding sequence or is expressed at high levels within the cell [4]. 
Oncogenes give us insight into the molecular mechanism for how a cell is able to acquire 
its hallmark characteristics during the formation of cancer [4]. While oncogenes were 
initially discovered as a product generated by tumor forming viruses it is believed that 
most human cancers are not caused by viruses but may arise due to exposure of cancer-
causing agents [5]. Conversion of a gene into an oncogene can occur through three basic 
methods of activation:  

●  a mutation within the coding region of the gene or its regulatory region that may 
cause an increase in the protein activity or a loss in its ability to be regulated.  

●   An increase in the amount of the protein due to deregulation of its expression, 
mRNA stability, or a duplication of the gene within the cell. 

●  A chromosomal translocation that either places the gene in a region with higher 
expression or a fusion with a 2nd gene, which increases oncogenic activity [6].  

Most cancer treatments available today target oncogenic proteins [6]. It is the goal of 
oncogenomics, a branch of genomics, to understand the structure, function, and mapping 
of cancer associated genes through the use of bioinformatics [7]. It is essential to better 
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understand the mechanisms of oncogene activation, as well as the changes in the gene’s 
function during oncogenesis.  

1.1.2 Tumor Suppressor 
 A tumor suppressor is defined as a gene that acts as a deterrent to the progression 
of cancer. Often a tumor suppressor is mutated resulting in the loss of its ability to 
function or is changed to be expressed minimally in the cell. In terms of a cell becoming 
more cancerous it is believed that the loss of tumor suppressor genes is more damaging 
than the activation of oncogenes [8].  The canonical functions of tumor suppressors are 
described as repressors of the cell cycle, the response mechanism to DNA damage, 
initiators of programmed cell death, keeping cells adhered to their extracellular matrix, 
and repairing DNA damage [9]. 
 
1.2 Epigenetics 

There are two classifications of genes that are important in the development of 
cancer: the activation of oncogenes and the deactivation of tumor suppressors. A classical 
way at looking at how oncogenes and tumor suppressors become activated or deactivated 
is that their genetic code is changed to affect their function and gene expression. Current 
understanding is that there may also be some epigenetic changes that may interact with 
oncogenes and tumor suppressors in facilitating a change of their behavior in the cell [10, 
11].  Conrad Waddington was the first to define epigenetics as heritable transition in a 
cell's phenotype that were autonomous of changes in the sequence of DNA [3]. A brief 
observation into the linguistics of epigenetics shows that the prefix epi suggests a factor 
to cause cells to express themselves differently in addition to traditional genetic basis. 
Adrian Bird later describes epigenetics as “the structural adaptation of chromosomal 
regions so as to register, signal or perpetuate altered activity states”[12]. Examples of 
epigenetic mechanisms that alter gene expression without changing the underlying DNA 
sequence are DNA methylation and histone modification.  

1.2.1 DNA methylation 
 Methylation of Cytosine residues in CpG islands is associated with regulation of 
transcription, chromatin structure, X chromosome inactivation, genomic imprinting, and 
chromosome stability[13]. Normally in somatic cells DNA methylation patterns are 
passed down to daughter cells exactly as they are found in the parental cell before cell 
division [14]. In cancer, changes of the methylation state of CpG islands are often 
changed during malignant transformation of the cell where normally unmethylated CpG 
islands become startlingly methylated resulting in a decrease of expression [13, 15].  It is 
estimated that cancer cell genomes contain anywhere between 20-50% less DNA 
methylation marks than in normal cells [16-19]. These methylated regions are not limited 
to promoter and enhancer regions but the gene body too [15]. Epigenetic regulation of 
tumor suppressors and oncogenes through DNA methylation find that in cancer cells CpG 
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islands found within tumor suppressor gene promoters are hypermethylated, while 
conversely the CpG islands found within oncogene promoter regions are hypomethylated 
[16]. This epigenetic regulation favors transcriptional activation of oncogenes and 
transcriptional repression of tumor suppressor genes. 
 DNA methylation is carried out by DNA methyltransferases (DNMTs) with three 
prominent ones found in cancer: DNMT1, DNMT3a, and DNMT3b.  DNMT1 sees 
hemimethylated DNA created during DNA replication and methylated CpG marks on the 
newly synthesized DNA strand so that it matches with the parental strand [20]. While 
DNMT3a and DNMT3b are able to carry out a similar methylation function for newly 
synthesized DNA strands their main function is to establish new methylation marks 
during embryogenesis [21]. Methyl-binding proteins seek DNA methylation and can 
assist in recruiting histone modifying enzymes to alter nearby chromatin [22]. 

1.2.2 Histone Modifications  
 Within the nucleus DNA is wrapped around proteins called histones forming a 
structure known as nucleosomes and depending on how tight the DNA is wrapped around 
the histones gene expression is affected. Histone modifications were first proposed to 
influence regulation of transcription back in 1964 [23]. Since then it’s been confirmed 
that these histone marks influence transcription by changing between open and closed 
states: histones wrapped around DNA in an open state grants access to the gene body to 
be expressed, while on the contrary a compact state blocks access to the transcriptional 
machinery that facilitate gene expression. Remodeling the chromatin can change these 
states. Chromatin remodeling changes the packaging of the nucleosomes allowing 
regions of transcriptional regulation to be exposed or hidden. Chromatin remodeling is 
typically carried out by covalent histone modifications or by ATP dependent chromatin 
remodeling complexes.  

1.2.2.1 Covalent histone modifications 
 Protein complexes that catalyze the addition or removal of specific chemical 
groups to the histone carry out these covalent histone modifications.  Depending on the 
chemical modifications added to the histone the affinity between DNA and the histone 
can change to facilitate a tightly wrapped nucleosome or a loosely wrapped nucleosome. 
Researchers have pieced together which covalent modifications are associated with the 
open and closed states of nucleosomes through what is called the histone code hypothesis 
[24]. Similar to how changes in the genetic code may shift a cell towards a cancerous 
phenotype, a shift in the histone code is able to push a cell into a neoplastic one. 
Changing covalent modifications on the histones surrounding the gene body of 
oncogenes and tumor suppressors would alter the accessibility of these genes and 
therefore influence their gene expression levels. Global studies of histone marks in 
healthy and cancerous cells shows shifts in the levels of some histone marks [25-29]. The 
histone marks typically found on histones are acetylation, methylation, phosphorylation, 
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ubiquitination, sumoylation, ADP-ribosylation, deimination, and proline isomerization 
[22, 30-37]. The alterations of these covalent histone marks in gene regulation are 
discussed in the subsequent sections below. 

1.2.2.1.1 Histone Acetylation 
  Histones are able to be acetylated due to a transfer of an acetyl group from acetyl-
coA [38]. The levels of histone acetylation correlate with the availability of acetyl-CoA: 
high amounts of histone acetylation marks when acetyl-CoA is plentiful and low amounts 
of histone acetylation when it is scarce [39, 40]. Within the histone code the process of 
adding acetyl groups to lysine residues found on histone tails neutralizes the positive 
charge of lysine resulting in a weakened electrostatic interaction between the histone and 
the negatively charged DNA. Conversely if an acetyl group is removed from a lysine 
residue its overall positive charge is restored allowing for a stronger electrostatic 
interaction between the histone and the DNA. These marks are maintained by two 
definitive groups of enzymes called Histone acetyltransferases (HATs) and histone 
deacetylases (HDACs). 

The acetylated open state of chromatin results in transcription factors and other 
chromatin modifiers being able to be recruited and is experimentally associated with 
actively transcribed genes [41-43]. As a result, researchers began to build an interaction 
map of HAT proteins with the transcription factors they interact with [44]. As a result, a 
study in the coactivation preferences of HAT protein complex p300/CBP with 
transcription factors identified hundreds of these interactions raising the issue of how 
essential is HATs to the building of transcriptional machinery [45]. This led to the theory 
that HAT cooperation with transcription factors may assist HAT in targeting nearby 
histones for acetylation to further aid in the activation of transcription [46]. Besides 
adding acetylating nearby histones HAT may play an additional role of regulating 
transcription by adding acetyl groups to the transcription factors with which they interact. 
Acetylation of key lysine residues in the primary structure of transcription factors 
STAT3, c-Myb, STAT3, and E2F1 increased the transactivating ability of these 
transcription factors to recognize their binding sites in DNA [47, 48]. However, it was 
also observed that HAT acetylation of FOX01 resulted in a loss of its overall positive 
charge and the transcription factor’s ability to recognize its DNA binding sites [49]. 
Either way protein acetylation may affect signal transduction of transcription factors. 

HDACs restore the positive charge of the lysine residue and are associated with 
inducing transcriptional inactivation. There are 18 likely human HDAC proteins in 
humans that utilize zinc or NAD+ mechanisms to remove acetyl groups from lysine 
substrates [50]. It is important to take into consideration that HDACs are also able to 
control the acetylation status of histone tail residues and are also able to add acetyl 
groups to cytoplasmic proteins and transcription factors [51]. Further repression of gene 
expression can be achieved through HDAC interaction with DNA methyltransferases [52, 
53]. Also similar to HATs researchers began summarizing non-histone proteins targeted 
by HDACs and found several transcription factors in that list [54]. HDACs may interact 
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directly with the transcription factor or through a coregulator protein may interact as an 
intermediary to influence transcription [55-59]. Additionally, HDACs may use 
transcription factors to help identify nearby histones for deacetylation to further facilitate 
transcriptional repression [55, 56].  

In order to understand the role histone acetylation played in the development of 
cancer researchers began comparing the overall levels of histone acetylation between 
healthy and cancerous cells. What they found in some models was that the levels of 
acetylation decreased as the tumor growth progresses resulting in a decrease in the total 
amount of acetylation found on the histone protein tail [27, 60]. Further investigation 
found increased acetylation specifically H2AK5, H3K9, H3K56, H4K5, and H4K8 across 
several cancer types [61-63]. Conversely decreased or loss of acetylation was found at 
H3K9, H3K14, H4K12, and H4K16 was found in others [63, 64]. As HATs and HDACs 
are specific towards the particular histone tail residues they modify, it is important to 
focus on the changes made to this precise class of proteins to evaluate their role in 
changing the epigenome in the development of cancer.  

Across cancer cell types different HAT members are altered in some way 
resulting in their activity being strongly correlated to the development of cancer [65-70]. 
Different HAT proteins are found mutated, truncated, or completely deleted across 
lymphomas and various squamous cell carcinomas [69-77]. However, their specific role 
in cancer may be dependent on the genomic alteration and on the protein.  For example, 
HAT CBP/300 is often found deleted or mutated resulting in a loss of function where it is 
believed to be a tumor suppressor in some cancer types [69, 72, 78]. Conversely p300 is 
over expressed in other cancers where its regulation of fatty acid synthase, and lipid 
metabolism supports cancer growth [55, 79-81]. Regardless HATs are found to interact 
with various transcription factors in regulating key biological processes relevant to 
cancer: DNA repair, cell growth, senescence, differentiation, and apoptosis [82]. 

As histone deacetylation typically results in a closed chromatin state HDACS in 
cancer are typically expected to be recruited for facilitating abnormal gene silencing [83]. 
While somatic mutations of HDACS are not prominent in cancer, their expression 
appears to be increased [83]. HDACs appear to use several molecular mechanisms in 
promoting the progression of cancer. First and foremost is the dysregulation of the cell 
cycle by facilitating the removal of acetyl marks from the promoters of p21, p27, and p57 
to negatively regulate their expression [84-86]. Besides repressing the expression of cell 
cycle inhibitors HDACs are found to control transition of the cell through the cell cycle at 
G1, and the G2/M phase [87, 88]. Investigation into this effect found that knockdown of 
HDAC5 resulted in a down-regulation of proteins that normally progress the cell cycle: 
cyclin D and cyclin dependent kinases 2,4, and 6 [89]. It is possible that a similar form of 
regulation exists between HDAC5 and cyclin D/ CDK2/4/6 when compared to the 
transcriptional switch of HDAC10 deacetylating the histones near the promoter of an 
inhibitor of cyclin A2 [87]. Another way HDACs are able to promote the progression of 
cancer is through the mediation of DNA damage pathways in the genome. One of the 
mechanisms HDACs are able to achieve this is by facilitating non homologous end 
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joining by removing acetyl marks from H3K56 and H4K16 residues [90].  Loss of 
HDAC1/2 expression resulted in a decrease in the function of the ATM-mediated DNA 
damage response-signaling pathway [91]. However, it should be noted that HDACs with 
their ability to catalyze the removal of acetyl marks on non-histone proteins HDACs are 
able to interact acetylated oncogenes to restore their function [92]. 

 1.2.2.1.2 Histone Methylation 
The arginine and lysine residues of the histone proteins are able to be methylated 

and can alter chromatin structure to both and open and closed states contributing either to 
activating or repressing transcription [93]. Histone methylation differs from histone 
acetylation due to the fact that it doesn't change the charge of the histone. Histone 
methylation is carried out by histone methyltransferases (HMTs) and were first 
discovered in the 1960s [23, 94]. In order to methylate the histone HMTs require the 
metabolite S-adenosylmethionine (SAM) to donate a methyl group to the histone [95]. 
Methionine is a required precursor to SAM that is produced through the methionine 
salvage cycle or the folate cycle [95]. If there is a reduction in the availability of 
methionine through defects in its metabolic pathways directly affects SAM levels 
resulting in a decrease in histone methylation [96-98]. For decades histone methylation 
was regarded as a permanent post-translational modification until histone demethylases 
(HDMs) were uncovered in 2004 and showed the methylation status of histones could be 
rewritten [99]. HDM requires the TCA cycle intermediate alpha-ketoglutarate as a 
substrate for the removal of methyl marks on histones [100]. Alpha-ketoglutarate is 
enzymatically produced from isocitrate by Isocitrate dehydrogenase proteins and through 
conversion of glutamine [101-104].  

Of all the methylation patterns of histone proteins studied, the methylation of the 
lysine residues of the histone tail is the most clearly defined. While there are many lysine 
residues on a histone tail that can be methylated, the ones examined the most are H3K4, 
H3K9, H3K27, H3K36, H3K79, and H4K20. Unlike the process of histone acetylation 
the process of adding methylation marks to these histone residues may either weaken or 
strengthen the electrostatic interaction between the histone and DNA depending on which 
residue is methylated. For example histone methylation of residues H3K4, H3K36, and 
H3K79 result in weakening the interaction between the histone and DNA allowing 
accessibility of the transcriptional machinery [105]. In contrast the methylation of H3K9, 
H3K27, and H4K20 result in increased interaction between the histone and DNA 
resulting in repression of transcription [105]. Adding or removing these methyl residues 
on the histone allows this aspect of the histone code to play a role in determining gene 
expression, maintaining the genome, maturation, differentiation, and the cell cycle [106]. 
That is why recurrent mutations of lysine methyltransferases (KMTs) and lysine 
demethylases (KDMs) are prevalent across several cancer types [107-110]. Although loss 
of function mutations in KMTs and KDMs are more frequently reported than gain of 
function mutations in cancer may suggest that this class of epigenetic regulators function 
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as a type of tumor suppressor; this may not be the case [111]. Overexpression of these 
proteins in cancer appear to be able to stimulate cell proliferation [112, 113]. 
  KMTs are also able to target non-histone proteins as well resulting in an addition 
of up to three methyl groups to exposed lysine residues [114-120]. KMTs are able to 
regulate transcription factors through a variety of mechanisms. The first being that 
methylation of transcription factors trigger degradation [121, 122]. Secondly lysine 
methylation was determined to play a role in cellular localization when newly methylated 
transcription factors migrated into the nucleus [123, 124]. Methylation of transcription 
factors has the ability to either inhibit or promote their DNA binding [125-129]. KDM4A 
assembles into a complex with the ER in ER-positive breast cancer and with the AR in 
prostate cancer functioning as a transcriptional co-activator in both examples [130].   

Arginine methylation is carried out by protein arginine N-methyltransferases 
(PRMTs) and are grouped based on the type of protein the target arginine is found in. 
Types one and two PRMT are able to add methyl groups exclusively to arginines found 
on histone proteins, and PRMTs types three and four are able to add them only to 
arginine residues of non-histone proteins [131]. Similar to the methylation of lysine 
residues on the histone, arginine methylation may either weaken or strengthen the 
electrostatic interaction between the histone and DNA depending on which residue is 
methylated. Methylation of H3R2, H3R8, H3R17, and H4R3 residues result in 
weakening the interaction between the histone and DNA allowing accessibility of the 
transcriptional machinery [132-134]. In contrast methylation of H3R2, and H4R3 result 
in an increase of transcriptional repression due to increased interaction between the 
histone and DNA [134-136]. Often lysine and arginine methylation states oppose each 
other in regulating gene expression. Transcription by blocking H3K4 methylation and 
inversely H3K4me3 prevents methylation of H3R2 [137, 138]. Arginine demethylation 
was first mentioned in 2007 [139].  It is not as well understood as lysine demethylation. 
Currently PAD4 and JMJD6 are the only two histone arginine demethylases known 
[139].  Some histone lysine demethylases containing the JmjC domain are also able to 
carry out arginine demethylation [140, 141]. An example of this is lysine demethylase 
JMJD1B which is able to remove methyl marks from H3K9 and H4R3 [142]. Besides 
methylation arginine residues are also susceptible to diminution by peptidyl arginine 
deiminases converting the residue to citrulline [143]. The process of reverting citrulline 
back to arginine isn't well studied [144]. Deimination marks are able to repress 
expression of target genes by blocking the activating methylation marks that would 
normally be added to H3R2, H3R8, H3R17, and H3R26 [30]. Conversely deaminations 
of arginine residues are avoided if these residues are demethylated [30].  

At one point more than 100 different non-histone proteins were reported to 
contain methylated arginine in their primary structure [145]. H4R17 is linked to gene 
activation and coactivation with the nuclear hormone receptor [146]. H4R17 methylation 
occurs simultaneously with recruitment of ESR1 [147]. Histone arginine methylation of 
p53 silences its transcriptional function [148]. It can also target arginine residues of 
tumor suppressors directly [149]. Up regulation of PRMT expression and dysregulation 
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are observed in several cancer types [150-156]. H4R3 and H3R8 methylation represses 
tumor suppressor gene ST7 and CDKN2A [55, 157-159]. 

1.2.2.1.3 Histone Phosphorylation 
 The process of adding a negatively charged phosphate group to serine, threonine, 
and tyrosine residues on histone proteins results in an overall negative charge of the 
histone and is repelled from interacting with the overall negative charge of DNA 
resulting in a change in the overall structure of the local chromatin environment [160]. 
The phosphorylation status of the histone protein is controlled by the actions of two 
classes of proteins: kinases that add phosphoryl groups to the histone and phosphatases 
that remove them. While normally kinases and phosphatases are thought of as 
participating exclusively in the signaling transduction process in the cytoplasm, but they 
can also be observed carrying out the phosphorylation of histones in the nucleus [160-
162].   

Most studies into the effects of phosphorylation of histone protein tail residues 
have looked at how the addition of a phosphoryl group affects other covalent 
modifications on nearby residues. For example increased phosphorylation of H3S10, 
H3T11, and H3S28 resulted in an increase of acetylation at H3K9 and H3K14 residues 
resulting in chromatin shifting towards an open state [163-168]. This type of correlation 
of histone marks working towards transcriptional activation also occurs with the 
phosphorylation of H3T11 and H3T6 in response to androgen receptor dependent gene 
activation showed removal of repressive methylation marks on H3K9 by a KDM, and 
with phosphorylation of H3T6 preventing the removal of the transcriptionally activating 
methylation marks on H3K4 by a KDM [169, 170]. A possible explanation of this 
phenomenon is that one residue is able to influence its neighboring residues repeatability 
of covalent modifications. It could also be that cooperation between two histone residues 
working in combination are able to influence transcription such as the phosphorylation of 
H3S28 simply interacts with H3K27 acetylation in stimulating transcriptional activation 
[171, 172]. While it may seem that histone phosphorylation primarily favors an open 
chromatin state, the phosphorylation of H3S10 is also associated with condensation of 
chromatin during mitosis and meiosis [173-176]. 

Besides influencing gene regulation histone phosphorylation is able to oversee 
cellular responses to DNA damage. Phosphorylation of S139 of H2AX is one of the first 
steps of recognizing a double stranded break in DNA [177-179]. The Phosphorylated 
H2AX subunits are found several kilobases on either side of the break and serves as a 
binding site for the protein MCD1 that recruits DNA repair proteins [4, 55, 179-182]. 
This mechanism of identifying DNA damage is used in nonhomologous end joining, 
homologous end joining, and DNA base excision repair [177, 183, 184]. Phosphatase 
removal of the phosphoryl mark from S139 of H2AX is essential for the cell cycle to 
progress, as phosphorylation of this mark is also induced upon death receptor activation 
and can result in apoptosis [185, 186].  
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1.2.2.1.4 Histone ubiquitination 
Ubiquitin is a 76 amino acid polypeptide containing seven lysine residues that 

was first observed being ligated to histone protein H2A’s K199 residue back in 1975 
[187, 188]. The process of adding ubiquitin to lysine residues involves the coordination 
of three enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes 
(E2s), and ubiquitin ligases (E3s) [189-191]. Removing ubiquitin is achieved through a 
class of isopeptidases called deubiquitinases [192]. Ubiquitin is able to influence 
chromatin structure by creating a steric hindrance between itself and other histone 
residues affecting whether or not the transcriptional machinery has access to DNA [193]. 
Histones marked with ubiquitin are also able to serve as a protein binding site for 
transcriptional regulators [194, 195]. 

Ubiquitination of histone subunits unlike other proteins are not marked for 
degradation but for transcriptional regulation [196]. While all histone proteins (H1, H2A, 
H2B, H3, and H4) are observed to be capable of being ubiquitinated, the biological 
function of some (H1, H3, and H4) are not fully understood [196-201]. Of the remaining 
histone proteins H2A appears to be the most abundantly ubiquitinated with 10% of all 
histones having the ubiquitin mark compared to H2B having only 1% on all nucleosomes 
[202-205].  

Not only are does it appear that there are differences in the abundances of H2A 
and H2B ubiquitination, but also in the function the ubiquitin mark has on each protein. 
For example ubiquitination of H2A are enriched in the promoter of polycomb target 
genes and serves as the recruitment site for polycomb repressive complex 1 mediated 
transcriptional silencing [206, 207]. In contrast H2B ubiquitination stimulates 
transcriptional activation by disrupting the structure of the chromatin [208-211].  The 
mechanism of H2B ubiquitination is also used for controlling the processes of histone 
disassembly and reassembly in chromatin remodeling [212-216]. 

Addition of ubiquitin to non-histone proteins induces their degradation through 
proteasomes, endoplasmic reticulum mediated pathways, and the lysosomes [217, 218]. 
This allows the ubiquitin mark to regulate gene expression through ubiquitin mediated 
degradation of transcriptional regulators. An example of this is the ability of 
ubiquitination being able to degrade HATs, HDACS, HMTs, and HDMTs [219-226]. 
Ubiquitin plays a role in regulating transcription through proteasome destruction of 
transcription factors or proteasome independent mechanisms [227].  Ubiquitination of 
p53 activates its proteasomal degradation [228]. 

1.2.2.1.5 Histone Sumoylation 
 Sumoylation is when the small ubiquitin-like modifier (SUMO) protein is 
covalently attached to its target. Unlike ubiquitination sumoylation blocks proteasomal 
degradation when bound to a lysine residue [229, 230]. Sumoylation happens mainly on 
the histone H4 subunit but may be found on all the core histone proteins [231]. Histone 
sumoylation is associated with transcriptional repression by facilitating a closed 
chromatin state [32, 231, 232].  
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 Most of the studies on the effects of sumoylation to chromatin have to deal with 
what happens when SUMOs are covalently added to HDACS, HDM, HMT, and 
transcription factors [32, 233-243]. The addition of the SUMO group appears to influence 
target recognition for these proteins. For example when the sumoylation of HDAC1 and 
HDAC4 was blocked their histone deacetylation activity was reduced [244, 245]. 
Similarly when KDM6B is sumoylated it was reported to occupy its target genes more 
often [233]. Contrary to epigenetic factors sumoylation of transcription factors lose the 
ability to activate transcription due to the SUMO group altering their protein stability 
[246-249]. Sumoylation of transcription factors can serve as a signal to recruit additional 
chromatin regulatory proteins [250-252]. For example sumoylated ELK1 is able to recruit 
HDAC2 [253].  

1.2.2.1.6 Histone ADP-ribosylation  
ADP-ribosylation is the transfer of an ADP-ribose group from nicotinamide 

adenine dinucleotide (NAD+) to an amino acid side chains [254]. This is catalyzed 
through the action of Poly-ADP-ribose-polymerase (PARP) proteins and is reversible 
through the action of poly-ADP-ribose-glycohydrolase (PARG) proteins [255]. The 
process of ADP-ribosylation may result in a mono-ADP-ribosylation (MAR) chain or a 
poly-ADP-ribosylation (PAR) chain [256]. MARylation is the ADP-ribosylation mark 
commonly found in the cytoplasm, and typically outnumbers the PARylation mark that is 
commonly found in the nucleus [257, 258]. In the absence of NAD+, PARP proteins 
contribute to the closed state of chromatin; however with the addition of NAD+ to PARP 
bound nucleosomes, the chromatin is able to lead to the open state of the chromatin [259, 
260]. The ADP-ribosylated state of histones is reversible by degradation of the PAR 
marks through PARG [55, 259, 260]. It is theorized that ADP-ribosylation may affect 
chromatin structure by competing with other histone modifications for the same amino 
acid or by creating steric hindrance [31].  The H4 histone protein is preferentially ADP-
ribosylated when it is hyperacetylated [261]. ADP-ribosylation may co-occur with 
histone phosphorylation, but it appears that the size of the ADP-ribose group may block 
kinase accessibility to its target site [262, 263].   

1.2.2.1.7 Histone proline isomerization 
 Proline isomerization is when a peptide-propyl isomerase (PPIase) catalyzes a 
proline residue to shift between its cis and trans isomers [264]. Due to H3P38 being close 
to H3K36 the isomerization at P38 is able to influence H3K36's methylation [33, 265]. 
The H3P38 is in the cis position the histone tail is pulled closer to the DNA resulting in a 
steric hindrance that crowds the tail preventing histone methyltransferases from 
recognizing it. When H3P38 is in the trans position H3K36 is able to be methylated 
[266]. 
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 1.2.2.2 ATP dependent chromatin remodeling Complexes 
ATP dependent chromatin remodeling complexes utilize energy derived from hydrolysis 
of ATP for moving, ejecting, or restructuring nucleosomes. ATP dependent chromatin 
remodelers oversee almost every single chromosomal mechanism and their deregulation 
leads to cancer [267, 268]. All remodeler ATPases can be broken down into four groups: 
imitation switch (ISWI), chromodomain helicase DNA binding (CHD), switch/sucrose 
non-fermentable (SWI/SNF) and INO80 [269-271].  These four groups are able to 
influence chromatin organization through assisting in the assembly of nucleosomes, 
controlling accessibility of chromatin, and editing nucleosomes. After DNA replication 
members of the ISWI and CHD help form the nucleosome octamers and spreading them 
apart at established lengths [272-276]. Members of the SWI/SNF family of remodelers 
are able to make chromatin more accessible allowing transcription activators or 
repressors to recognize their DNA binding sites [277]. Members of the INO80 
remodeling group are able to remove and replace a histone and replace it with either a 
canonical or a variant histone protein [278-280]. Chromatin remodelers are able to target 
histones through the modifications added to the proteins [281]. Targeting may be able to 
function through the unified actions of histone modifications, transcriptional activators, 
and transcriptional repressors [282]. 

1.3 Transcription factors in gene regulation and cancer 
 Transcription factors are a nomenclature for types of protein that regulate the pace 
of genetic information being transcribed from DNA to messenger RNA through binding 
to a specific DNA sequence [283-287]. The DNA binding domain of a transcription 
factor is their distinguishing feature as its structure defines its binding site recognition 
pattern and serves as the mechanism by which transcription factors are grouped [288-
291]. Once bound to their DNA sequence, transcription factors may influence the 
initiation of transcription by either recruiting RNA polymerase (activators) or by 
blocking the recruitment of RNA polymerase (repressors)  [292-296].  
 Transcription factors are able to regulate through control of their synthesis, 
nuclear localization, accessibility of the DNA binding site, and the availability of other 
cofactors. Transcription factors are able to regulate their own transcription by binding to 
the DNA of their own gene and down regulate itself through a negative feedback loop 
[297]. While proteins are transcribed in the nucleus, they are translated in the cell's 
cytoplasm. In order for a transcription factor to return back to the nucleus they must 
receive a nuclear localization signal, which may mean binding with a ligand, becoming 
phosphorylated, or interacting with other proteins to form a complex [298-300]. 
 Due to transcription factors being able to regulate gene expression affecting a 
variety of cellular processes including but not limited to differentiation, development, 
intracellular signaling, the cell cycle, and metabolism [301-303]. Many human diseases 
are attributed to mutations in transcription factors affecting their ability to regulate these 
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cellular processes [304]. Transcription factors in the context of cancer are able to play a 
role as a tumor suppressor or an oncogene [305]. 

1.4 In summary 
During the course of this introductory chapter the reader is introduced to the idea 

that gene expression can be regulated through the actions of transcription factors binding 
to their recognition sites in DNA serving either as activators or repressors of 
transcription. While these binding sequences appear plentiful throughout the genome 
only a small fraction are functional [306, 307]. This behavior of selective binding to 
recognition sites may be due to epigenetic marks controlling chromatin accessibility 
[308-310]. Conversely sometimes transcription factors themselves are able to recruit 
chromatin modifying proteins to alter chromatin structure [311]. It is speculated that 
epigenetic modifications are not randomly distributed across the genome and that they are 
able to target specific regions through the use of transcription factors, noncoding RNAs, 
and histone remodelers [312]. Whichever the scenario investigation into the functional 
impact of coordinated action between histone modifying enzymes and transcription 
factors may lend to its target specificity or at the very least create accessibility for DNA 
binding of specific transcription factors [313-317]. Within the context of cancer; 
mutations in the functional domains of either transcription factors or the histone 
modifying proteins may deregulate the transcriptional program it oversees.  The 
subsequent chapters of this dissertation explore the details of this phenomenon. 
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Chapter 2: Methodology  

2.1 Studying phenotypic shifts caused by transcriptional regulators in cancer 
 The phenotype of a cell depends on how genes are being expressed in that cell. 
Shifts in the phenotype of the cell are due to changes in gene expression, and often are 
caused by changes in the mechanisms that regulate the gene. The first level of regulation 
for gene expression occurs during the process of transcription where the actions of 
transcription factors, histone modifiers, and other proteins are able to influence RNA 
polymerase’s ability to access the gene. These transcriptional regulators are able to work 
in a combinatorial fashion with one another to either activate and/or repress wide 
repertoires of transcriptional targets. Within the context of cancer; mutations in the 
functional domains of either transcription factors or the histone modifying proteins may 
deregulate the transcriptional program it oversees. 

Problems that I would like to address in my research are how do the mutations 
found in these transcriptional regulators affect their function, where in the genome do, 
they act, how is gene expression affected, and how do these regulators interact with one 
another. Mutations within transcription factors and histone modifiers may alter their 
activity level, their ability to be regulated, or how their protein behaves in the cell. 
Combining genomic with transcriptomic studies will provide insight into where these 
transcriptional regulators localize genome wide, and their impact on gene expression.  
Lastly, building a network of co-localizing factors could describe the combinatorial 
regulation of several factors in gene regulation and may serve as a mechanism for target 
recognition.  

2.2. Overview of approach to primary research 
After the completion of the Human genome project many researchers believe that 

mapping the human epigenome is the next step [1, 2]. However an organism's epigenome 
varies on a number of factors including age, tissue type, and environmental triggers. 
Additionally disease aberrations of normal epigenomic events may occur. Yet mapping 
different epigenomic events across all these conditions will yield insight into epigenetic 
mechanisms in processes of aging and disease. This philosophy of mapping epigenomic 
events can also be applied to transcription factors allowing researchers to develop gene 
regulatory circuits in regard to gene expression.  In order to model this, researchers are 
able to use cancer cell lines and patient data from the Cancer Genome Atlas. 

2.2.1 Using cancer cell lines as a model system  
In order to generate consistent sampling and to make the results reproducible the 

use of cell lines is desired [3]. The use of cancer cell lines in scientific research began 60 
years ago and has become an integral part of life science research with thousands of cell 
lines being established from a variety of donor tissues. The use of immortalized cell lines 
over primary cells is advantageous due to their low cost, ability to be grown easily, and 
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ability to bypass ethical concerns with animal or human tissues [3]. While these cell lines 
originate form a tissue type; they have undergone several mutations to become immortal. 
This may generate some concern for how much the cell line is able to simulate the 
conditions found within patient’s tumors. Comparing breast cancer tumors with breast 
cancer cell lines showed a similarity in gene expression patterns between the two [4, 5]. 
Quantitatively speaking there was a 72% agreement between breast cancer cell line and 
breast cancer tumor gene expression; however there appeared to be more copy number 
alterations found in the cell lines [6]. These results suggest that cell lines are able to 
mirror many aspects of cancer biology, however there are some differences that don't 
match completely with tumors. While cancer cell lines are not able to completely mirror 
the behavior of tumors; they are advantageous to researchers as they are able to grow a 
clonal population of cells for consistent sampling and reproducible results [3]. This 
pattern is found across several tissue types including ovarian, colorectal, melanoma, and 
lung cancer [7-10].   

2.2.2 The Cancer Genome Atlas Program 
The Cancer Genome Atlas (TCGA) is a cancer genomics program initiated by the 

National Cancer Institute and the National Human Genome Research Institute in 2006 to 
catalogue mutations found in cancer using genome sequencing and bioinformatics. This 
program has since grown to 2.5 petabytes of genomic, epigenetic, transcriptomic, and 
proteomic data for over 20,000 cancer samples across 33 different cancer types [11]. The 
goal of this project is to generate inclusive genomic, transcriptomic, epigenetic, and 
proteomic datasets with the sole purpose of creating large patient cohorts for each cancer 
type. This goal is advantageous to cancer biologists as the process of collecting and 
sequencing high quality data on this large scale would not be achievable by an individual 
research group. Likewise it is the hope that in making the datasets of the TCGA available 
to the public that the research community will be able to mine the data for better 
understanding of the molecular mechanisms behind cancer biology [12]. This consortium 
is a reliable source of datasets due to the TCGA having a strict set of criteria for 
including samples into its study. They collect the primary tumor from a patient that hasn't 
received treatment yet and a sample of normal tissue to use as a control. The 
Biospecimen Core Resource at the National Institute of Health ensures consistent 
assessment of its pathology, and then the DNA and RNA from the collected tissue is 
extracted. These samples then undergo a quality control process before they are 
sequenced and uploaded for genomic analysis. Access to this dataset allows researchers 
to discover abnormalities of DNA sequences, gene expression, and protein structure [13-
19]. The TCGA has also been developing an account of different forms of epigenetic 
regulation found altered in cancer patients such as miRNAs, ncRNAs, and methylation 
[20-25]. The consortium is able to identify various forms of DNA alterations found in 
cancer such as substitutions, indels, gene fusions, and copy number alterations [13, 15, 
26-28]. Altogether it is the goal of researchers to identify the distinct mutational 
characteristics of that cancer type in patients and place their altered roles in the context of 
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functional cellular pathways [29-31]. The TCGA can be used for finding mutations, 
predicting genes that may have some significance in prognosis, and regulatory network 
development [32, 33]. Tying the TCGA into research with cancer cell lines allows 
researchers to compare how well their cell line models correlate with what is seen in 
patients. 

2.3 Genomics Techniques 

2.3.1 ChIP-seq in order to identify genomic locations 
 A genome wide methodology is needed in order to determine the genomic 
locations of where regulatory events take place. The Chromatin immunoprecipitation 
sequencing (ChIP-seq) protocol is able to identify enriched binding sites for 
immunoprecipitated molecules [34]. This technique was first developed in 2007 to 
identify DNA sequences bound by a transcription factor [35]. Since then the applications 
of ChIP-seq have expanded to profiling histone modifications, histone variants, and 
nucleosome positioning. ChIP-seq is a common method in the field of genomics for 
understanding transcriptional regulation in disease, tissue specific epigenetic regulation, 
and chromatin organization [36-45]. The process of sample preparation for ChIP-seq can 
be summarized as the DNA and its associated protein of interest are cross linked, sheared 
into fragments, isolated following treatment with a protein specific antibody, and then 
lastly sequenced [46-48]. Prior to the invention of affordable next generation sequencing, 
the immunoprecipitated DNA regions were required to hybridize with DNA probes on an 
array in order to determine their genomic locations [49]. This proved problematic for 
experimental analysis in two ways: If there wasn't a corresponding DNA probe on the 
array it wasn't counted, and a mismatch between the ChIP DNA and the array probe 
would result in false identification of ChIP events. These problems in this experimental 
design are nullified in a ChIP-seq experiment due to the process of sequencing the DNA 
fragments means there is no dependence on the presence of the DNA probe or that proper 
hybridization will take place. The process of DNA hybridization also limited the 
resolution of the identified DNA fragments to only 30-100 base pairs, while the advent of 
sequencing following ChIP increased the resolution of the bound DNA to a single base 
pair [50]. With all that being said ChIP-seq has its limitations due to the cost of 
sequencing, and the quality of its data is dependent on the antibody used in the 
experiment. Ideally an antibody proven to be sensitive and specific towards its target will 
result in clean data while an antibody that binds non-specifically contributes to a noisy 
experiment  [51]. Another limitation for this type of experiment is that in order for a 
ChIP-seq experiment to produce noise-free, consistent, and reproducible results an input 
of around 50 million cells is suggested [52, 53]. As DNA is being isolated from each cell 
within the sample, the binding patterns of the antibody act in an additive manner in 
creating the experiment signal.  Lastly during the sample preparation and amplification 
stage of ChIP-seq there is potential for generating a bias towards DNA fragments with a 
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higher GC nucleotide content. Luckily there are bioinformatic packages that are able to 
perform quality control tests to report any biases that were generated during sequencing 
that can thereby be corrected. The raw data and all its processed forms are made available 
to other scientists through the Gene expression omnibus with the purpose of sharing data 
between laboratories to ensure the results are reproducible [54]. Information to be shared 
includes cell line, experimental protocol, whether the experiment uses biological or 
technical replicates, catalog/lot number for antibody, peak calling algorithm used, 
summary for the number of reads, and a link to control track. 

2.3.2 Bisulfite DNA methylation Sequencing for identification of DNA methylation 
events 

DNA methylation is an epigenetic mark associated with repression of 
transcriptional activity that involves the addition of a methylation group onto the carbon-
5 position of cytosine residues of a CpG dinucleotide. Researchers are able to determine 
regions of DNA methylation by treating DNA with the chemical bisulfite, which is able 
to convert cytosine residues to uracil, but methylated cytosine residues are left alone. 
Following treatment with bisulfite the samples can be sequenced allowing researchers to 
generate a single nucleotide resolution of the methylation status of individual cytosine 
residues.  In order for unmethylated cytosines to be converted into uracils the DNA needs 
to be single stranded, otherwise this would result in an incomplete conversion of cytosine 
molecules and will result in false positives for DNA methylation [55]. Some methods 
utilize Embedding DNA in agarose to help increase the conversion rate by physically 
keeping the DNA strands separate [56]. Other limitations to bisulfite sequencing are that 
the conditions associated for a complete conversion can often lead to the degradation of 
the incubated DNA [57]. Techniques such as cycling incubation temperature and 
monitoring the pH may minimize DNA degradation or allow the DNA to amplify during 
PCR [55, 58]. 

The DNA modification of cytosine into 5-hydroxymethylcytosine complicates 
bisulfite sequencing due its treatment with bisulfite results in its conversion to cytosine-5-
methylsulfonate [59, 60]. This complicates bisulfite sequencing as it is unable to 
distinguish between 5-methylcytosine and 5-hydroxymethylcytosine [61]. In order to 
distinguish between these two marks additional steps were added to the bisulfite 
sequencing methodology. In order to obtain only 5-methylcytosine marks the oxidative 
bisulfite sequencing approach was developed where 5-hydroxymethylcytosine is 
chemically oxidized to the 5-formylcytosine state, which is able to be converted into 
uracil following bisulfite treatment [62]. In order to distinguish 5-hydroxymethylcytosine 
marks a modified method called Tet-assisted bisulfite sequencing (TAB-seq) is able to 
protect 5-hydroxymethylcytosine marks while reducing 5-methylcytosine to thymine 
[63]. 
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2.3.3 Genome alignment 
A daunting aspect of a ChIP-seq experiment is the mapping of billions of short 

DNA fragments to their respective position in the genome. The field of ChIP-seq analysis 
has progressively refined sorting algorithms that are able to balance the accuracy, speed, 
and flexibility necessary for tackling this task [64, 65]. The primary goal of these 
alignment tools is to map these sequences correctly to their genomic loci while allowing 
some flexibility in matching due to errors in sequencing, single nucleotide 
polymorphisms, indels, or differences between the genome of interest and the reference 
genome [64, 65].  While allowing reads that are mapped to multiple locations would 
increase the sensitivity of peak detection, it also increases the number of false positives 
[66]. Uniquely mapped reads contain enough information for most ChIP-seq analysis 
[67]. 

2.3.4 Peak Calling 
In order to determine genomic regions of significant ChIP enrichment the 

computational method "peak calling" is used. These enriched regions are where the 
protein interacts with the DNA [68]. Peaks may have different qualities depending on the 
type of ChIP-seq experiment performed. ChIP-seq experiments investigating 
transcription factor binding have very defined sharp 100-200 base pair peaks compared to 
ChIP-seq experiments exploring histone marks that can cover a wider region [69]. A 
number of computational and statistical methods have been developed for distinguishing 
between signal and noise during the process of peak calling [70-73].  Differential peak 
calling identifies significant differences between two ChIP signals; most notably the 
experimental and control ChIP-seq experiments. A ChIP-seq control sample is usually 
naked DNA that was obtained or an immunoprecipitation with a nonspecific antibody. 
During the peak calling process, a threshold for the significance of ChIP enrichment 
compared to the control sample is set. Following the peak calling experiment significant 
peaks across ChIP samples can be used to detect significant differences between 
experimental conditions resulting in a list of genomic target regions that can be used to 
discover transcription factor motifs, and gene ontology regulated by that ChIP'ed factor 
[74-77]. 

2.3.5 Motif Analysis 
It is possible to identify transcription factor binding sites within ChIP-seq peak 

regions. Transcription factors are able to recognize 6 to 20 base pair patterns in DNA 
called motifs  [78]. It is possible to find these motifs by submitting sequences from peak 
regions identified during peak calling into motif finding algorithms where potential 
motifs are returned with their statistical significance [79-82]. These algorithms use 
position frequency matrices (PFM) to describe the preference of nucleotides at each 
position in the queried transcription factor binding site as a way to determine if a 
sequence can be statistically considered as a binding site [83, 84].  Public databases such 
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as JASPAR, TRANSFAC, and HOCOMOCO containing the binding preferences for 
hundreds of transcription factors [78, 85-89]. The degenerate specificity of transcription 
factors can result in predicted binding sites numbering in the millions, however when 
combined with ChIP-seq data it can range somewhere in the thousands [90, 91]. Ideally 
this methodology is used confirm true DNA binding events of transcription factors, but 
can also be used to associate histone modifying marks with transcription factors as the 
ChIP-seq signal of Histone modifications have a strong correlation with transcription 
factor motifs allowing researchers to speculate on the cooperation between transcription 
factors and histone marks [92].  

2.3.6 Gene set enrichment analysis 
Genome wide methodologies generate signal for a large number of genes making 

it difficult to determine the experimental impact [93]. Gene set enrichment analysis 
(GSEA) is used to identify over-representation of a class of genes or proteins in a large 
set of genes. This approach is useful for interpreting genome wide profiles [94]. 
Researchers are able to generate gene sets from their experiments but need to verify 
whether that gene set is involved in a biological process. This is achieved by comparing 
the input genes to reference sets and performing a statistical test to see if there is 
enrichment. A GSEA calculates an enrichment score for genes that are over-represented, 
the statistical significance of the enrichment score, and its bearing on a false discovery 
rate [94, 95]. The Molecular Signatures Database (MSigDB) has over 10,000 curated 
gene sets ranging from genomic location, canonical pathways, transcription factor targets, 
coexpression, oncogenesis, and immunological response [93].  

 2.4 Transcriptomics 
While ChIP-seq can help identify genomic loci of histone marks and transcription 

factor binding sites, this technique alone doesn't explain how these genomic events affect 
gene expression. In order to achieve this, an experiment in studying the transcriptome is 
needed. The word transcriptome describes all of the RNA molecules found in a cell and is 
a reflection of which genes are being expressed at a given time. The field of 
transcriptomics investigates gene expression by examining the transcript levels of genes 
within a given population. Researchers are becoming more accustomed to using RNA 
sequencing (RNAseq) for studying the transcriptome of the cell, although an older 
technique called DNA microarrays can still be used. By combining either of these 
transcriptomic experiments to a ChIP-seq experiment a researcher is able to assess how 
genomic events impact gene expression [52, 69, 72, 96, 97]. 

 2.4.1 Microarray 
A microarray is a grid like format of microscopic probes attached to a membrane 

[98, 99]. These probes are a specific DNA sequence of a gene that recognizes and binds 
to fluorescently labeled complementary DNA (cDNA) made from mRNA extracted from 
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an organism [100]. Researchers are then able to measure gene expression for thousands 
of genes simultaneously by quantifying the amount of fluorescence given off at each 
probe [98]. Applications of microarray include profiling gene expression [101], 
comparative genomic hybridization [102, 103], and identifying single nucleotide 
polymorphisms [104]. A majority of microarray studies strive to compare gene 
expression between diseased cells and healthy cells [98]. Microarrays remain an 
extensively used approach in transcriptomic studies due to the effectiveness of their cost, 
and ease of analysis [105]. Microarrays are used to measure differential gene expression 
caused by knockout of transcription factors, and epigenetic interactions [106-109]. 

         A two-channel microarray experiment compares gene expression across 
two conditions by having the probes treated with cDNA prepared from two samples that 
are labeled with two different fluorescent dyes [110]. This methodology examines the 
ratio of relative intensities for each fluorophore to identify differentially expressed genes 
between two conditions [111]. Two channel microarrays typically carry control probes to 
assist with normalization of the fluorescence measurements [112, 113]. This 
methodology generates a relative difference measurement between the two samples [100, 
114]. 

         Sources of variability in a microarray experiment are related to differences 
in arrays, dye labeling, efficiency in reverse transcription, and hybridization [115, 116]. 
These problems are generated during production of the arrays and probes but are 
typically resolved through careful quality control measures issues by the manufacturer. 
The best way to overcome any issue of variability is to incorporate replicates, perform 
dye-swapping experiments, and pooling samples to minimize biological variation [113, 
116, 117]. 

Microarray results can be validated through RT-PCR, Northern blotting, Western 
blotting, and multiple microarray platforms [115, 116, 118]. Since a single microarray 
experiment measures gene expression levels for thousands of genes, it is not cost 
effective to verify every single gene. A list of key genes is verified depending on the 
scope and purpose of the experiment [99, 114]. A microarray platform may have 
excellent reproducibility without producing accurate or consistent measurements with 
other platforms due to the fact that a given probe is able to bind to the same number of 
labeled transcripts in repeated measurements of the same sample. Oligonucleotide 
microarrays produced by Affymetrix, Agilent and Codelink are able to provide 
correlating data sets suggesting high reproducibility [119, 120].  

2.4.2 RNA-seq 
Microarrays are slowly being replaced with RNAseq as it does not depend on the 

presence of probes for detecting gene expression and can identify transcript specific 
expression. RNAseq enables the entire transcriptome to be sequenced for quantifying 
gene expression  [121, 122]. RNAseq is able to detect new transcripts, and splice 
junctions [123]. Although splice junctions assume that a number of reads span exon-exon 
junctions [124]. 
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Studies comparing RNA-seq and microarray experiments report that the RNA-seq 
method was better for detecting lowly abundant transcripts, and isoforms [123, 125-129]. 
RNAseq is also the best method for providing the fewest false positives, highest true 
positives, and the best modeling of variation within the datasets [127, 130-133]. The 
RNAseq method allows for a higher number of differentially expressed genes compared 
to microarrays because sequencing is independent of probe availability and expression 
intensity [122, 124]. 

RNAseq, unlike microarrays, does not rely on transcript specific probes and can 
detect new transcripts, gene fusions, single nucleotide variants, and indels [122, 134]. 
RNAseq is not limited, like microarrays, in measuring gene expression due to prevalent 
background noise confounding the measurement of lowly expressed genes, and the signal 
gets saturated for highly expressed genes [122, 123, 134]. RNAseq has a higher 
specificity and sensitivity for detecting gene expression, especially lowly expressed genes 
[135-137]. The national institute of health (NIH) in recent years has begun allocating a 
majority of its grants in favor of new RNA-seq projects compared to microarray projects. 

Expression profiling of samples is cheaper using microarrays instead of RNAseq. 
It makes sense to use microarray technology instead of RNA-seq if there are a large 
number of samples and cost is critical, for comparing with other microarray datasets from 
the same platform, or if there is an efficient in-house microarray workflow from sample 
collection to data analysis. 

 

2.5 References 
1. Bradbury, J., Human epigenome project--up and running. PLoS Biol, 2003. 1(3): 
p. E82. 
2. Esteller, M., The necessity of a human epigenome project. Carcinogenesis, 2006. 
27(6): p. 1121-5. 
3. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. 
Spermatogenesis, 2012. 2(1): p. 1-5. 
4. Ross, D.T. and C.M. Perou, A comparison of gene expression signatures from 
breast tumors and breast tissue derived cell lines. Dis Markers, 2001. 17(2): p. 99-109. 
5. Ross, D.T., et al., Systematic variation in gene expression patterns in human 
cancer cell lines. Nat Genet, 2000. 24(3): p. 227-35. 
6. Neve, R.M., et al., A collection of breast cancer cell lines for the study of 
functionally distinct cancer subtypes. Cancer Cell, 2006. 10(6): p. 515-27. 
7. Domcke, S., et al., Evaluating cell lines as tumour models by comparison of 
genomic profiles. Nat Commun, 2013. 4: p. 2126. 
8. Lin, W.M., et al., Modeling genomic diversity and tumor dependency in 
malignant melanoma. Cancer Res, 2008. 68(3): p. 664-73. 
9. Mouradov, D., et al., Colorectal cancer cell lines are representative models of the 
main molecular subtypes of primary cancer. Cancer Res, 2014. 74(12): p. 3238-47. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

40 

10. Sos, M.L., et al., Predicting drug susceptibility of non-small cell lung cancers 
based on genetic lesions. J Clin Invest, 2009. 119(6): p. 1727-40. 
11. Hoadley, K.A., et al., Cell-of-Origin Patterns Dominate the Molecular 
Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018. 173(2): p. 291-304 
e6. 
12. Cancer Genome Atlas Research, N., Comprehensive genomic characterization 
defines human glioblastoma genes and core pathways. Nature, 2008. 455(7216): p. 1061-
8. 
13. Bailey, M.H., et al., Comprehensive Characterization of Cancer Driver Genes and 
Mutations. Cell, 2018. 174(4): p. 1034-1035. 
14. Fumagalli, D., et al., Principles Governing A-to-I RNA Editing in the Breast 
Cancer Transcriptome. Cell Rep, 2015. 13(2): p. 277-89. 
15. Gao, Q., et al., Driver Fusions and Their Implications in the Development and 
Treatment of Human Cancers. Cell Rep, 2018. 23(1): p. 227-238 e3. 
16. Han, L., et al., The Genomic Landscape and Clinical Relevance of A-to-I RNA 
Editing in Human Cancers. Cancer Cell, 2015. 28(4): p. 515-528. 
17. Knijnenburg, T.A., et al., Genomic and Molecular Landscape of DNA Damage 
Repair Deficiency across The Cancer Genome Atlas. Cell Rep, 2018. 23(1): p. 239-254 
e6. 
18. Paz-Yaacov, N., et al., Elevated RNA Editing Activity Is a Major Contributor to 
Transcriptomic Diversity in Tumors. Cell Rep, 2015. 13(2): p. 267-76. 
19. Shen, H., et al., Integrated Molecular Characterization of Testicular Germ Cell 
Tumors. Cell Rep, 2018. 23(11): p. 3392-3406. 
20. Chiappinelli, K.B., et al., Inhibiting DNA Methylation Causes an Interferon 
Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell, 2017. 169(2): 
p. 361. 
21. Chiu, H.S., et al., Pan-Cancer Analysis of lncRNA Regulation Supports Their 
Targeting of Cancer Genes in Each Tumor Context. Cell Rep, 2018. 23(1): p. 297-312 
e12. 
22. Kim, H., et al., Integrative genome analysis reveals an oncomir/oncogene cluster 
regulating glioblastoma survivorship. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2183-8. 
23. Sumazin, P., et al., An extensive microRNA-mediated network of RNA-RNA 
interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011. 
147(2): p. 370-81. 
24. Wang, Z., et al., lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an 
Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in 
Cancer. Cancer Cell, 2018. 33(4): p. 706-720 e9. 
25. Yang, D., et al., Integrated analyses identify a master microRNA regulatory 
network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 2013. 23(2): 
p. 186-99. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

41 

26. Bolton, K.L., et al., Association between BRCA1 and BRCA2 mutations and 
survival in women with invasive epithelial ovarian cancer. JAMA, 2012. 307(4): p. 382-
90. 
27. Davoli, T., et al., Tumor aneuploidy correlates with markers of immune evasion 
and with reduced response to immunotherapy. Science, 2017. 355(6322). 
28. Zack, T.I., et al., Pan-cancer patterns of somatic copy number alteration. Nat 
Genet, 2013. 45(10): p. 1134-40. 
29. Alexandrov, L.B., et al., Signatures of mutational processes in human cancer. 
Nature, 2013. 500(7463): p. 415-21. 
30. Sanchez-Vega, F., et al., Oncogenic Signaling Pathways in The Cancer Genome 
Atlas. Cell, 2018. 173(2): p. 321-337 e10. 
31. Stegh, A.H., et al., Glioma oncoprotein Bcl2L12 inhibits the p53 tumor 
suppressor. Genes Dev, 2010. 24(19): p. 2194-204. 
32. Ellrott, K., et al., Scalable Open Science Approach for Mutation Calling of Tumor 
Exomes Using Multiple Genomic Pipelines. Cell Syst, 2018. 6(3): p. 271-281 e7. 
33. Masica, D.L. and R. Karchin, Correlation of somatic mutation and expression 
identifies genes important in human glioblastoma progression and survival. Cancer Res, 
2011. 71(13): p. 4550-61. 
34. Schmidt, D., et al., Genome-scale validation of deep-sequencing libraries. PLoS 
One, 2008. 3(11): p. e3713. 
35. Robertson, G., et al., Genome-wide profiles of STAT1 DNA association using 
chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 2007. 
4(8): p. 651-7. 
36. Deardorff, M.A., et al., HDAC8 mutations in Cornelia de Lange syndrome affect 
the cohesin acetylation cycle. Nature, 2012. 489(7415): p. 313-7. 
37. Ernst, J., et al., Mapping and analysis of chromatin state dynamics in nine human 
cell types. Nature, 2011. 473(7345): p. 43-9. 
38. Hansen, P., et al., Saturation analysis of ChIP-seq data for reproducible 
identification of binding peaks. Genome Res, 2015. 25(9): p. 1391-400. 
39. Izumi, K., et al., Germline gain-of-function mutations in AFF4 cause a 
developmental syndrome functionally linking the super elongation complex and cohesin. 
Nat Genet, 2015. 47(4): p. 338-44. 
40. Jeppsson, K., et al., The chromosomal association of the Smc5/6 complex 
depends on cohesion and predicts the level of sister chromatid entanglement. PLoS 
Genet, 2014. 10(10): p. e1004680. 
41. Mikkelsen, T.S., et al., Comparative epigenomic analysis of murine and human 
adipogenesis. Cell, 2010. 143(1): p. 156-69. 
42. Schaub, M.A., et al., Linking disease associations with regulatory information in 
the human genome. Genome Res, 2012. 22(9): p. 1748-59. 
43. Shang, W.H., et al., Chromosome engineering allows the efficient isolation of 
vertebrate neocentromeres. Dev Cell, 2013. 24(6): p. 635-48. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

42 

44. Sutani, T., et al., Condensin targets and reduces unwound DNA structures 
associated with transcription in mitotic chromosome condensation. Nat Commun, 2015. 
6: p. 7815. 
45. Zuin, J., et al., A cohesin-independent role for NIPBL at promoters provides 
insights in CdLS. PLoS Genet, 2014. 10(2): p. e1004153. 
46. Barski, A., et al., High-resolution profiling of histone methylations in the human 
genome. Cell, 2007. 129(4): p. 823-37. 
47. Johnson, D.S., et al., Genome-wide mapping of in vivo protein-DNA interactions. 
Science, 2007. 316(5830): p. 1497-502. 
48. Ren, B., et al., Genome-wide location and function of DNA binding proteins. 
Science, 2000. 290(5500): p. 2306-9. 
49. Kim, T.H., et al., A high-resolution map of active promoters in the human 
genome. Nature, 2005. 436(7052): p. 876-80. 
50. Rhee, H.S. and B.F. Pugh, Comprehensive genome-wide protein-DNA 
interactions detected at single-nucleotide resolution. Cell, 2011. 147(6): p. 1408-19. 
51. Meyer, C.A. and X.S. Liu, Identifying and mitigating bias in next-generation 
sequencing methods for chromatin biology. Nat Rev Genet, 2014. 15(11): p. 709-21. 
52. Furey, T.S., ChIP-seq and beyond: new and improved methodologies to detect 
and characterize protein-DNA interactions. Nat Rev Genet, 2012. 13(12): p. 840-52. 
53. Schmidt, D., et al., ChIP-seq: using high-throughput sequencing to discover 
protein-DNA interactions. Methods, 2009. 48(3): p. 240-8. 
54. Clough, E. and T. Barrett, The Gene Expression Omnibus Database. Methods Mol 
Biol, 2016. 1418: p. 93-110. 
55. Fraga, M.F. and M. Esteller, DNA methylation: a profile of methods and 
applications. Biotechniques, 2002. 33(3): p. 632, 634, 636-49. 
56. Olek, A., J. Oswald, and J. Walter, A modified and improved method for 
bisulphite based cytosine methylation analysis. Nucleic Acids Res, 1996. 24(24): p. 
5064-6. 
57. Grunau, C., S.J. Clark, and A. Rosenthal, Bisulfite genomic sequencing: 
systematic investigation of critical experimental parameters. Nucleic Acids Res, 2001. 
29(13): p. E65-5. 
58. Ehrich, M., et al., A new method for accurate assessment of DNA quality after 
bisulfite treatment. Nucleic Acids Res, 2007. 35(5): p. e29. 
59. Kriaucionis, S. and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is 
present in Purkinje neurons and the brain. Science, 2009. 324(5929): p. 929-30. 
60. Tahiliani, M., et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine 
in mammalian DNA by MLL partner TET1. Science, 2009. 324(5929): p. 930-5. 
61. Huang, Y., et al., The behaviour of 5-hydroxymethylcytosine in bisulfite 
sequencing. PLoS One, 2010. 5(1): p. e8888. 
62. Booth, M.J., et al., Quantitative sequencing of 5-methylcytosine and 5-
hydroxymethylcytosine at single-base resolution. Science, 2012. 336(6083): p. 934-7. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

43 

63. Yu, M., et al., Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat 
Protoc, 2012. 7(12): p. 2159-70. 
64. Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA 
sequences to the human genome. Genome Biol, 2009. 10(3): p. R25. 
65. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-60. 
66. Chung, D., et al., Discovering transcription factor binding sites in highly 
repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput 
Biol, 2011. 7(7): p. e1002111. 
67. Day, D.S., et al., Estimating enrichment of repetitive elements from high-
throughput sequence data. Genome Biol, 2010. 11(6): p. R69. 
68. Valouev, A., et al., Genome-wide analysis of transcription factor binding sites 
based on ChIP-Seq data. Nat Methods, 2008. 5(9): p. 829-34. 
69. Pepke, S., B. Wold, and A. Mortazavi, Computation for ChIP-seq and RNA-seq 
studies. Nat Methods, 2009. 6(11 Suppl): p. S22-32. 
70. Laajala, T.D., et al., A practical comparison of methods for detecting transcription 
factor binding sites in ChIP-seq experiments. BMC Genomics, 2009. 10: p. 618. 
71. Liu, E.T., S. Pott, and M. Huss, Q&A: ChIP-seq technologies and the study of 
gene regulation. BMC Biol, 2010. 8: p. 56. 
72. Park, P.J., ChIP-seq: advantages and challenges of a maturing technology. Nat 
Rev Genet, 2009. 10(10): p. 669-80. 
73. Wilbanks, E.G. and M.T. Facciotti, Evaluation of algorithm performance in ChIP-
seq peak detection. PLoS One, 2010. 5(7): p. e11471. 
74. Machanick, P. and T.L. Bailey, MEME-ChIP: motif analysis of large DNA 
datasets. Bioinformatics, 2011. 27(12): p. 1696-7. 
75. McLean, C.Y., et al., GREAT improves functional interpretation of cis-regulatory 
regions. Nat Biotechnol, 2010. 28(5): p. 495-501. 
76. Thomas-Chollier, M., et al., RSAT peak-motifs: motif analysis in full-size ChIP-
seq datasets. Nucleic Acids Res, 2012. 40(4): p. e31. 
77. Welch, R.P., et al., ChIP-Enrich: gene set enrichment testing for ChIP-seq data. 
Nucleic Acids Res, 2014. 42(13): p. e105. 
78. Matys, V., et al., TRANSFAC and its module TRANSCompel: transcriptional 
gene regulation in eukaryotes. Nucleic Acids Res, 2006. 34(Database issue): p. D108-10. 
79. Bailey, T.L., et al., MEME: discovering and analyzing DNA and protein sequence 
motifs. Nucleic Acids Res, 2006. 34(Web Server issue): p. W369-73. 
80. Gordon, D.B., et al., TAMO: a flexible, object-oriented framework for analyzing 
transcriptional regulation using DNA-sequence motifs. Bioinformatics, 2005. 21(14): p. 
3164-5. 
81. Liu, X.S., D.L. Brutlag, and J.S. Liu, An algorithm for finding protein-DNA 
binding sites with applications to chromatin-immunoprecipitation microarray 
experiments. Nat Biotechnol, 2002. 20(8): p. 835-9. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

44 

82. Pavesi, G., et al., Weeder Web: discovery of transcription factor binding sites in a 
set of sequences from co-regulated genes. Nucleic Acids Res, 2004. 32(Web Server 
issue): p. W199-203. 
83. Stormo, G.D., DNA binding sites: representation and discovery. Bioinformatics, 
2000. 16(1): p. 16-23. 
84. Wu, J. and J. Xie, Hidden Markov model and its applications in motif findings. 
Methods Mol Biol, 2010. 620: p. 405-16. 
85. Bryne, J.C., et al., JASPAR, the open access database of transcription factor-
binding profiles: new content and tools in the 2008 update. Nucleic Acids Res, 2008. 
36(Database issue): p. D102-6. 
86. Hume, M.A., et al., UniPROBE, update 2015: new tools and content for the 
online database of protein-binding microarray data on protein-DNA interactions. Nucleic 
Acids Res, 2015. 43(Database issue): p. D117-22. 
87. Kulakovskiy, I.V., et al., HOCOMOCO: towards a complete collection of 
transcription factor binding models for human and mouse via large-scale ChIP-Seq 
analysis. Nucleic Acids Res, 2018. 46(D1): p. D252-D259. 
88. Mathelier, A., et al., JASPAR 2016: a major expansion and update of the open-
access database of transcription factor binding profiles. Nucleic Acids Res, 2016. 44(D1): 
p. D110-5. 
89. Wingender, E., et al., TRANSFAC: a database on transcription factors and their 
DNA binding sites. Nucleic Acids Res, 1996. 24(1): p. 238-41. 
90. Consortium, E.P., A user's guide to the encyclopedia of DNA elements 
(ENCODE). PLoS Biol, 2011. 9(4): p. e1001046. 
91. Wasserman, W.W. and A. Sandelin, Applied bioinformatics for the identification 
of regulatory elements. Nat Rev Genet, 2004. 5(4): p. 276-87. 
92. Kumar, V., et al., Uniform, optimal signal processing of mapped deep-sequencing 
data. Nat Biotechnol, 2013. 31(7): p. 615-22. 
93. Liberzon, A., et al., The Molecular Signatures Database (MSigDB) hallmark gene 
set collection. Cell Syst, 2015. 1(6): p. 417-425. 
94. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 
2005. 102(43): p. 15545-50. 
95. Mootha, V.K., et al., PGC-1alpha-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003. 
34(3): p. 267-73. 
96. Angelini, C. and V. Costa, Understanding gene regulatory mechanisms by 
integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. 
Front Cell Dev Biol, 2014. 2: p. 51. 
97. Zhou, V.W., A. Goren, and B.E. Bernstein, Charting histone modifications and 
the functional organization of mammalian genomes. Nat Rev Genet, 2011. 12(1): p. 7-18. 
98. Butte, A., The use and analysis of microarray data. Nat Rev Drug Discov, 2002. 
1(12): p. 951-60. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

45 

99. Conway, T. and G.K. Schoolnik, Microarray expression profiling: capturing a 
genome-wide portrait of the transcriptome. Mol Microbiol, 2003. 47(4): p. 879-89. 
100. Li, X., et al., DNA microarrays: their use and misuse. Microcirculation, 2002. 
9(1): p. 13-22. 
101. Adomas, A., et al., Comparative analysis of transcript abundance in Pinus 
sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree 
Physiol, 2008. 28(6): p. 885-97. 
102. Moran, G., et al., Comparative genomics using Candida albicans DNA 
microarrays reveals absence and divergence of virulence-associated genes in Candida 
dubliniensis. Microbiology, 2004. 150(Pt 10): p. 3363-82. 
103. Pollack, J.R., et al., Genome-wide analysis of DNA copy-number changes using 
cDNA microarrays. Nat Genet, 1999. 23(1): p. 41-6. 
104. Hacia, J.G., et al., Determination of ancestral alleles for human single-nucleotide 
polymorphisms using high-density oligonucleotide arrays. Nat Genet, 1999. 22(2): p. 
164-7. 
105. Rai, M.F., et al., Advantages of RNA-seq compared to RNA microarrays for 
transcriptome profiling of anterior cruciate ligament tears. J Orthop Res, 2018. 36(1): p. 
484-497. 
106. Chernov, A.V., et al., Microarray-based transcriptional and epigenetic profiling of 
matrix metalloproteinases, collagens, and related genes in cancer. J Biol Chem, 2010. 
285(25): p. 19647-59. 
107. Colyer, H.A., R.N. Armstrong, and K.I. Mills, Microarray for epigenetic changes: 
gene expression arrays. Methods Mol Biol, 2012. 863: p. 319-28. 
108. Essaghir, A., et al., Transcription factor regulation can be accurately predicted 
from the presence of target gene signatures in microarray gene expression data. Nucleic 
Acids Res, 2010. 38(11): p. e120. 
109. Gorte, M., et al., Microarray-based identification of transcription factor target 
genes. Methods Mol Biol, 2011. 754: p. 119-41. 
110. Shalon, D., S.J. Smith, and P.O. Brown, A DNA microarray system for analyzing 
complex DNA samples using two-color fluorescent probe hybridization. Genome Res, 
1996. 6(7): p. 639-45. 
111. Tang, T., et al., Expression ratio evaluation in two-colour microarray experiments 
is significantly improved by correcting image misalignment. Bioinformatics, 2007. 
23(20): p. 2686-91. 
112. Brown, P.O. and D. Botstein, Exploring the new world of the genome with DNA 
microarrays. Nat Genet, 1999. 21(1 Suppl): p. 33-7. 
113. Xiang, Z., et al., Microarray expression profiling: analysis and applications. Curr 
Opin Drug Discov Devel, 2003. 6(3): p. 384-95. 
114. Nakanishi, T., T. Oka, and T. Akagi, Recent advances in DNA microarrays. Acta 
Med Okayama, 2001. 55(6): p. 319-28. 
115. Quackenbush, J., Computational analysis of microarray data. Nat Rev Genet, 
2001. 2(6): p. 418-27. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

46 

116. Simon, R., M.D. Radmacher, and K. Dobbin, Design of studies using DNA 
microarrays. Genet Epidemiol, 2002. 23(1): p. 21-36. 
117. Slonim, D.K., From patterns to pathways: gene expression data analysis comes of 
age. Nat Genet, 2002. 32 Suppl: p. 502-8. 
118. Dopazo, J., et al., Methods and approaches in the analysis of gene expression 
data. J Immunol Methods, 2001. 250(1-2): p. 93-112. 
119. Bakay, M., et al., Sources of variability and effect of experimental approach on 
expression profiling data interpretation. BMC Bioinformatics, 2002. 3: p. 4. 
120. Bammler, T., et al., Standardizing global gene expression analysis between 
laboratories and across platforms. Nat Methods, 2005. 2(5): p. 351-6. 
121. Mortazavi, A., et al., Mapping and quantifying mammalian transcriptomes by 
RNA-Seq. Nat Methods, 2008. 5(7): p. 621-8. 
122. Wang, Z., M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for 
transcriptomics. Nat Rev Genet, 2009. 10(1): p. 57-63. 
123. Zhao, S., et al., Comparison of RNA-Seq and microarray in transcriptome 
profiling of activated T cells. PLoS One, 2014. 9(1): p. e78644. 
124. Clark, T.A., C.W. Sugnet, and M. Ares, Jr., Genomewide analysis of mRNA 
processing in yeast using splicing-specific microarrays. Science, 2002. 296(5569): p. 
907-10. 
125. Bottomly, D., et al., Evaluating gene expression in C57BL/6J and DBA/2J mouse 
striatum using RNA-Seq and microarrays. PLoS One, 2011. 6(3): p. e17820. 
126. Fu, X., et al., Estimating accuracy of RNA-Seq and microarrays with proteomics. 
BMC Genomics, 2009. 10: p. 161. 
127. Marioni, J.C., et al., RNA-seq: an assessment of technical reproducibility and 
comparison with gene expression arrays. Genome Res, 2008. 18(9): p. 1509-17. 
128. Sirbu, A., et al., RNA-Seq vs dual- and single-channel microarray data: sensitivity 
analysis for differential expression and clustering. PLoS One, 2012. 7(12): p. e50986. 
129. Zhang, W., et al., Effector CD4+ T cell expression signatures and immune-
mediated disease associated genes. PLoS One, 2012. 7(6): p. e38510. 
130. Conesa, A., et al., A survey of best practices for RNA-seq data analysis. Genome 
Biol, 2016. 17: p. 13. 
131. Consortium, S.M.-I., A comprehensive assessment of RNA-seq accuracy, 
reproducibility and information content by the Sequencing Quality Control Consortium. 
Nat Biotechnol, 2014. 32(9): p. 903-14. 
132. Law, C.W., et al., voom: Precision weights unlock linear model analysis tools for 
RNA-seq read counts. Genome Biol, 2014. 15(2): p. R29. 
133. McCarthy, D.J., Y. Chen, and G.K. Smyth, Differential expression analysis of 
multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids 
Res, 2012. 40(10): p. 4288-97. 
134. Wilhelm, B.T. and J.R. Landry, RNA-Seq-quantitative measurement of 
expression through massively parallel RNA-sequencing. Methods, 2009. 48(3): p. 249-
57. 



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

47 

135. Li, J., et al., Comparison of microarray and RNA-Seq analysis of mRNA 
expression in dermal mesenchymal stem cells. Biotechnol Lett, 2016. 38(1): p. 33-41. 
136. Liu, Y., et al., RNA-Seq identifies novel myocardial gene expression signatures of 
heart failure. Genomics, 2015. 105(2): p. 83-9. 
137. Wang, C., et al., The concordance between RNA-seq and microarray data depends 
on chemical treatment and transcript abundance. Nat Biotechnol, 2014. 32(9): p. 926-32. 
 



 

 48 

Chapter Three: Somatic Copy Number Amplification and Hyperactivating Somatic 
Mutations of EZH2 Correlate with DNA Methylation and Drive Epigenetic Silencing of 
Genes Involved in Tumor Suppression and Immune Responses in Melanoma.  
 

Utilizing the Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) 
dataset a subset of 421 patients were observed to have the epigenetic regulator EZH2 of 
the Polycomb Repressive 2 complex to display oncogenic behavior through the 
mechanisms of either hyper activating mutations increasing its methyltransferase 
function, the EZH2 gene loci being amplified, and increased transcription. Patients 
containing these activating mutational events or increased EZH2 expression resulted in 
adverse patient survival compared to patients without these mutational events and normal 
EZH2 expression. As EZH2 is able to repress gene expression by trimethylating the 
histone 3 lysine 27 (H3K27) residue of nearby histones, and by recruiting DNA 
methyltransferases to methylate CpG islands. This paper attempts to identify 
transcriptional targets impacted by EZH2's oncogenic activation by examining the 
RNAseq and methylseq datasets from the identified patient cohort, and examining which 
genes became derepressed in cultured cells with the activating Y641 EZH2 mutation 
upon treatment with GSK126. The candidate genes identified are part of the tumor 
suppression, cell differentiation, cell cycle inhibition and repression of metastases as well 
as antigen processing and presentation pathways. These results highlight a systems 
biology methodology for identifying the oncogenic function of an epigenetic regulator 
using patient data from a large-scale consortium. The epigenetic repression of genes 
within the pathways identified within this study displays an epigenetic mechanism for a 
cancer cell to achieve hallmarks of cancer such as evading immune system detection, 
avoiding apoptosis, and avoiding senescence. Within this study I contributed 
computationally to the quantification of which EZH2 transcript was the most prominent 
in the cell, overlapping gene sets, and the gene set enrichment analysis of the cellular 
pathways impacted by EZH2 activity (figures 1,2,5). 
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Abstract
The epigeneticmodifier EZH2 is in the center of a repressive complex controlling differentiation of normal cells. In cancer
EZH2 has been implicated in silencing tumor suppressor genes. Its role inmelanoma aswell as target genes affected by
EZH2arepoorly understood. In viewof thiswehaveusedan integratedsystemsbiology approach toanalyze471casesof
skin cutaneous melanoma (SKCM) in The Cancer Genome Atlas (TCGA) for mutations and amplifications of EZH2.
Identified changes in target genes were validated by interrogation of microarray data from melanoma cells treated with
the EZH2 inhibitor GSK126.We found that EZH2 activation bymutations, gene amplification and increased transcription
occurred in about 20% of the cohort. These alterations were associated with significant hypermethylation of DNA and
significant downregulation of 11% of transcripts in patient RNASeq data. GSK126 treatment of melanoma lines
containing EZH2 activation reversed such transcriptional repression in 98 candidate target genes. Gene enrichment
analysis revealed genes associated with tumor suppression, cell differentiation, cell cycle inhibition and repression of
metastases as well as antigen processing and presentation pathways. The identified changes in EZH2 were associated
with an adverse prognosis in the TCGA dataset. These results suggest that inhibiting of EZH2 is a promising therapeutic
avenue for a substantial fraction of melanoma patients.

Neoplasia (2016) 18, 121–132

Introduction
During cancer progression a tissue-specific dedifferentiation towards an
immortal state takes place [1], a change that requires concerted alterations
at the genomic, epigenomic, and transcriptional level [2]. The polycomb
repressive complex (PRC) 2 is instrumental for chromatin remodeling
and recruitment of proteins required for epigenetic modifications [1,3].
Crucial to PRC2 activity, the histone methyltransferase enhancer of zeste
homolog 2 (EZH2) [GenBank:2146] tri-methylates lysine 27 of histone
3 (H3K27me3), leading to chromatin condensation and transcriptional
repression. EZH2 can also direct DNA methylation via recruitment of
DNAmethyltransferases (DNMTs), thus linking histone methylation to
DNA methylation [3]. The cellular networks targeted by EZH2 are
essential in early development but downregulated in normal adult tissues.
In many types of cancers including lymphomas and leukemia,

EZH2 is postulated to exert its oncogenic effects via aberrant histone
and DNA methylation, causing silencing of tumor suppressor genes

[4–9]. Recent studies have identified reversible H3K27me3 levels in
response to aberrant EZH2 activity in melanoma suggesting
suitability for pharmacological targeting [10–14]. In particular our
recent studies have shown that small molecule inhibitors of EZH2
could induce cell cycle arrest and apoptosis of melanoma cells
harboring somatic mutations of EZH2 [14].
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In this study, we capitalize on the druggability of EZH2 and shed
light on its role as an epigenetic regulator. We apply a comprehensive
systems biology approach to the skin cutaneous melanoma (SKCM)
dataset of 471 patients and in total to 12366 Pan-cancer specimens of
32 tissues of The Cancer Genome Atlas (TCGA). We connect
somatic mutations and somatic copy number alterations (SCNAs) of
EZH2 to epigenetic and transcriptional control of its target genes.
Methylation status and transcriptional activity of target genes is
combined with the transcriptional response of cellular melanoma
models of activating EZH2 mutations to treatment with an EZH2
inhibitor. The rationale behind combining transcriptional data from
inhibitor studies is to reveal or confirm genes repressed by EZH2
activation.

Methods
We utilized files from 471 SNP arrays, 120 whole-genome, 339
whole-exome, and 440 clinical datasets with normal reference samples
from 471 TCGA SKCM patients. In addition, we selected 458
patients of the SKCM cohort with complete methylome and
transcriptome data. Genomic regions of TCGA SKCM data set
aligned to HG19 were determined using the tool genomic
identification of significant targets in cancer 2.0.21 at confidence
level of 0.99 and cutoff q-value of 0.01. Somatic mutation and
somatic copy number alterations were assessed for 32 different cancer
tissues covering a total cohort size of 9833 and 6506 TCGA patients
for somatic copy number alteration data and whole exome sequencing
data, respectively (Supplementary Table 1). The study was carried out
as part of IRB of the University of California Merced approved study
dbGap ID 5094 “Somatic mutations in melanoma” and conducted in
accordance with the Helsinki Declaration of 1975. The results shown
are based upon next generation sequencing data generated by the
TCGA Research Network http://cancergenome.nih.gov. Restricted
access clinical, RNASeq, and whole-exome sequences were obtained
from the TCGA genome data access center and the data portal.

Illumina HiSeq 2000 V2 RNA Sequencing by expectation-
maximization normalized Log2 data was filtered for differential
expression in patients with activating EZH2 mutations in two-tailed
Z-tests and p-values below 0.05 in 458 and 12633 patients in TCGA
SKCM and Pan-cancer, respectively. Pearson’s correlation coefficient
was calculated for paired differential methylation and RNASeq data
classified according to moderate negative correlation (-0.2 ≥ ρ N -0.4)
or strong negative correlation (-0.4 ≥ ρ) and associated with
methylation dependent transcriptional silencing. Pairwise average-
linkage in combination with Pearson’s correlation was used as
distance measure for both, column (patients) and row (genes or
markers) hierarchical clustering. Methylation data was thresholded for
differential methylation in patients with activating EZH2 mutations
in two-tailed Z-tests and p-values below 0.05. Differentially regulated
methylation markers were mapped to HG19 and only kept if a gene
association was detected at least twice. Statistical hypotheses testing,
in detail Fisher’s exact method, was used to determine significant
enrichment of somatic mutation in given patient cohorts. Microarray
analysis was performed on two melanoma cell lines, IGR1 and
MM386, each conducted as duplicates 48 hours after treatment with
DMSO as control or 7.5 μMGSK126 (IC 50 value between 5-8 μM)
[PubChem CID:68210102]. Transcriptomic data were normalized
using the normal-exponential deconvolution method, corrected for
multiple samples in two-tailed T-tests, and adjusted p-values below
0.05. Pathway enrichment was determined using the web-based gene

set analysis toolkit at p-values below 0.05 and mapped onto the Kyoto
Encyclopedia of Genes and Genomes (KEGG).

Somatic mutations of selected PRC genes were called by multi-step
filtering after cohort selection, mapping of human genome and
patient specific somatic references, assessment of recurrence,
evolutionary conversation, basal mutation rate based on frequency
of mutations of introns vs exons, and structural analysis [10]. TCGA
patients showed recurring mutations TCGA-BF-A1PV-01
EZH2(Y641N), TCGA-D9-A1JW-06 EZH2(Y641F), and
TCGA-EE-A3AF-06 EZH2(Y641N). EZH2 Y641 mutant melano-
ma cell lines C001 and MM386 were a generous gift from Dr. Chris
Schmidt and Dr. Nick Hayward, QIMR, Brisbane, Australia. IGR1
cells were gifted from Dr. David Adams of the Welcome Trust Sanger
Institute, Cambridge, UK. EZH2 wild type status Y641 of MELJD,
ME1007, and KMJR138 cell lines was confirmed by sequenom or
sanger sequencing, while IGR1 had in-frame point mutations
EZH2(Y641N), MM386(Y641H) and C001(Y641S). All cells lines
were authenticated by short tandem repeat validation. Cells were
cultured in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% fetal calf serum (AusGeneX, Brisbane, Queens-
land, Australia) and Pen/Strep (Sigma, St. Louis, MO, USA). Human
dermal fibroblasts (HDF) and human epithelial melanocytes (HEM)
were used as untransformed controls (ATCC, Manassas, VA, USA).
HEM were cultured in M254 containing HGMS and all cells were
maintained at 37°C in 5% CO2.

Cell pellets were lysed with radioimmunoprecipitation (RIPA)
buffer and subjected to western blot analysis. Total protein was
determined using a BCA assay (Bio-Rad, Hercules, CA, USA).
Labeled bands were detected by Immune-Star horseradish peroxidase
chemiluminescence kit (Bio-Rad, Hercules, CA, USA) and images
were captured by the Fujifilm LAS-4000 image system. Antibodies
used were as follows: EZH2 (5246, Cell Signaling, Danvers, MA,
USA), Beta Actin (AC-74, Sigma, St. Louis, MO, USA), p21
(SC-397, Santa Cruz Biotechnology, Dallas, TX, USA). GSK126
[PubChem CID:68210102] was purchased from Medchemexpress
(New Jersey, NJ, USA) and dissolved in DMSO that was used as the
vehicle control in all experiments. Cells were seeded in 6 well plates
and treated the following day with DMSO, 2.5 μM, 5 μM or 7.5 μM
GSK126. After 48 hours RNA was extracted from cells using the
RNeasyPlus mini prep kit (Qiagen, Hilden, Germany), quantified
using a Nanodrop (Thermo Scientific, Waltham, MA, USA) and 1 μg
was reverse transcribed using SuperScriptIII (Life Technologies,
Carlsbad, CA, USA). cDNA was amplified using the AB7900
real-time quantitative PCR (RT-qPCR) system (Life Technologies,
Carlsbad, CA, USA) using Universal PCR Mastermix and Taqman
probes (Life Technologies, Carlsbad, CA, USA) specific for
CDKN1A [GeneBank:1026] (Hs00355782_m1) and normalized
to levels of 18 s (Hs99999901_s1).

Results

Enrichment of Activating Somatic Mutations of EZH2 in
Melanoma

EZH2 has somatic mutations in several regions of the molecule.
The proportion of mutations that affect the different domains of
EZH2 is similar between the melanoma cohort and the Pan-cancer
average (DMNT binding domain 42. 9%/39.3%, CDYL binding
domain 21.4%/16.7%, CXC domain 14.3%/13.1%, SET domain
21.4%/30.9% in SKCM and TCGA Pan-cancer respectively)
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(Figure 1A, Supplementary Table 1). Alternative splice events in
exons 3, 4, and 8 give rise to at least 5 mRNA isoforms (Figure 1B). In
total, 100 coding mutations including 22 silent mutations were
detected in EZH2: TCGA SKCM showed a mutation frequency of
4.1% in 339 exomes and TCGA Pan-cancer 1.3% in 6506 exomes.
However, a somatic mutation in the center of the active site of the
SET domain at residue Y641 was recurring. It was detected in 7 cases
of all reported whole exome sequencing melanoma studies and 5
times across the TCGA Pan-cancer cohort. There were 2 cases in 278
metastatic tumors of TCGA SKCM; 1 case in 61 primary tumors of
TCGA SKCM (Figure 1C); 2 cases in 121 metastatic Broad tumors; 2
cases in 91 metastatic Yale tumors [10,13,15]. The replacement of the
JAK2 phosphorylation target residue Y641 alters EZH2 conforma-
tion, increasing its tri-methylation activity and stabilizing the protein
[16,17]. Therefore it is expected that EZH2 Y641 mutants in
melanoma cells exhibit increased H3K27me3 levels. High levels of
activating mutations affecting the SET domain were also evident in
other cancers such as Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma (DLBC) including 2 Y641 mutations, uterine corpus
endometrial carcinoma (UCEC), lung cancer (LUAD), colorectal
cancer (COAD), stomach cancer (STAD), and acute myeloid
leukemia (LAML). Isoform-specific RNASeq analysis resolved splice
variants of EZH2 (Figure 2A).

Major EZH2 Cancer Transcript NM_001203247 Lacks
Extension of Exon 8, Hence Down-Stream Somatic Mutation
Target Location is at Y641

Next, we investigated the TCGA RNASeq dataset to identify
which isoforms of EZH2 were predominantly transcribed. Across the
TCGA PAN-cancer panel, the predominantly transcribed isoform is
mRNA transcript variant 3 [GeneBank:NM_001203247], 746
amino acids [GeneBank:NP_001190176], corresponding Uniprot
entry [Swiss-Prot:Q15910-1], lacking a short segment at the end of
exon 8 coding for 5 amino acids (Figure 2A). This is in contrast to
the longest and first described transcript variant 1 [Gene-
Bank:NM_004456], 751 amino acids [GeneBank:NP_004447],
corresponding Uniprot isoform 2 [GeneBank:Q15910-2], [18].
While consistently being the major transcript across TCGA
Pan-cancer as well as SKCM, Melanoma patients show 1.46-fold
higher expression of the major EZH2 transcript compared to the
TCGA Pan-cancer median in Z-tests with p-values below 1.0e-10
(Figure 2A). Patients with Y641 mutations share the common
transcript [GeneBank:NM_001203247] and no switching of the 5’
splice donor site of exon 8 was detected. Other alternative minor
transcripts detected in cancer lacked mRNA segments in exon 3, 4,
and 14 result in shorted isoforms, [GeneBank:NM_152998], 707
amino acids and [GeneBank:NM_001203248], 737 amino acids,

Figure 1. Distribution of somatic mutations in EZH2 in skin cutaneous melanoma (SKCM) and across Pan-cancer tissues of The Cancer
Genome Atlas (TCGA) project. (A) EZH2 has a high somatic mutation frequency in melanoma of Pan-cancer tissues within TCGA. The
frequency of non-silent somatic mutations (number of observed somatic mutations divided by cohort size) in different human cancer
tissues within TCGA is sorted from most to least frequent. The fraction of affected protein domains of EZH2 is shaded white for DNMT
binding domain, dotted for CDYL binding domain, striped for CXC domain, and red for SET domain. Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma (DLBC) has a mutation frequency of 14.6% exceeding the chosen y-axis range. Tildes indicate truncation of the DLBC
data, while maintaining the relative domain distribution of observed DLBC mutations in DNMT and SET domains. TCGA Pan-cancer
average across 6506 specimens is displayed at the very right of panel. (B) Isoform-specific transcripts of EZH2 affect numbering of
somatic mutations in the C-terminal SET domain. Total amino acid count, NCBI Gene ID, amino acid difference to isoform
NM_001203247, exon usage, and numbering of tyrosine in the SET-domain are provided. Somatic mutation observed in cDNA positions
c.1936-1938 are boxed. (C) Somatic mutations of EZH2 in TCGA melanoma and Pan-cancer cohorts are plotted onto its amino acid
sequence as filled and empty diamonds, respectively. Amino acid residues with recurring mutations across TCGA Pan-cancer tissues are
shown as stacks of multiple diamonds: Y641 in red has three recurrences in melanoma, and two in lymphoma; D185H, R497Q, Q540P/*,
K660E/R, and E740K/fs, each have recurrences in TCGA Pan-cancer.
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which did not affect the SET-domain. Given the consistent and
predominant transcriptional pattern of EZH2, we recommend
cataloging of isoform [GeneBank:NM_001203247] as canonical
transcript (Figures 1B and 2A). Numbering according to this
transcript identifies the recurring somatic mutation in the SET-
domain as Y641 (Figure 2B).

Significant Copy Number Gain of EZH2 in Melanoma
In addition to activating somatic mutations, TCGA melanoma

patients showed strong somatic copy number alterations of EZH2
(Figure 3A). The EZH2 locus is over-expressed at the level of somatic
copy number alterations (5.0% significant SCNA gain with a q-value
below 0.01), which is higher than the TCGA Pan-cancer average of
1.8% (Figure 3A, Supplementary Table 2). The EZH2 locus at band
7q36.1 chr7:148,504,464-148,581,441 is in close proximity (8Mbp)
to BRAF [GeneBank:673] and CDK5 [GeneBank:1020]. These and
other proto-oncogenes share a hotspot at the end of the q-arm of
chromosome 7 which is implicated in a significant amplification event
with q-values below 10e-05 at a frequency of more than 50% for
WGS (120 patients) and SNP-arrays (471 patients) (Figure 3B).
Transcriptional levels of EZH2 are also increased in a subset of
melanoma patients and 14.2% of patients showed differentially
upregulated RNASeq levels. As expected, SCNA amplification of
EZH2 correlates with mRNA upregulation and patients with SNCA
gains showed increased EZH2 expression at the RNASeq level
(Figure 3C). In comparison to Pan-cancer levels, the normalized
RNASeq reads of EZH2 of SKCM patients are elevated by 46.7%
(Figure 2A). Further, the pattern of SCNAs in melanoma is tightly
linked to its mutational signature and tumor samples of patients with
EZH2 and BRAF mutations are significantly enriched in somatic
copy number amplifications with p-values below 0.05 and q-values
below 10e-05 in comparison to BRAF wild type status (Figure 3C).

EZH2 activation correlates with decreased patient survival (Figure 4).
Kaplan–Meier curves of patients with EZH2 activating mutation,
EZH2 amplification, or high normalized RNASeq counts show
reduced patient survival of 1.8 years in comparison to curves of
patients with EZH2 wild-type status (Figure 4A). RNASeq expression
levels of EZH2 correlate with reduced overall median survival of
melanoma patients of 1.8 years (Figure 4B).

Multi-Omics Study of Cancer Patient Data Correlates
Epigenomic Silencing, DNA Hypermethylation, and Tran-
scriptional Derepression by EZH2

We sought to identify EZH2 target genes in melanoma by combining
three separate data sets. We combined gene transcription and DNA
methylation data from the SKCM cohort in the TCGA with our own
gene expression data based on response to small molecule inhibition of
EZH2 in melanoma cell lines with activating mutations (Figure 5).

In SKCM, about 1/5th of the patient cohort is affected by somatic
mutations, somatic copy number amplification, or transcriptional
upregulation of EZH2. These tumors were considered likely to have
high EZH2 activity and were compared to all other SKCM tumors.
Comparing these cohorts, we overlaid gene sets of the TCGA SKCM
transcriptome and methylome data looking for genes with both
decreased expression and increased DNA methylation (Figure 5, A–B).
In addition to histone tri-methylation, which compacts chromatin
structure and represses transcription, EZH2 recruits DNA methyl-
transferases to methylate DNA and thereby enhances transcriptional
repression. We therefore considered that EZH2 target genes would
show decreased transcription and increased DNA methylation levels in
the patient tumor data. To further increase confidence that these were
EZH2 targets, we combined these results with expression array results
from melanoma cells treated with the EZH2 inhibitor GSK126
[PubChem CID:68210102] (Figure 5, A–C).

Figure 2. Isoform-specific RNASeq data across PAN-cancer panel assigns recurring somatic mutation of EZH2 in cancer to Y641 in center
of SET domain. (A) Distribution of RNASeq data show isoform-specific counts for PAN-cancer and TCGA SKCM patients across 12633 and
458 specimens, respectively (somatic genotype and TCGA patient ID are indicated). Transcript NM_001203247 is the predominant
isoform of wildtype and somatically mutated EZH2. We recommend mRNA transcript NM_001203247 and its corresponding 746 amino
acid-long protein as canonical sequence framework. Asterisk indicated significant difference by Z-test with p-value below 1.0e-10
between isoforms or between TCGA Pan-cancer and SKCM cohorts. (B) The residue with the most frequent recurring somatic mutations
of the polycomb repressive complex in SKCM (as well as in TCGA) is residue Y641 located in the active site of the SET domain of EZH2
plotted on ribbon structure of 4mi0.pdb.
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As expected, patients with high EZH2 activity had differentially
expressed genes that were mostly decreased (55.8% down) (Figures 5B,
6). Specifically, there were 2052 of 18088 transcripts differentially
down regulated. Heatmaps of RNASeq data of top 50 genes with
somatic EZH2 alterations visualize the transcriptional response
(Figure 6). Also as expected, these patients showed mostly increased
gene hypermethylation (74.7% up)—consisting of 82639 (61703 up,
mapped to 12125 genes) of 485577 CG islands (Figure 5B).
Following treatment of melanoma cells with EZH2 inhibitor

GSK126, H3K27me3 levels are expected to be decreased leading to
increased transcriptional levels of EZH2 target genes. We performed
protein immunoblotting to analyze the impact of EZH2 on
H3K27me3 levels in melanoma cell lines. Common to all tested
melanoma cell lines was presence of H3K27me3 that could be
reduced by the EZH2 inhibitor GSK126 (Figure 7A). GSK126 is a
competitive inhibitor of EZH2’s methyltransferase activity that does
not degrade EZH2 protein. Cell lines with active site mutations in
the SET domain at Y641 had elevated H3K27me3 levels compared
to wild-type cells. Upon treatment with GSK126, all tested cell lines
had strongly reduced H3K27me3 levels (Figure 7A). In our
experiments 539 transcripts showed significantly deregulated gene

expression following GSK126 treatment with log2-fold changes
above 2 and p-values below 0.05 (Figure 5B). 74.6% (402) of the
deregulated genes were increased. Candidate EZH2 target genes were
taken to be those both repressed in the SKCM cohort with EZH2
amplification or activation (threshold p-value below 0.05) and
increase of transcription in melanoma cells following EZH2
inhibition by GSK126 (p-value below 0.05). The overlap of
TCGA and drug response transcriptomes resulted in 98 responsive
genes, of which 65 genes also showed DNA hypermethylation in
TCGA tumors with high EZH2 activity (Figure 5B and C,
Supplementary Table 3). These 65 candidate EZH2 target genes
in melanoma included CDKN1A [GeneBank:1026] (Figures 7, B–
C and 8), NDRG1 [GeneBank:10397], NFKB2 [GeneBank:4791],
NFKBIA [GeneBank:4792], EPAS1 [GeneBank:2034], JUN [Gen-
eBank:3725], JUND [GeneBank:3727], FOS [GeneBank:2353],
FOSB [GeneBank:2354], IRF9 [GeneBank:10379], ITGA3 [Gene-
Bank:3675], PLCG2 [GeneBank:5336], BCL6 [GeneBank:604],
BOK [GeneBank:666], CD74 [GeneBank:972], HLA-A [Gene-
Bank:3105], HLA-B [GeneBank:3106], HLA-DPA1 [Gene-
Bank:3113], and HLA-F [GeneBank:3134] (Figure 8,
Supplementary Table 4).

Figure 3. Somatic copy number amplification of EZH2 results in hyperactivation of methyltransfer activity of EZH2. (A) EZH2 is
predominantly amplified at the somatic copy number level across a comprehensive panel of TCGA Pan-cancer patients. Frequency of
EZH2 somatic copy number alterations (SCNAs) is shown in red for amplifications and white for deletions. Ovarian serous
cystadenocarcinoma (OV) has a SCNAs frequency of 11.4% exceeding the chosen y-axis range indicated by tilde. TCGA Pan-cancer
average across 9833 specimens is displayed at the very right of panel. (B) Amplification of chromosome band 7q includes EZH2 and other
oncogenes. Segmented SNP array data of 8 representative patients is plotted relative to genomic coordinates. Bands 7q35 and 7q36 are
framed on chromosome 7 and exonic regions of EZH2 are highlighted in red. Significance threshold of q = 0.01 is indicated as black line.
(C) Somatic copy number alterations of EZH2 are plotted against the mRNA expression level of EZH2. Status of somatic copy number
alterations are classified as deep deletions (SCNA I), shallow deletions (SCNA II), diploid (SCNA III), gain (SCNA IV), or amplification (SCNA
V). Somatic copy number amplification is marked with red bar below data points. Deletions are circled in blue, amplifications in red.
Patients with EZH2 mutations are highlighted as filled cyan circles and those with the Y641 mutation are shown as large red circles.
Patients with BRAF mutations are marked with filled yellow circles.
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Multi-Omics Study Shows Enrichment of Transcriptional
Silencing of Important Tumor Suppressors, Differentiation
Factors, and Immune Response Genes

In order to assess any potential functional impact of high EZH2
activity in melanoma, we conducted a gene enrichment analysis of the 65
candidate EZH2 target genes derived from the above analysis. A KEGG
pathway analysis showed that these candidate genes were significantly
enriched in pathways deregulated in cancer including CDKN1A,
NFKB2, NFKBIA, EPAS1, JUN, FOS, ITGA3, and PLCG2 (KEGG
ID:05200; p-value = 6.33e-08; Supplementary Table 5). In addition,
genes involved in antigen processing and presentation were significantly
enriched (KEGG ID: 04612; p-value = 1.02e-05; Supplementary Table
5). We conducted a motif search of corresponding promotor and
transcription start sites to identify transcriptional cooperation of PRC2.
The identified target genes share a purine-rich motif of GGA(G/A)(G/A)
at their promotors typical for recognition by E2F-related factors. We
further assessed the DNA methylation pattern of this test group of
silenced target genes. Unsupervised hierarchical clustering of their DNA
methylation pattern recapitulated EZH2 status (Figure 9). The effect on
DNA methylation was particularly pronounced in patients with
activation mutations of EZH2 (Figure 10). Specifically we analyzed all
CpG markers with significant elevation of methylation in patients with
enhanced somatic EZH2 activity. The relative locations of methylation
revealed accumulation of methylation sites at the transcription start site of
candidate target genes. Besides chromatin histone tri-methylation by
somatically activated EZH2 (Figure 7, Supplementary Table 4), such
DNA hypermethylation pattern contributes to dampening the transcrip-
tional response of affected target genes (Figures 6, 9, and 10).

Activating Somatic Mutations of EZH2 Y641 Contribute to
Melanomagenesis by Tumor Suppressor Gene Silencing

Of the identified genes, we selected CDKN1A for characterization by
RT-qPCR and western blot analysis (Figure 7). EZH2 may exhibit its

oncogenic potential through CDKN1A by transcriptionally downregu-
lating its gene product, the tumor suppressor and cell cycle regulator p21
(Figure 7B) [17,19]. While EZH2 is absent or lowly expressed in human
epithelial melanocytes (HEM) or human dermal fibroblasts (HDF), it is
highly expressed in melanoma cells MELJD, ME1007, KMJR138
(Figure 7B). We were able to identify three cellular melanoma models,
IGR1, C001, and MM386, which recapitulate the Y641 point
mutations. All three melanoma cell lines showed evidence of expression
of EZH2 at the protein level (Figure 7A). The gene product of CDKN1A,
p21, is absent in melanocytes but present in melanoma cells. In stark
contrast, melanoma cell lines with activating EZH2 mutations show
absence of p21 (Figure 7B). Using a small molecule EZH2 inhibitor, we
monitored the transcriptional response of CDKN1A by RT-qPCR.
MM386 and IGR-1 cells showed a dose dependent upregulation of
CDKN1AbyRT-qPCR (Figure 7C), following treatment withGSK126,
which is a competitive inhibitor of EZH2smethyltransferase activity [20].
Taken together, the transcriptional reactivation of CDKN1A following
EZH2 inhibition by GSK126 shows reversal of the transcriptional
silencing observed with activating EZH2 mutations.

Interaction of EZH2 With DNA Remodelers
Lastly, we sought to investigate if EZH2 alterations co-occur with

changes to other DNA remodelers. Overexpressed in many types of
cancers, EZH2 is postulated to exert its oncogenic effects via aberrant
methylation, causing silencing of tumor suppressor genes. It
tri-methylates histones, ultimately causing gene repression by
chromatin condensation thus blocking access of gene promotors to
transcription initiation machinery and facilitates DNA methylation.
The group of PRC genes, EZH1 [GeneBank:2145], EZH2
[GeneBank:2146], EED [GeneBank:8726], SUZ12 [Gene-
Bank:23512], RBBP4 [GeneBank:5928], RBBP7 [GeneBank:5931],
as well as PRC-associated DNMTs show high enrichment of somatic
mutations affecting 10.5% and 15.5%, respectively of 343 patients

Figure 4. EZH2 is activated in melanoma and correlates with adverse patient survival. (A) Kaplan–Meier curves show shorter survival of
TCGA SKCM patients with activated EZH2 (red) compared to patients with EZH2 wild-type status (blue). Median overall survival is
indicated as dashed line (2.2 years post diagnosis for EZH2 activation defined as EZH2(Y641) mutation, SCNA amplification, or RNASeq
upregulation; 3.0 years post diagnosis for EZH2 wild-type status; log-rank test p-value below 0.05). Survival record of patient with
EZH2(Y641N) mutation is highlighted as dotted yellow line. RNASeq expression levels of EZH2 correlate with reduced overall median
survival of melanoma patients. Patients with high EZH2 normalized RNASeq counts (red, top 20% of transcripts, median overall survival
2.2 years post diagnosis) show shorter survival in comparison to low EZH2 transcript levels (blue, bottom 20% of transcripts, median
overall survival 4.0 years post diagnosis, log-rank test p-value below 0.05).
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with whole exome sequencing data. The mutational signature of
EZH2 (5.04% of SKCM patients) (Figure 1A) is mutually exclusive
to non-synonymous somatic mutations in DNMT3A [Gene-
Bank:1788] (occurring in 2.88% of patients) or DNMT3B
[GeneBank:1789] (4.68% of patients) with an odds-ratio of 3.8,
but is not strictly mutually exclusive to DNMT1 [GeneBank:1786]
mutations (6.47% of patients) (Figure 10). EZH2-D142V in the
DNMT binding domain and DNMT1-I531R co-occur as well as
EZH2-C535W and DNMT1-R1466C. Further somatic mutations
of PRC-associated DNMTs occur in methyltransfer domains,
replication foci domains, and bromo-adjacent homology domains
displaying an EZH2-distinct route of epigenetic changes in cancer.
The mutual exclusivity (reflected in all cancers including blood-
derived cancer with high EZH2 alterations LAML, acute myeloid
leukemia, and DBLC, Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma) points towards a potential mechanism of somatic
mutations in PRC2 driving cancer through EZH2 or alternatively
DNMT3A/B (Figures 9, 10). Identification of genes whose
expression is specifically modulated by EZH2, DNMT1 vs
DNMT3A/B, and combination of EZH2 and DNMT inhibitors
are the next logical steps in this line of research. Taken together,
amplified methylation patterns as observed in EZH2-activated
patients are part of the transcriptional response of affected target
genes and regulate gene clusters critical for oncogenic signaling.

Discussion
This analysis on the large SKCM dataset from TCGA appears to have
revealed several hitherto unappreciated aspects of EZH2 biology in
melanoma. Although the analysis verified that activating mutations of
EZH2 are relatively uncommon [15] when added to copy number

Figure 5.Multiomics analysis of EZH2 activation across different platform combined with responsiveness to drug treatment inmelanoma.
(A) The histone methyltransferase EZH2 transcriptionally silences target genes by tri-methylation of histone 3 K27. Cooperation with DNA
methyltransferases helps manifest the transcriptional inactivation. 88 patients with EZH2 somatic mutations, somatic copy number
amplification, and/or somatic mRNA upregulation were combined into a subhort comprising about 20% of all patients. Melanoma cells of
TCGA patients with activating somatic mutations of EZH2(Y641) were cultured and subjected to a drug response assay using the EZH2
inhibitor GSK126. (B) Three genomics datasets, TCGA RNASeq, TCGAMethylSeq, and microarray of the drug response of cell lines, were
filtered by p-value threshold below 0.05 and sorted by significantly up or down regulation. (C) EZH2 target genes show overlap of
transcriptional silencing, DNA methylation, and responsiveness to drug exposure.
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gains and amplification of gene expression the number of patients
with dysregulation of EZH2 approaches 20% of patients (88 of 471
patients). Pathological hyperactivity of EZH2 can arise from somatic
amplification persisting at the transcriptional level or from somatic
mutations but both events eventually result in a disruption of the
epigenetic homeostasis. By looking into isoform-specific RNASeq
data of more than 12,000 patients we were able to map the major
cancer transcript [GeneBank:NM_001203247] of EZH2, which is
an essential step to unambiguously identify non-synonymous somatic
mutations. Irrespectively of lengths of N-terminal domains, somatic
mutations across different cancers hit a unique phosphorylation site in
the center of the SET domain resulting in hyperactivation and
increased tri-methylation activity. Somatic Y641 mutations correlate
with hypermethylation and lead to prominent gene suppression in the
TCGA dataset. Patients with somatic copy number amplifications of
EZH2 showed a similar functional impact: gene suppression was
most pronounced in cases where SCNA events translated to
significant upregulation of EZH2 transcripts. Importantly, the
SCNA event amplifying EZH2 impacts a broad genomic environ-
ment including CREB3L2 [GeneBank:64764], KIAA1549 [Gene-
Bank:57670], KDM7A [GeneBank:80853], BRAF [GeneBank:673],
CDK5 [GeneBank:1020], and KMT2C [GeneBank:58508]. This
suggests that a broader genomic context of chromosome 7 is functionally
important for the tumor instead of a focal event amplifying an isolated
proto-oncogene in melanoma. Our analysis identified a coincidence of
BRAF activation with EZH2 amplification providing a mechanistic link
for previous studies, which showed an association between BRAF
mutations and DNA hypermethylation [21].

Abnormal DNA methylation of CpG markers is a well-known
epigenetic feature of cancer [22]. Melanoma exhibits global
hypomethylation within the bulk genome and local hypermethylation
at specific tumor suppressor genes [23,24]. Gene-specific DNA
hypermethylation might serve as classifier for melanoma, as studies
indicate that multilocus DNA methylation signature genes may
differentiate melanomas from nevi [25]. The characterized and
confirmed candidate target genes susceptible to reversible EZH2
histone modification upon drug treatment agreed with the
transcriptional signature of TCGA SKCM patients with EZH2
hyperactivity. The majority of the 98 candidate target genes also
showed high levels of DNA methylation. This is consistent with
suggested concerted action of histone modifiers and DNA methyl-
transferases at the epigenomic level resulting in transcriptional
repression [2]. Methylation data in TCGA showed that DNA
methylation appeared to be the common cause of gene suppression
associated with EZH2. This may not be that surprising given that
DNA methyltransferases DNMT1, DNMT3A, and DNMT3B are
closely associated with polycomb repressive complex 2 and are
required for epigenetic modifications [1,3]. The mechanism of
suppression of genes not associated with DNA methylation may
represent transcriptional repression resulting from EZH2 mediated
histone methylation but was not further explored in this analysis.

Recent studies in murine melanoma models and human melanoma
cultures have supported a role for EZH2 in the proliferation and
metastasis of melanoma and have linked these properties to expression
of possible suppressor genes identified in TCGA [10–14]. Gene
expression studies carried out on melanoma lines with known

Figure 6. Activation of EZH2 and pattern of transcriptional silencing in melanoma. 88 of 470 cases in the skin cutaneous melanoma
dataset show somatic mutations, somatic copy number amplification, or upregulation of transcription of EZH2. Top 50 genes are shown
for patients with EZH2 alterations vs patients with EZH2 wild-type status. Transcripts show significant deregulation with p-values below
1.0e-04. RNASeq transcription levels are shown as log2 normalized heat map from low values in blue to high values in red according to
color scheme legend. Somatic EZH2 status is indicated in red in the first three rows. Activating somatic mutations of Y641 in EZH2 are
highlighted in yellow in the first row.
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activating mutations of EZH2 before and after treatment with the
GSK126 inhibitor were a valuable resource to identify genes linked to
EZH2 activation in the TCGA data set and allowed for detailed study
of their epigenetic DNA makeup in SKCM patients. The test group
of silenced candidate target genes recapitulated EZH2 status in
unsupervised hierarchical clustering of their DNA methylation

pattern and revealed accumulation of methylation sites at the
transcription start site of candidate target genes.

The tissue-specific effector genes of the histone modifier EZH2 vary
greatly. In vitro studies of cancer cell lines recapitulating activating Y641
mutations show a more than three-fold increase of tri-methylation of
H3K27me3, a histone mark connected with gene silencing [11–14].
Activated EZH2 is associated with decreased transcription of tumor
suppressor genes as well as antigen presentation in melanoma patients.
Gene enrichment analysis of the genes combined from the GSK126
inhibitor studies with that of genes repressed in the TCGA dataset
identified genes with well-known tumor suppressor activity, regulation of
cell division, invasion and metastases. JUN, JUND, FOS, and FOSB
implicated in our study are part of the AP-1 transcription factor complex
that induces differentiation. EZH2 knockout studies inmice showed that
in early development, EZH2 in the skin prevents premature AP-1
binding and maintains the epidermal progenitors until the precise
moment differentiation is appropriate, sparked by a decline in EZH2
[26,27]. It has been suggested that aberrant EZH2 activity in cancer
maintains the cells in a stem like state, therefore EZH2 inhibitors may
represent a strategy to induce differentiation and repress tumor growth.
Transcription of putative targets CDKN1A, BCL6, BOK,NDRG1, and
NFKB is significantly reduced in SKCM patients with EZH2 activation.
Although involved in different signaling axes—oftenwith feed-back loops
and dual impact in tumor promotion and suppression—these important
regulators have in common that they can promote proliferative events, if
suppressed [28].

We were able to confirm transcriptional reactivation of the tumor
suppressor CDKN1A in EZH2 Y641 mutated melanoma cells, using
an EZH2 inhibitor. CDKN1A encodes the cyclin dependent kinase
inhibitor p21, which activates multiple tumor suppressor pathways
including cell cycle arrest, differentiation and cellular senescence.
These findings are consistent with a previous report that demon-
strated EZH2 depletion in melanoma lead to reactivation of p21 and
inhibited the growth of xenografts in mice [17,19]. Patients with
activating EZH2 mutations, show hypermethylation and transcrip-
tional silencing of the tumor suppressor CDKN1A resulting in
absence of p21, the gene product of CDKN1A. Inhibition of EZH2
by small molecule drugs reactivates CDKN1A and illustrates how
epigenetic control by EZH2 can regulate the plasticity of melanoma.

An unexpected finding was the repression of many genes associated
with immune responses in patients with EZH2 dysregulation.
However, this is consistent with increasing appreciation that activated
EZH2 is associated with decreased transcription of genes involved in
antigen presentation in melanoma patients. Recent data suggests that
specific oncogenic signals can mediate cancer immune evasion and
resistance to immunotherapies [29] and specifically EZH2 can
dampen the anti-tumor immune response via repression of MHC-II
genes [30,31]. In support of this we identified downregulation of
CD74 [GeneBank:972], an important chaperone that associates with
MHC-II to regulate antigen presentation for immune responses, in
addition to chemokines/chemokine receptors, CCL28 [Gene-
Bank:56477], CCL3L1 [GeneBank:6349] and CCR7 [Gene-
Bank:1236], known to activate T cells and B cells [29].
Modulation of immune potentiation via epigenetic signals may
point toward new candidate targets for melanoma treatment. A group
of human leukocyte antigen (HLA) genes stood out as enriched
cluster in transcriptomic and epigenomic analysis. HLA genes
controlled by epigenetic pattern may contribute to observed
regulation and diversity of neoantigens in melanoma [32].

Figure 7. Histone methylation of H3K27 is reversible and
responsive to EZH2 inhibition in melanoma cells. (A) Western
blot analysis of EZH2 and H3K27me3 levels in melanoma cell lines
withWT EZH2 status (right) and melanoma cell lines with activating
Y641 mutations (left) in absence or presence of 48 hour treatment
with 7.5 μM GSK126, a small molecule inhibitor of EZH2 activity.
Hypermethylation of H3K27 of melanoma cells is reversible and
responsive to EZH2 inhibitor treatment. (B) Activating mutations of
EZH2 are associated with silenced CDKN1A expression in
melanoma cell lines. Western blot analysis of EZH2 and CDKN1A
expression in normal melanocytes and fibroblasts (left), melanoma
cell lines with WT EZH2 status (middle), melanoma cell lines with
activating Y641 mutations (right). Blots are from separate mem-
branes developed at the same time. (C) Expression of CDKN1A
following 48 h of treatment with increasing doses of EZH2 inhibitor
GSK126. RT-qPCR values are relative to vehicle treated control
(DMSO) normalized to 1.
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Conclusion
In summary these studies indicate that dysregulation of EZH2 is a
relatively common occurrence in patients with melanoma and that
this has negative implications for patient survival. Somatic events
across different omics levels were associated with repression of genes
involved in suppression of tumors as well as immune responses
against cancers. The isoform-specific RNASeq analysis unambigu-
ously identifies the major transcript of EZH2 and the copy number
analysis shows functional amplification events of EZH2 across
melanoma patients. The data also suggests that the previously
described association of BRAF V600 mutations with methylation of
DNA may be linked to overexpression of closely associated regions on
chromosome 7. Repression of the EZH2 target genes appears to be
largely due to both tri-methylation of H3K27 as well as methylation
of DNA and this provides a basis for investigating combinations of
both EZH2 and DNA methyltransferase inhibitors in patients with
over expressed EZH2. Taken together, the PRC2 displays enhanced
activity in melanoma. Hyperactivation of EZH2 by somatic copy
number amplification, activating somatic mutations, or transcrip-

tional upregulation correlates with DNA methylation and epigenetic
silencing of genes involved in tumor suppression and immune
responses in melanoma. Further studies are needed to determine
whether inhibitors of EZH2 may also have a role immunotherapy
with checkpoint inhibitors. Sophisticated chromatin immunoprecip-
itation experiments will closely decipher interaction of EZH2 with its
target genes, chromatin modifiers and DNA methyltransferases.
Taken together, EZH2 and its associated chromatin remodeling
machinery represent a promising opportunity for therapeutic
intervention in melanoma.
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Figure 8. Inhibition of EZH2 with GSK126 reverses transcriptional silencing caused by somatic amplification or activating mutations of
EZH2 in melanoma. Transcriptional suppression is observed in RNASeq data of SKCM patients with EZH2 amplification or activation (red
frame, negative log2 fold changes). Presented genes showed increased levels of DNA methylation. Transcriptional suppression is
reversed in microarray data of melanoma cell lines with activating Y641 mutations following treatment with EZH2 inhibitor (blue frame,
positive log2 fold changes). Asterisk symbol below transcriptional data indicates significant deregulation of log2 fold changes with
adjusted p-values below 0.05 threshold.

Figure 9. CG methylation markers recapitulate EZH2 activation patterns. Unsupervised hierarchical clustering of methylation markers of
461 patients aligns with EZH2 status. Presence of EZH2 activation is indicated as red bars on top of plot. EZH2 mutations, amplifications
or mRNA upregulation are labelled in the first three rows.
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Chapter Four: Refinement of the androgen response element based on ChIP-Seq in 
androgen-insensitive and androgen responsive prostate cancer cell lines. 

Transcription factor binding sites are sequence specific features present in 
promoters or enhancers of genes targets. Typically when performing a Chromatin 
immunoprecipitation sequencing (ChIPSeq) experiment on a transcription factor, a motif-
based analysis is applied to identify its sequence specific binding sites to help verify its 
authenticity. This study applies model base search of the androgen receptor (AR) 
response element in androgen-insensitive and androgen-responsive prostate cancer cell 
lines. The 120,000 identified binding sites were classified based on their degeneracy, 
transcriptional involvement, oncogenic AR splice-variants, somatic copy number 
amplifications, and steroid treatment. This study refines the AR motif, and describes a 
workflow for optimizing response element identification in genomic sequences. Within 
this paper I provided the computational analysis of the data found in figures 1-3,5-7. 
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Refinement of the androgen 
response element based on  
ChIP-Seq in androgen-insensitive 
and androgen-responsive prostate 
cancer cell lines
Stephen Wilson1, Jianfei Qi2 & Fabian V. Filipp1

Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for 
proteins such as transcription factors or DNA modifying enzymes. The androgen response element 
(ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the 
androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined  
AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate 
cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for 
expansion and refinement of the ARE. We classified AREs according to their degeneracy and their 
transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy 
number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 
99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional 
outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating 
transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable 
transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the 
transcriptional influence of ARE half sites can be modulated by cooperating factors.

Prostate cancer is the most common malignancy in American men1,2. Although localized prostate cancer is 
curable by surgery, the primary treatment for metastatic prostate cancer remains androgen deprivation therapy 
(ADT). However, the success of ADT is not guaranteed. Despite an initial response, advanced prostate cancer 
develops almost invariably resistance to ADT and progresses to a lethal disease stage called castration-resistant 
prostate cancer (CRPC). Thus, understanding the mechanisms underlying the development of CRPC is of critical 
importance for basic and clinical research.

Reactivation of the androgen receptor (AR, GeneBank: 367) under low androgen condition is believed to 
drive the development of CRPC3,4. AR belongs to the nuclear receptor superfamily and plays an important role 
in the physiology of normal prostate gland and progression of prostate adenocarcinoma (PRAD). The AR gene is 
located on the X chromosome at Xq11-12 and contains eight exons encoding a 919 amino acid-long protein. The 
AR protein consists of an N-terminal transactivation domain (NTD), a central DNA binding domain (DBD), a 
hinge region, and a C-terminal ligand-binding domain (LBD)5. Unliganded AR is sequestered in the cytoplasm by 
a chaperone complex. Upon ligand binding to the LBD, AR changes its conformation, dissociates from the chap-
erone complex, dimerizes, and translocates into the nucleus. Once translocated into the nucleus the AR dimer 
binds to the androgen response elements (AREs) present in promoter or enhancer elements of its target genes, 
and recruits co-activators or co-repressors to regulate gene expression.
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Reactivation of the AR in CRPC can be due to changes of the AR or its steroid ligands6–12. Known alterations 
of the AR include somatic gene amplification and/or over-expression that increase AR mediated response to 
low androgen levels, AR mutations that change ligand specificity to allow for activation by other steroids, and 
generation of AR splice variants (AR-Vs) that lack the LBD and are constitutively active even in the absence of 
androgen. CRPC cells can also synthesize androgens themselves by conversion of testosterone derivatives or  
de novo by biosynthesis from cholesterol. Such intra-tumoral androgen synthesis permits maintenance of certain 
intracellular androgen levels and results in reconquered mitogenic AR activity13–15.

Studies of AR chromatin binding by chromatin immunoprecipitation (ChIP) approaches like ChIP-on-chip 
or ChIP in combination with next generation sequencing (ChIP-Seq) have shed light onto the mechanisms of 
global regulation of AR activities in prostate cancer cell lines or tissues. Most AR chromatin binding studies were 
performed in the LNCaP cell line or its sublines3,4,6,7,9–12, which are highly sensitive and responsive to andro-
gen stimulation. LNCaP or its sublines express a full-length AR with point mutation of T877A at the LBD16. 
In contrast, there are limited studies on global AR binding in the CWR22Rv1 cell line4,8, another AR-positive 
but androgen-insensitive PRAD cell line. The CWR22Rv1 prostate cancer cell line expresses AR full-length 
(AR(FL)) with a duplicated DBD in exon 317–19 and an AR splice variant, AR(V), lacking a LBD, thus becoming 
constitutively active4,8,11,20. In contrast to the LNCaP cell line where the AR depends on androgen activation, the 
CWR22Rv1 cell line shows constitutively active AR with limited changes in expression of AR target genes in the 
presence or absence of androgens19,21.

AREs are well studied but poorly defined and have been shown to contain two hexamers with a three base-pair 
spacer with an inverted repeat in the second hexamer22. The sequence elements similar to this canonical ARE 
have been identified in some ChIP-Seq studies, whereas half AREs or tandem repeats of two hexamers were also 
found in other ChIP-Seq or ChIP-on-chip studies. In the past, studies revealed binding motifs adjacent to the AR 
binding sites but belonging to other transcription factor families such as the forkhead box A1 protein (FOXA1, 
GeneBank: 3169). Cooperative interactions facilitate chromatin binding of the AR and contribute to a promiscu-
ous behavior of AREs23–25. AREs and adjacent transcription binding motifs have been well described in LNCaP 
cells but remain to be defined in CWR22Rv1 cells. Therefore, the purpose of our AR ChIP-Seq study is to further 
characterize the ARE and identify cooperation with adjacent transcription binding motifs in androgen-responsive 
and androgen-insensitive prostate cancer cell lines.

Methods
Cell culture. CWR22Rv1 is a human prostate carcinoma epithelial cell line derived from a xenograft that was 
serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent 
CWR22 xenograft26,27 (CRL-2505, American Type Culture Collection, Manassas, VA). The CWR22Rv1 prostate 
cancer cell line was kindly provided by Dr. James Jacobberger (Case Western Reserve University, Cleveland, 
OH), and are maintained in RPMI 1640 medium supplemented with 10% FBS and antibiotics. Cells are regularly 
tested to ensure that they are mycoplasma-free. All experimental protocols were approved by the Institutional 
Review Board at the University of California Merced. The study was carried out as part of IRB UCM13-0025 of 
the University of California Merced and as part of dbGap ID 5094 on somatic mutations in cancer and conducted 
in accordance with the Helsinki Declaration of 1975.

Knockdown of AR with shRNA. Lentiviral vectors encoding AR shRNA were purchased from Open 
Biosystems, and packaged in 293T cells by the calcium phosphate transfection. The supernatant containing lenti-
viral particles were collected 48 hours after transfection. CWR22Rv1 cells were transduced with the supernatant 
of lentiviral particles in the presence of polybrene (8 µ g/ml) for 24 hours before replacement with the fresh growth 
media. Cells were analyzed at 72 hours post-transduction. The knockdown efficiency was confirmed by quantita-
tive real time polymerase chain reaction (qRT-PCR) and Western-blot analysis (Supplementary Figure 1).

qRT-PCR analysis. Total RNA from prostate cancer cells was extracted using a mammalian RNA mini 
preparation kit (Sigma, GenElute, RTN10, Darmstadt, Germany) and then digested with deoxyribonucle-
ase I (Sigma, AMPD1, Darmstadt, Germany). Complementary DNA (cDNA) was synthesized using random  
hexamers. Triple replicate samples were subjected to SYBR green (SYBR green master mix, Qiagen SABiosciences) 
qRT-PCR analysis in an Eco system (Illumina, San Diego). Gene expression profiles were analyzed using the ∆∆CT  
method. RT QPCR threshold cycle (CT) values were normalize the housekeeping gene cyclophilin A (PPIA, 
peptidylprolyl isomerase A, GeneBank: 5478). The following primers served for qRT-PCR analysis of human 
gene transcripts: PPIA: 5′ -GACCCAACACAAATGGTTC-3′ ; 5′ -AGTCAGCAATGGTGATCTTC-3′ ; AR:  
5′ -CTCCGCTGACCTTAAAGACATC-3′ ; 5′ -TGCCCCCTAAGTAATTGTCCTT-3′ .

Western-blot analysis. Whole cell lysates were harvested using radio-immunoprecipitation assay (RIPA) 
buffer composed of 50 mM trisaminomethane hydrochloride (Tris-HCl) pH 7.5, 150 mM sodium chloride 
(NaCl), 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS), 0.1% sodium deoxycholate, 1.0 mM EDTA, 
1.0 mM sodium orthovanadate, and 1x protease inhibitor cocktail. Lysates were subjected to sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and proteins transferred to a nitrocellulose membrane 
(GE Healthcare Life Sciences). The membrane was probed with an AR antibody (Sigma EMD Millipore, PG21, 
06-680, Darmstadt, Germany) or actin antibody (Sigma EMD Millipore, A2066, Darmstadt, Germany) followed 
by a secondary antibody conjugated to fluorescent dye, and blots were imaged using the odyssey detecting system 
(LI-COR Biotechnology).

Chromatin immunoprecipitation. Cells were crosslinked using 1% formaldehyde for 10 min at 298 K. 
Formaldehyde was diluted to a final concentration of 125 mM by adding 5 M glycine. Nuclear extracts were collected 
and sonicated to obtain 300 bp chromatin fragments using the Covaris S2 ultrasonicator (Covaris, Woburn, MA).  
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100 µ g of chromatin was incubated with 5.0 µ g of AR antibodies (Sigma EMD Millipore, PG21, 06–680, 
Darmstadt, Germany) overnight at 277 K followed by incubation with 30 µ l of protein A/G beads for 4 hours. 
After four washes, crosslinking was reversed, and chromatin was digested with ribonuclease A (RNaseA) followed 
by proteinase K. The DNA was purified using spin columns. The size of the DNA was confirmed by a bioanalyzer 
(Agilent Biotechnologies, Savage, MD).

Next generation sequencing and ChIP-seq data analysis. The purified DNA library was sequenced 
using an Illumina HighSeq2000 at the Sanford-Burnham Medical Research Institute, National Genome Library 
Core Facility (Lake Nona, FL). This study included next generation sequencing reads of ChIP-Seq experiments 
of the androgen-independent CWR22Rv1 cell line as well as of the androgen-dependent LNCaP cell line. For 
the CWR22Rv1 cell line27 we acquired total AR binding by ChIP-Seq. In addition, we compared the data to AR 
splice variant-specific isoforms AR(FL) and AR(V) as described28. For the LNCaP cell line29 we assessed con-
ditions of testosterone and ethanol treatment as described30. Sequenced regions were aligned to the reference 
human genome 19 using the Bowtie alignment program that utilizes an extended Burrows-Wheeler indexing 
for an ultrafast memory efficient alignment31. Peak calling utilized a model-based analysis of ChIP-Seq (MACS) 
algorithm32,33. The overlap analysis, plot of genomic location, sequence extraction, motif identification, and peak 
filtering were performed using ChIPseek: a web-based analysis for ChIP data34. ChIPseek also employs scripts 
from BEDtools35 using a genome binning algorithm used by the UCSC genome browser to sort genomic regions 
into groups along the length of chromosome36. Data visualization was carried out using the integrative genomics 
viewer37. The tool genomic identification of significant targets in cancer (GISTIC), 2.0.2138, was used to identify 
genomic regions that are significantly gained or lost across a set of paired normal and tumors samples of 492 spec-
imen on Agilent SNP 6.0 gene expression microarrays G4502A_07_01. Arm-level amplification of HighSeq2000 
data was estimated and compared to near diploid averages39. Events whose length was greater or less than 50% of 
the chromosome arm on which they resided were called arm-level or focal events, respectively. Segmented level 
3 tumor copy number data relative to normal samples was used as input for GISTIC 2.0.21 and aligned to HG19. 
For significant loci and genes a cutoff q-value of 0.05 was applied.

Motif analysis based on position site specific matrix models. Computational response element 
searching algorithms are able to estimate a sequence’s likelihood in belonging to the response element of the 
query transcription factor using position site specific matrices where each position in the query transcription 
factor model gives each of the four letters in the DNA alphabet a score based on the probability of that nucle-
otide being found at that position (Supplementary Table S1)40. ChIP-Seq derived ARE motif logos are depos-
ited in transcription factor databases. Experimental transcription factor matrices based on 42956 and 79065 
ChIP-Seq AR-binding events for ARE full and half sites, respectively, are referenced under accession M08907 
and M08908 in TRANSFAC 2016.3, accession AR in Jaspar, and accession ANDR_HUMAN in HOCOMOCO. 
Summation into a logs-odd score is converted into a p-value assuming a zero-order background model, and all 
response elements less than the threshold are reported41. Motif discovery, motif enrichment, and motif scanning 
used the multiple expectation maximization for motif elicitation (MEME) and discriminative regular expression 
motif elicitation (DREME) suite software toolkits from a set of user supplied unaligned sequences for ChIP-Seq 
regions42. De novo motif analysis programs MEME and DREME identifies similar reoccurring DNA sequences, 
and allows easy submission genomic sequence databases to find similarity to previously studied DNA binding 
protein motifs43,44. After a motif of interest is discovered the genomic sequences of the ChIP sequenced data is 
scanned using the MEME suite software find individual motif occurrences (FIMO)41 for individual motif occur-
rences using a position specific matrix to compute a log-likelihood ratio score for each submitted sequence. 
The position specific matrix is used further to analyze the sequenced data for motif enrichment for identifying 
potential co-activators within the data45. Transcription factor complexes were inferred from ChIP-Seq data using 
spaced motif analysis (SPAMO)46.

Microarray analysis. CWR22v1 cells were transduced with lentiviral pLKO.1 control vector or AR shRNA 
for 72 h. Total RNA was isolated from cells, and 500 ng was used for synthesis of biotin-labeled cRNA using an 
RNA amplification kit (Ambion, Thermo Fisher Scientific, Waltham, MA). Biotinylated cRNA was labeled by 
incubation with streptavidin-Cy3 to generate a probe for hybridization with the GeneChip Human Transcriptome 
Array 2.0 (Affymetrix Inc, Santa Clara, CA). Four samples from two experimental groups (n =  2 per group) were 
hybridized to the chip to obtain raw gene expression data, which was processed to obtain raw data in the form of 
expression intensities. Raw data was then exported for further processing and analysis using R statistical software 
version 2.15 in combination with the BioConductor package47. The raw signal intensities were background cor-
rected by using array-specific measures of background intensity based on negative control probes, prior to trans-
formation and normalization using the variance stabilization (VSN)48. The dataset was then filtered to remove 
probes not detected (detection score <  0.95) in any sample. Differential expression between experimental groups 
was assessed by generating relevant contrasts corresponding to the two-group comparison and was evaluated 
using the linear models for microarray analysis (LIMMA) package47. Raw p-values were corrected for multiple 
testing using the false discovery rate controlling procedure of Benjamini and Hochberg, and adjusted p-values 
below 0.05 were considered significant49. Significant probe lists were then annotated using the relevant annotation 
file (HumanHT-12_V4_0_R1_15002873_B).

Results
Identification of ARE motifs based on ChIP-Seq pattern, models, or database knowledge.  
ChIP-Seq data represents an enrichment of loci related to the binding of the protein of interest selected by the 
immunoprecipitation. Our ChIP-Seq dataset contained 35073 broad peaks including 4731261 wiggle signals 
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detected by MACS and significantly enriched above the genomic control. 3017 (8.6%) of the detected peaks 
contained AREs, with many peaks showing multiple motif incidences. Furthermore, we detected DNA motifs 
resembling ARE sequences in about every 40th wiggle signal. Without putting any knowledge into the search for 
ARE motifs, we first attempted to conduct a pattern search independent of existing databases. A de novo motif 
discovery search showed an ungapped 30mer logo on the ChIP-Seq data using the MEME tool50 (Fig. 1A). The 
30mer contained not only a palindromic ARE-full site but also information on adjacent bases in the proxim-
ity of the ARE. Motif searches relied on existing database entries matching the ChIP-Seq data to a perfect but 
shortened ARE half site using the DREME tool44 (Fig. 1B). Next, we attempted to identify ARE locations within 
our ChIP-Seq data using the FIMO tool41 with a position site specific matrix as it is defined in motif databases  
(Supplementary Table S1). This proved problematic as the ARE identified by currently available database models 
(e.g. Jaspar model MA0007.2)51 did not resemble the palindromic ARE sequence described in the literature and 
were shifted in frame22,52–54. In order to identify and describe AREs within our genome-wide ChIP-Seq dataset we 
implemented position site specific matrix (PSSM) models. The initial scan was based on a strict ideal 15mer motif 
search pattern of two hexamers with a 3mer spacer AGAACANNNTGTTCT (Fig. 1C). However, transcription 
factor binding is more lenient in its pattern recognition. A lenient 15mer motif search pattern not only dramati-
cally improved detection of ARE occurrences but also allowed for classification of AREs with respect to deviation 
from a perfect motif (Fig. 1D). The lenient model is distinct from the ideal model such that it allowed for limited 
mismatch at individual base positions with the core hexamers of full site AREs as frequently observed in binding 
experiments. In an attempt to elucidate the pattern of the regions surrounding the ARE the lenient motif search 
pattern was expanded (Fig. 1E). In addition, a half site specific PSSM comprised of an isolated hexamer with 
flanking sequences captured all ARE motifs, which were lacking a complementary palindromic half site hexamer. 
Finally we refined and expanded the ARE motif discovered based on our experimental ChIP-Seq data referencing 
42956 and 79065 events for ARE full and half site, respectively (Fig. 1F) (Supplementary Table S1).

Identification and base-specific classification of AREs into 5 tiers utilizing ChIP-Seq data.  
Nucleotide preference and deviation within a response element is critical in determining both the selectivity of 
transcription factors that bind to that sequence and the necessity for cooperating factors to assist with AR binding. 
The sequences detected by the ideal, lenient, half site, and extended PSSM model searches were quantified and 
sorted into tiers reflecting how much the sequence motifs deviated from an ideal ARE sequence (Supplementary 
Table S2). The ideal 15mer model of AGAACANNNTGTTCT had 71 AREs. The matches fell into tier 1, perfect 
motifs, with p-values below 8.34E-08. The lenient model identified the same matches in tier 1 and added less 
defined ARE into additional tiers. There were 71 AREs in tier 1 (perfect), 1583 matches in tier 2 (1bp off perfect), 

Figure 1. Identification of transcriptional motifs of the androgen receptor based on ChIP-Seq pattern, 
database knowledge, and position site specific matrix models. (A) Motif discovery based on fixed-length 
patterns or (B) short sequence pattern in conjunction with motif databases result in sparse, imperfect motifs. 
Model-based searches starting from (C) ideal model, (D) lenient model, or (E) extended model provides 
exhaustive description of motif space in ChIP-Seq experiment. (F) Using the identified AREs within our 
experiment a refined extended canonical ARE model is proposed and deposited in transcription factor 
databases under accession numbers M08907 (ARE full site), M08908 (ARE half site), AR, and ANDR.
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20362 in tier 3 (2bp off perfect), and 20940 in tier 4 (3bp off perfect) with p-values below 4.94E-05 (Fig. 2A) 
(Supplementary Table S1 and Supplementary Table S2). The motifs showed conservation of G and C in positions 
two and five respectively in the ARE hexamers. In addition, there was increased GC content in the spacer region 
of the response element. The extended model largely agreed with the lenient model. In tier 4, there were 21306 
motifs detected with p-values below 5.52E-05 (Fig. 2B). Regions neighboring the core hexamers as well as the 
spacer region had increased GC content. The conserved G and C of the hexamer in the least defined AREs of tier 
4 were comparable to tier 4 of the lenient model. The overall decreased detection by the extended model in tiers 
1–3 in comparison to the lenient model is attributed to the nucleotides of truncated motifs at the border of the 
ChIP-Seq peak as well as masked repeats in the genome which were blocked out of the search. Heatmaps of all 
detected motifs by the lenient model highlighted the observed GC nucleotide preferences in positions 2,5,7,8,9,11, 
and 14 (numbering of 15mer) in contrast to varying nucleotide content in the AT dominated positions (Fig. 2C). 
While tier 4 of the ARE full site requires agreement in at least 9 bases over a length of 15 bases including the 
3mer spacer region, there are many examples reported where the entire half of the ARE full site is degener-
ate55. Lastly, to comprehensively describe the genome-wide coverage of AREs, tier 5, focuses on ARE half sites. 
Tier 5 ARE half sites show a perfect hexamer, while not complying with the requirements of tiers 1 through 4.  
By comparing genomic coordinates for ARE half sites and full sites, we made sure to create association with the 
lowest tier possible of any ARE in question. Model-based motif searches offer the possibility to further expand the 
degeneracy, for example by allowing imperfect ARE half sites. However, increasing numbers of degenerate motifs 
create limited genomic enrichment detecting almost every gene. The 5 tiers listed provided genome-wide cov-
erage while recognizing functional relevant content. Model-based motif searches offer the possibility to further 
expand the degeneracy, for example by allowing imperfect ARE half sites. However, genome-wide searches with 
additional degeneracy did not generate other motifs than already detected by lower tiers. In total, we detected 
42956 ARE full sites (tiers 1–4) and 79065 ARE half sites (tier 5).

Genomic annotation and transcriptional regulation of ARE sites. Next, we sought to compare the 
functional content of different ARE tiers, in particular ARE half vs full sites. In agreement with the ChIP-Seq 
data, the majority of AREs falls into intergenic and intronic regions (Fig. 3A). While perfect AREs account only 

Figure 2. Identification and base-specific classification of AREs utilizing ChIP-Seq data. (A) ARE motifs 
discovered by ChIP-Seq data in combination with a lenient position site specific matrix model reflect the ideal 
15mer motif of two hexamers with a 3mer spacer in its top hits. Additional tiers show up to three base pairs 
deviation off the ideal motif. (B) A search with an extended position site specific matrix model allows for insight 
into the environment of the core sequence motif. ARE logos on the left show the frequencies of the nucleotides 
scaled to the measure of conservation at each position while ARE logos on the right show the probability of 
a nucleotide being at that particular region. (C) Heatmap of discovered motifs by the lenient model shows 
conservation of G and C within each hexamer.
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for a fraction of the AR recognition sites, tier 3 and 4 comprise 96% of the detected full site AREs (Fig. 3B). 
These higher tiered AREs approximate to about twice as many isolated half sites (tier 5) for every full site (tier 
1–4). ARE-harboring regions within the ChIP-Seq data were annotated to the human genome, which allowed 
these regions to be categorized based on their relative location and distance to the nearest gene loci. Promoter or 
transcription start sites (TSS, by default defined as minus 1000 bp to plus 100 bp from the start of the precursor 
mRNA-coding gene locus) and transcription termination sites (TTS, by default defined as minus 100 bp to plus 
1000 bp from the end of the mRNA) genomic annotation are defined as being within ±  5000 bp window of the 
ends of the gene-coding body. Intergenic regions were defined as the remaining regions outside the gene body of 
TSS and TTS. The intergenic regions (50.9%) accounted for the majority of the peaks in agreement with previous 
ChIP-Seq experiments using AR antibodies (Fig. 3A)56. 18693 (43.5%) of the AREs were annotated as intronic 
regions, 788 (1.8%) as exonic regions, 533 (1.2%) as TSS regions, 503 (1.2%) as TTS regions, 404 (0.9%) as  
3′  UTR regions, 186 (0.4%) as non-coding regions, and 38 (0.1%) as 5′  UTR regions (Fig. 3C). ARE half sites show 
a significantly higher fraction of TSS annotation of (1.4%), in particular bi-directional promoters, than ARE full 
sites (1.2%) with a p-value below 10E-04, suggesting beneficial genomic proximity for weaker half sites. However, 
when annotated to gene bodies there appeared to be the same proportion of full and half site containing genes, 
despite the larger number of ARE half sites (Fig. 3D) (Supplementary Table S3). Each tier reflected this annotation 
and no significant overrepresentation of functional elements were detected in individual tiers, despite ARE half 
sites showed more locations associated with TSS than ARE full sites. The functional role of more than 120,000 
AREs detected by our searches were tested against the transcriptional response of AR knockdown in a microarray 
experiment. The large number of AREs indicate that there are occurrences where multiple AREs are associated 
with a single gene. When compared to the transcriptomic data, in total 759 genes were transcriptionally down 
regulated and 743 genes were up regulated upon shRNA AR knockdown. When looking at the fraction of con-
firmed AREs per tier there is a higher hit rate in ARE tiers closer to the canonical sequence (Fig. 3E). Despite 
their lower abundance in the genome compared to ARE half sites, ARE full sites are able to generate a reliable 
transcriptional outcome in AR positive cells.

Figure 3. Genomic annotation and enrichment of AREs. (A) Identified AREs in ChIP-Seq experiment were 
annotated by genomic elements. (B) Classification of AREs into five tiers. There were 71 AREs in tier 1 (perfect 
palindromic ARE), 1583 matches in tier 2 (1 bp off perfect), 20593 in tier 3 (2 bp off perfect), 21031 in tier 4 
(3 bp off perfect) and 79065 in tier 5 (half site) with p-values below 4.94E-05 in the search for motif matches. 
(C) Genomic location of ARE full and half sites. Intergenic and intronic locations are not shown. (D) Overlay 
of gene mapping of AREs identified by ChIP-Seq and transcriptomics experiments. Using this data we defined 
the group of 759 genes as positively regulated by AR activity (down in cell with shRNA knockdown of AR), and 
743 genes as negatively regulated by AR activity. (E) AREs mapped by ChIP-Seq experiments were confirmed 
by transcriptomics experiment and matched to genes. AREs confirmed by transcriptomics experiment showed 
higher hit rate in better defined tiers of AREs. Hit rate plotted as fraction of tier confirmed by significant down 
or up regulation in stable shRNA knockdown experiment with p-values below 0.05. Different tiers of AREs 
suggest different effect on transcriptional outcome as well as necessity of modulation of weaker motifs by 
coordinating factors. Imperfect AREs make up majority of genome-wide recognition motifs.
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Impact of somatic copy number alterations on genome-wide ARE utilization. Genotypic varia-
tion can modulate transcription factor binding, chromatin structure, and gene expression. In cancer progression, 
somatic copy number alterations (SCNAs) play critical roles by activating oncogenes and inactivating tumor 
suppressors39. In order to evaluate the significance of ARE utilization in the context of SCNAs, we determined 
recurring regions of copy number changes in 492 prostate adenocarcinoma (PRAD) patients in The Cancer 
Genome Atlas (TCGA) using the algorithm GISTIC. SCNA profiles of PRAD patients showed broad amplified 
arm-level events at 1q, 3p, 3q, 7p, 7q, 8p, 8q, 9q, 11q, 12q, 16p, 20p, and 20q and deleted regions at 1p, 6q, 8p, 
10p, 10q, 12p, 13q, 15q, 16q, 17p, 18p, 18q, 22q, Xp, Xq, accompanied by focal events at 1p22, 1p31, 2q22, 3p13, 
4q28, 5q11, 8p21, 11p11, 11q22, 12q24, 17q21, 19q13 (SCNA frequency more than 0.05; q-value less than 0.1) 
(Supplementary Table S4). Next, we determined SCNAs in the CWR22Rv1 cell line. Chromosome arms 1q, 3p, 
3q, 7p, 7q, 8p, 8q, 12p, and 12q showed strong amplifications overlapping with SCNA regions identified in the 
TCGA PRAD cohort (Fig. 4). In order to assess if SCNAs modulate ARE binding, we determined the number of 
ChIP-Seq-detected AREs corrected for chromosome length. Regions with somatic copy number amplifications 
had significantly enhanced ARE utilization of 60.4 AREs/Mbp in contrast to euploidic genome regions of 32.3 
AREs/Mbp with a p-value of 8.9e10-6 (Fig. 4). The amplified regions contained 5012 genes. In our ChIP-Seq and 
transcriptomic experiments 214 amplified genes classified as positive AR targets (down-regulation with shRNA 
knockdown) and showed exclusive enrichment of discrete pathways (p-value below 10e-03 and q-value below 
0.1). Amplified and AR-responsive genes squalene epoxidase (SQLE, GeneBank: 6713), hydroxysteroid (17-beta) 
dehydrogenase 7 (HSD17B7, GeneBank: 51478), phosphomevalonate kinase (PMVK, GeneBank: 10654), lipo-
protein lipase (LPL, GeneBank: 4023), v-myc avian myelocytomatosis viral oncogene homolog (MYC, GeneBank: 
4609), NK3 homeobox 1 (NKX3-1, GeneBank: 4824), ELK4, ETS-domain protein (SRF accessory protein 1) 
(ELK4, GeneBank: 2005), PTK2B protein tyrosine kinase 2 beta (PTK2B, GeneBank: 2185), and zinc finger and 
BTB domain containing 10 (ZBTB10, GeneBank: 65986) are pathway members of the androgen response, steroid 
biosynthesis, and cholesterol homeostasis. In addition, amplified and AR-regulated genes showed enrichment 
in MTORC1 signaling, DNA replication, cell cycle, MYC targets, mismatch repair, homologous recombination, 
nucleotide excision repair, epigenetic regulators, and pathways in cancer. The detected ARE recognition by the 
androgen receptor displays a potential mechanism how SCNAs get translated to a functional, oncogenic level in 
prostate cancer.

Comparison of ARE utilization in androgen-insensitive and androgen-responsive prostate cancer  
cell lines. Androgen-insensitive cell lines, such as CWR22Rv1, express AR(FL) and AR splice variants28. 
In contrast, androgen-responsive prostate cancer models expressing exclusively AR(FL), such as LNCaP, offer 
insights into steroid-dependent gene regulation30. We applied the established model-based ARE annotation to 
condition-specific CWR22Rv1 and LNCaP ChIP-Seq samples and assessed ARE utilization dependent on AR 
splice isoforms as well as 5α -dihydrotestosterone treatment (Fig. 5). ARE binding by ChIP-Seq was assessed in 

Figure 4. Copy number amplifications of the CWR22Rv1 cell line overlap with significant somatic copy 
number events in TCGA prostate adenocarcinoma patients and correlate with AR-ARE binding events by 
ChIP-Seq. Somatic copy number alteration (SCNA) profiles of 492 prostate adenocarcinoma (PRAD) patients 
in The Cancer Genome Atlas (TCGA) show broad arm-level events. Amplifications (AMP) are indicated in 
red; deletions (DEL) are indicated in blue. Low coverage next generation sequencing data of the CWR22Rv1 
cell line reveals strong copy number amplification of chromosome arms 1q, 3p, 3q, 7p, 7q, 8p, 8q, 12p, and 
12q. Utilization of androgen response elements by the androgen receptor is significantly elevated in amplified 
regions. Bar graph shows detected ARE-binding events by AR ChIP-Seq per megabase pair (Mbp).
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the CWR22Rv1 cell line for total AR binding, AR(total), for binding to full-length androgen receptor, AR(FL), 
for binding by variant androgen receptor, AR(V), in the LNCaP cell line for 5α -dihydrotestosterone treatment, 
AR(DHT), for ethanol treatment, AR(EtOH), and for functionally active steroid-bound AR corrected for EtOH 
background AR(ACT). All quantified conditions showed a similar distribution of ARE tiers 1–5 of about 0.001, 
0.017, 0.244, 0.150, and 0.588, respectively (Fig. 5A). The data validates that utilization of perfect ARE tier 1 is a 
rare event, independent of AR splice-variants or steroid condition. Cross-validation of ChIP-Seq experiments of 
AR(total) vs AR(FL) confirmed 30,022 AREs assigned to AR(FL)-binding in the CWR22Rv1 cell line (Fig. 5B). 
AR(V) isoforms with 78,350 ARE ChIP-Seq events bind to DNA autonomous of full-length androgen receptor in 
the absence of androgen and modulate a unique set of genes that is not regulated by full-length androgen receptor 
(Fig. 5B). In contrast, AR(DHT) in the LNCaP cell line displayed a set of 7,361 AREs common to the CWR22Rv1 
cell line (Fig. 5B). Next, we quantified the fraction of ARE tiers confirmed in overlapping ChIP-Seq experiments. 
AR(FL) showed an incremental reduced fraction with higher, less specific ARE tiers in the CWR22Rv1 cell line, 
while AR(V) isoforms had a stronger overlap with more degenerate motifs (Fig. 5C). The AR(DHT) LNCaP 
condition showed a trend similar to AR(FL) in the CWR22Rv1 cell line (Fig. 5C). The distribution of ARE tiers 
with AR splice-variants or with steroid treatment in the two tested PRAD cell lines showed most variation in 
the perfect AREs of tier 1. Notably, the frequency of perfect AREs correlates with AR specificity and increases 
from AR(V) isoforms to AR(FL) in the CWR22Rv1 cell line and quadruples in the AR(DHT) LNCaP condition 
(Fig. 5D–F). All evaluated conditions showed high agreement utilization of ARE tiers 3–5, half sites and imperfect 
full sites (Fig. 5D–F).

Network of transcriptional cooperation of the androgen receptor. We next sought to identify 
potential transcription factors that would cooperate with the AR to regulate gene expression. Using the Jaspar 
motif database, we grouped significant transcription factor logos within a window of ± 160 bp from the ARE 
with a p-value of less than 0.05. Top hits included forkhead box (FOX), Krüppel-like factors (KLF), basic 
helix-loop-helix (BHLH), sterol regulatory element binding factor (SREBF), and v-myc avian myelocytomatosis 
viral oncogene homolog (MYC) families of transcription factors. Interestingly, several members of cooperat-
ing transcription factor families showed amplifications at the copy number level in the CWR22RV1 cell line as 
well as in TCGA PRAD patients. Detected somatic amplifications of transcription factors were maintained at 

Figure 5. Utilization of androgen response elements in androgen-dependent LNCaP and androgen-
independent CWR22Rv1 cellular models of prostate cancer. ARE binding by ChIP-Seq was assessed in 
the CWR22Rv1 cell line (total binding; binding by full-length androgen receptor, AR(FL); binding by variant 
androgen receptor, AR(V)) and in the LNCaP cell line (5α -dihydrotestosterone treatment, AR(DHT); ethanol 
treatment, AR(EtOH); functionally active steroid-bound AR corrected for EtOH background, AR(ACT)).  
(A) Comparison of AREs detected and confirmed by ChIP-Seq in AR(FL), AR(V), and AR(DHT) specimen. 
(B) Distribution of confirmed AREs by ChIP-Seq in CWR22Rv1 and LNCaP cells. (C) Fraction of confirmed 
AREs by ChIP-Seq in CWR22Rv1 and LNCaP cells. Pie charts visualizing distribution of ARE tiers detected and 
confirmed by ChIP-Seq in D) AR(FL) in CWR22Rv1 cells, (E) AR(V) in CWR22Rv1 cells, and (F) AR(DHT) 
in LNCaP cells. Tier 1 is highlighted in green, tier 2 in magenta, tier 3 in red, tier 4 in orange, tier 5 in yellow. 
ChIP-Seq analysis for AR(FL) is shaded with tilted lines, AR(V) with dots, and AR(DHT) with horizontal lines.
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Figure 6. Enhancement of androgen response elements by cooperation of the androgen receptor with other 
transcription factors. Transcription factor complexes were inferred from ChIP-Seq data using spaced motif 
analysis in reference to detected AR binding sites (green). The affinity of weaker ARE transcription factor sites 
can be enhanced by cooperation with other transcription factors. (A) SREBF transcription factor family (blue) 
shows an increase in the percent of response elements found 15 bp from the ARE half site. (B) KLF transcription 
factor motif family (red) shows an increased fraction bound in AR ChIP-Seq signals. In addition, peaks of KLF 
motifs in 5 bp and 45 bp distance to ARE half sites shows increased proximity compared to association with 
ARE full sites. The weaker ARE half-site shows strong cooperation with (C) SREBF and closer motif distance 
with (D) KLF, MYC, and FOX, transcription factor families with the AR.
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the transcriptional level. Somatic copy number amplifications on chromosome 3 included Krüppel-like fam-
ily member Krüppel-like factor 15 (KLF15, GeneBank: 28999). Similarly, amplified regions on chromosome 7 
included transcription factors v-myc avian myelocytomatosis viral oncogene homolog (MYC, GeneBank:4609) 
and forkhead box K1 (FOXK1, GeneBank: 28999). We then organized recorded distances of detected, enriched, 
and/or amplified transcription factor families to the ARE into histograms with 5bp bins and analyzed spacing of 
the transcription factor motifs. We noticed an increase of detected transcription factor motifs at 15 bp for KLF, 
and 45 bp for SREBF-related transcription factors between full and half site ARE (Fig. 6A,B). This suggests that 
for the AR to recognize any weaker half site response element, cooperation of other transcription factors might 
be required (Fig. 6C,D). Distance of KLF, MYC, or FOX motifs to ARE half sites was reduced in comparison with 
distance to ARE full sites (Fig. 6D). Taken together, the transcription factor network analysis (top hits in motif 
enrichment with p-values below 0.05) suggests that KLF, MYC, FOX, and SREBF families of transcription factors 
have the ability to utilize motifs in the cistrome of AREs and to cooperate with the AR.

Quantifying the transcriptional response between full and half site ARE with KLF. Next, we 
characterized transcription factor cooperation of the AR with the Krüppel-like family. We quantified the number 
of KLF sites with respect to the detected ARE tiers to evaluate effect of transcriptional cooperation with respect to 
motif degeneracy (Supplementary Table S5 and Supplementary Table S6). We found that 17917 full sites coincide 
with KLF sites. 25 fell into tier 1, 611 into tier 2, 8067 into tier 3, and 9214 into tier 4. When comparing between 
detected full and half sites there was a stronger cooperation of the ARE full sites with KLF motifs resulting in 
larger transcriptional response with 360 and 368 genes up and down regulated in contrast to ARE half sites, which 
had 50 and 33 genes up and down regulated (Fig. 7). Despite a larger number of weaker ARE half sites found in 
the proximity of KLF motifs, stronger AREs next to KLF motifs resulted in a larger transcriptional response. 
Genes associated with pathways in cancer as well as TP53 signaling were enriched in genes with KLF and ARE 
full site motifs with p-values below 0.05 (Supplementary Table S5). For KLF and ARE half site motifs pathways of 
extracellular matrix-receptor interaction and focal adhesion with p-values below 0.001 were found. Consequently, 
the data suggests that KLF may modulate the binding of AR with both weaker and stronger AREs, which control 
genes with distinct function.

Functional enrichment of androgen receptor binding sites. Gene set enrichment analysis of identi-
fied putative AR target genes revealed several functional clusters. In addition to the identified 759 and 743 genes 
confirmed by ChIP-Seq binding as well as transcriptional activity, we tested all ARE full site and half site tiers 
for pathway enrichment (Supplementary Table S5). Gene sets corresponding to full site AREs with activating 
gene expression (582 genes as positively regulated by AR activity with ARE full or half sites; 102 with exclu-
sively full sites) revealed 41 including 21 exclusive pathways significantly enriched with p-values below 0.05. 

Figure 7. Synergy of ARE and KLF motifs in androgen receptor-mediated transcriptional responses. 
Quantification of KLF sites with respect to detected ARE full sites and half sites. 17917 full sites coincide with 
KLF sites. 25 fell into tier 1, 611 into tier 2, 8067 into tier 3, and 9214 into tier 4. Stronger cooperation of ARE 
full sites with KLF motifs result in larger transcriptional response (368 and 360 genes up and down in cells 
with shRNA knockdown of AR, respectively) in contrast to ARE half sites (33 and 50 genes up and down, 
respectively).
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For half site AREs (585 genes as positively regulated by AR activity with ARE full or half sites; 53 with exclu-
sively full sites) 39 including 12 exclusive pathways were found with p-values below 0.05. Pathways in both sets 
included DNA replication, cell cycle control, and metabolic pathways. Of particular interest were pathways that 
were exclusively assigned to ARE full sites or half sites. The set of AR target genes with ARE full sites focused on 
pyrimidine metabolism, terpenoid backbone biosynthesis, one-carbon metabolism, glycine, serine and threonine 
metabolism with p-values below 0.001. The metabolic program—framed by genes with full site AREs—supports 
proliferative functions required for cellular maintenance. In contrast, the set of AR target genes with ARE half 
sites included steroid biosynthesis, terpenoid backbone biosynthesis, peroxisome, pentose phosphate pathway, 
glycerolipid metabolism, and mitogen activated protein kinase signaling pathway with p-values below 0.001. 
An enrichment of genes containing ARE half sites involved in lipid and steroid biosynthesis could point to the 
gender-, development-, and tissue-specific control in prostatic differentiation. Therefore, the gene set enrichment 
analysis suggests that AR targets genes controlled by ARE full sites and/or ARE half sites have common prolifer-
ative functions but also distinct biological functions involved in lipid metabolism.

Discussion
We refined AR-binding and AREs in AR-positive but androgen-insensitive CWR22Rv1 prostate cancer cells using 
ChIP-Seq and motif-guided genome-wide analysis. The independence of androgen ligand for AR activity makes 
the CWR22Rv1 cell line a favorable model for genome-scale characterization of AR binding events in prostate 
cancer. Therefore, one can accomplish a comprehensive, unprecedented picture of the ARE by using ChIP-Seq 
analysis of AR-specific immunoprecipitation. We classified AREs according to their degeneracy and their tran-
scriptional involvement. We quantified ARE utilization in response to somatic copy number amplifications, AR 
splice-variants, and steroid treatment. Our AR ChIP-Seq mapping shows that a majority of AREs are imperfect 
AREs with several base pairs deviating from the canonical palindromic 15 mer ARE full site. Our results fit in 
with previous assessments that AR DNA binding is possible despite base pair deviation from the canonical ARE 
full site sequence23. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy corre-
lates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from 
neighboring motifs or cooperating transcription factors in regulating gene expression. In addition, ARE half 
sites showed enrichment of mitogen activated protein kinase signaling required for stimulation of proliferation. 
Therefore, the ability to regulate weaker AREs carries weight for prostatic development and oncogenic control23.

Somatic copy number alterations of TCGA prostate cancer patients correlated with amplifications of chro-
mosome arms 1q, 3p, 3q, 7p, 7q, 8p, 8q, 12p, and 12q observed in the cellular CWR22Rv1 prostate cancer model. 
Aneuploidy of the CWR22Rv1 model was recognized early on during the genetic characterization of the meta-
static cell line27. Most SCNA studies in prostate cancer have focused on AR gene amplification found in the major-
ity (87%) of CRPC tumors57–59. The number of recognized ARE sites increases with the level of AR expression60. 
A study in LNCaP cells described AR recruitment to amplified chromosomal regions found in metastatic PRAD 
implicating AR co-amplification with SCNAs61. Similarly, our SCNA data showed a higher density of ARE bind-
ing events in amplified regions suggesting that ARE recognition and amplification might play a role in carrying 
SCNAs to a functional level in prostate cancer.

We applied genome-wide model-based motif searches to different prostate cancer models and investigated 
ARE occurrence dependent on AR-splice variants and steroid regulation. Derived from an androgen-dependent 
CWR22 mouse xenograft that relapsed during androgen deprivation, the CWR22Rv1 prostate cancer cell 
line is androgen-insensitive, expresses different AR isoforms4,8,9,27,62, and is expected to display enhanced 
ARE recognition. ChIP-Seq data on the CWR22Rv1 cell line revealed 122021 AREs (32.0% ARE full sites; 
68.0% ARE half sites). 88.5% of the detected AREs overlapped with ChIP-Seq data of published experi-
ments after processing using the same bioinformatics workflow28. AR(V) isoforms recognize 2.6 times more 
AREs than AR(FL) in the isoform-specific ARE characterization of the CWR22Rv1 cell line. In contrast, the 
LNCaP cell line serves as a model for primary prostate tumors that are responsive to ADT therapy29. Using 
genome-wide model-based motif searches, the LNCaP cell line under testosterone-treatment displayed 6.0% 
overlap with the CWR22Rv1 cell line resembling the fraction of AREs recognized under androgen stimula-
tion30. The fraction of AREs activated under androgen stimulation in LNCaP is small compared to the total 
number of AREs recognized in the CWR22Rv1 model. Dihydrotestosterone-activated AR response resem-
bles a narrow, well-defined, physiological gene-expression program required for prostatic function30,63. In 
contrast, the altered and enhanced spectrum of AREs assigned to shortened, non-specific CWR22Rv1 AR(V)  
isoforms mediates an oncogenic gene expression program that is able to circumvent androgen deprivation, sup-
port continued proliferation, and drive CRPC8,20,28.

AREs can be modulated by cooperation with other transcription factors, which can compensate for miss-
ing canonical contacts of imperfect AREs and nevertheless result in successful gene expression events23,55. The 
cistrome of investigated AREs actively participates in the AR controlled gene expression within CRPC64,65. A 
model of susceptibility to cooperation of weak AREs with neighboring transcription factors has already been con-
firmed for different transcriptional networks with the AR55,23. In our motif searches, the validated AR-cooperating 
transcription factor FOXA1 displayed motif enrichment, differential up-regulation, and high tumor expression, 
serving as test and validation data point. Overexpression of FOXA1 promotes cell cycle progression, CRPC sig-
nature, and has been described as playing a crucial role in assisting AR site recognition for weaker binding sites 
by creating excessive open chromatin sites66–68. The transcriptional program required for prostate-specific gene 
expression of steroid biosynthesis enzymes is distinctly enriched in ARE half sites and consistent with modular 
and tightly regulated tissue-specific control69,70. In PRAD, cooperation of SREBF and AR signaling has been 
linked to progression of prostate cancer cells71. SREBF targeted gene expression drops drastically after andro-
gen deprivation therapy, but their transcription program re-emerges upon reactivation of the AR transcriptional 
program manifesting the hypothesis of transcriptional cooperation72. In addition, SREBF has been shown to be 
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recruited with the AR to target gene promoters73. In the Krüppel-like transcription factor family, motif enrich-
ment and somatic amplification of chromosome 3 suggest KLF15 as candidate transcription factor to support the 
AR. While the genomic data provide strong evidence for cooperation, experimental validation will be required 
to solidify this finding. Other cellular models have linked KLF15 overexpression with enhanced recruitment of 
nuclear receptors74,75. Previous analyses of the KLF15 promoter detected AREs suggesting hormonal control of its 
transcription76. Development- and cell-specific expression of KLF isoforms may modulate AR signaling, where 
AREs and KLF motifs fall in close proximity. Taken together, promiscuous recognition of androgen receptor cog-
nate sites guided by transcriptional cooperation may allow for dynamic, tissue-specific regulation.

A predominant signature of imperfect AREs is the GC content of the 3 bp spacer as well as the flanking regions 
of extended motifs. The GC content is richest in higher, less perfect tiers of AREs. CpG dinucleotides within the 
genome enable the cell to control ARE availability by DNA 5′ -cytosine methylation77,78. Actively transcribed 
genomic regions, in particular promoter or transcription factor cognate sites, tend to have less DNA methyla-
tion79–81. Therefore, weaker AREs are subject to control of gene expression by the dynamic equilibrium of his-
tone and DNA methyltransferases and demethylases82. Conformational change of the protein structure plays an 
important role in the ambiguity of ARE recognition. The AR is able to recognize weaker sites by first binding to a 
high affinity AGAACA site followed by a strong conformation change in the protein and possibly in the ARE83,84. 
While analyzing the different tiers of the ARE in our data we found that the 1–3 nucleotides would be off in only 
one of the hexamers recognized by the homodimer DBD. Additionally, as we progressed to the higher tiers the 
G and C in positions 2 and 5 in the AR hexamer remained conserved. Our work suggests that ARE full sites are 
able to bind to and recognize weaker sites through binding of a stronger half site within the full site and that the 
weaker site is more dependent upon the G and C residues for complete homodimer binding. Further, the GC 
content is also important for the spectrum of cooperating transcription factors with the AR. The KLF family 
recognizing GC/GT boxes has been implicated in regulation of oncogenic expression signatures in LNCaP and 
PC3 prostate cancer cell lines85,86. Transcription factors cooperating with the AR form an important regulatory 
hierarchy governing androgen-dependent gene expression in normal as well as malignant prostate tissue and offer 
potential new opportunities for therapeutic intervention.

Conclusion
Our data refined the recognition of ARE sequences within CWR22Rv1 and LNCaP prostate cancer cell lines. We 
expanded the nucleotide specificity of the ARE, identified potential modes of regulation these response elements 
are subject to, and outlined a protocol for identifying coordinating transcription factors to assist with weaker site 
recognition. While a major disadvantage remains in possible false-negatives being identified in computationally 
predicted sites, future experimental verification will have to determine if these response elements play a role 
in gene regulation. Future ChIP-Seq studies could look into prominent histone modifications accompanying 
detected response element sites within prostate cancer and facilitate insight how chromatin alteration affects AR 
gene targeting. Importantly, we identified significant differences in the genomic landscape of ARE full and half 
sites. Despite the fact that ARE half sites outnumber ARE full sites by 2-fold, stronger ARE were more frequently 
confirmed at the transcriptional level than weaker AREs. Nevertheless, weaker AREs are affected by AR expres-
sion or regulation, and may have strong functional impact by multiplicity and/or genomic proximity. ARE impact 
depends on somatic alterations, motif-receptor-binding specificity, tissue-specific lineage, cooperating factors 
(e.g. FOX, SREBF, MYC, KLF), distance to neighboring motifs, AR-splice variants, and steroid regulation.
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Chapter Five: The histone demethylase KDM3A regulates the transcriptional program of 
the androgen receptor in prostate cancer cells.  
 

The lysine demethylase 3A (KDM3A) is a positive influence on the transcription 
of genes involved in the biological processes of spermatogenesis, metabolism, stem cell 
activity, and tumor progression by facilitating nucleosomes to exist in an open state by 
demethylating histone 3 lysine 9 residues (H3K9). This study matched transcriptomic and 
ChIPSeq profiles of KDM3A activity in prostate cancer cells. Combining histone 
KDM3A specific demethylation events with gene expression changes identified the 
transcriptional activation of gene targets involved in the cellular process of promoting 
androgen signaling. Matching ChIPSeq experiment of KDM3A in combination with 
ChIPSeq of the androgen receptor resulted in a gain of H3K9 methylation marks around 
androgen receptor binding sites of selected transcriptional targets in androgen signaling 
including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, 
MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and 
ACSL3. This study also identified KDM3A's epigenetic regulation of gene targets 
involved in the hypoxia, glycolysis, and lipid metabolism processes of the cell. The 
approach of this study highlights how ChIPSeq and transcriptomic experiments can be 
applied to identify gene regulation of oncogenic pathways that contribute to cancer 
progression. Within this study I contributed to the computational analysis of the data 
supplied for figures 1-2, and 4. 
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ABSTRACT

The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional 
networks in a variety of biological processes such as spermatogenesis, metabolism, 
stem cell activity, and tumor progression. We matched transcriptomic and ChIP-
Seq profiles to decipher a genome-wide regulatory network of epigenetic control 
by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 
lysine 9 (H3K9) methylation marks show global histone demethylation effects of 
KDM3A. Combined assessment of histone demethylation events and gene expression 
changes presented major transcriptional activation suggesting that distinct oncogenic 
regulators may synergize with the epigenetic patterns by KDM3A. Pathway enrichment 
analysis of cells with KDM3A knockdown prioritized androgen signaling indicating 
that KDM3A plays a key role in regulating androgen receptor activity. Matched ChIP-
Seq and knockdown experiments of KDM3A in combination with ChIP-Seq of the 
androgen receptor resulted in a gain of H3K9 methylation marks around androgen 
receptor binding sites of selected transcriptional targets in androgen signaling 
including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, MYC, 
INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and ACSL3. The 
cancer systems biology analysis of KDM3A-dependent genes identifies an epigenetic 
and transcriptional network in androgen response, hypoxia, glycolysis, and lipid 
metabolism. Genome-wide ChIP-Seq data highlights specific gene targets and the 
ability of epigenetic master regulators to control oncogenic pathways and cancer 
progression.

INTRODUCTION

Methylation of histone lysine residues is a significant 
component of epigenetics and is associated with control 
of gene expression [1]. Specifically, methylation of lysine 
9 of histone H3 (H3K9) has been recognized as hallmark 
of transcriptionally suppressed genes [2]. KDM3A (lysine 
demethylase 3A; Gene ID: 55818; also referred to as 
JMJD1A or JHDM2A) is crucial for gene regulation in a 
variety of biological activities such as spermatogenesis, 

metabolism, stem cell activity and tumor progression 
by demethylating mono- or di-methylated H3K9 [3–5]. 
Although the KDM3A protein regulates a wide array of 
target genes in tissue- and development-specific settings, 
chromatin modifiers often lack intrinsic DNA sequence 
specificity. Therefore, how KDM3A is targeted to specific 
genes is an area of current research interest and important for 
understanding epigenetic dysregulation in human disease.

KDM3A activity is deregulated in several cancers 
[3, 6–8]. In prostate adenocarcinoma (PRAD), KDM3A 
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functions as a transcriptional coactivator for the androgen 
receptor (AR; Gene ID: 367) [3, 9]. The ability to cooperate 
with the AR highlights a potential role of KDM3A as 
coactivator and driving force for sex-specific tissue 
development as well as for prostate cancer initiation and 
progression. In PRAD, androgen-dependent signaling 
plays a key role in the oncogenesis of prostate epithelial 
cells and the aggressiveness of the malignancy [10, 
11]. The AR transcription factor belongs to the nuclear 
receptor superfamily and contains a C-terminal ligand-
binding domain. Upon ligand binding, the AR undergoes 
a conformational change and dissociates from a cytosolic 
chaperone protein complex. Its ligand-bound conformation 
allows the AR to dimerize and to translocate into the nucleus 
[12]. Once in the nucleus, the activated AR dimer binds to 
androgen response elements (AREs) present in the promoter 
or enhancer of AR-regulated target genes and recruits co-
activators or co-repressors to regulate gene expression [13]. 
In addition to the AR, KDM3A has been found to regulate 
expression and/or activity of several transcription factors 
such as PPARG, KLF2, ESR1, and HOXA1 [14–17].

In order to further elucidate the impact of 
KDM3A on the epigenome, we performed chromatin 
immunoprecipitation in combination with next generation 
sequencing (ChIP-Seq) of its binding and demethylation 

activity. We quantified changes of H3K9me1 or H3K9me2 
marks, the two substrates of KDM3A, and mapped AR-
binding in the CWR22Rv1 prostate cancer cell line in 
combination with knockdown of KDM3A. Alteration of 
H3K9 methylation marks mapped to genomic locations 
coinciding with AR binding pinpoints target genes and 
oncogenic pathways cooperatively regulated by KDM3A 
and AR.

RESULTS

Genomic annotation and transcriptional 
regulation of KDM3A specific demethylase 
activity

Knockdown of KDM3A in CWR22Rv1 cells showed 
minor effects on global levels of H3K9me1 or H3K9me2 by 
Western blot analysis (Figure 1A), suggesting that KDM3A 
demethylates a small pool of methylated histone marks and 
regulates a specific set of gene targets. In order to establish 
the genome-wide impact of the epigenetic regulator 
KDM3A, we conducted a matched ChIP-Seq experiment 
using antibodies specific for histone marks H3K9me1 
and H3K9me2 in combination with small hairpin RNA 

Figure 1: ChIP-Seq experiments with matched knockdown of KDM3A show gain of histone 3 lysine 9 methylation 
and transcriptional deactivation. A. Western blot of prostate cancer line CWR22Rv1 with antibodies against H3K9me1, H3K9me2, 
KDM3A (lysine demethylase 3A; Gene ID: 55818; also referred to as JMJD1A or JHDM2A), and beta-actin. ChIP-Seq experiments using 
B-C. H3K9me1-antibody and D-E. H3K9me2-antibody show specific gain of signal following small hairpin RNA (shRNA) knockdown 
of the histone methyltransferase KDM3A in the prostate cancer line CWR22Rv1. Genomic location of C) H3K9me1 and E) H3K9me2 
sites identified by ChIP-Seq. F. H3K9me1 and H3K9me2 ChIP-Seq signals are overlapped and annotated. G. The majority of histone 
demethylase events due to KDM3A activity is detected by both, H3K9me1 and H3K9me2, ChIP-Seq antibodies. H. Overlay of gene 
mapping of histone methylation events identified by ChIP-Seq and transcriptomics experiments. Using this data we defined the group of 
1408 genes as positively regulated by KDM3A activity (down in the prostate cancer line CWR22Rv1 with shRNA knockdown of KDM3A), 
and 1002 genes as negatively regulated by KDM3A activity. I. Transcriptomic impact of KDM3A knockdown shows 58.4% of gene 
activation (down in the prostate cancer line CWR22Rv1 with shRNA knockdown of KDM3A), and 41.6% of gene silencing.
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(shRNA) knockdown of KDM3A in the CWR22Rv1 cell 
line (Supplementary Table 1). Histone lysine demethylation 
(KDM) events mediated by KDM3A were defined by gain 
of methylation ChIP-Seq signals following knockdown 
of KDM3A (Figure 1B–1E). Alterations of H3K9me1 
and H3K9me2 histone marks upon KDM3A knockdown 
were evaluated in comparison to reference genomic DNA 
input or control non-coding shRNA samples. Overall, the 
peak counts of both H3K9me1 and H3K9me2 ChIP-Seq 
experiments showed a gain of signal (32244 to 34162 and 
23353 to 46599, respectively). Since H3K9 methylation is a 
mark associated with the highly condensed heterochromatin 
state, we characterized the specific genomic regions 
associated with both H3K9 histone methylation marks. 
KDM events were functionally annotated by mapping 
bound regions to the human genome and by classifying 
them according to the nearest gene locus and relative 
position within coding regions. Promoter or transcription 
start sites (TSS) and transcription termination sites (TTS) 
genomic annotations are defined as being within ± 1000 bp 
of the gene-coding body. Intergenic regions were defined 
as the remaining regions outside the gene body. In the 
H3K9me1 ChIP-Seq experiment the intergenic regions were 
the most frequently found region with 21112 peaks (46.5%) 
followed by 21495 (47.7%) as intronic regions, 822 (1.8%) 
as exonic regions, 606 (1.3%) as promoter-TSS regions, 
549 (1.2%) as TTS regions, 424 (0.9%) as 3’UTR regions, 
and 46 (0.1%) as 5’ untranscribed (UTR) regions (Figure 
1C). Similarly, the H3K9me2 ChIP-Seq had the intergenic 
region as its most frequent region with 18195 (55.9%) 
followed by 13167 (55.9%) as intronic regions, 373 (1.1%) 
as exonic regions, 355 (1.1%) as promoter-TSS regions, 246 
(0.8%) as TTS regions, 204 (0.6%) as 3’UTR regions, and 
25 (0.1%) as 5’ UTR regions (Figure 1E). Taken together, 
ChIP-Seq profiles monitoring histone 3 lysine 9 methylation 
marks following KDM3A knockdown revealed selective 
histone demethylation effects of this epigenetic modifier.

Following genomic annotation, we were curious if 
there was a specific gene expression program underlying 
demethylation of H3K9me1 and H3K9me2. Half of the 
detected genes, 8841 (55.1%), contain both H3K9me1/2 
marks (Figure 1F–1G). While the ChIP-Seq data shows that 
H3K9me1 has more annotated genes compared to H3K9me2 
(5121 and 2089 respectively), both histone marks showed 
an equal fraction of genes being transcriptionally responsive 
to KDM3A knockdown according to the transcriptomic 
dataset. Overall, from the transcriptomic experiments, 1408 
(58.4%; using a significance cutoff with adjusted p-values 
below 0.05) genes are reported as differentially down-
regulated upon shRNA knockdown of KDM3A while 1002 
genes are reported as up-regulated by KDM3A knockdown 
(Figure 1H–1I). The combination of ChIP-Seq histone 
demethylation events and transcriptomic assessment showed 
major transcriptional activation by KDM3A, suggesting 
that KDM3A may synergize with distinct transcriptional 
regulators for epigenetic control of gene expression.

Identification of an epigenetic and 
transcriptional network in androgen receptor 
signaling regulated by KDM3A

Following characterization of histone H3K9me1/2 
marks we determined enrichment of transcriptional 
motifs associated with these histone marks controlled by 
KDM3A in prostate cancer cells. The goal of this analysis 
is to identify potential transcription factors that cooperate 
with KDM3A to regulate gene expression. Using the 
Jaspar motif database, we conducted an unbiased search 
for significant enrichment of transcription factor families 
(analysis of motif enrichment search with p-values below 
0.05). Top hits included the androgen receptor, sterol 
regulatory element binding factor (SREBF), hypoxia 
inducible factor (HIF), activator protein 1 (AP1) complex 
of JUN/FOS, Krüppel-like factors (KLF), v-myc avian 
myelocytomatosis viral oncogene homolog (MYC), and 
forkhead box (FOX) families of transcription factors with 
significant enrichments and p-values below 1.0E-04 
(Table 1). In addition, we enhanced simple ChIP-Seq-based  
searches with position-specific matrices to determine 
which transcription factor motifs were enriched compared 
to shuffled background sequences. The enrichment 
analysis showed the androgen response element (ARE) 
with 2915 incidences as one of the most frequent motifs 
detected (Table 1). Next, we analyzed significantly altered 
expression levels upon KDM3A shRNA knockdown 
(Figure 2A). At the transcriptional level, the androgen 
response gene set was the most enriched with a p-value 
and false discovery rate q-value each below 1.0E-20 
(Figure 2B). Next, we sought inferred transcriptional 
regulators by comparing transcriptional targets to datasets 
that outline targets of transcription factors through the use 
of Ingenuity Pathway Analysis. The transcription factors 
AR, HIF, MYC, and AP1 complex were significantly 
enriched with p-values below 1.0E-07. Lastly, we 
merged ChIP-Seq profiles of H3K9Me1/2 and KDM3A 
transcriptional data focusing on 1408 annotated genes 
(overlap of H3K9ME1/2 ChIP-Seq with transcriptomic 
data that were down-regulated upon shRNA KDM3A 
knockdown) (Figure 1I, Supplementary Table 2). The 
data contained the highest enrichment ratio (26.7%) 
in a significantly enriched set of 27 genes in androgen 
signaling with p-values below 1.0E-17 and q-values 
below 1.0E-15 (Supplementary Table 3). In detail, putative 
KDM3A-regulated genes included pathways involved 
in androgen response, androgen receptor signaling, 
androgen biosynthesis, prostate cancer, pathways in 
cancer, cholesterol homeostasis, bile acid metabolism, 
aldosterone-regulated reabsorption, and progesterone 
regulation, hinting at the possibility of hormone nuclear 
steroid receptor involvement (enrichment with p-values 
below 2.62E-02 and q-values below 9.35E-02 correcting 
for multiple hypotheses testing) (Table 2). Interestingly 
for the concept of cooperative control, the pathways of 
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Table 1: Occurrence and enrichment by Fisher’s exact test reveals enrichment of transcription factor motifs in 
KDM3A ChIP-Seq data

transcription factor motif occurrences
adjusted p-values of motif 

enrichment H3K9me1 
ChIP-Seq

adjusted p-values of motif 
enrichment H3K9me2 

ChIP-Seq
TP53 3536 4.79E-10 5.58E-14
AR 2915 7.14E-07 2.00E-05
SREBF 1969 7.98E-50 8.24E-14
HIF 1964 1.88E-179 3.06E-142
FOS 1504 2.85E-256 2.60E-123
KLF 1244 4.06E-110 5.47E-81
MYC 767 1.68E-75 4.12E-63
FOX 584 0.00E-00 4.50E-276

Adjusted p-values accounting for multiple hypotheses testing using the false discovery rate controlling procedure of 
Benjamini and Hochberg of transcriptional motifs below 0.05 in H3K9me1/2-KDM3A ChIP-Seq data were considered 
significant.

Figure 2: Knockdown of KDM3A results in epigenetic control and transcriptional activation of the androgen response. 
A. Map of transcriptional regulation of KDM3A on androgen signaling. Red indicates positive response of KDM3A on gene (down with 
shRNA knockdown of KDM3A); blue indicates negative response of KDM3A on gene (up with shRNA knockdown of KDM3A). B. Gene 
set enrichment analysis of ranked transcriptomic data upon shRNA knockdown of KDM3A indicated significant enrichment of hallmark 
gene set of androgen response with p-value and false discovery rate q-value below 1.0E-20.
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regulation and coregulation of androgen receptor activity 
were also enriched with p-values and q-values below 
4.04E-06 and 1.97E-04, respectively. SLC26A2, FKBP5, 
KRT19, SORD, HOMER2, NDRG1, TPD52, INPP4B, 
PTPN21, ZMIZ1, PMEPA1, PPAP2A, TSC22D1, ACSL3, 
KLK3, NKX3-1, ELL2, MAP7, PTK2B, SMS, SPDEF, 
ABCC4, KLK2, MAF, TARP, AZGP1, and TMPRSS2 
were key regulators of prostate cancer and AR signaling 
based on the KDM3A ChIP-Seq data (Figure 2A–2B). 

Transcriptional control of key players of cancer and AR 
signaling by KDM3A such as KLK3, NKX3-1, MYC were 
validated by chromatin immunoprecipitation coupled 
with quantitative real time polymerase chain reaction 
(ChIP-qRT-PCR) (Figure 3A–3B). Taken together, 
complementary analyses identified strong transcriptional 
networks including AR, MYC, FOX, KLF, AP1, and 
SREBF transcription factors that may be regulated by 
KDM3A. Androgen signaling was consistently identified 

Table 2: Enrichment of androgen-related signaling pathways in H3K9me1/2-KDM3A ChIP-Seq data

pathway network K k k/K p-value q-value

androgen response hallmarks 101 27 0.267 2.77E-18 1.63E-16

pathways in cancer kegg 328 36 0.110 4.49E-11 8.15E-10

androgen-mediated signaling commons 130 21 0.162 1.58E-09 1.35E-07

regulation of androgen receptor 
activity commons 108 17 0.157 8.25E-08 5.28E-06

cholesterol homeostasis hallmarks 74 12 0.162 2.36E-06 1.69E-05

bile acid metabolism hallmarks 112 14 0.125 8.35E-06 4.87E-05

aldosterone regulated sodium 
reabsorption kegg 42 8 0.191 3.43E-05 1.42E-04

bladder cancer kegg 42 8 0.191 3.43E-05 1.42E-04

coregulation of androgen receptor 
activity commons 61 11 0.180 4.04E-06 1.97E-04

prostate cancer kegg 89 11 0.124 8.43E-05 2.93E-04

colorectal cancer kegg 62 9 0.145 1.05E-04 3.54E-04

androgen receptor signaling 
pathway wiki 91 14 0.154 1.50E-06 8.35E-04

nongenotropic androgen signaling commons 26 5 0.192 1.40E-03 1.58E-02

validated nuclear hormone receptor 
network commons 65 7 0.108 5.20E-03 3.45E-02

progesterone-mediated signaling kegg 86 8 0.093 7.10E-03 3.79E-02

bile acid secretion kegg 71 7 0.099 8.40E-03 3.86E-02

bile acid biosynthesis kegg 16 3 0.188 1.41E-02 4.68E-02

bile acid metabolism commons 27 4 0.148 1.09E-02 5.33E-02

SREBF in cholesterol and lipid 
homeostasis wiki 16 3 0.188 1.41E-02 7.96E-02

androgen biosynthesis commons 8 2 0.250 2.62E-02 8.25E-02

cholesterol biosynthesis wiki 18 3 0.167 1.96E-02 9.35E-02

The analysis is based on a query set of 1408 genes positively regulated by KDM3A with coincidence of demethylation and 
transcriptomic regulation (compare Figure 1). P-values below 0.05 from the hypergeometric distribution for K, the number 
of elements in the pathway of interest, k, the number of elements in the intersection of the input gene set, N=45956, all 
known human genes, and n=1408, the number of elements in the input gene set and false discovery rate q-values below 
0.10 for multiple hypotheses testing according to the controlling procedure of Benjamini and Hochberg were considered 
significant.



Wilson, Stephen P. 
_____________________________________________________________________ 

________________________________________________________________________ 

82 

Oncotarget30333www.impactjournals.com/oncotarget

by all of these different enrichment approaches, suggesting 
a key role for KDM3A in regulating AR activity.

Matched KDM and AR ChIP-Seq experiments 
reveal coincidence of demethylase binding, 
demethylation and AR binding events

Knockdown of KDM3A in CWR22Rv1 cells resulted 
in loss of KDM3A ChIP-Seq binding accompanied by 
specific, matched gain of histone lysine 9 demethylation 
(Figure 4A–4C). Knockdown of KDM3A had little 
effect on the protein level of AR [3, 18]. We examined 
the alteration of AR binding by ChIP-Seq with an AR 
antibody following KDM3A knockdown and quantified 
the overlap of AR ChIP-Seq events with KDM3A binding 
and changes in epigenetic H3K9me1/2 marks (Figure 
4A–4D). The activity-based ChIP-Seq array matched with 
knockdown of KDM3A resulted in 37525 peaks associated 
with KDM3A binding, 45246 and 32665 H3K9 mono- and 
di-demethylation (H3K9me1/2-KDM) events, respectively, 
and 34614 peaks for KDM3A-matched AR binding. Such 
an experimental design allows one to distinguish between 
histone demethylase binding (Figure 4E), epigenetic 

activity (Figure 4F), and coactivator binding events (Figure 
4G). Gain of H3K9me1/2 was coupled to specific changes 
in AR binding in the KDM3A knockdown experiments 
(Figure 1A–1E). Overall 37.0% of the AR ChIP-Seq 
peaks with altered H3K9me1/2 signal were suppressed 
upon knockdown of KDM3A, while the remaining fraction 
was not affected. The genome-wide ChIP-Seq analysis is 
consistent with the biochemical data, demonstrating that 
KDM3A in effect recruited AR to target genes [3, 18]. 
KDM3A ChIP-Seq and H3K9me1/2-KDM ChIP-Seq 
in combination with matched knockdown of KDM3A 
produced an epigenetic network that overlaid with the AR 
ChIP-Seq data (Figure 4H–4J). In the case of matched 
and merged datasets of AR ChIP-Seq in combination with 
KDM3A knockdown, we identified in total 77911 H3K9me 
peaks (Figure 4F) and directly overlaid them with 34614 
AR peaks containing 121700 ARE motifs (Figure 4I). 
Importantly, using such matched ChIP-Seq analyses, a set 
of 1912 genes was identified that showed an overlap of 
demethylation and AR binding events (KDM3A/AR ChIP, 
2381 peaks, 1912 genes) (Figure 4I, Supplementary Table 
1). Epigenetic events identified by ChIP-Seq were overlaid 
with transcriptomic data, defining a set of 421 genes that 

Figure 3: Detection of histone demethylase events by ChIP-qRT-PCR due to KDM3A activity in target genes involved 
in the androgen response. CWR22Rv1 prostate cancer cells transfected with pLKO.1 control or KDM3A shRNA were subjected 
to the chromatin immunoprecipitation coupled with quantitative real time polymerase chain reaction (ChIP-qRT-PCR) assay using 
immunoprecipitation with A. H3K9me1-antibody and B. H3K9me2-antibody. The precipitated chromatin fragments were analyzed by 
qRT-PCR using oligonucleotides for identified androgen response element regions of KLK3, NKX3-1 or MYC.
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Figure 4: Matched ChIP-Seq and knockdown experiments of KDM3A in combination with ChIP of the androgen 
receptor show synergy of KDM3A and the androgen receptor. ChIP-Seq experiments in combination with KDM3A knockdown 
results in A. specific loss of KDM3A ChIP-Seq signal, B. specific gain of H3K9me1 ChIP-Seq signal for 97.1% of the observed histone 
marks, C. specific gain of H3K9me2 ChIP-Seq signal for 95.6% of the observed histone marks, and D. specific loss of ChIP-Seq signal for the 
androgen receptor (AR) with less than 2.3% retained binding. Peak calling utilizing a model-based analysis of ChIP-Seq algorithm results in E. 
37525 peaks for KDM3A binding, F. 77911 peaks for H3K9 demethylation events (H3K9me1/2-KDM), and G. 34614 peaks for matched AR 
binding including 121700 androgen response elements (AREs). Motif analysis of KDM3A ChIP-Seq signals identifies pattern of transcription 
factor families including the AR motivating analysis of epigenetic and transcriptional cooperation between KDM3A and AR. H. KDM3A 
and H3K9 methylation ChIP-Seq signals are overlapped and annotated. I. H3K9 methylation and AR ChIP-Seq signals are overlapped and 
annotated. 1912 genes (gene set marked with *) showed coincidence of demethylation and AR binding events. J. Overlap of KDM3A and 
H3K9 methylation ChIP shows strong epigenetic network of KDM3A binding and activity. Overlap of KDM3A, H3K9 methylation, and 
matched AR ChIP shows participation of KDM3A in transcriptional activation. K. 421 genes (gene set marked with **) showed transcriptomic 
change upon KDM3A/AR knockdown in addition to coactivation detected by KDM/AR ChIP-Seq. 260 genes (gene set marked with ***) 
were positively regulated by KDM3A or AR activity (down in the prostate cancer line CWR22Rv1 with shRNA knockdown of KDM3A) and 
identified by KDM/AR ChIP-Seq. 45 genes genes (gene set marked with ****) showed overlap of transcriptomic response upon KDM3A and 
AR knockdown as well as coactivation detected by KDM/AR ChIP-Seq. L. Transcriptomic impact of KDM3A knockout shows 60.2% of gene 
activation (down in the prostate cancer line CWR22Rv1 with shRNA knockdown of KDM3A), and 39.8% of gene silencing.
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had epigenetic marks (H3K9me1/2 ChIP), AR binding (AR 
ChIP), and a transcriptomic effect (differential expression 
in either KDM3A or AR knockdown experiments) (Figure 
4K, Supplementary Table 4). Similar to the initial gene set 
based exclusively on H3K9me1/2 marks (57.2%) (Figure 
1), 60.2% of genes scored as activated upon KDM3A/AR 
coactivation while 39.8% were silenced. Merged ChIP-Seq 
data of KDM3A/AR coactivation with transcriptomic data 
of KDM3A knockdown defined a set of 260 genes (whereas 
activation is interpreted as down-regulation upon shRNA 
knockdown) (Figure 4K–4L, Supplementary Table 4).

KDM3A and AR coactivation results in 
oncogenic pathway activation of AR signaling

H3K9 demethylation is known for stimulating gene 
expression [3, 5, 19, 20]. We used gene set enrichment 
analysis to identify signaling networks or functional 
clusters of genes controlled by both KDM3A and AR. 
At the gene level we studied pathway enrichment for the 
following three sets: A) 1912 genes defined by overlapping 
H3K9 demethylation/AR ChIP (Figure 4I, Supplementary 
Table 1-2); B) 421 genes defined by overlapping H3K9 
demethylation/AR ChIP with differential expression upon 
KDM3A/AR knockdown (Figure 4K, Supplementary 
Table 2); and C) 260 genes that are down-regulated upon 
KDM3A or AR knockdown and having overlapping H3K9 
demethylation/AR ChIP (Figure 4K, Supplementary Table 
2). The gene sets were designed in a hierarchical fashion 
such that the parental set A of 1912 genes includes subset 
B of 421 genes, and B includes subset C of 260 genes 
(Supplementary Table 2). Such a hierarchical structure of 
gene sets allows one to monitor and identify requirements 
and conservation of a functional outcome. The gene 
set enrichment analysis revealed oncogenic activation 
of androgen signaling and metabolic pathways with 
p-values below 1.40E-02 and q-values below 4.44E-02 in 
hypoxic response, glycolysis, and lipogenic metabolism 
(Table 3, Supplementary Table 5). Enrichments of 
androgen response, metabolic pathways, hypoxia, 
aldosterone-regulated sodium reabsorption, glycolytic and 
glycerophospholipid metabolism pathways were conserved 
and enriched from the overlapping H3K9 demethylation/
AR ChIP (1912 genes) to the genes displaying down-
regulation upon KDM3A/AR knockdown and overlapping 
H3K9 demethylation/AR ChIP signal (260 genes). For 
example, androgen response and metabolic pathways 
showed incrementally higher enrichment with better 
defined input gene sets (significant enrichment of genes in 
androgen response with p-value of 7.51E-07 for 1912 gene 
set and decreased p-value of 5.23E-09 for 260 gene set). 
Similarly, pathways of glycolytic and glycerophospholipid 
metabolism showed consistently higher enrichment with 
the lowest p-values in the set of 260 genes, indicating 
that KDM3A demethylation targets these pathways and 
causes an up-regulation of gene expression. Of all genes 
detected by both H3K9 demethylation and AR ChIP-

Seq experiments as well as KDM3A and AR differential 
expression following knockdown (core set of 45 genes; 
28 genes up-regulated; 17 genes down-regulated), the 
AR response was the only significantly enriched pathway 
with a p-value of 5.29E-08. 7 genes, NDRG1, PTK2B, 
ACSL3, KRT19, INPP4B, NKX3-1, and MAF, with direct 
implication in AR signaling were present in all gene 
sets of the hierarchical enrichment analyses, thereby 
subject to KDM3A control by H3K9 demethylation, AR 
binding, and differential expression following knockdown 
(Supplementary Table 1-3, 5). In the androgen response 
pathway KDM3A and AR had strong ChIP-Seq activity 
(Table 4). The majority of epigenetic H3K9 demethylation 
events resulted in up-regulation of target gene activity 
and occurred at the TSSs of target genes. In addition, 
multiple introns, exons, and TTS of target genes were 
also implicated in KDM3A control. A network upstream 
regulator analysis implicated the AR to coordinate 
with epigenetic and transcriptional responses observed 
upon knockdown of KDM3A (Supplementary Table 
6). At the transcriptional level, KDM3A may affect AR 
signaling directly by interacting with regulatory regions 
of HSP90AA1 and AR genes. In addition, downstream 
effects of AR signaling were observed at KRT19, NKX3-
1, KLK3, TMPRSS2, PMEPA1, NDRG1, MAF, CREB3L4, 
MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, 
HIF1A, TARP, FKBP5, SPDEF, SMS, PPAP2A, SEPP1, 
UAP1, SORD, AZGP1, BCL2L1, ACSL3, CHUK, and 
CDKN1A (Table 4).

DISCUSSION

Epigenetic regulators like KDM3A specifically 
demethylate histone marks H3K9me1 and H3K9me2, 
thereby playing a central role in the histone code. In cancer, 
demethylation and decondensation of chromatin can lead to 
dysregulated gene expression and transcriptional activation 
of gene targets [21]. Previous cell biological studies have 
suggested that KDM3A may stimulate transcription 
mediated by nuclear receptors and/or that KDM3A may 
be involved in activation of forkhead proteins during 
cell differentiation [17, 22]. While histone modifiers are 
not limited to specific DNA cognate sites, transcriptional 
specificity can be accomplished by cooperation with 
transcription factors recognizing distinct DNA motifs [13].

The chosen bioinformatics approach of quantifying 
changes of matched epigenetic remodeling in combination 
with transcription factor ChIP-Seq and transcriptomic 
analysis following knockdown of an epigenetic 
master regulator offers insight from two angles: it can 
identify in an unbiased way genome-wide cooperation 
of epigenetic remodeling with other members of the 
transcriptional machinery, and it can elucidate details 
of the interaction. In prostate cancer, steroid ligand 
dependency or independency can influence the prognostic 
outcome. The CWR22Rv1 cell line offers the benefit 
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of being able to probe a static, aggressive end point of 
the disease, while it has limitations due to lacking the 
dynamic ligand-dependent aspect of AR signaling. Since 
the CWR22Rv1 cell line expressed permanently activated 
AR without the ligand binding domain, it provides a stable 
model for studying the dynamic response to epigenetic 
regulation by KDM3A knockdown in combination with 
ChIP-Seq analysis. KDM3A knockdown abolished tumor 
formation in an orthotopic prostate tumor model using 
CWR22Rv1 cells [18]. Interestingly, KDM3A knockdown 
in other prostate cancer cell lines, including the androgen 
dependent LNCaP cells, blocked cell proliferation [18].

Androgen signaling is subject to multilevel 
control. In addition to agonist and antagonist ligand 
chaperones, intracellular localization and interactions 
with other transcription factors or histone modifiers can 
influence the transcriptional outcome. Multiple epigenetic 
regulators have been described to interact with the AR. 
KDM4C co-localizes with the androgen receptor in 
prostate carcinomas, and knockdown of KDM4C inhibits 
transcriptional activation and tumor cell proliferation [23]. 
KDM3A is involved in spermatogenesis by regulating 
expression of target genes such as PRM1 and TMP1, 
which are required for packaging and condensation of 

Table 3: Pathway enrichment of transcriptional coactivation and matched ChIP-Seq experiments of H3K9me1/2 
marks and the androgen receptor

pathway network
1912 gene set (*) 421 gene set (**) 260 gene set (***)

p-value q-value p-value q-value p-value q-value

androgen response hallmarks 7.51E-07 1.27E-05 3.13E-07 2.46E-05 5.23E-09 1.23E-06

metabolic pathways kegg 2.58E-06 1.55E-02 6.51E-09 6.00E-05 3.78E-07 1.80E-03

hypoxia hallmarks 1.14E-11 8.99E-10 4.14E-10 9.77E-08 1.84E-06 2.17E-04

TNFα signaling via NFκB hallmarks 1.96E-06 2.72E-05 1.34E-05 3.96E-04 1.28E-04 7.17E-03

estrogen response early hallmarks 6.77E-09 2.66E-07 8.17E-05 1.48E-03 1.28E-04 7.17E-03

protein secretion hallmarks 3.83E-07 8.22E-06 2.02E-07 2.38E-05 1.94E-04 7.63E-03

galactose metabolism kegg 1.23E-03 5.79E-03 1.54E-03 1.65E-02 3.86E-04 1.30E-02

leukocyte transendothelial 
migration kegg 1.04E-04 6.79E-04 6.66E-04 8.27E-03 5.04E-04 1.35E-02

adipocytokine signaling pathway kegg 8.26E-06 8.49E-05 3.27E-04 5.15E-03 5.16E-04 1.35E-02

IL2 stat5 signaling hallmarks 5.11E-07 9.27E-06 1.34E-05 3.96E-04 8.71E-04 1.47E-02

glycolysis hallmarks 2.50E-04 1.52E-03 1.34E-05 3.96E-04 8.71E-04 1.47E-02

TP53 pathway hallmarks 8.10E-05 5.62E-04 4.45E-04 5.84E-03 8.71E-04 1.47E-02

glycerophospholipid metabolism kegg 7.61E-04 3.82E-03 6.49E-05 1.39E-03 8.73E-04 1.47E-02

aldosterone signaling kegg 3.33E-04 1.92E-03 3.45E-05 8.15E-04 1.60E-03 2.51E-02

GNRH signaling pathway kegg 5.01E-03 1.85E-02 2.10E-03 1.82E-02 2.38E-03 3.51E-02

endocytosis kegg 2.74E-04 1.62E-03 1.30E-03 1.46E-02 3.50E-03 4.34E-02

glycolysis gluconeogenesis kegg 1.40E-02 3.62E-02 2.26E-03 1.84E-02 4.85E-03 4.44E-02

interferon gamma response hallmarks 2.09E-12 4.93E-10 1.34E-05 3.96E-04 5.09E-03 4.44E-02

estrogen response late hallmarks 8.10E-05 5.62E-04 4.45E-04 5.84E-03 5.09E-03 4.44E-02

inflammatory response hallmarks 2.00E-03 8.12E-03 4.45E-04 5.84E-03 5.09E-03 4.44E-02

heme metabolism hallmarks 8.10E-05 5.62E-04 2.15E-03 1.82E-02 5.09E-03 4.44E-02

The analysis is focused on coactivation by KDM3A/AR ChIP and transcriptomic change upon knockdown. Input gene 
sets were defined by coactivation by KDM/AR ChIP-Seq (1912 genes; marked with *), coactivation by KDM/AR ChIP-
Seq and transcriptomic change upon KDM3A/AR knockdown (421 genes; marked with **), oncogenic gene up-regulation 
by KDM3A/AR and KDM/AR ChIP coactivation (260 genes; marked with **) (compare Figure 4). Comprehensive lists 
of gene sets and enrichment ratios are deposited in the Supplementary Information. To determine significance of pathway 
enrichment thresholds of 0.05 and 0.10 were used for p-values and q-values, respectively according to multiple hypotheses 
testing using the controlling procedure of Benjamini and Hochberg.
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sperm chromatin [3]. Furthermore, its involvement in 
obesity resistance through regulation of metabolic genes 
such as PPARA and UCP1 highlight a transcriptional 
network focused on lipid modifiers.

In this epigenetic and transcriptomic study we aimed 
to outline specific pathways of KDM3A demethylase 
action and enriched transcriptional networks under 
its control. Previous studies have outlined KDM3A 
expression levels in prostate cancer phenotypes [24], but 
KDM3A-regulated target pathways by ChIP-Seq analysis 
were unknown [24–26]. Motif-guided searches for 
cooperating transcription factors can link transcriptional 
programs with genome-wide histone modifications. 
Motifs of SREBP, HIF, AP1, KLF, MYC, and FOX 
families are enriched in the H3K9me1/2-KDM ChIP-Seq 
data and were described to play a role in prostate cancer 
progression [3, 9, 27–31]. However, of the enriched 
transcription factors characterized so far, only AR and 
MYC have strong biochemical links to KDM3A [3, 18]. 
Solely based on KDM3A regulation of ChIP-Seq and 
transcriptomic data, a gene set of 1408 genes revealed 
androgen-related signaling as top hit. Within the androgen 
response, transcriptionally validated genes, NKX3-1 and 

KLK3, have been shown to have dynamically regulated 
histone modification states [32].

In a second step, matched ChIP-Seq studies of 
KDM3A and the AR allowed us to focus on a distinct 
transcriptional network. Aside from the androgen 
response, cellular metabolism is highly enriched in 
the executioner program of KDM3A and the AR. In 
particular, lipogenic and hypoxic metabolism stand out 
for their regulation in the combined KDM3A/AR ChIP-
Seq and transcriptomic data. Previously established AR 
targets involved in cellular metabolism include ACSL3, 
which is involved in converting free long chain fatty acids 
into fatty acyl-CoA esters [33, 34]. Genome-wide ChIP-
Seq profiles show that KDM3A regulates the expression 
of FKBP5, CHUK, HSP90AA1, and VHL. These genes 
were previously implicated as being regulated by the AR 
and their proteomic function is involved in AR folding, 
transactivation, and translocation in the nucleus [35–38]. 
HSP90AA1 is described to be under the control of KDM3A 
[39–41]. Prominent shared targets of KDM3A and AR 
include gene targets associated with hypoxic metabolism. 
Transcriptional regulation in response to hypoxia is 
regulated by the actions of HIF1A and controls glycolytic 

Table 4: Epigenetic profiles and transcription factor motifs in H3K9me1/2-KDM ChIP-Seq data of the androgen 
response pathway

Target gene KDM TSS KDM Exon KDM Intron KDM 
TTS

KDM3A 
regulation AR regulation

KRT19 + + + + -4.5999 -0.7642

NKX3-1 + - - + -2.8073 -1.0951

KLK3 + + + - -1.3230 -0.5316

NDRG1 - + + + -1.2254 -

MAF + + - - -1.1679 -

CREB3L4 + + + + -1.1671 -

MYC + + + + -1.0253 -0.5261

INPP4B + + + + -1.0252 -0.6637

PTK2B - + + - -0.7523 -0.4538

MAPK1 + - + + -0.7441 -

MAP2K1 + + + + -0.7212 -

IGF1 + + + + -0.7062 -0.5278

E2F1 + + - - -0.6708 -

HSP90AA1 + - + - -0.6499 -

HIF1A + + + + -0.6010 -

ACSL3 - + + + -0.5263 -0.8003

CHUK + - + - 0.4407 -

CDKN1A + - + - 0.7347 -

Transcriptomic validation of gene expression change of target gene following knockdown of KDM3A or AR is listed as 
LOG2 (fold change).
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metabolism [42]. Previously, KDM3A gene expression was 
identified as one of the genes under control of HIF1A [43]. 
In addition, there is increased transcriptional activity of AR 
within castration-resistant prostate cancer by hypoxia [44]. 
A similar overlapping network of KDM3A demethylation, 
nuclear hormone signaling, and hypoxia is described 
in estrogen independent breast cancer models [16]. 
KDM3A’s ability to regulate metabolic gene expression 
by controlling AR binding site availability in hypoxic cells 
may be the molecular action KDM3A utilizes to stimulate 
tumor progression [45]. The additional enriched pathways 
with shared KDM3A and AR regulation appear to the 
hypoxic cell response. Cytokine and metabolic signaling 
is able to induce expression of HIF1A and promote its 
activation in an oncogenic fashion [46–51].

The functional impact of coordinated action 
between a lysine demethylase and transcription factors 
may lend to its target specificity, or at the very least, 
create accessibility for DNA binding [52–56]. KDM3A 
controlled H3K9me1/2 ChIP-Seq data shows a strong 
enrichment of AR binding sites within the CWR22Rv1 
castration-resistant prostate cancer cell line with continued 
expression of genes involved in the androgen response. 
However, about a third of the AR ChIP-Seq peaks were 
suppressed in response to increased H3K9me1/2 signal 
in the KDM3A experiments. It remains to be determined 
which other coactivators and corepressors take charge of 
AR binding sites in genomic locations where KDM3A 
has no effect on AR binding or transcriptional response. 
Notably, selected KDM3A- or AR-dependent genes show 
no clear association of modulated H3K9me1/2 marks 
within 50,000 bp around the gene body, suggesting 
that KDM3A can regulate gene expression either by 
accessing distant enhancers or by physical interaction 
with the transcriptional machinery independent of H3K9 
demethylation. For example, KDM3A was identified to 
erase lysine 372 monomethylation of TP53, a protein 
methylation site crucial for the stability and pro-apoptotic 
function of chromatin-bound tumor suppressor [57]. 
Significantly, next to the AR, SREBF, and HIF, the 
conducted transcription factor motif analysis confirmed a 
strong presence of TP53 target sequences controlled by 
KDM3A. Extensive future ChIP-Seq studies of KDM3A 
as well as other candidate transcription factors associated 
with KDM3A will be necessary to further characterize the 
full spectrum of epigenetic and transcriptional control of 
the master regulator KDM3A.

In conclusion, the ChIP-Seq study refined the 
genomic sites of KDM3A-mediated H3K9me1/2 
histone demethylation within the CWR22Rv1 prostate 
cancer cell line. The cancer systems biology analysis 
expanded underlying transcription factor motifs 
associated with oncogenic KDM3A demethylation, 
suggesting an underlying transcriptional network that 
directs transcriptional activation. Future experimental 
verification of epigenetic hotspots is needed to determine 
when detected response elements are functional in gene 

regulation. The matched transcriptomics and epigenomics 
approach identified an overlap between androgen receptor 
ChIP-Seq and KDM3A-regulated H3K9me1/2 ChIP-Seq. 
The comprehensive genome-wide mapping of matched 
ChIP-Seq profiles highlighted mechanistic details of 
how an epigenetic master regulator can exhibit control 
over selected transcriptional programs, such as metabolic 
pathways and hypoxia response in cancer.

MATERIALS AND METHODS

Tissue culture of prostate cancer cell lines

CWR22Rv1 is a human prostate carcinoma 
epithelial cell line derived from a xenograft that was 
serially propagated in mice after castration-induced 
regression and relapse of the parental, androgen-dependent 
CWR22 xenograft [58, 59] (CRL-2505, American Type 
Culture Collection, Manassas, VA). The CWR22Rv1 
prostate cancer cell line was kindly provided by Dr. 
James Jacobberger (Case Western Reserve University, 
Cleveland, OH), and are maintained in RPMI 1640 
medium supplemented with 10% fetal bovine serum and 
antibiotics. Cell cultures are regularly tested to ensure 
absence of mycoplasma. The CWR22Rv1 prostate cancer 
cell line expresses AR full-length with a duplicated DNA 
binding domain in exon 3 and AR splice variants, for 
example AR-v7, lacking a ligand binding domain. Thus, 
the CWR22Rv1 cell line displays constitutively active 
AR even in the absence of androgen [59]. In the ChIP-
Seq study an AR antibody (PG21, 06-680, Sigma EMD 
Millipore, Darmstadt, Germany) was used recognizing 
both forms of the AR. All experimental protocols were 
approved by the Institutional Review Board at the 
University of California Merced. The study was carried 
out as part of IRB UCM13-0025 of the University of 
California Merced and as part of dbGap ID 5094 on 
somatic mutations in cancer and conducted in accordance 
with the Helsinki Declaration of 1975.

Knockdown of KDM3A with shRNA

Lentiviral vectors encoding KDM3A small hairpin 
RNA (shRNA), AR shRNA or lentiviral pLKO.1 control 
shRNA were purchased from Open Biosystems (GE 
Healthcare Dharmacon, Lafayette, CO), and packaged 
in human embryonic kidney 293T cells (CRL-3216, 
American Type Culture Collection, Manassas, VA) 
by calcium phosphate transfection. The supernatant 
containing lentiviral particles were collected 48 hours 
after transfection. CWR22Rv1 cells were transduced 
with the supernatant of lentiviral particles in the presence 
of polybrene (8 μg/ml) for 24 hours before replacement 
with the fresh growth media. Cells were analyzed at 48 
hours post-transduction. The knockdown efficiency was 
confirmed by quantitative real time polymerase chain 
reaction (qRT-PCR) and Western-blot analysis.
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qRT-PCR analysis

Total RNA from prostate cancer cells was extracted 
using a mammalian RNA mini preparation kit (RTN10-1KT, 
GenElute, Sigma EMD Millipore, Darmstadt, Germany) and 
then digested with deoxyribonuclease I (AMPD1-1KT, Sigma 
EMD Millipore, Darmstadt, Germany). Complementary 
DNA (cDNA) was synthesized using random hexamers. 
Triple replicate samples were subjected to SYBR green 
(SYBR green master mix, Qiagen SABiosciences) qRT-
PCR analysis in an Eco system (Illumina, San Diego). 
Gene expression profiles were analyzed using the ΔΔCT 
method. qRT-PCR threshold cycle (CT) values were 
normalized using the housekeeping gene cyclophilin A 
(PPIA; peptidylprolyl isomerase A; Gene ID: 5478). The 
following primers served for ChIP-qRT-PCR validation of 
ChIP-Seq signal of H3K9me1/2-KDM around the AREs of 
AR target genes: KLK3 (kallikrein related peptidase 3; Gene 
ID: 354; also known as PSA, prostate specific antigen): 
5’-TGGGACAACTTGCAAACCTG-3’; 5’-CCAGAGTA
GGTCTGTTTTCAATCCA-3’; NKX3.1 (NK3 homeobox 
1; Gene ID: 4824): 5’-GGTTCTGCTGTTACGTTTG-3’; 
5’-CTTGCTTGCTCAGTGGAC-3’; MYC (v-myc 
avian myelocytomatosis viral oncogene homolog; 
Gene ID: 4609): 5’-CCAGCGAATTATTCAGAA-3’; 
5’-AATTACCATTGACTTCCTC-3’.

Western-blot analysis

Whole cell lysates were harvested using radio-
immunoprecipitation assay (RIPA) buffer composed of 50 
mM trisaminomethane hydrochloride (Tris-HCl) pH7.5, 
150 mM sodium chloride (NaCl), 1% Triton X-100, 0.1% 
sodium dodecyl sulfate (SDS), 0.1% sodium deoxycholate, 
1.0 mM EDTA, 1.0 mM sodium orthovanadate, and 1x 
protease inhibitor cocktail. Lysates were subjected to 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and proteins transferred to a nitrocellulose 
membrane (GE Healthcare Life Sciences, Pittsburgh, PA). 
The membrane was probed with ChIP-grade H3K9me1 
(ab9045, Abcam, Cambridge, MA), H3K9me2 (07-441, 
Sigma EMD Millipore, Darmstadt, Germany), KDM3A 
(A301-539A, Bethyl Laboratories, Montgomery, TX), 
or ACTB (A5441, Sigma EMD Millipore, Darmstadt, 
Germany) antibodies followed by a secondary antibody 
conjugated to fluorescent dye, and blots were imaged using 
the odyssey detecting system (LI-COR Biotechnology, 
Bad Homburg, Germany).

Chromatin immunoprecipitation

Cells were crosslinked using 1% formaldehyde 
for 10 min at 298 K. Formaldehyde was removed and 
cells were incubated with 125 mM glycine for 5 min at 
298 K. Nuclear extracts were collected and sonicated to 
obtain 300 bp chromatin fragments using the Covaris 
S2 ultrasonicator (Covaris, Woburn, MA). 100 μg of 

chromatin was incubated with 5 μg of AR (PG21, 06-680, 
Sigma EMD Millipore, Darmstadt, Germany), 5 μg of 
KDM3A (A301-538A, Bethyl Laboratories, Montgomery, 
TX), 2 μg of H3K9me1 (ab9045, Abcam, Cambridge, 
MA), or 2 μg of H3K9me2 (07-441, Sigma EMD 
Millipore, Darmstadt, Germany) antibodies overnight 
at 277 K followed by incubation with 30 μl of protein 
A/G beads for 4 hours. After four washes, crosslinking 
was reversed. Chromatin was digested with ribonuclease 
A followed by proteinase K. Then the DNA was purified 
using spin columns. The size of the DNA was confirmed 
by a bioanalyzer (Agilent Biotechnologies, Savage, MD).

Next generation sequencing and ChIP-Seq 
analysis

The purified DNA library was sequenced using an 
Illumina HighSeq2000 at the Sanford-Burnham Medical 
Research Institute at Lake Nona, National Genome Library 
Core Facility. Sequenced regions were aligned to the 
reference human genome 19 using the Bowtie alignment 
program that utilizes an extended Burrows-Wheeler 
indexing for an ultrafast memory efficient alignment 
[60]. Peak calling utilized a model-based analysis of 
ChIP-Seq (MACS) algorithm [61, 62]. The overlap 
analysis, plot of genomic location, sequence extraction, 
motif identification, and peak filtering were performed 
using ChIPseek: a web-based analysis for ChIP data [63]. 
ChIPseek also employs scripts from BEDtools [64] using 
a genome binning algorithm used by the UCSC genome 
browser to sort genomic regions into groups along the 
length of chromosome [65]. Data visualization was carried 
out using the integrative genomics viewer [66].

Motif analysis based on position site-specific 
matrix models

Computational response element searching 
algorithms are able to estimate a sequence’s likelihood 
in belonging to the response element of the query 
transcription factor using position site-specific matrix 
(PSSM) models where each position in the query 
transcription factor model gives each of the four letters 
in the DNA alphabet a score based on the probability 
of that nucleotide being found at that position [67]. 
Summation into a logs-odd score is converted into a 
p-value assuming a zero-order background model, and 
all response elements less than the threshold are reported 
[68]. Motif discovery, motif enrichment, and motif 
scanning used the multiple expectation maximization 
for motif elicitation (MEME) and discriminative regular 
expression motif elicitation (DREME) suite software 
toolkits from a set of user supplied unaligned sequences 
for ChIP-Seq regions [69]. De novo motif analysis 
programs MEME and DREME identify frequently 
detected DNA sequences patterns and similarity matches 
of recurring ChIP-Seq sequences with DNA motifs 
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of deposited studies in genomic sequence databases 
[68, 70]. After a motif of interest is discovered the 
genomic sequences of the ChIP sequenced data is 
scanned using the MEME suite software find individual 
motif occurrences (FIMO) [68] for individual motif 
occurrences using PSSMs to compute a log-likelihood 
ratio score for each submitted sequence. Sequence-
specific matrix models are further used to analyze the 
next generation sequencing data for motif enrichment 
and potential coactivators [13, 71].

Microarray analysis

In order to quantify the transcriptomic effect 
of KDM3A or AR knockdown, a microarray profiling 
analysis was conducted on CWR22Rv1 knockdown 
cells. CWR22v1 cells were transduced with lentiviral 
pLKO.1 control shRNA vector, AR, or KDM3A shRNA 
for 48 h. Total RNA was isolated from cells, and 500 
ng was used for synthesis of biotin-labeled cRNA using 
an RNA amplification kit (Ambion, Thermo Fisher 
Scientific, Waltham, MA). Biotinylated cRNA was 
labeled by incubation with streptavidin-Cy3 to generate 
a probe for hybridization with the GeneChip Human 
Transcriptome Array 2.0 (Affymetrix Inc, Santa Clara, 
CA) or the genome-wide transcriptome Human HT-
12 V4.0 (Illumina Inc, San Diego, CA). Four samples 
from two experimental groups (n=2 per group) were 
hybridized to the chip to obtain raw gene expression 
data, which was processed to obtain raw data in the 
form of expression intensities. Raw data was then 
exported for further processing and analysis using R 
statistical software version 3.1 in combination with the 
BioConductor oligo, affy and genefilter packages [72]. 
The raw signal intensities were background corrected, 
LOG2 transformed, and quantile normalized to generate 
robust multi-array average (RMA) normalized intensities 
[73]. Quality control analyses did not reveal any outlier 
samples. Differential expression between experimental 
groups was assessed by generating relevant contrasts 
corresponding to the two-group comparison and was 
evaluated using the Linear Models for Microarray 
Analysis (LIMMA) package [72, 74]. Raw p-values 
were corrected for multiple hypotheses testing using the 
false discovery rate controlling procedure of Benjamini 
and Hochberg, and adjusted p-values below 0.05 were 
considered significant [75]. Genes with significantly 
altered expression levels with adjusted p-values below 
0.05 following KDM3A knockdown were selected and 
analyzed through the use of Ingenuity Pathway Analysis 
(IPA, Qiagen, Redwood City, CA). Pathway enrichment 
of differentially expressed genes was determined by 
gene set enrichment analysis (GSEA) by pairing each 
gene with its expression value and ranking genes in 
descending order (Broad Institute, Cambridge, MA) 
[76, 77]. As we are testing multiple gene sets at the 

same time, the p-values need to be controlled for false 
positives. The false discovery rate estimation for the 
pathway enrichment is as summarized in q-values with a 
threshold of 0.10 controlling the error rate and correcting 
for multiple hypotheses testing according to Benjamini 
and Hochberg [75]. Acquired data of transcriptome 
profiling microarray analysis of CWR22Rv1 cells with 
AR knockdown using GeneChip Human Transcriptome 
Array 2.0, platform GPL16686 (Affymetrix Inc, Santa 
Clara, CA), is deposited in the NCBI GEO database 
under accession number GSE86547. Acquired data 
of CWR22Rv1 cells with KDM3A knockdown using 
hybridization with genome-wide transcriptome Human 
HT-12 V4.0, platform GPL10558 (Illumina Inc, San 
Diego, CA), is deposited under accession number 
GSE70498.

Availability of supporting data

The Supplementary Information contains tables 
on genome-wide mapping, annotation, and overlap of 
H3K9me1/me2 demethylation ChIP-Seq and AR ChIP-
Seq (Supplementary Table 1), gene sets based on ChIP-
Seq and transcriptomic data (Supplementary Table 2), 
pathway enrichment analysis based on H3K9me1/me2 
demethylation ChIP-Seq gene set (Supplementary Table 
3), transcriptomic response upon shRNA(KDM3A) 
and shRNA(AR) knockdown (Supplementary Table 4), 
hierarchical gene set enrichment analysis of identified 
KDM3A target genes (Supplementary Table 5), and an 
upstream regulator analysis based on ingenuity pathway 
analysis (Supplementary Table 6).
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Chapter Six: A network of epigenomic and transcriptional cooperation encompassing an 
epigenomic master regulator in cancer.  
 

This study proposes a workflow for identifying epigenetic and transcription factor 
cooperation in regulating a transcriptional network in cancer. By combining 
complementary -omics experiments a close teamwork of transcriptional and epigenomic 
machinery was discovered using gene promoter annotation with transcriptional motif 
enrichment. The ability for epigenetic factors to team up with specific transcription 
factors to regulate mitogenic and metabolic gene networks classifies these genes as 
master regulators when it comes to determining a cell's fate. Within the context of cancer 
oncogenic activation of these epigenetic factors are associated with the loss of 
proliferative control by disrupting previously established patterns of histone 
modifications. The therapeutic potential in understanding a network of cooperation 
between epigenomic and transcriptional factors allows for further understanding of 
mechanisms of chromatin regulation and may assist in the design of targeted therapeutics. 
Within this paper I contributed to the computational analysis of the data used in figures 1-
5. 
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A network of epigenomic and transcriptional cooperation
encompassing an epigenomic master regulator in cancer
Stephen Wilson1 and Fabian Volker Filipp 1

Coordinated experiments focused on transcriptional responses and chromatin states are well-equipped to capture different
epigenomic and transcriptomic levels governing the circuitry of a regulatory network. We propose a workflow for the genome-wide
identification of epigenomic and transcriptional cooperation to elucidate transcriptional networks in cancer. Gene promoter
annotation in combination with network analysis and sequence-resolution of enriched transcriptional motifs in epigenomic data
reveals transcription factor families that act synergistically with epigenomic master regulators. By investigating complementary
omics levels, a close teamwork of the transcriptional and epigenomic machinery was discovered. The discovered network is tightly
connected and surrounds the histone lysine demethylase KDM3A, basic helix-loop-helix factors MYC, HIF1A, and SREBF1, as well as
differentiation factors AP1, MYOD1, SP1, MEIS1, ZEB1, and ELK1. In such a cooperative network, one component opens the
chromatin, another one recognizes gene-specific DNA motifs, others scaffold between histones, cofactors, and the transcriptional
complex. In cancer, due to the ability to team up with transcription factors, epigenetic factors concert mitogenic and metabolic
gene networks, claiming the role of a cancer master regulators or epioncogenes. Significantly, specific histone modification patterns
are commonly associated with open or closed chromatin states, and are linked to distinct biological outcomes by transcriptional
activation or repression. Disruption of patterns of histone modifications is associated with the loss of proliferative control and
cancer. There is tremendous therapeutic potential in understanding and targeting histone modification pathways. Thus,
investigating cooperation of chromatin remodelers and the transcriptional machinery is not only important for elucidating
fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics.

npj Systems Biology and Applications (2018)4:24; doi:10.1038/s41540-018-0061-4

INTRODUCTION
Beyond genomic alterations, aberrant epigenomes contribute to
many cancers, as demonstrated by widespread changes to DNA
methylation patterns, redistribution of histone marks, and
disruption of chromatin structure.1 Altered epigenomes and
transcriptomes are closely intertwined and share non-genomic
mechanisms of dysregulation in cancer, and are therefore not just
a passive by-product of cancer.2 Epigenomic modifiers have the
ability to affect the behavior of an entire network of cancer genes
and can take on oncogenic roles themselves.3 Furthermore,
epigenetic factors cooperate and team up with transcription
factors to control specific gene target networks.4,5 In such works
and in the following text, a cis-regulatory, synergistic molecular
event between epigenetic and transcription factors is referred to
as transcriptional cooperation (Fig. 1).
The combination of both transcriptomic and epigenomic

profiling offers insight into different levels of gene regulation,
transcription factor binding motifs, DNA and chromatin modifica-
tions, and how each component is coupled to a functional output.
Chromatin remodelers and transcription factors are in close
communication via recognition of post-translational histone
modifications.6 Thereby, they have the ability to harmonize and
synchronize a dynamic exchange of chromatin between open,
transcriptionally active conformations, and compacted, silenced
ones.3 Coordinated experiments interrogating transcriptional
responses and chromatin binding via chromatin immuno-

precipitation with next generation sequencing (ChIP-Seq) are
well-equipped to capture different epigenomic and transcriptomic
levels governing the circuitry of a regulatory network.5

Regulatory networks in biology are intrinsically hierarchical and
governed by interactions and chemical modifications.7,8 The
regulome describes the interplay between genes and their
products and defines the control network of cellular factors
determining the functional outcome of a genomic element. The
reconstruction of regulatory gene networks is stated as one of the
main objectives of systems biology.9,10 However, an accurate
description of the regulome is a difficult task due to the dynamic
nature of epigenetic, transcriptional, and signaling networks.
Systems biology has the ability to integrate genome-wide omics
data recorded by ChIP-Seq, assay for transposase-accessible
chromatin using sequencing (ATAC-Seq), whole genome bisulfite
sequencing (WGBS-Seq), and RNA sequencing (RNA-Seq) technol-
ogy to identify gene targets of a regulatory event.11 The
integrated analysis of such data—on the one hand based on
gene networks, on the other hand based on sequence features of
high-resolution sequencing data—captures cooperation among
regulators. Effective experimental design and data analysis of
complementary epigenomic and transcriptomic platforms are
required to decipher such epigenomic and transcriptional
cooperation, which has a profound impact in development and
disease.
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We took advantage of published, information-rich transcrip-
tomic and epigenomic data to study regulatory networks
surrounding histone lysine demethylation. The presence or
absence of methylation on histone lysine residues correlates with
altered gene expression and is an integral part of the epigenetics
code.12 In particular histone 3 lysine 9 methylation (H3K9) is
regarded as an epigenetic mark associated with suppressed gene
activity.13 The H3K9 lysine demethylase 3 A (KDM3A, also referred

to as JMJD1A, Gene ID: 55818, HGNC ID: 20815) demethylates
mono-methylated or di-methylated histone marks, thereby
activating gene regulation within spermatogenesis, metabolism,
stem cell activity and tumor progression.14–16 Genome-wide ChIP-
Seq data of KDM3A identified specific gene targets and
transcriptional networks in androgen response, hypoxia, glycoly-
sis, and lipid metabolism, emphasizing the importance of
cooperation with transcription factors.5 However, among epige-
netic profiling experiments, a common observation is that
enrichment studies provide significance for multiple transcription
factors and not just one single, prioritized hit. This underscores the
concept of transcriptional cooperation among epigenetic players
but also emphasizes the need to design a reliable workflow that
includes cross-validation with complementary, multi-omics plat-
forms and analysis techniques.

RESULTS
Deciphering the regulatory landscape of an epigenomic and
transcriptomic network
The regulatory landscape of an epigenomic player includes
histone modifications, non-enzymatic chromatin interactions,
cooperation with transcription factors, transcriptional modulation
of gene target networks, and eventually stimulation of specific
effector pathways. With the help of hierarchical experimental
design, the complementary power of epigenomic and transcrip-
tomic data can be leveraged, and thus used to address distinct
levels of the regulome.4 However, different genome-scale data
platforms and analysis techniques result in the detection of
significant, yet only occasionally overlapping, insight into reg-
ulatory networks. To address this, the intersection of multi-omics
data levels is useful to augment and validate epigenetic regulation
of transcriptional programs. At the same time, there are unique,
platform-specific insights, which need to be analyzed accordingly.

Prioritization of cooperating transcription factors by integration of
complementary data
The goal of our network analysis is to detect epigenomic and
transcriptomic cooperation. Specifically, it is of interest to identify
and prioritize transcription factors that are closely associated with
an epigenomic factor by integrating complementary data (Fig. 1).
Analysis of motif enrichment (AME) determines significant
enrichment of transcription factor motifs among promotors or
given sequences. Transcription factor target (TFT) analysis defines
which transcription factor governs a set of target genes. Upstream
regulator analysis (URA) integrates TFT networks with reconstruc-
tions of systems biology maps. Each platform provides a measure
of significance for each detected transcription factor feature and
corrects for multiple hypothesis testing using unbiased genome-
wide data.17 Importantly, computations of significance of enrich-
ment may be performed at the level of either the gene or the
sequence. Furthermore, different members of transcription factor
families have the ability to recognize the same sequence motif.
Therefore, dedicated searches may account for such ambiguity
and overcome potential gene-specific database biases of indivi-
dual transcription factors (Fig. 2). In a subsequent step, results of
complementary platforms are intersected and compared. Taken
together, combinations of high-throughput sequencing data
deliver coordinates of epigenomic modification, enrichment of
transcription factor motifs, transcriptional output, and networks of
transcription factor targets (Figs. 1, 2).

Epigenomic switch of histone demethylation makes chromatin
accessible and activates gene expression
Our approach is showcased by elucidating the epigenomic switch
of KDM3A emphasizing its role as a master regulator. In order to

Fig. 1 Universal workflow for computational elucidation of regula-
tory cooperation networks. a By conjoining epigenomics and
transcriptomics data, it is possible to define an effector network
comprised of target genes affected by epigenomic regulation. The
epigenomic effector network is regulated by chromatin binding or
chromatin modification events resulting in gene expression
changes. b Concerted analysis of chromatin immunoprecipitation
ChIP-Seq and RNA-Seq data (or similar data) enables identification of
epigenomic and transcriptomic master regulators and transcription
factor networks. c By elucidating transcription factors associated
with an epigenomic event or regulator, it is possible to identify a
well-defined epigenomic-transcriptomic cooperation network sup-
ported by complementary multi-omics data. A color scheme
denoting, both data types and systems biology analyses, is
maintained throughout the entire document. Each color represents
a specific analysis technique executed on either genome-wide
epigenome and transcriptome profiles. The genome-wide intersec-
tion of epigenomic target regions (light green) with differentially
expressed (DE) transcripts (purple) results in the effector network of
regulated target genes. The intersection of analysis of motif
enrichment (AME) and transcription factor target (TFT), and
upstream regulator analysis (URA) approaches provides insights
into cooperative networks of transcription factors associated with
epigenomic regulators. Importantly, such genome-wide information
can be accessed at the sequence or gene level providing different
level of depth and resolution. ChIP-Seq data from AME (green) is
enhanced by position site-specific matrix (PSSM) models of
transcription factor motifs. TFT analysis can be performed on gene
target sets derived from ChIP-Seq (yellow) or transcriptomics data
(red). Furthermore, gene expression data contains valuable direc-
tional information indicated by arrows next to the gene expression
data utilized by URA (blue), which incorporates hierarchical systems
biology networks. The core analysis of the workflow includes multi-
omics data integration between chromatin binding and differential
gene expression events
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better understand the impact of KDM3A on transcriptional
networks, coordinated ChIP-Seq and transcriptomic data of
KDM3A binding and demethylation activity in combination with
knockdown of KDM3A was utilized.5 Such a combined array of
matching epigenomics and transcriptomics experiments has the
ability to focus on the cooperative forces of epigenetic regulation
as well as its transcriptional consequences. A ChIP-Seq experiment
offers direct insight into chromatin binding events and chemical
modifications of histones. By overlaying genomic binding events
with tracks of epigenomic marks, such as histone acetylation or
methylation, associated with open or closed states of chromatin, a
functional epigenomic landscape arises. Such ChIP-Seq profiles in
combination with transcriptomics and functional genomics allow
interrogation of the genome-wide impact of knockdown of a
specific epigenomic regulator. Via genome-wide annotation and
integration of sequencing reads, it becomes apparent that
corresponding profiles of binding and histone modifications are
reversed upon loss of function, mirroring the enzymatic function
of the epigenetic modifier. Cooperative epigenomic and transcrip-
tion factor binding coincides with promoter sites on meta gene
coordinates enriched for histone lysine demethylation—overall
indicators of transcriptionally activating epigenetic remodeling.

Regulation of transcriptional networks by H3K9 chromatin
demethylation
Coordinated ChIP-Seq and transcriptomic data classified genome-
wide interactions of the chromatin demethylase KDM3A using
antibodies specific for KDM3A, and its histone marks H3K9me1
and H3K9me2, conjointly with shRNA knockdown of KDM3A in the
CRL-2505 cell line. Transcriptomic impact of 4326 differentially
expressed genes upon KDM3A knockdown showed 2460 genes as
positively regulated by KDM3A activity (down in the CRL-2505
prostate cancer line with shRNA knockdown of KDM3A), and 1866
genes as negatively regulated by KDM3A activity. Using this data
we defined the set of 56.9% differentially expressed genes as
positively regulated by KDM3A activity (down in the CRL-2505
prostate cancer line with shRNA knockdown of KDM3A), and
43.1% of differentially expressed genes as negatively regulated by
KDM3A activity. KDM3A binding locations were defined by a loss
of ChIP-Seq signal following knockdown of KDM3A. Concurrently,
H3K9me1/2 histone marks following KDM3A knockdown are
recognized as target regions of KDM3A histone lysine demethyla-
tion mediated by KDM3A. Changes in these ChIP-Seq marks upon
KDM3A knockdown were contrasted against reference genomic
DNA input or control non-coding shRNA samples. Quantification
of the activity-based ChIP-Seq array matched with knockdown of
KDM3A resulted in 37525 peaks associated with KDM3A binding,
45246 and 32665 H3K9 mono- and di-demethylation (H3K9me1/2-
KDM) events, respectively. Overall, the peak counts of both
histone marks showed a gain of signal upon knockdown of
KDM3A reflecting the demethylase activity. By integrating
continuous ChIP-Seq signals, an average profile of a meta-gene
can be generated and functional coordinates analyzed for
regulatory control. In such a meta-gene profile, promotor regions
are located within 1000 bp upstream of the gene-coding body,
with the transcription start site (TSS) as the start of the gene-
coding body at the zero position, and intergenic regions as the
remaining regions outside of the gene body. KDM3A localized to
the response element-rich promoter regions and demethylated
H3K9me1/2 histone marks in the proximity of the TSS. Taken
together, the meta-gene analysis classified areas important for
transcriptional regulation and defined genomic sequence coordi-
nates relevant for cooperation with transcription factors.

Fig. 2 Transcription factor enrichment associated with activity of an
epigenetic modifier is assessed by complementary multi-omics
platforms and resolved at the family and gene level. a Transcription
factor (TF) enrichment associated with epigenomic activity is
quantified using complementary omics platforms. ChIP-Seq data
provides sequence-based insights on motifs (green) and genomic
coordinates (yellow) of epigenomic activity. Transcriptomics data
provides functional insight into regulated gene networks (red) and
the direction of response (blue). The data was analyzed using
analysis of motif enrichment (AME), transcription factor target
analysis (TFT), or up-stream regulator analysis (URA). b On the one
hand, the analysis is carried out at the level of transcription factor
families based on position-specific matrix-assisted searches of
structural motifs of transcription factor site recognition. This
approach is sequence-based and considers the possibility that
multiple, homologous members of transcription factor families have
the ability to recognize the same transcription factor site. c On the
other hand, the analysis is conducted at the transcript level with
gene-specific insight into transcription factors and their expression
levels. This approach takes advantage of regulatory networks, which
are assigned to specific isoforms of homologous members of
transcription factor families, and includes direction of regulation.
The later approach yields a set of transcriptional coactivators that is
about two orders of magnitude smaller and more specific than the
transcription factor family-based approach
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Accounting for motif similarity and structural homology of
transcription factor families
The array of ChIP-Seq data was subjected to AME and TFT analysis,
while the list of differentially expressed genes served as input for
URA and TFT analysis (Fig. 2a). Each transcription factor hit was
reported with its HGNC identification number, hierarchical
classification of human transcription factors (TFClass) family
barcode, motif logo, and significance corrected for multiple
hypothesis testing using an adjusted p value cut-off of 0.05 (Table
1, Supplementary Information). Each individual analysis yielded
between 29 and 41 significantly enriched transcription factor
families, each corresponding to more than 1000 (1083 and up to
1292, respectively) associated genes (Fig. 2b). In comparison to the
entire realm of 1539 existing transcription factors, such wide-
ranging data tables provide little benefit, despite the impressive p
values produced by analysis tools at first glance. For example
hypoxia inducible factor 1 alpha subunit (HIF1A, Gene ID: 4609,
HGNC ID: 4910, TFClass: 1.2.5) of the PAS domain factors (TFClass
1.2.5) is detected with an adjusted p value below 1.0E-100 by AME
in the ChIP-Seq data. Other members of the same family like the
aryl hydrocarbon receptor nuclear translocator (ARNT, Gene ID:
405, HGNC ID: 700, TFClass: 1.2.5) show similar significance, since
the detection is based on the same sequence logo, highlighting
the lack of ability to differentiate between structurally homo-
logous transcription factors. Therefore, we intersected all four sets
of AME ChIP-Seq, TFT ChIP-Seq, URA transcriptomics, and TFT
transcriptomics, and narrowed down 21 transcription factor
families supported by all datasets (Fig. 2a). Despite a considerable
improvement of 21 projected families among 110 existing
transcription factor families, the final set maps back to 967
transcription factors. In part, such lack of specificity is due to the
large family of more than 3 adjacent zinc finger factors (TFClass:
2.3.3), whose motif was detected by the analysis but contains 487
members, accounting for almost a third of all transcription factors
(Fig. 3a). Systems biology networks and enrichment studies
provide insight into directionality of the response and draw
attention to different sized effector networks (Fig. 3b, c). Only few
nodes of the transcription factor target network were hypercon-
nected and showed promoter association with multiple transcrip-
tion factors in epigenomics and transcriptomics datasets (Figs. 4,
5). Such a high degree of network connectivity speaks to a

synergistic effect, where selected master regulators cooperate and
act in sync, resulting in robust transcriptional output.

Multi-omics integration of complementary data yields well-refined
target network
In order to improve the detected output, gene-specific systems
biology networks were employed. In particular, URA and TFT
analysis fueled by transcriptomic data provide useful insight.
Databases of gene sets rely in part on experimental data of gene-
specific knockdowns to characterize the impact of a transcription
factor on a target network. Furthermore, a consistent directional
response amplifies the significance of a detected hit. Therefore,
such directional, gene-specific networks have the ability to
overcome ambiguities. For example, members of the JUN-
related factors (TFClass: 1.1.1) are detected but show different
signs of regulation depending on the factor of interest, the
response of its target genes, and the change of expression of the
factor itself. After intersection of all four datasets, 11 transcription
factors belonging to 10 transcription factor families were
determined (Fig. 2c). This set of master regulators is supported
by complementary omics platforms and different analysis
techniques representing a high-confidence cooperation network
of the epigenomic master regulator KDM3A (Fig. 5). The
cooperation network includes cancer associated factors Jun
proto-oncogene, AP-1 transcription factor subunit (JUN, Gene ID:
3725, HGNC ID: 6204, TFClass: 1.1.1), CCAAT/enhancer binding
protein beta (CEBPB, Gene ID: 1051, HGNC ID: 1834, TFClass: 1.1.8),
myogenic differentiation 1 (MYOD1, Gene ID: 3091, HGNC ID:
7611, TFClass: 1.2.2), HIF1A, sterol regulatory element binding
transcription factor 1 (SREBF1, Gene ID: 379, HGNC ID: 11289,
TFClass: 1.2.6), MYC proto-oncogene, bHLH transcription factor
(MYC, Gene ID: 4609, HGNC ID: 7553, TFClass: 1.2.6), androgen
receptor (AR, Gene ID: 367, HGNC ID: 644, TFClass: 2.1.1), Sp1
transcription factor (SP1, Gene ID: 6667, HGNC ID: 11205, TFClass:
2.3.1), Meis homeobox 1 (MEIS1, Gene ID: 4211, HGNC ID: 7000,
TFClass: 3.1.4), zinc finger E-box binding homeobox 1 (ZEB1, Gene
ID: 6935, HGNC ID: 11642, TFClass: 3.1.8), and ELK1, ETS
transcription factor (ELK1, Gene ID: 2002, HGNC ID: 3321, TFClass:
3.5.2) representing less than 0.8% of all possible transcription
factors (Figs. 4d, 5). Thereby it represents a hyperconnnected

Table 1. Detection of transcriptional cooperation by multi-omics integration of complementary data and analysis techniques

Symbol Motif TFClass TF family ChIP-Seq
AME pval

ChIP-Seq
TFT pval

Transcriptomics URA
pval

Transcriptomics TFT
pval

JUN TGAGTCA 1.1.1 Jun-related factors 2.85E−16 1.55E−18 2.46E−03 2.40E−17

CEBPB ATTGC
GCAAT

1.1.8 C/EBP-related 4.04E−40 5.58E−09 0.00E+00 6.38E−09

MYOD CAGGTG 1.2.2 MyoD / ASC-related
factors

1.35E−38 6.97E−18 4.28E−02 6.36E−19

HIF1A CACGC 1.2.5 PAS domain factors 1.88E−179 3.10E−02 0.00E+00 4.54E−17

SREBF1 CACATG 1.2.6 bHLH-ZIP factors 1.14E−46 1.76E−08 3.81E−02 1.64E−12

MYC CACATG 1.2.6 bHLH-ZIP factors 9.41E−67 6.24E−21 1.97E−02 6.46E−31

AR AGAACANNNTCTTGT 2.1.1 Steroid hormone
receptors NR3 factors

1.02E−03 2.71E−02 3.30E−02 1.15E−02

SP1 CACCC 2.3.1 Three-zinc finger Krüppel-
related factors

4.04E−190 2.40E−63 5.19E−03 9.68E−87

MEIS1 TGACA 3.1.4 TALE-type homeo domain
factors

1.90E−04 6.26E−15 7.61E−03 7.37E−12

ZEB1 CACCTG 3.1.8 HD-ZF factors 1.02E−111 4.37E−18 2.88E−02 6.24E−19

ELK1 GGAAG 3.5.2 Ets-related factors 1.97E−03 1.43E−13 2.84E−02 1.78E−24

ChIP-Seq or transcriptomics data provide adjusted p values (pval) using analysis of motif enrichment (AME), transcription factor target analysis (TFT), or up-
stream regulator analysis (URA)
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network of networks surrounding an epigenomic cooperation
event. The identified factors can further be surveyed at the level of
basal expression or regulation in patient-derived tumor specimens
in TCGA underlining elevated expression in tumor progression.
The analysis validates previously reported associations and
contacts implicated in chromatin remodeling and discovered
newly identified cooperative interactions (Table 2). For the specific
role of KDM3A in cancer, epigenomic and transcriptional
cooperation with transcription factors is key. KDM3A cooperates
with mitogenic basic helix-loop-helix factors including MYC,
HIF1A, and SREBF1, and derives a lipogenic program from
association with nuclear receptors like AR. Ultimately, by over-
laying the motif-specific and genomic data produced through
matched experiments, epigenomic events can be correlated with
the transcriptomic effect of histone remodelers and transcription
factors.

DISCUSSION
ChIP-Seq based approaches provide sequence resolution but
detection of enriched transcription factor motifs is ambiguous and
is most appropriately accomplished at the transcription factor
family level to account for and include homologous factors. In
contrast, transcriptomics studies provide directionality of regula-
tion—transcriptional activation or repression upon epigenomic
activity—an important aspect lacking in coordinate-based ATAC-
Seq or ChIP-Seq experiments. Integration of different sequence,
gene, or network-based approaches prioritizes high-fidelity
cooperation partners in epigenomic regulation. Therefore, any
combination of complementary data from sequence, gene, or
network-based approaches is identified as desirable input for
reliable regulatory systems biology analyses.
For the oncogenic nature and target specificity of an

epigenomic master regulator, epigenomic and transcriptional
cooperation with transcription factors is key. KDM3A is able to
support initiation of transcription by its ability to specifically
remove mono-methylation and di-methylation marks from the
H3K9 residue leading to chromatin de-condensation.14 Transcrip-
tionally silenced genes contain methylation marks on the
H3K9 subunit18 and arrays of ChIP-Seq experiments monitoring
H3K9 methylation marks revealed global histone demethylation
effects of KDM3A. Combined assessment of histone demethyla-
tion events and gene expression changes indicated major
transcriptional activation, suggesting that distinct oncogenic
regulators, in particular transcription factors, may synergize with
the epigenetic patterns controlled by KDM3A. Furthermore, the
epigenetic factor was shown to cooperate with the androgen
receptor to control prostate tissue-specific gene target networks
introducing the concept of the epioncogene and transcriptional
cooperation.19

While KDM3A is able to control chromatin accessibility, the
mechanism by which it targets specific genes is of current interest
and may influence understanding of epigenetic dysregulation in
human disease. While several cancers exhibit deregulated KDM3A
activity, in prostate adenocarcinoma it functions as a transcriptional
coregulator with the androgen receptor.5,14,20,21 Such cooperative
coactivation of the androgen receptor with KDM3A features a role
for KDM3A as an active force in commencing oncogenesis in
prostate epithelial cells. KDM3A is known to control the transcription
and function of oncogenic transcription factors.22,23 However, an
expanded study outlining the effects of perturbed KDM3A H3K9
demethylation upon human transcription factor response element
recognition in cancer has so far been missing.
The cooperation network includes previously validated interac-

tions of MYC, HIF1A, and AR in cancer but also highlights close
association of KDM3A with transcriptional networks of factors

Fig. 3 Visualization of epigenomic and transcriptional cooperation
illustrates redundancy and complexity of a target network. a
Hierarchical trees of human transcription factors correspond to
transcription factor superclass, class, and family from inward out.
Transcription factor motifs often get recognized by multiple
members of the same transcription factor family due to structural
homology of DNA binding domains. The transcription factor target
analysis (TFT) is carried out on sequence-specific epigenomics data.
b Size of the transcriptional effector network and the direction of
response are key parameters when evaluating target genes in
epigenomic cooperation. The TFT analysis is based on differentially
expressed transcripts with transcriptomic up and down response in
red and blue, respectively. c Transcription factor target networks
provide insight into enrichment and direction of the response.
Identified cooperating transcription factors show agreement
between complementary data of expression levels, direction of
regulation, target sets, and hierarchical linkage
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rather studied in development and tissue differentiation like JUN,
CEBPB, MYOD, SREBF1, SP1, MEIS1, ZEB1, or ELK1 (Table 1). By
taking advantage of motif-specific target networks, KDM3A has
the ability to induce glycolytic genes in urothelial bladder
carcinoma.24,25 Epigenomic regulation of SREBF1 activity has been
reported to stimulate lipogenesis, and SREBP1 regulates lipid
accumulation and cell cycle progression in androgen independent
prostate cancer cell lines.26–28 KDM3A regulates the transcriptional
program of the AR, serves epigenomic master regulator by
epigenomic and transcriptional cooperation of prostate

adenocarcinoma.5 Despite some factors including the forkhead
box (FOX) factors (TFClass: 3.3.1) family were frequently detected
at the transcription factor family levels, lack of consistent overlap
of epigenomic and transcriptomic data eventually excluded
prominent cancer drivers like forkhead box A1 (FOXA1, Gene ID:
3169, HGNC ID: 5021, TFClass: 3.3.1), forkhead box M1 (FOXM1,
Gene ID: 2305, HGNC ID: 3818, TFClass: 3.3.1), forkhead box O1
(FOXO1, Gene ID: 2308, HGNC ID: 3819, TFClass: 3.3.1), or forkhead
box O3 (FOXO3, Gene ID: 2309, HGNC ID: 3821, TFClass: 3.3.1).
Despite FOX factors are known to cooperate with nuclear

Fig. 4 Network of transcriptional cooperation of an epigenomic master regulator visualized by transcription factor family trees. a A network of
transcription factors is detected using complementary epigenomic and transcriptomic data. The realm of potentially relevant transcription
factor families is large yet many data points are not mirrored or validated by different platforms. b, c Confidence and mutual data support
increases by integrating analysis of motif enrichment (AME), transcription factor target analysis (TFT), or up-stream regulator analysis (URA).
For each data source B chromatin modifications or c differential expression of target genes detected transcription factors supported by at
least two complementary techniques, AME and TFT for epigenomics data, and URA and TFT for transcriptomics. d High-confidence target
network of transcription factors validated by four different omics platforms integrating ChIP-Seq based motifs and transcriptional networks.
Legends of colored areas in Venn diagrams illustrate intersections of complementary datasets and analysis platforms with numbers of
identified transcription factor families, respectively. The numbers next to individual nodes of the hierarchical family tree indicate transcription
factor superclass, class, and family from inward out
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hormone receptors (TFClass: 2.1.1), it is possible that the putative
association with KDM3A steams from the fact that the closely
cooperating AR frequently has FOX motifs nearby. Systematic,
genome-wide surveys have elucidated that FOX motifs are
adjacent androgen response elements (AREs),29,30 thereby facil-
itating cooperation at the level of transcription factors and
promotion of prostate cancer progression.
Hundreds of transcription factors are significantly associated

with each individual data analysis platform or high-throughput
sequencing technology. Big data challenges can be overcome by
systems biology analysis and integration of multi-omics data.
Motif similarity is visualized by transcription factor family trees
classifying superclass, class, and family of transcription factors
(from inward to outward, Fig. 4) based on the characteristics of
their DNA-binding domains. Single epigenomic or transcriptomic
datasets examined by different analysis tools result in improved
resolution but leave ambiguities. The footprints of cooperating
transcription factors are found in cognate sequence motifs specific
to their DNA binding domains. Such sequence motifs are more
pronounced in events of cooperating epigenomic activity.
Detected motif enrichment highlights the modularity, versatility,
and efficacy of epigenomic cooperation, providing target speci-
ficity at genome-wide reach. The number of detected events in
genome-wide epigenomic binding studies provides statistical
power for sequence motif discovery and gene target enrichment.
As a consequence, high-resolution epigenomic studies often arrive
at multiple plausible solutions, though each suggested interaction
or association may carry statistical significance. By intersecting
complementary data platforms and analysis techniques, high-
fidelity gene target networks involved in epigenomic and
transcriptomic cooperation can be identified.

Within the regulome, epigenetic master regulators position
themselves at the top of cellular hierarchies and control distinct
phenotypic programs via reversible chemical modifications of
chromatin, histone or nucleotide marks, without altering the core
DNA sequence. Epigenetic oncogenes or tumor suppressors can
arise when epigenetic master regulators are somatically activated
or lost, and contribute to cancer initiation and progression.31 In
cancer, such epigenetic master regulators are found at the top of
regulatory hierarchies, particularly in pathways related to cellular
proliferation, survival, fate, and differentiation. For the manifesta-
tion of a genomic or non-genomic aberration of an epigenetic
master regulator, it is a necessity that its own activity is affected by
somatic mutation, copy number alteration, expression levels,
protein cofactors, or methylation status. Epigenetic master
regulators often accomplish target specificity of their phenotypic
program by cooperation with members of the transcriptional
machinery and therefore may depend on tissue-specific expres-
sion of such auxiliary factors. In cancer, an epigenetic master
regulator populates an extreme state and is either permanently
switched on or off. An epigenetic master regulator will become a
cancer driver, if it is not functionally neutral but rather contributes
to tumorigenesis or disease progression due to its hyperactive or
deactivated state. Genomic profiling of cancer patients has the
ability to identify coincidence or mutual exclusivity of somatic
alterations of epigenomic and transcription factors. Extreme states
of epigenetic master regulators by somatic loss or gain of function
in cancer may emphasize preexisting cooperative interactions
with transcription factors, which may be subtle and difficult to
detect under normal circumstances. A defined challenge in the
field of epigenetic master regulators is to identify cancer-specific
vulnerabilities in gene targets and biological pathways that are

Fig. 5 The network of networks convoluted in epigenomic and transcriptional cooperation by an epigenomic master regulator displays
specificity yet redundancy and hyperconnectivity. a A highly specific effector network is accomplished by epigenomic and transcriptional
cooperation. Key features of the network are hyperconnectivity of utilized nodes and targeting of effector genes by multiple cooperating
transcription factors. b Each identified node of the transcription factor network comprising epigenomic cooperation is supported by
complementary epigenomic and transcriptomic data. Each cooperating transcription factor supports the epigenomic factor—in this case
KDM3A—by contributing motif-specific recognition, by directing chromatin accessibility, and by controlling transcriptional coactivation
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frequently and consistently perturbed under the control of an
epigenetic driver.

CONCLUSION
In conclusion, the identification of transcriptional cooperation and
regulatory hierarchies highlights the importance of epigenetic
regulators in mitogenic control and their potential as therapeutic
targets. Epigenetic regulators such as KDM1A, KDM3A, KDM5A,
KDM6A, KDM7A, EZH2, DOT1L, and others have been shown to be
critical in oncogenesis and cancer resistance.3,32,33 The discovery
of the specific role of KDM3A in the interplay between a tissue-
specific steroid receptor transcription factor and metabolic
signaling provides a foundation for rational design of combination
approaches where metabolic, epigenetic, and hormone-
deprivation therapies may synergize. Our integrated multi-
platform analysis reveals a complex molecular landscape of
epigenomic and transcriptomic cooperation in cancer, providing
avenues for precision medicine.34 A close teamwork of the
transcriptional and epigenomic machinery was discovered, in
which one component opens the chromatin, another recognizes
gene-specific DNA motifs, and others scaffold between histones,
cofactors, and the transcriptional complex. This highlights a close
connection between the epigenomic and transcriptomic machin-
ery, albeit much of the underlying principles remain to be

discovered. In conclusion, transcriptomics in combination with
epigenomic profiling and measurement of chromatin accessibility
enable global detection of epigenetic modifications and char-
acterization of transcriptional and epigenetic footprints. Chroma-
tin remodelers and transcription factors are in close
communication via recognition of post-translational histone
modifications and coordinate the dynamic exchange of chromatin
between open, transcriptionally active conformations and com-
pacted, silenced ones. In cancer, due to the ability to team up with
transcription factors, epigenetic factors concert mitogenic and
metabolic gene networks, claiming the role of a cancer master
regulators or epioncogenes. Exploration into the cooperative roles
of epigenetic histone modifiers and transcription factor families in
gene regulatory networks contributes to our understanding of
how a seemingly promiscuous epigenomic program is converted
into a specific transcriptional response assisting in oncogenesis.

METHODS
Experimental design
Optimal experimental design mirrors different layers of the regulatory
network and organizes sequencing assays in an array of coordinated
experiments.4,5,35 Coordinated epigenomic and transcriptomic profiles are
well-equipped to capture different regulatory levels governing the circuitry
of a cooperative network. The workflow introduced in our approach is

Table 2. Epigenomic and transcriptional cooperation events in cancer. Original findings and reported cooperation events of epigenomic regulators
with transcription factor are enumerated

Symbol TFClass Cooperation event Ref.

JUN 1.1.1 KDM3A assists in recruiting JUN to AP1 binding sites in regulating expression of CD44, MMP7, and PDGFRB in liver
adenocarcinoma tumor formation

51

KDM4A promotes a positive feedback loop by facilitating the binding of the AP1 complex to the promoters JUN and FOSL1 in
squamous cell carcinoma cells

52

CEBPB 1.1.8 Novel event

KDM4B serves as a cofactor for CEBPB in preadipocytes and is recruited to the promoters of CEBPB regulated cell cycle genes 53

MYOD 1.2.2 Novel event

KDM4B regulates the expression of MYOD and physically interacts with MYOD thereby controlling myogenic differentiation 54

KDM4C decreases MYOD degradation and increase MYOD transcriptional activity to facilitate skeletal muscle differentiation 55

HIF1A 1.2.5 KDM3A expression is stimulated by HIF1A binding to a response element in the promoter region of KDM3A 24

KDM3A is regulated by HIF1A stimulating tumor formation in renal cell carcinoma 22

KDM3A cooperates with HIF1A to induce glycolytic genes in urothelial bladder carcinoma 25

SREBF1 1.2.6 Novel event

KDM1A regulates SREBF1 binding to the FASN promotor stimulating lipogenesis 26

MYC 1.2.6 KDM3A stimulates MYC expression and attenuates its ubiquitin-dependent degradation by binding to a E3 ubiquitin ligase 56

KDM3A regulates transcription of MYC and PAX3 by directly binding to their promotors and regulates their H3K9me2 level in
breast adenocarcinoma

57

KDM4B binds the MYC/MAX motif and regulates expression of MYC signaling in neuroblastoma 58

N-MYC physically interacts and recruits KDM4B. Additionally KDM4B is able to regulate the expression of MYC signaling in
neuroblastoma

58

AR 2.1.1 KDM3A regulates the transcriptional program of the AR, serves epigenomic master regulator by epigenomic and
transcriptional cooperation of prostate adenocarcinoma

5

KDM3A facilitates transcriptional activation by hormone-dependent recruitment of the AR to target genes in prostate
adenocarcinoma

14

KDM1A and KDM4D bind to the AR and localize to ARE half sites in the promoter region of VEGFA in placental development 21

KDM4A binds the AR and supporting urothelial bladder carcinoma initiation and progression 59

KDM4B enhances AR transcriptional activity by demethylation and inhibits ubiquitination of the AR 60

SP1 2.3.1 Novel event

KDM4A silences SP1 by chromatin demethylation in breast adenocarcinoma 61

MEIS1 3.1.4 Novel event

ZEB1 3.1.8 Novel event

ELK1 3.5.2 Novel event
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open and applicable to different epigenome and transcriptome profiles
including ChIP-Seq, ATAC-Seq, RNA-Seq, and microarray experiments.
Since the analysis primarily relies on differential expression, microarray or
RNA-Seq data are equally applicable. Additionally, data on alternative
transcripts may allow resolving regulation of splice-isoforms. For coordi-
nated multi-omics analysis, it is important to integrate compatible datasets
and look for matching conditions, each associated with presence or
absence of a defined epigenomic event or factor. Genomic editing offers
tools to conduct target-specific loss or gain of function studies such that an
array of coordinated experiments can be assembled. Complementary
epigenomic and transcriptomic data—on the one hand in form of
significantly enriched genomic regions (epigenomic target regions), on the
other hand as differentially expressed transcripts (target genes)—serves as
input for four different analysis platforms (Figs. 1, 2).

Investigation of KDM3A as epigenetic switch in human cancer
KDM3A coordinates transcriptional activation by H3K9 demethylation
thereby enabling chromatin accessibility and replacement of components
of nucleosome-stalled polymerase complexes by tissue-specific transcrip-
tion factors. The workflow is exemplified by reprocessing published data
on KDM3A activity recorded with matching knockdown conditions in a
human prostate carcinoma epithelial cellular model deposited in NCBI GEO
entries GSE109748 and GSE7049829,36,37 (CRL-2505, American Type Culture
Collection, Manassas, VA). The utilized cellular model is a variant derived
from a xenograft and simulates castration-induced regression and relapse
typical of human prostate carcinoma epithelial cells independent of
dihydroxytestosterone stimulation. Furthermore, KDM3A is activated by
somatic copy number amplification in lung, prostate, uterine, bladder,
testicular germ cell, ovarian, cervical, breast, sarcoma, melanoma, and
other cancers making its cooperation network an important target of
broad interest in oncology.

Data processing
Illumina HiSeq 2000 (Illumina, San Diego, CA) fastq files were aligned to the
reference human genome 19 using the Bowtie software package.38 Peak-
calling utilized a model-based analysis of ChIP-Seq (MACS) algorithm.39,40

Significant ChIP-Seq genomic locations relative to nearby gene bodies
were annotated by ChIPSeek.41 ChIP-Seq peak regions were sorted and
filtered by BEDtools.42 Average ChIP enrichment profiles over specific
genomic features were calculated using the cis-regulatory element
annotation system tool.43,44 ChIPSeq binding profiles were visualized in
the integrative genomics viewer (IGV).45 Utilized conditions include ChIP-
Seq profiles of antibodies specific for chromatin marks H3K9me1,
H3K9me2, and the epigenomic modifier KDM3A in combination with small
hairpin RNA (shRNA) knockdown of KDM3A matched with coordinated
transcriptomic data of control and KDM3A knockdown cells using human
transcriptome platform GPL10558 (HT-12 V4.0, Illumina, San Diego, CA).5

The epigenomic and transcriptomics datasets contained 77911 features
and 4356 differentially expressed transcripts upon KDM3A knockdown,
respectively, with p values and q values below 0.05 adjusted for multiple
hypothesis testing.

Network analysis and transcription factor target enrichment
Human transcription factors were annotated according to their Human
Genome Organization (HUGO) Gene Nomenclature Committee (HGNC)
identification number using the using the multi-symbol checker tool.
Discovered transcription factors were classified by shared DNA binding
domains according to the hierarchical classification of human transcription
factors (TFClass) database.46 Transcription factor binding and promoter
sites were annotated utilizing transcription factor databases.30,47 For
transcription factor binding site searches we built manual or utilized
deposited position site-specific matrices or sequence logos of curated,
non-redundant transcription factor databases. Statistically significant
enrichment of these transcription factor motifs was determined using
find individual motif occurrences (FIMO) and motif enrichment tools of the
motif-based sequence analysis toolkit (MEME) suite.48 Upstream regulators
were determined by ingenuity pathway analysis (IPA, Qiagen, Redwood
City, CA) based on differentially expressed genes with an adjusted p value
below 0.05. Significant enrichment of target gene networks with consistent
transcription factor motifs was calculated for all target genes with
annotated transcription factor motifs in the 3′ promoter region of their
transcription start sites.49

Data availability
Data is deposited in NCBI GEO entries GSE109748 and GSE70498. Identified
transcription factors and statistics are assembled in the Supplementary
Information. All data supporting the findings of this study is openly
available within the paper and the Supplementary Information deposited
at the npj Systems Biology and Applications website. A preprint version of
this manuscript is made available to the scientific community on the
preprint server bioRxiv 309484.50

Supplementary Table 1–6 are compiled as Supplementary Information.
Supplementary Table 1: Master regulators among epigenomic and
transcriptomic cooperation network. Supplementary Table 2: Detection
and hierarchical classification of human transcription factors. Supplemen-
tary Table 3: ChIP-Seq analysis of motif enrichment (AME). Supplementary
Table 4: ChIP-Seq transcription factor target (TFT) analysis. Supplementary
Table 5: Transcriptomics upstream regulator analysis (URA). Supplementary
Table 6: Transcriptomics transcription factor target (TFT) analysis.
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Chapter Seven: Conclusions 

7.1 Summary of contributions 
 The dynamics between epigenetic regulators and transcription factors in 
regulating gene expression and what alterations that may occur to these factors to cause 
the development of cancer is an important aspect for the field of gene regulation. The first 
study of this dissertation, the somatic copy number amplification and hyper-activation of 
the epigenetic factor EZH2 was determined to correspond to epigenetic silencing of genes 
involved in tumor suppression and the immune response through DNA methylation.  The 
second study explored binding sites of the transcription factor known as the androgen 
receptor. The third study of histone demethylase KDM3A was found to regulate the 
transcriptional program of the transcription factor of the androgen receptor. The last 
study describes a gene regulatory network between the epigenomic master regulator 
KDM3A and the transcription factors with which it cooperates. The conclusions made 
from these studies, how they can be applied, and the future directions of study are 
discussed in the forthcoming section.  

7.2 Somatic Copy Number Amplification and Hyperactivating Somatic Mutations of 
EZH2 Correlate with DNA Methylation and Drive Epigenetic Silencing of Genes 
Involved in Tumor Suppression and Immune Responses in Melanoma 

7.2.1 Summary of results 
 It was determined prior to this study that the epigenetic modifier EZH2 was 
involved in silencing tumor suppressor genes across several cancer types, however the 
genes EZH2 targeted and their role in contributing to melanoma wasn't completely 
understood. In summary, the information obtained from the 471 TCGA SKCM patients 
identified that EZH2 was hyper-activated in melanoma through mechanisms of mutations 
within the gene, amplification of the gene body, and increased transcription for around 
20% of these patients suggesting an unfavorable prognosis. The single nucleotide 
polymorphism DNA arrays from TCGA identified a recurrent mutation occurring at 
EZH2's SET domain at Y641. Other researchers have noted that the EZH2 Y641 residue 
is a target of JAK2 phosphorylation, and that resulting missense mutations of this residue 
results in stabilizing the protein and increasing its histone methylation activity [1, 2]. 
Therefore it is expected that due to these hyperactivating mutations of EZH2 in the 
catalytic SET domain of EZH2 in SKCM patients have increased histone methylation and 
therefore increased gene repression. In addition to mutations affecting EZH2 function, 
TCGA SKCM datasets identified that the EZH2 loci was one of several genes prone to 
amplification of the chromosomal band 7q36.1. This molecular event is important due to 
both having a mutation that results in the hyper-activation of gene activity and having a 
duplicated gene locus that encourages oncogenic events. Additionally RNAseq analysis 
of this cohort of patients showed an increase in the transcription of EZH2. Altogether 
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patients with EZH2 activating mutations, amplification, or high RNA-seq counts showed 
reduced survival compared to patients with wild-type EZH2. 
 In addition, adding trimethylation marks to histones EZH2 enables the 
recruitment of DNA methyltransferases to methylate DNA for further transcriptional 
repression. This information was used to identify EZH2 target genes from TCGA SKCM 
patient data by examining the intersection of genes with increased DNA methylation with 
genes with decreased transcription levels. These candidate genes were further validated 
as targets of EZH2 regulation by measuring changes in gene expression following the 
treatment of melanoma cell lines with activated EZH2 with the EZH2 inhibitor GSK126. 
Following treatment with the inhibitor GSK126 98 genes that were transcriptionally 
repressed regained gene expression and were associated with tumor suppression, cell 
differentiation, cell cycle inhibition, repression of metastases, and antigen processing and 
presentation pathways. EZH2 mediated repression of the transcription factors JUN, 
JUND, FOS, and FOSB of the AP-1 complex were found. Previous researchers found 
that in early development for mice EZH2 blocks AP-1 binding in the skin, thus 
maintaining epidermal progenitors until there is a decline in EZH2 expression resulting in 
differentiation [3, 4]. This describes a small regulatory circuit between an epigenetic 
modifier and transcription factors in determining a cell's phenotype.  EZH2 treated with 
GSK126 also rescued the expression of cyclin dependent kinase inhibitor p21 
(CDKN1A), an activator of multiple tumor suppressor pathways including cell cycle 
arrest, differentiation and cellular senescence. This is consistent with previous reports of 
EZH2 inhibition rescuing CDKN1A expression [2, 5]. Lastly EZH2 was able to repress 
genes associated with immune responses in patients. Oncogenic processes in cancer cells 
can assist with their evasion of the immune system making the cancer resistant to 
immunotherapies [6].  EZH2 achieves this by repressing the expression of major 
histocompatibility complex genes [7, 8]. Mining of TCGA SKCM datasets for EZH2 
responsive genes identified EZH2 as being able to repress CD74, a chaperone protein that 
associates with MHC for regulating antigen presentation in addition to chemokine 
receptors [6]. 

7.2.2 Applying cancer subtyping into the development of precision medicine 
 TCGA has generated multiple -omic data types for nearly all patient cases: 
mutations by whole exome sequencing, gene expression by RNA sequencing, microRNA 
expression by small RNA sequencing, copy number by single nucleotide polymorphism 
(SNP) arrays, DNA methylation by Illumina arrays, protein expression by reverse phase 
protein arrays, and noncoding mutations and structural variants by whole genome 
sequencing [9]. Since its inception TCGA has greatly benefited the research community 
as a resource to better understand the molecular basis of cancer by identifying significant 
DNA-level alterations and defining molecular subtypes of cancer. With the large amount 
of cancer cases involved in TCGA, the significance of identified genes with alterations 
gain more statistical power [10]. Furthermore categorizing tumors into associated cohorts 
based on their molecular profiles within TCGA datasets allows for subtypes within the 
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cancer to be identified without making any major assumptions [11, 12].  Often different 
mutagenic events happen during the progression of carcinogenesis allowing for different 
combinations of genetic mutations to occur across patient samples for the same cancer 
type. Identifying these different combinations of mutagenic events allows researchers to 
define mutational signatures of a cohort and can provide clues into the specific 
mechanisms behind the characteristics of that cancer ideally by identifying the altered 
associated pathways [13]. Chapter Three details how patients within the SKCM dataset 
were sorted into a subtype based on screenings for activating mutations, copy number 
gains, and amplification of gene expression. Using this information one-fifth of patients 
diagnosed with SKCM were identified as having their cancer driven by EZH2 hyper-
activation.  Defining these subtypes in cancer represents the recognition that cancer may 
be heterogeneous and may be placed in the context of clinical trials for the development 
of precision medicine. This philosophy of precision medicine argues that healthcare 
should be personalized with medical decisions, treatments, practices, or products specific 
to individual patients. By understanding the molecular forces that drive the cancer 
phenotype for that specific patient, a personalized treatment plan may yield a better 
prognostic outcome.  This study was able to identify candidate EZH2 target genes from 
TCGA SKCM datasets and evaluate the impact of GSK126 treatment for rescuing gene 
expression that was epigenetically silenced by EZH2. This study serves as an example of 
how scientists are able to identify oncogenes that drive the cancer phenotype, which 
fraction of the population is affected, and uncovering the cellular effects of reversing the 
oncogenic signal. 

7.2.3 Future perspectives on SKCM cohort studies 
In the future new analytical approaches or analysis parameters may be developed 

to refine the current understanding of the SKCM TCGA cohort where additional subtypes 
may be found. Currently TCGA data does not focus on patient treatment information in 
regard to the level of response to targeted therapy. In the future a study could be done to 
carry out the molecular profiles of patients from clinical trials which could help 
researchers define molecular signatures and associated pathways within SKCM that are 
responsive and non-responsive to the treatment. Based on the results of this publication, 
further research avenues investigating the role of EZH2 in melanoma could look into the 
effect of EZH2 mediated histone methylation's effect on suppressing gene expression. 
Another study could look into whether the inhibitors of EZH2 are able to play a role in 
immunotherapy.  
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7.3 Refinement of the androgen response element based on ChIP-Seq in androgen-
insensitive and androgen responsive prostate cancer cell lines. 

7.3.1 Summary of results 
The specificity of target response element recognition for the transcription factor 

AR was improved through the use of ChIP-seq in the androgen-insensitive CWR22Rv1 
and androgen responsive LNCaP prostate cancer cell lines. Initial attempts to identify the 
ARE binding site pattern without the use of existing motif databases yielded an imperfect 
full ARE site and a perfect half site motif pattern in the CWR22Rv1 ChIP-seq data. The 
following attempt to identify ARE locations using the position site specific matrix of the 
AR (MA0007.2) yielded genomic sequences that did not resemble the palindromic ARE 
sequence described in the literature resulting in the need to design a new position site 
specific matrix model for ARE site identification.  
 The combined effort of all the position site specific matrix models designed were 
able to identify 42956 ARE full and 79065 ARE half site events in CWR22Rv1 cells. 
These response elements were sorted into tiers and quantified:  71 AREs in tier 1 
(perfect), 1583 matches in tier 2 (1bp off perfect), 20362 in tier 3 (2bp off perfect), and 
20940 in tier 4 (3bp off perfect) with p-values below 4.94E-05. The motifs showed 
conservation of G and C in positions two and five respectively in the ARE hexamers. In 
addition, there was increased GC content in the spacer region of the response element. 
Lastly, to comprehensively describe the genome wide coverage of AREs, tier 5, focuses 
on ARE half sites. Tier 5 ARE half sites show a perfect hexamer, while not complying 
with the requirements of tiers 1 through 4. The functional role of the 120,000 AREs 
detected by the position site specific matrix model searches were tested against the 
transcriptional response of AR knockdown in a microarray experiment. In total 759 genes 
were transcriptionally down regulated, and 743 genes were upregulated upon shRNA AR 
knockdown. When looking at the fraction of confirmed AREs per tier there is a higher hit 
rate in ARE tiers closer to the canonical sequence. While 99% of AREs were imperfect, 
the transcriptional outcome correlated negatively with the degree of degeneracy. 
 The same model-based ARE annotation was also applied to condition-specific 
CWR22Rv1 and LNCaP ChIP-Seq samples and assessed ARE utilization dependent on 
AR splice isoforms as well as 5α-dihydrotestosterone (DHT) treatment. ARE binding by 
ChIP-Seq was assessed in the CWR22Rv1 cell line for total AR binding, AR(total), for 
binding to full-length androgen receptor, AR(FL), for binding by variant androgen 
receptor, AR(V), in the LNCaP cell line for 5α-dihydrotestosterone treatment, AR(DHT), 
for ethanol treatment, AR(EtOH), and for functionally active steroid-bound AR corrected 
for EtOH background AR(ACT). Data generated from these experimental conditions 
showed that the tier 1 "perfect" ARE is a rare event, independent of AR splice-variants or 
steroid condition. Cross-validation of ChIP-Seq experiments of AR (total) vs AR(FL) 
confirmed 30,022 AREs assigned to AR(FL)-binding in the CWR22Rv1 cell line (Fig. 
5B). AR(V) isoforms with 78,350 ARE ChIP-Seq events bind to DNA autonomous of 
full-length androgen receptor in the absence of androgen and modulate a unique set of 
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genes that are not regulated by the full-length androgen receptor. In contrast, AR(DHT) 
in the LNCaP cell line displayed a set of 7,361 AREs common to the CWR22Rv1 cell 
line. Next, the quantified fraction of ARE tiers confirmed by overlapping ChIP-Seq 
experiments. AR(FL) showed an incremental reduced fraction with higher, less specific 
ARE tiers in the CWR22Rv1 cell line, while AR(V) isoforms had a stronger overlap with 
more degenerate motifs. The AR(DHT) LNCaP condition showed a trend similar to 
AR(FL) in the CWR22Rv1 cell line. Notably, the frequency of perfect AREs correlates 
with AR specificity and increases from AR(V) isoforms to AR(FL) in the CWR22Rv1 
cell line and quadruples in the AR(DHT) LNCaP condition. All evaluated conditions 
showed high agreement utilization of ARE tiers 3–5, half sites and imperfect full sites. 
 Using the Jasper database, additional transcription factor binding sites were found 
within a window of ±160 bp from the ARE with a p-value of less than 0.05 were found. 
Top hits included forkhead box (FOX), Krüppel-like factors (KLF), basic helix-loop-
helix (BHLH), sterol regulatory element binding factor (SREBF), and v-Myc avian 
myelocytomatosis viral oncogene homolog (MYC) families of transcription factors. An 
increase of detected transcription factor motifs at 15 bp was noticed for KLF, and 45 bp 
for SREBF-related transcription factors between full and half site ARE. This suggests 
that for the AR to recognize any weaker half site response element, cooperation of other 
transcription factors might be required. In order to determine this, the transcriptional 
response between full and half site ARE with KLF sites were quantified. 17917 ARE full 
sites coincide with KLF sites. 25 fell into tier 1, 611 into tier 2, 8067 into tier 3, and 9214 
into tier 4. When comparing between detected full and half sites there was a stronger 
cooperation of the ARE full sites with KLF motifs resulting in larger transcriptional 
response with 360 and 368 genes up and down regulated in contrast to ARE half sites, 
which had 50 and 33 genes up and down regulated. Despite a larger number of weaker 
ARE half sites found in the proximity of KLF motifs, stronger AREs next to KLF motifs 
resulted in a larger transcriptional response. 
 Next the significance of ARE utilization in the context of somatic copy alterations 
were determined from prostate adenocarcinoma (PRAD) patients in The Cancer Genome 
Atlas (TCGA) and in the CWR22Rv1 cell line. Chromosome arms 1q, 3p, 3q, 7p, 7q, 8p, 
8q, 12p, and 12q in the CWR22Rv1 cell line showed strong amplifications overlapping 
with somatic copy number alterations regions identified in TCGA PRAD cohort. Regions 
with somatic copy number amplifications had significantly enhanced ARE utilization of 
60.4 AREs/Mbp in contrast to euploidic genome regions of 32.3 AREs/Mbp with a p-
value of 8.9e10-6. The amplified regions contained 5012 genes. From the CWR22Rv1 
ChIP-Seq and transcriptomic experiments 214 amplified genes were classified as positive 
AR targets (down-regulation with shRNA knockdown) and are pathway members of the 
androgen response, steroid biosynthesis, and cholesterol homeostasis. In addition, 
amplified and AR-regulated genes showed enrichment in MTORC1 signaling, DNA 
replication, cell cycle, MYC targets, mismatch repair, homologous recombination, 
nucleotide excision repair, epigenetic regulators, and pathways in cancer.  
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 The identified 759 and 743 ARE genes confirmed by ChIP-Seq binding as well as 
transcriptional activity were tested for pathway enrichment by tiers. Gene sets 
corresponding to full site AREs with activating gene expression (582 genes as positively 
regulated by AR activity with ARE full or half sites; 102 with exclusively full sites) 
revealed 41 including 21 exclusive pathways significantly enriched with p-values below 
0.05. For half site AREs (585 genes as positively regulated by AR activity with ARE full 
or half sites; 53 with exclusively full sites) 39 including 12 exclusive pathways were 
found with p-values below 0.05. Pathways in both sets included DNA replication, cell 
cycle control, and metabolic pathways. Of particular interest were pathways that were 
exclusively assigned to ARE full sites or half sites. The set of AR target genes with ARE 
full sites focused on pyrimidine metabolism, terpenoid backbone biosynthesis, one-
carbon metabolism, glycine, serine and threonine metabolism with p-values below 0.001. 
The metabolic program—framed by genes with full site AREs—supports proliferative 
functions required for cellular maintenance. In contrast, the set of AR target genes with 
ARE half sites included steroid biosynthesis, terpenoid backbone biosynthesis, 
peroxisome, pentose phosphate pathway, glycerolipid metabolism, and mitogen activated 
protein kinase signaling pathway with p-values below 0.001. An enrichment of genes 
containing ARE half sites involved in lipid and steroid biosynthesis could point to the 
gender-, development-, and tissue specific control in prostatic differentiation. Therefore, 
the gene set enrichment analysis suggests that AR targets genes controlled by ARE full 
sites and/or ARE half sites have common proliferative functions, but also distinct 
biological functions involved in lipid metabolism. 

7.3.2 Applying response element refinement strategies into motif databases 
Transcription factors are a class of proteins conserved across all living organisms 

that are able to control gene expression by binding to DNA in a sequence-specific manner 
[14-16]. With the development of next generation sequencing techniques the ability to 
study transcription factor specificity has changed drastically in the last decade for both in 
vitro and in vivo studies allowing researchers to gain a broad overview of their binding 
and sequence specificity [17]. With these advances in sequencing technology researchers 
have been able to build and refine collections of transcription factor binding sites in 
databases such as TRANSFAC, JASPAR, UniPROBE, HOCOMOCO, CIS-BP, and 
Swiss Regulon [18-23]. Even though a great amount of effort has been placed in 
describing transcription factor response elements in these databases, some of the resulting 
response element models do not accurately represent the selectivity of transcription factor 
binding. This may be due to inadequate selectivity of transcription factor response 
element sequences into their model's design. Recognizing transcription factor response 
elements in DNA sequences requires a method for identifying canonical sequences within 
a level of leniency and while all sites identified cannot be functional in regulating gene 
expression, a transcriptomic experiment measuring the change of expression for a 
knocked-out gene will identify active response elements in gene regulation.  
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 Furthermore experiments understanding the site-specific binding of transcription 
factors between cell types can lead to better understanding on cell specific transcriptional 
programs. Within the context of cancer, the mechanisms by which transcription factors 
function may differ greatly than in normal tissue. Identifying differences in transcription 
factor binding events between cancer phenotypes may identify changes in the gene 
targets of the transcription factor's gene expression program thus changing the cell's 
proliferative potential. 
 In cancer, mutagenic events are not limited only to the coding regions of genes, 
but also in the genomic regions that regulate them. Within the context of this research 
paper, mutations within the response elements of transcription factors are able to either 
increase or decrease transcription factor-DNA site recognition [24-33]. This means that 
degenerate response elements of transcription factors may acquire point mutations that 
transition them to a lower tier classification. The impact of these mutagenic response 
element events could result in a change in the gene regulation and expression for both 
proximal and distally located genes [25, 34-36]. Additionally, some nucleotides in the 
response element may be more important than the others for achieving DNA binding. 
Maintaining these residues may be required to retain its ability to act as an active binding 
site. 
 Combining transcriptomic experiments to response element analysis allows 
researchers to understand if its DNA binding results in gene activation or repression and 
allows for a model of gene regulatory networks to be established for that specific 
transcription factor. Additionally the genomic regions surrounding the response elements 
can search for secondary transcription factors that may be complacent in promoting a 
disease driven phenotype. This information may expand the regulatory network of genes 
due to the fact that transcription factors may co-localize or compete for DNA binding 
[37]. As transcription factors are able to operate in complex networks through thousands 
of bindings sites, crosstalk between these factors can also be applied to these databases 
[38].  

7.3.3 Future perspectives on response element alterations in cancer 
During this course of study, a prominent feature of the higher tiered AREs was 

the increase in the GC content of the response elements three base pair spacer and 
flanking regions of the response element. Additionally this study identified that there 
were classes of AREs unique to androgen-insensitive and androgen responsive prostate 
cancer cell lines. It is possible that due to the high GC content of these higher tiered 
AREs that the methylation of the CpG dinucleotides are able affect the shape of the 
response element and prevent AR from recognizing the site. Consequently some studies 
have revealed that some transcription factors preferentially bind to methylated DNA [39-
41]. Investigation into the DNA methylation status of AREs in the androgen-insensitive 
and androgen responsive prostate cancer cell lines would reveal if this were the 
mechanism that makes the AREs tissue specific. Alternatively, these androgen-
insensitive prostate cancer cell lines specific response elements may be prone to 
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mutational events that may transition the response elements to a lower tier where they 
may have increased affinity for the AR.  
 An additional direction that could be explored is that some transcription factors 
upon binding to their response elements have the ability to recruit epigenetic factors such 
as chromatin remodelers, chromatin modifiers, and DNA methyltransferases [42, 43]. 
Future ChIP-seq studies could look into prominent histone modifications that may 
accompany detected response element sites. Examining transcriptional coactivation of the 
AR with epigenetic factors prominent in prostate cancer may provide insight into the 
chromatin landscape that may accompany AR mediated gene regulation.  
 Lastly while transcription factors contain DNA binding domains, sometimes 
transcription factors may be able to bind to DNA indirectly by interacting with another 
transcription factor [44]. Performing a ChIP analysis for proteins associated with the AR 
may identify secondary transcription factors and cofactors it interacts with in prostate 
cancer. 

7.4 The histone demethylase KDM3A regulates the transcriptional program of the 
androgen receptor in prostate cancer cells.  

7.4.1 Summary of results 
 The H3K9 methylation mark is recognized as a hallmark of transcriptionally 
repressed gene.  Previously the histone demethylase KDM3A was able to regulate the 
expression of genes involved in a variety of biological processes by demethylating mono- 
or dimethylated H3K9. KDM3A is deregulated in several cancers, and in prostate 
adenocarcinoma it cooperates with the AR to facilitate gene expression. In order to 
understand KDM3A's impact on transcriptional regulation, a ChIP-seq experiment, 
identified KDM3A binding and demethylation events was matched with a microarray 
experiment in the CWR22Rv1 prostate cancer cell line.  
 In order to establish the genome wide impact of the epigenetic regulator KDM3A, 
a matched ChIP-seq experiment using antibodies specific for histone marks H3K9me1 
and H3K9me2 in combination with small hairpin RNA (shRNA) knockdown of KDM3A 
in the CWR22Rv1 cell line was conducted. Histone lysine demethylation (KDM) events 
mediated by KDM3A were defined by gain of methylation ChIP-Seq signals following 
knockdown of KDM3A. Overall, the peak counts of both H3K9me1 and H3K9me2 
ChIP-Seq experiments showed a gain of signal (32244 to 34162 and 23353 to 46599, 
respectively). KDM events were functionally annotated by mapping bound regions to the 
human genome and by classifying them according to the nearest gene locus and relative 
position within coding regions. In the H3K9me1 ChIP-Seq experiment the intergenic 
regions were the most frequently found region with 21112 peaks (46.5%) followed by 
21495 (47.7%) as intronic regions, 822 (1.8%) as exonic regions, 606 (1.3%) as 
promoter-TSS regions, 549 (1.2%) as TTS regions, 424 (0.9%) as 3′UTR regions, and 46 
(0.1%) as 5′ untranscribed (UTR) regions. Similarly, the H3K9me2 ChIP-Seq had the 
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intergenic region as its most frequent region with 18195 (55.9%) followed by 13167 
(55.9%) as intronic regions, 373 (1.1%) as exonic regions, 355 (1.1%) as promoter-TSS 
regions, 246 (0.8%) as TTS regions, 204 (0.6%) as 3′UTR regions, and 25 (0.1%) as 5′ 
UTR regions. These ChIP-Seq profiles following KDM3A knockdown revealed selective 
histone demethylation effects of this epigenetic modifier. 
 Following genomic annotation, the detected genes were checked to see if there 
was a specific gene expression program underlying the demethylation events of 
H3K9me1 and H3K9me2. Half of the detected genes, 8841 (55.1%), contain both 
H3K9me1/2 marks. While the ChIP-Seq data shows that H3K9me1 has more annotated 
genes compared to H3K9me2 (5121 and 2089 respectively), both histone marks showed 
an equal fraction of genes being transcriptionally responsive to KDM3A knockdown 
according to the transcriptomic dataset. Overall, from the transcriptomic experiments, 
1408 (58.4%; using a significance cutoff with adjusted p-values below 0.05) genes are 
reported as differentially down regulated upon shRNA knockdown of KDM3A while 
1002 genes are reported as up regulated by KDM3A knockdown. The combination of 
ChIP-Seq histone demethylation events and transcriptomic assessment showed major 
transcriptional activation by KDM3A, suggesting that KDM3A may synergize with 
distinct transcriptional regulators for epigenetic control of gene expression. 
 Following characterization of the H3K9me1 and H3K9me2 marks an analysis into 
the enrichment of transcriptional motifs associated with the histone marks controlled by 
KDM3A the CWR22Rv1 prostate cancer cell line was performed. The goal of this 
analysis is to identify potential transcription factors that cooperate with KDM3A to 
regulate gene expression. Using the Jaspar motif database, we conducted an unbiased 
search for significant enrichment of transcription factor families (analysis of motif 
enrichment search with p-values below 0.05). Top hits included the androgen receptor, 
sterol regulatory element binding factor (SREBF), hypoxia inducible factor (HIF), 
activator protein 1 (AP1) complex of JUN/FOS, Krüppel-like factors (KLF), v-Myc avian 
myelocytomatosis viral oncogene homolog (MYC), and forkhead box (FOX) families of 
transcription factors with significant enrichments and p-values below 1.0E-04. In 
addition, enhanced simple ChIP-Seq based searches with position-specific matrices to 
determine which transcription factor motifs were enriched compared to shuffled 
background sequences. The enrichment analysis showed the androgen response element 
(ARE) with 2915 incidences as one of the most frequent motifs detected. At the 
transcriptional level, the androgen response gene set was the most enriched with a p-
value and false discovery rate q-value each below 1.0E-20. Transcriptional regulators 
were inferred by comparing transcriptional targets to datasets that outline targets of 
transcription factors through the use of Ingenuity Pathway Analysis. The transcription 
factors AR, HIF, MYC, and AP1 complex were significantly enriched with p-values 
below 1.0E-07. Lastly, by merging the ChIP-Seq profiles of H3K9Me1/2 and KDM3A 
transcriptional data focusing on 1408 annotated genes (overlap of H3K9ME1/2 ChIP-Seq 
with transcriptomic data that were down regulated upon shRNA KDM3A knockdown) 
contained the highest enrichment ratio (26.7%) in a significantly enriched set of 27 genes 
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in androgen signaling with p-values below 1.0E-17 and q-values below 1.0E-15. In detail, 
putative KDM3A-regulated genes included pathways involved in androgen response, 
androgen receptor signaling, androgen biosynthesis, prostate cancer, pathways in cancer, 
cholesterol homeostasis, bile acid metabolism, aldosterone-regulated reabsorption, and 
progesterone regulation, hinting at the possibility of hormone nuclear steroid receptor 
involvement. Interestingly for the concept of cooperative control, the pathways of 
regulation and coregulation of androgen receptor activity were also enriched with p-
values and q-values below 4.04E-06 and 1.97E-04, respectively. SLC26A2, FKBP5, 
KRT19, SORD, HOMER2, NDRG1, TPD52, INPP4B, PTPN21, ZMIZ1, PMEPA1, 
PPAP2A, TSC22D1, ACSL3, KLK3, NKX3-1, ELL2, MAP7, PTK2B, SMS, SPDEF, 
ABCC4, KLK2, MAF, TARP, AZGP1, and TMPRSS2 were key regulators of prostate 
cancer and AR signaling based on the KDM3A ChIP-Seq data. Transcriptional control of 
key players of cancer and AR signaling by KDM3A such as KLK3, NKX3-1, MYC were 
validated by chromatin immunoprecipitation coupled with quantitative real time 
polymerase chain reaction (ChIP-qRT-PCR). Taken together, complementary analyses 
identified strong transcriptional networks including AR, MYC, FOX, KLF, AP1, and 
SREBF transcription factors that may be regulated by KDM3A. Androgen signaling was 
consistently identified by all of these different enrichment approaches, suggesting a key 
role for KDM3A in regulating AR activity. 
 Knockdown of KDM3A in CWR22Rv1 cells resulted in loss of KDM3A ChIP-
Seq binding accompanied by specific, matched gain of histone lysine 9 demethylation. 
Knockdown of KDM3A had little effect on the protein level of AR. Investigation into the 
alteration of AR binding by ChIP-Seq with an AR antibody following KDM3A 
knockdown and quantifying the overlap of AR ChIP-Seq events with KDM3A binding 
and changes in epigenetic H3K9me1 and H3K9me2 marks resulted in 37525 peaks 
associated with KDM3A binding, 45246 and 32665 H3K9 mono- and di-demethylation 
(H3K9me1 and H3K9me2 -KDM) events, respectively, and 34614 peaks for KDM3A-
matched AR binding. Overall 37.0% of the AR ChIP-Seq peaks with altered H3K9me1 
and H3K9me2 signal were suppressed upon knockdown of KDM3A, while the remaining 
fraction was not affected. KDM3A ChIP-Seq and H3K9me1/2-KDM ChIP-Seq in 
combination with matched knockdown of KDM3A produced an epigenetic network that 
overlaid with the AR ChIP-Seq data. In the case of matched and merged datasets of AR 
ChIP-Seq in combination with KDM3A knockdown, a total of 77911 H3K9me peaks 
were identified and directly overlaid them with 34614 AR peaks containing 121700 ARE 
motifs. Importantly, using such matched ChIP-Seq analyses, a set of 1912 genes were 
identified that showed an overlap of demethylation and AR binding events. Epigenetic 
events identified by ChIP-Seq were overlaid with transcriptomic data, defining a set of 
421 genes that had epigenetic marks (H3K9me1 and H3K9me2 ChIP), AR binding (AR 
ChIP), and a transcriptomic effect (differential expression in either KDM3A or AR 
knockdown experiments). Similar to the initial gene set based exclusively on H3K9me1 
and H3K9me2 marks (57.2%), 60.2% of genes scored as activated upon KDM3A/AR 
coactivation while 39.8% were silenced. Merged ChIP-Seq data of KDM3A/AR 
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coactivation with transcriptomic data of KDM3A knockdown defined a set of 260 genes 
(whereas activation is interpreted as down-regulation upon shRNA knockdown). Gene set 
enrichment analysis was used to identify signaling networks or functional clusters of 
genes controlled by both KDM3A and AR. Pathway enrichment for the following three 
gene sets were performed: A) 1912 genes defined by overlapping H3K9 
demethylation/AR ChIP; B) 421 genes defined by overlapping H3K9 demethylation/AR 
ChIP with differential expression upon KDM3A/AR knockdown; and C) 260 genes that 
are down regulated upon KDM3A or AR knockdown and having overlapping H3K9 
demethylation/AR ChIP. The gene sets were designed in a hierarchical fashion such that 
the parental set A of 1912 genes includes subset B of 421 genes, and B includes subset C 
of 260 genes. The gene set enrichment analysis revealed oncogenic activation of 
androgen signaling and metabolic pathways with p-values below 1.40E-02 and q-values 
below 4.44E-02 in hypoxic response, glycolysis, and lipogenic metabolism. Enrichments 
of androgen response, metabolic pathways, hypoxia, aldosterone-regulated sodium 
reabsorption, glycolytic and glycerophospholipid metabolism pathways were conserved 
and enriched from the overlapping H3K9 demethylation/AR ChIP (1912 genes) to the 
genes displaying down-regulation upon KDM3A/AR knockdown and overlapping H3K9 
demethylation/AR ChIP signal (260 genes). For example, androgen response and 
metabolic pathways showed incrementally higher enrichment with better defined input 
gene sets (significant enrichment of genes in androgen response with p-value of 7.51E-07 
for 1912 gene set and decreased p-value of 5.23E-09 for 260 gene set). Similarly, 
pathways of glycolytic and glycerophospholipid metabolism showed consistently higher 
enrichment with the lowest p-values in the set of 260 genes, indicating that KDM3A 
demethylation targets these pathways and causes an up regulation of gene expression. Of 
all genes detected by H3K9 demethylation and AR ChIP-Seq experiments as well as 
KDM3A and AR differential expression following knockdown (core set of 45 genes; 28 
genes up regulated; 17 genes down regulated), the AR response was the only significantly 
enriched pathway with a p-value of 5.29E-08. 7 genes, NDRG1, PTK2B, ACSL3, 
KRT19, INPP4B, NKX3-1, and MAF, with direct implication in AR signaling were 
present in all gene sets of the hierarchical enrichment analyses, thereby subject to 
KDM3A control by H3K9 demethylation, AR binding, and differential expression 
following knockdown. In the androgen response pathway KDM3A and AR had strong 
ChIP-Seq activity. The majority of epigenetic H3K9 demethylation events resulted in up 
regulation of target gene activity and occurred at the TSSs of target genes. In addition, 
multiple introns, exons, and TTS of target genes were also implicated in KDM3A control. 
A network upstream regulator analysis implicated the AR to coordinate with epigenetic 
and transcriptional responses observed upon knockdown of KDM3A. At the 
transcriptional level, KDM3A may affect AR signaling directly by interacting with 
regulatory regions of HSP90AA1 and AR genes. In addition, downstream effects of AR 
signaling were observed at KRT19, NKX3-1, KLK3, TMPRSS2, PMEPA1, NDRG1, 
MAF, CREB3L4, MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HIF1A, 
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TARP, FKBP5, SPDEF, SMS, PPAP2A, SEPP1, UAP1, SORD, AZGP1, BCL2L1, 
ACSL3, CHUK, and CDKN1A. 

7.4.2 Applying multiomic strategies to the regulation of transcription  
Applying the biological analysis approach of "multiomics" where datasets from 

experiments studying different aspects of the same model organism are able to 
characterize a biological process through any sort of combination of experiments that are 
able to describe an organism's genome, proteome, transcriptome, epigenome, and 
metabolite [45, 46]. The development of whole -omic technologies allows for researchers 
to study multiple properties of gene expression for multiple genes quantitatively and 
simultaneously [47-51]. As a result different -omic data types may correlate with one 
another and may generate a regulatory hypotheses between the experiments. For 
example, within this study epigenomic histone marks were matched with identified 
transcription factor binding sites following knockout of the epigenetic master regulator 
allowed researchers to identify genome wide cooperation of epigenetic remodeling with 
other members of the transcriptional machinery. By combining different levels of 
experimental data researchers are able to search through complex biological systems to 
find relevant biomarkers with more confidence in their findings. For example the 
epigenetic modifier KDM3A was found to regulate a core set of genes within the 
androgen response pathway through the utilization of multiple ChIP-seq and a microarray 
analysis.  
By using multiomic data sets researchers are able to model whole properties of cancer 
cells using a holistic approach to understand how different parts of a biological system 
are able to interact with one another to influence the function and behavior of that system 
[52]. For example, the simultaneous profiling of the epigenome and transcriptome of a 
cancer cell grants researchers a unique chance to directly measure the effect of 
differences in histone modifications has upon gene transcription [53]. 

An advantage of a multiomic approach is that researchers are able to focus on the 
causes and effects of a biological network better by utilizing quantitative procedures 
simultaneously and by integrating their results to model the system being studied [54]. In 
the advent of high throughput experimental techniques being developed researchers must 
be prepared to ask themselves during the course of progressing their research project if 
there is another way to integrate another theory, analysis, or model in order to acquire 
new quantitative data to better describe and validate their biological system [55]. 
Hopefully, as more researchers begin to adopt the approach of multiomic data set 
analysis, new methodologies and bioinformatic analyses will be developed as will the 
collection of multiomic data sets being generated allowing for better insight into 
biological systems.  
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7.4.3 Future Perspectives on multiomic analysis of KDM3A 
In the future multiomic methodology will be commonplace for cancer biology 

researchers to use in understanding the relationship between DNA mutations with 
epigenetic modifications and their ability to regulate gene expression. Over time 
multiomic analysis will begin to shift from an analysis of a bulk population of cells that 
generate an average signal to a single cell population that allows researchers to have 
better resolution of the results of their experiment [47, 48, 56]. The development of single 
cell multiomic methodologies will generate new applications such as depicting cellular 
diversity, tracing cellular lineage, improved cell type detection, and understanding 
regulatory mechanisms between -omic levels [53]. 

Although the KDM3A protein regulates a wide array of target genes in tissue- and 
development-specific settings, chromatin modifiers often lack intrinsic DNA sequence 
specificity. Therefore, how KDM3A is targeted to specific genes is an area of current 
research interest and important for understanding epigenetic dysregulation in human 
disease. The functional impact of coordinated action between a lysine demethylase and 
transcription factors may lend to its target specificity, or at the very least, create 
accessibility for DNA binding. Future experimental verification of epigenetic hotspots is 
needed to determine when detected response elements are functional in gene regulation. 

7.5 A network of epigenomic and transcriptional cooperation encompassing an 
epigenomic master regulator in cancer. 

7.5.1 Summary of results 
 In epigenetic profiling experiments an enrichment of several transcription factors 

can be identified. Cooperation between these two classes of proteins are able to regulate 
gene expression by having one component open the chromatin, another one recognizing 
gene-specific DNA motifs, others scaffolding between histones, cofactors, and the 
transcriptional complex. Building a network of interactions between these proteins in 
regulating gene expression is a main goal of systems biology [7, 57, 58]. This publication 
showcases the impact of knocking down the histone lysine demethylase KDM3A on a 
transcriptional network using coordinated ChIP-Seq and transcriptomic data of KDM3A 
binding and demethylation activity. Upon KDM3A knockdown a total of 2460 genes 
were identified as positively regulated by KDM3A activity, and 1866 genes as being 
negatively regulated by KDM3A activity. Genomic KDM3A binding locations were 
defined by a loss of ChIP-Seq signal following knockdown of KDM3A. Additionally 
H3K9me1 and H3K9me2 histone marks following KDM3A knockdown were recognized 
as histone lysine demethylation targets of KDM3A. The ChIP-Seq experiment yielded 
37525 peaks associated with KDM3A binding, 45246 and 32665 H3K9 mono- and di-
demethylation (H3K9me1 and H3K9me2 -KDM) events. These matching epigenomics 
and transcriptomics experiments describe the genome wide impact of knocking down 
KDM3A as well as its resulting transcriptional outcome. 
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 Candidate transcription factors were identified from ChIP-Seq data using an 
analysis of motif enrichment (AME) and Transcription factor target (TFT) analysis, while 
candidate transcription factors were identified from differentially expressed genes using 
an upstream regulator analysis (URA) and Transcription factor target (TFT) analysis 
techniques. Each analysis identified between 29 and 41 significant transcription factor 
families, each corresponding up to both 1083 and 1292 associated genes. Despite the 
impressive p-values generated by some of these analysis tools, specific transcription 
factor identification cannot be established. An example of this is the hypoxia inducible 
factor 1 alpha subunit (HIF1A) of the PAS domain factor family is detected with an 
adjusted p-value below 1.0E-100 by AME in the ChIP-Seq data similarly to other 
members of the same family like the aryl hydrocarbon receptor nuclear translocator 
(ARNT) due to a similarity of their recognition sequence. Therefore by intersecting the 
datasets of AME ChIP-Seq, TFT ChIP-Seq, URA transcriptomics, and TFT 
transcriptomics an inclusive list of 21 transcription factor families supported by all four 
datasets are generated. From these 21 identified transcription factor families a total of 967 
transcription factors were implicated. Almost half of these transcription factors listed are 
due to the large family of the more than 3 adjacent zinc finger factors family that contains 
more than 487 transcription factor members. After building this network the 
transcriptional impact of KDM3A knock down onto the gene targets of transcription 
factors were explored, and the different size of intersection of transcriptional targets 
between KDM3A and the transcription factor could be explored. There were only a few 
genes of the network that were hyper connected with multiple transcription factors in 
epigenomics and transcriptomics datasets.  
 Review of transcriptomic data by URA and TFT analyses utilize gene set 
databases derived from previous experimental data of gene-specific knockdowns 
describes the effect of a transcription factor on its gene targets. These gene-specific 
analyses allowed for ambiguities in the transcription factor family network resulting in 11 
transcription factors belonging to 10 transcription factor families being identified: AP-1 
transcription factor subunit JUN, CCAAT/enhancer binding protein beta (CEBPB), 
myogenic differentiation 1 (MYOD1), HIF1A, sterol regulatory element binding 
transcription factor 1 (SREBF1), MYC, AR, Sp1, MEIS homeobox 1 (MEIS1), zinc 
finger E-box binding homeobox 1 (ZEB1), and ELK1. These transcription factors were 
previously reported to be associated and implicated in chromatin remodeling. By 
overlaying the motif-specific and genomic data produced through matching experiments, 
epigenomic events can be correlated with the transcriptomic effect of histone remodelers 
and transcription factors. 

7.5.2 Applying interactomics for studying biological pathways 
 In the histone code, specific histone modifications can make the difference for 
chromatin to exist in open or closed states resulting in either transcriptional activation or 
repression of biological processes. By investigating interrelated epigenomic and 
transcriptomic datasets a tight partnership between transcriptional and epigenomic 
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machinery in regulating key biological processes can be made known. By defining a 
network of transcription factors that cooperate with the histone modifier KDM3A a small 
chunk of the interactome was described. The interactome is a facet of molecular biology 
where a whole set of molecular interactions that take place within a cell is described. 
Although typically used to describe the physical interactions between molecules such as a 
protein-protein interaction, the interactome can be applied to describing the indirect 
interactions among genes [59]. Of particular interest this study served as an example of 
using systems biology to describe a gene regulatory network built by the intersection of 
transcription factors, histone modifiers, and their target genes. The assembly of gene 
networks serve to help researchers better understand the behavior of pathways in the cell 
and is a step forward to fully mapping out the complexities of gene interactions at a 
cellular level [60]. 
 As a general rule of thumb, the size of an organism's interactome correlates with 
the complexity of the biological organism [61]. It is impossible to completely describe a 
gene regulatory network as limitations of experimental methods will never fully capture 
every single interaction that occurs; additionally, some modules within a network can 
also be connected to specialized subnetworks [62]. For example the complete interactome 
of a cell contains biochemical networks, gene regulatory networks, protein interaction 
networks, and signaling networks. It is however the goal of interactomic studies to 
recognize and build these gene regulatory networks to the best of a researcher's ability to 
identify the cellular processes being regulated, identify potential biomarkers for diseases, 
and understand the consequences drug targeting may have on the network [63, 64]. 
Generating these gene regulatory networks to help design and understand the effect of 
pharmaceutical drugs upon a target network can lead to an evolution in researcher's 
understanding into the mode of action the drug has on an organism [65, 66].  
 An additional application of studying the interactome is studying the changes in 
the arrangement of a network due to alterations made in the proteins or how protein 
expression [67]. Looking at a gene regulatory network gives researchers a perspective of 
how a disease can be manifested from the network by the mutagenic events that alter the 
landscape of the interactome [68]. When building a gene regulatory network it is possible 
to identify nodes that are able to regulate themselves directly or indirectly in a feedback 
loop.  Loss of control of any of these nodes due to mutagenic events may disrupt a 
feedback loop and can be responsible for shifting a cell into a diseased phenotype. By 
mapping out the complexities behind gene regulation, metabolic reactions, and protein-
protein interactions researchers hope to gain insight into the regulatory mechanisms 
behind diseases. This methodology can be used to compare how metabolic proteins and 
their respective metabolites are altered from their normal metabolic network to a new 
diseased network [69]. A broader application of this methodology would be comparing 
the interactomes of deregulated gene regulatory networks across a variety of cancers to 
better classify and analyze the genetic relationships between them [69]. By mapping out 
gene regulatory networks from present -omic data sets allows researchers to infer new 
hypotheses that can then be tested by new experiments [70]. Thus investigating gene 
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regulatory networks of the cooperative interactions of chromatin remodelers and the 
transcriptional machinery will allow researchers to better understand mechanisms of 
determining cell identity, regulating chromatin, and designing drug targets. 

7.5.3 Future Perspectives on the gene regulatory network of KDM3A  
 The ability to build the gene regulatory network of KDM3A and its cooperating 
transcription factors was successful in part due to the efforts of curated databases of 
transcriptional targets of various transcription factors derived from the datasets of other 
researchers. Expanding existing datasets describing gene targets of transcription factors 
and creating another database outlining gene target of epigenetic factors may serve to 
help describe the gene regulatory landscape of their model organism. Development of a 
database listing gene targets of epigenetic factors would allow researchers to develop an 
inverse gene regulatory network described in this paper: a network of epigenetic factors 
cooperating with a transcription factor across the genome.  
 Additional future directions could investigate the transcription factors identified 
in the KDM3A coactivation network further by surveying the basal expression, and 
somatic loss or gain of function of these factors across cancer types using TCGA. This 
could also prove beneficial for identifying their contributing oncogenic potential and 
biological relevance in cancer patients followed up by a study to describe the draggability 
of KDM3A or its transcription factors with various small molecule inhibitors. Lastly, the 
ability for KDM3A to localize to its genomic targets through transcription factors may be 
evaluated through loss of a transcription factor expression and its impact on the cell.  

7.6 Conclusions 
Cumulatively these results highlight how the different levels of gene regulation 

are investigated: from the classification of a cancer's cohort based on the hyper activation 
of an epigenetic regulator, altered specificity of transcription factor site recognition, the 
ability of an epigenetic factor to regulate the signaling pathway of a transcription factor, 
and the development of a gene regulatory network between an epigenetic regulator and 
the transcription factors with which it cooperates. Further development of genomic and 
transcriptomic techniques combined with the implementation of other -omic techniques 
will allow biologists to fully characterize the interactome of cellular states and processes 
and describe how their alterations lead to the development of diseased states for cells. 
Integration of patient data to cell line models for multiomic analysis will allow 
researchers to describe the molecular interactions that occur in the cell, how they drive 
cancer progression, and hopefully develop precise treatment options for patients. 
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