Title

Zwittermicin A : determination of its complete configuration and total synthesis of its enantiomer

Permalink
https://escholarship.org/uc/item/2d3600fv

Author

Rogers, Evan W.
Publication Date
2008
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Zwittermicin A: Determination of its Complete Configuration and Total Synthesis of its
Enantiomer

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy
in
Chemistry
by
Evan W. Rogers

Committee in charge:
Professor Tadeusz F. Molinski, Chair
Professor Seth M. Cohen
Professor William Fenical
Professor Joseph M. O’Connor
Professor Emmanuel A. Theodorakis

Copyright
Evan W. Rogers, 2008
All rights reserved.

The Dissertation of Evan W. Rogers is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

TABLE OF CONTENTS

Signature Page iii
Table of Contents iv
List of Symbols and Abbreviations. vii
List of Figures X
List of Schemes xi
List of Tables xiii
List of Spectra xiv
Acknowledgements xx
Vita xxii
Abstract of the Dissertation xxiv
Chapter 1 Zwittermicin A Background and Review of Aminoalcohol Syntheses 1
1.1. Introduction 1
1.1.1. Background on (+)-Zwittermicin A 3
1.2. Open-Chain Aminopolyol Synthesis 6
1.2.1. Synthesis of 2-amino-1,3-diols: Key Strategies in Sphingolipid Synthesis 7
1.2.1.1. Carbohydrate Approach 9
1.2.1.2. Chiral Catalysts and Asymmetric Induction 9
1.2.1.3. Chirality Through use of Serine 11
1.2.2. Synthesis of 2-amino-1,3-diols: Non-Sphingolipid Synthesis. 12
1.2.2.1. Chirality Through use of Amino Acid Chiral Pool 12
1.2.2.2. Chirality Through Asymmetric Catalyst 25
1.2.3. Other Open-Chain Aminopolyols 38
1.3. References 41
Chapter 2 Determination of Absolute Configuration at C 4 and Relative Configuration for C8-C14 in (+)-Zwittermicin A: Proposed Configuration of (+)-Zwittermicin A 47
2.1. Introduction 47
2.1.1. Marfey's Analysis 48
2.1.2. Pair-wise ${ }^{13} \mathrm{C}$ NMR Chemical Shift Difference Analysis 49
2.2. Determination of C4 Configuration in (+)-Zwittermicin A by Marfey's Analysis 49 49
2.3. Determination of C10-C14 Relative Configuration in $(+)$-Zwittermicin A 51
2.3.1. Retrosynthesis 52
2.3.2. Synthesis of Model Compounds 54
2.3.3. Pair-wise ${ }^{13} \mathrm{C}$ NMR Chemical Shift Difference Analysis 70
2.4. Configuration of $(+)$-Zwittermicin A 72
2.5. Aknowledgments 72
2.6. References 73
Chapter 3 Synthesis of (-)-Zwittermicin A 75
3.1. Retrosynthesis 75
3.2. Evaluation of Strategy Using Model Compound. 76
3.2.1. Synthesis of Aldehyde 303 80
3.3. Evaluation of Final Synthetic Steps Using Model Compound. 81
3.4. Synthesis of Proposed (+)-Zwittermicin A Structure 87
3.5. Synthesis of (+)-319. 91
3.6. Synthesis of (-)-Zwittermicin A 91
3.7. Configuration of $(+)$-Zwittermicin A 93
3.8. Conclusion 94
3.9. Acknowledgements 94
3.10. References 95
Chapter 4 Improved Synthesis of the C9-C15 Portion of (+)-Zwittermicin A 98
4.1. Retrosynthesis 98
4.2. Synthesis of Known Compounds 99
4.3. Epoxide Synthesis, Azide Opening and Desymmetrization. 100
4.3.1. Interception of Previous Synthetic Route 103
4.4. Conclusion 105
4.5. References 105
Chapter 5 Synthesis of (+)-Zwittermicin A Diastereomers and Analogs: Structure- Activity Relationships 108
5.1. Introduction 108
5.2. Synthesis of Aminopolyol 350 110
5.3. Synthesis of Analogs Representing C1-C11 of (+)-Zwittermicin A 110
5.4. Synthesis of Two (+)-Zwittermicin A Diastereomers 111
5.5. Determination of \% Enantiomeric Excess for Synthetic (-)-Zwittermicin A and Diastereomers 114
5.6. Biological Testing 115
5.7. Conclusion 117
5.8. Acknowledgements 118
5.9. References: 118
Chapter 6 Synthesis of Sulfone Aminopolyols. 119
6.1. Introduction and Retrosynthesis 119
6.2. Route A, Synthesis of Diene 363 121
6.3. Route B, Sulfone Anion Addition. 122
6.3.1. Preliminary Investigation of Sulfone Removal 126
6.3.2. Initial Attempts at Dianion Addition 127
6.3.3. New Sulfone Addition Products 129
6.3.4. Sulfone Dianion Additions. 132
6.3.4.1. Bioassay 134
6.3.5. Investigation of Sulfone Removal 134
6.3.6. Protection of Free Hydroxyls and Attempted Sulfone Removal 136
6.4. Synthesis of Model Sulfone 137
6.4.1. Attempts to Remove Sulfone from 403 138
6.5. Other Sulfur Based Dianion Additions 139
6.6. Use of Sulfone Chemistry for Synthesis of LC/MS Standards 142
6.6.1. Synthesis of Internal Standard 142
6.6.2. Synthesis of Surrogate Standard 143
6.7. Conclusion 144
6.8. Acknowledgements 145
6.9. References 145
Chapter 7 Experimental. 149
7.1. Materials and Methods 149
7.1.1. General Procedures 149
7.1.2. Determination of configuration of C 4 in Zwittermicin $[(+)-1]$ 150
7.1.3. Chapter 2 Methods 151
7.1.4. Chapter 3 Methods 184
7.1.5. Chapter 4 Methods 220
7.1.6. Chapter 5 Methods 227
7.1.7. Chapter 6 Methods 239
7.2. X-ray CIF Data 259
7.3. Spectra 299
7.3.1. Chapter 2 Spectra 299
7.3.2. Chapter 3 Spectra 372
7.3.3. Chapter 4 Spectra 448
7.3.4. Chapter 5 Spectra 462
7.3.5. Chapter 6 Spectra 486

LIST OF SYMBOLS AND ABBREVIATIONS

Ac	acetyl
Aq	aqueous
ACN	acetonitrile
Bn	benzyl
Boc	t-butoxycarbonyl
Bu	butyl
CAN	ceric ammonium nitrate
CSA	camphorsulfonic acid
DCC	dichloromethane
DCM	5 -fluoro-2,4-dinitrophenyl-D-alaninamide
D-FDAA	diisobutylaluminum hydride
DIBAL	N, N-dimethylaminopyridine
DMAP	1,2-dimethoxyethane
DME	N, N-dimethylformamide
DMF	ethyl
DMP	Dess-Martin periodane
DMSO	dimethylsulfoxide
EDCI	FT-IR

HMPA	hexamethylphosphoramide
HOBt	N -hydroxybenzatriazole
HPLC	high performance liquid chromatography
HRMS	high-resolution mass spectrometry
HWE	Horner-Wadworth-Emmons reaction
IR	infrared
LC	liquid chromatography
L-FDAA	5-fluoro-2,4-dinitrophenyl-L-alaninamide
LAH	lithium aluminumhydride
m-CPBA	m-chloroperoxybenzoic acid
MIC	minimum inhibitory concentration
Me	methyl
MHz	megahertz
MPM	p-methoxybenzyl
MOM	methoxymethyl
MS	mass spectrometry
NaHMDS	sodium bis(trimethylsilyl)amide
NBS	N -bromosuccinimide
NMM	N -methylmorpholine
NMO	4-methylmorpholine N -oxide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect
$i \operatorname{Pr}$	isopropyl

PG	protecting group
Piv	pivaloyl
Ph	phenyl
PMB	p-methoxybenzyl
PPTS	pyridinium p-toluenesulfonate
Pyr	pyridine
SAE	Sharpless asymmetric epoxidation
Ser	serine
$\mathrm{S}_{N} \mathrm{Ar}$	nucleophilic aromatic substitution
TBAF	tetrabutylammonium fluoride
TBDPSCl	t-butyldiphenylsilyl chloride
TBSCl	t-butyldimethylsilyl chloride
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPSCl	triisopropylsilyl chloride
TLC	thin-layer chromatography
TMSCl	trimethylsilyl chloride
TrCl	trityl chloride
Ts	p-toluenesulfonyl
UV	ultraviolet

LIST OF FIGURES

Figure 1.1: Natural Zwittermicin A. 1
Figure 1.2: Examples of fungicides. 2
Figure 1.3: Proposed biosynthetic pathway. 5
Figure 1.4: Degradation of zwittermicin A. 6
Figure 1.5: Examples of sphingolipids and sphingosine 8
Figure 1.6: Structure of galantin I, galantinamic acid and galantinic acid. 13
Figure 2.1: Model Compounds for NMR Comparisons. 52
Figure 2.2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compounds $\mathbf{2 2 0}$ and $\mathbf{2 2 1}$ 61
Figure 2.3: X-ray crystal structure of compound 271. 67
Figure 2.4: ${ }^{13} \mathrm{C}$ chemical shift dependence on concentration 70
Figure 2.5: Pairwise ${ }^{13} \mathrm{C}$ NMR NMR chemical shifts of models $\mathbf{2 2 0} \mathbf{- 2 2 5}$ with $\mathbf{1}$ 71
Figure 2.6: Tentatively proposed configuration of zwittermicin A (279). 72
Figure 3.1: X-ray crystal structure of acid 312 83
Figure 3.2: ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of (a) natural (+)-1, (b) 1:3 mole ratio of synthetic (-)-279 and natural (+)-1, and (c) (-)-279. Concentrations $\sim 10 \mathrm{mM}$, no solvent suppression. 90
Figure 3.3: ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of (a) natural (+)-1, (b) 1:2 mole ratio of synthetic (-)-1 and natural (+)-1, and (c) (-)-1. Concentrations $\sim 10 \mathrm{mM}$, no solvent suppression. 93
Figure 3.4: Revised configuration of natural zwittermicin A 94
Figure 5.1: Compounds for biological testing 109
Figure 6.1: X-ray crystal structure of sulfone 378. 126
Figure 6.2: Side product 382. 128
Figure 6.3: X-ray crystal structure of acetate $\mathbf{3 8 9}$. 132

LIST OF SCHEMES

Scheme 1.1: Zimmermann's D-sphingosine synthesis from D-galactose.
 9

Scheme 1.2: Julina's sphingosine synthesis using SAE for stereocontrol. 10
Scheme 1.3: Nicolaou's sphingosine synthesis using asymmetric induction for stereocontrol. 11
Scheme 1.4: Herold's synthesis starting from serine. 12
Scheme 1.5: Ohfune's first synthesis of galantinic acid core structure. 14
Scheme 1.6: Ohfune's second synthesis of galantinic acid core structure. 16
Scheme 1.7: Koskinen's investigation of diastereoselective enone reduction. 17
Scheme 1.8: Somfai's investigation of diastereoselective allyl ketone reduction. 18
Scheme 1.9: Somfai's investigation of aldol additions to aldehyde 66a-d. 19
Scheme 1.10: Somfai's investigation of aldol additions to aldehyde 70a-d 20
Scheme 1.11: Reyes's investigation of aldol additions to aldehyde Garner's aldehyde. 21
Scheme 1.12: Hulme's acetate aldol addition to serine-derived aldehyde 81. 22
Scheme 1.13: Hulme's aldol addition to serine-derived aldehyde $\mathbf{8 5}$. 23
Scheme 1.14: Hulme's attempted diastereoselective dihydroxylation 24
Scheme 1.15: Kim's dihydroxylations of 98a and 98b. 25
Scheme 1.16: Lin's synthesis of penaresidin A. 26
Scheme 1.17: Miyashita's boron-mediated azide opening of simple epoxides. 27
Scheme 1.18: Miyashita's boron mediated azide opening of epoxides 112 and 115 28
Scheme 1.19: Jung's use of epoxides for synthesis of β-hydroxy- α-amino acids. 29
Scheme 1.20: Righi's isoxazole method for synthesis of aminopolyols. 30
Scheme 1.21: Somfai's use of vinylaziridine for synthesis of aminopolyols 31
Scheme 1.22: Kumar's 2004 synthesis of galantinic acid (35). 33
Scheme 1.23: Keenan's 2004 work on tethered aminohydroxylation. 35
Scheme 1.24: Reddy's synthesis of galantinic acid. 37
Scheme 1.25: Concellón's synthesis of aminoepoxides. 39
Scheme 1.26: Takabe's synthesis of penaresidin B 40
Scheme 2.1: Degradation of Zwittermicin A. 47
Scheme 2.2: Marfey's analysis standards 50
Scheme 2.3: Hydrolysis and derivatization of Zwittermicin A. 51
Scheme 2.4: Retrosynthetic analysis of model compounds. 54
Scheme 2.5: Synthesis of aldehyde 226 and ester 227. 55
Scheme 2.6: Synthesis of epoxide 228 and carbon chain extension. 56
Scheme 2.7: Synthesis of alkene 249 58
Scheme 2.8: Synthesis of separable epoxides 252 and 253 59
Scheme 2.9: Synthesis of model 220. 60
Scheme 2.10: Synthesis of model 221 61
Scheme 2.11: Synthesis of internal acetonide 258. 62
Scheme 2.12: Synthesis of epoxide 229 63
Scheme 2.13: Synthesis of allylic alcohols 235 and 236. 64
Scheme 2.14: Synthesis of azides 269 through 272. 66
Scheme 2.15: Synthesis of models 222 and 223 67
Scheme 2.16: Synthesis of azides 275 through 278. 69
Scheme 2.17: Synthesis of models 224 and 225 69
Scheme 3.1: Retrosynthetic analysis of 279. 76
Scheme 3.2: Synthesis of alcohol 287. 77
Scheme 3.3: Synthesis of alcohol 290 78
Scheme 3.4: Synthesis of alcohol 294. 79
Scheme 3.5: Synthesis of aldehyde 297 80
Scheme 3.6: Synthesis of alcohol $\mathbf{3 0 0}$. 80
Scheme 3.7: Synthesis of aldehyde 303 81
Scheme 3.8: Synthesis of model aldehyde 307 82
Scheme 3.9: Synthesis of acid 312. 82
Scheme 3.10: Synthesis of acid 314. 85
Scheme 3.11: Synthesis of lactam 316. 85
Scheme 3.12: Synthesis of α-aminoamide (-)-319. 86
Scheme 3.13: Synthesis of amide 320. 86
Scheme 3.14: Synthesis of acid 323 88
Scheme 3.15: Synthesis of proposed zwittermicin A structure (-)-279. 89
Scheme 3.16: Synthesis of α-aminoamide (+)-319 91
Scheme 3.17: Synthesis of (-)-zwittermicin A [(-)-1]. 92
Scheme 4.1: Retrosynthetic analysis of (+)-zwittermicin A. 98
Scheme 4.2: Synthesis of diol 338. 100
Scheme 4.3: Synthesis of diazide 334. 101
Scheme 4.4: Synthesis of diazide 341 102
Scheme 4.5: Synthesis of diazide 344. 103
Scheme 4.6: Synthesis of alcohol (-)-302 105
Scheme 5.1: Synthesis of aminopolyol 350. 110
Scheme 5.2: Synthesis of analog 351 110
Scheme 5.3: Synthesis of analog 352 111
Scheme 5.4: Synthesis of acid 357 112
Scheme 5.5: Synthesis of zwittermicin A diastereomers 353 and 354 113
Scheme 5.6: Mosher's derivatization of 296. 115
Scheme 6.1: Retrosynthetic analysis of zwittermicin A. 120
Scheme 6.2: Synthesis of diene 364. 122
Scheme 6.3: Synthesis of starting materials 368 and 369. 122
Scheme 6.4: More sulfone dianion additions. 129
Scheme 6.5: Deprotection of sulfone anion addition products. 131
Scheme 6.6: Deprotection of sulfone diaddition products 133
Scheme 6.7: Protection of sulfone 390 136
Scheme 6.8: Synthesis of protected sulfone 403 138
Scheme 6.9: Dianion addition reactions with dithianes 141
Scheme 6.10: Dianion addition using thioanisole. 142
Scheme 6.11: Synthesis of internal standard 416. 143
Scheme 6.12: Synthesis of surrogate standard 421 144

LIST OF TABLES

Table 1.1: Somfai's investigation of aldol additions to aldehyde 66a-d. 19
Table 1.2: Somfai's investigation of aldol additions to aldehyde 70a-d. 20
Table 1.3: Kim's dihydroxylations of 98a and 98b. 25
Table 1.4: Miyashita's boron-mediated azide opening of simple epoxides. 27
Table 2.1: Removal of PMB protecting group 57
Table 2.2: Epoxidation of $\mathbf{2 4 9}$. 59
Table 2.3: Epoxidation of $\mathbf{2 3 5}$ 65
Table 2.4: Epoxidation of 236. 68
Table 3.1: Attempted oxidation of alcohol 287 77
Table 3.2: Attempted protection of alcohol 285. 78
Table 3.3: Dihydroxylation of alkene 308 84
Table 4.1: Reduction of di-acetylene 338 100
Table 4.2: Desymmetrization of $\mathbf{3 3 4}$ using TrCl 103
Table 4.3: Synthesis of acetonide 346. 104
Table 5.1: Biological testing of zwittermicin A and synthetic compounds. 116
Table 6.1: Sulfone anion addition to aldehyde 369 123
Table 6.2: Sulfone anion addition to Garner's aldehyde 54. 124
Table 6.3: Sulfone removal from compound 378 127
Table 6.4: Sulfone dianion synthesis of $\mathbf{3 8 1}$ 128
Table 6.5: Sulfone anion addition to aldehyde 193 130
Table 6.6: Sulfone dianion addition to aldehyde 54. 133
Table 6.7: Biological testing of zwittermicin A and synthetic sulfones. 134
Table 6.8: Sulfone removal from compound $\mathbf{3 9 0}$. 135
Table 6.9: Sulfone removal from compound $\mathbf{3 9 6}$. 137
Table 6.10: Sulfone removal from compound 403. 139
Table 6.11: Dithiane addition to aldehyde 193 140
Table 7.1: ${ }^{13} \mathrm{C}$ NMR data for 220-225 and Zwittermicin $\left.\mathrm{A}[(+)-\mathbf{1})\right]$. 183

LIST OF SPECTRA

Spectrum 7.1: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$ w/ $0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}$) of compound 220 300
Spectrum 7.2: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 220 301
Spectrum 7.3: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}$) of compound 221 302
Spectrum 7.4: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 221 303
Spectrum 7.5: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) of compound 222 304
Spectrum 7.6: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 222 305
Spectrum 7.7: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$ w/ $0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}$) of compound 223 306
Spectrum 7.8: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 223 307
Spectrum 7.9: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) of compound 224 308
Spectrum 7.10: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$ w/ $0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 224 309
Spectrum 7.11: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 225 310
Spectrum 7.12: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$ w/ $0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 225 311
Spectrum 7.13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 228 312
Spectrum 7.14: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 228 313
Spectrum 7.15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 229 314
Spectrum 7.16: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 229 315
Spectrum 7.17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 230 316
Spectrum 7.18: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 230 317
Spectrum 7.19: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 231 318
Spectrum 7.20: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 231 319
Spectrum 7.21: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 233 320
Spectrum 7.22: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 233 321
Spectrum 7.23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 234 322
Spectrum 7.24: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 234 323
Spectrum 7.25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 3 5}$ 324
Spectrum 7.26: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{2 3 5}$ 325
Spectrum 7.27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 3 6}$ 326
Spectrum 7.28: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 236 327
Spectrum 7.29: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 243 328
Spectrum 7.30: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 243 329
Spectrum 7.31: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 244 330
Spectrum 7.32: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 244 331
Spectrum 7.33: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 4 5}$ 332
Spectrum 7.34: ${ }^{13} \mathrm{C}$ dept NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 245 333
Spectrum 7.35: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 246 334
Spectrum 7.36: ${ }^{13} \mathrm{C}$ dept NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 246. 335
Spectrum 7.37: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 247 336
Spectrum 7.38: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 247 337
Spectrum 7.39: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 249 338
Spectrum 7.40: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 249 339
Spectrum 7.41: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 250 340
Spectrum 7.42: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{2 5 0}$ 341
Spectrum 7.43: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 251 342
Spectrum 7.44: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 251 343
Spectrum 7.45: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 252 344
Spectrum 7.46: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 252 345
Spectrum 7.47: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 5 3}$ 346
Spectrum 7.48: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 253 347
Spectrum 7.49: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 256 348
Spectrum 7.50: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 256 349
Spectrum 7.51: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 257 350
Spectrum 7.52: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 257 351
Spectrum 7.53: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 258 352
Spectrum 7.54: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 258 353
Spectrum 7.55: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 260 354
Spectrum 7.56: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 260 355
Spectrum 7.57: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 261 356
Spectrum 7.58: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 261 357
Spectrum 7.59: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 262 358
Spectrum 7.60: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 262 359
Spectrum 7.61: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 269 360
Spectrum 7.62: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 269 361
Spectrum 7.63: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 271 362
Spectrum 7.64: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 271 363
Spectrum 7.65: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 273 364
Spectrum 7.66: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 273 365
Spectrum 7.67: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 274 366
Spectrum 7.68: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 274 367
Spectrum 7.69: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 275 368
Spectrum 7.70: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 275 369
Spectrum 7.71: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 277 370
Spectrum 7.72: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 277 371
Spectrum 7.73: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound (-)-1 372
Spectrum 7.74: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound (-)-1 373
Spectrum 7.75: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound (-)-279 374
Spectrum 7.76: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound (-)-279 375
Spectrum 7.77: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 285 376
Spectrum 7.78: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 285 377
Spectrum 7.79: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 8 6}$ 378
Spectrum 7.80: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 286 379
Spectrum 7.81: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 287 380
Spectrum 7.82: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 287 381
Spectrum 7.83: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 290 382
Spectrum 7.84: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 290 383
Spectrum 7.85: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 291 384
Spectrum 7.86: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 291 385
Spectrum 7.87: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 292 386
Spectrum 7.88: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 292 387
Spectrum 7.89: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 293 388
Spectrum 7.90: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 293 389
Spectrum 7.91: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 294 390
Spectrum 7.92: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 294 391
Spectrum 7.93: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 295 392
Spectrum 7.94: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 295 393
Spectrum 7.95: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 296 394
Spectrum 7.96: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 296 395
Spectrum 7.97: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 297 396
Spectrum 7.98: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 297 397
Spectrum 7.99: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 298 398
Spectrum 7.100: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 298 399
Spectrum 7.101: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 299 400
Spectrum 7.102: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 299 401
Spectrum 7.103: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 0}$ 402
Spectrum 7.104: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 0}$ 403
Spectrum 7.105: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $(+)-301$ 404
Spectrum 7.106: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $(+)-301$ 405
Spectrum 7.107: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $(+)-302$ 406
Spectrum 7.108: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $(+)-302$ 407
Spectrum 7.109: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 3}$ 408
Spectrum 7.110: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 303 409
Spectrum 7.111: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 305 410
Spectrum 7.112: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 305 411
Spectrum 7.113: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 306 412
Spectrum 7.114: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 306 413
Spectrum 7.115: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 7}$ 414
Spectrum 7.116: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 307 415
Spectrum 7.117: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 8}$ 416
Spectrum 7.118: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 308 417
Spectrum 7.119: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 9}$ 418
Spectrum 7.120: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 9}$ 419
Spectrum 7.121: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{3 1 0}$ 420
Spectrum 7.122: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{3 1 0}$ 421
Spectrum 7.123: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 311 422
Spectrum 7.124: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 311 423
Spectrum 7.125: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 312 424
Spectrum 7.126: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 312 425
Spectrum 7.127: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 313 426
Spectrum 7.128: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 313 427
Spectrum 7.129: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 314 428
Spectrum 7.130: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 314 429
Spectrum 7.131: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 315 430
Spectrum 7.132: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 315 431
Spectrum 7.133: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound (-)-319 432
Spectrum 7.134: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound (-)-319 433
Spectrum 7.135: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) of compound (+)-319 434
Spectrum 7.136: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of compound $(+)$-319 435
Spectrum 7.137: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 0}$ 436
Spectrum 7.138: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 320 437
Spectrum 7.139: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 1}$ 438
Spectrum 7.140: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 321 439
Spectrum 7.141: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 2}$ 440
Spectrum 7.142: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 322 441
Spectrum 7.143: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 3}$ 442
Spectrum 7.144: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 323 443
Spectrum 7.145: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 324 444
Spectrum 7.146: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 324 445
Spectrum 7.147: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ of compound 329 446
Spectrum 7.148: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of compound 329 447
Spectrum 7.149: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ of compound 334 448
Spectrum 7.150: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$) of compound 334 449
Spectrum 7.151: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 339 450
Spectrum 7.152: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 339 451
Spectrum 7.153: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 342 452
Spectrum 7.154: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 342 453
Spectrum 7.155: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 344 454
Spectrum 7.156: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 344 455
Spectrum 7.157: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 346 456
Spectrum 7.158: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 346 457
Spectrum 7.159: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 349 458
Spectrum 7.160: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 349 459
Spectrum 7.161: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound (-)-302 460
Spectrum 7.162: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound (-)-302 461
Spectrum 7.163: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 350 462
Spectrum 7.164: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}$) of compound 350 463
Spectrum 7.165: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right)$ of compound 351 464
Spectrum 7.166: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) of compound 351 465
Spectrum 7.167: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 352 466
Spectrum 7.168: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right)$ of compound 352 467
Spectrum 7.169: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 353 468
Spectrum 7.170: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}$) of compound 353 469
Spectrum 7.171: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 354 470
Spectrum 7.172: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 354 471
Spectrum 7.173: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 355 472
Spectrum 7.174: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 355 473
Spectrum 7.175: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 356 474
Spectrum 7.176: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 356 475
Spectrum 7.177: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 357 476
Spectrum 7.178: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 357 477
Spectrum 7.179: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 358 478
Spectrum 7.180: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of compound 358 479
Spectrum 7.181: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 359 480
Spectrum 7.182: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of compound 359 481
Spectrum 7.183: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 361 482
Spectrum 7.184: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 1}$ 483
Spectrum 7.185: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 2}$ 484
Spectrum 7.186: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$ of compound 362 485
Spectrum 7.187: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 363 486
Spectrum 7.188: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 363 487
Spectrum 7.189: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 364 488
Spectrum 7.190: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 4}$ 489
Spectrum 7.191: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 a}$ 490
Spectrum 7.192: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 a}$ 491
Spectrum 7.193: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 b}$ 492
Spectrum 7.194: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 b}$ 493
Spectrum 7.195: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 8}$ 494
Spectrum 7.196: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 378 495
Spectrum 7.197: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 379 496
Spectrum 7.198: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 379 497
Spectrum 7.199: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 5}$ 498
Spectrum 7.200: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 5}$ 499
Spectrum 7.201: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 386 500
Spectrum 7.202: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 386 501
Spectrum 7.203: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 387 502
Spectrum 7.204: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 387 503
Spectrum 7.205: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 8}$ 504
Spectrum 7.206: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 388 505
Spectrum 7.207: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 9}$ 506
Spectrum 7.208: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 389 507
Spectrum 7.209: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 9 0}$ 508
Spectrum 7.210: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 390 509
Spectrum 7.211: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 391 510
Spectrum 7.212: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 391 511
Spectrum 7.213: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 392 512
Spectrum 7.214: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 392 513
Spectrum 7.215: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 393 514
Spectrum 7.216: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 393 515
Spectrum 7.217: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 403 516
Spectrum 7.218: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 403 517
Spectrum 7.219: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 407 518
Spectrum 7.220: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 407 519
Spectrum 7.221: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 408 520
Spectrum 7.222: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 408 521
Spectrum 7.223: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 414 522
Spectrum 7.224: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 414 523
Spectrum 7.225: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 416 524
Spectrum 7.226: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 416 525
Spectrum 7.227: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 418 526
Spectrum 7.228: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 418 527
Spectrum 7.229: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 420 528
Spectrum 7.230: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{4 2 0}$ 529
Spectrum 7.231: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 421 530
Spectrum 7.232: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 421 531

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Tadeusz F. Molinski (Ted) for allowing me to be part of his group and for helpful advice. Ted has been generous with his time and money during the course of my research and provided invaluable insight synthesis and structural elucidation.

I also thank the members of the Molinski Research Group for their technical and chemical advice. Most especially Dr. Mako Masuno for passing on his synthetic skills and Dr. John MacMillan for teaching me how to run the NMRs. I would also like to thank Dr. Doralyn S. Dalisay for bioassay of the synthetic and natural compounds. I would also like to thank Collin Skepper, Dr. Sara Lievens, Brandon Morinaka, Jillian Basinger, Jonel Saludes, Dr. Tim Quach, and Dr. Julie Pigza.

I would like to thank my wonderful wife Kara Schmelzer whose support and encouragement has been instrumental in completing my graduate studies.

I am especially grateful to Denise Manker (Enotech, Inc.) for a sample of natural (+)-zwittermicin A. Thanks also to Professors Arnold Rheingold (UCSD) and Professor Marilyn Olmstead and Jim Fettering (UC Davis) for X-ray crystallography. For help with NMR analysis I would like to thank Paul Bruins and Dr. Jeffery DeRopp from UC Davis and Dr. Anthony Mrse and Xuemei Huang from UCSD. I thank Entotech, Inc. (Davis, CA) for an authentic sample of zwittermicin A. For HRMS measurements I thank R. New (UC Riverside MS Facility) and Y. Su (UC San Diego MS Facility) I would like to thank the Ecotoxicology Lead Campus Program (UC Davis) for support during part of this work.

Chapter 2 in part, is a reprint of published results: Rogers, E. W.; Molinski, T. F. Asymmetric Synthesis of Diastereomeric Diaminoheptanetetraols. A Proposal for the Configuration of (+)-Zwittermicin A. Org. Lett. 2007, 9, 437.

Chapter 3 in part, is a reprint of published results: Rogers, E. W.; Dalisay, D. S.; Molinski, T. F. (+)-Zwittermicin A: Assignment of its Complete Configuration by Total Synthesis of the Enantiomer and Implication of D-Serine in its Biosynthesis. Angew. Chem. Int. Ed. 2008, 47, 8086.

Finally I would like to thank; Professor Seth M. Cohen, Professor William Fenical, Professor Joseph M. O’Connor, and Professor Emmanuel A. Theodorakis for serving on my committee.

VITA

EDUCATION:

Bachelor of Science, Mathematics, Minor: Chemistry, May 1995
New Mexico Institute of Mining and Technology, Socorro, New Mexico
Doctorate of Philosophy, Chemistry, December 2008
University of California, San Diego, La Jolla, CA

PUBLICATIONS:

1) Rogers, E. W.; Dalisay, D. S.; Molinski, T. F. (+)-Zwittermicin A: Assignment of its Complete Configuration by Total Synthesis of the Enantiomer and Implication of D-Serine in its Biosynthesis. Angew. Chem. Int. Ed. 2008, 47, 8086.
2) Rogers, E. W.; Molinski, T. F. Highly Polar Spiroisoxazolines from the Sponge Aplysina fulva. J. Nat. Prod. 2007, 70, 1191.
3) Rogers, E. W.; Molinski, T. F. Asymmetric Synthesis of Diastereomeric Diaminoheptanetetraols. A Proposal for the Configuration of (+)-Zwittermicin A. Org. Lett. 2007, 9, 437.
4) Rogers, E. W.; Fernanda de Oliveira, M.; Berlinck, R. G. S.; Koenig, G. M.; Molinski, T. F. Stereochemical Heterogeneity in Verongid Sponge Metabolites. Absolute Stereochemistry of (+)-Fistularin-3 and (+)-11-epi-Fistularin-3 by Microscale LCMS-Marfey's Analysis. J. Nat. Prod. 2005, 68, 891.
5) Rogers, E. W.; Molinski, T. F. A Cytotoxic Carotenoid from the Marine Sponge Prianos osiros. J. Nat. Prod. 2005, 68, 450.
6) Kossuga, M. H.; MacMillan, J. B.; Rogers, E. W.; Molinski, T. F.; Nascimento, G. G. F.; Rocha, R. M.; Berlinck, R. G. S. (2S,3R)-2-Aminododecan-3-ol, a New Antifungal Agent from the Ascidian Clavelina oblonga. J. Nat. Prod. 2004, 67, 1879.
7) Rogers, E.; Petreas, M.; Park, J.-S.; Zhao, G.; Charles, M. J. Evaluation of Four Capillary Columns for the Analysis of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers in Human Serum for Epidemiologic Studies. J. Chromatogr. B 2004, 813, 269.
8) Petreas, M.; She, J.; Brown, F. R.; Winkler, J.; Windham, G.; Rogers, E.; Zhao, G.; Bhatia, R.; Charles, M. J. High Body Burdens of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) in California Women. Environ. Health Perspect. 2003, 111, 1175.
9) Petreas, M.; Rogers, E.; Zhao, G.; Windham, G.; Bhatia, R.; Charles, M. J. Organohalogen Body Burdens in California Women. Organohalogen Comp. 2002, 55, 259.
10) Petreas, M.; She, J.; Brown, F. R.; Winkler, J.; Visita, P.; Li, C.; Chand, D.; Dhaliwal, J.; Rogers, E.; Zhao, G.; Charles, M. J. High PBDE Concentrations in California Human and Wildlife Populations. Organohalogen Comp. 2002, 58, 177.
11) Oxley, J.C.; Smith, J.L.; Rogers, E.; Yu, M. Ammonium Nitrate: Thermal Stability and Explosivity Modifiers. Thermochimica Act. 2002, 384, 23.
12) Oxley, J.: Smith, J.; Rogers, E.; Ye, W.; Aradi, A.; Henley T. Heat-Release Behavior of Fuel Combustion Additives. Energ. Fuel. 2001, 15, 1194.
13) Oxley, J.: Smith, J.; Resende E.; Rogers, E.; Strobel R.; Bender E. Improvised Explosive Devices: Pipe Bombs. J. Forensic Sci. 2001, 46, 510.
14) Oxley, J.: Smith, J.; Rogers, E.; Ye, W.; Aradi, A.; Henley T. Fuel Combustion Additives: A Study of their Thermal Stabilities and Decomposition Pathways. Energ. Fuel. 2000, 14, 1252.
15) Oxley, J. C.; Smith, J. L.; Rogers, E.; Dong, X. X. Gas Production from Thermal Decomposition of Explosives: Assessing the Thermal Stabilities of Energetic Materials from Gas Production Data. J. Energ. Mat. 2000, 18, 19.
16) Oxley, J.; Smith, J.; Rogers, E.; Resende, E.; Mostafa, A. Small-scale Explosivity Testing. J. Energ. Mat. 1999, 17, 331.
17) Coburn, M,: Hiskey, M.; Oxley, J.; Smith, J.; Zheng, W.; Rogers, E.; Synthesis and Spectra of some ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ Labeled Isomers of 1,3,3-Trinitroazetidine and 3,3- Dinitroazetidinium Nitrate. J. Energ. Mat. 1998, 16, 73.
18) Zheng, W.; Dong, X.; Rogers, E.; Oxley, J.; Smith, J. Improvements in the Determination of Decomposition Gases from 1,3,3-Trinitroazetidine and 5-Nitro-2,4-dihydro-3H-1,2,4-triazl-3-one Using Capillary Gas Chromatography- Mass Spectrometry. J. Chrom. Sci. 1997, 35, 478.
19) Oxley, J.; Smith, J.; Zheng, W.; Rogers, E.; Coburn, M. Thermal Decomposition Studies on Ammonium Dinitramide (AND) and ${ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}$ and ${ }^{2} \mathrm{H}$ Isotopomers. J. Phys. Chem. A 1997, 101, 5646.
20) Oxley, J.; Smith, J.; Zheng, W.; Rogers, E.; Coburn, M.; Thermal Decomposition Pathways of 1,3,3-Trinitroazetidine, Related 3,3-Dinitroazetidinium Salts, and ${ }^{15} \mathrm{~N}$ and ${ }^{2} \mathrm{H}$ Isotopomers. J. Phys. Chem. A 1997, 101, 5646.
21) Oxley, J.; Smith, J.; Rogers, E.; Dong, X. NTO Decomposition Products Tracked with ${ }^{15} \mathrm{~N}$ Lables. J. Phys. Chem. A 1997, 101, 4375.
22) Zheng, W.; Rogers, E.; Coburn, M.; Oxley, J.; Smith, J. Mass Spectral Fragmentation Pathways in 1,3,3-Trinitroazetidine. J. Mass Spectrom. 1997, 32, 525.

ABSTRACT OF THE DISSERTATION

Zwittermicin A: Determination of its Complete Configuration and Total Synthesis of its Enantiomer
by
Evan W. Rogers

Doctor of Philosophy in Chemistry

University of California, San Diego, 2008

Professor Tadeusz F. Molinski, Chair

$(+)$-Zwittermicin A (1) is a water-soluble natural antibiotic isolated from the fermentation of the soil-born bacterium Bacillus cereus. This dissertation research describes the elucidation of the configuration of $\mathbf{1}$ and total synthesis of its enantiomer.

Chapter two describes determination of absolute configuration at C 4 , relative configuration for $\mathrm{C} 8-\mathrm{C} 14$ in Zwittermicin A and proproses an absolute configuration for 1. Determination of carbon 4 absolute configuration was accomplished using Marfey's method. Construction of model compunds and evaluated by pair-wise ${ }^{13} \mathrm{C}$ NMR chemical
shift difference analysis gave relative configuration for the C10-C14 stereocenters. A configuration for $\mathbf{1}$ was proposed based on this data in conjunction with previously published biosynthesis data and relative configuration for C8-C10.

Chapter three describes the synthesis of the proposed structure for (+)-1, revision of the structure and synthesis of $(-)-\mathbf{1}$. The proposed structure for $\mathbf{1}$ was synthesized and evaluation of this compound with authentic natural $(+)-\mathbf{1}$ revealed difference that resulted in a revision of the proposed structure of $\mathbf{1}$. A 22 -step synthesis of $(-) \mathbf{- 1}$ revealed this compound to be identical to $(+)-\mathbf{1}$ by NMR while having an equal but opposite $[\alpha]_{\mathrm{D}}$ thereby verifying the revised structure.

Chapter four describes a short enantioselective synthesis of the C9-C15 portion of zwittermicin A. Taking advantage of the symmetry in the C9-C15 portion of $\mathbf{1}$ allowed for rapid synthesis of this portion to give an enantiomer of an advanced intermediate in the synthesis of (-)-1.

Chapter five describes the synthesis of analogs and diastereomers of $\mathbf{1}$ and bioassay of them and previously synthesized compounds. Two diastereomeric analogs representing the $\mathrm{C} 1-\mathrm{C} 10$ portion of $\mathbf{1}$ were synthesized. In addition two diastereomers of $\mathbf{1}$ were synthesized. These compounds along with previously synthesized compounds representing C9-C15 in $\mathbf{1}$ were tested for biological activity.

Chapter six describes work on sulfone chemistry related to synthesis of $\mathbf{1}$. Sulfone anion and dianion additions to various aldehydes were evaluated. Techniques for removal of the sulfone moiety from addition products were also investigated. Sulfone chemistry was used to synthesize two standards for use in a HPLC sphingolipid analysis method.

Chapter 1 Zwittermicin A Background and Review of Aminoalcohol Syntheses

1.1. Introduction

Agricultural food crop production has seen enormous increases in productivity over the past few hundred years allowing for huge population growth. ${ }^{1}$ Maintaining this high productivity in food production is essential for industrialized as well as developing nations. One significant aspect of improving farming yields is pest control. Since the industrial revolution pest control in agriculture has primarily been achieved through the use of chemical pesticides. ${ }^{2}$ In 2001 the world production of chemical pesticides was approximately 5.3 billion pounds with 1.2 billion pounds being used in the United States. ${ }^{3}$ Although chemical pesticides have proven effective in this role, increasing regulation of their use due to non-target effects have led to research into natural pesticides. ${ }^{4,5}$ One such pesticide that is being evaluated for use in crop management is zwittermicin $\mathrm{A}(\mathbf{1})$ (Figure 1.1). ${ }^{6}$

(+)-Zwittermicin A (1)
Figure 1.1: Natural Zwittermicin A.

Zwittermicin A is produced by the common aerobic spore-forming bacterium Bacillus cereus and shows a broad range of activity against fungi, protists, and bacteria. With its ubiquitous presence in the environment and broad range of activity, zwittermicin

A has the potential to be a more environmentally friendly pesticide with less non-target effects.

Fungicide consumption is 500 million pounds per year comprising at least 150 different compounds with a sales value of $\$ 7.4$ billion dollars. Figure 1.2 shows some examples of common fungicides used today. Some of these compounds such as the copper based compounds like Bordeaux mix (2) have been used for hundreds of years.

Dithiocarbamate fungicids

azithiran (3)

Benzimidazole fungicides

carbendazim (6)
Figure 1.2: Examples of fungicides.

Even various early synthetic compounds such as the dithiocarbamate fungicide azithiran (3) have been used for more than forty years. Modern fungicides include compounds such as dodine (4), vinelozolin (5) and the benzimiadole fungicide carbendazim (6). While many of these fungicides have proven effective there are many factors that necessitate the development of new fungicides including resistance and deregistration of more toxic fungicides. Toxic pollution from use of copper based fungicides includes runoff into streams and consequent poisoning of aquatic environments. Questions are being raised about possible human health effects for compounds such as $\mathbf{6}$, which is a known endocrine disrupter. The development of resistant organisms is another factor that requires continued development of new fungicides. With some classes of compounds such as the benzimidazoles, fungicide resistance has developed within a few years of introduction. ${ }^{7}$

The need to constantly develop new pesticides in a time when stricter regulations, more concerns about long-term health effects and a public desire for more "naturally produced" products has lead to a desire for more natural pesticides. Zwittermicin A holds the promise of possibly being less harmful to the environment and humans. This is partially due to the fact that $\mathbf{1}$ is produced by the common soil bacterium Bacillus cereus and is therefore already ubiquitous to the environment, suggesting to some that it may have less harmful non-target effects then current synthetic fungicides. ${ }^{8}$

1.1.1. Background on (+)-Zwittermicin A

Zwittermicin A was first reported in 1994 by Handelsman and coworkers. ${ }^{9}$ This discovery was the result of studies into the ability of cultures and culture filtrates of B.
cereus UW85 to suppress damping-off of alfalfa caused by Phytophthora medicaginis. Bioassay guided fractionation of these culture filtrates led to the isolation of two fungistatic antibiotics, zwittermicin A and kanosamine that contributed to suppression of damping-off of alfalfa. ${ }^{10}$ Kanosamine is an aminosugar and shows activity that is less potent than zwittermicin A. Further studies into the activity of zwittermicin A showed that it is particularly active against plant pathogenic fungi. ${ }^{11}$ Zwittermicin A showed some activity against gram-negative bacteria but little activity against gram-positive bacteria. Protists were also sensitive to $\mathbf{1}$ with some oomycetes having a minimum inhibitory concentration (MIC) of $1 \mu \mathrm{~g} / \mathrm{well}$. More interestingly zwittermicin A showed a synergism when used in conjunction with Bacillus thuringeiensis against larvae of the gypsy moth Lymantria dispar. ${ }^{12,13}$

Studies of culture conditions for zwittermicin A production and accumulation revealed that phosphate reduced accumulation of $\mathbf{1}$ while ferric iron enhanced accumulation. ${ }^{14}$ Other micronutrients seemed to have no effect on zwittermicin A production. Investigations into the mechanism that allow zwittermicin A producing strains to be tolerant to its effects (self-resistance) led to the discovery of a resistance gene, zmaR. ${ }^{15}$ This resistance gene was shown to deactivate $\mathbf{1}$ by acetylating the amine at C14. ${ }^{16} \mathrm{~N}$-Acetyl zwittermicin A showed no biological activity. It was also found that this resistance gene has unusual abundance in the environment among gram-positive and gram-negative bacteria. In a worldwide study it was found that 25% of B. cereus contained the zmaR gene. Attempts to elucidate the mechanism of action with zwittermicin A resistant Escherichia coli were inclusive and suggested a unique mechanism of antibiosis. ${ }^{17}$

The genetics of the biosynthesis of zwittermicin A have also been examined. Handelsman's group published work on the genotypic and phenotypic analysis of zwittermicin A producing strains in $1996 .{ }^{18}$ In 1999 the biosynthetic cluster for zwittermicin A production was identified, leading to the genes responsible for zwittermicin A production. ${ }^{19-20}$ Sequencing analysis showed that $\mathbf{1}$ is synthesized by a mixed nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathway. Figure 1.3 shows the structure of zwittermicin A and the proposed precursors for its biosynthesis. L-Serine was proposed as the starter unit based on sequence similarity to known serine loading domains. In addition, two new type I polyketide synthase extender units were proposed; hydroxylmalonoyl-acy carrier protein (ACP) and aminomalonylACP. ${ }^{21,22}$

Figure 1.3: Proposed biosynthetic pathway.

Zwittermicin A has a structure that is unique when compared with other fungicides such as those in figure 2. It is a novel, linear aminopolyol having two free
amines, five hydroxyl groups, a urea group and two amides all in a molecule with only 13 carbons making it extremely polar. This high polarity is evident in the original purification procedure that was done using cation-exchange chromatography followed by high-voltage paper electrophoresis. ${ }^{9}$ The difficulty in purification has resulted in continued work on this process. ${ }^{23}$ The original report published a planar structure for $\mathbf{1}$ with relative stereochemistry for the $\mathrm{C} 8-\mathrm{C} 10$ stereocenters derived through degradation of $\mathbf{1}$ to lactam $\mathbf{7}$ under basic conditions as shown in Figure 1.4.

Figure 1.4: Degradation of zwittermicin A.

The unique structure of zwittermicin A may also portend a unique mechanism of action. Elucidating the absolute stereochemistry for $\mathbf{1}$ could provide valuable insight into the mechanism of action as well as the biosynthesis. Investigating the biological activity of diastereomers and analogs of $\mathbf{1}$ could also provide valuable insight into the mechanism of action. Synthesis of $\mathbf{1}$ could potentially be accomplished using techniques developed for the synthesis of other open chain aminopolyols.

1.2. Open-Chain Aminopolyol Synthesis

The C7-C15 backbone of zwittermicin A contains five hydroxyl groups and two amino groups. This segment can be broken down into the symmetrical C9-C15 fragment that contains two 2-amino-1,3-diol units (C9-C11 and C13-C15) separated by a
methylene group (C12) and connected to the hydroxyl methine C 8 which in turn is connected to the carbonyl at C7. A search of the literature for syntheses of open-chain amino alcohol compounds provided valuable insight into possible synthetic strategies for synthesis of zwittermicin A.

The most common source of syntheses of 2-amino-1,3-diols pertains to synthesis of sphingolipids and related compounds. Because there are a number of good reviews on sphingolipid synthesis these will not be covered here, however a number of synthesis of 2-amino-1,3-diols in sphingolipid synthesis are of importance to the synthesis of zwittermicin $A .{ }^{24-26 x s}$ A brief survey of the key strategies used for sphingolipid synthesis follows.

Synthesis of 2-amino-1,3-diols in compounds other than sphingolipids will also be reviewed here. These include papers directed specifically at the synthesis of this functionality as well as those that contain this motif within their structure. The focus will be on those papers that may provide insight into a possible synthesis of zwittermicin A.

Finally a brief review of some papers directed at other open-chain aminopolyols will be presented with the aim of identifying synthetic techniques that are relevant to the synthesis of zwittermicin A.

1.2.1. Synthesis of 2-amino-1,3-diols: Key Strategies in Sphingolipid Synthesis

Sphingolipids comprise a family of long chain amino bases and their derivatives are important to eukaryotic organisms as well as some viruses and prokaryotes (Figure 1.5). ${ }^{27}$ They are structurally the most diverse class of membrane lipids with hundreds of different sphingolipids known. ${ }^{28}$ Sphingolipids contain a long chain (sphingoid) base, the
most common of which is sphingosine (8) (D-erythro-1,3-dihydroxy-2-aminooctadec-4ene). The sphingoid backbone is typically linked to a fatty acid through an amide bond to form a ceramide. In more complexed sphingolipids the terminal hydroxyl is typically modified by glycosylation, phosphorylation or sulfation giving rise to over 300 different sphingoid head-groups. ${ }^{29}$

Flavocristamide A

Figure 1.5: Examples of sphingolipids and sphingosine.

Syntheses of sphingolipid compounds tend to fall into three categories based on control of the absolute stereochemistry of the sphingosine base. The three approaches for generating configuration of sphingosines include asymmetric induction and synthesis from serine or carbohydrate chiral pools.

1.2.1.1. Carbohydrate Approach

Exploitation of carbohydrates to for the stereocontrol of sphingosine is one of the more common approaches and have utilized D-galactose, D-xylose, D-arabinose. ${ }^{30-32}$ Most of these strategies utilize azide displacement of an activated secondary hydroxyl group to introduce the nitrogen functionality. An example of this method is the use of D-galactose by Zimmermann (Scheme 1.1). ${ }^{31}$ D-galactose was protected with benzaldehyde in one step to give $\mathbf{9}$, which was subjected to sodium periodate cleavage followed by Wittig olefination to give alkene 11. ${ }^{33}$ Conversion of the free hydroxyl to a leaving group with $\mathrm{Tf}_{2} \mathrm{O} /$ pyridine and displacement with azide gave $\mathbf{1 2}$ in 75% yield. Removal of the acetonide with hydrochloric acid (68\%) followed by reduction of the azide with $\mathrm{H}_{2} \mathrm{~S}$ (95\%) gave D-sphingosine (8).

Scheme 1.1: Zimmermann's D-sphingosine synthesis from D-galactose.

1.2.1.2. Chiral Catalysts and Asymmetric Induction

Sphingosine has also been synthesized using the Sharpless asymmetric epoxidation (SAE) to set the configuration. ${ }^{34}$ The synthesis of sphingosine by Julina is an
example of this (Scheme 1.2). ${ }^{35}$ Some of the key steps are the sodium acetylide addition to epichlorohydrin to give allylic alcohol 15, SAE reaction to give chiral epoxide 17, and the regioselective intramolecular ring opening of epoxide 17 using the Roush ${ }^{36}$ procedure to give oxazolidinone 18. Also important to this synthesis was the simultaneous removal of the benzyl group and reduction of the triple bond using Li in ethylamine and t-butyl alcohol. Attempts to use Birch conditions for this step with either Li or Na failed to properly reduce the triple bond.

Scheme 1.2: Julina's sphingosine synthesis using SAE for stereocontrol.

An approach using aldol chemistry with a chiral boron enolate for asymmetric induction has become more popular in recent years. An example of this method can be seen in Nicolaou's synthesis of globotriaosylceramide $\left(\mathrm{Gb}_{3}\right){ }^{37}$ In this synthesis chiral
oxazolidinone 20 was used to set the stereochemistry of the sphingosine (Scheme 1.3). Again azide is used for introduction of the nitrogen functionality.

Scheme 1.3: Nicolaou's sphingosine synthesis using asymmetric induction for stereocontrol.

1.2.1.3. Chirality Through use of Serine

Modern sphingosine synthesis is most often draws from the amino acid chiral pool. More specifically, aldehydes derived from L-serine are used to incorporate the 2-amino-1,3-diol portion of sphingosine. A good example of this is the use of Garner's aldehyde (25) by Herold in the synthesis of four sphingosine derivatives (Scheme 1.4). ${ }^{38,}$ ${ }^{39}$ Key steps in this synthesis include diastereoselective control of alkyne anion addition through use of solvent and counter ion effects. Addition of the lithiated acetylide to $\mathbf{2 5}$ in THF/HMPA gave the anti addition product in 71% yield with 90% de while addition of the Zn salt in ether gave the syn product in 87% yield and 90% de. Removal of the acetonide with Amberlyst 15 followed by reduction with either Red-Al or H_{2} / Lindlar's catalyst gave the four sphingosine derivatives 29-32 in respectable yields.

Scheme 1.4: Herold's synthesis starting from serine.

1.2.2. Synthesis of 2-amino-1,3-diols: Non-Sphingolipid Synthesis

The importance of 2-amino-1,3-diol syntheses has led to a number of papers that focus strictly on synthesis of this functionality. Vicinal amino alcohol synthesis has been accomplished by using the amino acid chiral pool or by reagent control with asymmetric induction or using chiral catalyst.

1.2.2.1. Chirality Through use of Amino Acid Chiral Pool

The use of the amino acid chiral pool for non-sphingolipid synthesis was again the most commonly used method to set stereochemistry. An example of this can be seen in Ohfune's total synthesis of galantin I (33), a peptide antibiotic isolated from the culture
broth of Bacillus pulvifaciens (Figure 1.6). ${ }^{40,41}$ Galantin I contains the two unique amino acids galantinamic acid (34) and galantinic acid (35) which are open-chain aminopolyols the latter of which has the 2-amino-1,3-diol motif.

Figure 1.6: Structure of galantin I, galantinamic acid and galantinic acid.

Ohfune's original synthesis of protected $\mathbf{3 5}$ started with methionine and proceeded through the serine equivalent (2R)-amino-3-butenol (39) (Scheme 1.5). ${ }^{42-44}$ The synthesis started from D-methionine which is converted to alcohol $\mathbf{3 7}$ by Boc protection of the amino group followed by esterification with diazomethane and reduction to the alcohol with lithium aluminum hydride with overall yield of 89%. Oxidation of the sulfide with NaIO_{4} gave sulfoxide $\mathbf{3 8}$ (91\%) which was then converted to the serine equivalent 39 (60\%) by eliminating the sulfone with NaOAc at elevated temperature. Epoxidation of this alkene with m-CPBA gave epoxide 40 in moderate yield (60\%) but with high diastereoselectivity (95% de). Protection of the terminal alcohol as an acetate ester followed by addition of a higher-order divinylcuprate prepared from TBS
protected propargyl alcohol gave addition products 41a-c in poor yield, 51\%. The selectivity for desired compound 41c was poor and no mention of conversion of 41a or 41b to 41c was made in the paper covering its synthesis or the following paper covering synthesis of $\mathbf{4 2}$ through $\mathbf{4 5} .^{43}$

41a:41b:41c (5:1:2.5)
41a: $R_{1}=A c, R_{2}=H$
41b: $R_{1}=H, R_{2}=A c$
41c: $R_{1}=H, R_{2}=H$

Scheme 1.5: Ohfune's first synthesis of galantinic acid core structure.

Compound 41c was converted under standard procedures to acetonide 42 (88%).
Next the TBS group was removed with TBAF (51\%), epoxidized with m-CPBA (100%) and reduced with LAH to give 43a and 43b in 20% and 28% yield respectively. No mention was made of the diastereoselectivity of the epoxidation reaction and the poor yield of the LAH reduction precludes a good estimate of this ratio. The free hydroxyls in

43a were protected as acetate esters $\left(\mathrm{Ac}_{2} \mathrm{O} /\right.$ pyridine, $\left.80 \%\right)$ then the Boc group was converted to a benzyloxycarbonyl group (TBDMSOTf then $\mathrm{BnBr} / \mathrm{TBAF}, 75 \%$) using a procedure developed in Ohfune's lab. ${ }^{45}$ Finally removal of the acetates $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 90 \%\right)$ followed by oxidation of the terminal hydroxyl $\left(\mathrm{PtO}_{2} / \mathrm{O}_{2}, 60 \%\right)$ gave the protected galantinic acid 45. While this was the procedure used in the original synthesis, the poor yield and diastereoselectivity of a number of reactions along with the fact that it required 16 steps makes it a poor synthesis for this compound. Perhaps because of this, Ohfune published a second improved synthesis of galantinic acid (Scheme 1.6), beginning with conversion of Garner's aldehyde (25) to the Z-allyl alcohol 46 under standard conditions. ${ }^{46,47}$ Diastereoselective epoxidation using m-CPBA (67\%) followed by oxidation using Swern conditions (87\%) and chain elongation with a stabilized Wittig (92\%) gave 47 as a mixture of E and Z isomers. The epoxide in 47 was cleaved using Miyashita's reagent to give alkene 48 as a single regioisomer in 94% yield. ${ }^{48}$ Double bond migration ester cleavage and lactone formation with DBU gave desired product $\mathbf{5 0}$ as well as starting material 48 and conjugated isomer 49 in a ratio of 4:1:4 respectively. Recovered 48 and 49 could be re-treated with DBU and re-equilibrated to give more 50, thereby improving yield. Compound $\mathbf{5 0}$ was epoxidized with basic t - BuOOH to give $\mathbf{5 1}$ (42\%) as a single diastereomer and recovered starting material (54\%). Reduction of epoxide 51 using modified Miyashita's reagent gave the undesired isomer 52 in 94% yield requiring inversion to the correct configuration. The authors had some difficulty achieving this and the conditions that were eventually used were oxidation with trifluoroacetic anhydride/DMSO followed by immediate reduction using $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ (76\%) to give a mixture of desired alcohol 53 and undesired epimer 52 in a 3:1 ratio
respectively. Protection of the free hydroxyl with TBS (64\%) allowed chromatographic separation of the isomers followed by deprotection using TFA then treatment with Dowex 50 Wx 4 (elution with 1 N ammonia) to give (-)-galantinic acid (35) in quantitative yield.

Scheme 1.6: Ohfune's second synthesis of galantinic acid core structure.

One of the earlier papers focusing on diastereoselective synthesis from the chiral pool was by Koskinen who investigated diastereoselective hydride reductions of enones derived from serine ester 54, which is an intermediate in the synthesis of Garner's
aldehyde (Scheme 1.7)..49,38 Chain elongation of 54 to phosphonate $55(83 \%)$ followed by the HWE reaction with various aldehydes gave enones 56a-c. ${ }^{50}$ Various combinations of reagents and solvents were tried with the optimal conditions shown in Scheme 1.7.

Selectivity can be tuned from $4: 1$ syn:anti to 1:3. In addition the R group had a large effect on the selectivity, for example with L-selectride/THF and R being phenyl, ethyl or i-propyl the selectivity was $4: 1,2: 1$ and 3:7 respectively.

Scheme 1.7: Koskinen's investigation of diastereoselective enone reduction.

In 1998, Somfai explored hydride reduction of an allyl ketones to generate a 3-amino-2,4-diols during the synthesis of kadarosamine (Scheme 1.8). ${ }^{51}$ Allyl ketone $\mathbf{6 2}$ was synthesized starting from Fmoc-protected D-threonine as follows: protection of $\mathbf{5 9}$ with 2,2-dimethoxypropane (81\%), conversion to Weinerb amide 61 (73\%) and allylation with allylmagnesium bromide (79\%) gave 62. ${ }^{52}$ Because the stereochemical outcome of nucleophilic additions to α-amino aldehydes was known to be affected by the choice of amine protecting group the authors chose to investigate reduction of both the fully
protected ketone $\mathbf{6 2}$ and the partially deprotected ketone 64 . Investigation of reducing agents and solvent conditions revealed that syn product $\mathbf{6 5 b}$ was favored when NaBH_{4} in methanol was used to reduce the fully protected ketone 62. Acetonide removal with TFA gave a 1:9 ration of 65a:65b (46% yield). Optimum conditions for reduction of $\mathbf{6 4}$ to anti product 65 a were $\mathrm{NMe}_{4} \mathrm{BH}(\mathrm{OAc})_{3}$ in $1: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{AcOH}(73 \%$ yield, $300: 1 \mathbf{6 5 a}: 65 \mathrm{~b})$.

60

61

Scheme 1.8: Somfai's investigation of diastereoselective allyl ketone reduction.

Nucleophilic additions to amino acid derived aldehydes for preparation of vicinal aminodiols is commonly seen in the literature. Good reviews for these types of reactions are available; consequently only some of the more recent and relevant papers will be discussed here. ${ }^{53-56}$ Two of the more noteworthy reviews are Reetz's 1999 review titled ‘Synthesis and Diastereoselective Reactions of N, N-Dibenzylamino Aldehydes and Related Compounds' and Bols's 2001 review titled 'Garner's Aldehyde'. ${ }^{53,54}$

Somfai's investigation of Mukaiyama additions to α-amino- β-silyloxy aldehydes published in 2005 found the diastereoselectivity of addition of $\mathbf{6 7}$ to aldehydes with anti configuration of the amino and silyloxy groups was very dependent on the nitrogen protecting group (Scheme 1.9 and Table 1.1).${ }^{57,58}$

Scheme 1.9: Somfai's investigation of aldol additions to aldehyde 66a-d.
Table 1.1: Somfai's investigation of aldol additions to aldehyde 66a-d.

Entry \#	Substrate	Lewis acid	Yield $\%$	$\operatorname{dr}(\mathbf{6 8 : 6 9})$	Products
1	$\mathbf{6 6 a}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	91	$92: 8$	$\mathbf{6 8 a}, \mathbf{6 9 a}$
2	$\mathbf{6 6 a}$	TiCl_{4}	85	$90: 10$	$\mathbf{6 8 a}, \mathbf{6 9 a}$
3	$\mathbf{6 6 b}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	94	$>98: 2$	$\mathbf{6 8 b}$
4	$\mathbf{6 6 c}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	92	$<2: 98$	$\mathbf{6 9} \mathbf{c}$
5	$\mathbf{6 6 d}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	81	$<2: 98$	$\mathbf{6 9 d}$

As expected aldehydes $\mathbf{6 6 a}$ and $\mathbf{6 6 b}$ with only partial protection of the amino group showed a strong preference for the syn addition products favored in chelationcontrolled reactions. Fully protected aldehydes $\mathbf{6 6 c}$ and $\mathbf{6 6 d}$ gave predominately the Felkin-Anh anti addition products. The use of lewis acid $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ produced improved yield and selectivity than TiCl_{4}. Mukaiyama additions to the syn aldehydes 70a-d gave equivocal results (Scheme 1.10 and Table 1.2). Under conditions of chelation control diastereoselectivities were still high (entry 1 and 2 Table 1.2). However reactions with
the fully protected amino aldehydes 70c and 70d were slow and gave no diastereoselectivity. This was attributed to the presence of the polar OTBS group.

Scheme 1.10: Somfai's investigation of aldol additions to aldehyde 70a-d.
Table 1.2: Somfai's investigation of aldol additions to aldehyde 70a-d.

Entry \#	Substrate	Lewis acid	Yield $\%$	dr (71:72)	Products
1	$\mathbf{7 0 a}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	88	$>98: 2$	71a
2	$\mathbf{7 0 b}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	89	$88: 12$	$\mathbf{7 1 b}, \mathbf{7 2 b}$
3	$\mathbf{7 0}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	91	$47: 53$	$\mathbf{7 1 c}, \mathbf{7 2} \mathbf{c}$
4	$\mathbf{7 0 d}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	49	$44: 56$	71d, 72d

A 2004 paper by Reyes looked at acetate equivalent aldol reactions with Garner's aldehyde for preparation of polyhydroxylated γ-amino carbonyl compounds. ${ }^{59}$ The enolate of achiral diethylacetamide 73 added to ent-25 to give 74 in both low yield (50\%) and low selectivity (37% de) (Scheme 1.11).

Scheme 1.11: Reyes's investigation of aldol additions to aldehyde Garner's aldehyde.

Double asymmetric induction conditions for the aldol reaction gave a large variation in diastereoselectivity. Aldol additions of pseudoephedrine-derived acetamides $(R, R)-75$ and $(S, S)-75$ to Garner's aldehyde gave addition products $(R, R)-76$ and $(S, S)-75$, respectively. Use of (R, R) - 75 represents the matched case giving 79\% yield and 96% de while the mismatched (S, S)-75 gave lower yield and de (61% yield, 12% de). The addition products were carried forward to ester 78 and ketones 79a-f in high yield.

Acetate equivalents aldol additions were also used in earlier work by Hume. ${ }^{60}$ The enolate of ethyl acetate was reacted with serine-derived aldehyde $\mathbf{8 1}$ to give addition products $\mathbf{8 2}$ and $\mathbf{8 3}$ (Scheme 1.12). Yield for this reaction was good at 85% and again the diastereoselectivity favored the anti addition product with dr 6:1 in favor of $\mathbf{8 2}$.

Scheme 1.12: Hulme's acetate aldol addition to serine-derived aldehyde 81.

Hulme's also exploited aldol additions of a glycolate equivalent to a serinederived aldehyde for the synthesis of glucosidase inhibitors. ${ }^{61,62}$ The significant relevance of this work is the aldol products which represent a motif also seen in the C7C11 portion of zwittermicin A (Scheme 1.13). Addition of the acetylated Evan's auxiliary $\mathbf{8 4}$ and ent-84 to serine-derived aldehyde $\mathbf{8 5}$. ${ }^{63}$ The matched case gave $\mathbf{8 6}$ in 82%. This represents an improved yield when compared with addition using the glycolate equivalent
$\mathbf{8 8}$ (75% yield). Conversion of these products to the Weinreb amide $\mathbf{8 7}$ proceeded smoothly in 100% and 91% yield, respectively.

Scheme 1.13: Hulme's aldol addition to serine-derived aldehyde 85.

Addition of the mismatched glycolate equivalent ent-84 to $\mathbf{8 5}$ gave $\mathbf{9 0}$ and $\mathbf{9 1}$ in 79% yield but lower diastereoselectivity (9:1). The latter two products were also converted to the Weinreb amides 92 and 87 in high yields.

Hulme also looked at using diastereoselective dihydroxylation for the synthesis of the aminopolyol (Scheme 1.14), unfortunately ratios of only $2: 1$ to $1: 2$ could be acheived. ${ }^{64}$

Scheme 1.14: Hulme's attempted diastereoselective dihydroxylation.

This difficulty in tuning selectivity for dihydroxylation reactions when there is nitrogen functionality near the double bond is well described in the literature. ${ }^{65-67}$ An example of this can be seen in Kim's development of conditions for anti-selective dihydroxylation of Z-allylic amines (Scheme 1.15 and Table 1.3). ${ }^{68}$ Starting alkene 98 was prepared from Garner's aldehyde by Wittig olefinication giving 97 (82%), removal of acetonide with Dowex 50Wx4-100 and reprotection with a combination of Boc and acetate protecting groups. ${ }^{69}$ It should be noted that the use of N, N-di-Boc protecting group was employed by Sharpless for improving the selectivity in asymmetric dihydroxylation reactions on allylic and homoallylic amines. ${ }^{70}$ It can be seen that the dihydroxylation of $\mathbf{9 8}$ shows a strong solvent effect (entries 1-4, Table 1.3) as well as an effect due to the protecting group on the terminal hydroxyl (entry 5).

Scheme 1.15: Kim's dihydroxylations of 98a and 98b.
Table 1.3: Kim's dihydroxylations of 98a and 98b.

Entry \#	Substrate	Solvent	Yield \%	dr (99:100)	Products
1	98a	THF- $\mathrm{H}_{2} \mathrm{O}$ (2:1)	52	3.3:1	99a, 100a
2	98a	$i-\mathrm{PrOH}$	82	4.0:1	99a, 100a
3	98a	Toluene	84	6.3:1	99a, 100a
4	98a	DCM	83	10:1	99a, 100a
5	98b	DCM	78	20:1	99b, 100b

1.2.2.2. Chirality Through Asymmetric Catalyst

The use of $\mathrm{SAE}^{71,72}$ for synthesis of aminodiols is common but requires displacement of a C-O bond by nitrogen after the generation of the epoxide; for example opening of the epoxide ring with an amine equivalent. The regioselectivity of nucleophilic ring opening of 2,3-epoxy alcohols is mainly at the 3 position. ${ }^{73}$ Synthesis of 2-amino-1,3-diols requires nucleophilic attack at the 2 position of the epoxide with an amine equivalent such as azide. Azide opening of epoxides in the presence of ammonium chloride only slightly favors C 2 selectivity if the substrate is hindered at C 3 . One example of the successful use of this technique was in Lin's synthesis of penaresidin A (Scheme 1.16). ${ }^{74}$ The synthesis starts with SAE reaction on substrate $\mathbf{1 0 1}$ followed by a

Payne rearrangement to give epoxide $\mathbf{1 0 2}$ in good yield. ${ }^{75}$ Benzyl protection of the terminal alcohol gave $\mathbf{1 0 3}$ in 87% yield. Asymmetric dihydroxylation of $\mathbf{1 0 3}$ followed by protection of the diol as an acetonide gave epoxide $\mathbf{1 0 4}$ in $\mathbf{7 3 \%}$ yield. ${ }^{76}$ The key nitrogen insertion was then accomplished using sodium azide and ammonium chloride in refluxing ethyleneglycol mono-methyl ether /water (8:1) to give azide 105 in 87% yield. This compound was then taken forward in 17 steps to synthesize penaresidin A.

Scheme 1.16: Lin's synthesis of penaresidin A.

The poor C 2 regieoselectivity for azide openings of 2,3-epoxy alcohols led Miyashita to develop an improved technique involving the use of phenylbornic acid to direct attack at $\mathrm{C} 2 .{ }^{77}$ An improved technique with $(\mathrm{MeO})_{3} \mathrm{~B}$ or $(\mathrm{EtO})_{3} \mathrm{~B}$ gave azido alcohols in good diastereoselectivity (Scheme 1.17 and Table 1.4). ${ }^{78}$ The reaction works best for trans epoxides with $\mathrm{C} 2: \mathrm{C} 3$ ratios of $82: 18$ to $92: 8$. Use of ammonium chloride as an activating reagent only gave a $\mathrm{C} 2: \mathrm{C} 3$ ratio of $15: 85$. The selectivity was poorer with
cis epoxides (e.g. 109a, 1:2 ratio of $\mathrm{C} 2: \mathrm{C} 3$). Greater steric hindrance at the C 3 position of 109b improves the to 73:27 (entry 6).

Scheme 1.17: Miyashita's boron-mediated azide opening of simple epoxides.
Table 1.4: Miyashita's boron-mediated azide opening of simple epoxides.

Entry \#	Substrate	Reagent	Yield $\%$	dr $(\mathrm{C} 2: \mathrm{C} 3)$	Products
1	$\mathbf{1 0 6 a}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$	97	$82: 18$	$\mathbf{1 0 7 a}, \mathbf{1 0 8 a}$
2	$\mathbf{1 0 6 a}$	$\mathrm{NH}_{4} \mathrm{Cl}$	95	$15: 85$	$\mathbf{1 0 7 a}, \mathbf{1 0 8 a}$
3	$\mathbf{1 0 6 b}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$	96	$92: 8$	$\mathbf{1 0 7 b}, \mathbf{1 0 8 b}$
4	$\mathbf{1 0 6 c}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$	99	$92: 8$	$\mathbf{1 0 7 c}, \mathbf{1 0 8 c}$
5	$\mathbf{1 0 9 a}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$	89	$31: 69$	$\mathbf{1 1 0 a}, \mathbf{1 1 1 a}$
6	$\mathbf{1 0 9 b}$	$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$	96	$73: 27$	$\mathbf{1 1 0 b}, \mathbf{1 1 1 b}$

Miyashita postulated that the transition state for this reaction involved an intramolecular chelate of a transesterified borate or boronate ester to the epoxide. Support for the chelation theory was seen in the azide opening of epoxides $\mathbf{1 1 2}$ and $\mathbf{1 1 5}$ (Scheme 1.18). If (path a) is correct then $\mathbf{1 1 2}$ should react slower and have less selectivity than $\mathbf{1 1 5}$ due to steric interference of the methyl group and epoxide ring. If on the other hand (path b) is correct then $\mathbf{1 1 5}$ should react slower and have less selectivity than $\mathbf{1 1 2}$ due to steric interaction between the methyl group and a nucleophile. Epoxide 115 (30\% yield, dr

46:54) is less reactive than $\mathbf{1 1 2}$ (92% yield, $\mathrm{dr} 89: 11$) supporting (path b) as the correct pathway.

(path a)

Scheme 1.18: Miyashita's boron mediated azide opening of epoxides $\mathbf{1 1 2}$ and $\mathbf{1 1 5}$.

Direct opening of a 2,3-epoxyalcohol by reaction with isocyanate followed by intra-molecular displacement by the nitrogen has been used by investigators for synthesis of amino alcohols. ${ }^{79-80}$ The original method, developed by Roush, involves converting the terminal alcohol into a carbamate followed by treatment with base to facilitate intramolecular attack at the proximal C 2 carbon to give an oxazolidinone. ${ }^{36}$ The reactions are typically done in one pot without isolation of the intermediate carbamate as illustrated by Jung's synthesis of β-hydroxy- α-amino acids (Scheme 1.19). ${ }^{81}$ SAE resolution of alcohols 118a-c followed by treatment of the epoxy alcohols with benzoyl isocyanate and
sodium hydride gave oxazolidinones 120a-c in good yields ($65 \%-85 \%$). Removal of the benzoyl group (LiOH), Jones oxidation and finally acid hydrolysis with aqueous HCl completes the synthesis of the β-hydroxy- α-amino acids 123a-c.

Scheme 1.19: Jung's use of epoxides for synthesis of β-hydroxy- α-amino acids.

One of the more interesting means of epoxide displacement by amine equivalents to a chiral epoxide was developed by Righi. ${ }^{82}$ In this procedure 2,3-epoxy alcohols are converted into 4-hydroxy-4,5-dihydroisoxazole 2-oxides in a one-pot reaction. These isoxazoles can then be easily transformed into aminopolyols (Scheme 1.20). Epoxides 124a-c were converted into isoxazole-N-oxides 125a-c by oxidation to give to an aldehyde followed by tandem nitroaldol-intramolecular cyclization. The use of Piancatelli oxidation which is compatible with the rest of the one-pot reaction is a key component of this successful transformation. ${ }^{83,84}$ The epoxide opening is stereospecific and yields for the reaction are respectable (62-97\%), but suffer from low diastereoselectivity with the 4,5-cis to 4,5-trans ratios between 56:44 and 72:28. The diastereomeric compounds were
separable by chromatography as the free diol or after conversion to the bis-TBS protected compounds. Conversion to isoxazoles 126a-c in 93-100\% yield was achieved by protection with TBSCl and deoxygenation with $\mathrm{P}(\mathrm{OMe})_{3}$. For example, 4,5-cis-126b was converted to isoxazole $\mathbf{1 2 7}\left(86 \%\right.$ yield) by reduction of the ester $\left(\mathrm{NaBH}_{4}\right)$ and protection of the alcohol (TBSCl) and the resultant isoxazole reduced with LAH to give aminopolyol 128 (82% yield, $\mathrm{dr}>9: 1$) after acidic work up.

a) TBSCl
b) $\mathrm{P}(\mathrm{OMe})_{3}$

93-100\%

a) LAH
b) HCl
82\%

Scheme 1.20: Righi's isoxazole method for synthesis of aminopolyols.

Somfai's stereospecific vinylepoxide opening with ammonium hydroxide delivers a nitrogen at the C 3 position, which is transformed to a vinylaziridine. ${ }^{85,86}$ Subsequent
opening of this ring leaves the NH_{2} group at C 2 . Together with Trost's $\mathrm{Pd}(0)$-catalyzed ring opening of vinylepoxides, this method was used to generate all isomers for vicamino alcohols (Scheme 1.21). ${ }^{87}$

131a (93\%) $R_{4} 1$
130a (82\%)
130b (88%)
130c (87\%)
130d (na)
130e (94\%)
$130 f(93 \%)$

aq. KOH

$\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$

Scheme 1.21: Somfai's use of vinylaziridine for synthesis of aminopolyols.

Epoxides 129a-f were converted to oxazolidinones 130a-f using $\operatorname{Pd}(0)$ in the presence of tosyl isocyanate in good yields (82-94\%) and diastereoselectivity of greater
than $20: 1$ for all compounds except $\mathbf{1 3 0 a}$ (6:1) and $\mathbf{1 3 0 b}$ (14:1). Removal of the tosyl group gave oxazolidinones 131a-f in good yields ($72-93 \%$, 131d 61% for 2 steps). Diastereomers could be separated at this stage by silica chromatography. Hydrolysis of the oxazalidinones gave aminoalcohols 132a-f in very good yields (86-100\%). Alternatively, epoxides 129a-f could be opened with $\mathrm{NH}_{4} \mathrm{OH}$ under microwave irradiation to give aminoalcohols 133a-f. These aminoalcohols could be converted into aziridines $\mathbf{1 3 4 a} \mathbf{- f}$ in moderate yields ($60-80 \%$). Followed by 134 ring opening under acidic conditions $\left(\mathrm{HClO}_{4}\right)$ to give aminoalcohols $\mathbf{1 3 5 a} \mathbf{- f}$ in reasonable yields (67-84\%). Again diastereoselectivity was greater than 20:1 except for $\mathbf{1 3 5 d}$ (10:1) and $\mathbf{1 3 5 e}$ (2.5:1). Alternatively, aziridines 134a-f could be acylated with acetic anhydride to give acetamides 136a-f in quantitative yield then converted into allylic alcohols $\mathbf{1 3 7} \mathbf{a - f}$ by treatment with borotrifluoride diethyletherate and then water. Yields were moderate (70$74 \%$) but diastereoselectivity was greater than 20:1 except for 137d which was 10:1. Hydrolysis of the amide gave amino alcohols 138a-f in good yields (84-95\%) except for 138e, which had to be made using a different route (not shown). Together the series of compounds comprising $\mathbf{1 3 2}, \mathbf{1 3 3}, \mathbf{1 3 5}$, and $\mathbf{1 3 8}$ represent all of the possible diastereomeric 2,3-substituted amino alcohols.

In 2004 Kumar published a synthesis of galantinic acid that utilized both SAE and asymmetric dihydroxylation to set the absolute stereochemistry (Scheme 1.22). ${ }^{88}$ Desymmetrization of diol 139 with PMBCl (86\%) followed by oxidation with PCC, olefinication using HWE (81\%) and reduction with DIBAL (92\%) gave allylic alcohol 142.

Scheme 1.22: Kumar's 2004 synthesis of galantinic acid (35).

Sharpless asymmetric epoxidation of $\mathbf{1 4 2}$ gave epoxide $\mathbf{1 4 3}$ (72\%) which was opened under acidic conditions $\left(\mathrm{HClO}_{4}, 89 \%\right)$ and the product diol protected as a benzylidene derivative (65%) to give alcohol $\mathbf{1 4 4}$. Conversion of the alcohol to the mesylate ester (83\%) followed by nucleophilic displacement with NaN_{3} gave azide 145 (78\%). Removal of the PMB group under standard conditions (DDQ) gave alcohol 146 (91\%) which was converted to ester 147 (83\%) using the above mentioned conditions. Compound 147 was subjected to Sharpless asymmetric dihydroxylation conditions to give diol 148 in 87% yield which was converted to sulfite 149 using SOCl_{2} (89\%).

Regiospecific reduction of the cyclic sulfite with one equivalent of sodium borohydride
followed by acid hydrolysis using sulfuric acid gave acid $\mathbf{1 5 0}$ with complete selectivity for attack at the α carbon. Azide $\mathbf{1 5 0}$ was then reduced under standard conditions to give galantinic acid (35) in 88% yield. With the exception to the selective reduction of the sulfite most of the steps in this synthesis were very standard reactions.

Asymmetric dihydroxylation of allylic alcohols, amines and their derivatives is another means of setting absolute stereochemistry and was partially covered in a previous section and in Kim's review titled 'Synthetic Applications of Stereoselective Dihydroxylation in Natural Products Synthesis', in addition to several other reviews. ${ }^{89-92}$

Asymmetric aminohydroxylation of olefins inserts both oxygen and nitrogen simultaneously. ${ }^{93-95}$ Most aminohydroxylation reagents tend to place the nitrogen at he C3 position when the substrate is an allylic alcohol or any other alkene containing a α heteroatom. Attempts to circumvent this problem using an intramolecular tethered aminohydroxylation reaction resulted in complete loss of asymmetric induction. ${ }^{96}$ Nevertheless, for regioselective construction of vicinal amino alcohols the use of tethered aminohydroxylation can be a valuable tool when the absolute stereochemistry can be set by some other means. Scheme 1.23 shows examples of tethered aminohydroxylations by Keenan. ${ }^{97}$

163

(i) $\mathrm{K}_{2} \mathrm{Os}(\mathrm{OH})_{4} \mathrm{O}_{2}, t$-BuOCl, $\mathrm{NaOH}, i-\mathrm{Pr}_{2} \mathrm{NEt}$

Scheme 1.23: Keenan's 2004 work on tethered aminohydroxylation.

Yields for these reactions were modest ($\sim 60-75 \%$) with diastereoselectivity ranging from 5:1 to $>10: 1$ (syn:anti). The authors rationalize the high selectivity for syn addition as due to transition state that minimizes $\mathrm{A}^{[1,3]}$ strain between the R group cis to the allylic constituent in the inside position.

Finally, another synthesis of galantinic acid will serve to demonstrate the use of kinetic resolution of epoxides derived from halohydrins followed by azide displacement
to introduce the nitrogen functionality. The synthesis of galantinic acid by Reddy (Scheme 1.24) starts by addition of protected propargyl alcohol $\mathbf{1 7 1}$ to epichlorohydrin to give $172(85 \%)$ followed by base promoted cyclization to give epoxide $173(90 \%) .{ }^{98}$ Hydrolytic kinetic resolution of this epoxide with Jacobsen's salen(Co) catalyst gave a mixture of diol 174 (49\%) and optically pure epoxide 175 (43\%). ${ }^{99}$ Epoxide opening of $\mathbf{1 7 5}$ with thiophenoxide gave thioether $\mathbf{1 7 6}$ in 85% yield. Removal of the PMB group (DDQ, 80\%) and reduction of the triple bond (LAH, 78\%) gave E-alkene 177. Protection of hydroxyls (TBDPSCl, 96\%) and oxidation $\left(\mathrm{NaIO}_{4}, 85 \%\right)$ gave 178 as a mixture of epimeric sulfoxides. Treatment of alkene 178 with NBS gave bromohydrin 179 (75\%) in a regio and stereospecific manner. Deprotection of the primary alcohol (CSA, 78\%) followed by protection of the subsequently formed diol as an acetonide (90%) provided compound 180. Nitrogen insertion was accomplished by azide displacement of bromide using NaN_{3} to give $\mathbf{1 8 1}$ in $\mathbf{7 5 \%}$ yield. The sulfoxide was removed by a one-pot Pummerer rearrangement ${ }^{100}\left(\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}\right)$ and reduction of the resulting aldehyde $\left(\mathrm{NaBH}_{4}\right)$ to yield 182 (70\%). Removal of the TBDPS group (TBAF, 70\%) provided diol 183. This diol was converted into epoxide 184 (65% overall yield) in three steps; selective protection of the primary alcohol as pivalate ester, mesylation of secondary alcohol and hydrolysis of the pivalate ester with concomitant displacement of the mesyl group.

Scheme 1.24: Reddy's synthesis of galantinic acid.

Opening of the epoxide with sodium azide using Sharpless protocol ${ }^{101}$ gave alcohol 185 (80%). Hydrolysis of the cyano group $\left(\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 70 \%\right)$ followed by reduction of the azide $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 80 \%\right)$ yielded protected galantinic acid 186.

1.2.3. Other Open-Chain Aminopolyols

Concellón developed complimentary methods for diastereoselective synthesis of aminoalkyl epoxides from amino acids which can serve as chiral building block for more complex aminopolyol compounds (Scheme 1.25). ${ }^{102-104}$ Addition of chloromethyllithium to serine-derived ester 187 afforded ketone 188 (90\%). Stereospecific reduction with LAH at low temperature $\left(-100{ }^{\circ} \mathrm{C}\right)$ gave chlorohydrin 189 (87\%) which, upon treatment with methyllithium, provided epoxide 190 in 87% yield. Removal of the TBS group (TBAF, 80%) and oxidation (Swern, 98\%) gave aldehyde 191. Addition of iodomethyllithium resulted in addition and subsequent ring closing to give diepoxide 192 in 86% yield. In a complementary manner, serine-derived aldehyde 193 could be converted to epoxide 194 (86\%) by treatment with iodomethyllithium. This epoxide could be further elaborated to diepoxide 199 in six high yielding steps as shown. Chloro compounds 188, 197, 198, epoxides 190, 194, and diepoxides 192, and 199 represent compounds that are useful in the synthesis of amino alcohols. For example treatment of 190 with propylamine and compound $195 x$ with benzylamine generated $200(60 \%)$ and 201 (66\%), respectively.

a) TBAF (80%) b) swern (98\%)

197

Scheme 1.25: Concellón's synthesis of aminoepoxides.

The final aminoalcohol synthesis to be presented is that of Takabe's penaresidin B synthesis. ${ }^{105}$ Absolute configuration is set through use of sugar synthons following previously reported procedures. ${ }^{106,107}$ Protected aldose $\mathbf{2 0 2}$ was treated with MPMNH_{2} to give 203 quantitatively (Scheme 1.26). Addition of the anion of 204 gave 205 (82%). PCC oxidation of this compound provided lactam 206 in 62% yield.

Scheme 1.26: Takabe's synthesis of penaresidin B.

Functional and protecting group manipulation provided lactam 208 in good yield.
Reduction of the lactam with sodium borohydride followed by protecting group
Mesylation of the hydroxyl group (MsCl) followed by treatment with sodium hydride gave azetidine $\mathbf{2 1 0}$ in 50% yield. Deprotection of $\mathbf{2 1 0}$ with HCl provided penaresidin B (211) in quantitative yield.

1.3. References

(1) Stewart, W. M.; Dibb, D. W.; Johnston, A. E.; Smyth, T. J. Agronomy Journal 2005, 97, 1-6.
(2) Smith, K; Evans, D. A.; El-Hiti, G. A. Phil. Trans. R. Soc. 2008, 363, 623-637.
(3) 2000-2001 Pesticide Market Estimates: Usage; 2001, http://www.epa.gov/oppbead1/pestsales/01pestsales/usage2001.htm
(4) Ames, B. N.; Profet, M.; God, L. S. Proc. Natl. Acad. Sci. USA 1990, 87, 77827786.
(5) Jones, D. A. Pestic. Sci. 1999, 55, 634-636.
(6) Liu, C-L.; MacMullan, A. M.; Lufburrow, P. A.; Starnes, R. L; Manker, D. C., US Patent 5,976,563, Nov. 2, 1999.
(7) Brent, K. J.; Hollomon, D. W. Fungicide Resistance in Crop Paathogens: How can it be Managed; $2^{\text {nd }}$ ed.; Newline Graphics 2007.
(8) Stabb, E. V.; Jacoboson, L. M.; Handelsman, J. Appl. Environ. Microbiol. 1994, 60, 4404-4412.
(9) He, H.; Silo-Suh, L. A.; Handelsman, J.; Clardy, J. Tetrahedron Lett. 1994, 35, 2499-2502.
(10) Silo-Suh, L. A.; Lethbridge, B. J.; Raffel, S. J.; He, H.; Clardy, J.; Handelsman, J. Appl. Environ. Microbiol. 1994, 60, 2023-2030.
(11) Silo-Suh, L. A.; Stabb, E. V.; Raffel, S. J.; Handelsman, J. Curr. Microbiol. 1998, 37, 6-11.
(12) Broderick, N. A.; Goodman, R. M.; Raffa, K. F.; Handelsman, J. Environ. Entomol. 2000, 29, 101-107.
(13) Broderick, N. A.; Goodman, R. M.; Handelsman, J.; Raffa, K. F. Environ. Entomol. 2003, 32, 387-391.
(14) Milner, J. L.; Raffel, S. J.; Lethbridge, B. J.; Handelsman, J. Appl. Microbiol. Biotechnol. 1995, 43, 685-691.
(15) Milner, L.; Stohl, E. A.; Handelsman, J. J. Bacteriol. 1996, 178, 4266-4272.
(16) Stohl, E. A.; Brady, S. F.; Clardy, J.; Handelsman, J. J. Bacteriol. 1999, 181, 5455-5460.
(17) Stabb, E. V.; Handelsman, J. Mol. Microbiol. 1998, 27, 311-322.
(18) Raffel, S. J.; Stabb, E. V.; Milner, J. L.; Handelsman, J. Microbiology 1996, 142, 3425-3436.
(19) Stohl, E. A.; Milner, J. L.; Handelsman, J. Gene 1999, 237, 403-411.
(20) Emmert, E. A.; Kilmowicz, A. K.; Thomas, M. G.; Handelsman, J. Appl. Environ. Microbiol. 2004, 70, 104-113.
(21) Chan, Y. A.; Boyne, II, M. T.; Podevels, A. M.; Klimowicz, A. K.; Handelsman, J.; Kelleher, N. L.; Thomas, M. G. Proc. Natl. Acad. Sci. USA 2006, 103, 1434914354.
(22) Zhao, C.; Luo, Y.; Song, C.; Liu, Z.; Chen, S.; Yu, Z.; Sun, M. Arch. Microbiol. 2007, 187, 313-319.
(23) Liu, Z.-X.; Chen, S.-W.; He, J.; Yu, Z.-N. Weishengwuxue Tongbao 2007, 34, 212-215.
(24) Zhu, F.; Wu, X.-Y.; Lin, Y.-C. Youji Huaxue 2002, 22, 817-826.
(25) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075-1091.
(26) Devant, R. M. Kontakte 1992, 11-28.
(27) Merrill, A. H.; Sweeley, C. C. In Biochemistry of Lipids, Lipoproteins and Membranes; Vance, D. E., Vance, J., Eds.; Elsevier: Amersterdam, 1996; Vol. 31, pp 309-339.
(28) Kanfer, J. N.; Hakomori, S. Handbook of Lipid Research, Vol. 3 Sphingolipid Biochermistry; Hanahan, D. J., Ed..; Plenum Press: New York 1983.
(29) Advances in Lipid Research: Sphingolipids and Their Metabolites, Vol. 25 \& 26; Bell, R. M.; Hannun, Y. A.; Merrill, Jr. A. H., Eds.; Academic Press: Orlando FL, 1993.
(30) Kiso, M.; Nakamura, A.; Tomita, Y.; Hasegawa, A. Carbohydr. Res. 1986, 158, 101-111.
(31) Schmidt, R. R.; Zimmermann, P. Tetrahedron Lett. 1986, 27, 481-484.
(32) Zimmermann, P.; Schmidt, R. R. Liebigs. Ann. Chem. 1988, 663-667.
(33) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
(34) Bernet, B.; Vasella, A. Tetrahedron Lett. 1983, 24, 5491-5494
(35) Julia, R.; Herzig,T.; Bernet, B.; Vasella, A. Helv. Chim. Acta 1986, 69, 368-373.
(36) Roush, W. R.; Adam, M. A. J. Org. Chem. 1985, 50, 3752-3757.
(37) Nicolaou, K. C.; Caulfield, T.; Kataoka, H.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 7910-7912.
(38) Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64-77.
(39) Herold, P. Helv. Chim. Acta 1988, 71, 354-362.
(40) Sakai, N.; Ohfune, Y. J. Am. Chem. Soc. 1992, 114, 998-1010.
(41) Shoji, J.; Sakazaki, R.; Wakisaka, Y.; Koizumi, K.; Mayama, M.; Matsuura, S. J. Antibiot. 1975, 28, 122-125.
(42) Sakai, N.; Ohfune, Y. Tetrahedron Lett. 1990, 31, 3183-3186.
(43) Ohfune, Y.: Kurokawa, N. Tetrahedron Lett. 1984, 25, 1586-1590.
(44) Ohfune, Y.: Kurokawa, N. Tetrahedron Lett. 1984, 25, 1071-1074.
(45) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870-876.
(46) Sakai, N.; Ohfune, Y. Tetrahedron Lett. 1990, 31, 4151-4154.
(47) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361-2364.
(48) Miyashita, M.; Suzuki, T.; Yoshikoshi, A. Tetrahedron Lett. 1987, 28, 4293-4296.
(49) Koskinen, A. M. P.; Koskinen, P. M. Tetrahedron Lett. 1993, 34, 6765-6768.
(50) Paterson, I.; Yeung, K. S.; Smaill, J. B. Synlett 1993, 774-776.
(51) Vuljanic, T.; Kihleberg, J.; Somfai, P. J. Org. Chem. 1998, 63, 279-286.
(52) Nahm, S.; Wienreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
(53) Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
(54) Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin. Trans. 1 2001, 21362157.
(55) Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96, 1825-1872.
(56) Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149-164.
(57) Restorp, P.; Somfai, P. Org. Lett. 2005, 7, 893-895.
(58) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503-7509.
(59) Vicario, J. L.; Rodriguez, D. B.; Carrillo, L.; Reyes, E. Org. Lett. 2004, 6, 31713174.
(60) Hulme, A. N.; Curley, K. S. J. Chem. Soc., Perkin. Trans. 1 2002, 1083-1091.
(61) Hulme, A. N.; Montgomery, C. H.; Henderson, D. K. J. Chem. Soc., Perkin. Trans. 1 2000, 1837-1841.
(62) Hulme, A. N.; Montgomery, C. H. Tetrahedron Lett. 2003, 44, 7649-7653.
(63) Fuhry, M. A. M.; Holmes, A. B.; Marshall, D. R. J. Chem. Soc., Perkin. Trans. I 1985, 2743-2746.
(64) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Canut, III, C.; Teyton, L.; Bendelac, A.; Savage, P. B. J. Am. Chem. Soc. 2004, 126, 13602-13603.
(65) Paz, M. M.; Sardina, F. J. J. Org. Chem. 1988, 53, 6990-6995.
(66) Krysan, D. J.; Rockway, T. W.; Haight, A. R. Tetrahedron: Asymmetry 1994,5, 625-632.
(67) Reetz, M. T.; Strack, T. J.; Mutulis, F.; Goddard, R. Tetrahedron Lett. 1996, 37, 9293-9296.
(68) Jeon, J.; Shin, M.; Yoo, J. W.; Oh, J. S.; Bae, J. G.; Jung, S. H.; Kim, Y. G. Tetrahedron Lett. 2007, 48, 1105-1108.
(69) Alvarez-Ibarra, C.; Arias, S.; Bañón, G.; Fernández, M. J.; Rodríguez, M.; Sinisterra, V. J. Chem. Soc., Chem. Commun. 1987, 19, 1509-1511.
(70) Walsh, P. J.; Bennani, Y. L.; Sharpless, K. B. Tetrahedron Lett. 1993, 34, 55455548.
(71) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976.
(72) Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464465
(73) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.; Parker, D. J. Org. Chem. 1984, 49, 3928-3938.
(74) Liu, D.-G.; Lin, G.-Q. Tetrahedron Lett. 1999, 40, 337-340.
(75) Payne, G. B. J. Org. Chem. 1962, 27, 3819-3822.
(76) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhong, X.-L. J. Org. Chem. 1992, 57, 2768-2771.
(77) Hayakawa, H.; Okada, N.; Miyazawa, M.; Miyashita, M. Tetrahedron Lett. 1999, 40, 4589-4592.
(78) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003, 5, 1789-1791.
(79) Jung, M. E.; Jung, Y. H. Synlett 1995, 563-564.
(80) Masaki, H.; Maeyama, J.; Kamada, K.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. J. Am. Chem. Soc. 2000, 122, 5216-5217.
(81) Jung, M. E.; Jung, Y. H. Tetrahedron Lett. 1989, 30, 6637-6640.
(82) Marotta, E.; Micheloni, L. M.; Scardovi, N.; Righi, P. Org. Lett. 2001, 3, 727729.
(83) Piancatelli, G.; Margherita, R.; De Mico, A.; Parlanti, L.; Vescovi, A. J. Org. Chem. 1997, 62, 6974-6977.
(84) Tietze, L. Chem. Rev. 1996, 96, 115-136.
(85) Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574-8583.
(86) Olofsson, B.; Khamrai, U.; Somfai, P. Org. Lett. 2000, 2, 4087-4089.
(87) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987, 109, 3792-3794.
(88) Pandey, S. K.; Kandula, S-R. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 58775879.
(89) Cha, J. K.; Kim, N.-S. Chem. Rev. 1995, 95, 1761-1795.
(90) Bonini, C.; Righi, G. Tetrahedron 2002, 58, 4981-5021.
(91) Yamada, T.; Narasaka, K. Chem. Lett. 1986, 131-134.
(92) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.
(93) Kilian, M. Chem. Soc. Rev. 2003, 33, 166-174.
(94) Nilov, D.; Reiser, O. Adv. Synth. Catal. 2002, 344, 1169-1173.
(95) O’Brien, P. Angew. Chem. Int. Ed. 1999, 38, 326-329.
(96) Donohoe, T. J.; Johnson, P. D.; Helliwell, J.; Keenan, M. Chem. Commun. 2001, 2078-2079.
(97) Donohoe, T. J.; Johnson, P. D.; Pye, R. J.; Keenan, M. Org. Lett. 2004, 6, 25832585.
(98) Raghavan, S.; Reddy, S. R. J. Org. Chem. 2002, 68, 5754-5757.
(99) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 2687-2688.
(100) Pummerer, R. Chem. Ber. 1909, 42, 2282-2291.
(101) Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557-1560.
(102) Barluenga, J.; Baragaña, B.; Concellón, J. M. J. Org. Chem. 1995, 60, 6696-6699.
(103) Barluenga, J.; Baragaña, B.; Alonso, A.; Concellón, J. M. J. Chem. Soc., Chem. Соттии. 1994, 969-970.
(104) Concellón, J. M.; Riego, E.; Rodríguez-Solla, H.; Plutín, A. M. J. Org. Chem. 2001, 66, 8661-8665.
(105) Yoda, H.; Uemura, T.; Takabe, K. Tetrahedron Lett. 2003, 44, 977-979.
(106) Lay, L.; Nicotra, F.; Paganini, A.; Pangrazio, C.; Panza, L. Tetrahedron Lett. 1993, 34, 4555-4558.
(107) Yoda, H.; Yamazaki, H.; Kawauchi, M.; Takave, K. Tetrahedron: Asymmetry 1995, 6, 2669-2672.

Chapter 2 Determination of Absolute Configuration at C4 and Relative Configuration for C8-C14 in (+)-Zwittermicin A: Proposed Configuration of (+)-Zwittermicin A

2.1. Introduction

Zwittermicin A (1) is an asymmetric molecule with 7 stereocenters and therefore has 128 possible stereoisomers. This meant that initial work be directed toward determining the absolute configuration of $\mathbf{1}$ or at least reducing the number of possible isomers that would need to be synthesized. Clardy and coworkers had determined the relative stereochemistry for the $\mathrm{C} 8-\mathrm{C} 10$ portion of 1 A by means of degradation in 1 N sodium hydroxide solution to the cyclic lactam 7 and subsequent analysis of nOe analysis (Scheme 2.1). ${ }^{1}$ This reduced the number of possible isomers to 32 .

(+)-Zwittermicin A (1)

7

Scheme 2.1: Degradation of Zwittermicin A.

With the C1-C5 portion of $\mathbf{1}$ having structural similarity to the known compound (-)-albizziin, ${ }^{2}$ it was likely that the configuration of the C 4 stereocenter in $\mathbf{1}$ could be determined using Marfey's ${ }^{3,4}$ analysis. Symmetry within the C9-C15 portion of $\mathbf{1}$ led to the possibility of using pair-wise ${ }^{13} \mathrm{C}$ NMR chemical shift difference analysis ${ }^{5-8}$ of model
compounds with the natural product as a means for determining the relative stereochemistry within this portion of the molecule.

A tentative configuration of $\mathbf{1}$ would arise from the above analysis. Verification of the configuration of $\mathbf{1}$ would be obtained by a completion of the total synthesis of the natural product and comparison with an authentic sample (provided as a courtesy, by D. Manker).

2.1.1. Marfey's Analysis

Marfey's analysis is a technique developed for determination of absolute configurations of α-amino acids. ${ }^{3}$ In practice the technique utilizes an $\mathrm{S}_{N} \mathrm{Ar}$ coupling of an amino acid with a known chiral auxiliary, e.g. 5-fluoro-2,4-dinitrophenyl-Lalaninamide (L-FDAA) to form a single diastereomer which is then analyzed by HPLC analysis on a C_{18} column. Comparison of the retention times of the diastereomers with standards prepared from both the D - and L -amino acids gives the configuration of the amino acid. If only one enantiomeric form of the amino acid is available, then diastereomers can be generated by derivatization with both L- and D-FDAA. This works because enantiomeric pairs of diastereomers behave identically on HPLC and therefore a L-FDAA derivative of a D-amino acid has the same retention time as a D-FDAA derivative of a L-amino acid. This method is sensitive and works for both primary and secondary amines.

2.1.2. Pair-wise ${ }^{13} \mathbf{C}$ NMR Chemical Shift Difference Analysis

Pair-wise ${ }^{13} \mathrm{C}$ NMR chemical shift difference analysis involves comparing the ${ }^{13} \mathrm{C}$ chemicals shifts of a known compound with those of model compounds representing all the possible relative configurations of the unknown compound. ${ }^{5}$ The correct relative configuration is that which matches most closely however, the reliability is somewhat dependent upon the similarity of constitution of the models with the unknown. This technique has been useful when other methods such as chemical degradation, nOe assignment ${ }^{9-10}$ or J-based analysis ${ }^{10-12}$ are inappropriate. Compounds having more than three or four stereocenters require preparation of a substantial number of models. Additionally, if the compound is complex, the synthesis of these models is not trivial. For these reasons it is desirable to reduce the number or complexity of models needed for analysis by one or more of the above mention methods such as J-based analysis. In the case of zwittermicin A, Clardy and coworkers had already determined the relative configuration of the C8-C10 portion of $\mathbf{1}$ leaving only configurational assignment of the remaining relative stereochemistry for the $\mathrm{C} 10-\mathrm{C} 14$ portion and the amino acid. ${ }^{1}$ The inherent symmetry in the C9-C15 portion of $\mathbf{1}$ further reduces complexity and pair-wise comparison of this portion of the molecule would only require with only six models. In addition, the synthetic route to these six models might also be adaptable to the total synthesis of zwittermicin A.

2.2. Determination of C4 Configuration in (+)-Zwittermicin A by Marfey's Analysis

(-)-Albizziin (214) was subjected to hydrolysis conditions $\left(6 \mathrm{~N} \mathrm{HCl}, 110{ }^{\circ} \mathrm{C}, 24\right.$
h) (Scheme 2.2). The reaction mixture was concentrated to dryness then resuspended in a
small amount of water, split into two portions and derivatized separately with L-FDAA (215) and D-FDAA (216) in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to give the two derivatives 217 and 218 respectively (Scheme 2.2).

215

Scheme 2.2: Marfey's analysis standards.

Authentic zwittermicin A was hydrolyzed $\left(6 \mathrm{M} \mathrm{HCl}, 110^{\circ} \mathrm{C}\right)$ and treated in a similar manner with L-FDAA to give compound 219 (Scheme 2.3).

2) L-Marfey's reagent, acetone, $80^{\circ} \mathrm{C}, 10 \mathrm{~min}$
3) 1 M HCl

Scheme 2.3: Hydrolysis and derivatization of Zwittermicin A.

Analysis of the derivatization products by C_{18} HPLC-MS ($0.40 \mathrm{~mL} / \mathrm{min} ; 1: 9$ $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O} \mathrm{w} / 0.1 \%$ formic acid to 7:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ w/ 0.1% formic acid; 30 min) showed two peaks with UV absorption at 340 nm and a mass corresponding to the 217 and 218. The peaks corresponding to 217 and 218 eluted at 14.15 and 14.75 minutes respectively. Analysis of $\mathbf{2 1 9}$ using the same conditions gave a retention time and mass corresponding to that of $\mathbf{2 1 7}$ with a co-injection of $\mathbf{2 1 7}$ and $\mathbf{2 1 9}$ showing a single peak. Therefore, the configuration 219 and C 4 in $\mathbf{1}$ are S.

2.3. Determination of C10-C14 Relative Configuration in (+)-Zwittermicin A

The pseudo-symmetry in the C9-C15 portion of $\mathbf{1}$ meant that only six models,
220-225, would be necessary to represent all the possible diastereomers (Figure 2.1). Models 220 and 224 are meso while models 221 and 225 are C_{2} symmetric. Models 222 and $\mathbf{2 2 3}$ are C_{1} diastereomers and therefore each can represent two possible zwittermicin

A diastereomers for pair-wise analysis. Models 222b and 223b are identical to 222 and 223 but flipped end-for-end in order to compare with $\mathbf{1}$. All of the models have been numbered according to the numbering scheme of $\mathbf{1}$. Synthesis of these models allowed comparison with $\mathbf{1}$ and determination of the relative stereochemistry of the C10-C14 portion of 1 .

220

222

223

222b

224

Figure 2.1: Model Compounds for NMR Comparisons.

2.3.1. Retrosynthesis

The retrosynthetic analysis for the model compounds 220-225 (Scheme 2.4) reveal key considerations including an ability to generate all possible configurations as well as the ability to adapt the synthesis to a total synthesis of $\mathbf{1}$. The synthesis of the
models was envisioned starting from L -serine. Protected L -serine ${ }^{13}$ derived compounds 226 and 227 would be elaborated to epoxides 228 and 229 respectively using the method of Concellón. ${ }^{14,15}$ While L-serine set the absolute configuration at C10 epoxides 228 and 229 made available both configurations at C11. Chain extension of epoxides $\mathbf{2 2 8}$ and $\mathbf{2 2 9}$ using an anion derived from a protected propargyl alcohol ${ }^{16}$ would give alkynes $\mathbf{2 3 0}$ and 231 respectively. Control of the configuration at C 13 and C 14 would now be determined by E versus Z selectivity of alkyne reduction and subsequent epoxidation of the resultant alkenes. Alkyne $\mathbf{2 3 0}$ would be reduced to the E alkene and epoxidized to give a mixture of epoxides 232. These epoxides would be separated and subjected to nitrogen insertion using Miyashita's boron-directed azide opening of epoxy alcohols to give compounds 233 and 234. ${ }^{17,18}$ Deprotection of $\mathbf{2 3 3}$ and 234 would provide models 220 and 221 conversely. Alkyne 231 would be selectively reduced to either alkene $\mathbf{2 3 5}$ or $\mathbf{2 3 6}$. Epoxidation of alkenes $\mathbf{2 3 5}$ and $\mathbf{2 3 6}$ would give two mixtures of epoxides $\mathbf{2 3 7}$ and $\mathbf{2 3 8}$. Separation of these mixtures of epoxides, nitrogen insertion as before and deprotection would provide models 222 through 225.

Scheme 2.4: Retrosynthetic analysis of model compounds.

2.3.2. Synthesis of Model Compounds

Synthesis of known compounds 226 and 227 began with L-serine and used a combination of methods from Dondoni, ${ }^{13}$ Hulme, ${ }^{19}$ and Laieb ${ }^{20}$ (Scheme 2.5). Aldehyde 226 was elaborated to compound 228 using the method of Concellón (Scheme 2.6). ${ }^{14}$ Iodomethethyl lithium addition to the aldehyde followed by in situ intra-molecular
displacement of iodide gave epoxide 228. Initial anion addition followed Felkin-Ann transition state ${ }^{21}$ giving anti addition epoxide 228 (94% de by NMR). Treatment of epoxide $\mathbf{2 2 8}$ with TBAF gave known alcohol 242, ${ }^{14}$ thereby verifing the relative stereochemistry for 228.

Scheme 2.5: Synthesis of aldehyde 226 and ester 227.

Carbon chain extension was initially accomplished by addition of lithiated PMB protected propargyl alcohol ${ }^{22}$ to epoxide 228 to give alkyne 243 (Scheme 2.6). Removal of the TBDPS group (TBAF, THF, rt) gave diol 244, which was protected as the acetonide (dimethoxypropane, acetone, CSA, reflux).

Scheme 2.6: Synthesis of epoxide 228 and carbon chain extension.

Removal of the PMB protecting group from alkyne $\mathbf{2 4 5}$ proved to be more difficult than expected. Most standard removal techniques ${ }^{23}$ resulted in removal of the benzyls from the nitrogen (Table 2.1). Although some reactions gave respectable yields, the procedures looked irreproducible. Because of these difficulties the use of PMB as a protecting group for the propargyl alcohol was abandoned. Use of a TBS protected propargyl alcohol proved to be more effective. ${ }^{24}$ Scheme 2.7 shows the revised carbon chain extension sequence. The propargyl anion addition formed $\mathbf{2 3 0}$ with $\mathbf{7 1 \%}$ yield. Removal of the silyl protecting groups (TBAF, THF, $-20^{\circ} \mathrm{C}$) gave triol 247 in 97% yield. Reprotection gave propargyl alcohol 246. The configuration at stereocenters C13 and C14 would now be determined by stereoselectivity of the alkyne reduction and subsequent epoxidation. Reduction of this alkyne (Red-Al, $\left.\mathrm{Et}_{2} \mathrm{O}\right)^{25}$ gave alkene 249 in 78\% yield.

Table 2.1: Removal of PMB protecting group

Entry \#	Solvent	Reagents	Rxn. Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Notes	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	5 eq DDQ	24	300	-NBn	0
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	1.0 eq DDQ	24	40		7
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 2.5 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N} ; 3$ 3) TBAF	24	90		trace
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) BSTFA; 2) $\mathrm{Et}_{3} \mathrm{~N} ; 3$) TBAF	24	120	no rxn.	0
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 2.5 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N} ; 3$) TBAF	24	45		60
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 2.2 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N} ;$ 3) TBAF	0 to 24	45		50
7	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3 eq $\mathrm{MgBr}_{2} \bullet \mathrm{Et}_{2} \mathrm{O}$	24	180	no rxn.	0
8	DMF	$3 \mathrm{eq} \mathrm{MgBr}_{2} \bullet \mathrm{Et}_{2} \mathrm{O}$	24	180	no rxn.	0
9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 2.3 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N} ; 3$) $\mathrm{HF} / \mathrm{pyr}$	24	60		42
10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 2.2 eq TMSOTf; 2)	24	60	dec	0
11	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 1.2 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N} ; 3$) $\mathrm{HF} /$ pyr	24	60		70
12	$\mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$	3 eq CAN	0	60	-NBn	0
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1) 1.1 eq TMSOTf; 2) $\mathrm{Et}_{3} \mathrm{~N}$; 3) HF/pyr	24	60	dec	0

71\%

Scheme 2.7: Synthesis of alkene 249.

Control of the epoxidation of alkene 249 proved to be difficult. Use of SAE 26
gave low yields ($<44 \%$) with poor diastereoselectivity (entries 1, 2, 4, and 5, Table 2.2) while m-CPBA ${ }^{27}$ gave higher yields (59% to 80%) in very low diastereoselectivity (entries 3, 6, and 7). The epoxides generated were unstable and chromatography had to be carried out on silica saturated with triethylamine. This epoxide instability probably resulted in the variable ratios and yields (Table 2.2) where reactions using m-CPBA at low temp or very short times (entries 3 and 7) showed higher yields with ratios favoring epoxide 250. Longer times (entry 6) gave a lower yield and only a 1:1 ratio. Compounds 250 and 251 were not separable by chromatography.

Table 2.2: Epoxidation of 249.

Entry $\#$	Reagent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Ratio $(\mathbf{2 5 0}: \mathbf{2 5 1})$	Recovered Starting Material $(\%)$	Yield $(\%)$
1	SAE (+DET)	-20	16	$1.0: 5.9$	36	44
2	SAE (-DET)	-20	16	na	>90	no rxn
3	m-CPBA	-20	1.25	$1.7: 1.0$	0	80
4	SAE (+DET)	-20 to -10	63	$1.0: 5.0$	38	29
5	SAE $(-D E T)$	-20 to -10	63	$1.0: 3.0$	38	14
6	m-CPBA	0	1	$1.0: 1.0$	0	59
7	m-CPBA	rt	4 min	$1.8: 1.0$	0	69

Separation of the diastereomers was achieved after protection (TBSCl, imidazole, DMF) to give $\mathbf{2 5 2}$ and $\mathbf{2 5 3}$ (Scheme 2.8).

Scheme 2.8: Synthesis of separable epoxides 252 and 253.

Compound 252 was deprotected (TBAF, THF) to give alcohol 250 (Scheme 2.9), which was subjected to Miyashita's boron-directed azide opening of this epoxide $\left(\mathrm{B}(\mathrm{OMe})_{3}, \mathrm{NaN}_{3}, \mathrm{DMF}\right)$ to give compounds $\mathbf{2 3 3}$ and $\mathbf{2 5 4}$ in 85% yield. The ratio of the desired azide $\mathbf{2 3 3}$ to undesired $\mathbf{2 5 4}$ was 3.6 to 1 respectively, which was comparable to
the ratios seen by Miyashita. ${ }^{17}$ Global deprotection of $\mathbf{2 3 3}$ gave model $\mathbf{2 2 0}$ as the hydrochloride salt in 69% yield.

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 16 h

233
2) $\mathrm{TMSCI}, 3 \mathrm{~h}$
3) dry, redissolve $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 14 h 69\%

Scheme 2.9: Synthesis of model 220.

Model 221 was synthesized in a similar manner starting with deprotection of azide 253 (TBAF, THF) (Scheme 2.10). Azide opening provided desired azide 234 and unwanted azide $\mathbf{2 5 5}$ in 9:1 ratio, respectively, with an overall yield of 74\%. Global deprotection of $\mathbf{2 3 4}$ gave model $\mathbf{2 2 1}$ in 88% yield. Assignment of the relative stereochemistry across the CH_{2} group in the case of $\mathbf{2 2 0}$ and 221, and thereby correlation of the intermediates back to the respective epoxides, was made based on NMR analysis.
${ }^{1} \mathrm{H}$ NMR chemical shifts of the internal CH_{2} protons in meso $\mathbf{2 2 0}$ showed diastereotopicity and magnetic inequivalence while the C_{2} symmetric 221 showed

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 16 h
2) $\mathrm{TMSCl}, 3 \mathrm{~h}$
3) dry, redissolve $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 14 h 88\%

Scheme 2.10: Synthesis of model 221.

Figure 2.2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compounds 220 and 221.
enantiotopicity and magnetic inequivalence (protons furthest up field in Figure 2.2).

Further verification of stereochemical assignments of $\mathbf{2 2 0}$ and $\mathbf{2 2 1}$ were made as shown in Scheme 2.11. Azide $\mathbf{2 3 3}$ was treated with acetic acid methanol to give tetraol $\mathbf{2 5 7}$ (95\% yield), selectively protected with TBDPSCl (76\% yield) and an internal acetonide installed (97% yield) to give $\mathbf{2 5 8}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5 8}$ showed the expected large diaxial vicinal couplings ($\delta 4.14$, ddd, $J 10.4,8.0,2.4 \mathrm{~Hz} ; \delta 3.83$, ddd, $J=$ $11.6,6.4,2.4 \mathrm{~Hz}$) for a syn-4,6-disubstituted 1,3-dioxane and large ${ }^{13} \mathrm{C}$ chemical shift differences for the gem CH_{3} signals of the isopropylidene group ($\left.\delta 29.9, \mathrm{q} ; 19.7, \mathrm{q}\right) .{ }^{28}$

Scheme 2.11: Synthesis of internal acetonide 258.

The remaining four models were synthesized from serine-derived ester $\mathbf{2 2 7}$ starting with the synthesis of epoxide 229 using the method of Concellón ${ }^{14}$ as shown in Scheme 2.12. Addition of chloromethyl lithium to $\mathbf{2 2 7}$ at $-78^{\circ} \mathrm{C}$ gave ketone $\mathbf{2 5 9}$ which was reduced at $-91^{\circ} \mathrm{C}$ with LAH to give crystalline alcohol $\mathbf{2 6 0}$ in 80% yield over two steps. Epoxide formation (n-BuLi, THF, $-78^{\circ} \mathrm{C}$ to rt) gave 229 in 91% yield.

Scheme 2.12: Synthesis of epoxide 229.

Epoxide 229 was treated with O-TBS-protected propargyl lithium to form 261 with 80% yield (Scheme 2.13). Removal of the silyl protecting groups (TBAF, THF, -20 ${ }^{\circ} \mathrm{C}$) gave triol 262 (82% yield) and reprotection gave propargyl alcohol 231. Reduction of alcohol $\mathbf{2 3 1}$ using Red-Al gave the E-alkene $\mathbf{2 3 5}$ in 95% yield while reduction using Lindlar's catalyst ${ }^{29}$ gave Z-alkene 236 in 99% yield.

$231 \xrightarrow[\mathrm{H}_{2}, 1 \mathrm{~atm}, 20 \mathrm{~min}]{\text { Lindlars }}$ 99\%

Scheme 2.13: Synthesis of allylic alcohols 235 and 236.

Epoxidation of allylic alcohol 235 was investigated under various conditions (Table 2.3). ${ }^{30-32}$ None of the reagents gave good yields. This was most likely due to instability of the formed epoxides. The epoxides formed were also inseparable requiring that they be carried forward as mixture (Scheme 2.14).

Table 2.3: Epoxidation of 235.

Entry $\#$	Reagent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Ratio $(\mathbf{2 6 3}: \mathbf{2 6 4})$	Recovered Starting Material (\%)	Yield $(\%)$
1	m-CPBA	0	1	$7: 1$	0	35
2	m-CPBA	0	1	$7: 1$	0	34
3	w/NaHCO	m-CPBA	40	5 min	$2: 1$	37
4	MTO	rt	1	$1: 1$	24	31
5	VOacac	0	1	$1: 1$	10	14
6	dimethyldioxirane	0	1	na	0	11

Azide opening of the epoxide mixture was performed as before giving an inseparable mixture of compounds 265 through 268. Conversion to acetonides gave separable compounds $\mathbf{2 6 9}, \mathbf{2 7 0}, \mathbf{2 7 1}$, and $\mathbf{2 7 2}$ in a ratio of 10:1:40:8, respectively.

Scheme 2.14: Synthesis of azides 269 through 272.

Fortuitously compound 271 was crystalline and an X-ray of this compound assigned the relative stereochemistry (Figure 2.3).

Figure 2.3: X-ray crystal structure of compound 271.

Deprotection of compounds $\mathbf{2 6 9}$ and $\mathbf{2 7 1}$ provided models $\mathbf{2 2 2}$ and $\mathbf{2 2 3}$
respectively (Scheme 2.15).

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 5: 1 \mathrm{EtOH} /$ hexane, rt 17 h
2) dry, redissolve $\mathrm{MeOH}, \mathrm{TMSCI}, 1 \mathrm{~h}$
3) dry, redissolve $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 18 h 81\%

222

271

99\%

223

Scheme 2.15: Synthesis of models 222 and 223.

Epoxidation of alcohol $\mathbf{2 3 6}$ was evaluated with two different epoxidation reagents with both showing diastereoselectivity favoring 273 with a syn relationship across the CH_{2} group (Table 2.4).

Table 2.4: Epoxidation of 236.

Entry \#	Reagent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Ratio $(\mathbf{2 7 3 : 2 7 4)}$	Recovered Starting Material (\%)	Yield (\%)
1	m-CPBA	0	0.66	$25: 1$	0	48
2	MTO	25	4	$1.8: 1$	22	24

In the case of m-CPBA there was almost no anti compound formed and yields were low as was seen previously. In order to obtain compound $\mathbf{2 7 4}$, MTO was required for epoxidation. Nitrogen insertion was again accomplished using Miyashita's method (Scheme 2.16). Miyashita found the regioselectivity for this reaction to be poor when using cis epoxides and this was the case for both epoxides $\mathbf{2 7 3}$ and 274 as was the case where desired products 275 and 277 showed diastereomeric ratios of 2:1. ${ }^{17}$

$(275: 276=1.9: 1)$

Scheme 2.16: Synthesis of azides 275 through 278.

Deprotection of compounds 275 and 277 provided models 224 and 225 respectively (Scheme 2.17).
$275 \xrightarrow{\text { 2) } \xrightarrow{\text { 2) } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt} 16 \mathrm{~h}}} \begin{aligned} & \text { 3) dry, redissolve } \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \text { rt } 14 \mathrm{~h}\end{aligned}$ 99\%

1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 15 h

277
2) $\mathrm{TMSCI}, 1 \mathrm{~h}$
3) dry, redissolve $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 14 h 99\%

224

Scheme 2.17: Synthesis of models 224 and 225.

Assignment of relative configuration for models $\mathbf{2 2 4}$ and $\mathbf{2 2 5}$ was again accomplished using analysis of the ${ }^{1} \mathrm{H}$ NMR. Compound 225 showed no anisotropy for
the enantiotopic CH_{2} protons while the corresponding ${ }^{1} \mathrm{H}$ NMR signals in 224 showed different chemical shifts.

2.3.3. Pair-wise ${ }^{13} \mathbf{C}$ NMR Chemical Shift Difference Analysis

Pair-wise ${ }^{13} \mathrm{C}$ NMR chemical shift comparisons of the model compounds with authentic Zwittermicin A were made at $50-100 \mathrm{mM}$ concentrations in $\mathrm{D}_{2} \mathrm{O}$ with 0.5% acetonitrile. ${ }^{33}$ An evaluation of the concentration dependence on ${ }^{13} \mathrm{C}$ NMR chemical shifts with model 224 showed little change from 50-250 mM (Figure 2.4).
$\Delta \delta(\delta c$ NMR at $53 \mathrm{mM}-\delta c$ NMR at x mM$)$

Figure 2.4: ${ }^{13} \mathrm{C}$ chemical shift dependence on concentration.

Pairwise comparisons of ${ }^{13} \mathrm{C}$ NMR chemical shifts of zwittermicin A with the model compounds are shown in Figure 2.5. Model 211 is the only compound with a close match to $\mathbf{1}$ for every carbon except C9, which is the point of difference between the model and 1.

223

Figure 2.5: Pairwise ${ }^{13} \mathrm{C}$ NMR NMR chemical shifts of models 220-225 with $\mathbf{1}$.

2.4. Configuration of (+)-Zwittermicin A

It has been assumed that the biosynthesis of $\mathbf{1}$ starts with L-serine with the assumption that the C14 configuration is also L . There was some concern as to the possibility of epimerization at the C 8 position due to the strongly basic conditions under which the degradation had been conducted. ${ }^{1}$ However, spontaneous conversion of $\mathbf{1}$ under neutral condition in $\mathrm{D}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}, 30\right.$ days $)$ to 7 that showed no deuterium exchange at H8. Since epimerization at C8 would require enolization and reprotonation, we may safely assume that 7 retains the C 8 configuration assigned to $\mathbf{1}$ by Clardy. ${ }^{1}$

In conclusion the configuration of zwittermicin A is $(4 S, 8 S, 9 R, 10 R, 11 R, 13 R, 14 S)$ based on the integrated approach using synthesis and pairwise comparisons with model compounds, Marfey's analysis, and published data. Figure 2.6 shows the tentatively proposed structure of zwittermicin A (279).

Figure 2.6: Tentatively proposed configuration of zwittermicin A (279).

2.5. Aknowledgments

This work is in part a reprint of published results: Rogers, E. W.; Molinski, T. F. Asymmetric Synthesis of Diastereomeric Diaminoheptanetetraols. A Proposal for the Configuration of (+)-Zwittermicin A. Org. Lett. 2007, 9, 437.

2.6. References

(1) He, H.; Silo-Suh, L. A.; Handelsman, J.; Clardy, J. Tetrahedron Lett. 1994, 35, 2499-2502.
(2) Denis, J-N.; Tchertchian, S.; Vallée, Y. Synth. Commun. 1997, 27, 2345-2350.
(3) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
(4) Fujii, K.; Shimoya, T.; Ikai, Y.; Oka, H.; Harada, K.-i. Tetrahedron Lett. 1998, 39, 2579-2582.
(5) Higashibayashi, S.; Czechtizky, W.; Kobayashi, Y.; Kishi, Y. J. Am. Chem. Soc. 2003, 125, 14379-14393.
(6) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Org. Lett. 2002, 4, 411-414.
(7) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177-2180.
(8) Lee, J.; Kobayashi, Y.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2181-2184.
(9) Kobayashi, M.; Aoki, S.; Kitagawa, I. Tetrahedron Lett. 1994, 35, 1243-1246.
(10) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. J. Org. Chem. 1999, 64, 866-876.
(11) Osorio, C.; Duque, C.; Fujimoto, Y. Phytochemistry 2000, 53, 97-101.
(12) Grabley, S.; Kretzschmar, G.; Mayer, M.; Philipps, S.; Thiericke, R.; Wink, J.; Zeeck, A. Liebigs Ann. Chem. 1993, 573-579.
(13) Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64-77.
(14) Concellón, J. M.; Riego, E.; Rodríguez-Solla, H.; Plutín, A. M. J. Org. Chem. 2001, 66, 8661-8665.
(15) Barluenga, J.; Baragaña, B.; Concellón, J. M. J. Org. Chem. 1995, 60, 6696-6699.
(16) Shindo, M.; Sugioka, T.; Umaba, Y.; Shishido, K. Tetrahedron Lett. 2004, 45, 8863-8866.
(17) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003, 5, 1789-1791.
(18) Hayakawa, H.; Okada, N.; Miyazawa, M.; Miyashita, M. Tetrahedron Lett. 1999, 40, 4589-4592.
(19) Hulme, A. N.; Montgomery, C. H.; Henderson, D. K. J. Chem. Soc., Perkin. Trans. 1 2000, 1837-1841.
(20) Laïb, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709-1713.
(21) Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
(22) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1997, 62, 4313-4320.
(23) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; $3^{\text {rd }}$ ed.; John Wiley \& Sons, Inc.: 1999.
(24) Agami, C.; Couty, F.; Mathieu, H.; Pilot, C. Tetrahedron Lett. 1999, 40, 45394542.
(25) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469-1478.
(26) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780.
(27) Zhao, K.; Wang, Y.; Billington, D. C. Tetrahedron: Asymmetry 2001, 12, 12111217.
(28) Rychnovsky, S. D.; Rogers, B.; Yang, G., J. Org. Chem. 1993, 58, 3511-3515.
(29) Fürstner, A.; Dierkes, T. Org. Lett. 2000, 2, 2463-2465.
(30) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6189-6190.
(31) Mihelich, E. D.; Daniels, K.; Eickhoff, D. J. J. Am. Chem. Soc. 1981, 103, 76907692.
(32) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847-2853.
(33) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.

Chapter 3 Synthesis of (-)-Zwittermicin A

3.1. Retrosynthesis

Synthesis of the proposed structure for proposed zwittermicin A (279) was envisioned as starting with 234, previously made for model synthesis (Scheme 3.1). Key considerations for this synthesis included the carbon-carbon bond forming step and control of stereochemistry as well as appropriate protecting groups that could be readily removed in the final deprotection. MOM protection ${ }^{1,2}$ for the secondary alcohol prior to carbon-carbon bond forming was envisioned as being suitable for the final global deprotection. Chain elongation was to be accomplished by $\mathrm{HWE}^{3,4}$ with dihydroxylation ${ }^{5}$ providing the cis-diol. Protection of the $c i s$-diol as an acetal ${ }^{6}$ would set the stage for eventual amide bond formation. Finally global deprotection using hydrogenation under acidic conditions would provide $\mathbf{2 7 9}$. Use of acidic conditions for the deprotection would serve the twofold purpose of removing acid labile protecting groups as well as preventing decomposition of zwittermicin A known to occur under basic conditions.

Scheme 3.1: Retrosynthetic analysis of 279.

3.2. Evaluation of Strategy Using Model Compound

The protecting group strategy for synthesis of $\mathbf{2 7 9}$ was evaluated on compound 233 in order to "scout" the synthetic route that would be used on 234 (Scheme 3.2). The primary hydroxyl in $\mathbf{2 3 3}$ was protected with a TBDPS 7 followed by $\mathrm{MOM}^{1,8}$ protection of the secondary hydroxyl and removal of the TBDPS group ${ }^{9}$ to give 287 in 86% overall yield.

Scheme 3.2: Synthesis of alcohol 287.

Attempts to oxidize alcohol $\mathbf{2 8 7}$ to aldehyde $\mathbf{2 8 9}$ were unsuccessful and significant byproducts from beta-elimination were observed (Table 3.1). ${ }^{10}$ In the case of the Swern oxidation reaction there was beta-elimination as one side product. Dess-Martin oxidation ${ }^{11-13}$ gave a mixture of aldehydes and attempts to purify this mixture by chromatography resulted in decomposition.

Table 3.1: Attempted oxidation of alcohol 287.

Entry $\#$	Reagent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (min)	Recovered 287 $(\%)$	Yield $(\%)$
1	Swern oxidation	-78	90	0	dec.
2	DMP $^{\mathrm{a}}$ w/pyridine	rt	90	0	dec.
3	DMP $^{\mathrm{a}}$ w/pyridine	rt	30	0	dec.

[^0]It was suspected that the MOM group was a factor in the decomposition of $\mathbf{2 8 8}$.
Consequently attempts were made to protect the secondary hydroxyl of $\mathbf{2 8 5}$ as a benzyl ether (Table 3.2). ${ }^{14-17}$

Table 3.2: Attempted protection of alcohol 285.

$\begin{gathered} \text { Entry } \\ \# \end{gathered}$	Reagent	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\begin{gathered} \hline \text { Recovered } 285 \\ (\%) \\ \hline \end{gathered}$	Yield (\%)
1	$\begin{gathered} \hline \mathrm{BnO}(\mathrm{CO}) \mathrm{Cl}, \\ \text { TMSOTf } \end{gathered}$	DCM	0 to rt	24	0	dec.
2	$\begin{gathered} \mathrm{BnO}(\mathrm{CO}) \mathrm{Cl}, \\ \text { TFMSA } \end{gathered}$	DCM	0 to rt	20	>90	0
3	$\begin{gathered} \mathrm{BnO}(\mathrm{CO}) \mathrm{Cl}, \\ \mathrm{BF}_{3} \bullet \mathrm{Et}_{2} \mathrm{O} \end{gathered}$	toluene	0 to rt	24	>95	0
4	$\mathrm{BnO}(\mathrm{CO}) \mathrm{Cl}, \mathrm{TfOH}$	toluene	-30 to 50	24	0	dec
5	$\mathrm{BnO}(\mathrm{CO}) \mathrm{Cl}, \mathrm{TfOH}$	cyclohexane/DCM	0 to rt	24	>90	0
6	$\mathrm{NaH}, \mathrm{BnBr}$,	DMF	0 to rt	72	>80	0
7	$\mathrm{NaH}, \mathrm{BnBr}, n-\mathrm{Bu}_{4} \mathrm{NI}$	DMF	0 to 50	72	~ 30	dec
8	n-BuLi, $\mathrm{BnBr}, n-$ $\mathrm{Bu}_{4} \mathrm{NI}$	THF	-20 to 50	24	>90	0
9	$\mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnBr}$	toluene	rt to 50	72	>80	0

Despite numerous attempts, benzylation of alcohol $\mathbf{2 8 5}$ gave no discrete product. Interchange of the TBDPS group in $\mathbf{2 8 5}$ with the smaller TBS group (Scheme 3.3) did not change the outcome of benzylation attempts (data not shown).

Scheme 3.3: Synthesis of alcohol 290.

To circumvent the problem of benzyl protection of the secondary hydroxyl the acetonide of $\mathbf{2 8 5}$ was removed with the intention of placing the benzyl on the primary hydroxyl and relocating the acetonide on the internal secondary hydroxyls. Fortunately, when removal of the acetonide was stopped before completion, a mixture of acetonides
was obtained that included the internal acetonide 292 (Scheme 3.4). Benzylation of 292 then proceeded smoothly and removal of the TBDPS group gave alcohol 294.

Scheme 3.4: Synthesis of alcohol 294.

Unfortunately attempted oxidation of alcohol 294 under Swern conditions gave only decomposition products. This result indicated that the problems with oxidation probably resided with the presence of the azido group. There are few examples of alphaazido aldehydes in the literature and therefore little guidance on compatibility with Swern conditions. ${ }^{19-22}$ Consequently it was necessary to convert the azido group to a more stable amine equivalent. Compound $\mathbf{2 8 7}$ was converted to the corresponding primary amine ${ }^{23}$ which was protected as an N, N-dibenzylamino group. ${ }^{24}$ Subsequent oxidation under Swern conditions smoothly gave aldehyde 297 in good yield (Scheme 3.5).

Scheme 3.5: Synthesis of aldehyde 297.

3.2.1. Synthesis of Aldehyde 303

Having a viable route to a stable aldehyde for carbon-carbon bond forming, work commenced on diol 234 having correct configuration for synthesis of 297. Conversion to primary alcohol $\mathbf{3 0 0}$ proceeded in excellent yield (Scheme 3.6).

Scheme 3.6: Synthesis of alcohol 300.

Synthesis of aldehyde $\mathbf{3 0 3}$ followed the same procedures as that used for synthesis of $\mathbf{2 9 7}$ (Scheme 3.7). Higher yields for the steps leading to aldehyde $\mathbf{3 0 3}$ were obtained which was attributed to optimization of conditions.

Scheme 3.7: Synthesis of aldehyde 303.

3.3. Evaluation of Final Synthetic Steps Using Model Compound

To evaluate the carbon-carbon bond forming and subsequent steps without committing valuable synthetic intermediates, it was decided to synthesize a representative model of aldehyde 303. Preparation of the model started with MOM protection of known alcohol $\mathbf{3 0 4}{ }^{25}$ followed by removal of the TBS group and Swern oxidation to give aldehyde $\mathbf{3 0 7}$ in 80% overall yield (Scheme 3.8). Both aldehydes $\mathbf{3 0 3}$ and $\mathbf{3 0 7}$ share similar features including MOM and N, N-dibenzyl protecting groups and are of the same absolute configuration.

Scheme 3.8: Synthesis of model aldehyde 307.

Scheme 3.9: Synthesis of acid 312.
Carbon-carbon bond forming using HWE with barium hydroxide ${ }^{26}$ as a mild base provided alkene 308 in 85% yield (Scheme 3.9). Dihydroxylation ${ }^{27}$ provided diols 309 and $\mathbf{3 1 0}$ in 62% yield. The ratio of the diols was 1:2.3. Literature precedent would imply that the undesired all syn configuration would be the major compound. ${ }^{28}$ In order to
verify this, the major compound was taken forward with the intention to eventually form a cyclic six-membered lactone. Installation of an acetonide gave ester 311 (68% yield) followed by conversion to acid $\mathbf{3 1 2}$ (98% yield). Fortunately acid $\mathbf{3 1 2}$ proved to be crystalline and an X-ray structure verified the relative configuration of this compound (Figure 3.1).

Figure 3.1: X-ray crystal structure of acid 312.

In attempts to reverse the diastereoselectivity of the dihydroxylation reaction, variation of conditions were explored however no improvement was seen without significant reduction of yield (Table 3.3). ${ }^{29-31}$

Failure of OsO_{4} mediated dihydroxylation undermined chain extension by HWE reaction. Addition of an enolate equivalent to aldehyde $\mathbf{3 0 7}$ seemed the next best step. Serine-derived aldehyde $\mathbf{3 0 7}$ was converted to methyl ester $\mathbf{3 1 3}$ and used to evaluate aldol addition with methyl benzyloxyacetate (88) (Scheme 3.10). ${ }^{32}$

Table 3.3: Dihydroxylation of alkene 308.

Entry $\#$	OsO_{4} equiv.	NMO equiv.	Conc. (M)	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Ratio $\mathbf{3 0 9}: 310$	Yield $(\%)$	Recovere $\mathrm{d} \mathbf{3 0 8}$ $(\%)$
1	0.15	2.3	0.2	$8: 1$ acetone: $\mathrm{H}_{2} \mathrm{O}$ 2:1 DCMM: $t-$	rt	18	$1.0: 2.3$	62	0
2	0.15	2.3	0.17	168	$1.0: 1.6$	40	0		
3	2.1	0	0.04	butanol	rt -butanol	rt	240	$1.7: 1.0$	6
4	0.25	2.3	0.2	DCM	rt	24	$1.0: 1.5$	38	10
5^{a}	1.2	0	0.18	acetone: $\mathrm{H}_{2} \mathrm{O}$	rt	48	$4.6: 1.0$	3	16
6^{a}	1.2	0	0.18	DCM	rt	48	$1.0: 2.1$	19	69
7	1.2	0	0.18	pyridine	rt	2.5	$1.7: 1.0$	2	0

${ }^{\mathrm{a}}$ Ratio based on NMR.

Diastereoselectivity was high (9:1) but overall yield was only 69%. Conversion to the acid 314 was straightforward with a yield of $95 \% .{ }^{33}$ Use of Evan's chiral glycolate equivalent ${ }^{34}$ (84) gave a better yield (85\%) and diastereoselectivity (47:1). Conversion of 315 to the acid was poor yielding (67\%) but has not been optimized. ${ }^{35}$

Scheme 3.10: Synthesis of acid 314.

To verify the configuration of the glycolate addition product, compound $\mathbf{3 1 3}$ was converted into the cyclic lactam $\mathbf{3 1 6}$ (Scheme 3.11). However the reaction was difficult, not optimized and no yield was calculated. The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants of known 316 matched literature values ${ }^{36}$ exactly. This verified the configuration of 313, 314 and $\mathbf{3 1 5}$.

Scheme 3.11: Synthesis of lactam 316.

The C1-C5 portion of $\mathbf{2 7 9}$ was synthesized from the naturally occurring amino acid (-)-albizziin (214) to give α-aminoamide (-)-319 (Scheme 3.12). Although both
compounds $\mathbf{3 1 7}$ and (-)-318 are known compounds, the synthesis of these proved to be difficult. Literature procedure for synthesis of (-)-318 called for use of ethyl chloroformate and triethylamine followed by treatment with concentrated ammonium hydroxide. ${ }^{37}$ This procedure gave poor yield that did not improve with minor modifications. Therefore the procedure was modified by substitution of isobutyl chloroformate and N -methylmorpholine (NMM) followed by treatment with 2 M ammonia in methanol which gave an acceptable yield of $48 \%{ }^{38}$ The Boc group was removed using TFA to give (-)-319 in 93\% yield (94\% ee by Marfey's analysis). ${ }^{39}$

Scheme 3.12: Synthesis of α-aminoamide (-)-319.

Acid 314 was coupled to amine (-)-319 using standard procedures ${ }^{40}$ to provide 320 in 83\% yield (Scheme 3.13).

a) EDCI, HOBt, DMF

b) $(-)-319$, TEA $0^{\circ} \mathrm{C}$ to rt, 2.5 h
83%

Scheme 3.13: Synthesis of amide 320.

Successful synthesis of $\mathbf{3 2 0}$ validated the sequence for satisfactory completion of 279.

3.4. Synthesis of Proposed (+)-Zwittermicin A Structure

Carbon chain extension of $\mathbf{3 0 3}$ followed the same procedure used for the model compound too give $\mathbf{3 2 1}$ in an acceptable yield of 77\% (Scheme 3.14) and excellent diastereoselectivity (24:1). Verification of correct configuration in $\mathbf{3 2 1}$ was obtained by repeating the aldol addition with methyl benzyloxyacetate to give $\mathbf{3 2 2}$ with the expected "Evans-syn" configuration. Yield for this reaction was very low (24\%), possibly a consequence of the use of aged boron triflate (~ 2 weeks), the maximum recommended time for usefulness of this reagent. ${ }^{41}$ Conversion of $\mathbf{3 2 1}$ and $\mathbf{3 2 2}$ to acid $\mathbf{3 2 3}$ proceeded smoothly in 96% and 81% yields respectively.

a) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{LiOH}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$

321
b) $\mathrm{Na}_{2} \mathrm{SO}_{3}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$ 96\%
$322 \xrightarrow[\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: \text { THF }(2: 3: 2)]{\mathrm{LiOH}, \mathrm{rt}, 4.5 \mathrm{~h}}$

81\%
Scheme 3.14: Synthesis of acid 323.

Coupling of $\mathbf{3 2 3}$ to (-)-319 gave amide $\mathbf{3 2 4}$ in 81% yield, which was globally deprotected to give the proposed zwittermicin A structure (-)-279 (Scheme 3.15). Purification of highly polar (-)-279 was not trivial. After development of HPLC conditions, (-)-279 was finally separated on a Synergi Hydro-RP column using very high aqueous mobile phase ($1.3 \% \mathrm{MeOH}$ and $0.1 \% \mathrm{TFA}$ in water).

$(-)-319$

a) TMSCI, dry MeOH $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5 \mathrm{~min}$
b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 1 h
c) dry, redissolve $1 \% \mathrm{HCl}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{rt} 1 \mathrm{~h}$

(-)-279
76\%

Scheme 3.15: Synthesis of proposed zwittermicin A structure (-)-279.

The ${ }^{1} \mathrm{H}$ NMR spectrum of (-)-279 closely resembled that of natural (+)zwittermicin A, however minor differences were obvious, especially corresponding to H 8 and H 3 . When the ${ }^{1} \mathrm{H}$ NMR spectrum of a 1:3 mixture of $(-)-\mathbf{2 7 9}$ and $(+)-\mathbf{1}$ was measured, two sets of spin systems were observed (Figure 3.2). In addition the ${ }^{13} \mathrm{C}$ NMR spectrum of (-)-279 also showed slight differences. Finally, the specific rotation of (-)-$279\left([\alpha]_{\mathrm{D}}-23.0^{\circ}, \mathrm{H}_{2} \mathrm{O}\right)$ was opposite in sign and of larger magnitude than values measured for natural $(+)-\mathbf{1}\left([\alpha]_{\mathrm{D}}=+8.1^{\circ}, \mathrm{H}_{2} \mathrm{O} ; 1 \mathrm{lit}{ }^{42}+8.9^{\circ}\right)$ under the same conditions.

Figure 3.2: ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of (a) natural (+)-1, (b) 1:3 mole ratio of synthetic (-)-279 and natural (+)-1, and (c) (-)-279. Concentrations $\sim 10 \mathrm{mM}$, no solvent suppression.

The primary difference in the ${ }^{1} \mathrm{H}$ spectrum occurs at H 8 , the proton α to the carbonyl linking the C7-C15 portion to the albizziin-derived portion of (-)-279. Since the relative configuration of $(+)-\mathbf{1}$ at $\mathrm{C} 8-\mathrm{C} 11, \mathrm{C} 13$ and C 14 were assigned unambiguously from pairwise ${ }^{13} \mathrm{C}$ NMR comparisons (see Chapter 2), it was speculated that perhaps the absolute configuration of the $\mathrm{C} 7-\mathrm{C} 15$ unit was incorrect. If so, the biosynthetic assumption that C14 retains the configuration of L -serine in $(+)-\mathbf{1}$ must also be in error. ${ }^{43}$ Due to the significant amount of work required to synthesize the C7-C15 portion of $(+) \mathbf{- 1}$, it was decided to prepare a zwittermicin A isomer by inverting only the configuration of the α-aminoamide at C5. If the hypothesis was correct this should lead to a synthesis of
(-)-1 with identical ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR properties to $(+)-\mathbf{1}$ but equal magnitude and opposite sign of the specific rotation $[\alpha]_{D}$.

3.5. Synthesis of (+)-319

The synthesis of (+)-319 began with preparation of $\mathbf{3 2 8}$ by literature methods (Scheme 3.16). ${ }^{44,45}$ Known compound $\mathbf{3 2 8}$ was converted to the amide (+)-318 in 62% yield and the Boc group removed to give (+)-319 in 99% yield.

a) $i-\mathrm{BuO}(\mathrm{CO}) \mathrm{Cl}, \mathrm{NMM}$
$\overrightarrow{\text { THF, }-10^{\circ} \mathrm{C}, 10 \mathrm{~min}}$

328
dry, redissolve in $2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, 5 \mathrm{~h}$
d) dry, $1 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}, 4.5 \mathrm{~h}$
62\%

Scheme 3.16: Synthesis of α-aminoamide (+)-319.

3.6. Synthesis of (-)-Zwittermicin A

Synthesis of (-)-1 began with coupling of $\mathbf{3 2 3}$ and (+)-319 to give $\mathbf{3 2 9}$ in 88%
yield (Scheme 3.17). Deprotection of $\mathbf{3 2 9}$ under conditions identical to those described in Scheme 3.15 gave (-)-1 in 75\% yield.

323

88\%

329
a) TMSCI, dry MeOH $\xrightarrow{0^{\circ} \mathrm{C} \text { to rt, } 5 \mathrm{~min}}$
c) dry, redissolve $1 \% \mathrm{HCl}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 1 h

75\%

Scheme 3.17: Synthesis of (-)-zwittermicin A [(-)-1].

The ${ }^{1} \mathrm{H}$ NMR of synthetic $(-)$ - $\mathbf{1}$ matched natural (+)- $\mathbf{1}$ exactly (Figure 3.3) and gave only one set of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR when admixed with $(+)-1$. Finally, the specific rotation of synthetic $(-)-\mathbf{1}\left([\alpha]_{D}-7.9^{\circ}, \mathrm{H}_{2} \mathrm{O}\right)$ was opposite in sign and equal in magnitude to natural $(+)$-zwittermicin $\mathrm{A}\left([\alpha]_{\mathrm{D}}=+8.1^{\circ}, \mathrm{H}_{2} \mathrm{O} ;\right.$ lit. $\left.+8.9^{\circ}\right)$.

Figure 3.3: ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of (a) natural (+)-1, (b) 1:2 mole ratio of synthetic $(-)-\mathbf{1}$ and natural $(+)-\mathbf{1}$, and (c) $(-)-\mathbf{1}$. Concentrations $\sim 10 \mathrm{mM}$, no solvent suppression.

3.7. Configuration of (+)-Zwittermicin A

The correct configuration for natural (+)-zwittermicin A is $(4 S, 8 R, 9 S, 10 S, 11 S, 13 S, 14 R)$ as depicted in Figure 3.4. The original proposed $14 S$ configuration was based on a biosynthetic assumption, although details of gene sequences or adenylation domains for the serine (Ser) loading have yet to appear. The $14 R$ configuration leads to a prediction with respect to loading of the Ser starter unit. One possibility is that D-serine is used as the starter unit. Precedence for unnatural D-amino acids as starter units is seen in the D-Ala residue of cylcosporin. ${ }^{46}$

$(+)-Z$ wittermicin A [(+)-1]
Figure 3.4: Revised configuration of natural zwittermicin A.

The other possibilities are that L-Ser is loaded and subjected to α-epimerization of the carrier protein-bound L-Ser, or the presence of a dual function condensation and epimerization domain. The latter two mechanisms have been observed in the biosynthesis of arthrofactin and enduracidin. ${ }^{47,48}$

3.8. Conclusion

The tentative structure of zwittermicin A [(-)-279] was found to not match the natural product (+)-1. Zwittermicin $\mathrm{A}[(+)-\mathbf{1}]$ was assigned completely by analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, stereotopicity, ${ }^{49}$ and total synthesis of its enantiomer $(-)-\mathbf{1} .{ }^{50}$ The synthesis entailed 22 steps from L-serine with an overall yield of 1.8%. The correct structure for $(+)$-zwittermicin A implies a 'D-serine' motif in the biosynthesis of the C13-C15 unit of (+)-1.

3.9. Acknowledgements

I thank Dr. Doralyn S. Dalisay for bioassay of the natural and synthetic compounds. This work is in part a reprint of published results: Rogers, E. W.; Dalisay, D. S.; Molinski, T. F. (+)-Zwittermicin A: Assignment of its Complete Configuration by

Total Synthesis of the Enantiomer and Implication of D-Serine in its Biosynthesis. Angew. Chem. Int. Ed. 2008, 47, 8086.

3.10. References

(1) Zhai, H.; Liu, P.; Luo, S.; Fang, F.; Zhao, M. Org. Lett. 2002, 4, 4385-4386.
(2) Narasaka, K.; Sakakura, T.; Uchimaru, T.; Guédin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954-2961.
(3) Vanderwal, C. D.; Vosburg, D. A.; Sorensen, E. J. Org. Lett. 2001, 3, 4307-4310.
(4) Etemad-Boullet, F.; Villemin, D.; Richard, M.; Moison, H.; Foucaud, A. Tetrahedron 1985, 41, 1259-1266.
(5) Cha, J. K.; Kim, N. Chem. Rev. 1995, 95, 1761-1795.
(6) Lipshutz, B. H.; Barton, J. C. J. Org. Chem. 1988, 53, 4495-4499.
(7) T. Laïb, J. Chastanet, J. Zhu, J. Org. Chem. 1998, 63, 1709-1713.
(8) Hu, T.-S.; Yu, Q.; Wu, Y.-L.; Wu, Y. J. Org. Chem. 2001, 66, 853-861.
(9) A. N. Hulme, C. H. Montgomery, D. K. Henderson, J. Chem. Soc., Perkin. Trans. 1 2000, 1837-1841.
(10) Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64-77.
(11) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156-4158.
(12) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
(13) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
(14) White, J. D.; Reddy, G. N.; Spessard, G. O. J. Am. Chem. Soc. 1988, 110, 16241626.
(15) Liu, D.-G.; Lin, G.-Q. Tetrahedron Lett. 1999, 40, 337-340.
(16) Kanai, K.; Sakamoto, I.; Ogawa, S.; Suami, T. Bull. Chem. Soc. Jpn. 1987, 60,

1529-1531.
(17) Tanabe, M.; Peters, R. H. Org. Synth. 1981, 60, 92-101.
(18) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-6191.
(19) Wang, Y.-F.; Dumas, D. P.; Wong, C.-H. Tetrahedron Lett. 1993, 34, 403-406.
(20) Dondoni, A.; Scherrmann, M.-C.; Marra, A.; Delépine, J.-L. J. Org. Chem. 1994, 59, 7517-7520.
(21) Sarda, P.; Olesker, A.; Lukacs, G. Tetrahedron 1997, 53, 5493-5500.
(22) Sato, K.; Akai, S.; Sugita, N.; Ohsawa, T.; Kogure, T.; Shoji, H.; Yoshimura, J. J. Org. Chem. 2005, 70, 7496-7504.
(23) Corey, E. J.; Nicolaou, K. C.; Balanson, R. D.; Machida, Y. Synthesis 1975, 590591.
(24) Yamazaki, N.; Kobayashi, C. J. Am. Chem. Soc. 1989, 111, 1396-1408.
(25) Stork, G.; Takahashi, T. J. Am. Chem. Soc. 1977, 99, 1275-1276.
(26) Alvarez-Ibarra, C.; Arias, S.; Bañón, G.; Fernández, M. J.; Rodríguez, M.; Sinisterra, V. J. Chem. Soc., Chem. Commun. 1987, 19, 1509-1511.
(27) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.; Teyton, L.; Bendelac, A.; Savage, P. B. J. Am. Chem. Soc. 2004, 126, 13602-13603.
(28) Hulme, A. N.; Montgomery, C. H. Tetrahedron Lett. 2003, 44, 7649-7653.
(29) Jeon, J.; Shin, M.; Yoo, J. W.; Oh, J. S.; Bae, J. G.; Jung, S. H.; Kim, Y. G. Tetrahedron Lett. 2007, 48, 1105-1108.
(30) Krysan, D. J.; Rockway, T. W.; Haight, A. R. Tetrahedron: Asymmetry 1994, 5, 625-632.
(31) Reetz, M. T.; Strack, T. J.; Mutulis, F.; Goddard, R. Tetrahedron Lett. 1996, 37, 9293-9296.
(32) Sugano, Y.; Naruto, S. Chem. Pharm. Bull. 1989, 37, 840-842.
(33) Vicario, J. L.; Rodriguez, M.; Badía, D.; Carrillo, L.; Reyes, E. Org. Lett. 2004, 6, 3171-3174.
(34) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83-87.
(35) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141-6144.
(36) Kim, Y. J.; Takatsuki, A.; Kogoshi, N.; Kitahara, T. Tetrahedron 1999, 55, 83538364.
(37) Denis, J-N.; Tchertchian, S.; Vallée, Y. Synth. Commun. 1997, 27, 2345.
(38) Kawamoto, I.; Endo, R.; Ishikawa, K.; Kojima, K.; Miyauchi, M.; Nakayama, E. Synlett 1995, 575-577.
(39) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
(40) Boger, D. L.; Yohannes, D.; Zhou, J.; Patane, M. A. J. Am. Chem. Soc. 1993, 115, 3420-3430.
(41) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099-3111.
(42) He, H.; Silo-Suh, L. A.; Handelsman, J.; Clardy, J. Tetrahedron Lett. 1994, 35, 2499-2502.
(43) Emmert, E. A.; Kilmowicz, A. K.; Thomas, M. G.; Handelsman, J. Appl. Environ. Microbiol. 2004, 70, 104-113.
(44) Teng, H.; He, Y.; Wu, L.; Su, J.; Feng, X.; Qiu, G.; Liang, S.; Hu, X. SynLett 2006, 6, 877-880.
(45) Ramana Rao, R. V.; Tantry, S. J.; Suresh Babu, V. V. Synth. Commun. 2006, 36, 2901-2912.
(46) Hoffmann, K.; Schneider-Scherzer, E.; Kleinkauf, H.; Zocher, R. J. Biol. Chem. 1994, 269, 12710-12714.
(47) Balibar, C. J.; Vaillancourt, F. H.; Walsh, C. T. Chem. Biol. 2005, 12, 1189-1200.
(48) Yin, X.; Zabriskie, T. M. Microbiology 2006, 152, 2969-2983.
(49) Rogers, E. W.; Molinski, T. F. Org. Lett. 2007, 9, 437-440.
(50) Rogers, E. W.; Dalisay, T. F.; Molinski, T. F. Angew. Chem. Int. Ed. 2008, 47, 8086-8089.

Chapter 4 Improved Synthesis of the C9-C15 Portion of (+)Zwittermicin A

4.1. Retrosynthesis

Synthesis of (-)-zwittermicin A required 22 steps with an overall yield of 1.8%.
The majority of the poor-yielding steps occurred in the early part of the scheme while the last 10 steps had an overall yield of 31%.

Scheme 4.1: Retrosynthetic analysis of (+)-zwittermicin A.

In order to improve the early sequence and prepare a common intermediate, but of the correct configuration for $(+) \mathbf{- 1}$, a new route to an advanced intermediate was desired that might lead to a more efficient synthesis of natural (+)-zwittermicin A (Scheme 4.1).

This new route again takes advantage of the symmetry in the C9-C15 portion of $(+)-\mathbf{1}$ and intercepts the previous route at compound (-)-302, but utilizes asymmetric reagent control of all four stereocenters rather than D-Ser from the chiral pool. Keys steps in this synthesis are de-symmetrization of C_{2} symmetric 334 to give compound $\mathbf{3 3 5}$. Diazide 334 is obtained by Miyashita's boron-mediated azide addition to $\mathbf{3 3 3}$. ${ }^{1}$ Epoxide $\mathbf{3 3 3}$ is a known compound generated by Sharpless asymmetric epoxidation (SAE) of diene 332. ${ }^{2}$ Compound $\mathbf{3 3 2}$ could be prepared by a literature procedure in two steps form propargyllic alcohols $\mathbf{3 3 0}$ and 331. ${ }^{2,3}$ The overall number of synthetic steps was expected to diminish from 22 in the first generation synthesis to 16 . Counting from the known compound $\mathbf{3 3 3}$, this second generation synthesis would give (-)-302 in only 11 steps. The major improvement in this route is the reduction in protecting group manipulation steps from 10 to five.

4.2. Synthesis of Known Compounds

The literature procedures of Hoffmann and Bailey were followed for the synthesis of compound $\mathbf{3 3 8}$ (Scheme 4.2). ${ }^{2,3}$ The initial step had low yield (35\%) relative to that reported in the literature (69%), and is made difficult by the fact that it is a desymmetrization reaction. The low yield observed for the second reaction was probably due to an exotherm experienced with the much larger scale used (25 g versus literature 7 g). Nevertheless, these lower yields are acceptable at the earliest phase of the synthesis.

Scheme 4.2: Synthesis of diol 338.

Attempts to follow various literature procedures for reduction of di-acetylene $\mathbf{3 3 8}$ to diene $\mathbf{3 3 2}$ gave very poor yields (Table 4.1). ${ }^{4-9}$ It should be noted that literature yield for this reaction is only $38 \%{ }^{2}$

Table 4.1: Reduction of di-acetylene 338.

Entry $\#$	Reagents	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield $(\%)$	Comments
1	Red-Al, THF	-20 to rt	14	dec.	decomposition
2	LAH, THF	-50 to rt	16	0	decomposition
3	$\mathrm{Li}, \mathrm{NH}_{3}(\mathrm{l})$	-78	2	na	mix of isomers
4	$\mathrm{Li}, \mathrm{NH}_{3}(\mathrm{l}), \mathrm{THF}$	-78	2.5	~ 15	mix of isomers
5	$\mathrm{Na}, \mathrm{NH}_{3}(\mathrm{l}), \mathrm{THF}$	-78	1	~ 10	mix of isomers
6	$\mathrm{Na}, \mathrm{NH}_{3}(\mathrm{l}), \mathrm{THF}, t-$	-78	0.5	11	$\sim 85 \%$ one
BuOH					

4.3. Epoxide Synthesis, Azide Opening and Desymmetrization

Epoxidation of diene $\mathbf{3 3 2}$ gave symmetrical crystalline diepoxide $\mathbf{3 3 3}$ in $\mathbf{4 0 \%}$
yield (Scheme 4.3). Boron mediated azide opening of $\mathbf{3 3 3}$ gave diazide $\mathbf{3 3 4}$ in a
respectable yield of $80 \% .^{10,11}$ Workup and purification of both the epoxide and the diazide were made difficult due to the fact that both compounds were water-soluble. In the case of the diazide 334, purification required both normal phase and reverse phase flash chromatography to obtain a mixture of diastereomers that was pure enough to be recrystallized. Recrystallization gave pure $\mathbf{3 3 4}$ but resulted in recovery of only 87% of the diazide. Initial desymmetrization of $\mathbf{3 3 4}$ was attempted using BnBr and $\mathrm{Ag}_{2} \mathrm{O}$ with the hope that a monoprotected benzyl alcohol would be formed; however, this reaction gave a mixture of compounds that proved to be inseparable. ${ }^{12}$

80\%, dr 10:1.1:1

Scheme 4.3: Synthesis of diazide 334.

With the failure of this reaction, another attempt at monoprotection/desymmetrization was made using TBDPSCl and imidazole; ${ }^{13-14}$ the yield of the desired monoprotected diazide 339 (65\%) was acceptable (Scheme 4.4). The doubly protected C_{2} symmetrical $\mathbf{3 4 0}$ was formed in 15% yield and essentially all of the unreacted starting material was also recovered. An acetonide protecting group was installed in $\mathbf{3 3 9}$ using dimethoxypropane and acetone with catalytic PPTS to give $\mathbf{3 4 1}$ in
30% yield. ${ }^{15}$ The low yield of the desired product 341 was not encouraging for this route. In addition, the TBDPS protecting group would require an additional deprotection step for the overall synthesis. It was therefore decided to try a desymmetrization that would provide a terminal protecting group that could be removed simultaneously with reduction of the azido groups.

Scheme 4.4: Synthesis of diazide 341.

Table 4.2 lists the results for various desymmetrization reactions by tritylation $(\mathrm{TrCl}) .{ }^{16}$ The optimum yield of 344 was with 0.8 equivalents of TrCl at $60{ }^{\circ} \mathrm{C}(69 \%$ yield). Symmetrical azide $\mathbf{3 4 5}$ could be converted to $\mathbf{3 4 4}$ by hydrolysis of one trityl group as shown in Scheme 4.5. ${ }^{17,18}$ Completely deprotected $\mathbf{3 3 4}$ was also recovered from the reaction but could not be purified sufficiently to provide an accurate yield.

Table 4.2: Desymmetrization of $\mathbf{3 3 4}$ using TrCl .

Entry \#	equivalents TrCl	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield 344 (\%)	Yield $^{\mathrm{a}} \mathbf{3 4 5}$ $(\%)$
1	1.0	50	4	54	19
2	0.8	rt	17	54	17
3	0.8	60	5	69	14

${ }^{\text {a }}$ Also recovered remaining unreacted 334 .

Scheme 4.5: Synthesis of diazide 344.

4.3.1. Interception of Previous Synthetic Route

Attempts were next made to achieve selective 1,3-diol protection with an acetonide group (Table 4.3). Optimum yield for synthesis of acetonide $\mathbf{3 4 6}$ was Entry 6 using 2.5 equivalents of 2-methoxypropene and catalyst PPTS (73% yield). ${ }^{19-22}$ The secondary hydroxyl in acetonide $\mathbf{3 4 6}$ was protected with a MOM group to give $\mathbf{3 4 9}$ in 90% yield (Scheme 4.6). ${ }^{23,24}$ Conversion of $\mathbf{3 4 9}$ to amine (-)-301 was effected with Pd / C and H_{2} in trifluoroethanol followed by addition of TFA and further hydrogenation. ${ }^{25}$

Table 4.3: Synthesis of acetonide 346.

Entry $\#$	Reagent	equiv. reagent	Catalyst	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yields $\mathbf{3 4 6} / \mathbf{3 4 7 / 3 4 8}$ $(\%)$	Recovered $\mathbf{3 4 4}(\%)$
1^{a}	1:1 dimethoxy propane : acetone	excess	PPTS	50	4	24	0
2	2-methoxypropene	2.5	PPTS	0 to rt	36	0	100
$3^{\text {b }}$	2-methoxypropene	2.5	TsOH	0 to rt	28	0	100
4	2-methoxypropene	2.0	TsOH	0 to rt	2	0	na
$5^{\text {c }}$	2-methoxypropene	2.0	CSA	0 to rt	20	$47 / 18 / 0$	na
$6^{\text {d }}$	2-methoxypropene	2.5	PPTS	50	4	$73 / 17 / 0$	na
7	2-methoxypropene	2.0	PPTS	50	4	$64 / 8 / 14$	na

${ }^{a}$ No DMF solvent.
${ }^{\mathrm{b}}$ Reaction mixture had molecular sieves present.
${ }^{\text {c }}$ Trityl group partially removed.
${ }^{\mathrm{d}}$ Some starting material still remaining.
The crude reaction mixture was concentrated and N -benzylated to yield the desired alcohol (-)-302 (47\% over two steps). ${ }^{26}$ Compound (-)-302 intercepted the previous total synthesis of ent-zwittermicin A [(-)-1] and provided a key intermediate of correct configuration to complete a total synthesis of natural zwittermicin $\mathrm{A}[(+)-\mathbf{1}]$.

Scheme 4.6: Synthesis of alcohol (-)-302.

4.4. Conclusion

Synthesis of (-)-302 was completed in six steps from known compound $\mathbf{3 3 3}$ with an overall yield of 14%. This compound intercepted a previous synthesis and is therefore a formal total synthesis of $(+)$-zwittermicin $\mathrm{A}[(+)-1]$. Although this route seems feasible for the synthesis of $(+)-1$ from the known compound $\mathbf{3 3 3}$, the overall yield from purchased material was only 0.1% over 10 steps due mostly to the poor yields of the literature steps. Some of the difficulties involved in this synthesis are the result of having two desymmetrization steps as well as three double functional group manipulations on C_{2} symmetric intermediates that are also highly water-soluble.

4.5. References

(1) Bailey, W. J.; Fujiwara, E. J. Am. Chem. Soc. 1955, 77, 165-166.
(2) Hoffmann, R. W.; Kahrs, B. C.; Schiffer, J.; Fleischhauer, J. J. Chem. Soc., Perkin Trans. 2 1996, 2407-2414.
(3) Bailey, W. J.; Fujiwara, E. J. Am. Chem. Soc. 1955, 77, 165-166.
(4) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469-1478.
(5) Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189-1192.
(6) Boland, W.; Hansen, V.; Jaenicke, L. Synthesis 1979, 114-116.
(7) Higashibayashi, S.; Czechtizky, W.; Kobayashi Y.; Kishi, Y. J. Am. Chem. Soc. 2003, 125, 14379-14393.
(8) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc. 1987, 109, 2205-2208.
(9) Marshall, J. A.; Grote, J.; Audia, J. E. J. Am. Chem. Soc. 1987, 109, 1186-1194.
(10) Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003, 5, 1789-1791.
(11) Hayakawa, H.; Okada, N.; Miyazawa, M.; Miyashita, M. Tetrahedron Lett. 1999, 40, 4589-4592.
(12) Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945-5948.
(13) Hulme, A. N.; Montgomery, C. H.; Henderson, D. K. Chem. Soc., Perkin. Trans. 1 2000, 1837-1841.
(14) Laïb, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709-1713.
(15) Raghavan, S.; Reddy, S. R. J. Org. Chem. 2003, 68, 5754-5757.
(16) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; $3^{\text {rd }}$ ed.; John Wiley \& Sons, Inc., 1999.
(17) Bessodes, M.; Komiotis, D.; Antonakis, K. Tetrahedron Lett. 1986, 27, 579-580.
(18) Randazzo, G.; Capasso, R.; Cicala, M. R.; Evidente, A. Carbohyd. Res. 1980, 85, 298-301.
(19) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am. Chem. Soc. 1984, 106, 3252-3257.
(20) Evans, M. E.; Parrish, F. W.; Long, L., Jr. Carbohyd. Res. 1967, 3, 453-462.
(21) Fnton, E.; Gelas, J.; Horton, D. J. Chem. Soc., Chem. Commun. 1980, 21-22.
(22) Grieco, P. A.; Yokoyama, Y.; Withers, G. P.; Okuniewicz, F. J.; Wand, C.-L. J. J. Org. Chem. 1978, 43, 4178-4182.
(23) Zhai, H.; Liu, P.; Luo, S.; Fang, F.; Zhao, M. Org. Lett. 2002, 4, 4385-4386.
(24) Narasaka, K.; Sakakura, T.; Uchimaru, T.; Guédin-Vuong, D. J. Am. Chem. Soc. 1984, 106, 2954-2961.
(25) Mirrington, R. N.; Schmalzl, K. J. J. Org. Chem. 1972, 37, 2877-2881.
(26) Yamazaki, N.; Kibayashi, C. J. Am. Chem. Soc. 1989, 111, 1396-1408.

Chapter 5 Synthesis of (+)-Zwittermicin A Diastereomers and Analogs: Structure-Activity Relationships

5.1. Introduction

The synthesis of the model compounds and ent-(-)-zwittermicin A provided a number of compounds that could be made into zwittermicin A diastereomers or analogs. ${ }^{1}$ Biological testing of these diastereomers (Figure 5.1) and analogs could provide insight into the structural activity of zwittermicin $\mathrm{A} .{ }^{2}$ Compounds $\mathbf{3 5 0}$ through $\mathbf{3 5 4}$ would be available by conversion of previously prepared intermediates.

220

223

351

222

225

352

353

354

(-)-279

(-)-Zwittermicin A [(-)-1]

(+)-Zwittermicin A [(+)-1]

Figure 5.1: Compounds for biological testing.

5.2. Synthesis of Aminopolyol 350

Compound $\mathbf{3 5 0}$ is the enantiomer of $\mathbf{2 2 1}$ and represents the C9-C15 portion of $(+)$-zwittermicin A with the same absolute stereochemistry. This aminopolyol was synthesized in quantitative yield by hydrogenolysis of $\mathbf{3 3 4}$ with Pd / C (Scheme 5.1). ${ }^{3}$

Scheme 5.1: Synthesis of aminopolyol 350.

5.3. Synthesis of Analogs Representing C1-C11 of (+)-Zwittermicin A

The truncated analog $\mathbf{3 5 1}$ of zwittermicin A was synthesized from $\mathbf{3 2 0}$ (76\% ,
Scheme 5.2).

Scheme 5.2: Synthesis of analog 351.

Analog $\mathbf{3 5 2}$ was synthesized in two steps by coupling of $\mathbf{3 1 4}$ and (+)-319 (67\% yield) followed by deprotection to give 352 (73% yield, Scheme 5.3). ${ }^{4,5}$ In both analogs, the stereocenters representing C8-C10 in zwittermicin A are of opposite configuration to those in the natural product. For 351, the C 4 configuration is the same as that in the natural product.

(+)-319

a) TMSCI, dry MeOH

b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 1 h
c) dry, redissolve $1 \% \mathrm{HCl}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{rt} 1 \mathrm{~h}$

73\%

Scheme 5.3: Synthesis of analog 352.

5.4. Synthesis of Two (+)-Zwittermicin A Diastereomers

Preparation of two more zwittermicin A diastereomers began with aldehyde 297 (Scheme 5.4). Boron-mediated aldol addition of methyl benzyloxyacetate $\mathbf{8 8}$ to aldehyde 297 gave ester $\mathbf{3 5 6}$ in 49% yield, with a relative stereochemistry the same as $(+)-$ zwittermicin A at the stereocenters representing C8-C11. ${ }^{6,7}$ Conversion of the ester to the free acid $\mathbf{3 5 7}$ was achieved using lithium hydroxide followed by acidic workup (84% yield). ${ }^{8}$

a) n - $\mathrm{Bu}_{2} \mathrm{BOTf}$, Hünig's base $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$
b) $82,-78$ to $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ 49\%

LiOH, rt, 4 h
$\overrightarrow{\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}: \mathrm{THF}(3: 3: 2)}$
84\%

Scheme 5.4: Synthesis of acid 357.

Separately amide couplings of acid $\mathbf{3 5 7}$ to the amines (-)-319 and (+)-319 using EDCI gave 358 and 359 (86% yield for each, Scheme 5.5). ${ }^{9,10}$ Deprotection of each of these amides gave the two new zwittermicin A diastereomers 353 and 354 in 57\% and 73% yield, respectively. Compound $\mathbf{3 5 3}$ represents a diastereomer with C13 and C14 configuration opposite to that of natural (+)-1, while $\mathbf{3 5 4}$ has different configurations at C4, C13 and C14.

a) TMSCl, dry MeOH $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5 \mathrm{~min}$
b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 1 h
c) dry, redissolve $1 \% \mathrm{HCl}$ $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 1.3 h

353

57\%

357
 86\%

359
a) TMSCI, dry MeOH
$0^{\circ} \mathrm{C}$ to rt, 5 min
b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, rt 1 h
c) dry, redissolve $1 \% \mathrm{HCl}$
$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, rt 1.3 h

73\%
Scheme 5.5: Synthesis of zwittermicin A diastereomers 353 and 354.

5.5. Determination of \% Enantiomeric Excess for Synthetic (-)-Zwittermicin A and Diastereomers

To verify the enantiometric excess of the synthetic (-)-1, (-)-279, 353, and 354, intermediate 296 was derivatized with both R and S Mosher's acid and analyzed by NMR (Scheme 5.6). ${ }^{11,12}$ Determination of the $\%$ ee for 296 will give a lower ee limit on all the compounds listed because they come from common intermediate 249. The Mosher's derivatives $\mathbf{3 6 1}$ and $\mathbf{3 6 2}$ are diastereomers representing the two possible compounds that would be generated from the derivatization reaction. Any enantiomer of $\mathbf{2 9 6}$ in the reaction with (+)-360 would generate the enantiomer of $\mathbf{3 6 2}$ and therefore have identical ${ }^{1} \mathrm{H}$ NMR to 362.

(-)-1, (-)-279, 296,
353, and 354
\qquad

common intermediate

Scheme 5.6: Mosher's derivatization of 296.

Signals representing $\mathbf{3 6 2}$ present in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 6 1}$ would represent the amount of original enantiomer in 296 and could be integrated and compared to the amount of $\mathbf{3 6 1}$ for ee determination. Attempted analysis by ${ }^{1} \mathrm{H}$ NMR failed due to overlap of signals, however use of ${ }^{19} \mathrm{~F}$ NMR did allow for separation of signals and determination of ee. The \% ee of $\mathbf{2 9 6}$ was found to be in excess of 94%.

5.6.Biological Testing

Biological testing of natural (+)-1 and the 13 synthetic compounds was conducted against the fungal strains Candida albicans 96-489, C. glabrata, C. albicans UCDFR1, C. albicans ATCC 144503, and C. krusei, the bacterial strains Erwinia carotovora, and
E. amylovora and oomycete Phytophthora infestans (Table 5.1). During the course of the biological testing it was found that the hydrochloride salt of $(+)-1$ was not biologically active and previous studies have shown a pH dependence on zwittermicin A activity with higher pH showing increased activity. ${ }^{13,14}$ This meant that the compounds had to be converted to the free amine by titration with sodium hydroxide. This procedure was also performed on natural $(+)-\mathbf{1}$ that was in the hydrochloride form to ensure uniformity and reproducibility.

Table 5.1: Biological testing of zwittermicin A and synthetic compounds.

	$\mathrm{MIC}^{\text {a,b }}(\mu \mathrm{g} / \mathrm{mL})$													
Biological Strains ${ }^{\text {c }}$	(+)-1	(-)-1	$\begin{aligned} & (-)- \\ & 279 \\ & \hline \end{aligned}$	353	354	351	352	350	220	221	222	223	224	225
Candida albicans 96$489^{\text {c }}$	55.7	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
C. glabrata ${ }^{\text {c }}$	59.5	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
C. albicans UCDFR1 ${ }^{\text {c }}$	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
C. albicans ATCC 144503	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
C. krusei	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128	>128
Erwinia carotovora	22.2	>128	>128	>128	>128	>128	>128	>128	na	na	na	na	na	na
E. amylovora	18.8	>128	>128	>128	>128	>128	>128	>128	na	na	na	na	na	na
Phytophthora infestans ${ }^{\text {d }}$	>32	>32	>32	>32	>32	>32	>32	>32	na	na	na	na	na	na

${ }^{\text {a }}$ The MIC endpoint is defined as the lowest concentration $(\mu \mathrm{g} / \mathrm{mL})$ with 90% growth inhibition.
${ }^{\mathrm{b}}$ Compounds (+)-1, (-)-1, (-)-279, and $\mathbf{3 5 0 - 3 5 4}$ were converted to the free amine before testing while compounds $\mathbf{2 2 0 - 2 2 5}$ were tested in the hydrochloride salt form.
${ }^{\mathrm{c}}$ Fluconazole-resistant strains.
${ }^{\mathrm{d}}$ Phytophthora infestans was tested using a range where $(+)-\mathbf{1}$ had shown activity against Phytophthora medicaginis M2913 and was limited to a maximum concentration of 32 due to being a nutrient agar well diffusion assay.

Results of susceptibility assays against a panel of fungi (Candida albicans 96489, C. glabrata, C. albicans UCDFR1, C. albicans ATCC 144503, and C. krusei), bacteria (Erwinia carotovora and E. amylovora) and oomycete (Phytophthora infestans)
are shown in Table 5.1. C. albicans 96-489, C. glabrata, C. albicans UCDFR1, C. albicans ATCC 144503, and C. krusei are all human pathogenic fungi most often affecting those with compromised immune systems such as AIDS patients. E. carotovora and E. amylovora are plant pathogens affecting potato, tomato, carrot and other vegetables causing cell death through plant cell wall destruction. P. infestans is a plant pathogen that caused late-blight in potato, tomato and eggplant. The synthetic entzwittermicin A [(-)-1], (-)-279, 220-225 and 350-354 showed no activity against all of the pathogens. The biological data indicates that the mechanism of actions is highly stereospecific and requires the complete zwittermicin A structure of natural configuration to be effective.

5.7.Conclusion

One new aminopolyol representing the C9-C15 portion of $(+)-\mathbf{1}$ and two analogs representing the $\mathrm{C} 1-\mathrm{C} 11$ portion were synthesized. Two additional zwittermicin A diastereomers ($\mathbf{3 5 3}$ and $\mathbf{3 5 4}$) were also synthesized. All of these compounds as well as natural $(+)-\mathbf{1}$ and the previously synthesized compounds $(-) \mathbf{- 1},(-) \mathbf{- 2 7 9}$, and the six model compounds 220-225 were tested for biological activity. It was found that the salt form of zwittermicin A was important for biological activity with the free amine showing activity while the hydrochloride salt was found to be inactive. None of the synthetic compounds showed activity against a panel of pathogenic fungi and bacteria indicating that the activity of zwittermicin A is stereospecific.

5.8. Acknowledgements

Dr. Doralyn S. Dalisay performed the bioassay of synthetic and natural compounds.

5.9. References:

(1) He, H.; Silo-Suh, L. A.; Handelsman, J.; Clardy, J. Tetrahedron Lett. 1994, 35, 2499-2502.
(2) Silo-Suh, L. A.; Lethbridge, B. J.; Raffel, S. J.; He, H.; Clardy, J.; Handelsman, J. Appl. Environ. Microbiol. 1994, 60, 2023-2030.
(3) Mirrington, R. N.; Schmalzl, K. J. J. Org. Chem. 1972, 37, 2877-2881.
(4) Boger, D. L.; Honda, T.; Menezes, R. F.; Cooetti, S. L.; Dang, Q.; Yang, W. J. Am. Chem. Soc. 1994, 116, 82-92.
(5) Heathcock, C. H.; Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746-1757.
(6) Sugano, Y.; Naruto, S. Chem. Pharm. Bull. 1989, 37, 840-842.
(7) Vicario, J. L.; Rodriguez, M.; Badía, D.; Carrillo, L.; Reyes, E. Org. Lett. 2004, 6, 3171-3174.
(8) Cranfill, D. C.; Morales-Ramos, Á. I.; Lipton, M. A. Org. Lett. 2005, 7, 58815883.
(9) Boger, D. L.; Yohannes, D.; Zhou, J.; Patane, M. A. J. Am. Chem. Soc. 1993, 115, 3420-3430.
(10) Ho, G.-J.; Emerson, K. M.; Mathre, D. J.; Shuman, R. F.; Grabowski, J. J. J. Org. Chem. 1995, 60, 3569-3570.
(11) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143-2147.
(12) Dal;e, J. A.; Mosher, H. S.. J. Am. Chem. Soc. 1973, 95, 512-519.
(13) Silo-Suh, L. A.; Stabb, E. V.; Raffel, S. J.; Handelsman, J. Curr. Microbiol. 1998, 37, 6-11.
(14) Broderick, N. A.; Goodman, R. M.; Raffa, K. F.; Handelsman, J. Environ. Entomol. 2000, 29, 101-107.

Chapter 6 Synthesis of Sulfone Aminopolyols

6.1. Introduction and Retrosynthesis

Initial work toward the synthesis of zwittermicin $A[(+)-1]$ focused on two routes with most of the work carried out on substituted sulfones. The retrosynthesis for these two routes is shown in Scheme 6.1. Because this work was developed before the configuration on zwittermicin A was known, it was necessary that each route provide stereo control at all stereocenters in the C7-C15 portion of $(+)-\mathbf{1}$. Both routes would use Evan's aldol addition reactions to set the C8 and C9 stereocenters starting with 373. ${ }^{1}$ At this point, the retrosynthesis diverges with route A leading back to diyne 363. The configuration of the double bond $(E$ or $Z)$ in combination with appropriate SAE catalyst allows for independent control of two vicinal amino- and hydroxy- constituent stereocenters formed and generation of maximum diversity. ${ }^{2}$ Regiochemical control over which double bond is epoxidized is obtained through selectively protected diol $\mathbf{3 6 5}$ thus allowing full regio and asymmetric control over the four stereocenters created from the diene. Epoxide opening and regioselective N-C bond formation would be achieved through the Roush method; addition of benzoyl isocyanate to the primary alcohol followed by intramolecular displacement of the epoxide to form a cyclic carbamate and transfer of the benzoyl group to the newly formed alcohol. ${ }^{3-4}$ This route follows well established chemistry for assembly of the C9-C15 portion of zwittermicin A.

Scheme 6.1: Retrosynthetic analysis of zwittermicin A.

In route B key steps are the addition of a sulfone anion to a serine-derived aldehyde, sulfone dianion addition to a second serine-derived aldehyde and finally desulfonization. Control over the diastereoselectivity of sulfone anion additions would be required for both C-C bond-forming reactions. Sulfone dianion additions to aldehydes are known but have not been used often. ${ }^{5,6}$ The final hurdle in this route is the removal of the sulfone in the presence of two beta-leaving groups. While this route has more risks in terms of chemistry, it also is highly convergent with a rapid assembly of the C9-C15 portion of zwittermicin A. Neither of these routes worked for the synthesis of zwittermicin A, but the substantial amount of development of the sulfone route allowed for other applications, including preparation of two aminopolyols for use as internal and surrogate standards in LC/MS analysis of sphingolipids.

6.2.Route A, Synthesis of Diene 363

The known PMB protected propargyl alcohol $\mathbf{3 7 5}$ was prepared in reasonable yield followed by Cu-mediated coupling with cloroalkyne $\mathbf{3 3 0}$ (74% yield) and Lindlar's reduction to give diene $\mathbf{3 6 3}$ in 83% yield (Scheme 6.2). ${ }^{7}$ This was followed by copper mediated coupling to. ${ }^{8-10}$

Scheme 6.2: Synthesis of diene 364.

6.3. Route B, Sulfone Anion Addition

Known phenylmethylsulfone $\mathbf{3 6 8}^{11}$ was synthesized (Scheme 6.3) from thioanisol in 96% yield while known aldehyde 369^{12} was synthesized in two steps from material previously made in our lab.

Scheme 6.3: Synthesis of starting materials 368 and 369.

Optimization of sulfone anion addition of $\mathbf{3 6 8}$ to $\mathbf{3 6 9}$ (Table 6.1) was carried out under various conditions. ${ }^{13,14}$

Table 6.1: Sulfone anion addition to aldehyde 369.

Entry $\#$	Solvent	Base	Additive	Time (min)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Ratio anti $:$ syn	Yield $\%$
1	THF	n-BuLi		75	-78	$2.0: 1$	35
2	THF	n-BuLi		60	-78	$2.5: 1$	52
3	THF	n-BuLi	ZnCl_{2}	60	-78	-	0
4	THF	n-BuLi	MgBr_{2}	60	-78	$2.0: 1$	47
5	THF	n-BuLi	$\mathrm{CuBr}_{2}{ }^{\text {a }}$	60	-78	$2.0: 1$	46
6	THF	n-BuLi	YbTf_{3}	1140	-78 to rt	-	0
7	THF	i-PrMgCl		90	-78	$3.0: 1$	50
8	DME	n-BuLi		90	-40	$2.9: 1$	54
9	DME	i-PrMgCl		90	-40	$2.2: 1$	79
10	$\mathrm{Et}_{2} \mathrm{O}$	n-BuLi		90	-78	$2.9: 1$	66
11	$\mathrm{Et}_{2} \mathrm{O}$	i-PrMgCl		90	-78	$2.4: 1$	13

${ }^{\mathrm{a}} \mathrm{CuBr}_{2}$ did not fully dissolve in the solvent and exact percent was below 1 equivalent.

The initial reaction showed poor yield and low diastereoselectivity, (reaction 1 and 2). Four different additives were tried in an attempt to improve both yield and diastereoselectivity without any success (entries 3 through 6). Base and solvent were varied with some improvement in yield and diastereoselectivity, and the highest yield was obtained using $i-\mathrm{PrMgCl}$ as the base and 1,2-dimethoxyethane as the solvent (entry $9,79 \%)$. Diastereoselectivity was poor ($3: 1$, anti $: s y n$) and the products, although not
separable by flash chromatography, were obtained pure by HPLC. The poor outcomes for the synthesis of $\mathbf{3 7 0}$ necessitated a different aldehyde for the sulfone anion addition

Table 6.2: Sulfone anion addition to Garner's aldehyde 54.

Entry \#	Solvent	Base	HMPA Equiv. to Anion	Temp (${ }^{\circ}$)	$\begin{aligned} & \hline \text { Rxn } \\ & \text { Conc } \\ & (\mathrm{M})^{\mathrm{c}} \\ & \hline \end{aligned}$	Anion Equiv.	Time (min)	Ratio 378:379	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	THF	$n-\mathrm{BuLi}$	0	-78	0.20	1	60	1:1	53
2	THF	n-BuLi	0	-78	0.20	1	45	2:1	54
$3^{\text {a }}$	THF	$n-\mathrm{BuLi}$	0	-78	0.20	1	1200	-	0
3	THF	$i-\mathrm{PrMgCl}$	0	-78	0.20	1	45	1.6:1	49
4	DME	$n-\mathrm{BuLi}$	0	-40	0.20	1	60	1.7:1	15
5	DME	$i-\mathrm{PrMgCl}$	0	-40	0.20	1	90	$1.2: 1$	53
6	$\mathrm{Et}_{2} \mathrm{O}$	$n-\mathrm{BuLi}$	0	-78	0.20	1	90	1.4:1	42
7	$\mathrm{Et}_{2} \mathrm{O}$	$i-\mathrm{PrMgCl}$	0	-78	0.20	1	90	1:1	19
8	THF	t-BuLi	2	-78	0.16	1.2	90	3:1	27
$9^{\text {b }}$	THF	t-BuLi	0	-78	0.17	1.2	90	2:1	24
10	THF	t-BuLi	0	0	0.13	1	90	1:2	52
$11^{\text {b }}$	THF	t-BuLi	10	-78	0.14	1	240	12:1	16
12	THF	t-BuLi	13	-78	0.11	0.6	90	14:1	46
13	THF	t-BuLi	18	-78	0.10	1	90	9:1	53
14	THF	t-BuLi	$11^{\text {d }}$	-78	0.08	1.8	120	22:1	50
15	THF	t-BuLi	13	-78	0.08	4.9	120	23:1	57
16	THF	t-BuLi	15	-40	0.06	1.4	2880	23:1	47
17	THF	t-BuLi	12	-78	0.05	0.4	120	$7: 1$	50
18	THF	t-BuLi	15	-78	0.09	1	180	1:1	1

${ }^{a} \mathrm{Yb}(\mathrm{OTf})_{3}$ added to a solution of aldehyde, cooled to $-78{ }^{\circ} \mathrm{C}$ then a solution of anion added.
${ }^{\mathrm{b}}$ Reaction quenched with TMSCl.
${ }^{c}$ Reaction concentration based on anion.
${ }^{\mathrm{d}}$ HMPA was precipitated out of solution at $-78^{\circ} \mathrm{C}$ and was redissolved by addition of THF. Most likely entries 4-6 also resulted in HMPA precipitation.
reaction. Garner's aldehyde (54) synthesized from serine in five high yielding steps, following a literature procedure and used in sulfone addition reactions summarized in Table 6.2. ${ }^{15}$

Low yields were obtained uniformly regardless of variation of base, solvent, equivalencies, or additives. The highest yields obtained were in the mid 50% range. While solvent and base showed little effect on the diastereometric ratio, addition of HMPA greatly improved diastereoselectivity of $\mathbf{3 7 8}$ to $\mathbf{3 7 9}$ (23:1, entries $14-16$). ${ }^{16}$ No further improvement to the ratio could be obtained by higher amounts of HMPA. The products were inseparable by flash chromatography and were purified by HPLC for characterization. However, compounds $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ were crystalline and product $\mathbf{3 7 8}$ could be separated by recrystallization alone when the diastereoselectivity was high. With the exception of entry 10, (Table 6.2) the favored anti product 378 was consistent with Felkin-Ann addition. ${ }^{17}$

The configuration of $\mathbf{3 7 8}$ was determined by X-ray crystallography, and by deduction 379 was revealed (Figure 6.1). The X-ray structure of $\mathbf{3 7 8}$ shows an anti periplanar relationship for the nitrogen and the hydroxyl.

Figure 6.1: X-ray crystal structure of sulfone 378.

6.3.1. Preliminary Investigation of Sulfone Removal

A preliminary investigation on the removal of the sulfone from $\mathbf{3 7 8}$ was performed using a number of literature and modified literature procedures (Table 6.3). ${ }^{18-}$ ${ }^{25}$ Many of these reactions showed no reaction or decomposition of the starting material. However the use of nickel aluminum hydride ("Ni-Al-H") showed promise with 73\% yield (entry 5). The only other reaction that showed any product was the NaHg reduction in DMF/MeOH using a buffer (37\%, entry 9). Spectroscopic data for known compound 380 matched literature values. ${ }^{26}$

Table 6.3: Sulfone removal from compound 378.

$\begin{gathered} \text { Entry } \\ \# \end{gathered}$	Solvent	Reagents (Equiv)	Rxn. Temp (C)	Time (h)	Obs.	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	EtOH	Raney Ni	80	20	no rxn.	0
2	$\mathrm{MeOH} / \mathrm{THF}$	NiCl_{2} (4), NaBH_{4} (32)	24	4	no rxn.	0
3	THF	NiCl_{2} (7), LAH (87)	24	4	dec.	trace
4	THF	NiCl_{2} (10), LAH (105), $\mathrm{PPh}_{3}(20)$	24	24	dec.	0
5	THF	NiBr_{2} (15), LAH (180), $\mathrm{PPh}_{3}(30)$	24	42		73
$6^{\text {a }}$	DCM/buffer	NaHg (excess)	24	1.25	no rxn.	0
7	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(7), \mathrm{NaHCO}_{3}(10)$	110	120	no rxn.	0
8	THF	NiAc_{2} (0.4), $\mathrm{i}-\mathrm{PrMgCl}$ (3),	24	3	no rxn.	0
9	DMF/MeOH	NaHg (49), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (23)	-20	1		37
10	MeOH	NaHg (31), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (11)	-20	1	no rxn.	0
11	DMF/MeOH	NaHg (70), NiCl_{2} (37)	24	1	dec.	0

${ }^{\text {a }}$ buffer was pH 7 sodium phosphate buffer. The reaction showed a trace of elimination product after 5 min .

6.3.2. Initial Attempts at Dianion Addition

Successful removal of the sulfone from $\mathbf{3 7 8}$ suggested that this functionality might be removed in the presence of a β-hydroxyl leaving group. Unfortunately, sulfone 378 proved to be unsuitable for dianion addition reactions (Table 6.4). The maximum yield observed for $\mathbf{3 8 1}$ was only 7% when $\mathbf{3 7 8}$ was used as the starting material and no product was observed with $\mathbf{3 6 8}$ (entry 4 and 5).

Table 6.4: Sulfone dianion synthesis of 381.

Entry $\#$	Starting Material	Base	Additive (equiv.)	Time (h)	Yield $\%$
1	$\mathbf{3 7 8}$	n-BuLi		1	0
2	$\mathbf{3 7 8}$	NaHMDS		2	0
3	$\mathbf{3 7 8}$	$n-\mathrm{BuLi}$		1.75	7
4	$\mathbf{3 6 8}$	n-BuLi		1	0
5	$\mathbf{3 6 8}$	$i-\mathrm{PrMgCl}$	HMPA (10)	4	0

It appeared that during generation of the dianion most of the starting material 378 was channeled to intramolecular cyclization product $\mathbf{3 8 2}$ (Figure 6.2). A small amount of this side product was also seen upon additions to 54 using 368.

Figure 6.2: Side product 382.

A few other attempts were made to perform dianion addition reactions; the only successful reaction was the addition of $\mathbf{3 7 0 a}$ to $\mathbf{5 4}$ as shown in Scheme 6.4. Compound

370a showed promise in the dianion addition reaction but due to the difficulty in purifying starting material 370a this work was suspended.

383
17\%

Scheme 6.4: More sulfone dianion additions.

6.3.3. New Sulfone Addition Products

The inability to generate a stable dianion from $\mathbf{3 7 8}$ and the difficulty in obtaining 370a required a diversion in tactics. Table 6.5 shows the results for the sulfone anion addition to the serine-derived aldehyde 193. ${ }^{27}$ Aldehyde $\mathbf{1 9 3}$ could be made from serine in five high yielding steps according to literature procedures, ${ }^{15,28,29}$ and the addition reaction proved to be high yielding but diastereoselectivity remained low ($\sim 2: 1$). Fortunately, compounds $\mathbf{3 8 5}$ and $\mathbf{3 8 6}$ were separable by flash chromatography alleviating one of the difficulties of the previous sulfone addition reactions.

Table 6.5: Sulfone anion addition to aldehyde 193.

$\begin{gathered} \text { Entry } \\ \# \end{gathered}$	Base	Additive (equiv)	Anion (equiv)	Time (h)	Ratio $385: 386$	Yield \%
1	$i-\mathrm{PrMgCl}$	HMPA (9)	2.1	1.5	2.1:1	59
2	t-BuLi	HMPA (13)	2.3	3	$2.3: 1$	55
3	$t-\mathrm{BuLi} / \mathrm{CuI}{ }^{\text {a }}$	$\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}(3)$	1.5	3	1.8:1	50
4	$i-\mathrm{PrMgCl}$		2.0	1.5	2.0 : 1	99
5	t-BuLi		1.3	3	$2.8: 1$	83
6	t-BuLi		1.4	0.3	$2.5: 1$	94

$\overline{{ }^{a}} \mathrm{CuI}$ (1eq) added to anion at $-78{ }^{\circ} \mathrm{C}$ then aldehyde added with $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$.
The relative configurations for the products $\mathbf{3 8 5}$ and 386 as well as the previously synthesized OTr protected versions was secured by deprotecting sulfones $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ of known configuration, and comparing the ${ }^{1} \mathrm{H}$ NMR with that of those deprotected $\mathbf{3 7 0 a} / \mathbf{3 7 0 b}$ and 385/386 (Scheme 6.5). Deprotection was quantitative for preparation of $\mathbf{3 8 7}$ and $\mathbf{3 8 8}$ from $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$, respectively. For comparison, mixtures of $\mathbf{3 7 0 a} / \mathbf{3 7 0 b}$ and 385/386 were deprotected in dry HCl in methanol under hydrogenation conditions to give a mixture of products in 81% and 92% yields respectively. ${ }^{30}$

Scheme 6.5: Deprotection of sulfone anion addition products.

Compound $\mathbf{3 8 7}$ was converted into the peracetate using standard conditions to give the crystalline product $\mathbf{3 8 9}$ in 99% yield. ${ }^{31}$ An X-ray structure verified the relative configuration of this compound (Figure 6.3).

Figure 6.3: X-ray crystal structure of acetate 389.

6.3.4. Sulfone Dianion Additions.

The new sulfone $\mathbf{3 8 5}$ was now available in sufficient quantity for evaluation of sulfone dianion addition reactions. This new sulfone proved to be stable to the conditions for dianion generation (Table 6.6). ${ }^{32,33}$ The highest yield was 52% when three equivalents of t-BuLi were used for deprotonation (entry 4). The low yields were consistent with those observed with previous additions to aldehyde 54. Compounds $\mathbf{3 9 0}$ and $\mathbf{3 9 1}$ were separated by silica chromatography as a mixture of epimers at the carbon adjacent to S .

Table 6.6: Sulfone dianion addition to aldehyde 54.

Entry \#	$\begin{gathered} \text { Base } \\ \text { (Equiv.) } \end{gathered}$	Additive (Equiv. to Anion)	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Aldehyde Equiv.	Time (h)	$\begin{gathered} \text { Ratio } \\ \mathbf{3 9 0}: \mathbf{3 9 1} \end{gathered}$	Yield \%
$1^{\text {a }}$	t-BuLi (2.6)	na	-20	1.9	23	na	49
2	t-BuLi (2.0)	HMPA (12)	-20	1.2	16	na	0
3	t-BuLi (2.0)	na	-20	1.2	16	na	0
4	t-BuLi (3.0)	na	-20	1.4	23	1:1	52
5	t-BuLi (3.0)	HMPA (14)	-20	1.4	23	1:1	43
6	$t-\operatorname{BuLi}(2.0)$	HMPA (15)	0	1.2	4	na	0
7	t-BuLi (3.0)	HMPA (15)	-40	1.2	17	1:1	35
8	t-BuLi (3.0)	na	-40	1.5	3	1:1	37

Assignment of the new hydrdoxyl center in compounds $\mathbf{3 9 0}$ and $\mathbf{3 9 1}$ was made by fully deprotecting the compounds and evaluating their ${ }^{1} \mathrm{H}$ NMR spectra (Scheme 6.6).

Scheme 6.6: Deprotection of sulfone diaddition products.

Due to symmetry 393 gave a single set of ${ }^{1} \mathrm{H}$ NMR signals and was a single compound, however 392 was observed as a mixture of epimers.

6.3.4.1. Bioassay

Compounds 387, 388, 392, and 393 was assayed for biological activity against the fungal strains Candida albicans 96-489, C. krusei, C. glabrata, C. albicans ATCC 14503 (Table 6.7).

Table 6.7: Biological testing of zwittermicin A and synthetic sulfones.

	$\mathrm{MIC}^{\mathrm{a}, \mathrm{b}}(\mu \mathrm{g} / \mathrm{mL})$				
Biological Strains	$(+) \mathbf{- 1}$	$\mathbf{3 8 7}$	$\mathbf{3 8 8}$	$\mathbf{3 9 2}$	$\mathbf{3 9 3}$
${\text { Candida albicans } 96-489^{\mathrm{d}}}^{\text {C }^{\text {glabrata }}} \mathrm{d}$	55.7	>100	>100	>100	>100
C. albicans ATCC 144503	59.5	>100	>100	>100	>100
C. krusei	>100	>100	>100	>100	>100
	>100	>100	>100	>100	>100

${ }^{\text {a }}$ The MIC endpoint is defined as the lowest concentration ($\mu \mathrm{g} / \mathrm{mL}$) with 90% growth inhibition.
${ }^{\mathrm{b}}$ Compounds (+)-1 wase tested as a free amine before testing while the remaining compounds were tested as hydrochloride salts.
${ }^{\mathrm{d}}$ Fluconazole-resistant strains.
Results indicated there was no activity except for natural zwittermicin A. This is consistent with the results of chapter 5 where only $(+)-\mathbf{1}$ showed biological activity.

6.3.5. Investigation of Sulfone Removal

Removal of the sulfone moieties in $\mathbf{3 9 0}$ and $\mathbf{3 9 1}$ would give compounds representing the $\mathrm{C} 9-\mathrm{C} 15$ portion of zwittermicin A . Table 6.8 shows the results of a number of attempts to remove the sulfone form 390, but it can clearly be seen that no practical method was found. ${ }^{34-44}$ The difficulty lies primarily in the presence of two beta-
leaving groups in this compound, which undergo facile elimination with loss of both the PhSO_{2} and HO groups.

Table 6.8: Sulfone removal from compound 390.

Entry \#	Solvent	Reagents (Equiv)	Rxn. Temp (${ }^{\circ}$ C)	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Notes	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	THF	NiBr_{2} (30), LAH (380), PPh_{3} (62)	24	1200	dec.	0
2	THF	NiBr_{2} (11), LAH (22), PPh_{3} (26)	24	2880	no rxn.	0
$3^{\text {a }}$	THF	NiBr_{2} (17), LAH (122), PPh_{3} (32)	24	2640	-TBS	trace
4	THF	NiBr_{2} (15), LAH (30), PPh_{3} (30)	24	1080	no rxn.	0
$5^{\text {b }}$	DMF/MeOH	$\mathrm{NaHg}(90), \mathrm{K}_{2} \mathrm{HPO}_{4}$ (9)	24	1020	-TBS	trace
6	MeOH	NaHg (29), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (10)	24	60	elim	0
7	DMF/MeOH	NaHg (200), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (129)	-20	45	elim	0
8	THF	$\mathrm{TiCl}_{4}(30)$, LAH (60)	57	60	dec.	0
$9{ }^{\text {c }}$	THF	NiBr_{2} (2.5), LAH (54), PPh_{3} (48)	24	1080	elim	0
$10^{\text {d }}$	THF	NiBr_{2} (20), LAH (48)	24	3720	mix	?
$11^{\text {c }}$	THF	NiBr_{2} (25), LAH (139)	24	240	elim	0
12	THF/HMPA	SmI_{2} (10)	-20	60	elim	0
13	$\mathrm{NH}_{3}(\mathrm{l}) /$ THF	Na (excess)	-33	15	mix	<5
14	THF	NiBr_{2} (76), LAH (150)	-20	960	dec.	0
$15^{\text {e }}$	$\mathrm{NH}_{3}(\mathrm{l}) /$ THF	Ca (excess)	-33	15	elim	0
16	THF	Napthalene, Na (excess)	0	15	dec.	0
17	THF / EtOH	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1), \mathrm{LiBH}_{4}(14)$	24	1440	no rxn.	0
18	THF	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1), \mathrm{LAH}$ (20)	24	1440	dec.	0
19	THF / HMPA	Li, t - BuOH()$, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (129)	24	240	dec	0

${ }^{\text {a }}$ Product -TBS group coelutes with triphenylphosphene oxide on silica.
${ }^{\mathrm{b}}$ Major product was elimination product -TBS group with trace of product -TBS group by TLC.
${ }^{c}$ Gave elimination product-TBS group.
${ }^{\mathrm{d}}$ Gave three major spots by TLC, one product -TBS group, one elimination -TBS group, and starting material.
${ }^{\mathrm{e}}$ Gave elimination products and unreacted starting material.

A number of these reactions also saw a loss of the TBS group from starting material, elimination products, and the desired product.

6.3.6. Protection of Free Hydroxyls and Attempted Sulfone Removal

Speculating that the beta-elimination proceeded through an E2 mechanism requiring anti periplanar arrangements of leaving groups, it was proposed that locking the 1,3-diols into a ring system might reduce the elimination problem by aligning the PhSO_{2} group in an equatorial position. The 1,3-diol group $\mathbf{3 9 0}$ was protected as a siloxane (Scheme 6.7) in modest yield (63\%) but providing sufficient material to evaluate the sulfone removal reaction (Table 6.9). ${ }^{45,46}$

Scheme 6.7: Protection of sulfone 390

Elimination products were still evident and only a trace, if any, of product was observed. Most reactions showed some form of decomposition as well as remaining starting material.

Table 6.9: Sulfone removal from compound 396.

$\begin{aligned} & \text { Entr } \\ & \text { y \# } \end{aligned}$	Solvent	Reagents (Equiv)	Rxn. Temp (${ }^{\circ}$)	Time (min)	Notes	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	MeOH	NaHg (30), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (10)	24	90	elim	0
2	THF/MeOH	NaHg (200), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (100), 1,4-cyclohexadiene (20)	24	45	elim	0
3	EtoH	Mg (100), $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ (10), 1,4cyclohexadiene (20)	24	60	elim	0
4	THF	Na (50), naphthalene (excess), 1,4-cyclohexadiene (20)	24	20	dec	0

6.4.Synthesis of Model Sulfone

Quantities of sulfone $\mathbf{3 9 0}$ were now scarce and therefore an alternate compound for sulfone removal reactions was prepared (Scheme 6.8). Diaddition product 399 was formed in 66% yield with the remaining material being either monoaddition product or triaddition product. Similar mixtures have been reported in the literature with sulfone anion reactions. ${ }^{47}$ Diaddition product $\mathbf{3 9 9}$ was then protected as the benzylidene acetal in 41% yield (33% recovered starting material). ${ }^{48}$

402

Scheme 6.8: Synthesis of protected sulfone 403.

The isomer 403 was separable by flash chromatography (silica) and the configuration of this compound was evident from the large vicinal coupling $(J=9.0 \mathrm{~Hz})$ of the protons in the dioxane ring as well as an observed nOe between the ring acetal proton at $\delta 5.37 \mathrm{ppm}$ and the $\mathrm{CH}-\mathrm{O}$ signals at $\delta 4.04 \mathrm{ppm}$.

6.4.1. Attempts to Remove Sulfone from 403

Attempts to remove the sulfone from $\mathbf{4 0 3}$ were uniformly unsuccessful, giving mostly partial decomposition or no reaction (Table 6.10).

Table 6.10: Sulfone removal from compound 403.

Entry $\#$	Solvent	Reagents	Rxn. Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (min)	Notes	Yield $\%$
1	THF	Na, naphthalene	-80	20	no rxn	0
2	THF	Na, naphthalene	-80	90	partial dec	0
3	THF	Li, naphthalene	-80	20	partial dec	0
4	THF	SmI	-80	720	no rxn	0
5	THF	Na, naphthalene	-78	20		0
6	THF	Li, naphthalene, 1,4-	-20	20		0
7	THF	cyclohexadiene	SmI, HMPA	-80	20	
8	THF	NiBr 2, LAH, PPh $_{3}$	-80	960	0	

6.5. Other Sulfur Based Dianion Additions

Failure of the sulfone methodology required an alternate strategy for the synthesis of the C9-C15 portion of zwittermicin A. The sulfone in $\mathbf{3 9 0}$ was resistant to reductive cleavage by Raney nickel however it is known that this reagent will also remove dithianes, which like sulfones, function as "umpulong" equivalents. ${ }^{49}$ Consequently, a short investigation was made of dithiane addition to aldehyde 193 (Table 6.11). ${ }^{50}$

Diastereoselectivity for the anion addition could be partially reversed by addition of HMPA to the reaction mixture however this also resulted in a decreased yield.

Table 6.11: Dithiane addition to aldehyde 193.

Entry \#	Base (Equiv.)	Additive (Equiv)	Rxn. Temp $\left({ }^{\circ} \mathrm{C}\right)$	Anion Equiv	Time (min)	Ratio $\mathbf{4 0 7}: \mathbf{4 0 8}$	Yield \%
1^{a}	t-BuLi (0.8)	HMPA (29)	-78	2	150	na	17
2	t-BuLi (1.1)	na	-20^{b}	1	75	$1: 10$	79
3	t-BuLi (1.1)	HMPA (15)	-20^{c}	1	75	$1.3: 1$	30

${ }^{\mathrm{a}}$ Anion generated at $0{ }^{\circ} \mathrm{C}$ for 30 min , HMPA added and solution stirred a further 30 min .
${ }^{b}$ Material lost on alumina column.
${ }^{\text {c }}$ Reaction started at $-50{ }^{\circ} \mathrm{C}$ for 45 min then warmed to $-20^{\circ} \mathrm{C}$ for 30 min .

A survey of dianion addition reactions with 1,3-dithiane were carried out (Scheme $6.9) .{ }^{51}$ Only one reaction showed some diaddition products in very low yield. These diaddition products were inseparable mixtures and unsuitable for synthesis of zwittermicin A.

406

1) 1 eq t-BuLi, $-50^{\circ} \mathrm{C}, \mathrm{THF}$,

193
3) 1 eq. t-BuLi, 25 min

Mixture of double addition product (< 15%), single addition product and t-Bu adduct. No aldehyde present after 15 min .

Scheme 6.9: Dianion addition reactions with dithianes.

One final attempt was made to use thioanisole for a diaddition reaction to hydrocinnamaldehyde (Scheme 6.10). ${ }^{52}$ The first addition went well with 80% yield giving the known monoaddition product 410. However the dianion addition reaction gave a mixture of products and left over starting material. With this final failure the use of sulfur chemistry for the synthesis of zwittermicin A was abandoned.

Scheme 6.10: Dianion addition using thioanisole.

6.6. Use of Sulfone Chemistry for Synthesis of LC/MS Standards

While working on developing a method for analysis of sphingolipids there arose a need for suitable surrogate and internal standards for LC/MS analysis. The desire was to have a surrogate standard with similar properties to those of the sphingolipids to be analyzed. For the internal standard the requirement was a standard that had some of the ionization characteristics of the compounds to be analyzed. The synthesis should provide compounds with a chain length that could not be generated biologically and therefore would not be present in a biological matrix.

6.6.1. Synthesis of Internal Standard

The internal standard was synthesized as shown in Scheme 6.11. The first step proceeded smoothly using phenyldisulfide to convert tetradecanol to known thioether 412 (92% yield).${ }^{53,54}$ After a number of attempts to oxidize sulfide 412 using reagents including basic NaOCl and hydrogen peroxide it was found that the best yield was obtained with MnO_{2} and KMnO_{4} which gave 413 in 94% yield. ${ }^{55-57}$ NMR data for the known compound 413 matched literature values. ${ }^{58}$ The anion derived from sulfone 413 was added to Garner's aldehyde, giving diastereomers 414, 415a, and 415b in 66% yield and a ratio of $1: 4: 2$ respectively. This yield is consistent with the previously observed modest yields of sulfone additions to this aldehyde. Compound 414 was separable by
flash chromatography and therefore was taken forward and deprotected to give the internal standard 416 in quantitative yield. This compound proved to be effective as an internal standard for the sphingosine LC/MS method.

411

1) t-BuLi, THF, $-10^{\circ} \mathrm{C}, 15 \mathrm{~min}$

413

2) $-50^{\circ} \mathrm{C}$ to $\mathrm{rt}, 6 \mathrm{~h}$ 66\%

Scheme 6.11: Synthesis of internal standard 416.

6.6.2. Synthesis of Surrogate Standard

The synthesis of a C_{17} sphingosine surrogate standard began with addition of the anion of $\mathbf{4 1 3}$ to aldehyde 193 to give 417 in 81% yield and, following removal of the sulfone with NaHg , gave 418 in 38% yield (Scheme 6.12). Both 417 and 418 were mixtures of diastereomers which were not separable by flash chromatography (silica).

The low yield for the sulfone removal is most likely due to the β-elimination side products. The TBS protecting group in $\mathbf{4 1 8}$ was removed to give $\mathbf{4 1 9}$ and $\mathbf{4 2 0}$ in a $1: 4$ ratio and 88% yield. These two compounds were separable by flash chromatography (silica).

Scheme 6.12: Synthesis of surrogate standard 421.

Compound 420 was taken forward and fully deprotected to give surrogate C_{17} standard 421 in 68\% yield.

6.7. Conclusion

Initial attempts at synthesis of zwittermicin A focused on two primary routes for the synthesis of the $\mathrm{C} 9-\mathrm{C} 15$ portion of the molecule. The first diyne route was discontinued after only a few steps. The second route that was pursued most extensively
involved sulfone anion and dianion additions to serine-derived aldehydes. While some control over yield or diastereoselectivity for the first anion addition could be achieved, the second dianion addition showed little selectivity and mediocre yields. Even worse was the fact that the sulfone could not be removed from the diaddition product without extensive decomposition. A short investigation of model compounds revealed that competing beta-elimination in reductive removal of the sulfone from the diaddition product could not be surmounted and this route was abandoned in the synthesis of zwittermicin A. A brief investigation of dithiane and thioanisole revealed other difficulties with these substrates as possible precursors for the C9-C15 unit of zwttiermicin A.

Although sulfone chemistry did not work for the synthesis of zwittermicin A, it was satisfactory for synthesis of two compounds that were used as standards in LC/MS analysis of sphingolipids. The first was a sulfonyl sphingosine derivative synthesized in two steps from a serine-derived aldehyde while the second was a surrogate C_{17} sphingosine standard synthesized in four steps from a similar aldehyde.

6.8. Acknowledgements

Dr. Doralyn S. Dalisay performed the bioassay of synthetic and natural compounds.

6.9. References

(1) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83-87.
(2) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765-5780.
(3) Jung, M. E.; Jung, Y. H. Tetrahedron Lett. 1989, 30, 6637-6640.
(4) Roush, W. R.; Adam, A. M. J. Org. Chem. 1985, 50, 3752-3757.
(5) Tanikaga, R.; Hosoya, K.; Kaji, A. Chem. Lett. 1987, 5, 829-232.
(6) Tanikaga, R.; Hosoya, K.; Hamamura, K.; Kaji, A. Tetrahedron Lett. 1987, 28, 3705-3706.
(7) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1997, 62, 4313-4320.
(8) Lapitskaya, M. A.; Vasiljeva, L. L.; Pivnitsky, K. K. Synthesis 1993, 65-66.
(9) Hoffmann, R. W.; Kahrs, B. C.; Schiffer, J.; Fleischhauer, J. J. Chem. Soc., Perkin. Trans. 2 1996, 2407-2414.
(10) Fürstner, A.; Dierkes, T. Org. Lett. 2000, 2, 2463-2465.
(11) Alonso, D. A.; Najera, C.; Varea, M. Tetrahedron Lett. 2002, 43, 3459-3461.
(12) Nicholas, G. M.; Molinski, T. F. J. Am. Chem. Soc. 2000, 122, 4011-4019.
(13) Hart, D. J.; Wu, W.-L. Tetrahedron Lett. 1996, 37, 5283-5286.
(14) Markó, I. E.; Murphy, F.; Kumps, L.; Ates, A.; Touillaux, R.; Craig, D.; Carballares, S.; Dolan, S. Tetrahedron 2001, 57, 2609-2619.
(15) Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64-77.
(16) Tanikaga, R.; Hosoya, K.; Kaji, A. J. Chem. Soc., Perkin. Trans. 1 1988, 23972402.
(17) Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
(18) Back, T. G.; Baron, D. L.; Yang, K. J. Org. Chem. 1993, 58, 2407-2413.
(19) Becker, S.; Fort, Y.; Caubere, P. J. Org. Chem. 1990, 55, 6194-6198.
(20) Zhao, X.-Y.; Janda, K. D. Bioorg. Med. Chem. Lett. 1998, 8, 2439-2442.
(21) Ho, K. M.; Lam, C. H.; Luh, T.-Y. J. Org. Chem. 1989, 54, 4474-4476.
(22) Fabre, J.-L.; Julia, M. Tetrahedron Lett. 1983, 24, 4311-4314.
(23) Carretero, J. C.; Arrayás, R. G. J. Org. Chem. 1995, 60, 6000-6001.
(24) Bremner, J.; Julia, M.; Launay, M.; Stacino, J.-P. Tetrahedron Lett. 1982, 23, 3265-3266.
(25) Sadanandan, E. V.; Srinivasan, P. C. Synthesis 1992, 648-650.
(26) Dondoni, A.; Marra, A.; Massi, A. J. Org. Chem. 1999, 64, 933-944.
(27) Choudhry, S. C.; Serico, L.; Cupano, J. J. Org. Chem. 1989, 54, 3755-3757.
(28) Hulme, A. N.; Montgomery, C. H.; Henderson, D. K. Chem. Soc., Perkin. Trans. 1 2000, 1837-1841.
(29) Laïb, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709-1713.
(30) Heathcock, C. H.; Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746-1757.
(31) Zhdanov, R. I.; Zhenodarova, S. M. Synthesis 1975, 222-245.
(32) Grimaud, L.; Rotulo, D.; Ros-Perez, R.; Guitry-Azam, L.; Prunet, J. Tetrahedron Lett. 2002, 43, 7477-7479.
(33) Kim, K. S.; Sohng, J.-K.; Ha, S. B.; Cheong, C. S.; Jung, D. I.; Hahn, C. S. Tetrahedron Lett. 1988, 29, 2847-2850.
(34) Hwu, J. R.; Wein, Y. S.; Leu, Y.-J. J. Org. Chem. 1996, 61, 1493-1499.
(35) Inomata, K.; Igarashi, S.; Mohri, M.; Yamamoto, T.; Kinoshita, H.; Kotake, H. Chem. Lett. 1987, 707-710.
(36) Kuenzer, H.; Stahnke, M.; Sauer, G.; Wiechert, R. Tetrahedron Lett. 1991, 32, 1949-1952.
(37) Jolivet, B.; Uguen, D. Tetrahedron Lett. 2002, 43, 7907-9711.
(38) Mohri, M.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1985, 3, 451-454.
(39) Trost, B. M.; Arndt, H. S.; Strege, P. E.; Verhoeven, T. R. Tetrahedron Lett. 1976, 17, 3477-3478.
(40) Akgün, E.; Mahmood, K.; Mathis, C. A. J. Chem. Soc., Chem. Commun. 1994, 26, 761-762.
(41) Pouilly, P.; Chénedé, A.; Mallet, J.-M.; Sinaÿ, P. Tetrahedron Lett. 1992, 33, 8065-8068.
(42) Nájera, C.; Yus, M. Tetrahedron 1999, 55, 10547-10658.
(43) Pradhan, S. K.; Sankaran, R. Tetrahedron 1994, 50, 3149-3158.
(44) Hanessian, S.; Cooke, N. G.; DeHoff, B.; Sakito, Y. J. Am. Chem. Soc. 1990, 112, 5276-5290.
(45) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871-4874.
(46) Furusawa, K.; Ueno, K.; Katsura, T. Chem. Lett. 1990, 97-100.
(47) Pine, S. H.; Shen, G.; Bautista, J.; Sutton, C.; Yamada, W.; Apodaca, L. J. Org. Chem. 1990, 55, 2234-2237.
(48) Evans, M. E. Carbohydr. Res. 1972, 21, 473-475.
(49) Node, M.; Nishide, K.; Shigeta, Y.; Obata, K.; Shiraki, H.; Kunishige, H. Tetrahedron 1997, 53, 12883-12894.
(50) Smith, A. B., III; Pitram, S. M.; Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, C.; Moser, W. H. J. Am. Chem. Soc. 2003, 125, 14435-14445.
(51) Bextermoller, R.; Redlich, H.; Schnieders, K.; Thormahlen, S.; Frohlich, R. Angew. Chem., Int. Ed. 1998, 37, 2496-2500.
(52) Linnert, M.; Bruhn, C.; Rüffer, T.; Schmidt, H.; Steinborn, D. Organometallics 2004, 23, 3668-3673.
(53) Kotsuki, H.; Matsumoto, K.; Nishizawa, H. Tetrahedron Lett. 1991, 32, 41554158.
(54) Zhang, S.; Zhang, Y. M. J. Chem. Research (S) 1998, 48-49.
(55) Shaabani, A.; Mirzaei, P.; Lee, D. G. Catal. Lett. 2004, 97, 119-123.
(56) Alonso, D. A.; Nájera, C.; Varea, M. Tetrahedron Lett. 2002, 43, 3459-3461.
(57) Madesclaire, M. Tetrahedron 1986, 42, 5459-5495.
(58) Jang, D. O.; Cho, D. H. Synlett 2002, 1523-1525.

Chapter 7 Experimental

7.1. Materials and Methods

7.1.1. General Procedures

All non-aqueous reactions were carried out in oven-dried glassware under a nitrogen atmosphere, unless otherwise noted. All solvents were reagent grade. Solvents for dry reactions (DCM, DMF, THF, toluene, acetonitrile, $\mathrm{Et}_{2} \mathrm{O}$) were passed through twin alumina columns (J. C. Myer, Glass Contour). DMSO was distilled from calcium hydride under reduced pressure and stored over $4 \AA$ molecular sieves. Dry MeOH was prepared and stored over $4 \AA$ molecular sieves. Triethylamine, pyridine and Hünig's base were distilled from calcium hydride. All other commercially available reagents were used as received. Reactions were monitored by thin layer chromatography (TLC) using 0.25 mm E. Merck per-coated silica gel plates.

NMR spectra were recorded on a Varian Mercury-400 (400 MHz), a Varian Unity-500 (500 MHz) or a Varian Inova-400 (400 MHz) spectrometer. NMR solvents were obtained from Cambridge Isotope Laboratories. Chemical shifts are reported in parts per million (ppm) and referenced to residual solvent signal as the internal standard relative $\left[\mathrm{CHCl}_{3}(\delta 7.26)\right.$ or $\mathrm{CD}_{2} \mathrm{HOD}(\delta 3.31)$ for ${ }^{1} \mathrm{H}$, or $\mathrm{CDCl}_{3}(\delta 77.16)$ or $\mathrm{CD}_{3} \mathrm{OD}(\delta$ 49.0) for ${ }^{13} \mathrm{C}$] unless otherwise stated. HRMS were run by either University of California, Riverside mass spectrometry facility, University of California, San Diego mass spectrometry facility or the Scripps Research Institute's Center for Mass Spectrometry. Optical rotations were obtained using a Jasco DIP-370 digital polarimeter, a Jasco P-1010
or a Jasco P-2000 polarimeters in cells of $10 \mathrm{~mm}, 50 \mathrm{~mm}$ or 100 mm pathlength (concentrations, c, expressed in $\mathrm{g} / 100 \mathrm{~mL}$). Optical rotations for certain compounds were not reported due to being too small for accurate measurements. IR spectra were obtained on a Mattson Galaxy Series FTIR 3000 or a Nicolet Magna IR 550 spectrometer as thin films (deposited on KBr plates) or on a Jasco 4100 FTIR using ATR (ZnSe plate). The ee analysis for diaminopropionamides (-)-319 and (+)-319 were conducted using Marfey's method by derivatization with 2,4-dinitrophenyl-5-fluoro-L-leucinamide under standard conditions followed by analysis (C_{18} HPLC-MS). Normal-phase HPLC was carried out on a Rainin Rabbit HP systems using a $100 \AA \mathrm{SiO}_{2} 10 \times 250 \mathrm{~mm}$ Microsorb column with a UV detector.

7.1.2. Determination of configuration of $\mathbf{C} 4$ in Zwittermicin [(+)-1]

A solution of $\mathbf{1}(148 \mu \mathrm{~g})$ in $50 \mu \mathrm{~L}$ water and $6 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ was heated in a sealed tube at $110{ }^{\circ} \mathrm{C}$ for 24 hours. The solution was concentrated to dryness under a N_{2} stream to and the hydrolysate redissolved in 1.0 mL of $\mathrm{H}_{2} \mathrm{O}$.

Marfey's Method. The above hydrolysate solution $(100 \mu \mathrm{~L})$ was treated with a solution of 2,4-dinitrophenyl-5-fluoro-L-alaninamide ($100 \mu \mathrm{~L}, 1 \% \mathrm{w} / \mathrm{v}$ in acetone), or its enantiomer 2,4-dinitrophenyl-5-fluoro-D-alaninamide, followed by $1.0 \mathrm{M} \mathrm{NaHCO}_{3}(20 \mu \mathrm{~L})$, then heated in a sealed tube at $80^{\circ} \mathrm{C}$ for 10 min . The mixture was cooled and quenched with 1.0 $\mathrm{M} \mathrm{HCl}(20 \mu \mathrm{~L})$. The preceding paired derivatization procedure was applied to authentic (2S)-(-)-albizziin (Sigma-Aldrich).

LC Analysis. The solutions from Marfey's method were analyzed by LC-MS using an Agilent series 1100 HPLC with a Phenomonex Luna C-18 column (100 mm x
$2.00 \mathrm{~mm}, 3 \mu \mathrm{~m}$) connected to a Thermo Finnigan MSQ. LC parameters were as follows; Flow rate $0.40 \mathrm{~mL} / \mathrm{min}$, initial 90% solvent $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}+0.1 \%\right.$ formic acid) 10% solvent B (acetonitrile), @ $15 \mathrm{~min} 70 \% \mathrm{~A}$, @ $20 \mathrm{~min} 100 \%$ B hold for 5 min , @ $28 \mathrm{~min} 90 \%$, A hold for 2 min . Injection volume was $6 \mu \mathrm{~L}$. MSQ parameters were as follows; ESI-MS, selected ion monitoring at $m / z 400[\mathrm{M}+\mathrm{H}]^{+}$, span 2.0 amu , dwell 1.00 sec , cone 90 V , probe temperature $350^{\circ} \mathrm{C}$. Retention times for the two peaks were $t_{\mathrm{R}}=14.15 \mathrm{~min}$ and $t_{\mathrm{R}}=14.75 \mathrm{~min}$ for the "L-Marfey's-(-)-albizziin" (217) and "D-Marfey's-(-)-albizziin" (218) products, respectively.

The L-Marfey's derivative of the hydrolysate from $\mathbf{1}$ had a retention time of $t_{\mathrm{R}}=14.13 \mathrm{~min}$. Coinjection of this sample with 217 showed a single peak with retention time of 14.15 min indicating an S configuration for the N^{3}-ureido-2,3-diaminopropionic acid residue in $\mathbf{1}$.

7.1.3. Chapter 2 Methods

Compounds 226, 227, and 239 through 241 were synthesized according to literature procedure and matched literature values.

(S)-N,N-dibenzyl-2-(tert-butyldiphenylsilyloxy)-1-((S)-oxiran-2-yl)ethanamine (228).

Under an atmosphere of nitrogen, $n-\mathrm{BuLi}(3.76 \mathrm{~mL}, 9.41 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of (S)-aldehyde $226(1.60 \mathrm{~g}, 3.15 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$ $(0.76 \mathrm{~mL}, 9.41 \mathrm{mmol})$ in anhydrous THF at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min then warmed to room temperature. The solution was stirred at room temperature for 1 hour then quenched with 10 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted
with ethyl ether ($4 \times 15 \mathrm{~mL}$) and combined extracts washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography on triethylamine-saturated silica (1\% triethylamine in 1:19 EtOAc:hexane) provided 228 $(1.34 \mathrm{~g}, 81 \%, \mathrm{de}=94 \%)$ as a light yellow viscous oil: IR (neat) $\vee 3069,3026,2998$, 2956, 2888, 2857, 2803, 1602, 1589, 1493, 1471, 1453, 1428, 1390, 1362, 1253, 1112, 1027, 866, 823, 740, 699, $612 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+5.6\left(c 5.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~s}, 9 \mathrm{H}), 2.60(\mathrm{dd}, J=4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H})$, 3.83-3.98(m, 6H), 7.20-7.50(m, 16H), $7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 19.3(\mathrm{C}), 27.0\left(\mathrm{CH}_{3}\right), 46.1\left(\mathrm{CH}_{2}\right), 51.3(\mathrm{CH}), 55.3\left(\mathrm{CH}_{2}\right), 60.5(\mathrm{CH}), 61.7$ $\left(\mathrm{CH}_{2}\right), 127.0(\mathrm{CH}), 127.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.6(\mathrm{CH}), 129.8(\mathrm{CH}), 129.9(\mathrm{CH}), 133.2$ (C), $133.4(\mathrm{C}), 135.7(\mathrm{CH}), 135.8(\mathrm{CH}), 140.3(\mathrm{C}) ;$ HRMS $m / z 522.2813[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1} 522.2828$.
(S)-2-(dibenzylamino)-2-((S)-oxiran-2-yl)ethanol (242). Under an atmosphere of nitrogen TBAF ($100 \mu \mathrm{~g}, 100 \mu \mathrm{~mol}, 1 \mathrm{M}$ in THF) was added to a stirred solution of epoxide $228(7.2 \mathrm{mg}, 14 \mu \mathrm{~mol})$ in THF ($50 \mu \mathrm{~L}$) at room temperature. The mixture was stirred for 1 hour then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 3 \mathrm{~mL})$ and combined extracts washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:3 ethyl acetate : hexane) provided the $\mathbf{2 4 2}(2.7 \mathrm{mg}, 67 \%)$ as a viscous oil. Compound 242 matched literature values and was used to verify the configuration of $\mathbf{2 2 8}$ as well as determine de by NMR.

(2S,3R)-1-(tert-butyldiphenylsilyloxy)-2-(dibenzylamino)-7-(4-

methoxybenzyloxy)hept-5-yn-3-ol (243). Under an atmosphere of nitrogen, n-BuLi (255
$\mu \mathrm{L}, 633 \mu \mathrm{~mol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of PMB protected propargyl alcohol ($121 \mathrm{mg}, 690 \mu \mathrm{~mol}$) in anhydrous THF at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour then cooled to $-78^{\circ} \mathrm{C}$ and epoxide $228(300 \mathrm{mg}, 575 \mu \mathrm{~mol}$ in THF) was added dropwise followed by slow addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(24.3 \mu \mathrm{~L}, 575 \mu \mathrm{~mol}$ in THF). The mixture was stirred for 1 hour then slowly warmed to $-10^{\circ} \mathrm{C}$. The solution was quenched with 10 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and combined extracts washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, 10\% ethyl acetate in hexane, $15 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 243 ($307 \mathrm{mg}, 76 \%$) as a viscous oil: IR (neat) $v 3463,3068,3027,2931,2856,2804,1612,1587,1513,1493,1471,1453,1428$, $1389,1360,1302,1249,1173,1112,1072,1037,939,823,743,700,614 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}$ $+6.2\left(c 6.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}, 9 \mathrm{H}), 2.35(\mathrm{ddt}, J=16.8$, $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.89(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-4.14(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.31(\mathrm{~m}$, $12 \mathrm{H}), 7.39-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2(\mathrm{C})$, $25.9\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 55.37\left(\mathrm{CH}_{2}\right), 55.39\left(\mathrm{CH}_{3}\right), 57.5\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 61.5\left(\mathrm{CH}_{2}\right)$, $70.3(\mathrm{CH}), 71.2\left(\mathrm{CH}_{2}\right), 78.3(\mathrm{C}), 84.1(\mathrm{C}), 113.9(\mathrm{CH}), 127.99(\mathrm{CH}), 128.0(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 128.9(\mathrm{CH}), 129.8(\mathrm{C}), 129.9(\mathrm{CH}), 130.1(\mathrm{CH}), 132.8(\mathrm{C}), 133.0(\mathrm{C}), 135.81$ (CH), $135.84(\mathrm{CH}), 139.8(\mathrm{C}), 159.0(\mathrm{C})$; HRFABMS m/z $698.3658[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Si}_{1} 698.3666$.
(2S,3R)-2-(dibenzylamino)-7-(4-methoxybenzyloxy)hept-5-yne-1,3-diol (244). Under an atmosphere of nitrogen, TBAF ($500 \mu \mathrm{~L}, 500 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF) was added dropwise to a stirred solution of alkyne $243(292 \mathrm{mg}, 418 \mu \mathrm{~mol})$ in anhydrous THF at $20^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 hours then quenched with 5 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl ether ($5 \times 5 \mathrm{~mL}$) and combined extracts washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica plug, 1:3 ethyl acetate : hexane, then 1:1 ethyl acetate : hexane) provided 244 ($181 \mathrm{mg}, 94 \%$) as a viscous oil: IR (neat) v 3422, 2061, 3027, 2935, 2836, $2806,2283,2233,1950,1884,1811,1612,1585,1513,1494,1454,1421,1356,1302$, $1249,1174,1132,1069,1033,914,849,821,749,700 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}-2.6(c 16.0$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{ddt}, J=16.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{ddt}, J=16.8,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{p}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{p}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 12 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.4\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 57.4\left(\mathrm{CH}_{2}\right), 59.2$ $\left(\mathrm{CH}_{2}\right), 61.7(\mathrm{CH}), 70.1(\mathrm{CH}), 71.5\left(\mathrm{CH}_{2}\right), 79.0(\mathrm{C}), 83.3(\mathrm{C}), 127.2(\mathrm{CH}), 128.4(\mathrm{CH})$, $129.0(\mathrm{CH}), 129.5$ (C), 129.8 (CH), 128.9 (CH), 139.4 (C), 159.4 (C); HRMS m/z $460.2481[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{1} \mathrm{O}_{4} 460.2488$.

(4R,5S)-N,N-dibenzyl-4-(4-(4-methoxybenzyloxy)but-2-ynyl)-2,2-dimethyl-1,3-

 dioxan-5-amine (245). Alkyne $244(150 \mathrm{mg}, 326 \mu \mathrm{~mol})$ and camphorsulfonic acid (3.8 $\mathrm{mg}, 0.016 \mu \mathrm{~mol}$) in dimethoxypropane (3 mL) and acetone (3 mL) was refluxed of 18 hours under an atmosphere of nitrogen. The mixture was quenched with 8 mL saturatedaqueous NaHCO_{3}, extracted with ethyl ether $(4 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 15% ethyl acetate in hexane) provided $245(157 \mathrm{mg}, 96 \%)$ as a viscous oil: IR (neat) v 3084, 3061, 3028, 2991, 2937, 2835, 2806, 1949, 1880, 1812, $1612,1586,1513,1493,1454,1378,1302,1249,1225,1173,1142,1073,1035,976$. $894,822,748,700 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+7.6\left(c 9.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{ddt}, J=16.8,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.88-4.04(\mathrm{~m}, 5 \mathrm{H}), 4.08-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5\left(\mathrm{CH}_{3}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 54.8\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 57.31\left(\mathrm{CH}_{2}\right), 57.34(\mathrm{CH}), 58.0\left(\mathrm{CH}_{2}\right), 69.1$ $(\mathrm{CH}), 70.7\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{C}), 84.1(\mathrm{C}), 99.4(\mathrm{C}), 113.8(\mathrm{CH}), 127.2(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.8(\mathrm{CH}), 129.8(\mathrm{C}), 129.9(\mathrm{CH}), 139.3(\mathrm{C}), 159.3(\mathrm{C}) ;$ HRMS $m / z 500.2801[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{1} \mathrm{O}_{4} 500.2801$.
(6S,7R)-6-(dibenzylamino)-2,2,13,13,14,14-hexamethyl-3,3-diphenyl-4,12-dioxa-3,13-disilapentadec-9-yn-7-ol (230). Under an atmosphere of nitrogen, $n-\operatorname{BuLi}(253 \mu \mathrm{~L}, 632$ $\mu \mathrm{mol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of O - t-butyldimethysilyl propargyl ether $(118 \mathrm{mg}, 690 \mu \mathrm{~mol})$ in anhydrous THF $(1.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour then cooled to $-78^{\circ} \mathrm{C}$ and epoxide $228(300 \mathrm{mg}, 575 \mu \mathrm{~mol}$ in THF $(1.2 \mathrm{~mL}))$ was added dropwise followed by slow addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(73 \mu \mathrm{~L}, 575$ $\mu \mathrm{mol})$. The mixture was stirred for 1 hour then warmed to room temperature overnight. The solution was quenched with 10 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl ether $(3 \times 20 \mathrm{~mL})$ and combined extracts washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica cartridge, 1:19 EtOAc:hexane, $13 \mathrm{~mL} / \mathrm{min}$ flow rate) provided $230(283 \mathrm{mg}, 71 \%)$ as a viscous oil: IR (neat) v 3472, 3059, 3018, 2960, 2927, 2853, 1475, 1433, 1359, 1252, 1112, 1079, 831, $691 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+24.5\left(c\right.$ 18.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.72-7.76 (m, 4H), 7.40-7.49 (m, 6H), 7.20-7.30 (m, 10H), $4.23(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.79-2.84 (m, 1H), $2.78(\mathrm{dt}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddt}, J=$ $17.0,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.9(\mathrm{C}), 135.9(\mathrm{CH}), 135.8(\mathrm{CH}), 133.1(\mathrm{C}), 132.9(\mathrm{C}), 130.0(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.1(\mathrm{CH}), 82.4(\mathrm{C}), 81.0(\mathrm{C}), 70.1(\mathrm{CH})$, $61.5(\mathrm{CH}), 61.4\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 19.2$ (C), $18.5(\mathrm{C}),-5.0\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 691.3871[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{Si}_{2}$ 691.3871.
(2S,3R)-2-(dibenzylamino)hept-5-yne-1,3,7-triol (247). Under an atmosphere of nitrogen TBAF ($296 \mathrm{mg}, 938 \mu \mathrm{~mol}$) was added to a stirred solution of alkyne 230 (270 $\mathrm{mg}, 390 \mu \mathrm{~mol})$ in THF (3 mL) at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 2 hours then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica cartridge, $1: 19 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~mL} / \mathrm{min}$ flow rate) provided the 247 (129 $\mathrm{mg}, 97 \%$) as a viscous oil: IR (neat) $v 3355,2920,2843,1499,1452,1367,1134,1072$, $1033 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+1.3\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.35(\mathrm{~m}$,
$10 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{dd}, J=11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=17.2,7.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.3(\mathrm{CH}), 127.1(\mathrm{CH})$, $82.8(\mathrm{C}), 81.0(\mathrm{C}), 69.9(\mathrm{CH}), 61.5(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right)$; HREIMS $m / z 339.1824[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{O}_{3} 339.1829$.

4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)but-2-yn-1-ol (246). A

 sealed vial containing 247 ($44.3 \mathrm{mg}, 130 \mu \mathrm{~mol}$, in 1:1 2,2-dimethoxypropane /acetone (2 $\mathrm{mL})$) and CSA ($4.5 \mathrm{mg}, 20 \mu \mathrm{~mol}$) was heated at $50^{\circ} \mathrm{C}$ with stirring for 2 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was redissolved in 1.5 mL of 4:2:1 THF/acetic acid/water and stirred for 1 hour at room temperature. The stirred mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ extracted with ethyl ether $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica cartridge, 20\% ethyl acetate in hexane, $12 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 246 ($399 \mathrm{mg}, 79 \%$) as a viscous oil: IR (neat) v $3445,3085,3060,3027,2991,2935,2834,2806,1949,1871,1816,1602,1585,1494$, $1453,1378,1245,1224,1198,1161,1142,1106,1057,1027,974,894,822,748,699$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23} 8.1\left(c 0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 2.38(\mathrm{ddt}, J=17.0,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=17.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=$ $9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-4.02(\mathrm{~m}, 5 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.36$$(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 51.5\left(\mathrm{CH}_{2}\right)$, $54.9\left(\mathrm{CH}_{2}\right), 57.0(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 68.9(\mathrm{CH}), 79.8(\mathrm{C}), 83.1(\mathrm{C}), 99.6(\mathrm{C}), 127.3(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.9(\mathrm{CH}), 139.5(\mathrm{C}) ;$ HRMS $m / z 380.2212[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{1} \mathrm{O}_{3}$ 380.2226 .

(E)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)but-2-en-1-ol (249).

 Under an atmosphere of nitrogen, Red-Al $65 \mathrm{wt} \%$ in toluene ($87.4 \mu \mathrm{~L}, 291 \mu \mathrm{~mol}$) was added dropwise to a stirred solution of $\mathbf{2 4 6}(22 \mathrm{mg}, 58.2 \mu \mathrm{~mol})$ in anhydrous ethyl ether $(600 \mu \mathrm{~L})$ at $-10^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred overnight. After 20 hours the reaction was cooled to $-10^{\circ} \mathrm{C}$ and quenched by dropwise addition of a 1:3 $\mathrm{H}_{2} 0:$ THF $(300 \mu \mathrm{~L})$, warmed to room temperature and added to saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether ($4 \times 3 \mathrm{~mL}$) and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 30\% ethyl acetate in hexane) provided 249 (17.2 mg, 78\%) as a viscous oil: IR (neat) v 3432, 3060, 3026, 2990, 2938, 2835, $2807,1494,1453,1378,1224,1201,1105,973,745,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23} 11.5(c 1.78$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.36(\mathrm{bm}, 10 \mathrm{H}), 5.61(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.53(\mathrm{dt}, J=15.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.10(\mathrm{bm}, 2 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.50(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{p}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.7(\mathrm{C}), 131.1(\mathrm{CH}), 129.3(\mathrm{CH})$, $129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 99.3(\mathrm{C}), 69.7(\mathrm{CH}), 63.9\left(\mathrm{CH}_{2}\right), 57.9\left(\mathrm{CH}_{2}\right), 57.5$ $(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS} m / z 382.2386[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{1} \mathrm{O}_{3} 382.2382$.(3-(((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-2$\mathbf{y l})$ methanol $(\mathbf{2 5 0}+\mathbf{2 5 1})$. To a solution of $\mathbf{2 4 9}(4.57 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dichloromethane $(66 \mathrm{~mL})$ at room temperature was added m-chloroperoxybenzoic acid $(1.97 \mathrm{~g}, 11.4$ mmol). The solution was stirred for 4 minutes and then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. The aqueous layer was extracted with hexane $(4 \times 100 \mathrm{~mL})$ and the combined extracts washed with brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography on triethylamine saturated silica (25\%, $\mathbf{3 0 \%}$ then $\mathbf{5 0 \%}$ ethyl acetate in hexane) provided an inseparable mixture of $\mathbf{2 5 0}$ and $\mathbf{2 5 1}$ (3.12 g, 69\%, 1.8:1 of $\mathbf{2 5 0} \mathbf{2 5 1}$ by NMR analysis) as a viscous oil.

Synthesis of protected epoxides 252 and 253. To a solution of a 1:1 mixture of $\mathbf{2 5 0}$ and $251(69 \mathrm{mg}, 173 \mu \mathrm{~mol})$ in DMF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added imidazole (25 $\mathrm{mg}, 347 \mu \mathrm{~mol}$) and tert-butylchlorodimethylsilane ($34 \mathrm{mg}, 226 \mu \mathrm{~mol}$). The mixture was warmed to room temperature and stirred for 4 hours. The reaction was quenched with 7 mL water, extracted with ethyl ether $(3 \times 3 \mathrm{~mL})$ and the combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 3\% ethyl acetate in hexane) provided 252 and 253 (41.2 mg and 37.0 mg respectively, 88%) as viscous oils:
(4R,5S)-N,N-dibenzyl-4-(((2S,3S)-3-((tert-butyldimethylsilyloxy)methyl)oxiran-2-yl)methyl)-2,2-dimethyl-1,3-dioxan-5-amine (252). IR (neat) v 3026, 2952, 2926, 2853, 1442, 1376, 1252, 1227, 1103, 831, 773, 749, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+6.2\left(c 2.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.96(\mathrm{~m}, 5 \mathrm{H})$,
$3.75(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.83-2.88 (m, 2H), $2.76(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=14.4,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{ddd}, J=14.4,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5(\mathrm{C}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH})$, $127.3(\mathrm{CH}), 99.2(\mathrm{C}), 67.8(\mathrm{CH}), 63.9\left(\mathrm{CH}_{2}\right), 58.3(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 54.8$ $\left(\mathrm{CH}_{2}\right), 53.8(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}),-5.1\left(\mathrm{CH}_{3}\right)$, , $5.2\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 511.3107[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Si}_{1} 511.3112$.
((4R,5S)-N,N-dibenzyl-4-(((2R,3R)-3-((tert-butyldimethylsilyloxy)methyl)oxiran-2-yl)methyl)-2,2-dimethyl-1,3-dioxan-5-amine (253). IR (neat) v 3018, 2919, 2853, 1450, 1376, 1252, 1112, 839, 782, $740 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+10.5\left(c 1.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{td}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J$ $=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J$ $=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~m}$, $1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=14.4,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.48(\mathrm{ddd}, J=14.4,9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH})$, $127.2(\mathrm{CH}), 99.3(\mathrm{C}), 67.7(\mathrm{CH}), 63.7\left(\mathrm{CH}_{2}\right), 59.4(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 54.8$ $\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH}), 35.6\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}),-5.1\left(\mathrm{CH}_{3}\right)$, , $5.2\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 511.3116[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Si}_{1} 511.3112$.

((2S,3S)-3-(((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-

 2-yl)methanol (250). Under an atmosphere of nitrogen, TBAF ($20 \mathrm{mg}, 63 \mu \mathrm{~mol}$) was added to a stirred solution of epoxide $252(22 \mathrm{mg}, 43 \mu \mathrm{~mol})$ in THF $(400 \mu \mathrm{~L})$ at $-20^{\circ} \mathrm{C}$.The mixture was stirred for 18 hours then quenched by addition of water (2 mL). The mixture was extracted with ethyl acetate $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with $\mathrm{Et}_{3} \mathrm{~N}, ~ 1: 3 \mathrm{EtOAc}:$ hexane) provided $\mathbf{2 5 0}(15 \mathrm{mg}$, 88%) as a viscous oil: IR (neat) $v 3439,2989,2930,1494,1460,1222,1103,746,695$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+8.1\left(c\right.$ 1.48, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.34(\mathrm{~m}, 8 \mathrm{H})$, 7.22-7.28 (m, 2H), 3.80-4.00(m, 6H), 3.46-3.56(m, 3H), 2.87-2.94 (m, 2H) $2.77(\mathrm{dt}, J=$ $10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=14.4,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=14.4,8.0,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $139.5(\mathrm{C}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 99.3(\mathrm{C}), 67.6(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 58.0$ $\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 57.8(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 397.2251[M]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{4} 397.2248$.

((2R,3R)-3-(((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-

2-yl)methanol (251). Under an atmosphere of nitrogen, TBAF ($13 \mathrm{mg}, 41 \mu \mathrm{~mol}$) was added to a stirred solution of epoxide $253(18 \mathrm{mg}, 35 \mu \mathrm{~mol})$ in THF $(400 \mu \mathrm{~L})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 15 hours then quenched by addition of water (5 mL). The mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with $\mathrm{Et}_{3} \mathrm{~N}, 1: 3 \mathrm{EtOAc}:$ hexane) provided $251(11.3 \mathrm{mg}$, 81%) as a viscous oil: IR (neat) v 3448, 2981, 2921, 1494, 1451, 1375, 1222, 1112, 746, $695 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+15.3\left(c 1.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.33(\mathrm{~m}$, $8 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{td}, J=9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.91(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=12.4,5.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{ddd}, J=6.8,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{dt}, J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=14.4,7.2,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{ddd}, J=14.4,9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 99.3(\mathrm{C}), 67.6(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 59.0(\mathrm{CH}), 58.0\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH}), 54.8\left(\mathrm{CH}_{2}\right)$, $53.2(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 397.2250[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{4}$ 397.2248.
(2R,3S)-2-azido-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butane-1,3-diol (233). Under an atmosphere of nitrogen, (MeO) $)_{3} \mathrm{~B}(8.0 \mu \mathrm{~L}, 7.3 \mathrm{mg}, 70 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{2 5 0}(14 \mathrm{mg}, 35 \mu \mathrm{~mol})$ in anhydrous DMF $(180 \mu \mathrm{~L})$. The solution was stirred for 30 min at room temperature then $\mathrm{NaN}_{3}(4.6 \mathrm{mg}, 70 \mu \mathrm{~mol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 hours. The reaction was cooled to room temperature and quenched by addition of a saturated solution of NaHCO_{3} $(3.0 \mathrm{~mL})$ and the solution stirred a further 30 minutes. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 2:3 EtOAc:hexane) provided $\mathbf{2 3 3}$ and $\mathbf{2 5 4}$ (10.2 mg and 2.8 mg respectively, 85\%) as viscous oils. Characterization for 233: IR (neat) v 3456, 2989, 2938, 2879, 2089, 1494, 1451, 1383, 1265, 1222, 1069, 967, 891, 823, $738 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+8.0\left(c 1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.37(\mathrm{~m}, 10 \mathrm{H}), 3.96-4.06(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.74-$ $3.86(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{dt}, J=6.8,5.2$
$\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=14.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.1(\mathrm{C})$, $129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.6(\mathrm{CH}), 99.5(\mathrm{C}), 73.3(\mathrm{CH}), 71.5(\mathrm{CH}), 66.8(\mathrm{CH}), 63.2$ $\left(\mathrm{CH}_{2}\right), 58.4(\mathrm{CH}), 57.8\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 440.2429[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} 440.2418$.
(2R,3S,5R,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (220). A mixture of $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}$, $1.3 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $233(6.0 \mathrm{mg}, 13.6 \mu \mathrm{~mol})$ in methanol $(0.5 \mathrm{~mL})$ was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 16 hours TMSCl (10.0 $\mu \mathrm{L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added and the mixture stirred a further 3 hours. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 14 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $\mathbf{2 2 0}(2.5 \mathrm{mg}, 69 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.16$ (apparent $\mathrm{p}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 $(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45$ (apparent $\mathrm{p}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.88(\mathrm{dt}, J=10.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{D}_{2} \mathrm{O}$, ref $\left.\mathrm{CH}_{3} \mathrm{CN}\right) \delta 67.4(\mathrm{CH}), 58.0\left(\mathrm{CH}_{2}\right)$, $56.6(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right) ;$ HRESIMS m / z 195.1333 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 195.1339.
(2S,3R)-2-azido-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butane-
1,3-diol (234). Under an atmosphere of nitrogen, (MeO) ${ }_{3} \mathrm{~B}(6.3 \mu \mathrm{~L}, 5.8 \mathrm{mg}, 55 \mu \mathrm{~mol})$
was added to a solution of $\mathbf{2 5 1}(11 \mathrm{mg}, 28 \mu \mathrm{~mol})$ in anhydrous DMF $(140 \mu \mathrm{~L})$. The solution was stirred for 30 min at room temperature then $\mathrm{NaN}_{3}(3.6 \mathrm{mg}, 55 \mu \mathrm{~mol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 hours. The reaction was cooled to room temperature and quenched by addition of a saturated solution of NaHCO_{3} $(3.0 \mathrm{~mL})$ and the solution stirred a further 30 minutes. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:3 to 2:3 EtOAc: hexane) provided 234 and $\mathbf{2 5 5}$ (8.2 mg and 0.8 mg respectively, 74%) as a viscous oil. Characterization of 234: IR (neat) v 3439, 3032, 2989, 2921, 2887, 2802, 2097, 1494, 1451, 1375, 1265, 1103, 1018, 967, 823, 755, $695 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+10.0(c 0.99$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.35(\mathrm{~m}, 10 \mathrm{H}), 3.96-4.06(\mathrm{~m}, 3 \mathrm{H}), 4.12-4.20$ (m, 2H), $3.98(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.98(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H})$, $3.52(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dt}, J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=14.6,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddd}, J=14.6,6.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8(\mathrm{C}), 129.2(\mathrm{CH})$, $128.6(\mathrm{CH}), 127.6(\mathrm{CH}), 99.7(\mathrm{C}), 70.2(\mathrm{CH}), 68.7(\mathrm{CH}), 66.3(\mathrm{CH}), 63.2\left(\mathrm{CH}_{2}\right), 57.8$ $\left(\mathrm{CH}_{2}\right), 57.5(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right) ;$ HREIMS m / z $440.2417[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} 440.2418$.
(2S,3R,5R,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (221). A mixture of $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}$, $1.3 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $234(6.0 \mathrm{mg}, 13.6 \mu \mathrm{~mol})$ in methanol $(0.5 \mathrm{~mL})$ was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 16 hours TMSCl (10.0 $\mu \mathrm{L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added and the mixture stirred a further 3 hours. The mixture
was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}, 1.3 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 14 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $221(3.2 \mathrm{mg}, 88 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.16(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.77(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ (apparent dt, $J=8.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dd}, J=$ 8.0, $5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, ref $\left.\mathrm{CH}_{3} \mathrm{CN}\right) \delta 65.9(\mathrm{CH}), 58.0\left(\mathrm{CH}_{2}\right), 57.3$ $(\mathrm{CH}), 35.8\left(\mathrm{CH}_{2}\right)$; HREIMS $m / z 194.1260[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ 194.1267.
($2 R, 3 S, 5 R, 6 S$)-2-azido-6-(dibenzylamino)heptane-1,3,5,7-tetraol (256). Compound $233(13.0 \mathrm{mg}, 29.5 \mu \mathrm{~mol})$ in methanol:acetic acid 3:1 ($900 \mu \mathrm{~L}$) was heated to $70^{\circ} \mathrm{C}$. The mixture was stirred for 23 hours then concentrated under reduced pressure. Flash chromatography (silica, 1:1 ethyl acetate:hexane then 10% methanol in chloroform) provided 256 (11.2 mg, 95\%) as a viscous oil: IR (neat) v 3371, 3023, 2921, 2794, 2097, $1494,1451,1367,1307,1265,1112,1061,1018.848,746,704 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+0.6(c 2.19$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.24(\mathrm{~m}, 10 \mathrm{H}), 4.15(\mathrm{ddd}, J=10.0,8.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=$ $10.0,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{q}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 74.0(\mathrm{CH}), 73.5(\mathrm{CH})$, 66.8, $62.8\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 59.8\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right)$; HRFABMS m / z $401.2190[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} 401.2183$.
($6 R, 7 S, 9 R, 10 S$)-6-azido-10-(dibenzylamino)-2,2,14,14-tetramethyl-3,3,13,13-tetraphenyl-4,12-dioxa-3,13-disilapentadecane-7,9-diol (257). Under an atmosphere of nitrogen tert-butyldiphenylchlorosilane ($13.5 \mu \mathrm{~L}, 51.9 \mu \mathrm{~mol}$) was added to a stirred solution of tetraol $\mathbf{2 5 6}(10.4 \mathrm{mg}, 26.0 \mu \mathrm{~mol})$ and imidazole $(4.9 \mathrm{mg}, 68 \mu \mathrm{~mol})$ in dimethylformamide $(130 \mu \mathrm{~L})$ at room temperature. The mixture was stirred for 2 hours then quenched by addition of water (5 mL). The mixture was extracted with ethyl ether (4 $\times 3 \mathrm{~mL}$) and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% ethyl acetate in hexane) provided 257 ($17.3 \mathrm{mg}, 76 \%$) as a viscous oil: IR (neat) v 3465, 3066, 3023, 2930, 2853, 2097, 1468, 1434, 1265, 1112, 814, 746, 704, $610 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+3.1(c 5.46$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.66(\mathrm{~m}, 8 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 12 \mathrm{H}), 7.28-7.16$ $(\mathrm{m}, 10 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{dd}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 3 \mathrm{H}), 2.74(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.32-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C})$, $135.8(\mathrm{CH}), 137.7(\mathrm{CH}), 133.3(\mathrm{C}), 133.2(\mathrm{C}), 132.6(\mathrm{C}), 132.5(\mathrm{C}), 130.3(\mathrm{CH}), 130.2$ $(\mathrm{CH}), 130.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 74.1$ $(\mathrm{CH}), 72.3(\mathrm{CH}), 68.2(\mathrm{CH}), 64.5\left(\mathrm{CH}_{2}\right), 62.0(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C}), 19.2(\mathrm{C})$; HRFABMS $m / z 877.4553[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{2}$ 877.4539.

(S)-1-((4R,6S)-6-((R)-1-azido-2-(tert-butyldiphenylsilyloxy)ethyl)-2,2-dimethyl-1,3-

 dioxan-4-yl)- N, N-dibenzyl-2-(tert-butyldiphenylsilyloxy)ethanamine (258). A sealedvial containing diol $257(17.0 \mathrm{mg}, 19.4 \mu \mathrm{~mol})$ and PPTS ($2.4 \mathrm{mg}, 9.7 \mu \mathrm{~mol}$) in 1:1 2,2dimethoxypropane:acetone (1 mL) was heated at $50^{\circ} \mathrm{C}$ with stirring for 1.5 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:19 EtOAc:hexane) provided $258(17.2 \mathrm{mg}$, 97%) as a viscous oil: IR (neat) $v \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+6.5\left(c 6.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70-7.80(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 12 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.22(\mathrm{ddd}, J=$ $11.6,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.92(\mathrm{~m}, 5 \mathrm{H}), 3.81(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.80(\mathrm{dt}, J=7.2,4,4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dt}, J=13.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}: \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.74-7.64 (m, 8H), 7.32-7.24 (m, 12H), 7.22-7.14 (m, 8H), 7.12-7.06 (m, 2H), 4.14 (ddd, $J=10.4,8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{ddd}$, $J=11.6,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{dt}, J$ $=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4(\mathrm{C}), 135.9(\mathrm{CH}), 135.8$ $(\mathrm{CH}), 135.74(\mathrm{CH}), 135.71(\mathrm{CH}), 133.6(\mathrm{C}), 133.5(\mathrm{C}), 133.2(\mathrm{C}), 133.1(\mathrm{C}), 129.9(\mathrm{CH})$, $129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH})$, $127.0(\mathrm{CH}), 98.8(\mathrm{C}), 68.0(\mathrm{CH}), 67.2(\mathrm{CH}), 67.1(\mathrm{CH}), 63.2\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 59.2$ $\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C})$, 19.2 (C); HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{2}$.
(2R,3S)-4-(tert-butyldiphenylsilyloxy)-1-chloro-3-(dibenzylamino)butan-2-ol (260).
Under an atmosphere of nitrogen, $n-\mathrm{BuLi}(7.50 \mathrm{~mL}, 1.87 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of ester $227(5.04 \mathrm{~g}, 0.94 \mathrm{mmol})$ and chloroiodomethane ($1.36 \mathrm{~mL}, 1.87 \mathrm{mmol}$) in anhydrous THF at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 90 min then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was extracted with dichloromethane $(4 \times 25 \mathrm{~mL})$ and combined extracts washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure, providing crude $\mathbf{2 5 9}(5.7 \mathrm{~g})$ as a yellow viscous oil. The crude ketone $\mathbf{2 5 9}$ was reduced without further purification. Under an atmosphere of nitrogen, LAH ($0.47 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a stirred solution of ketone 259 ($5.2 \mathrm{~g}, 0.93 \mathrm{mmol}$) in anhydrous THF (45 mL) at $-91{ }^{\circ} \mathrm{C}$. The mixture was stirred for 20 hours then quenched by addition of dropwise addition of water $(5 \mathrm{~mL})$. The solution was stirred at $-91^{\circ} \mathrm{C}$ for 1 hour then quenched with 30 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$) and combined extracts washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Recrystallization from 30:1 hexane : dichloromethane gave pure $\mathbf{2 6 0}(3.82 \mathrm{~g})$ as white crystals. The mother liquor was concentrated under reduced pressure and chromatographed on silica (1:19

EtOAc:hexane) providing additional $\mathbf{2 6 0}(336 \mathrm{mg})$ as a mixture with other diastereomers. Combined yield was 80% over two steps, $\mathrm{de}=94 \%$ based on NMR: IR (neat) $v 3415$, $3065,3030,2925,2855,1955,1885,1816,1588,1495,1472,1452,1425,1390,1359$, $1262,1105,742,703,610,501 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+41.4\left(c\right.$ 14.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 10 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H})$, $3.96(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{bm}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=$
$13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dt}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.7(\mathrm{C}), 135.7(\mathrm{CH}), 135.6(\mathrm{CH}), 132.7(\mathrm{C}), 132.6(\mathrm{C})$, $130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 68.3(\mathrm{CH})$, $61.1(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 19.4(\mathrm{C}) ;$ HRMS m / z $557.2520[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1}$ 557.2517.

(S)-N,N-dibenzyl-2-(tert-butyldiphenylsilyloxy)-1-((R)-oxiran-2-yl)ethanamine (229).

Under an atmosphere of nitrogen, n-BuLi ($197 \mu \mathrm{~L}, 492 \mu \mathrm{~mol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of alcohol $\mathbf{2 6 0}(211 \mathrm{mg}, 379 \mu \mathrm{~mol})$ in anhydrous THF at $-78^{\circ} \mathrm{C}$. The stirred mixture was warmed to room temperature for 45 min then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$) and combined extracts washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography on triethylamine saturated silica (3\% ethyl acetate in hexane) provided 229 ($181 \mathrm{mg}, 91 \%$) as a light yellow viscous oil: IR (neat) v 3458, 3065, 3030, 2960, 2917, 2855, 1947, $1894,1816,1588,1495,1472,1452,1425,1359,1254,1115,823,742,695,610 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{24}+21.0\left(c 8.91, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.38-$ $7.52(\mathrm{~m}, 10 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 2 \mathrm{H}) 3.84-4.00(\mathrm{~m}, 6 \mathrm{H}), 3.26(\mathrm{ddd}, J=$ $4.8,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=4.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J$ $=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2(\mathrm{C}), 135.52(\mathrm{CH})$, $135.49(\mathrm{CH}), 133.2(\mathrm{C}), 133.1(\mathrm{C}), 129.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH})$, $126.7(\mathrm{CH}), 63.5\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 55.6\left(\mathrm{CH}_{2}\right), 51.8(\mathrm{CH}), 44.9\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 19.3$ (C); HRMS $m / z 521.2752[M]^{+}$, calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1} 521.2750$.
(6S,7S)-6-(dibenzylamino)-2,2,13,13,14,14-hexamethyl-3,3-diphenyl-4,12-dioxa-3,13-disilapentadec-9-yn-7-ol (261). Under an atmosphere of nitrogen, $n-\operatorname{BuLi}(2.1 \mathrm{~mL}, 5.25$ mmol, 2.5 M in hexane) was added dropwise to a stirred solution of $O-t-$ butyldimethysilyl propargyl ether ($970 \mathrm{mg}, 5.73 \mathrm{mmol}$) in anhydrous THF (16 mL) at $20^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour then cooled to $-78^{\circ} \mathrm{C}$ and epoxide $229(2.49 \mathrm{~g}$, 4.77 mmol in THF $(8 \mathrm{~mL})$) was added dropwise followed by slow addition of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($605 \mu \mathrm{~L}, 4.77 \mathrm{mmol}$). The mixture was stirred for 1 hour then warmed to room temperature overnight. The solution was cooled to $-78^{\circ} \mathrm{C}$ and quenched with 25 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$) and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 7\% ethyl acetate in hexane) provided $261(2.63 \mathrm{~g}$, 80%) as a viscous oil: IR (neat) v 3439, 3067, 2960, 2919, 2853, 1475, 1425, 1244, 1079, 831, $691 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+28.1\left(c 7.54, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (bs, $4 \mathrm{H}), 7.40-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 10 \mathrm{H}), 4.29(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{dt}, J=15.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{dt}, J=15.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.88(\mathrm{bs}, 1 \mathrm{H}), 2.43(\mathrm{bd}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{bd}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}$, 9H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9(\mathrm{C}), 135.7(\mathrm{CH})$, $135.6(\mathrm{CH}), 132.8(\mathrm{C}), 132.7(\mathrm{C}), 130.0(\mathrm{CH}), 129.9(\mathrm{CH}), 129.1(\mathrm{CH}), 128.4(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 81.4(\mathrm{C}), 80.5(\mathrm{C}), 65.9(\mathrm{CH}), 62.4\left(\mathrm{CH}_{2}\right), 60.3(\mathrm{CH}), 54.7$ $\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 19.4(\mathrm{C}), 18.5(\mathrm{C}),-4.80\left(\mathrm{CH}_{3}\right),-$ $4.84\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 691.3875[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{43} \mathrm{H}_{57} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{Si}_{2} 691.3871$.
(2S,3S)-2-(dibenzylamino)hept-5-yne-1,3,7-triol (262). Under an atmosphere of nitrogen TBAF ($2.60 \mathrm{~g}, 8.24 \mathrm{mmol}$) was added to a stirred solution of alkyne $261(2.48 \mathrm{~g}$, $3.58 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 4 hours then quenched by addition of water (75 mL). The mixture was extracted with ethyl acetate (4 $\times 50 \mathrm{~mL})$ and combined extracts washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:1 EtOAc:hexane then 6:94 MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided $262(0.99 \mathrm{~g}, 82 \%)$ as a viscous oil: IR (neat) v 3373, 2927, 1861, 1491, 1458, 1136, 1070, 1013, 763, $695 \mathrm{~cm}^{-1} ;[\alpha]_{D}^{25}+31.5\left(c 9.05, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.35(\mathrm{~m}, 10 \mathrm{H}), 4.09(\mathrm{~b}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{dt}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ $(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0$ (C), $129.3(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 82.2(\mathrm{C}), 80.8(\mathrm{C}), 67.1(\mathrm{CH}), 62.2(\mathrm{CH}), 58.5$ $\left(\mathrm{CH}_{2}\right)$, $54.6\left(\mathrm{CH}_{2}\right), 50.8\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$; HREIMS $m / z 339.1835[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{O}_{3}$ 339.1829.

4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)but-2-yn-1-ol (231). A

 sealed vial containing alkyne 262 ($842 \mathrm{mg}, 2.48 \mathrm{mmol}$, in 1:1 2,2-dimethoxypropane /acetone $(10 \mathrm{~mL}))$ and CSA ($120 \mathrm{mg}, 520 \mu \mathrm{~mol}$) was heated at $50^{\circ} \mathrm{C}$ with stirring for 14 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was redissolved in 4 mL of 4:2:1 THF/acetic acid/water and stirred for 1 hour at room temperature. The stirred mixture was quenchedwith saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, 1:3

EtOAc:hexane, $20 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 231 ($755 \mathrm{mg}, 80 \%$) as a viscous oil: IR (neat) v 3439, 3032, 2989, 2930, 2862, 2802, 1604, 1494, 1451, 1383, 1188, 1137, 1103, $1010,746,695 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+97.1\left(c\right.$ 6.58, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43$ (bd, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.35$ (bt, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.26$ (bt, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (d, $J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{bd}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{bs}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=12.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{ddt}, J=18.0,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddt}, J=$ 18.0, 6.0, 2.0 Hz, 1H), $2.53(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2(\mathrm{C}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 126.9(\mathrm{CH}), 99.0(\mathrm{C}), 83.0(\mathrm{C}), 79.7$ (C), $72.1(\mathrm{CH}), 58.4\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{2}\right), 50.2(\mathrm{CH}), 29.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right)$, $18.7\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 379.2136[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{1} \mathrm{O}_{3} 379.2142$.

(E)-4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)but-2-en-1-ol (235).

Under an atmosphere of nitrogen, Red-Al $65 \mathrm{wt} \%$ in toluene ($764 \mu \mathrm{~L}, 2.67 \mathrm{mmol}$) was added dropwise to a stirred solution of alkyne $\mathbf{2 3 1}(191 \mathrm{mg}, 535 \mu \mathrm{~mol})$ in anhydrous ethyl ether (5.0 mL) at $-10^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred overnight. After 20 hours the reaction was cooled to $-10^{\circ} \mathrm{C}$ and quenched by dropwise addition of a 1:3 $\mathrm{H}_{2} 0:$ THF $(1.5 \mathrm{~mL})$, warmed to room temperature and added to saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 5 \mathrm{~mL})$ and combined extracts washed with water $(5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica
cartridge, 20% ethyl acetate in hexane, $13 \mathrm{~mL} / \mathrm{min}$ flow rate) provided $\mathbf{2 3 5}$ (183.1 mg , 95%) as a viscous oil: IR (neat) v 3406, 3026, 2993, 2935, 2861, 2795, 2366, 2325, 1491, $1458,1376,1367,1260,1194,1095,1004,963,740,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+42.8(c 8.39$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{dt}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{bd}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.03(\mathrm{bs}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3(\mathrm{C})$, $131.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 126.8(\mathrm{CH}), 98.6(\mathrm{C}), 72.7(\mathrm{CH}), 63.4$ $\left(\mathrm{CH}_{2}\right), 58.1\left(\mathrm{CH}_{2}\right), 56.0\left(\mathrm{CH}_{2}\right), 50.6(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 381.2302[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{3} 381.2298$.

(Z)-4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)but-2-en-1-ol (236).

To a solution of alkyne $\mathbf{2 3 1}(25 \mathrm{mg}, 66 \mu \mathrm{~mol})$ in 1:1 ethanol:hexane (5.0 mL) was added quinoline ($100 \mu \mathrm{~L}$ of $20 \mu \mathrm{~L} / 10 \mathrm{~mL}$ solution in hexane) and Lindlar catalyst ($14 \mathrm{mg}, 6.6$ $\mu \mathrm{mol}$). The mixture was placed under hydrogen (1 atm) at room temperature and stirred for 20 minutes. The solution was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure to provided $\mathbf{2 3 6}$ ($25 \mathrm{mg}, 99 \%$) as a viscous oil: IR (neat) v 3423, 2026, 2992, 2923, 2854, 1493, 1450, 1381, 1260, 1200, 1148, 1070, 1010, $958,898,821,752,700 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{22}+9.6\left(c 2.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{dt}, J=$ $10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{bd}, J=14.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.21(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$
(dtd, $J=14.8,9.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40$ $(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4(\mathrm{C}), 131.0(\mathrm{CH}), 130.1(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.0(\mathrm{CH}), 99.1(\mathrm{C}), 72.0(\mathrm{CH}), 58.3\left(\mathrm{CH}_{2}\right), 57.7\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right), 51.8$ $(\mathrm{CH}), 30.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 382.2380[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{1} \mathrm{O}_{3}$ 382.2377.

(3-(((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-2-

 yl)methanol (263+264). To a solution of alkene $\mathbf{2 3 5}(100 \mathrm{mg}, 262 \mu \mathrm{~mol})$ in dichloromethane $(0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added pyridine ($2.5 \mu \mathrm{~L}, 31 \mu \mathrm{~mol}$), methyltrioxorhenium ($3.3 \mathrm{mg}, 12 \mu \mathrm{~mol}$) and hydrogen peroxide ($40 \mu \mathrm{~L}$ of 30% solution, $393 \mu \mathrm{~mol})$. Solution was warmed to room temperature and stirred for 1 hour, then quenched with water $(3 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with triethylamine, 1:3 EtOAc:hexane) provided recovered starting material 235 ($24.2 \mathrm{mg}, 24 \%$) and an inseparable mixture of $\mathbf{2 6 3}$ and $\mathbf{2 6 4}(10.9 \mathrm{mg}, 14 \%$ adjusted for recovered starting material, dr 1:1 of 263:264 by NMR) as a viscous oil.
2-azido-4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butane-1,3-diol

 (265-268). Under an atmosphere of nitrogen, (MeO) $)_{3} \mathrm{~B}(11.3 \mu \mathrm{~L}, 10.4 \mathrm{mg}, 99.6 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{2 6 3}$ and $\mathbf{2 6 4}(18 \mathrm{mg}, 45 \mu \mathrm{~mol})$ in anhydrous DMF $(250 \mu \mathrm{~L})$. The solution was stirred for 30 min at room temperature then $\mathrm{NaN}_{3}(6.47 \mathrm{mg}, 99.6 \mu \mathrm{~mol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 hours. The reaction wascooled to room temperature and quenched by addition of a saturated solution of NaHCO_{3} $(3.0 \mathrm{~mL})$ and the solution stirred a further 30 minutes. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 40\% ethyl acetate in hexane) provided 265, 266, 267 and $268(12.4 \mathrm{mg}, 62 \%)$ as an inseparable mixture.

Synthesis of azides 269 and 272. A sealed vial containing a mixture of diols 265-268 $(12.0 \mathrm{mg}, 27 \mu \mathrm{~mol})$ and CSA $(0.7 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ in 1:1 2,2-dimethoxypropane:acetone $(600 \mu \mathrm{~L})$ was heated at $50^{\circ} \mathrm{C}$ with stirring for 4 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10% ethyl acetate in hexane) followed by HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 1:19 EtOAc:hexane, $3.5 \mathrm{~mL} / \mathrm{min}$) provided pure samples of 269, 270, 271 and 272 (10.9 mg, 10:1:40:8 ratio respectively, 84%). Compound 269, 270, and 272 were viscous oils while compound 271 was a crystalline solid.
(4S,5S)-4-(((4S,5R)-5-azido-2,2-dimethyl-1,3-dioxan-4-yl)methyl)-N, N-dibenzyl-2,2-dimethyl-1,3-dioxan-5-amine (269). IR (neat) v 2993, 2921, 2853, 2802, 2097, 1494, $1451,1375,1265,1197,1163,1120,1069,1001,967,882,814,746 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-21.2$ (c $\left.0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{bs}, 2 \mathrm{H}), 4.22(\mathrm{dt}, J=$ $12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$
(td, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.30(\mathrm{dt}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=13.5,11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{bs}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6(\mathrm{C})$, $128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.0(\mathrm{CH}), 99.1(\mathrm{C}), 98.8(\mathrm{C}), 68.3(\mathrm{CH}), 67.1(\mathrm{CH}), 62.9$ $\left(\mathrm{CH}_{2}\right), 59.9(\mathrm{CH}), 58.6\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{3}\right), 28.7$ $\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right)$; HRFABMS $m / z 481.2816[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}$ 481.2809 .
(4S,5S)-4-(((4R,5S)-5-azido-2,2-dimethyl-1,3-dioxan-4-yl)methyl)-N,N-dibenzyl-2,2-dimethyl-1,3-dioxan-5-amine (271). IR (neat) v 2989, 2921, 2853, 2106, 1494, 1451, $1375,1265,1205,1205,1061,950,746,695 \mathrm{~cm}^{-1} ; \mathrm{mp} 138^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+38.0(c 2.47$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{dd}, J=12.8$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (ddd, $J=13.2,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4(\mathrm{C}), 129.3(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.1(\mathrm{CH}), 98.8(\mathrm{C}), 98.7(\mathrm{C}), 68.8(\mathrm{CH}), 68.1(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 59.4$ $(\mathrm{CH}), 58.2\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{2}\right), 50.4(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{3}\right), 19.0$ $\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right)$; HRFABMS $m / z 481.2806[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4} 481.2809$.
(2R,3S,5S,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (222). A mixture of $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}$, $1.3 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $269(1.8 \mathrm{mg}, 3.7 \mu \mathrm{~mol})$ in 5:1 ethanol:hexane (0.5 mL) was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 17 hours the mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure.

The residue was redisolved in dry methanol and $\mathrm{TMSCl}(10.0 \mu \mathrm{~L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol})$ was added and the mixture stirred for 1 hour. The mixture concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg}, 1.3$ $\mu \mathrm{mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 18 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $222(0.8 \mathrm{mg}, 81 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=12.4,4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.73$ (dd, $J=12.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{dt}, J=14.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (dt, $J=14.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref~} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 65.7(\mathrm{CH}), 65.1$ $(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 58.1(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 57.4(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right)$; HRESIMS m / z 195.1339 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 195.1339.
(2R,3R,5S,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (223). A mixture of $\mathrm{Pd} / \mathrm{C}(6.8 \mathrm{mg}$, $6.4 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $271(14 \mathrm{mg}, 31.8 \mu \mathrm{~mol})$ in methanol $(0.75 \mathrm{~mL})$ was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 16 hours TMSCl (10.0 $\mu \mathrm{L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added and the mixture stirred a further 1 hour. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(6.8 \mathrm{mg}, 6.4 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 14 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $223(8.4 \mathrm{mg}, 99 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{ACN}\right) \delta 4.19(\mathrm{p}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (dd, $J=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.43$
(apparent $\mathrm{p}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dt}, J=14.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=$ $14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{D}_{2} \mathrm{O}$, ref ACN) $\delta 67.2(\mathrm{CH}), 66.6(\mathrm{CH}), 59.5$ $\left(\mathrm{CH}_{2}\right), 58.0\left(\mathrm{CH}_{2}\right), 57.5(\mathrm{CH}), 56.6(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right)$; HRESIMS $m / z 195.1337[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} 195.1339$.

Synthesis of epoxides 273 and 274. To a solution of alkene $236(250 \mathrm{mg}, 655 \mu \mathrm{~mol})$ in dichloromethane $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added pyridine $(10 \mu \mathrm{~L}, 124 \mu \mathrm{~mol})$, methyltrioxorhenium ($8.2 \mathrm{mg}, 33 \mu \mathrm{~mol}$) and hydrogen peroxide ($100 \mu \mathrm{~L}$ of 30% solution, $983 \mu \mathrm{~mol})$. Solution was warmed to room temperature and stirred for 4 hours, then quenched by addition of a saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with triethylamine, step gradient of $15,20,25$, and 30% ethyl acetate in hexane) provided recovered starting material $236(54.3 \mathrm{mg}, 22 \%)$ and 273 and 274 (30.9 mg and 17.2 mg respectively, 24% adjusted for recovered starting material) as a viscous oils.
((2S,3R)-3-(($(4 S, 5 S)-5-($ dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-2-yl)methanol (273): IR (neat) v 3431, 3026, 2985, 2935, 2869, 2795, 2358, 2333, 1491, $1458,1384,1260,1194,1070,947,740,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+32.0\left(c 5.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{bs}, 2 \mathrm{H}), 4.17(\mathrm{td}, J=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, $J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{td}, J=6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dt}, J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dt}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H})$,
$1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.2(\mathrm{C}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 99.8(\mathrm{C}), 70.9(\mathrm{CH}), 60.9\left(\mathrm{CH}_{2}\right), 58.3\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 56.1\left(\mathrm{CH}_{2}\right), 54.3(\mathrm{CH})$, $50.9(\mathrm{CH}), 30.5\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 397.2245[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{1} \mathrm{O}_{4} 397.2248$.
((2R,3S)-3-(((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)methyl)oxiran-2-yl)methanol (274): $[\alpha]_{\mathrm{D}}{ }^{25}-1.4\left(c \quad 6.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{p}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ $(\mathrm{dt}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, J=14.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=14.8,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9(\mathrm{C}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.0(\mathrm{CH}), 99.4(\mathrm{C}), 70.7(\mathrm{CH}), 60.1\left(\mathrm{CH}_{2}\right), 58.3$ $\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right), 55.6(\mathrm{CH}), 55.1(\mathrm{CH}), 51.9(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 398.2323[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{1} \mathrm{O}_{4}$ 398.2326.
(2R,3R)-2-azido-4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butane-1,3-diol (275). Under an atmosphere of nitrogen, (MeO) $)_{3} \mathrm{~B}(23.4 \mu \mathrm{~L}, 21.4 \mathrm{mg}, 206 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{2 7 3}(36.9 \mathrm{mg}, 92.8 \mu \mathrm{~mol})$ in anhydrous DMF $(600 \mu \mathrm{~L})$. The solution was stirred for 20 min at room temperature then $\mathrm{NaN}_{3}(13.4 \mathrm{mg}, 206 \mu \mathrm{~mol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 15 hours. The reaction was cooled to room temperature and quenched by addition of a saturated solution of NaHCO_{3} $(3.0 \mathrm{~mL})$ and the solution stirred a further 60 minutes. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 50\% ethyl acetate in hexane) followed by HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 8% isopropanol in hexane, $3.5 \mathrm{~mL} / \mathrm{min}$) provided 275 and $276(20.6 \mathrm{mg}$ and 10.8 mg respectively, 77\%) as viscous oils. 275: IR (neat) v 3433, 2990, 2928, 2850, 2104, 1499, 1452, 1383, 1266, 1204, 1150, 1072, $971 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+4.5\left(c 3.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{dt}, J=7.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=14.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{dt}, J=14.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.1(\mathrm{C}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 127.2(\mathrm{CH}), 99.1(\mathrm{C}), 73.4(\mathrm{CH}), 72.7$ $\left(\mathrm{CH}_{2}\right), 66.8(\mathrm{CH}), 63.2\left(\mathrm{CH}_{2}\right), 58.3\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right), 51.5(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right) ;$ HRESIMS $m / z 441.2493[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4} 441.2496$.
(2S,3S)-2-azido-4-((4S,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butane-1,3-diol (277). Under an atmosphere of nitrogen, (MeO) $)_{3} \mathrm{~B}(9.80 \mu \mathrm{~L}, 8.90 \mathrm{mg}, 86 \mu \mathrm{~mol})$ was added to a solution of $274(17.1 \mathrm{mg}, 43.0 \mu \mathrm{~mol})$ in anhydrous DMF $(220 \mu \mathrm{~L})$. The solution was stirred for 10 minutes at room temperature then $\mathrm{NaN}_{3}(5.6 \mathrm{mg}, 86 \mu \mathrm{~mol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 17 hours. The reaction was cooled to room temperature and quenched by addition of a saturated solution of $\mathrm{NaHCO}_{3}(3.0 \mathrm{~mL})$ and the solution stirred a further 60 minutes. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 50% ethyl acetate in hexane) followed by HPLC purification (silica $10 \times 250 \mathrm{~mm}$
column, 8% isopropanol in hexane, $3.5 \mathrm{~mL} / \mathrm{min}$) provided 277 and $278(3.3 \mathrm{mg}$ and 2.0 mg respectively, 28\%) as viscous oils. 277: IR (neat) v 3425, 2923, 2851, 2105, 1493, 1452, 1198, 1093, 1069, 1027, 748, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+27.9\left(c 1.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=14.4,8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (ddd, $J=14.4,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 139.6(\mathrm{C}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.1(\mathrm{CH}), 99.9(\mathrm{C}), 69.7(\mathrm{CH}), 69.6\left(\mathrm{CH}_{2}\right), 67.5$ $(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 58.2\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{2}\right), 51.9(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 440.2421[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} 440.2418$.
(2R,3R,5S,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (224). A mixture of $\mathrm{Pd} / \mathrm{C}(6.8 \mathrm{mg}$, $6.4 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $275(14 \mathrm{mg}, 31.8 \mu \mathrm{~mol})$ in methanol $(0.75 \mathrm{~mL})$ was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 16 hours $\mathrm{TMSCl}(10.0$ $\mu \mathrm{L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added and the mixture stirred a further 1 hour. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(6.8 \mathrm{mg}, 6.4 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 14 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $224(8.4 \mathrm{mg}, 99 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, ref internal $\left.\mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=12.4$, $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=12.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{dt}, J=14.8,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{dt}, J=14.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, ref internal $\left.\mathrm{CH}_{3} \mathrm{CN}\right) \delta$
$66.3(\mathrm{CH}), 59.5\left(\mathrm{CH}_{2}\right), 57.4(\mathrm{CH}), 36.9\left(\mathrm{CH}_{2}\right)$; HRESIMS $m / z 195.1337[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 195.1339.
(2S,3S,5S,6S)-2,6-diaminoheptane-1,3,5,7-tetraol (225). A mixture of $\mathrm{Pd} / \mathrm{C}(1.4 \mathrm{mg}$, $1.4 \mu \mathrm{~mol}, 10 \mathrm{~mol} \% \mathrm{Pd})$ and azide $277(3.0 \mathrm{mg}, 6.8 \mu \mathrm{~mol})$ in methanol $(0.5 \mathrm{~mL})$ was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 15 hours TMSCl (10.0 $\mu \mathrm{L}, 8.5 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added and the mixture stirred a further 1 hour. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. The crude material was resuspended in water $(0.5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(1.4 \mathrm{mg}, 1.4 \mu \mathrm{~mol}, 10$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature for 14 hours. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided the hydrochloride salt of $\mathbf{2 2 5}(1.8 \mathrm{mg}, 99 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=12.4,3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.74(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 1.75$ (apparent dd, $J=7.6,5.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, ref $\left.\mathrm{CH}_{3} \mathrm{CN}\right) \delta 64.9(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 58.1(\mathrm{CH}), 37.3$ $\left(\mathrm{CH}_{2}\right)$; HRESIMS $m / z 195.1330[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 195.1339.

Table 7.1: ${ }^{13} \mathrm{C}$ NMR data for 220-225 and Zwittermicin A $\left.[(+)-\mathbf{1})\right]$.

	$\delta_{\mathrm{C}}{ }^{\mathbf{a}}$								
C\#	$\mathbf{2 2 0}$	$\mathbf{2 2 1}$	$\mathbf{2 2 2}$	$\mathbf{2 2 2 b}$	$\mathbf{2 2 3}$	$\mathbf{2 2 3 b}$	$\mathbf{2 2 4}$	$\mathbf{2 2 5}$	Zwittermicin A $[(+)-\mathbf{1}]$
9	58.0	58.0	59.3	58.1	59.5	58.0	59.5	59.3	
10	56.6	57.3	58.1	57.4	57.5	56.6	57.4	58.1	58.3
11	67.4	65.9	65.1	65.7	66.6	67.2	66.3	64.9	66.0
12	35.3	35.8	36.5	36.5	36.2	36.2	36.9	37.3	35.4
13	67.4	65.9	65.7	65.1	67.2	66.6	66.3	64.9	66.1
14	56.6	57.3	57.4	58.1	56.6	57.5	57.4	58.1	57.4
15	58.0	58.0	58.1	59.3	58.0	59.5	59.5	59.3	58.1

a. ${ }^{13} \mathrm{C}$ NMR spectra ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) referenced to internal $\mathrm{CH}_{3} \mathrm{CN}(\delta 1.47 \mathrm{ppm})$. For ease of comparison, carbons are numbered with respect to zwittermicin A (1).

7.1.4. Chapter 3 Methods

(2S,3R)-3-azido-4-(tert-butyldiphenylsilyloxy)-1-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butan-2-ol (285). Under an atmosphere of nitrogen tertbutyldiphenylchlorosilane ($175 \mu \mathrm{~L}, 656 \mu \mathrm{~mol}$) was added to a stirred solution of alcohol 233 ($275 \mathrm{mg}, 624 \mu \mathrm{~mol}$) and imidazole ($117 \mathrm{mg}, 1.62 \mathrm{mmol}$) in dimethylformamide (3.1 mL) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 3.5 hours then quenched by addition of water (85 mL). The mixture was extracted with ethyl ether ($3 \times$ $25 \mathrm{~mL})$ and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, $1.5 \%, 2.5 \%, 5 \%$, and 7% ethyl acetate in hexane, $24 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 285 ($385 \mathrm{mg}, 91 \%$) as a viscous oil: IR (neat) v 3500, 3070, 2929, 2851, 2101, 1452, 1421, 1382, 1272, 1225, 1116, $827 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+15.5\left(c 4.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 10 \mathrm{H}), 3.99-$ $3.80(\mathrm{~m}, 6 \mathrm{H}), 3.73(\mathrm{dd}, J=10.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{ddd}$, $J=10.8,8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dt}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dt}, J=14.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 139.1 (C), $135.8(\mathrm{CH}), 135.7(\mathrm{CH}), 133.3(\mathrm{C}), 133.2(\mathrm{C}), 129.9(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6$ $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 99.5(\mathrm{C}), 71.3(\mathrm{CH}), 71.2(\mathrm{CH}), 68.0(\mathrm{CH})$, $64.6\left(\mathrm{CH}_{2}\right), 58.5(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 21.8$ $\left(\mathrm{CH}_{3}\right), 19.3$ (C); HREIMS $m / z 678.3588[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{1} 678.3596$.
(4R,5S)-4-((2S,3R)-3-azido-4-(tert-butyldiphenylsilyloxy)-2-(methoxymethoxy)butyl)\mathbf{N}, \mathbf{N}-dibenzyl-2,2-dimethyl-1,3-dioxan-5-amine (286). Under an atmosphere of nitrogen chloromethyl methyl ether $(52.0 \mu \mathrm{~L}, 689 \mu \mathrm{~mol})$ was added to a stirred solution of alochol 285 ($78.0 \mathrm{mg}, 115 \mu \mathrm{~mol}$) and Hünig's base ($190 \mu \mathrm{~L}, 1.15 \mathrm{mmol}$) in dichloromethane $(575 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 2 days then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 3 \mathrm{~mL})$ and combined extracts washed with water (5 mL), brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 5\% ethyl acetate in hexane) provided 286 ($80.0 \mathrm{mg}, 96 \%$) as a viscous oil: IR (neat) v 3060, 3037, 2936, 2889, 2850, 2105, 1592, 1491, 1476, 1452, $1429,1383,1320,1274,1219,1111,1033,823 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+17.9\left(c 11.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 10 \mathrm{H})$, $4.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 6 \mathrm{H}), 3.77(\mathrm{ddd}, J=9.2$, $6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{ddd}, J=10.4,6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (d, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.12(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=10.8$, $6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{ddd}, J=14.8,9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{C}), 135.7(\mathrm{CH}), 135.6(\mathrm{CH}), 133.3(\mathrm{C}), 133.2$ (C), $129.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 99.3(\mathrm{C}), 95.7\left(\mathrm{CH}_{2}\right)$ $74.0(\mathrm{CH}), 67.1(\mathrm{CH}), 66.6(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 58.5(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{3}\right), 54.7$ $\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C}) ;$ HREIMS $m / z 722.3868$ $[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{1} 722.3858$.

(2R,3S)-2-azido-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-

 (methoxymethoxy)butan-1-ol (287). Under an atmosphere of nitrogen, TBAF 1 M in THF ($138 \mu \mathrm{~L}, 138 \mu \mathrm{~mol}$) was added to a stirred solution of azide $286(80.0 \mathrm{mg}, 111$ $\mu \mathrm{mol})$ in THF $(750 \mu \mathrm{~L})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 4 hours then quenched by addition of water $(5 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:3 ethyl acetate:hexane) provided 287 ($52.6 \mathrm{mg}, 98 \%$) as a viscous oil: IR (neat) v 3453, 2984, 2937, 2101, 1491, 1444, 1374, $1265,1225,1100,1038,913 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+55.5\left(c 2.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{dd}, J=12.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{ddd}, J=$ 9.6, 6.0, 3.6 Hz, 1H), $3.54(\mathrm{dt}, J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ (s, $3 \mathrm{H}), 2.73(\mathrm{dt}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=15.2,6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.57 (ddd, $J=14.8,9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 99.4(\mathrm{C}), 96.3\left(\mathrm{CH}_{2}\right) 75.1$ $(\mathrm{CH}), 66.7(\mathrm{CH}), 65.5(\mathrm{CH}), 62.5\left(\mathrm{CH}_{2}\right), 58.6(\mathrm{CH}), 57.8\left(\mathrm{CH}_{2}\right), 56.2\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right)$, $34.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 484.2671[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5}$ 484.2680 .(2S,3R)-3-azido-4-(tert-butyldimethylsilyloxy)-1-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)butan-2-ol (290). Under an atmosphere of nitrogen tertbutyldimethylchlorosilane ($19.2 \mathrm{mg}, 127 \mu \mathrm{~mol}$) was added to a stirred solution of alcohol 233 ($53.4 \mathrm{mg}, 121 \mu \mathrm{~mol}$) and imidazole ($22.7 \mathrm{mg}, 315 \mu \mathrm{~mol}$) in dimethylformamide
$(606 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 3 hours then quenched by addition of water $(10 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 4 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 15\% ethyl acetate in hexane) provided $290(58.0 \mathrm{mg}, 93 \%$) as a viscous oil: IR (neat) v 3511, 3056, 2986, 2925, 2873, 2095, 1606, 1501, 1449, 1387, 1265, 1248, 1117, 1029, 968, 898, 837, 784, $758,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+26.9\left(c 5.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.25$ (m, 10H), 4.05-3.86 (m, 6H), 3.75-3.69 (m, 2H), 3.59 (ddd, $J=9.6,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{td}, J=7.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dt}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dt, $J=14.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}$, $3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2(\mathrm{C}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.4(\mathrm{CH}), 99.5(\mathrm{C}), 71.4(\mathrm{CH}), 71.4(\mathrm{CH}), 67.7(\mathrm{CH}), 63.9\left(\mathrm{CH}_{2}\right), 58.4(\mathrm{CH}), 57.9$ $\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C})-5.4\left(\mathrm{CH}_{3}\right)$, $5.3\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 554.3276[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{1}$ 554.3283.

Synthesis of alcohols 291 and 292. Compound 285 ($332 \mathrm{mg}, 489 \mu \mathrm{~mol}$) in methanol:acetic acid 3:1 (56 mL) was heated to $70^{\circ} \mathrm{C}$. The mixture was stirred for 28 hours then concentrated under reduced pressure. Flash chromatography (silica, step gradient of 15,25 , and 50% ethyl acetate in hexane) provided recovered starting material $285(27.8 \mathrm{mg}, 8 \%), 291(212 \mathrm{mg}, 68 \%)$ and $292(70.7 \mathrm{mg}, 21 \%)$ as viscous oils. (2S,3R,5S,6R)-6-azido-7-(tert-butyldiphenylsilyloxy)-2-(dibenzylamino)heptane-1,3,5-triol (291). IR (neat) v 3388, 3065, 3030, 2925, 2855, 2095, 1588, 1466, 1422, $1352,1265,1117,1029,819,741,697,610,505 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}-11.6\left(c 4.79, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.74-7.69 (m, 4H), 7.50-7.40 (m, 6H), 7.29-7.19 (m, 10H), $4.09(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6(\mathrm{C}), 135.7(\mathrm{CH}), 132.6(\mathrm{C}), 132.5(\mathrm{C}), 130.3(\mathrm{CH}), 130.2(\mathrm{CH}), 129.1(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 73.6(\mathrm{CH}), 73.4(\mathrm{CH}), 66.9(\mathrm{CH}), 64.5$ $\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 59.7\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C})$; HREIMS $m / z 609.3156\left[\mathrm{M}-\mathrm{N}_{2}-\mathrm{H}\right]^{+}$, calcd. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{1} 609.3143$.

(S)-2-((4R,6S)-6-((R)-1-azido-2-(tert-butyldiphenylsilyloxy)ethyl)-2,2-dimethyl-1,3-

 dioxan-4-yl)-2-(dibenzylamino)ethanol (292). IR (neat) v 3467, 3065, 3030, 2986, $2925,2855,2357,2095,1422,1265,1204,1108,968,819,741,715,610,505 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{24}-35.8\left(c 4.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.48-$ $7.38(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.17(\mathrm{ddd}, J=12.0,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=$ $9.5,7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 5 \mathrm{H}), 3.66(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.29(\mathrm{dt}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{dt}, J=13.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (s, 3H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5$ (C), $135.7(\mathrm{CH}), 135.6(\mathrm{CH}), 133.1(\mathrm{C}), 133.0(\mathrm{C}), 130.0(\mathrm{CH}), 129.9(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 98.9(\mathrm{C}), 68.4(\mathrm{CH}), 67.8(\mathrm{CH}), 66.7$ $(\mathrm{CH}), 63.0\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C})$; HREIMS $m / z 678.3585[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{1}$ 678.3596.
(S)-1-((4R,6S)-6-((R)-1-azido-2-(tert-butyldiphenylsilyloxy)ethyl)-2,2-dimethyl-1,3-

 dioxan-4-yl)- N, N-dibenzyl-2-(benzyloxy)ethanamine (293). Under an atmosphere of nitrogen, benzylbromide ($24.3 \mu \mathrm{~L}, 203 \mu \mathrm{~mol}$) was added dropwise to a stirred solution of alochol $292(46.0 \mathrm{mg}, 67.8 \mu \mathrm{~mol})$ and silver oxide ($47.1 \mathrm{mg}, 203 \mu \mathrm{~mol}$) in anhydrous toluene $(340 \mu \mathrm{~L})$ at room temperature. The mixture was stirred for 40 hours then filtered through celite. Flash chromatography (silica, step gradient of 2 and 3% ethyl ether in hexane then 15% ethyl acetate in hexane) provided recovered starting material 292 (16.8 $\mathrm{mg}, 21 \%$), and 293 ($26.6 \mathrm{mg}, 51 \%$) as a viscous oil: IR (neat) $v 3065,3030,2995,2934$, $2855,2104,1580,1492,1422,1431,1379,1265,1195,1117,1029,968,881,819,706$, $618 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}-5.8\left(c 8.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.49-7.20(\mathrm{~m}, 21 \mathrm{H}), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=$ $11.6,7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=11.2,7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.78(\mathrm{~m}, 6 \mathrm{H}), 3.74(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{dt}, J=6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{td}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dt}, J=$ 13.2, 2.4 Hz, 1H), $1.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5(\mathrm{C}), 139.0(\mathrm{C}), 135.7(\mathrm{CH}), 135.7(\mathrm{CH}), 133.2(\mathrm{C}), 133.1(\mathrm{C})$, $129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 98.8(\mathrm{C}), 73.4\left(\mathrm{CH}_{2}\right), 68.2(\mathrm{CH}), 68.0(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 67.1$ $(\mathrm{CH}), 63.2\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 55.8\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 19.7$ $\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C}) ;$ HREIMS $m / z[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{1} 768.4071$.(R)-2-azido-2-((4S,6R)-6-((S)-2-(benzyloxy)-1-(dibenzylamino)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)ethanol (294). Under an atmosphere of nitrogen, TBAF 1 M in THF $(51.9 \mu \mathrm{~L}, 51.9 \mu \mathrm{~mol})$ was added to a stirred solution of azide $293(25.1 \mathrm{mg}, 32.6 \mu \mathrm{~mol})$ in

THF $(210 \mu \mathrm{~L})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 3 hours then quenched by addition of water (3 mL). The mixture was extracted with ethyl ether $(3 \times 3 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:3 ethyl acetate:hexane) provided 294 (15.4 mg , 89%) as a viscous oil: IR (neat) v 3432, 3065, 3030, 2995, 2934, 2855, 2104, 1597, 1492, $1449,1379,1265,1204,1169,1108,1029,968,872,750,697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+29.9(c 7.16$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.61(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=10.0,7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{ddd}, J=12.0,6.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.82-3.66(\mathrm{~m}, 5 \mathrm{H}), 3.33(\mathrm{dt}, J=6.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ $(\mathrm{td}, J=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dt}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4(\mathrm{C})$, $139.0(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.0(\mathrm{CH})$, $99.1(\mathrm{C}), 73.4\left(\mathrm{CH}_{2}\right), 70.9(\mathrm{CH}), 68.0(\mathrm{CH}), 67.0\left(\mathrm{CH}_{2}\right), 66.5(\mathrm{CH}), 62.6\left(\mathrm{CH}_{2}\right), 61.3$ $(\mathrm{CH}), 55.8\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right)$; HREIMS m/z $530.2882[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4} 530.2888$.

(2R,3S)-2-amino-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-

 (methoxymethoxy)butan-1-ol (295). To a solution of alcohol $277(404 \mathrm{mg}, 834 \mu \mathrm{~mol})$ in ethanol (60 mL) was added Lindlar catalyst ($266 \mathrm{mg}, 125 \mu \mathrm{~mol}$). The mixture was placed under hydrogen (1 atm) at room temperature and stirred for 15 hours. The solution was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. Flash chromatography (silica, 10\% methanol in dichloromethane) provided 295 (341 mg , 89%) as a viscous oil: IR (neat) v 3371, 3065, 3030, 2995, 2925, 2882, 2829, 1597, 1501,$1501,1457,1379,1265,1230,1151,1108,1038,968,916,750,697,522 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}$ $+76.4\left(c 7.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.86$ $(\mathrm{dd}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dt}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{bs}, 3 \mathrm{H})$, $2.18(\mathrm{dd}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{ddd}, J=15.2,9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.29$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{C}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH})$, $99.3(\mathrm{C}), 96.0\left(\mathrm{CH}_{2}\right) 77.8(\mathrm{CH}), 66.5(\mathrm{CH}), 63.5\left(\mathrm{CH}_{2}\right), 58.4(\mathrm{CH}), 57.8\left(\mathrm{CH}_{2}\right), 56.1$ $\left(\mathrm{CH}_{3}\right)$, $54.7\left(\mathrm{CH}_{2}\right), 54.6(\mathrm{CH}), 33.5\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right) ;$ HREIMS m / z $458.2784[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} 458.2775$.

(2R,3S)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-

 yl)-3-(methoxymethoxy)butan-1-ol (296). Under an atmosphere of nitrogen, benzylbromide ($284 \mu \mathrm{~L}, 2.37 \mathrm{mmol}$) was added dropwise to a stirred solution of amine $295(340 \mathrm{mg}, 742 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(655 \mathrm{mg}, 4.74 \mathrm{mmol})$ in anhydrous acetonitrile (4.7 $\mathrm{mL})$ at room temperature. The mixture was stirred for 3.5 days then quenched by addition of water $(10 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, step gradient of 3\% and 10% ethyl ether in hexane then 15% and 25% ethyl acetate in hexane then 20% methanol in dichloromethane) provided 296 ($437 \mathrm{mg}, 92 \%$) as a viscous oil: IR (neat) v 3467, 3065, 3030, 2986, 2934, 2882, 2803, 1597, 1501, 1449, 1379, 1265, 1230, 1204, 1151, 1108, 1029, 924, 750, 697, $514 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+71.4\left(c 4.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,$\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.10(\mathrm{~m}, 20 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{p}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 6 \mathrm{H})$, 3.45 (d, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dt, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=10.8,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{ddd}, J=14.0,9.6$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9(\mathrm{C}), 139.4$ $(\mathrm{C}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 98.9(\mathrm{C})$, $96.8\left(\mathrm{CH}_{2}\right) 74.8(\mathrm{CH}), 67.4(\mathrm{CH}), 62.1(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 57.8\left(\mathrm{CH}_{2}\right), 56.5\left(\mathrm{CH}_{3}\right), 54.7$ $\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 638.3709[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{5} 638.3720$.

(2S,3S)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-

 yl)-3-(methoxymethoxy)butanal (297). Under an atmosphere of nitrogen, DMSO (69 $\mu \mathrm{L}, 76 \mathrm{mg}, 971 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(69 \mu \mathrm{~L})$ was added dropwise to a stirred solution of oxalyl chloride ($40 \mu \mathrm{~L}, 60 \mathrm{mg}, 470 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 minutes then a solution of alcohol $\mathbf{2 9 6}(100 \mathrm{mg}, 157 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The mixture was stirred for 1.5 hours at $-78^{\circ} \mathrm{C}$ then triethylamine ($196 \mu \mathrm{~L}, 143 \mathrm{mg}, 1.41 \mathrm{mmol}$) was added dropwise and the solution was allowed to warm to room temperature. Water $(50 \mathrm{~mL})$ was added and the mixture was extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with $1 \% \mathrm{HCl}$ solution $(50 \mathrm{~mL})$, water $(2 \times 50 \mathrm{~mL})$, saturated NaHCO_{3} solution $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 25% ethyl acetate in hexane) provided $297(90 \mathrm{mg}, 90 \%)$ as a viscous oil: IR (neat) v 3083, 2995, 2934, 2882, 2820, 2716, 1728, 1606, 1501, 1449, 1379, 1230, 1204,$1151,1099,1038,977,916,828,750,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+72.9\left(c 4.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.0(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 20 \mathrm{H}), 4.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{p}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dt}, J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=14.4,8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=14.0,10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.1(\mathrm{CH}), 139.5(\mathrm{C}), 139.4$ $(\mathrm{C}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 127.2(\mathrm{CH}), 99.0(\mathrm{C})$, $96.5\left(\mathrm{CH}_{2}\right) 76.0(\mathrm{CH}), 68.8(\mathrm{CH}), 67.0(\mathrm{CH}), 57.8\left(\mathrm{CH}_{2}\right), 57.7(\mathrm{CH}), 56.3\left(\mathrm{CH}_{3}\right), 55.5$ $\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 636.3559[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} 636.3563$.

(2R,3S)-3-azido-4-(tert-butyldiphenylsilyloxy)-1-((4R,5S)-5-(dibenzylamino)-2,2-

 dimethyl-1,3-dioxan-4-yl)butan-2-ol (298). tert-Butyldiphenylchlorosilane (492 $\mu \mathrm{L}$, $1.90 \mathrm{mmol})$ was added to a stirred solution of alcohol $234(760 \mathrm{mg}, 1.73 \mathrm{mmol})$ and imidazole ($311 \mathrm{mg}, 4.31 \mathrm{mmol}$) in dimethylformamide $\left(8.6 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 4 hours then quenched by addition of water $(175 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 40 g silica cartridge, $1.5 \%, 2.5 \%$ and 5% ethyl acetate in hexane, $34 \mathrm{~mL} / \mathrm{min}$ flow rate) provided $298(1.07 \mathrm{~g}, 91 \%)$ as a viscous oil: IR (neat) $v 3500,3070,2929,2859,2101,1791,1460,1429,1374,1265,1225,1100,819$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+42.3\left(c 9.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.71(\mathrm{~m}, 4 \mathrm{H})$,7.50-7.40 (m, 6H), 7.34-7.21 (m, 10H), $4.17(\mathrm{ddd}, J=10.0,7.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.86$ $(\mathrm{m}, 5 \mathrm{H}), 3.81(\mathrm{dd}, J=11.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.43$ (ddd, $J=7.5,7.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99(\mathrm{ddd}, J=14.8,9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=14.8,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.1(\mathrm{C}), 135.73(\mathrm{CH})$, 135.71(CH), 133.1 (C), 133.0 (C), 129.9 (CH), 129.0 (CH), 128.5 (CH), 127.9 (CH), $127.4(\mathrm{CH}), 99.4(\mathrm{C}), 68.3(\mathrm{CH}), 68.2(\mathrm{CH}), 67.5(\mathrm{CH}), 64.6\left(\mathrm{CH}_{2}\right), 58.0\left(\mathrm{CH}_{2}\right), 57.3$ $(\mathrm{CH}), 54.8\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C})$; HREIMS $m / z 678.3586[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{1} 678.3596$.
(4R,5S)-4-((2R,3S)-3-azido-4-(tert-butyldiphenylsilyloxy)-2-(methoxymethoxy)butyl)\mathbf{N}, \mathbf{N}-dibenzyl-2,2-dimethyl-1,3-dioxan-5-amine (299). Chloromethyl methyl ether (628 $\mu \mathrm{L}, 8.27 \mathrm{mmol})$ was added to a stirred solution of alcohol $298(936 \mathrm{mg}, 1.38 \mathrm{mmol})$ and Hünig's base ($2.30 \mathrm{~mL}, 13.8 \mathrm{mmol}$) in dichloromethane $(6.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 56 hours then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 50$ $\mathrm{mL})$ and combined extracts washed with water $(2 \times 50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 3-7\% ethyl acetate in hexane) provided 299 ($977.4 \mathrm{mg}, \mathbf{9 8 \%}$) as a viscous oil: IR (neat) v 3067, 3034, 3001, 2944, 2894, 2861, 2110, 1508, 1475, 1458, 1433, 1392, 1277, 1235, 1128, 1037, 831, $757,724 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+30.8\left(c 6.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.84-7.75 (m, 4H), 7.54-7.43 (m, 6H), $7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=9.8$
$\mathrm{Hz}, 1 \mathrm{H}), 4.06-3.92(\mathrm{~m}, 6 \mathrm{H}), 3.80-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $2.70(\mathrm{dt}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=14.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $1.17(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.6(\mathrm{C}), 135.7(\mathrm{CH}), 133.1(\mathrm{C}), 133.0(\mathrm{C})$, $129.9(\mathrm{CH}), 129.0(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 98.9(\mathrm{C}), 97.7\left(\mathrm{CH}_{2}\right) 75.6$ $(\mathrm{CH}), 67.5(\mathrm{CH}), 66.4(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 58.3\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right)$, $34.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C}) ;$ HRESIMS m/z 723.3939 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{42} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{1}$ 723.3942.

(2S,3R)-2-azido-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-

 (methoxymethoxy)butan-1-ol (300). Tetrabutylammonium fluoride (TBAF, 1M in THF, $1.69 \mathrm{~mL}, 1.69 \mathrm{mmol})$ was added to a stirred solution of azide $\mathbf{2 9 9}(977 \mathrm{mg}, 1.35 \mathrm{mmol})$ in THF (5.0 mL) at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 4 hours then quenched by addition of water (125 mL). The mixture was extracted with ethyl ether ($3 \times 75 \mathrm{~mL}$) and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:3 ethyl acetate:hexane) provided $\mathbf{3 0 0}$ ($620 \mathrm{mg}, 95 \%$) as a crystalline solid (needles): IR (neat) v 3458, 2985, 2929, 2812, 2101, $1444,1374,1265,1225,1140,1108,1022,913 \mathrm{~cm}^{-1} ; \operatorname{mp~} 74^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}+28.8(c 2.01$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.83(\mathrm{~m}$, $5 \mathrm{H}), 3.67(\mathrm{bs}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{bs}, 1 \mathrm{H})$, $2.33(\mathrm{ddd}, J=14.8,9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 99.1(\mathrm{C}), 97.8$ $\left(\mathrm{CH}_{2}\right) 76.2(\mathrm{CH}), 66.9(\mathrm{CH}), 66.8(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 58.2\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right)$,$54.9\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 484.2682[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5}$ 484.2680.
(2S,3R)-2-amino-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-(methoxymethoxy)butan-1-ol (301). To a solution of alcohol $\mathbf{3 0 0}$ ($600 \mathrm{mg}, 1.24 \mathrm{mmol}$) in ethanol (90 mL) was added Lindlar's catalyst ($395 \mathrm{mg}, 190 \mu \mathrm{~mol}$). The mixture was placed under hydrogen (1 atm) at room temperature and stirred for 14 hours. The solution was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure. Flash chromatography (silica, $10 \% \mathrm{MeOH}$ in dichloromethane) provided recovered starting material 301 ($558 \mathrm{mg}, 98 \%$) as a viscous oil: IR (neat) v 3467, 3362, 3292, 3030, 2986, 2934, 2882, 2829, 1597, 1492, 1457, 1387, 1230, 1160, 1108, 1038, 977, 916, 758, $706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+24.5\left(c 3.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.20(\mathrm{~m}$, $10 \mathrm{H}), 4.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.84(\mathrm{~m}, 5 \mathrm{H}), 3.70(\mathrm{bd}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{bs}, 1 \mathrm{H}), 2.65(\mathrm{dt}$, $J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{bs}, 2 \mathrm{H}), 2.19(\mathrm{dd}, J=13.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.18(\mathrm{ddd}, J=14.4,11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5$ (C), $128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 127.2(\mathrm{CH}), 99.0(\mathrm{C}), 97.9\left(\mathrm{CH}_{2}\right) 79.4(\mathrm{CH}), 66.8(\mathrm{CH}), 63.1$ $\left(\mathrm{CH}_{2}\right), 58.1\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 56.0\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{3}\right), 54.7(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 27.1$ $\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 458.2781[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} 458.2775$.
(2S,3R)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-(methoxymethoxy)butan-1-ol (302). Benzylbromide ($642 \mu \mathrm{~L}, 5.37 \mathrm{mmol}$) was added dropwise to a stirred solution of amine $301(547 \mathrm{mg}, 1.19 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.47$
$\mathrm{g}, 17.9 \mathrm{mmol})$ in anhydrous acetonitrile $(5.96 \mathrm{~mL})$ at room temperature. The mixture was stirred for 31 hours then quenched by addition of water $(75 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (75 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, step gradient of 3% and 10% ethyl ether in hexane then 25% ethyl acetate in hexane) provided 302 ($690 \mathrm{mg}, 91 \%$) as an amorphous solid: IR (neat) v 3476, 3065, 3030, 2995, 2943, 2882, 2812, 1597, 1492, 1457, 1379, 1265, 1221, 1151, 1108, 1029, $977,916,758,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}+28.8\left(c 6.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.23 (m, 20H), $4.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.02$ $(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.88(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{bs}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{dd}, J$ $=13.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.8,10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.0(\mathrm{C}), 139.6(\mathrm{C}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 127.0(\mathrm{CH}), 98.8(\mathrm{CH}), 98.7(\mathrm{C}), 76.2(\mathrm{CH}), 67.0(\mathrm{CH}), 62.6$ $(\mathrm{CH}), 58.5\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 56.4\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 38.6$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 639.3973[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{5}$ 639.3793.
(2R,3R)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-(methoxymethoxy)butanal (303). DMSO ($138 \mu \mathrm{~L}, 152 \mathrm{mg}, 1.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(138 \mu \mathrm{~L})$ was added dropwise to a stirred solution of oxalyl chloride $(82.6 \mu \mathrm{~L}, 122 \mathrm{mg}$, $939 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 15 minutes then a solution of alcohol $\mathbf{3 0 2}(200 \mathrm{mg}, 313 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mu \mathrm{~L})$ was
added dropwise. The mixture was stirred for 1.25 hours at $-78^{\circ} \mathrm{C}$ then triethylamine (393 $\mu \mathrm{L}, 285 \mathrm{mg}, 2.82 \mathrm{mmol}$) was added dropwise and the solution was allowed to warm to room temperature. Water (100 mL) was added and the mixture was extracted with ethyl ether $(3 \times 60 \mathrm{~mL})$ and combined extracts washed with $1 \% \mathrm{HCl}$ solution $(100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$, saturated NaHCO_{3} solution $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% then 25% ethyl acetate in hexane) provided $\mathbf{3 0 3}$ ($188 \mathrm{mg}, 94 \%$) as a viscous oil: IR (neat) v 3091, $3065,3039,2995,2934,2890,2820,27824,1955,1719,1606,1492,1449,1379,1265$, $1230,1204,1151,1108,1029,977,924,819,750,706,514,461 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+47.6(c$ $\left.10.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}$, $20 \mathrm{H}), 4.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{ddd}, J=9.2,9.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (m, 1H), $2.18(\mathrm{ddd}, J=14.8,9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.6(\mathrm{CH}), 139.6(\mathrm{C}), 139.1(\mathrm{C}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 127.2(\mathrm{CH}), 98.8(\mathrm{C}), 98.2\left(\mathrm{CH}_{2}\right) 74.8(\mathrm{CH}), 68.9(\mathrm{CH}), 66.6$ $(\mathrm{CH}), 58.4\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$; HREIMS $m / z 636.3562[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} 636.3563$.

(R)- N, N-dibenzyl-9,9,10,10-tetramethyl-2,4,8-trioxa-9-silaundecan-6-amine (305).

Under an atmosphere of nitrogen chloromethyl methyl ether ($3.55 \mathrm{~mL}, 46.7 \mathrm{mmol}$) was added to a stirred solution of alcohol $304(3.00 \mathrm{~g}, 7.78 \mathrm{mmol})$ and Hünig's base (12.9 $\mathrm{mL}, 77.8 \mathrm{mmol})$ in dichloromethane $(24 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room
temperature and stirred for 14 hours then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 50 \mathrm{~mL})$ and combined extracts washed with water $(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% ethyl acetate in hexane) provided $305(3.05 \mathrm{~g}, 91 \%)$ as a viscous oil: IR (neat) v 3083, 3030, 2960, 2925, 2882, 2890, 1606, 1501, 1475, 1457, 1370, 1265, 1213, 1151, 1108, 1047, 959, 924, 776, $741,697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+13.7\left(c \quad 1.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}$, $6 \mathrm{H}), 3.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{p}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.1(\mathrm{C}), 128.7(\mathrm{CH}), 128.2(\mathrm{CH})$, $126.8(\mathrm{CH}), 96.8\left(\mathrm{CH}_{2}\right), 66.5\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{2}\right), 58.3(\mathrm{CH}), 55.4\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 26.0$ $\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-5.3\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 430.2782[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{Si}_{1} 430.2777$.
(S)-2-(dibenzylamino)-3-(methoxymethoxy)propan-1-ol (306). Under an atmosphere of nitrogen, TBAF 1 M in THF ($8.15 \mathrm{~mL}, 8.15 \mathrm{mmol}$) was added to a stirred solution of amine $305(2.80 \mathrm{~g}, 6.52 \mathrm{mmol})$ in THF $(32 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 16 hours then quenched by addition of water $(100 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 40\% ethyl acetate in hexane) provided $306(1.90 \mathrm{~g}, 93 \%)$ as a viscous oil: IR (neat) v 3458, $3065,3056,2934,2882,2820,1597,1492,1449,1405,131,132,1256,1213,1151$, 1117, 1029, 950, 758, $706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}-81.3\left(c 8.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=10.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 5 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{bs}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{C}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 96.7\left(\mathrm{CH}_{2}\right), 65.0\left(\mathrm{CH}_{2}\right)$, $59.7\left(\mathrm{CH}_{2}\right)$, $58.2(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 54.0\left(\mathrm{CH}_{2}\right)$; HRESIMS $m / z 316.1916[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{1} \mathrm{O}_{3} 316.1913$.
(R)-2-(dibenzylamino)-3-(methoxymethoxy)propanal (307). Under an atmosphere of nitrogen, DMSO ($698 \mu \mathrm{~L}, 768 \mathrm{mg}, 9.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(698 \mu \mathrm{~L})$ was added dropwise to a stirred solution of oxalyl chloride $(408 \mu \mathrm{~L}, 604 \mathrm{mg}, 4.76 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 minutes then a solution of alcohol $\mathbf{3 0 6}$ ($500 \mathrm{mg}, 1.59 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 25 minutes at $-78^{\circ} \mathrm{C}$ then triethylamine ($1.99 \mathrm{~mL}, 1.44 \mathrm{~g}, 14.3 \mathrm{mmol}$) was added dropwise and the solution was allowed to warm to room temperature. Water (100 mL) was added and the mixture was extracted with ethyl ether $(3 \times 75 \mathrm{~mL})$ and combined extracts washed with $1 \% \mathrm{HCl}$ solution $(100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$, saturated NaHCO_{3} solution (50 mL), brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to provided $\mathbf{3 0 7}$ ($465 \mathrm{mg}, 94 \%$) as a viscous oil: IR (neat) v 3084, 3034, 2944, 2894, 2828, 2721, 1945, 1731, 1607, 1508, 1458, 1376, 1260, 1219, 1161, 1112, 1062, 963, 922 765, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+35.1\left(c 10.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.72(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.65(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3(\mathrm{CH}), 139.2(\mathrm{C}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 127.4(\mathrm{CH}), 96.7$
$\left(\mathrm{CH}_{2}\right), 66.3(\mathrm{CH}), 55.7\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 314.7755[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{1} \mathrm{O}_{3}$ 314.1756.
(S,E)-methyl 4-(dibenzylamino)-5-(methoxymethoxy)pent-2-enoate (308). Under an atmosphere of nitrogen, methyl (diethylphosphono) acetate ($260 \mu \mathrm{~L}, 373 \mathrm{mg}, 1.78 \mathrm{mmol}$) was added dropwise to a stirred solution of barium hydroxide ($330 \mathrm{mg}, 1.93 \mathrm{mmol}$) in anhydrous THF (3.7 mL) at room temperature. The mixture was stirred for 30 minutes then cooled to $0^{\circ} \mathrm{C}$ and a solution of aldehyde $307(464 \mathrm{mg}, 1.48 \mathrm{mmol})$ in $40: 1$ THF: $\mathrm{H}_{2} \mathrm{O}(3.7 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 10 minutes then quenched by addition of saturated NaHCO_{3} solution $(50 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$ and combined extracts washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 15\% ethyl acetate in hexane) provided $\mathbf{3 0 8}(463 \mathrm{mg}, 85 \%$) as a viscous oil: IR (neat) v 3084, 3026, 2952, 2886, 2828, 1731, 1648, 1491, 1450, 1433, 1367, 1178, 1153, 1103, 1037, 914, 749, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+101.9\left(c 3.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=16.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=16.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.90-3.76(\mathrm{~m}, 7 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7(\mathrm{C})$, $146.1(\mathrm{CH}), 139.6(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.1(\mathrm{CH}), 123.7(\mathrm{CH}), 96.6\left(\mathrm{CH}_{2}\right)$, $67.6\left(\mathrm{CH}_{2}\right), 58.2(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 54.6\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right) ;$ HRESIMS $m / z 370.2023$ $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{4}$ 370.2018.

Synthesis of alcohols 309 and 310. Under an atmosphere of nitrogen, 4-
methylmorpholine N -oxide ($84 \mathrm{mg}, 716 \mu \mathrm{~mol}$) was added to a stirred solution of osmium tetraoxide ($608 \mu \mathrm{~L}$ of 2.5% solution in t-butanol, $11.9 \mathrm{mg}, 47 \mu \mathrm{~mol}$) and $\mathbf{3 0 8}(115 \mathrm{mg}$, $311 \mu \mathrm{~mol})$ in 8:1 acetone: $\mathrm{H}_{2} \mathrm{O}(1.56 \mathrm{~mL})$ at room temperature. The mixture was stirred for hours then quenched by addition of saturated NaHSO_{3} solution $(30 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(3 \times 35 \mathrm{~mL})$ and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 50% ethyl acetate in hexane) provided 309 ($23.8 \mathrm{mg}, 19 \%$) and 310 ($54.8 \mathrm{mg}, 43 \%$) as viscous oils.
(2S,3R,4R)-methyl 4-(dibenzylamino)-2,3-dihydroxy-5-
(methoxymethoxy)pentanoate (309). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.24$ (m, $10 \mathrm{H}), 4.70-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-$ $3.90(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.81$ (bm, 1H), $2.75(\mathrm{bm}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5$ (C), 139.4 (C), 129.2 $(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 97.0\left(\mathrm{CH}_{2}\right), 72.0(\mathrm{CH}), 70.6(\mathrm{CH}), 65.2\left(\mathrm{CH}_{2}\right), 57.7(\mathrm{CH})$, $55.8\left(\mathrm{CH}_{3}\right)$, $55.2\left(\mathrm{CH}_{2}\right), 52.7\left(\mathrm{CH}_{3}\right)$; LRESIMS $m / z 404[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{1} \mathrm{O}_{6}$ 404.2070.

(2R,3S,4R)-methyl 4-(dibenzylamino)-2,3-dihydroxy-5-

(methoxymethoxy)pentanoate (310). IR (neat) v 3450, 3065, 3030, 2951, 2890, 2847, $1746,1501,1457,1405,1370,1274,1213,1143,1108,1029,916,740,697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}$ -30.1 (c 5.16, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $6 \mathrm{H}), 4.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.5,4.5$
$\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{p}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5(\mathrm{C}), 138.5(\mathrm{C}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 127.6(\mathrm{CH})$, $96.8\left(\mathrm{CH}_{2}\right), 70.8(\mathrm{CH}), 69.1(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 57.6(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 54.5\left(\mathrm{CH}_{2}\right), 52.6$ $\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 404.2070[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{1} \mathrm{O}_{6}$ 404.2070.
(4R,5S)-methyl 5-((R)-1-(dibenzylamino)-2-(methoxymethoxy)ethyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (311). A sealed vial containing diol 310 ($43.0 \mathrm{mg}, 107$ $\mu \mathrm{mol})$ and PPTS ($2.7 \mathrm{mg}, 10.7 \mu \mathrm{~mol}$) in 1:1 dimethoyxypropane:acetone (2 mL) was heated at $60^{\circ} \mathrm{C}$ with stirring for 40 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 25 \mathrm{~mL})$ and combined extracts washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 25\% ethyl acetate in hexane) provided recovered starting material $\mathbf{3 1 0}$ (11.9 mg , 28%) and 311 ($32.3 \mathrm{mg}, 68 \%$) as viscous oils: IR (neat) v 3065, 3030, 2995, 2943, 2882, $28201763,1501,1457,1387,1274,1213,1151,1117,1055,924,872,819,758,706 \mathrm{~cm}^{-}$ ${ }^{1} ;[\alpha]_{\mathrm{D}}{ }^{23}-21.2\left(c 4.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$, $4.34(\mathrm{dd}, J=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (ddd, $J=8.0,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.2(\mathrm{C}), 140.1(\mathrm{C}), 129.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.0(\mathrm{CH}), 110.8(\mathrm{C}), 96.7\left(\mathrm{CH}_{2}\right), 79.7$ $(\mathrm{CH}), 75.0(\mathrm{CH}), 64.9\left(\mathrm{CH}_{2}\right), 56.0\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 55.1(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$, $24.6\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 444.2390[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{1} \mathrm{O}_{6} 444.2386$.

(4R,5S)-5-((R)-1-(dibenzylamino)-2-(methoxymethoxy)ethyl)-2,2-dimethyl-1,3-

 dioxolane-4-carboxylic acid (312). A solution of ester 311 ($32.0 \mathrm{mg}, 72 \mu \mathrm{~mol}$) and lithium hydroxide ($3.0 \mathrm{mg}, 72 \mu \mathrm{~mol}$) in 3:1:1 methanol:THF:water $(1 \mathrm{~mL})$ was stirred for 4 hours then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ with the pH adjusted to 4 with HCl . The mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% methanol in dichloromethane) provided $\mathbf{3 1 2}$ (28.9 mg , 93%) as a crystalline solid: IR (neat) v 3458, 3091, 3065, 2039, 3004, 2951, 2890, 1737, $1606,1501,1466,1387,1274,1221,1151,1117,1055,959,924,881,819,758,697 \mathrm{~cm}^{-}$ ${ }^{1} ; \operatorname{mp} 109{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-18.0\left(c 7.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=9.8$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (ddd, $J=7.8,5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.3(\mathrm{C}), 139.8(\mathrm{C}), 129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 111.1(\mathrm{C}), 96.6\left(\mathrm{CH}_{2}\right), 79.7$ $(\mathrm{CH}), 74.8(\mathrm{CH}), 64.9\left(\mathrm{CH}_{2}\right), 56.0\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 430.2235[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{1} \mathrm{O}_{6} 430.2230$.
(2S,3R,4R)-methyl 2-(benzyloxy)-4-(dibenzylamino)-3-hydroxy-5-

(methoxymethoxy)pentanoate (313). Under an atmosphere of nitrogen freshly distilled n-BuBOTf $(288 \mu \mathrm{~L}, 1.14 \mathrm{mmol})$ and Hünig's base $(227 \mu \mathrm{~L}, 1.30 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{8 8}(176 \mathrm{mg}, 0.98 \mathrm{mmol})$ in ethyl ether $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture
was stirred for 1.5 hours then aldehyde $\mathbf{3 0 7}(255 \mathrm{mg}, 0.81 \mathrm{mmol})$ in ethyl ether (0.5 mL) was added dropwise. The mixture was stirred for 15 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred a further 2 hours. The mixture was quenched with addition of pH 7 phosphate buffer (1.06 mL), methanol (3.2 mL) and 2:1 methanol:30\% hydrogen peroxide (3.2 mL) at $0{ }^{\circ} \mathrm{C}$. This mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then $5 \% \mathrm{NaHCO}_{3}$ solution $(100 \mathrm{~mL})$ added and the mixture extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, $10 \%, 15 \%, 20 \%$, and 25% ethyl acetate in hexane, $24 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 313 ($279 \mathrm{mg}, 69 \%$, dr 9:1) as a viscous oil: IR (neat) v 3537, 3065, 3039, 2960, 2890, 2829, 1754, 1501, 1457, 1405, $1361,1274,1204,1143,1108,1047,916,740,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-38.6\left(c 4.38, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.22(\mathrm{~m}, 13 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.67(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (ddd, $J=10.0,5.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.5 (C), 139.9 (C), 137.5 (C), $129.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 96.9\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{CH}), 72.6(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH})$, $55.6\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 494.2540[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{1} \mathrm{O}_{6}$ 494.2543.

(S)-4-benzyl-3-((2S,3R,4R)-2-(benzyloxy)-4-(dibenzylamino)-3-hydroxy-5-

 (methoxymethoxy)pentanoyl)oxazolidin-2-one (315). Under an atmosphere of nitrogenfreshly distilled n-BuBOTf ($288 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$) and triethylamine ($182 \mu \mathrm{~L}, 1.30 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{8 4}(317 \mathrm{mg}, 0.98 \mathrm{mmol})$ in dichloromethane $(1.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 3 hours then cooled to $-78^{\circ} \mathrm{C}$ and aldehyde $307(255 \mathrm{mg}, 0.81 \mathrm{mmol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 10 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred a further 2.5 hours. The mixture was quenched with addition of pH 7 phosphate buffer $(1.06 \mathrm{~mL})$, methanol $(3.2 \mathrm{~mL})$ and $2: 1$ methanol:30\% hydrogen peroxide $(3.2 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. This mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour then $5 \% \mathrm{NaHCO}_{3}$ solution $(100 \mathrm{~mL})$ added and the mixture extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, $10 \%, 15 \%, 20 \%, 25 \%$, and 50% ethyl acetate in hexane, $24 \mathrm{~mL} / \mathrm{min}$ flow rate) provided 315 ($443 \mathrm{mg}, 85 \%$, dr 47:1) as a viscous oil: IR (neat) v 3502, 3065, 3030, 2934, 2890, 1781, 1702, 1501, 1457, 1387, 1291, 1213, 1117, 1047, 924, 828, 758, $697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+29.6\left(c 12.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 12 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H})$, $5.46(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-$ $3.82(\mathrm{~m}, 5 \mathrm{H}), 3.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3,37(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{dd}, J=13.2$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3(\mathrm{C}), 153.0(\mathrm{C}), 140.1(\mathrm{C}), 137.3(\mathrm{C})$, $135.4(\mathrm{C}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 96.6\left(\mathrm{CH}_{2}\right), 78.4(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right)$, $72.2(\mathrm{CH}), 66.7\left(\mathrm{CH}_{2}\right), 65.1\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 55.9\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 37.6$ $\left(\mathrm{CH}_{2}\right)$; HREIMS $m / z 638.2985[\mathrm{M}]^{+}$, calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7} 638.2987$.

(2S,3R,4R)-2-(benzyloxy)-4-(dibenzylamino)-3-hydroxy-5-

(methoxymethoxy)pentanoic acid (314). Method a) Under an atmosphere of nitrogen, lithium hydroxide monohydrate $(1.7 \mathrm{mg}, 40.5 \mu \mathrm{~mol})$ was added to a stirred solution of ester $313(20.0 \mathrm{mg}, 40.5 \mu \mathrm{~mol})$ in 3:2:2 MeOH: $\mathrm{H}_{2} \mathrm{O}: \mathrm{THF}(700 \mu \mathrm{~L})$ at room temperature. The mixture was stirred for 4.5 hours then diluted with water (2 mL) and the pH adjusted to 2 with 1 N HCl . The mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 50% then 75% ethyl acetate in hexane then $5 \% \mathrm{AcOH}+20 \% \mathrm{MeOH}$ in dichloromethane) provided $314(18.5 \mathrm{mg}, 95 \%)$ as a viscous oil.

Method b) Under an atmosphere of nitrogen, 30\% hydrogen peroxide ($130 \mu \mathrm{~L}, 1.28$ $\mathrm{mmol})$ and lithium hydroxide monohydrate ($17.9 \mathrm{mg}, 426 \mu \mathrm{~mol}$) was added to a stirred solution of $\mathbf{3 1 5}(136 \mathrm{mg}, 213 \mu \mathrm{~mol})$ in $1: 3 \mathrm{H}_{2} \mathrm{O}:$ THF $(4.25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then quenched by addition of $1.5 \mathrm{~N} \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(940 \mu \mathrm{~L})$ and the mixture stirred for 10 minutes at $0^{\circ} \mathrm{C}$ then the pH adjusted to 2 with 2 M HCl . The solution was concentrated to remove THF then extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 50\% then 75\% ethyl acetate in hexane then 5\% AcOH + 20\% MeOH in dichloromethane) provided 314 ($68 \mathrm{mg}, 67 \%$) as a viscous oil: IR (neat) v 3336, 3065, 3030, 2943, 2890, 1737, 1597, 1501, 1457, 1405, 1213, 1108, 1029, 916, 750, $706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-16.4\left(c 9.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{bd}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2(\mathrm{C}), 137.1(\mathrm{C}), 135.1$ (C), $130.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 96.9$ $\left(\mathrm{CH}_{2}\right), 78.6(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 69.9(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{2}\right)$; HREIMS $m / z 478.2227[\mathrm{M}-\mathrm{H}]^{-}$, calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{1} \mathrm{O}_{6} 478.2224$.
(3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-one (316). 10\% Pd/C (9.7 $\mathrm{mg}, 8.7 \mu \mathrm{~mol}, 20 \mathrm{~mol} \% \mathrm{Pd}$) was added to $313(21.5 \mathrm{mg}, 43.6 \mu \mathrm{~mol})$ in MeOH : AcOH : $\mathrm{H}_{2} \mathrm{O}(5: 1: 1)(1.5 \mathrm{~mL})$. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 16 hours on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in 10% triethylamine in $\mathrm{MeOH}(1 \mathrm{~mL})$ and stirred then concentration under reduced pressure and dried on a high vac for 4 hours. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(9.7 \mathrm{mg}, 8.7 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$ $\mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 14 hours on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided 316 (70% purity by NMR). Compound 316 matched literature values.

Known compounds $\mathbf{3 1 7}$ and (-)-318 were synthesized using standard procedures and matched literature values.
(S)-2-amino-3-ureidopropanamide ((-)-319). $\mathrm{CF}_{3} \mathrm{COOH}(600 \mu \mathrm{~L})$ was added dropwise to $(-) \mathbf{- 3 1 8}\left(14.5 \mathrm{mg}, 58.9 \mu \mathrm{~mol}\right.$, neat) with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred 1 hour at $0^{\circ} \mathrm{C}$ then warmed to room temperature and stirred for 2.5 hours. The reaction mixture was blown to dryness with a stream of N_{2} and then dried under azeotropic distillation with 1:1 MeOH:toluene ($2 \times 1 \mathrm{~mL}$) to provided (-) $\mathbf{- 3 1 9}(14.9 \mathrm{mg}, 98 \%, 94 \%$ ee by Marfey's analysis ${ }^{1}$) as a viscous oil: $[\alpha]_{\mathrm{D}}{ }^{21}-15.1\left(c 6.63, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.99(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=15.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=$ $15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.4(\mathrm{C}), 162.6(\mathrm{C}), 55.4(\mathrm{CH}), 42.3$ $\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 147.0882[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$ 147.0877.

(2S,3R,4R)-N-((S)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-

 (dibenzylamino)-3-hydroxy-5-(methoxymethoxy)pentanamide (320). A solution of $314(20.3 \mathrm{mg}, 42.3 \mu \mathrm{~mol})$ in DMF $(60 \mu \mathrm{~L})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI $(10.6 \mathrm{mg}, 55.2 \mu \mathrm{~mol})$ and $\mathrm{HOBt}(8.0 \mathrm{mg}, 59 \mu \mathrm{~mol})$. After 5 minutes amine (-)-319 ($12.1 \mathrm{mg}, 46.6 \mu \mathrm{~mol}$) in DMF ($50 \mu \mathrm{~L}$) and triethylamine ($6.5 \mu \mathrm{~L}, 46.6 \mu \mathrm{~mol}$) was added. The mixture was warmed to room temperature and stirred for 2.5 hours. A solution of 10% isopropyl alcohol in chloroform $(30 \mathrm{~mL})$ was added, and the mixture washed with water $(5 \times 7 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, $2.5 \%, 5 \%$, and 7.5% methanol in dichloromethane) provided $\mathbf{3 2 0}(21.2 \mathrm{mg}, 83 \%)$ as a viscous oil: IR (neat) v 3362, 3030, 2934, 2882, 1658, 1527, 1449, 1387, 1344, 1151, 1108, 1038, 916, 750, 697 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-28.9\left(c 2.35, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,$4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=10.8,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3,44(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.5(\mathrm{C}), 172.8(\mathrm{C}), 161.1(\mathrm{C}), 140.3(\mathrm{C}), 137.3(\mathrm{C}), 129.6(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 96.8\left(\mathrm{CH}_{2}\right), 79.9(\mathrm{CH})$, $73.3\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH}), 54.7\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{CH}_{3}\right), 53.6(\mathrm{CH}), 41.6$ $\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 630.2912[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Na} 630.2898$.
(R)-4-benzyl-3-((2S,3R,4S,5R)-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanoyl)oxazolidin-2-one (321). Freshly distilled n-BuBOTf (51.9 $\mu \mathrm{L}, 206 \mu \mathrm{~mol})$ and triethylamine ($32,7 \mu \mathrm{~L}, 235 \mu \mathrm{~mol}$) was added to a stirred solution of $84(31.8 \mathrm{mg}, 176 \mu \mathrm{~mol})$ in dichloromethane $(250 \mu \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 3 hours then cooled to $-78^{\circ} \mathrm{C}$ and aldehyde $\mathbf{3 0 3}(93.0 \mathrm{mg}$, $147 \mu \mathrm{~mol})$ in dichloromethane ($150 \mu \mathrm{~L}$) was added dropwise. The mixture was stirred for 10 minutes then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred a further 2.5 hours. The mixture was quenched with addition of pH 7 phosphate buffer $(206 \mu \mathrm{~L})$, $\mathrm{MeOH}(620 \mu \mathrm{~L})$ and $2: 1$ $\mathrm{MeOH}: 30 \% \mathrm{v} / \mathrm{v} \mathrm{H}_{2} \mathrm{O}_{2}(620 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. This mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then $5 \% \mathrm{NaHCO}_{3}$ solution $(50 \mathrm{~mL})$ added and the mixture extracted with ethyl ether $(3 \times 50$ mL) and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 12 g silica cartridge, $5 \%, 10 \%$, and 20% ethyl acetate in hexane, $24 \mathrm{~mL} / \mathrm{min}$ flow rate) provided $\mathbf{3 2 1}$
$(109 \mathrm{mg}, 77 \%, \mathrm{dr} 24: 1)$ as a viscous oil: IR (neat) $v 3432,3065,3039,2917,1798,1702$, $1501,1457,1387,1274,1204,1117,1073,1038,924,872,758,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+86.5$ (c $\left.3.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.15$ (m, $26 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~m}, 2 \mathrm{H}), 4.55$ $(\mathrm{m}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-$ $3.50(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J$ $=13.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.8(\mathrm{C}), 153.2(\mathrm{C}), 140.2$ (C), 139.6 (C), 137.8 (C), 135.5 (C), 129.6 (CH), $129.3(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH})$, $128.0(\mathrm{CH}), 127.5(\mathrm{C}), 127.2(\mathrm{C}), 126.8(\mathrm{C}), 98.9(\mathrm{C}), 97.9\left(\mathrm{CH}_{2}\right), 80.1(\mathrm{CH}), 74.6(\mathrm{CH})$, $73.2\left(\mathrm{CH}_{2}\right), 70.3(\mathrm{CH}), 67.3(\mathrm{CH}), 66.6\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{CH}), 58.5\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 56.2$ $(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 962.4959[M+H]^{+}$, calcd. for $\mathrm{C}_{59} \mathrm{H}_{68} \mathrm{~N}_{3} \mathrm{O}_{9} 962.4956$.

(2S,3R,4S,5R)-methyl-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-

 (dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5(methoxymethoxy)hexanoate (322). Freshly distilled n-BuBOTf ($51.9 \mu \mathrm{~L}, 206 \mu \mathrm{~mol}$) and Hünig's base $(40.9 \mu \mathrm{~L}, 235 \mu \mathrm{~mol})$ was added to a stirred solution of $\mathbf{8 8}(31.8 \mathrm{mg}$, $176 \mu \mathrm{~mol})$ in ethyl ether $(250 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 hours then aldehyde $303(93.0 \mathrm{mg}, 147 \mu \mathrm{~mol})$ in ethyl ether $(150 \mu \mathrm{~L})$ was added dropwise. The mixture was stirred for 15 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred a further 2 hours. The mixture was quenched with addition of pH 7 phosphate buffer $(206 \mu \mathrm{~L}), \mathrm{MeOH}(620 \mu \mathrm{~L})$and $2: 1 \mathrm{MeOH}: 30 \% \mathrm{v} / \mathrm{v}_{2} \mathrm{O}_{2}(620 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. This mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then $5 \% \mathrm{NaHCO}_{3}$ solution $(50 \mathrm{~mL})$ added and the mixture extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica cartridge, 5% ethyl acetate in hexane, $13 \mathrm{~mL} / \mathrm{min}$ flow rate) provided $322(52.6 \mathrm{mg}, 44 \%$, 37% de by NMR). Further HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 3% IPA in hexane, $4 \mathrm{~mL} / \mathrm{min}$) provided pure $322(28.4 \mathrm{mg}, 24 \%)$ as a viscous oil: IR (neat) v 3432, $3065,3030,2986,2934,2890,2838,1754,1597,1492,1449,1379,1265,1213,1151$, 1082, 1029, 916, 819, 758, $706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}-31.0\left(c 4.81, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.18(\mathrm{~m}, 23 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.4$ Hz, 1H), $4.50(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.94-3.75(\mathrm{~m}, 9 \mathrm{H}), 3.73(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=13.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7$ (C), 139.6 (C), 139.3 (C), 137.7 (C), 129.3 $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 99.0(\mathrm{C}), 97.3\left(\mathrm{CH}_{2}\right), 78.5(\mathrm{CH}), 74.5(\mathrm{CH}), 72.3\left(\mathrm{CH}_{2}\right), 69.9(\mathrm{CH})$, $67.6(\mathrm{CH}), 60.9(\mathrm{CH}), 58.3\left(\mathrm{CH}_{2}\right), 58.2(\mathrm{CH}), 56.3\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 52.2$ $(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right)$; HRMS m/z $817.4438[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~N}_{1} \mathrm{O}_{8} \mathrm{~N}_{2}$ 817.4422.

(2S,3R,4S,5R)-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-

 dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanoic acid (323).Method a) A mixture of $30 \% \mathrm{v} / \mathrm{v} \mathrm{H}_{2} \mathrm{O}_{2}(12.7 \mu \mathrm{~L}, 125 \mu \mathrm{~mol})$ and lithium hydroxide
monohydrate ($1.74 \mathrm{mg}, 41.6 \mu \mathrm{~mol})$ was added to a stirred solution of $\mathbf{3 2 1}(21.0 \mathrm{mg}, 21.8$ $\mu \mathrm{mol})$ in 1:3 $\mathrm{H}_{2} \mathrm{O}:$ THF $(430 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then quenched by addition of $1.5 \mathrm{~N} \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution $(94 \mu \mathrm{~L})$ and the mixture stirred for 10 minutes at $0{ }^{\circ} \mathrm{C}$ then warmed to room temperature and stirred a further 5 minutes. The mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and washed with $1 \% \mathrm{HCl}(20 \mathrm{~mL})$, water $(2 \times 15 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with $\mathrm{AcOH}, 1 \% \mathrm{AcOH}+25 \%$ ethyl acetate in hexane) provided $\mathbf{3 2 3}$ ($16.8 \mathrm{mg}, 96 \%$) as a viscous oil.

Method b) Lithium hydroxide monohydrate ($0.33 \mathrm{mg}, 7.96 \mu \mathrm{~mol}$) was added to a stirred solution of ester $322(6.50 \mathrm{mg}, 7.96 \mu \mathrm{~mol})$ in $3: 2: 2 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}:$ THF $(350 \mu \mathrm{~L})$ at room temperature. The mixture was stirred for 8 hours then diluted with water $(2 \mathrm{~mL})$ and the pH adjusted to 2 with 1 N HCl . The mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 25% then 50% ethyl acetate in hexane then $5 \% \mathrm{AcOH}+20 \% \mathrm{MeOH}$ in dichloromethane) provided 323 ($5.2 \mathrm{mg}, 81 \%$) as a viscous oil: IR (neat) v 3450, 3065, 3021, 2925, 2847, 1728, 1492, 1449, 1379, 1265, $1213,1108,1073,1029,968,916,750,697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+7.7\left(c 4.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.14(\mathrm{~m}, 25 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.30(\mathrm{~m}, 4 \mathrm{H}), 3.98-3.80(\mathrm{~m}$, $8 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.20$ ($\mathrm{s}, 6 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2$ (C), 139.6 (C), 139.5 (C), 137.1 (C), 129.4 $(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 99.0$
(C), $97.6\left(\mathrm{CH}_{2}\right), 78.5(\mathrm{CH}), 75.3(\mathrm{CH}), 72.9\left(\mathrm{CH}_{2}\right), 71.5(\mathrm{CH}), 67.9(\mathrm{CH}), 60.8(\mathrm{CH})$,
$58.4\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 56.5\left(\mathrm{CH}_{3}\right), 55.1\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right) ;$ HRMS $m / z 803.4267[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{49} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{8} 803.4271$.

(2S,3R,4S,5R)-N-((S)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-

 hydroxy-5-(methoxymethoxy)hexanamide (324). A solution of 323 ($16.5 \mathrm{mg}, 20.6$ $\mu \mathrm{mol})$ in DMF $(100 \mu \mathrm{~L})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI (5.12 $\mathrm{mg}, 26.7 \mu \mathrm{~mol})$ and $\mathrm{HOBt}(3.89 \mathrm{mg}, 28.8 \mu \mathrm{~mol})$. After 10 minutes, amine (-) $\mathbf{- 3 1 9}$ (6.0 $\mathrm{mg}, 23.1 \mu \mathrm{~mol})$ in DMF $(50 \mu \mathrm{~L})$ and triethylamine $(2.86 \mu \mathrm{~L}, 20.6 \mu \mathrm{~mol})$ was added. The mixture was warmed to room temperature and stirred for 1 hour. A solution of 10% isopropyl alcohol in chloroform (15 mL) was added, and the mixture washed with water $(5 \times 3 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, $2.5-10 \% \mathrm{MeOH}$ in dichloromethane) provided 324 ($15.0 \mathrm{mg}, 81 \%$) as a amorphous solid: IR (neat) v 3450, 3362, 2065, 3030, 2986, 2934, 2838, 2523, 2418, 1658, 1606, 1492, 1449, 1379, 1221, 1151, 1099, 1064, 1029, $916,750,697 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}+4.3\left(c 5.66, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-$ $7.13(\mathrm{~m}, 25 \mathrm{H}), 4.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=7.2,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ $(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.80(\mathrm{~m}, 6 \mathrm{H}), 3.69(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.57(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{ddd}, J=14.0,11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.5$ (C), 174.0 (C), 162.2 (C), 141.4 (C), 141.1 (C), 138.6 (C),$130.6(\mathrm{CH}), 130.0(\mathrm{CH}), 129.9(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH})$, $128.1(\mathrm{CH}), 100.1(\mathrm{C}), 98.9\left(\mathrm{CH}_{2}\right), 81.9(\mathrm{CH}), 76.9(\mathrm{CH}), 74.3\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 69.4$ $(\mathrm{CH}), 62.0(\mathrm{CH}), 59.5\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 56.7\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{2}\right), 54.7(\mathrm{CH})$, $43.1\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 931.4951[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{9} 931.4970$.

($2 S, 3 R, 4 R, 5 R, 7 R, 8 S)$-4,8-diamino- N-((S)-1-amino-1-oxo-3-ureidopropan-2-yl)-

 2,3,5,7,9-pentahydroxynonanamide ((-)-279). $\mathrm{TMSCl}(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $324(11.5 \mathrm{mg}, 12.4 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(13.1 \mathrm{mg}, 12.4$ $\mu \mathrm{mol}, 100 \mathrm{~mol} \% \mathrm{Pd}$) was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(13.1 \mathrm{mg}, 12.4 \mu \mathrm{~mol}, 100$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided the hydrochloride salt of (-)-279 (5.9 mg, (76\% purity by NMR)). Further HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, $1.3 \mathrm{MeOH}: 0.1 \mathrm{CF}_{3} \mathrm{COOH}: 98.6 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HCl salt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure $(-) \mathbf{- 2 7 9}(2.3 \mathrm{mg})$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{21}-23.0\left(c \quad 1.49, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\mathrm{D}_{2} \mathrm{O}$ (ref δ 2.06)) $\delta 4.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{ddd}, J=10.0,3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=10.0,2.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}$,$J=12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=14.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{dd}, J=5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=14.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J$ $=14.4,12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=14.4,12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , 0.2% acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 1.47)\right) \delta 175.1$ (C), 174.7 (C), 162.3 (C), 72.7 (CH), 67.6 $(\mathrm{CH}), 65.8(\mathrm{CH}), 65.5(\mathrm{CH}), 58.4(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 57.3(\mathrm{CH}), 55.0(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{2}\right) ;$ HRMS $m / z 419.1871[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Na}_{1} 419.1866$.

Compounds 326-328 were synthesized according to literature procedures.
(R)-tert-butyl 1-amino-1-oxo-3-ureidopropan-2-ylcarbamate ((+)-318). Compound $328(500 \mathrm{mg}, 1.85 \mathrm{mmol})$ in dry toluene $(5 \mathrm{~mL})$ was heated to $110^{\circ} \mathrm{C}$ in a microwave reactor for 15 minutes. The mixture was cooled to room temperature and $\mathrm{NH}_{3}(11.1 \mathrm{~mL}$, $5.55 \mathrm{mmol}, 0.5 \mathrm{M}$ in dioxane) was added. The mixture was stirred for 30 minutes. The reaction dried then dissolved in $2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}(4.6 \mathrm{~mL}, 9.25 \mathrm{mM})$ and stirred for 5 hours. The reaction mixture was dried and redisolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and $\mathrm{NaOH}(0.9$ mL of 1 N solution, 0.9 mmol) added. The mixture stirred for 4.5 hours and then diluted with THF (1 L), dried with MgSO_{4}, flitered and dried. Flash chromatography (silica, 20\% MeOH in dichloromethane) provided $(+)-318(316 \mathrm{mg}, 62 \%)$ as a crystalline solid (mp $\left.141.5^{\circ} \mathrm{C}\right)$. Compound $(+)-\mathbf{3 1 8}$ matched literature values.
(\boldsymbol{R})-2-amino-3-ureidopropanamide ($(+)$-319). $\mathrm{CF}_{3} \mathrm{COOH}(1.0 \mathrm{~mL})$ was added dropwise to $(+) \mathbf{- 3 1 8}\left(24.8 \mathrm{mg}, 101 \mu \mathrm{~mol}\right.$, neat) with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred 1 hour at $0^{\circ} \mathrm{C}$. The reaction mixture was blown to dryness with a stream of N_{2} at $0^{\circ} \mathrm{C}$ and then
dried under azeotropic distillation with 1:1 MeOH:toluene $(2 \times 1 \mathrm{~mL})$ to provided $(+)-$ 319 ($25.8 \mathrm{mg}, 99 \%$ yield, 87% ee by Marfey's analysis) as a viscous oil: $[\alpha]_{\mathrm{D}}{ }^{20}+15.7(c$ $\left.9.91, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.99(\mathrm{dd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J$ $=15.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $170.5(\mathrm{C}), 162.7(\mathrm{C}), 55.4(\mathrm{CH}), 42.2\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 147.0882[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$ 147.0877.

(2S,3R,4S,5R)-N-((R)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-

 (dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanamide (329). A solution of $\mathbf{3 2 3} \mathbf{(2 1 . 0 ~ m g , ~} 26.1$ $\mu \mathrm{mol})$ in DMF $(150 \mu \mathrm{~L})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI (6.52 $\mathrm{mg}, 34.0 \mu \mathrm{~mol})$ and HOBt ($4.95 \mathrm{mg}, 36.6 \mu \mathrm{~mol})$. After 10 minutes amine (+) $\mathbf{- 3 1 9 (7 . 4 8}$ $\mathrm{mg}, 28.8 \mu \mathrm{~mol})$ in DMF $(50 \mu \mathrm{~L})$ and triethylamine $(4.0 \mu \mathrm{~L}, 29 \mu \mathrm{~mol})$ was added. The mixture was warmed to room temperature and stirred for 20 minutes. A solution of 10% isopropyl alcohol in chloroform (20 mL) was added, and the mixture washed with water $(5 \times 4 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, $2.5 \%, 5 \%$, and $10 \% \mathrm{MeOH}$ in dichloromethane) provided $329(21.5 \mathrm{mg}, 88 \%)$ as an amorphous solid: IR (neat) v 3361, 3061, 3026, 2932, $1666,1602,1540,1453,1377,1147,1103,1070,1027,749,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}+7.0(c$ 8.34, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-7.11(\mathrm{~m}, 25 \mathrm{H}), 4.72(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.90-$$3.81(\mathrm{~m}, 5 \mathrm{H}), 3.67(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ (dd, $J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=14.8$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{ddd}, J=14.8,10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.0(\mathrm{C}), 174.8(\mathrm{C}), 162.4$ (C), 141.3 (C), 141.0 (C), $138.6(\mathrm{C}), 130.5(\mathrm{CH}), 130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.3$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 100.2(\mathrm{C}), 98.7\left(\mathrm{CH}_{2}\right), 82.0(\mathrm{CH}), 77.0(\mathrm{CH})$, $74.4\left(\mathrm{CH}_{2}\right), 73.1(\mathrm{CH}), 69.2(\mathrm{CH}), 61.8(\mathrm{CH}), 59.2\left(\mathrm{CH}_{2}\right), 58.6(\mathrm{CH}), 56.7\left(\mathrm{CH}_{3}\right), 56.1$ $\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 55.6\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 931.4949[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{9} 931.4964$.

($2 S, 3 R, 4 R, 5 R, 7 R, 8 S)-4,8$-diamino- N-((R)-1-amino-1-oxo-3-ureidopropan-2-yl)-

 2,3,5,7,9-pentahydroxynonanamide ((-)-1). TMSCl $(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $\mathbf{3 2 9}(16.0 \mathrm{mg}, 17.2 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(18.3 \mathrm{mg}, 17.2$ $\mu \mathrm{mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(18.3 \mathrm{mg}, 17.2 \mu \mathrm{~mol}, 100$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided the hydrochloride salt of (-)-1 $\mathbf{1} \mathbf{7 . 9} \mathbf{~ m g}$, (75\% purity by NMR)). Further HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, $1.3 \mathrm{MeOH}: 0.1 \mathrm{CF}_{3} \mathrm{COOH}: 98.6 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HClsalt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure $(-) \mathbf{- 1}(4.4 \mathrm{mg})$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{21}-7.9,\left(c 2.39, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 0.2 \%\right.$ acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 2.06)\right)$ $\delta 4.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{ddd}, J=10.0,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=10.0,3.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=12.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (dd, $J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=$ $14.0,11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.0,11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , 0.2% acetonitrile: $\mathrm{D}_{2} \mathrm{O}($ ref $\left.\delta 1.47)\right) \delta 175.3(\mathrm{C} 7), 174.8(\mathrm{C} 5), 162.4(\mathrm{C} 1), 72.7(\mathrm{C} 8), 67.9$ (C9), 65.8 (C13), 65.5 (C11), 58.5 (C10), 58.1 (C15), 57.3 (C14), 55.2 (C4), 41.3 (C3), 35.7 (C12); HRMS $m / z[\mathrm{M}+\mathrm{H}]^{+} 397.2054$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{8}$ 397.2047.

7.1.5. Chapter 4 Methods

Compounds 330, 332, 333, and 338 matched literature values.
(2R,3S,5S,6R)-2,6-diazidoheptane-1,3,5,7-tetraol (334). Under an atmosphere of nitrogen, $\mathrm{B}(\mathrm{MeO})_{3}(1.56 \mathrm{~mL}, 1.43 \mathrm{~g}, 13.7 \mathrm{mmol})$ was added to a solution of $333(550$ $\mathrm{mg}, 3.43 \mathrm{mmol})$ in anhydrous DMF (17.2 mL). The solution was stirred for 30 min at room temperature then $\mathrm{NaN}_{3}(893 \mathrm{mg}, 13.7 \mathrm{mmol})$ was added and the reaction was heated to $40^{\circ} \mathrm{C}$ and stirred for 4 hours then heated to $50^{\circ} \mathrm{C}$. for a further 4 hours. The reaction was cooled to room temperature and quenched by addition of a saturated solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the solution stirred a further 1hour. The mixture concentrated to dryness under reduced pressure then 200 mL methanol added and the mixture filtered. The mixture concentrated to dryness under reduced pressure then 200 mL of 6:4 methanol:dichloromethane added and the mixture filtered. The mixture concentrated to dryness under reduced pressure. Flash chromatography (silica, 5\% to 60% methanol in dichlormethane) followed by reverse phase chromatography ($20 \mathrm{~g} \mathrm{C18}$, 5% methanol in water) provided 334 ($672 \mathrm{mg}, 80 \%$, dr 10:1.1:1 by NMR) as white solid. Further recrystallization from methanol gave pure 334 (393 mg): mp $132^{\circ} \mathrm{C}$; IR (neat) v 3201, 2950, 2919, 2871, 2137, 2097, 1445, 1405, 1320, 1267, 1137, 1078, 1064, 1029, 1006, $910,862 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+5.3\left(c 2.13, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.87$ (m, 2H), $3.81(\mathrm{dd}, J=11.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=11.6,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H})$, $1.59(\mathrm{dd}, J=7.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 70.4(\mathrm{CH}), 68.5(\mathrm{CH})$, $63.0\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 245.1004[\mathrm{M}-\mathrm{H}]^{-}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{4} 245.1004$.
(2R,3S,5S,6R)-2,6-diazido-7-(tert-butyldiphenylsilyloxy)heptane-1,3,5-triol (339). Under an atmosphere of nitrogen tert-butyldiphenylchlorosilane ($35 \mu \mathrm{~L}, 134 \mu \mathrm{~mol}$) was added to a stirred solution of tetraol $334(50 \mathrm{mg}, 203 \mu \mathrm{~mol})$ and imidazole ($20.5 \mathrm{mg}, 284$ $\mu \mathrm{mol})$ in dimethylformamide $(1.0 \mathrm{~mL})$ at room temperature. The mixture was stirred for 4 hours the mixture was then concentrated under reduced pressure. Flash chromatography (silica, 50 to 100% ethyl acetate in hexane then 20% methanol in dichloromethane) provided 339 ($42.2 \mathrm{mg}, 65 \%$) and $\mathbf{3 4 0}(14.9 \mathrm{mg}, 15 \%)$ as a viscous oils plus recovered 334. Characterization for 339: IR (neat) v $3338,3071,2930,2857,2094,1659,1589$, 1471, 1427, 1390, 1314, 1262, 1188, 1104, 823, 797, $740 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-29.9(c 7.41$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H}), 3.99(\mathrm{~m}$, $2 \mathrm{H}), 3.91-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 4 \mathrm{H}), 3,39(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7(\mathrm{CH}), 137.6(\mathrm{CH}), 132.7(\mathrm{C}), 132.6(\mathrm{C}), 130.1(\mathrm{CH})$, $128.0(\mathrm{CH}), 68.6(\mathrm{CH}), 68.5(\mathrm{CH}), 67.0(\mathrm{CH}), 66.5(\mathrm{CH}), 64.5\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 35.5$ $\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 19.2(\mathrm{C}) ;$ HRESIMS $m / z 507.2150[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}_{1} \mathrm{Si}_{1}$ 507.2147.

(R)-2-azido-2-((4S,6S)-6-((R)-1-azido-2-(tert-butyldiphenylsilyloxy)ethyl)-2,2-

 dimethyl-1,3-dioxan-4-yl)ethanol (342). Method 1: Triol 339 ($39.5 \mathrm{mg}, 81.5 \mu \mathrm{~mol}$) and $\operatorname{PPTS}(4.1 \mathrm{mg}, 16 \mu \mathrm{~mol})$ in dimethoxypropane $(0.5 \mathrm{~mL})$ and acetone $(0.5 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ and stirred for 2 hours under an atmosphere of nitrogen. The mixture was quenched with 5 mL saturated aqueous NaHCO_{3}, extracted with ethyl ether ($3 \times 3 \mathrm{~mL}$) and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentratedunder reduced pressure. Flash chromatography (silica, 5\%, 7.5% and 10% ethyl acetate in hexane) provided $\mathbf{3 4 1}(25.9 \mathrm{mg}, 53 \%), \mathbf{3 4 2}(13.5 \mathrm{mg}, 31 \%)$ and $\mathbf{3 4 3}(7.6 \mathrm{mg}, 18 \%)$ as a viscous oils.

Method 2: Under an atmosphere of nitrogen $343(25 \mathrm{mg}, 42 \mu \mathrm{~mol})$ in THF:AcOH: $\mathrm{H}_{2} \mathrm{O}$ (9:2:1, 1.2 mL) was stirred at $50^{\circ} \mathrm{C}$ for 5.5 hours. The mixture was diluted with toluene $(10 \mathrm{~mL})$ and concentrated under reduced pressure. Flash chromatography (silica, 20\% ethyl acetate in hexane) provided $\mathbf{3 4 2}(19.4 \mathrm{mg}, 88 \%)$ and recovered $343(1.7 \mathrm{mg}, 6.8 \%)$ as a viscous oils.

Characterization for 342: IR (neat) v 3429, 3386, 3072, 3049, 2987, 2955, 2931, 2889, 2099, 1428, 1380, 1262, 1027, 823, 800, 740, $701 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-20.7\left(c 9.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.79-$ $3.74(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.8(\mathrm{CH}), 137.7(\mathrm{CH}), 133.0(\mathrm{C}), 132.9(\mathrm{C}), 130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 127.9(\mathrm{CH}), 101.3(\mathrm{C}), 67.5(\mathrm{CH}), 66.3(\mathrm{CH}), 66.1(\mathrm{CH}), 65.9(\mathrm{CH}), 63.3\left(\mathrm{CH}_{2}\right)$, $62.5\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C}) ;$ HRESIMS m / z $547.2447[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}_{1} \mathrm{Si}_{1}$ 547.2460.
(2R,3S,5S,6R)-2,6-diazido-7-(trityloxy)heptane-1,3,5-triol (344). Method 1: Under an atmosphere of nitrogen triphenylmethyl chloride ($104 \mathrm{mg}, 374 \mu \mathrm{~mol}$) was added to a stirred solution of tetraol $334(115 \mathrm{mg}, 467 \mu \mathrm{~mol})$ in pyridine $(2.3 \mathrm{~mL})$ at room temperature. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 5 hours. The mixture was then concentrated under reduced pressure. Flash chromatography (silica, 25 to 50% ethyl
acetate in hexane then 20% methanol in dichloromethane) provided $\mathbf{3 4 4}$ ($125 \mathrm{mg}, 69 \%$) and $\mathbf{3 4 5}$ ($39 \mathrm{mg}, 14 \%$) as a viscous oils and recovered 334.

Method 2: Under an atmosphere of nitrogen diol $\mathbf{3 4 5}$ ($38 \mathrm{mg}, 52 \mu \mathrm{~mol}$) in methanol adjusted to pH 2 with TFA was stirred at room temperature was stirred for 10 hours. The mixture was quenched with triethylamne $(0.5 \mathrm{~mL})$ and concentrated under reduced pressure. Flash chromatography (silica, 50% ethyl acetate in hexane then 20% methanol in dichloromethane) provided $344(12.2 \mathrm{mg}, 48 \%)$ and recovered $345(7.6 \mathrm{mg}, 20 \%)$ as a viscous oils and some 334.

Characterization for 344: IR (neat) v 3349, 3086, 3058, 3032, 2928, 2883, 2094, 1658, $1595,1489,1448,1317,1264,1218,1072,1031,900,855,747 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-21.6(c$ 6.25, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.25$ (tt, $J=7.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.81,(\mathrm{~m}, 2 \mathrm{H}), 3,49-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4(\mathrm{C}), 128.7(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 87.8(\mathrm{C}), 69.0(\mathrm{CH}), 68.9(\mathrm{CH}), 66.4(\mathrm{CH}), 65.5(\mathrm{CH}), 63.7\left(\mathrm{CH}_{2}\right)$, $62.5\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right)$; HRESIMS $m / z 511.2067[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}_{1}$ 511.2064.
(2S,3R)-3-azido-1-((4S,5R)-5-azido-2,2-dimethyl-1,3-dioxan-4-yl)-4-(trityloxy)butan-2-ol (346). Under an atmosphere of nitrogen 2-methoxypropene ($3.6 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}$) was added to a stirred solution of triol $\mathbf{3 4 4}(9.2 \mathrm{mg}, 19 \mu \mathrm{~mol})$ and PPTS $(0.4 \mathrm{mg}, 2 \mu \mathrm{~mol})$ in DMF $(100 \mu \mathrm{~L})$ at room temperature. The mixture was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 hours. The stirred mixture was cooled to room temperature and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(3 \times 4 \mathrm{~mL})$ and
combined extracts washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% ethyl acetate in hexane) provided 346 ($7.3 \mathrm{mg}, 73 \%$) and $\mathbf{3 4 7}$ ($1.7 \mathrm{mg}, 17 \%$) as viscous oils. Characterization for 346: IR (neat) v 3465, 3058, 2993, 2923, 2877, 2101, 1596, 1489, 1448, 1380, 1264, 1200, 1159, $1070,980,898,821,747,701 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-29.0\left(c 6.56, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{tt}, J=7.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.96(\mathrm{dd}, J$ $=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=11.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49,(\mathrm{~m}, 1 \mathrm{H})$, $3.45(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=10.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=10.0,10.0$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=14.3,9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=14.3,8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.6(\mathrm{C}), 128.7(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 99.3(\mathrm{C}), 87.6(\mathrm{C}), 69.7(\mathrm{CH}), 68.0(\mathrm{CH}), 65.9(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 62.4$ $\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right)$; HRESIMS m/z 551.2372 $[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}_{1}$ 551.2377.

(4S,5R)-5-azido-4-((2S,3R)-3-azido-2-(methoxymethoxy)-4-(trityloxy)butyl)-2,2-

 dimethyl-1,3-dioxane (349). Chloromethyl methyl ether ($115 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$) was added to a stirred solution of alcohol $346(80.0 \mathrm{mg}, 151 \mu \mathrm{~mol})$ and Hünig's base ($500 \mu \mathrm{~L}, 3.03$ $\mathrm{mmol})$ in dichloromethane $(200 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 38 hours then quenched by addition of water (5 mL). The mixture was extracted with ethyl ether $(4 \times 5 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10% ethyl acetate in hexane) provided $\mathbf{3 4 9}(75.2 \mathrm{mg}, 90 \%)$ as a viscous oil: IR (neat) v 3058, 2992, 2935, 2886, 2100, 1596, 1490, 1448, 1371, 1264,$1221,1197,1154,1076,1030,981,918,808,763,747,702 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-33.6(c 4.55$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{tt}, J$ $=7.3,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.5$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=$ $10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=9.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (ddd, $J=14.0,10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.7(\mathrm{C}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 99.0(\mathrm{C}), 97.6\left(\mathrm{CH}_{2}\right)$, $87.4(\mathrm{C}), 75.0(\mathrm{CH}), 68.5(\mathrm{CH}), 65.8(\mathrm{CH}), 63.3\left(\mathrm{CH}_{2}\right), 62.5\left(\mathrm{CH}_{2}\right), 58.8(\mathrm{CH}), 56.1$ $\left(\mathrm{CH}_{3}\right), 34.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right)$; HRESIMS $m / z 595.2629[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}_{1}$ 595.2639.

(2R,3S)-2-amino-4-((4S,5R)-5-amino-2,2-dimethyl-1,3-dioxan-4-yl)-3-

 (methoxymethoxy)butan-1-ol ((-)-301). $10 \% \mathrm{Pd} / \mathrm{C}(6.3 \mathrm{mg}, 5.9 \mu \mathrm{~mol}, 25 \mathrm{~mol} \% \mathrm{Pd})$ was added to $\mathbf{3 4 9}(13.1 \mathrm{mg}, 23.5 \mu \mathrm{~mol})$ in dry trifluoroethanol $(1.5 \mathrm{~mL})$ and the mixture placed under $\mathrm{H}_{2}(7 \mathrm{~atm})$ and agitated for 17 hour on a Parr shaker. The mixture was adjusted to pH 4 with TFA placed under $\mathrm{H}_{2}(7 \mathrm{~atm})$ and agitated for 4.5 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure provided crude (-)-301 which was used without further purification.(2R,3S)-2-(dibenzylamino)-4-((4S,5R)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-(methoxymethoxy)butan-1-ol ((-)-302). Benzylbromide ($56.3 \mu \mathrm{~L}, 471 \mu \mathrm{~mol})$ was added dropwise to a stirred solution of amine (-)-301 ($<6.6 \mathrm{mg}, 23.5 \mu \mathrm{~mol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$
$(195 \mathrm{mg}, 1.41 \mathrm{mmol})$ in anhydrous acetonitrile $(550 \mu \mathrm{~L})$ at room temperature. The mixture was stirred for 4.5 days then quenched by addition of water $(5 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(4 \times 4 \mathrm{~mL})$ and combined extracts washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, step gradient of 10% and 20% and then 25% ethyl acetate in hexane) provided (-)-302 (7.0 mg, 47\%) as an amorphous solid: IR (neat) v 3476, 3065, 3030, 2995, 2943, $2882,2812,1597,1492,1457,1379,1265,1221,1151,1108,1029,977,916,758,706$ $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}-25.2\left(c 2.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.23(\mathrm{~m}, 20 \mathrm{H})$, $4.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00-3.88(\mathrm{~m}, 6 \mathrm{H}), 3.84(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{bs}, 1 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{dd}, J=13.6,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.90 (ddd, $J=14.8,10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.0(\mathrm{C}), 139.7(\mathrm{C}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 98.9(\mathrm{CH}), 98.7(\mathrm{C}), 76.2(\mathrm{CH}), 67.0(\mathrm{CH}), 62.6(\mathrm{CH}), 58.5\left(\mathrm{CH}_{2}\right)$, $58.0(\mathrm{CH}), 57.9\left(\mathrm{CH}_{2}\right), 56.5\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 639.3971[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{5} 639.3793$.

7.1.6. Chapter 5 Methods

(2R,3S,5S,6R)-2,6-diaminoheptane-1,3,5,7-tetraol (350). A mixture of $10 \% \mathrm{Pd} / \mathrm{C}(13$ $\mathrm{mg}, 12 \mu \mathrm{~mol}, 20 \mathrm{~mol} \% \mathrm{Pd})$ and azide $334(15.0 \mathrm{mg}, 60.9 \mu \mathrm{~mol})$ in water (1.5 mL) was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred at room temperature. After 2 hours the mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure to provided the $\mathbf{3 5 0}$ ($11.8 \mathrm{mg}, 100 \%$) as a white solid. $\mathbf{3 5 0}$ was converted to the hydrochloride salt for analysis: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta 4.16(\mathrm{~m}, 2 \mathrm{H})$, $3.93(\mathrm{dd}, J=12.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=12.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ (apparent dt, $J=8.4$, $4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dd}, J=8.0,5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \operatorname{ref} \mathrm{CH}_{3} \mathrm{CN}\right) \delta$ $65.8(\mathrm{CH}), 58.0\left(\mathrm{CH}_{2}\right), 57.3(\mathrm{CH}), 35.8\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 195.1341[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 195.1339.

(2S,3R,4R)-4-amino- N-((S)-1-amino-1-oxo-3-ureidopropan-2-yl)-2,3,5-

trihydroxypentanamide (351). $\mathrm{TMSCl}(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $\mathbf{3 2 0}$ $(16.4 \mathrm{mg}, 27 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(29 \mathrm{mg}, 27 \mu \mathrm{~mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(29 \mathrm{mg}, 27 \mu \mathrm{~mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below
room temperature. HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, 3 MeOH: $0.1 \mathrm{CF}_{3} \mathrm{COOH}: 96.9 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HCl salt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure 351 ($4.3 \mathrm{mg}, 49 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{22}-21.2\left(c \quad 1.13, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, 0.2 \%\right.$ acetonitrile: $\mathrm{D}_{2} \mathrm{O}$ (ref δ 2.06)) $\delta 4.45(\mathrm{dd}, J=6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{dd}, J=12.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=14.6$, 4.3 Hz, 1H), $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=14.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 1.47)\right) \delta 174.9(\mathrm{C}), 174.7(\mathrm{C}), 162.2(\mathrm{C}), 72.3(\mathrm{CH}), 68.8(\mathrm{CH})$, $58.8\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 316.1235[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}_{1}$ 316.1233.
(2S,3R,4R)-N-((R)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-(dibenzylamino)-3-hydroxy-5-(methoxymethoxy)pentanamide (355). A solution of $314(20.3 \mathrm{mg}, 42.3 \mu \mathrm{~mol})$ in DMF $(60 \mu \mathrm{~L})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI $(10.6 \mathrm{mg}, 55.0 \mu \mathrm{~mol})$ in DMF $(100 \mu \mathrm{~L})$ and $\mathrm{HOBt}(8.0 \mathrm{mg}, 59.3 \mu \mathrm{~mol})$ in DMF $(40 \mu \mathrm{~L})$. After 5 minutes amine (+)- $\mathbf{3 1 9}(12.1 \mathrm{mg}, 46.6 \mu \mathrm{~mol})$ in DMF $(50 \mu \mathrm{~L})$ and triethylamine $(6.5 \mu \mathrm{~L}, 46.6 \mu \mathrm{~mol})$ was added. The mixture was warmed to room temperature and stirred for 1.5 hours. A solution of 10% isopropyl alcohol in chloroform $(50 \mathrm{~mL})$ was added, and the mixture washed with water $(3 \times 5 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 5% then 10% methanol in dichloromethane) provided $355(17.2 \mathrm{mg}, 67 \%)$ as a
viscous oil: IR (neat) v 3346, 3063, 3027, 2930, 1655, 1544, 1494, 1453, 1342, 1149, 1106, 1046, 916, 750, $699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-29.7\left(c 5.13, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.37$ (dd, $J=6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.95$ (m, 2H), 3.91 (dd, $J=10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3,42(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~m}$, $1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.2(\mathrm{C}), 174.8(\mathrm{C}), 162.4(\mathrm{C})$, $141.3(\mathrm{C}), 138.5(\mathrm{C}), 130.6(\mathrm{CH}), 129.8(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.1(\mathrm{CH}), 97.9\left(\mathrm{CH}_{2}\right), 81.3(\mathrm{CH}), 74.5\left(\mathrm{CH}_{2}\right), 73.9(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{CH}), 55.9$ $\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{3}\right), 55.7(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 608.3063[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{7} 608.3079$.

(2S,3R,4R)-4-amino- N-((R)-1-amino-1-ox0-3-ureidopropan-2-yl)-2,3,5-

trihydroxypentanamide (352). $\mathrm{TMSCl}(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $\mathbf{3 5 5}$ $(13.5 \mathrm{mg}, 22 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(24 \mathrm{mg}, 22 \mu \mathrm{~mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(24 \mathrm{mg}, 22 \mu \mathrm{~mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided the hydrochloride salt of $\mathbf{3 5 2}(4.9 \mathrm{mg}$, (73% purity by

NMR)). Further HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, 1.3 MeOH: $0.1 \mathrm{CF}_{3} \mathrm{COOH}: 98.6 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HCl salt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure $352(1.8 \mathrm{mg})$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{20}-12.4\left(c 1.42, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 2.06)\right) \delta$ 4.46 (dd, $J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{dd}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.50$ (dd, $J=14.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 1.47)$) δ $175.1(\mathrm{C}), 174.8(\mathrm{C}), 162.4(\mathrm{C}), 72.3(\mathrm{CH}), 69.0(\mathrm{CH}), 58.8\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{CH}), 41.3$ $\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 294.1411[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{6}$ 294.1414.
(2R,3S,4R,5S)-methyl 2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5(methoxymethoxy)hexanoate (356). Under an atmosphere of nitrogen freshly distilled n-BuBOTf $(55.5 \mu \mathrm{~L}, 220 \mu \mathrm{~mol})$ and Hünig's base $(43.8 \mu \mathrm{~L}, 251 \mu \mathrm{~mol})$ was added to a stirred solution of $\mathbf{8 8}(34.0 \mathrm{mg}, 188 \mu \mathrm{~mol})$ in ethyl ether $(250 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 hours then aldehyde $297(90.0 \mathrm{mg}, 141 \mu \mathrm{~mol})$ in ethyl ether $(150 \mu \mathrm{~L})$ was added dropwise. The mixture was stirred for 15 minutes then warmed to $0^{\circ} \mathrm{C}$ and stirred a further 2 hours. The mixture was quenched with addition of pH 7 phosphate buffer $(206 \mu \mathrm{~L})$, methanol $(620 \mu \mathrm{~L})$ and 2:1 methanol:30\% hydrogen peroxide ($620 \mu \mathrm{~L}$) at $0^{\circ} \mathrm{C}$. This mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then $5 \% \mathrm{NaHCO}_{3}$ solution $(50 \mathrm{~mL})$ added and the mixture extracted with ethyl ether $(3 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (Analogix 4 g silica cartridge, 5\% ethyl acetate in hexane, 13
$\mathrm{mL} / \mathrm{min}$ flow rate) followed by HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 3% IPA in hexane, $4 \mathrm{~mL} / \mathrm{min}$) provided $\mathbf{3 5 6}(57.2 \mathrm{mg}, 49 \%$) as a viscous oil: IR (neat) v 3476, 3065, 3056, 2986, 2934, 2882, 1754, 1606, 1501, 1457, 1379, 1265, 1204, 1151, 1099, $1038,916,819,750,706 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+29.2\left(c \quad 10.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-7.15(\mathrm{~m}, 25 \mathrm{H}), 4.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.02(\mathrm{~m}$, $3 \mathrm{H}), 3.90-3.64(\mathrm{~m}, 11 \mathrm{H}), 3.48(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J$ $=9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6(\mathrm{C}), 139.4(\mathrm{C}), 137.8(\mathrm{C}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 98.9(\mathrm{C}), 96.7$ $\left(\mathrm{CH}_{2}\right), 78.7(\mathrm{CH}), 74.3(\mathrm{CH}), 72.2\left(\mathrm{CH}_{2}\right), 70.0(\mathrm{CH}), 68.0(\mathrm{CH}), 62.1(\mathrm{CH}), 58.6\left(\mathrm{CH}_{2}\right)$, $58.4(\mathrm{CH}), 56.6\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 38.4\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 21.7$ $\left(\mathrm{CH}_{3}\right) ;$ HRMS $m / z 817.4437[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~N}_{1} \mathrm{O}_{8} \mathrm{~N}_{2}$ 817.4422.

($2 R, 3 S, 4 R, 5 S$)-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-

 dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanoic acid (357).Lithium hydroxide monohydrate ($6.5 \mathrm{mg}, 64 \mu \mathrm{~mol}$) was added to a stirred solution of ester $356(50 \mathrm{mg}, 61 \mu \mathrm{~mol})$ in $3: 2: 2 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{THF}(1.40 \mathrm{~mL})$ at room temperature. The mixture was stirred for 4 hours then diluted with ethyl acetate $(90 \mathrm{~mL})$. The mixture was washed with $1 \% \mathrm{HCl}$ solution till neutral then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica saturated with $\mathrm{AcOH}, 25 \%$ then 50% ethyl acetate with $1 \% \mathrm{AcOH}$ in hexane) provided $357(41.3 \mathrm{mg}, 84 \%)$ as a viscous oil: IR (neat) v 3338, 3061, 3027, 2935, 2888, 1733, 1601, 1494, 1453, 1378, 1219, 1146,

1101, 1026, 916, 747, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}+33.4\left(c \quad 11.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.14(\mathrm{~m}, 25 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-$ $4.51(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.89-3.70(\mathrm{~m}, 7 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H})$, $3.46(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=14.4$, 9.6, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.27,(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2(\mathrm{C}), 139.3(\mathrm{C})$, $137.5(\mathrm{C}), 136.7(\mathrm{C}), 129.6(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 98.9(\mathrm{C}), 96.4\left(\mathrm{CH}_{2}\right), 79.6(\mathrm{CH}), 73.8$ $(\mathrm{CH}), 72.0\left(\mathrm{CH}_{2}\right), 69.4(\mathrm{CH}), 67.5(\mathrm{CH}), 61.9(\mathrm{CH}), 58.3\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 56.8\left(\mathrm{CH}_{3}\right)$, $56.3\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right) ;$ HRMS m/z 803.4248 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{49} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{8}$ 803.4266.
(2R,3S,4R,5S)-N-((S)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-(dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanamide (358). A solution of 357 ($18.7 \mathrm{mg}, 23.3$ $\mu \mathrm{mol})$ in DMF $(50 \mu \mathrm{~L})$ was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI (5.80 $\mathrm{mg}, 30.3 \mu \mathrm{~mol})$ in DMF ($75 \mu \mathrm{~L}$) and HOBt ($4.40 \mathrm{mg}, 32.6 \mu \mathrm{~mol}$) in DMF ($50 \mu \mathrm{~L}$). After 5 minutes amine (-)-319 $(6.67 \mathrm{mg}, 25.6 \mu \mathrm{~mol})$ in DMF ($50 \mu \mathrm{~L}$) and triethylamine (3.57 $\mu \mathrm{L}, 25.6 \mu \mathrm{~mol})$ were added. The mixture was warmed to room temperature and stirred for 2.5 hours. A solution of 10% isopropyl alcohol in chloroform (16 mL) was added, and the mixture washed with water $(5 \times 3 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, $2.5 \%, 5 \%$, and 10% methanol in dichloromethane) provided $358(18.7 \mathrm{mg}, 86 \%)$ as an amorphous solid. Further HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 17% methanol in
dichloromethane, $3.5 \mathrm{~mL} / \mathrm{min}$) provided pure $\mathbf{3 5 8}(12.7 \mathrm{mg})$ as a amorphous solid: IR (neat) $v 3344,3208,3061,3027,2989,2931,1664,1519,1494,1453,1377,1342,1222$, 1142, 1105, 1027, 915, 747, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+13.9\left(c 4.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.32-7.17(\mathrm{~m}, 25 \mathrm{H}), 4.64(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.46(\mathrm{~m}, 3 \mathrm{H}), 4.39-4.33$ (m, 2H), $4.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{dd}, J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.84-3.74 (m, 5H), $3.64(\mathrm{dd}, J=14.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.35$ $(\mathrm{m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=14.4,8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.2(\mathrm{C}), 173.6(\mathrm{C}), 162.2$ (C), 141.3 (C), 140.9 (C), 138.5 (C), $130.3(\mathrm{CH}), 130.0(\mathrm{CH}), 129.5(\mathrm{CH}), 129.43(\mathrm{CH})$, $129.39(\mathrm{CH}), 129.3(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 100.1(\mathrm{C}), 97.4\left(\mathrm{CH}_{2}\right)$, $82.3(\mathrm{CH}), 76.1(\mathrm{CH}), 74.2\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 69.5(\mathrm{CH}), 63.4(\mathrm{CH}), 59.4\left(\mathrm{CH}_{2}\right), 59.3$ $(\mathrm{CH}), 56.9\left(\mathrm{CH}_{3}\right), 56.8\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{2}\right), 54.8(\mathrm{CH}), 42.8\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 27.7$ $\left(\mathrm{CH}_{3}\right)$, $21.8\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 931.4939[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{9} 931.4964$.

($2 R, 3 S, 4 S, 5 S, 7 R, 8 S)-4,8-d i a m i n o-N-((S)$-1-amino-1-ox0-3-ureidopropan-2-yl)-

 2,3,5,7,9-pentahydroxynonanamide (353). $\mathrm{TMSCl}(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $\mathbf{3 5 8}(12.5 \mathrm{mg}, 13.4 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(14.3 \mathrm{mg}, 13.4$ $\mu \mathrm{mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude material was resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(14.3 \mathrm{mg}, 13.4 \mu \mathrm{~mol}, 100$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on aParr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided the hydrochloride salt of 353. Further HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, $1.3 \mathrm{MeOH}: 0.1 \mathrm{CF}_{3} \mathrm{COOH}$: $98.6 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HCl salt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure 353 ($3.61 \mathrm{mg}, 57 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{22}-25.8$ (c 2.41, $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, 0.2% acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 2.06)\right) \delta 4.44(\mathrm{dd}, J=6.4,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=$ $12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-$ $3.44(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.4,3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , 0.2% acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 1.47)\right) \delta 174.7(\mathrm{C}), 174.6(\mathrm{C}), 162.3(\mathrm{C}), 74.1(\mathrm{CH}), 67.3$ $(\mathrm{CH}), 67.2(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 57.8(\mathrm{CH}), 56.5(\mathrm{CH}), 54.9(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 397.2035[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{8}$ 397.2041.

(2R,3S,4R,5S)-N-((R)-1-amino-1-oxo-3-ureidopropan-2-yl)-2-(benzyloxy)-4-

 (dibenzylamino)-6-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-dioxan-4-yl)-3-hydroxy-5-(methoxymethoxy)hexanamide (359). A solution of 357 (19.4 mg, 24.2 $\mu \mathrm{mol})$ in DMF ($50 \mu \mathrm{~L}$) was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with EDCI (6.02 $\mathrm{mg}, 31.4 \mu \mathrm{~mol})$ in DMF ($80 \mu \mathrm{~L}$) and HOBt ($4.57 \mathrm{mg}, 33.8 \mu \mathrm{~mol}$) in DMF ($50 \mu \mathrm{~L}$). After 5 minutes amine (+) $\mathbf{- 3 1 9}(6.91 \mathrm{mg}, 26.6 \mu \mathrm{~mol})$ in DMF ($50 \mu \mathrm{~L}$) and triethylamine (3.70 $\mu \mathrm{L}, 26.6 \mu \mathrm{~mol})$ were added. The mixture was warmed to room temperature and stirred for 2.5 hours. A solution of 10% isopropyl alcohol in chloroform (16 mL) was added, and the mixture washed with water $(5 \times 3 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, $2.5 \%, 5 \%$, and 10%methanol in dichloromethane) provided $359(19.4 \mathrm{mg}, 86 \%)$ as an amorphous solid. Further HPLC purification (silica $10 \times 250 \mathrm{~mm}$ column, 17% methanol in dichloromethane, $3.5 \mathrm{~mL} / \mathrm{min}$) provided pure $\mathbf{3 5 9}(14.0 \mathrm{mg})$ as a amorphous solid: IR (neat) $v 3343,3220,3061,3027,2989,2934,1670,1603,1520,1494,1454,1377,1223$, 1144, 1105, 1027, 749, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{21}+23.3\left(c 5.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.31-7.17(\mathrm{~m}, 25 \mathrm{H}), 4.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-$ $4.40(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02-3.88 (m, 5H), 3.82-3.74 (m, 5H), $3.59(\mathrm{dd}, J=14.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 3 \mathrm{H})$, $3.38(\mathrm{dd}, J=9.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.1$ (C), $174.3(\mathrm{C}), 162.4$ (C), $141.0(\mathrm{C}), 140.9(\mathrm{C}), 138.5(\mathrm{C}), 130.3(\mathrm{CH}), 130.1(\mathrm{CH}), 129.5(\mathrm{CH}), 129.45(\mathrm{CH})$, $129.42(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 100.1(\mathrm{C}), 97.7\left(\mathrm{CH}_{2}\right)$, $81.9(\mathrm{CH}), 76.1(\mathrm{CH}), 73.9\left(\mathrm{CH}_{2}\right), 72.2(\mathrm{CH}), 69.6(\mathrm{CH}), 63.4(\mathrm{CH}), 59.5(\mathrm{CH}), 59.2$ $\left(\mathrm{CH}_{2}\right), 56.9\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 55.7\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{CH}_{2}\right), 27.6$ $\left(\mathrm{CH}_{3}\right)$, $21.9\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 931.4945[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{53} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{9} 931.4964$.

($2 R, 3 S, 4 S, 5 S, 7 R, 8 S)-4,8-d i a m i n o-N-((R)-1-a m i n o-1-o x 0-3-u r e i d o p r o p a n-2-y l)-$

 2,3,5,7,9-pentahydroxynonanamide (354). $\mathrm{TMSCl}(15.0 \mu \mathrm{~L}, 12.7 \mathrm{mg}, 120 \mu \mathrm{~mol})$ was added to $\mathbf{3 5 9}(13.8 \mathrm{mg}, 14.8 \mu \mathrm{~mol})$ in dry $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 5 minutes with agitation. $10 \% \mathrm{Pd} / \mathrm{C}(15.8 \mathrm{mg}, 14.8$ $\mu \mathrm{mol}, 100 \mathrm{~mol} \% \mathrm{Pd})$ was added and the mixture placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ syringe filter and concentrated under reduced pressure at room temperature or below. The crude materialwas resuspended in $1 \% \mathrm{HCl}$ in water $(1.5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(15.8 \mathrm{mg}, 14.8 \mu \mathrm{~mol}, 100$ $\mathrm{mol} \% \mathrm{Pd})$ added. The mixture was placed under $\mathrm{H}_{2}(5 \mathrm{~atm})$ and agitated for 1 hour on a Parr shaker. Filtration through a $0.45 \mu \mathrm{~m}$ syringe filter and concentration under reduced pressure at or below room temperature provided the hydrochloride salt of $\mathbf{3 5 4}$. Further HPLC purification (Synergi Hydro-RP $10 \times 250 \mathrm{~mm}$ column, $1.3 \mathrm{MeOH}: 0.1 \mathrm{CF}_{3} \mathrm{COOH}$: $98.6 \mathrm{H}_{2} \mathrm{O}, 3.5 \mathrm{~mL} / \mathrm{min}$, (product converted to HCl salt by resuspending in $1 \% \mathrm{HCl}$ and re-drying)) provided pure 354 ($5.06 \mathrm{mg}, 73 \%$) as a white solid: $[\alpha]_{\mathrm{D}}{ }^{22}-7.8\left(c 3.37, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\operatorname{ref} \delta 2.06)\right) \delta 4.47(\mathrm{dd}, J=7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.4,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=14.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H})$, 1.93 (ddd, $J=14.4,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 0.2 \%$ acetonitrile: $\left.\mathrm{D}_{2} \mathrm{O}(\mathrm{ref} \delta 1.47)\right) \delta 174.8(\mathrm{C}), 174.7(\mathrm{C}), 162.4(\mathrm{C}), 74.2(\mathrm{CH}), 67.5(\mathrm{CH})$, $67.2(\mathrm{CH}), 58.1\left(\mathrm{CH}_{2}\right), 57.7(\mathrm{CH}), 56.5(\mathrm{CH}), 55.1(\mathrm{CH}), 41.3\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right)$; HRMS $m / z 397.2033[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{8}$ 397.2041.

(R)-((2R,3S)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-

 dioxan-4-yl)-3-(methoxymethoxy)butyl) 3,3,3-trifluoro-2-methoxy-2phenylpropanoate (361). $R-(+)-\mathrm{MPTA}(7.5 \mathrm{mg}, 31 \mu \mathrm{~mol})$, DCC $(8.9 \mathrm{mg}, 43 \mu \mathrm{~mol})$ and DMAP $(0.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol})$ were added to $296(10.0 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ in $\mathrm{DCM}(100 \mu \mathrm{~L})$ at room temperature under nitrogen. The mixture was stirred for 7 hours then quenched with water $(1 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(5 \mathrm{~mL})$. The mixture extracted with ethyl ether ($3 \times 5 \mathrm{~mL}$) and washed with brine $(5 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\%ethyl acetate in hexane) provided $\mathbf{3 6 1}(11.0 \mathrm{mg}, 82 \%)$ as a viscous oil: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.18-7.08$ $(\mathrm{m}, 10 \mathrm{H}), 4.71-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.62$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 5 \mathrm{H}), 3.43(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}$, $1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.13$, (s, $3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.3$ (s, 3F, (minor 0.02)), -71.7 (s, 3F, (major 1.00)).

(S)-((2R,3S)-2-(dibenzylamino)-4-((4R,5S)-5-(dibenzylamino)-2,2-dimethyl-1,3-

 dioxan-4-yl)-3-(methoxymethoxy)butyl) 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (362). S-(-)-MPTA ($7.5 \mathrm{mg}, 31 \mu \mathrm{~mol}$), DCC ($8.9 \mathrm{mg}, 43 \mu \mathrm{~mol}$) and DMAP ($0.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol})$ were added to $296(10.0 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ in DCM $(100 \mu \mathrm{~L})$ at room temperature under nitrogen. The mixture was stirred for 7 hours then quenched with water $(1 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(5 \mathrm{~mL})$. The mixture extracted with ethyl ether ($3 \times 5 \mathrm{~mL}$) and washed with brine (5 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% ethyl acetate in hexane) provided $362(12.5 \mathrm{mg}, 93 \%)$ as a viscous oil: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.21-7.10$ $(\mathrm{m}, 10 \mathrm{H}), 4.67(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.63(\mathrm{~m}, 10 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$, $3.23(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$,
1.08, (s, 3H); ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-71.3(\mathrm{~s}, 3 \mathrm{~F},($ major 1.00$)$), $-71.7(\mathrm{~s}, 3 \mathrm{~F}$, (minor 0.04)).

7.1.7. Chapter 6 Methods

Compounds 54, 193, 368, 369 and $\mathbf{3 7 5}$ were synthesized according to literature procedure.

7-(4-methoxybenzyloxy)hepta-2,5-diyn-1-ol (363) To a nitrogen filled dry round bottom flask with stirrer was added finely ground and anhydrous NaI ($808 \mathrm{mg}, 5.39$ mmol), $\mathrm{CuI}(525 \mathrm{mg}, 2.76 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(732 \mathrm{mg}, 5.30 \mathrm{mmol})$. Dry DMF (2 mL) was added followed by $\mathbf{3 7 5}(500 \mu \mathrm{~L}, 599 \mathrm{mg}, 5.72 \mathrm{mmol})$ and $\mathbf{3 3 0}(914 \mathrm{mg}, 5.19 \mathrm{mmol})$ in DMF (3 mL). The mixture was stirred for 20 hours at room temperature quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The mixture was extracted with benzene $(5 \times 7 \mathrm{~mL})$ and combined extracts washed with water $(4 \times 10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in MeOH and conc. $\mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL})$ added. Mixture was stirred for 30 minutes then water (5 mL) added. MeOH was removed under vacuo. and remaining mixture was extracted with benzene (4 $\times 2 \mathrm{~mL}$), combined extracts were washed with water till pH 7 and concentrated under reduced pressure. Flash chromatography (silica, ethyl acetate : hexane $2: 3$) provided $\mathbf{3 6 3}$ ($940 \mathrm{mg}, 74 \%$) and a viscous clear oil: IR (neat) v 3403, 2910, 2281, 2219, 1722, 1612, 1513, 1249, 1174, 1070, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (m, 2H), $4.51(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{q}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6(\mathrm{C}), 130.1(\mathrm{CH}), 129.7(\mathrm{C}), 114.1$ $(\mathrm{CH}), 80.5(\mathrm{C}), 79.8(\mathrm{C}), 79.3(\mathrm{C}), 77.1(\mathrm{C}), 71.5\left(\mathrm{CH}_{2}\right), 57.4\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right), 51.3$ $\left(\mathrm{CH}_{2}\right), 10.3\left(\mathrm{CH}_{2}\right)$; HRFAB $m / z 267.1003[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na} 267.0997$.
(2Z,5Z)-7-(4-methoxybenzyloxy)hepta-2,5-dien-1-ol (364) Lindlar's cat. ($32.6 \mathrm{mg}, 15$ $\mu \mathrm{mol}$) and quinoline ($20 \mu \mathrm{~L}, 21.9 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added to $363(100 \mathrm{mg}, 0.41$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl} 2(15 \mathrm{~mL})$. The mixture was placed under $\mathrm{H}_{2}(1 \mathrm{~atm})$ and stirred for 6 hours. The mixture was filtered through a Celoite plug, and concentrated under reduced pressure. Flash chromatography (silica, ethyl acetate : hexane 2 : 3) provided 364 (84.8 $\mathrm{mg}, 83 \%$) as a clear viscous oil: IR (neat) v 3389, 2987, 2924, 2857, 1593, 1491, 1213 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.67(\mathrm{~m}, 4 \mathrm{H}), 4.45$ (s, 2H), $4.17(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.6(\mathrm{C}), 131.5(\mathrm{CH}), 130.6(\mathrm{CH}), 129.8(\mathrm{CH})$, $129.4(\mathrm{CH}), 127.1(\mathrm{CH}), 114.1(\mathrm{CH}), 72.2\left(\mathrm{CH}_{2}\right), 65.4\left(\mathrm{CH}_{2}\right), 58.7\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right)$, $26.5\left(\mathrm{CH}_{2}\right)$; HRFAB $m / z 271.1323[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na} 271.1310$.

General procedure for synthesis of $\mathbf{3 7 0 a}$ and $\mathbf{3 7 0 b}$. Under an atmosphere of nitrogen, n BuLi ($0.255 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a solution of $\mathbf{3 6 8}(40 \mathrm{mg}$, $0.255 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then cooled to $-78^{\circ} \mathrm{C}$ and 369 ($58.6 \mathrm{mg}, 0.114 \mathrm{mmol}$ in THF) was added dropwise over 5 minutes. The solution was stirred for 1 hour then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(5 \times 15 \mathrm{~mL})$ and combined extracts washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure. Flash chromatography (silica, ethyl acetate : hexane $1: 3$) provided a mixture of $\mathbf{3 7 0} \mathbf{a}$ and $\mathbf{3 7 0 b}$ ($39.6 \mathrm{mg}, 52 \%, 2: 1$ ratio by NMR). HPLC chromatography (Silica, 1\% IPA in hexane) gave 370a and 370b viscous clear oils.
(2S,3S)-3-(dibenzylamino)-1-(phenylsulfonyl)-4-(trityloxy)butan-2-ol (370a): IR (neat) $v 3518,3085,3060,3026,2938,2887,2839,2806,1959,1812,1596,1492,1447$, $1305,1216,1147,1082,1056 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+1.5\left(c 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.51(\mathrm{~m}, 22 \mathrm{H}), 7.05(\mathrm{~d}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.32(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.58(\mathrm{~m}, 4 \mathrm{H}), 3.26$ (d, J=13.6 Hz, 2H), 2.23 (d, J=2.4 Hz, 1H), 2.82 (dd, J=14.8, 10.4 Hz, 1H), $2.75(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.6$ (C), 139.3 (C), $139.2(\mathrm{C}), 129.3(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 87.6(\mathrm{C}), 65.7(\mathrm{CH}), 60.5\left(\mathrm{CH}_{2}\right), 60.2$ $(\mathrm{CH}), 59.2\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right)$; HRFAB $m / z 668.2806[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~N}_{1} \mathrm{~S}_{1}$ 668.2835.
(2R,3S)-3-(dibenzylamino)-1-(phenylsulfonyl)-4-(trityloxy)butan-2-ol (370b): IR (neat) v 3518, 3085, 3060, 3027, 2930, 2880, 2812, 1962, 1815, 1597, 1585, 1493, 1447, $1306,1218,1147,1084 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+16.6\left(c 0.17, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.44$ (m, $19 \mathrm{H}), 4.17$ (bs, 1H), 7.17 (bs, 4H), $3.99(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{bd}, \mathrm{J}=12 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H})$, 3.2-3.7 (m, 5H), $2.76(\mathrm{bs}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6(\mathrm{C}), 140.2(\mathrm{C})$, $138.9(\mathrm{C}), 133.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 87.9(\mathrm{C}), 65.1(\mathrm{CH}), 61.4(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right), 54.7$ $\left(\mathrm{CH}_{2}\right)$; HRFAB $m / z 668.2838[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~N}_{1} \mathrm{~S}_{1} 668.2835$.

General procedure for synthesis of $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$. Under an atmosphere of nitrogen, n BuLi ($0.160 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a solution of $\mathbf{3 6 8}(25 \mathrm{mg}$, $0.16 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then cooled
to $-78^{\circ} \mathrm{C}$ and $54(29.3 \mathrm{mg}, 0.127 \mathrm{mmol}$ in THF) was added dropwise over 5 minutes. The solution was stirred for 1 hour then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 $\mathrm{mL})$. The mixture was extracted with ethyl ether $(5 \times 15 \mathrm{~mL})$ and combined extracts washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduced pressure. Flash chromatography (silica, ethyl acetate : hexane $1: 3$) provided a mixture of $\mathbf{3 7 8}$ and 379 ($26.0 \mathrm{mg}, 53 \%$, $1: 1$ ratio by HPLC). HPLC chromatography (Silica, 10\% IPA in hexane) followed by recrystallization from 5\% IPA in hexane gave $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ as solids. (S)-tert-butyl 4-((S)-1-hydroxy-2-(phenylsulfonyl)ethyl)-2,2-dimethyloxazolidine-3carboxylate (378) : mp $164-167^{\circ} \mathrm{C}$; IR (neat) v 3411, 3306, 3063, 3007, 2981, 2933, $2874,1655,1478,1448,1401,1367,1302,1273,1243,1225,1139,1106 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}-$ $34.8\left(c 0.16, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{td}, \mathrm{J}=1.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (bs, 1H), 7.59 (bd, J=7.6 Hz, 2H), 3.70-4.3 (bm, 4H), 3.20-3.60 (bm, 2H), [1.23, 1.34, 1.45, (broad overlaping singlets, 16 H)]; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1$ (C), 139.3 (C), $133.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.0(\mathrm{CH}), 94.3(\mathrm{C}), 81.5(\mathrm{C}), 68.1(\mathrm{CH}), 64.8\left(\mathrm{CH}_{2}\right), 60.9$ $(\mathrm{CH}), 60.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right)$; HRMS $m / z 386.1643[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{1} \mathrm{~S}_{1}$ 386.1637.

(S)-tert-butyl 4-((R)-1-hydroxy-2-(phenylsulfonyl)ethyl)-2,2-dimethyloxazolidine-3-

 carboxylate (379) : mp $123-125^{\circ} \mathrm{C}$; IR (neat) v $3518,3060,2999,2987,2971,2925$, $2888,2878,1681,1585,1480,1469,1446,1381,1369,1306,1258,1239,1143,1111$, $1085,1061 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}-61.2\left(c 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{bm}, 1 \mathrm{H}), 7.61(\mathrm{bm}, 2 \mathrm{H}), 4.42(\mathrm{bs}, 1 \mathrm{H}), 3.90-4.15(\mathrm{~m}, 2.5 \mathrm{H}), 3.50-$ $3.80(\mathrm{bm}, 0.5 \mathrm{H}), 3.20-3.40(\mathrm{bm}, 2 \mathrm{H}), 1.54(\mathrm{bs}, 3 \mathrm{H}),[1.31,1.39,1.42,1.43,1.44(\mathrm{broad}$ overlapping singlets, 16 H) $],{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4$ (C), 152.0 (C), 139.3$(\mathrm{C}), 139.0(\mathrm{C}), 134.2(\mathrm{CH}), 133.9(\mathrm{CH}), 133.6(\mathrm{C}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH})$, $128.9(\mathrm{CH}), 128.3(\mathrm{C}), 128.0(\mathrm{CH}), 99.4(\mathrm{C}), 94.7$ (C), 94.2 (C), 81.2 (C), 80.7 (C), 80.2 $(\mathrm{C}), 67.4(\mathrm{C}), 66.6(\mathrm{CH}), 65.4(\mathrm{CH}), 64.9(\mathrm{C}), 63.6\left(\mathrm{CH}_{2}\right), 63.1\left(\mathrm{CH}_{2}\right), 60.3(\mathrm{CH}), 59.4$ $(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 57.4\left(\mathrm{CH}_{2}\right), 47.1(\mathrm{C}), 31.0\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.36\left(\mathrm{CH}_{3}\right)$, $28.30\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 22.1\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right) ;$ HRMS m / z $386.1645[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{1} \mathrm{~S}_{1}$ 386.1637.

Typical procedure for synthesis of $\mathbf{3 8 1}$. (4S,4'S)-tert-butyl 4,4'-((S)-1,3-dihydroxy-2-(phenylsulfonyl)propane-1,3-diyl)bis(2,2-dimethyloxazolidine-3-carboxylate) (381). Under an atmosphere of nitrogen, n - $\mathrm{BuLi}(83 \mu \mathrm{~mol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a solution of $\mathbf{3 7 8}(16 \mathrm{mg}, 41 \mu \mathrm{~mol})$ in THF $(0.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then cooled to $-78^{\circ} \mathrm{C}$ and $\mathbf{5 4}(12 \mathrm{mg}, 52 \mu \mathrm{~mol}$ in THF) was added dropwise over 5 minutes. The solution was stirred for 1.75 hours then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). The mixture was extracted with ethyl ether $(4 \times 5$ $\mathrm{mL})$ and combined extracts washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. Flash chromatography (silica, ethyl acetate : hexane 2:3) provided $\mathbf{3 8 1}(1.9 \mathrm{mg}, 7 \%)$ as a viscous oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90$ $8.00(\mathrm{bm}, 2 \mathrm{H}), 7.40-7.70(\mathrm{bm}, 3 \mathrm{H}), 3.20-4.60(\mathrm{bm}, 9 \mathrm{H}), 1.20-1.70$ (broad overlaping signals, 30 H); LRESIMS $m / z 637.4[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}_{1} \mathrm{Na}_{1} 637.2771$.

Typical procedure for synthesis of 383. (S)-tert-butyl 4-((3S,4S)-4-(dibenzylamino)-1,3-dihydroxy-2-(phenylsulfonyl)-5-(trityloxy)pentyl)-2,2-dimethyloxazolidine-3carboxylate (383). Under an atmosphere of nitrogen, n - $\mathrm{BuLi}(93 \mu \mathrm{~mol}, 1.5 \mathrm{M}$ in
hexane) was added dropwise to a solution of $\mathbf{3 7 0 a}(29.3 \mathrm{mg}, 44 \mu \mathrm{~mol})$ in THF $(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then cooled to $-78^{\circ} \mathrm{C}$ and $\mathbf{5 4}(10 \mathrm{mg}, 43$ $\mu \mathrm{mol}$ in THF) was added dropwise over 5 minutes. The solution was stirred for 41 hours then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(4 \times 10 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 20\% ethyl acetate in hexane) provided $\mathbf{3 8 3}(6.7 \mathrm{mg}, 17 \%)$ as a viscous oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.00(\mathrm{bm}, 20 \mathrm{H}), 3.80-4.60(\mathrm{bm}, 13 \mathrm{H}), 1.20-1.70(\mathrm{bm}, 6 \mathrm{H}) ;$

LRESIMS $m / z 897.4[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{1}$ 896.4070.

General procedure for synthesis of $\mathbf{3 8 5}$ and $\mathbf{3 8 6}$. Under an atmosphere of nitrogen, i $\operatorname{PrMgCl}(1.45 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) was added dropwise to a solution of $\mathbf{3 6 8}(227 \mathrm{mg}$, $1.45 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min then hexamethylphosphoramide ($2.5 \mathrm{~mL}, 14.4 \mathrm{mmol}$) was added. The solution was cooled to $78{ }^{\circ} \mathrm{C}$ and $2(270 \mathrm{mg}, 0.71 \mathrm{mmol}$ in THF) was added dropwise over 5 min . The solution was stirred for 1.5 hours then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(15 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(5 \times 15 \mathrm{~mL})$ and combined extracts washed with water (15 mL), brine (20 mL), dried over NaSO_{4} and concentrated under reduced pressure. Flash chromatography (silica, 25% ethyl acetate in hexane, followed by second purification on silica, 10% hexane in dichloromethane) provided 385 and $386(224 \mathrm{mg}$, $59 \%, 2: 1$ ratio) as pale yellow viscous oils.
(2S,3S)-4-(tert-butyldimethylsilyloxy)-3-(dibenzylamino)-1-(phenylsulfonyl)butan-2-
ol (385). IR (neat) $v 3527,3085,3062,3026,2953,2928,2856,1602,1586,1494,1471$,
$1447,1388,1359,1305,1252,1210,1138,1090,1026,997 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{22}-7.1(c 2.51$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.60(\mathrm{ddd}$, $J=9.2,5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=$ $11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{td}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.12-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.6\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 26.0\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right)$, $59.1\left(\mathrm{CH}_{2}\right), 60.5\left(\mathrm{CH}_{2}\right), 60.7(\mathrm{CH}), 65.3(\mathrm{CH}), 127.2(\mathrm{CH}), 128.0(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.9(\mathrm{CH}), 129.3(\mathrm{CH}), 133.8(\mathrm{CH}), 139.2(\mathrm{C}), 139.4(\mathrm{C}) ;$ HRFABMS $m / z 540.2623$ $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Si}_{1} \mathrm{~S}_{1} 540.26038$.
(2R,3S)-4-(tert-butyldimethylsilyloxy)-3-(dibenzylamino)-1-(phenylsulfonyl)butan-2ol (386). IR (neat) $v 3515,3085,3062,3027,2954,2928,2883,2856,2808,1602,1586$, $1494,1471,1447,1388,1361,1306,1257,1145,1087,1027,1004,837,779,749,700$, $688 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+8.8\left(c 3.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.63(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J$ $=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.97$ $(\mathrm{m}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.44\left(\mathrm{CH}_{3}\right),-5.40\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 26.0\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right), 61.1$ $\left(\mathrm{CH}_{2}\right), 62.4(\mathrm{CH}), 65.1(\mathrm{CH}), 127.4(\mathrm{CH}), 128.1(\mathrm{CH}), 128.6(\mathrm{CH}), 129.2(\mathrm{CH}), 129.3$ $(\mathrm{CH}), 133.6(\mathrm{CH}), 139.2(\mathrm{C}), 140.2(\mathrm{C})$; HRFABMS $m / z 540.2603[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{Si}_{1} \mathrm{~S}_{1} 540.26038$.
(2S,3S)-2-amino-4-(phenylsulfonyl)butane-1,3-diol hydrochloride (387). A solution of $378(11.0 \mathrm{mg}, 28 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ with $1 \% \mathrm{HCl}$ was stirred for 26 hours at room temperature. The solution was concentrated under reduced pressure to give $\mathbf{3 8 7}(8.1 \mathrm{mg}$, quantitative) as a white solid.: IR (neat) v 3216, 2931, 1598, 1504, 1448, 1303, 1145, $1083 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-6.1\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.40(\mathrm{~m}, 1 \mathrm{H})$, $3.48(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=14.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 57.5(\mathrm{CH}), 58.5$ $\left(\mathrm{CH}_{2}\right), 59.6\left(\mathrm{CH}_{2}\right), 65.6(\mathrm{CH}), 129.2(\mathrm{CH}), 130.6(\mathrm{CH}), 135.3(\mathrm{CH}), 141.3(\mathrm{C})$; HRMS $\mathrm{m} / \mathrm{z} 246.0803[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{~S}_{1}$ 246.0800 .
(2S,3R)-2-amino-4-(phenylsulfonyl)butane-1,3-diol hydrochloride (388). A solution of $\mathbf{3 7 9}(10.4 \mathrm{mg}, 27 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ with $1 \% \mathrm{HCl}$ was stirred for 24 hours at room temperature. The solution was concentrated under reduced pressure to give $\mathbf{3 8 8}$ (7.6 mg, quantitative) as a white solid.: IR (neat) v 3220, 2946, 1596, 1504, 1448, 1301, 1145, $1083 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-0.9\left(c 0.46, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.35(\mathrm{~m}, 1 \mathrm{H})$, $3.55(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 57.8(\mathrm{CH}), 60.2\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}\right), 64.5(\mathrm{CH}), 129.2(\mathrm{CH}), 130.5$ $(\mathrm{CH}), 135.2(\mathrm{CH}), 141.5(\mathrm{C}) ;$ HRMS $m / z 246.0791[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{~S}_{1}$ 246.0800 .
(2S,3S)-2-acetamido-4-(phenylsulfonyl)butane-1,3-diyl diacetate (389). To a $1: 1$ solution of acetic anhydride and pyridine (1.5 mL) was added $\mathbf{3 8 7}(8.1 \mathrm{mg}, 29 \mu \mathrm{~mol})$ and a catalytic amount of DMAP. The mixture was stirred for 20 hours at room temperature. The solution was concentrated to dryness under reduced pressure. Flash chromatography (silica, methanol : dichloromethane $1: 9$) provided $\mathbf{3 8 9}$ ($10.6 \mathrm{mg}, 99 \%$) as a white solid. recrystallization from a mixture of hexane and IPA $(9: 1)$ afforded an analytical sample: mp 142-143 ${ }^{\circ} \mathrm{C}$; IR (neat) v 3320, 2917, 2850, 1745, 1660, 1373, 1307, 1224, $1147 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{22}+7.2\left(c 0.89, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=11.6,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.7\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 50.3(\mathrm{CH}), 57.6\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 66.8(\mathrm{CH}), 128.2(\mathrm{CH}), 129.6$ (CH), $134.2(\mathrm{CH}), 139.4$ (C), 169.7 (C), 170.4 (C), 170.9 (C); HRESITOFMS m/z $372.1105[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{1} \mathrm{O}_{7} \mathrm{~S}_{1}$ 372.1117.

General procedure for synthesis of $\mathbf{3 9 0}$ and $\mathbf{3 9 1}$. Under an atmosphere of nitrogen, t $\mathrm{BuLi}(579 \mu \mathrm{~mol}, 1.7 \mathrm{M}$ in pentane) was added dropwise to a solution of $\mathbf{3 8 5}(101 \mathrm{mg}$, $187 \mu \mathrm{~mol})$ in anhydrous THF at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes, cooled to $78^{\circ} \mathrm{C}$ and hexamethylphosphoramide ($487 \mu \mathrm{~L}, 2.80 \mathrm{mmol}$) was added. The solution was stirred for a further 15 minutes then $\mathbf{5 4}(51.3 \mathrm{mg}, 224 \mu \mathrm{~mol}$ in THF) was added dropwise over 5 minutes. The solution was stirred for 6 hours then warmed to $-40^{\circ} \mathrm{C}$ and held for 16 hours. The reaction was quenched with 15 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether $(5 \times 15 \mathrm{~mL})$ and combined extracts washed with water (15
mL), brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was resuspended in anhydrous THF (5 mL) and 0.5 mL anhydrous MeOH added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 793 \mu \mathrm{~mol})$ added. The reaction mixture was warmed to room temperature and stirring continued for 3 hours. The reaction was quenched with 15 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether $(5 \times 15 \mathrm{~mL})$ and combined extracts washed with, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 20\% ethyl acetate in hexane) provided $\mathbf{3 9 0}$ and $\mathbf{3 9 1}(49.7 \mathrm{mg}, 35 \%, 1: 1$ ratio) as white solids as well as starting material $\mathbf{3 8 5}(28.4 \mathrm{mg})$.
(S)-tert-butyl 4-((1R,3S,4S)-5-(tert-butyldimethylsilyloxy)-4-(dibenzylamino)-1,3-dihydroxy-2-(phenylsulfonyl)pentyl)-2,2-dimethyloxazolidine-3-carboxylate (390). IR (neat) $v 3478,3027,2977,2954,2930,2884,2857,1694,1659,1462,1401,1367$, 1299, 1252, 1147, 838, 754, $700 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09-0.13(\mathrm{~m}, 6 \mathrm{H})$, $0.93-0.95(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.55(\mathrm{bm}, 15 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H}), 2.94-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.65(\mathrm{bm}, 2 \mathrm{H}), 3.65-3.85(\mathrm{bm}, 1 \mathrm{H}), 3.85-4.00(\mathrm{bm}, 2 \mathrm{H}), 4.00-4.20(\mathrm{bm}$, $2 \mathrm{H}), 4.23-4.40(\mathrm{bm}, 1 \mathrm{H}), 4.40-4.60(\mathrm{bm}, \mathrm{H}), 5.26(\mathrm{bs}, 2 \mathrm{H}), 5.53(\mathrm{bs}, 1 \mathrm{H}), 7.10-7.35(\mathrm{bm}$, 9H), 7.35-7.45 (bm, 2H), 7.50-7.60 (bm, 2H), 7.85-8.05 (bm, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.5\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 26.0\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 55.0$ $\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 60.5\left(\mathrm{CH}_{2}\right), 61.0(\mathrm{CH}), 61.3(\mathrm{CH}), 62.0(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right)$, $62.3(\mathrm{CH}), 64.3\left(\mathrm{CH}_{2}\right), 65.5(\mathrm{CH}), 81.1(\mathrm{C}), 94.5(\mathrm{C}), 127.1(\mathrm{CH}), 128.1(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH}), 129.2(\mathrm{CH}), 130.8(\mathrm{CH}), 133.1(\mathrm{CH}), 139.5(\mathrm{C}), 141.9$ (C); HRDCMMS $m / z 769.3892[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{1} \mathrm{Si}_{1} 769.3918$.

(S)-tert-butyl 4-((1S,3S,4S)-5-(tert-butyldimethylsilyloxy)-4-(dibenzylamino)-1,3-

 dihydroxy-2-(phenylsulfonyl)pentyl)-2,2-dimethyloxazolidine-3-carboxylate (391). IR (neat) v 3520, 3019, 2932, 2856, 1690, 1447, 1391, 1366, 1305, 1259, 1215, 1145, 1103, 836, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.05-0.13(\mathrm{bm}, 6 \mathrm{H}), 0.78-0.95$ (bm, 12H), 1.30-1.60 (bm, 12H), 3.00-4.60 (bm, 15H), 7.10-7.50 (bm, 13H), 7.97 (d, $J=$ 7.6 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.7\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 25.9$ $\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{3}\right), 53.9\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{2}\right), 55.4$ $\left(\mathrm{CH}_{2}\right), 60.1\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{2}\right), 61.6(\mathrm{CH}), 63.6\left(\mathrm{CH}_{2}\right), 68.4(\mathrm{CH}), 70.1(\mathrm{CH}), 70.8(\mathrm{CH})$, 80.6 (C), $93.8(\mathrm{C}), 127.2(\mathrm{CH}), 128.5(\mathrm{CH}), 128.9(\mathrm{CH}), 129.3(\mathrm{CH}), 133.5(\mathrm{CH}), 138.6$ (C), 139.5 (C), 140.0 (C), 153.2 (C); HRDCMMS $m / z 769.3954[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{1} \mathrm{Si}_{1} 769.3918$.(2S,3R,5S,6S)-2,6-diamino-4-(phenylsulfonyl)heptane-1,3,5,7-tetraol (392). To 390 $(9.3 \mathrm{mg}, 12.1 \mu \mathrm{~mol})$ was added $1 \% \mathrm{HCl}$ in methanol $(1.5 \mathrm{~mL})$ and Pd on carbon $(26 \mathrm{mg}$, $24 \mu \mathrm{~mol}, 10 \% \mathrm{Pd}$ on activated carbon). The mixture was placed on a Parr hydrogenator under $\mathrm{H}_{2}(4 \mathrm{~atm})$ and shaken for 16.5 hours. The solution was filtered through a celite plug and concentrated under reduced pressure. The residue was redissolved in $1: 1$ methanol : water and run through a C18 SPE cartridge (1 g) and eluted with 3 mL of 1% HCl in $1: 1$ methanol : water to obtain the hydrochloride salt of $\mathbf{3 9 2}(4.6 \mathrm{mg}, 97 \%)$ as a white solid: IR (neat) v 3235, 2924, 1989, 1593, 1509, 1303, 1147, 1051, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.38-4.10(\mathrm{~m}, 10 \mathrm{H}), ~ 4.46-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.80(\mathrm{~m}, 1 \mathrm{H})$, $5.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.2 \mathrm{H}), 7.55-8.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.2(\mathrm{CH}), 58.2\left(\mathrm{CH}_{2}\right), 58.4\left(\mathrm{CH}_{2}\right), 60.1\left(\mathrm{CH}_{2}\right), 65.5(\mathrm{CH}), 68.3(\mathrm{CH})$,
$129.8(\mathrm{C}), 130.0(\mathrm{CH}), 130.1(\mathrm{C}), 131.5(\mathrm{CH}), 135.2(\mathrm{CH}), 138.2(\mathrm{C}), 141.6(\mathrm{C})$;
HRESITOFMS $m / z 335.1264[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{1}$ 335.1277.
(2S,3S,5S,6S)-2,6-diamino-4-(phenylsulfonyl)heptane-1,3,5,7-tetraol (393). To 391 $(9.7 \mathrm{mg}, 12.6 \mu \mathrm{~mol})$ was added $1 \% \mathrm{HCl}$ in methanol $(1.5 \mathrm{~mL})$ and Pd on carbon (31 mg , $29 \mu \mathrm{~mol}, 10 \% \mathrm{Pd}$ on activated carbon). The mixture was placed on a Parr hydrogenator under $\mathrm{H}_{2}(4 \mathrm{~atm})$ and shaken for 17 hours. The solution was filtered through a celite plug and concentrated under reduced pressure. The residue was redissolved in $1: 1$ methanol : water and run through a C18 SPE cartridge (1 g) and eluted with 3 mL of $1 \% \mathrm{HCl}$ in $1: 1$ methanol : water to obtain the hydrochloride salt of $\mathbf{3 9 3}(5.14 \mathrm{mg}, 99 \%)$ as a white solid: IR (neat) $v 3224,3045,2927,1988,1597,1502,1447,1292,1146,1050 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-$ $13.9\left(c 0.71, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.60-4.00(\mathrm{~m}, 5 \mathrm{H}), 4.14(\mathrm{t}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.0$ $(\mathrm{CH}), 56.3(\mathrm{CH}), 59.1\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{2}\right), 66.3(\mathrm{CH}), 66.5(\mathrm{CH}), 69.4(\mathrm{CH}), 130.0(\mathrm{CH})$, $130.6(\mathrm{CH}), 135.6(\mathrm{CH}), 140.0(\mathrm{C})$; HRESITOFMS $m / z 335.1278[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{1}$ 335.1277.

(S)-tert-butyl 4-((4R,6S)-2,2-di-tert-butyl-6-((S)-2-(tert-butyldimethylsilyloxy)-1-

 (dibenzylamino)ethyl)-5-(phenylsulfonyl)-1,3,2-dioxasilinan-4-yl)-2,2-dimethyloxazolidine-3-carboxylate (396). Under an atmosphere of nitrogen, 395 (23.6 $\mathrm{mg}, 26 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{3 9 0}(20.0 \mathrm{mg}, 26 \mu \mathrm{~mol})$ and 2,6-lutidine (9.0 $\mathrm{mg}, 84 \mu \mathrm{~mol})$ in anhydrous $\mathrm{DCM}(100 \mu \mathrm{~L})$ at room temperature. The mixture was stirredfor 14 hours then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$. The mixture was extracted with ethyl ether $(3 \times 5 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 12% ethyl acetate in hexane) provided $\mathbf{3 9 6}(14.9 \mathrm{mg}, 63 \%)$ as a viscous oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-7.10(\mathrm{bm}, 25 \mathrm{H}), 6.50-6.35(\mathrm{bm}, 1 \mathrm{H}), 4.60-3.50(\mathrm{bm}$, $13 \mathrm{H}), 2.00-0.80(\mathrm{~m}, 31 \mathrm{H})$; ESIMS $m / z 927.2\left[\mathrm{M}+\mathrm{H}_{3} \mathrm{O}\right]^{+}$, calcd. for $\mathrm{C}_{49} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{1} \mathrm{Si}_{2}$ 927.50.

2,6-dimethyl-4-(phenylsulfonyl)heptane-3,5-diol (399). Under an atmosphere of nitrogen, $n-\mathrm{BuLi}(27 \mathrm{~mL}, 67.4 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to a stirred solution of sulfone $368(5.01 \mathrm{~g}, 32.1 \mathrm{mmol})$ in anhydrous THF at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes then cooled to $-100^{\circ} \mathrm{C}$ and isobutyraldehyde (6.41 mgL 70.6 mmol in THF) was added dropwise. The mixture was slowly warmed to room temperature and stirred for 16 hours. The solution was cooled to $0^{\circ} \mathrm{C}$ and quenched with 150 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl ether $(4 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 30\% ethyl acetate in hexane) provided 399 (6.40 $\mathrm{g}, 66 \%$, mixture of diastereomers) as a viscous oil. All silica fractions contained at least 3 compounds and were used without further characterization.

4,6-diisopropyl-2-phenyl-5-(phenylsulfonyl)-1,3-dioxane (403). Sulfone 399 (1.31 g , $4.36 \mathrm{mmol})$, benzaldehyde dimethoxy acetal $(1.45 \mathrm{~mL}, 10.5 \mathrm{mmol})$ and camphorsulfonic acid ($10.1 \mathrm{mg}, 436 \mu \mathrm{~mol}$) in dimethylformamide $(4.5 \mathrm{~mL})$ were heated to $55^{\circ} \mathrm{C}$ for 20
hours under an atmosphere of nitrogen. The mixture was quenched by the addition of solid NaHCO_{3}, stirred for 30 min , then diluted with water and extracted with $1: 1$ ethyl ether : hexane $(3 \times 50 \mathrm{~mL})$. Combined extracts washed with saturated aqueous NaHCO_{3} $(150 \mathrm{~mL})$, brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 1:16 ethyl acetate : hexane) provided 403 and a mixture of 404a and 404b ($692 \mathrm{mg}, 41 \%, 1: 1: 2$ respectively by wt. and NMR) as well as 33% recovered 399. Compound 403 was a solid and the mixture of 404a and 404b was a clear viscous oil. Stereochemistry for compound $\mathbf{3 9 9}$ was determined by the large coupling $(9.0 \mathrm{~Hz})$ of the protons in the dioxane ring as well as an observed nOe between the ring acetal proton at $\delta 5.37 \mathrm{ppm}$ and the ring protons at $\delta 4.04 \mathrm{ppm}$.

Characterization for 403: IR (neat) v 3066, 3033, 2963, 2933, 2874, 1467, 1447, 1402, 133366, 1306, 1214, 1136, 1098, 1083, 1029, 755, 720, 700, 646, $605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.36$ (hep.d, $J=$ $6.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $7.32-7,42(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.3\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 31.0(\mathrm{CH}), 61.1(\mathrm{CH}), 78.4$ $(\mathrm{CH}), 98.7(\mathrm{CH}), 126.0(\mathrm{CH}), 128.1(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 129.5(\mathrm{CH}), 134.2$ (CH), 138.5 (C), 139.5 (C); LRMS $m / z 411.1[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Na}_{1} \mathrm{O}_{4} \mathrm{~S}_{1}$ 411.1606.

General procedure for synthesis of 407 and $\mathbf{4 0 8}$. Under an atmosphere of nitrogen, t BuLi ($1.25 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise to a solution of 1,3-dithiane ($155 \mathrm{mg}, 1.25 \mathrm{mmol}$) in anhydrous THF at $-50^{\circ} \mathrm{C}$. The mixture was stirred for 30 min
then $\mathbf{1 9 3}$ ($468 \mathrm{mg}, 1.22 \mathrm{mmol}$ in THF) was added dropwise over 5 min . The solution was stirred for 30 min at $-50^{\circ} \mathrm{C}$ then warmed to $-20^{\circ} \mathrm{C}$ over 45 min and quenched with 15 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether ($5 \times 20 \mathrm{~mL}$) and combined extracts washed with brine (5 mL), dried over NaSO_{4} and concentrated under reduced pressure. Flash chromatography (Analogix 40 g silica cartridge, 7\% ethyl acetate in hexane) provided $\mathbf{4 0 7}$ and $\mathbf{4 0 8}(485 \mathrm{mg}, 79 \%, 1: 10$ ratio by NMR) as pale yellow viscous oils.
(2S)-3-(tert-butyldimethylsilyloxy)-2-(dibenzylamino)-1-(1,3-dithian-2-yl)propan-1ol (407). IR (neat) v 3431, 3085, 3062, 3026, 2952, 2927, 2894, 2855, 1602, 1494, 1470, $1454,1360,1253,1138,1094,975,837,777,750,699 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}+2.4\left(c 4.00, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.85-2.05(\mathrm{~m}, 2 \mathrm{H})$, 2.57 (ddd, $J=13.6,9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}$, $1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-4.04(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.49\left(\mathrm{CH}_{3}\right),-5.34\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 26.0\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 49.6(\mathrm{CH}), 54.8\left(\mathrm{CH}_{2}\right), 59.7(\mathrm{CH}), 60.0\left(\mathrm{CH}_{2}\right), 71.7(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 129.3(\mathrm{CH}), 139.1(\mathrm{C})$; HRMS $m / z 504.2437[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{~S}_{2}$ 504.2426.
(2S)-3-(tert-butyldimethylsilyloxy)-2-(dibenzylamino)-1-(1,3-dithian-2-yl)propan-1ol (408). IR (neat) v 3466, 3084, 3061, 3026, 2953, 2928, 2894, 2856, 2710, 1946, 1872, $1806,1602,1493,1471,1453,1422,1360,1251,1092,939,910,836,777,749,698 \mathrm{~cm}^{-}$ ${ }^{1} ;[\alpha]_{\mathrm{D}}{ }^{22}-2.8\left(c 9.77, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=14.0,10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{ddd}, J=13.6,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.87(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dt}, J=7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32$ $(\mathrm{m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.49\left(\mathrm{CH}_{3}\right),-5.43\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 25.9\left(\mathrm{CH}_{3}\right)$, $26.0\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 50.3(\mathrm{CH}), 55.2\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{CH}), 60.9\left(\mathrm{CH}_{2}\right), 75.7$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 128.3(\mathrm{CH}), 129.1(\mathrm{CH}), 140.0(\mathrm{C}) ;$ HRMS $m / z 504.2437[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{~S}_{2}$ 504.2426.

Phenyl(tetradecyl)sulfane (412). Under an atmosphere of nitrogen, $n-\mathrm{Bu}_{3} \mathrm{P}(7.26 \mathrm{~mL}$, $29.1 \mathrm{mmol})$ was added dropwise to a solution of diphenyldisulfide $(6.36 \mathrm{~g}, 29.1 \mathrm{mmol})$ in anhydrous THF at $0^{\circ} \mathrm{C}$. The mixture was stirred for 15 min then tetradecan-1-ol $(5.0 \mathrm{~g}$, 23.3 mmol in THF) was added dropwise. The solution was warmed to $24^{\circ} \mathrm{C}$ over 24 hrs and quenched with 150 mL water and the mixture was extracted with ethyl ether $(5 \times 50$ $\mathrm{mL})$ and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 3% ethyl acetate in hexane) provided $412(6.35 \mathrm{~g}, 92 \%)$ as white solid. Compound 412 matched literature values.

Phenyl(tetradecyl)sulfone (413). Under an atmosphere of nitrogen, finaly ground $\mathrm{KMnO}_{4}(2.5 \mathrm{~g}, 15.8 \mathrm{mmol})$ and $\mathrm{MnO}_{4}(508 \mathrm{mg}, 5.8 \mathrm{mmol})$ was added to a solution of $412(1.0 \mathrm{~g}, 3.26 \mathrm{mmol})$ in anhydrous dichloromethane. The mixture was refluxed for 2 days then filtered through celite and rotovaped to dryness. Flash chromatography (silica, dichloromethane) provided 413 ($1.04 \mathrm{~g}, 94 \%$) as white solid. Compound 413 matched literature values.
(4S)-tert-butyl 4-(1-hydroxy-2-(phenylsulfonyl)pentadecyl)-2,2-dimethyloxazolidine-
3-carboxylate (414). Under an atmosphere of nitrogen, t - $\operatorname{BuLi}(192 \mu \mathrm{~mol}, 1.7 \mathrm{M}$ in pentane) was added dropwise to a solution of $\mathbf{4 1 3}(65 \mathrm{mg}, 192 \mu \mathrm{~mol})$ in anhydrous THF at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 15 min then cooled to $-50^{\circ} \mathrm{C}$ and $54(43.7 \mathrm{mg}$, $191 \mu \mathrm{~mol}$ in THF) was added dropwise over 5 min . The solution was warmed to $24^{\circ} \mathrm{C}$ over 6 hrs and quenched with 5 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether $(5 \times 5 \mathrm{~mL})$ and combined extracts washed with brine $(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10\% ethyl acetate in hexane then 25% ethyl acetate in hexane) provided 414, 415a, and 415b ($71.5 \mathrm{mg}, 66 \%, 1: 4: 2$ ratio) as pale yellow viscous oils.

Characterization for 414: IR (neat) v 3442, 2925, 2854, 1711, 1498, 1447, 1392, 1366, 1301, 1287, 1246, 1167, 1142, 1081, 847, 727, $690 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{22}-4.6\left(c 0.88, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.30(\mathrm{bm}, 22 \mathrm{H}), 1.45-1.60(\mathrm{bm}$, $16 \mathrm{H}), 1.79(\mathrm{bs}, 1 \mathrm{H}), 3.12(\mathrm{dt}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{bm}, 1 \mathrm{H}), 4.14(\mathrm{bm}, 1 \mathrm{H}), 4.98$ (bm, 1H), 5.11 (bs, 1H), 7.54(t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H})$; selected ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3\left(\mathrm{CH}_{3}\right),-22.8\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right)$, $28.4\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 32.0$ $\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{CH}), 64.6\left(\mathrm{CH}_{2}\right), 67.5(\mathrm{CH}), 71.0(\mathrm{CH}), 80.1(\mathrm{C}), 99.4(\mathrm{C}), 128.1(\mathrm{CH})$, $128.6(\mathrm{CH}), 129.0(\mathrm{CH}), 129.5(\mathrm{CH}), 133.6(\mathrm{CH}), 134.3(\mathrm{CH}), 137.8(\mathrm{C}), 156.0(\mathrm{C}) ;$ HRFABMS $m / z 568.3662[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{~S}_{1} 568.3672$.
(2S)-2-amino-4-(phenylsulfonyl)heptadecane-1,3-diol (416). A solution of 414 (7.0 $\mathrm{mg}, 12.3 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ with $1 \% \mathrm{HCl}$ was stirred for 1 hour at room temperature. The solution was concentrated under reduced pressure to give the hydrochloride salt of $\mathbf{4 1 6}$ (5.7 mg , quantitative) as a white solid.: IR (neat) v 3216, 2954, 2923, 2853, 1712, 1586, 1493, 1467, 1446, 1299, 1144, 1083, 759, 730, 689, $655 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{22}+0.1\left(c 0.73, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.15-1.35(\mathrm{bm}, 22 \mathrm{H}), 1.78(\mathrm{bm}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{p}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 14.4\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.76\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 56.7$ $(\mathrm{CH}), 60.3\left(\mathrm{CH}_{2}\right), 67.3(\mathrm{CH}), 68.4(\mathrm{CH}), 130.1(\mathrm{CH}), 130.3(\mathrm{CH}), 135.0(\mathrm{CH}), 140.9(\mathrm{C})$; HRFABMS $m / z 428.2831[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{~S}_{1} 428.2835$.

(S)-1-(tert-butyldimethylsilyloxy)-2-(dibenzylamino)-4-(phenylsulfonyl)heptadecan-

 3-ol (417). Under an atmosphere of nitrogen, t - $\mathrm{BuLi}(2.04 \mathrm{~mL}, 3.48 \mathrm{mmol}, 1.7 \mathrm{M}$ in pentane) was added dropwise to a solution of $413(1.10 \mathrm{~g}, 3.25 \mathrm{mmol})$ in anhydrous THF at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 2 hours then cooled to $-78^{\circ} \mathrm{C}$ and $193(1.00 \mathrm{~g}$, 2.60 mmol in THF) was added dropwise over 15 min . The solution was warmed to -30 ${ }^{\circ} \mathrm{C}$ over 2 hrs and quenched with 50 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether $(5 \times 50 \mathrm{~mL})$ and combined extracts washed with brine (250 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 10% ethyl acetate in hexane then 25% ethyl acetate in hexane) provided 417 (1.52$\mathrm{g}, 81 \%$ by NMR, mixture of diastereomers) and starting sulfone 413 as an inseparable viscous oil. Product was not characterized and was used as is.
(S)-1-(tert-butyldimethylsilyloxy)-2-(dibenzylamino)heptadecan-3-ol (418). Under an atmosphere of nitrogen, $6 \% \mathrm{NaHg}(838 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added to a solution of 417 (330 mg, 0.45 mmol) and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(308 \mathrm{mg}, 2.16 \mathrm{mmol})$ in anhydrous MeOH at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 23 hours then the reaction was quenched with 25 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether $(5 \times 10 \mathrm{~mL})$ and combined extracts washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (silica, 20\% dichloromethane in hexane) provided $\mathbf{4 1 8}$ ($76.6 \mathrm{mg}, 38 \%$, mixture of diastereomers $1: 4.8$ by NMR) as a viscous oil.: IR (neat) $v 3476,3085,3063,3027,2953,2925,2854,2803,1494,1462,1360,1256$, 1073, 836, 776, 746, $698 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{24}+0.6\left(c 4.56, \mathrm{CHCl}_{3}\right)$; For major diasteromer ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 1.26(\mathrm{bm}, 25 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.48\left(\mathrm{CH}_{3}\right),-5.41\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 22.8\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 55.4$ $(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 61.5(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right), 127.1(\mathrm{CH}), 128.4(\mathrm{CH}), 129.0(\mathrm{CH}), 140.2$ (C); HRFABMS $m / z 582.4735[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Si}_{1} 582.4706$.
(S)-2-(dibenzylamino)heptadecane-1,3-diol (420). Under an atmosphere of nitrogen, tetrabutylammonium floride ($300 \mu \mathrm{~L}, 300 \mu \mathrm{~mol}, 1.0 \mathrm{M}$ in THF) was added to a solution
of $\mathbf{4 1 8}(40 \mathrm{mg}, 68.7 \mu \mathrm{~mol})$ in anhydrous THF at room temperature. The mixture was stirred for 30 min then quenched with 20 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ethyl ether ($5 \times 5 \mathrm{~mL}$) and combined extracts washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Flash chromatography (12 g Analogix silica column, 20\% ethyl acetate in hexane) provided 419 and $\mathbf{4 2 0}(1: 4.5)$ (28.2 mg, 88\%) as viscous oils. Characterization for 420: IR (neat) v 3381, 3085, 3062, 3027, 2923, 2853, 2804, 1602, 1494, 1454, 1364, 1250, 1117, 1071, 1027, 747, $698 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{23}-1.0\left(c 3.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28$ (bm, 24H), $1.65(\mathrm{bm}, 1 \mathrm{H}), 1.83(\mathrm{bs}, 1 \mathrm{H}), 2.69(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{bs}, 1 \mathrm{H}), 3.69(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.85(\mathrm{bm}, 3 \mathrm{H}), 3.94(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{bs}, 1 \mathrm{H})$, 7.21-7.35 (bm, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{2}\right), 58.9$ $\left(\mathrm{CH}_{2}\right), 62.3(\mathrm{CH}), 71.3(\mathrm{CH}), 127.3(\mathrm{CH}), 128.5(\mathrm{CH}), 129.1(\mathrm{CH}), 139.7(\mathrm{C})$;

HRFABMS $m / z 468.3844[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{1} \mathrm{O}_{2} 468.3842$.
(2S)-2-aminoheptadecane-1,3-diol (421). To 420 ($20 \mathrm{mg}, 42.8 \mu \mathrm{~mol}$) in methanol (1.5 mL) was added Pd on carbon ($30 \mathrm{mg}, 28 \mu \mathrm{~mol}, 10 \% \mathrm{Pd}$ on activated carbon). The mixture was placed on a Parr hydrogenator under 4 atm of H_{2} and shaken for 48 hrs . The solution was filtered through a celite plug and concentrated under reduced pressure. The residue was redisolved in $1 \% \mathrm{HCl}$ in methanol and run through a C18 SPE cartridge (1 g) and eluted with 10 mL of $0.5 \% \mathrm{HCl}$ in acetonitrile : methanol : water (2:1:1) to obtain the hydrochloride salt of $\mathbf{4 2 1}$ ($9.4 \mathrm{mg}, 68 \%$) as a viscous oil.: IR (neat) v 3331, 2917, $2850,1596,1497,1467,1159,1124,1048,1018,721 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}+3.9\left(c 0.29, \mathrm{CH}_{3} \mathrm{OH}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{bm}, 24 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H})$, $3.91(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 14.4\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.73\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 58.5\left(\mathrm{CH}_{2}\right)$, $58.8(\mathrm{CH}), 70.3(\mathrm{CH})$; HRFABMS $m / z 288.2898[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{~N}_{1} \mathrm{O}_{2}$ 288.2903.

7.2. X-ray CIF Data

Compound 271

```
data_rez4
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    ?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
    'C27 H36 N4 O4'
_chemical_formula_weight 480.60
loop_
    _atom_type_symbol
```

```
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' 'C' 0.0033 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting Orthorhombic
_symmetry_space_group_name_H-M P2(1)2(1)2(1)
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x+1/2, -y, z+1/2'
    '-x, y+1/2, -z+1/2'
    'x+1/2, -y+1/2, -z'
\begin{tabular}{ll} 
_cell_length_a & \(10.646(4)\) \\
_cell_length_b & \(12.933(5)\) \\
_cell_length_c & \(18.551(7)\) \\
_cell_angle_alpha & 90.00 \\
_cell_angle_beta & 90.00
\end{tabular}
```


_diffrn_ambient_temperature	208(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK \(
) a	
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	'CCD area detector'
_diffrn_measurement_method	'phi and omega scans'
_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_\%	?
_diffrn_reflns_number	13357
_diffrn_reflns_av_R_equivalents	0.0679
_diffrn_reflns_av_sigmaI/netI	0.0642
_diffrn_reflns_limit_h_min	-11
_diffrn_reflns_limit_h_max	12
_diffrn_reflns_limit_k_min	-14
_diffrn_reflns_limit_k_max	14
_diffrn_reflns_limit_l_min	-21
_diffrn_reflns_limit_l_max	19
_diffrn_reflns_theta_min	1.92
_diffrn_reflns_theta_max	23.75
_reflns_number_total	3832
_reflns_number_gt	3564
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'Bruker SMART'

```
_computing_cell_refinement 'Bruker SMART'
_computing_data_reduction 'Bruker SAINT'
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'
_refine_special_details
;
    Refinement of F^2^ against ALL reflections. The weighted R-factor wR
and
    goodness of fit S are based on F^^2^, conventional R-factors R are
based
    on F, with F set to zero for negative F^ (^^. The threshold expression
of
    F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc.
and is
    not relevant to the choice of reflections for refinement. R-factors
based
    on F^2^ are statistically about twice as large as those based on F,
and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
    'calc w=1/[\s^2^(Fo^2^)+(0.0500P)^2^+2.0000P] where
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{Fc}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
```

```
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
    'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack 0(2)
_refine_ls_number_reflns 3832
_refine_ls_number_parameters 316
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0814
_refine_ls_R_factor_gt 0.0748
_refine_ls_wR_factor_ref 0.1656
_refine_ls_wR_factor_gt 0.1624
_refine_ls_goodness_of_fit_ref 1.197
_refine_ls_restrained_S_all 1.197
_refine_ls_shift/su_max 0.039
_refine_ls_shift/su_mean 0.008
loop_
    _atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
```

```
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
```

C1 C 0.2207(5) 0.4045(3) 0.5953(3) 0.0457(12) Uani $11 \mathrm{~d} .$. . H1A H 0.13210 .38550 .60070 .055 Uiso 11 calc R . . н1в н 0.22400 .47180 .57110 .055 Uiso 11 calc R . . C2 C 0.2794(4) 0.4145(3) 0.6696(2) 0.0332(10) Uani 11 d... H2A H 0.21820 .45280 .69970 .040 Uiso 11 calc R . . C3 C 0.2862(4) 0.3055(3) 0.7004(2) 0.0276(10) Uani 11 d... Н3А Н 0.19920 .28220 .71020 .033 Uiso 11 calc R . . C4 C 0.3618(4) 0.2930(3) 0.7699(2) 0.0280(10) Uani $11 \mathrm{~d} .$. H4A H 0.35850 .22020 .78450 .034 Uiso 11 calc R . . Н4B H 0.44980 .30970 .75960 .034 Uiso 11 calc R . . C5 C 0.3195(4) 0.3577(3) 0.8316(2) 0.0294(10) Uani $11 \mathrm{~d} .$. . H5A H 0.31580 .43080 .81600 .035 Uiso 11 calc R . . C6 C 0.4045(4) 0.3498(4) 0.8967(2) 0.0360(11) Uani $11 \mathrm{~d} \cdot$. H6A H 0.42020 .27650 .90910 .043 Uiso 11 calc R . . C7 C 0.3464(5) 0.4050(5) 0.9583(3) 0.0630(17) Uani 11 d. . H7A H 0.39640 .39191 .00180 .076 Uiso 11 calc R . . H7B H 0.34860 .47950 .94880 .076 Uiso 11 calc R . . C8 C 0.3805(5) 0.1705(4) 0.5357(2) 0.0509(13) Uani 1 1 d... H8A H 0.46080 .20590 .53610 .076 Uiso 11 calc R . . н8B н 0.35000 .16560 .48650 .076 Uiso 11 calc R . . H8C H 0.39050 .10170 .55560 .076 Uiso 11 calc R . . C9 C 0.2869(5) 0.2307(3) 0.5808(2) 0.0392(11) Uani $11 \mathrm{~d} .$. . C10 C 0.1568(5) 0.1791(4) 0.5832(3) 0.0493(13) Uani $11 \mathrm{~d} . .$.

H10A H 0.10080 .22010 .61300 .074 Uiso 11 calc R . . н10B н 0.16450 .11030 .60340 .074 Uiso 11 calc R . . H10C H 0.12300 .17460 .53470 .074 Uiso 11 calc R . . C11 C 0.0306(5) 0.3185(5) 0.9350(3) 0.0639(16) Uani $11 \mathrm{~d} .$. H11A H 0.05590 .24820 .94600 .096 Uiso 11 calc R . . н11B н -0.03160 .31770 .89680 .096 Uiso 11 calc R . . H11C H -0.0053 0.3501 0.9777 0.096 Uiso 11 calc R . . C12 C 0.1430(4) 0.3795(4) 0.9112(2) 0.0347(11) Uani $11 \mathrm{~d} .$. C13 C 0.1068(6) 0.4875(4) 0.8922(3) 0.0644(16) Uani $11 \mathrm{~d} . .$. H13A H 0.18070 .52540 .87670 .097 Uiso 11 calc R . . H13B H 0.07060 .52110 .93410 .097 Uiso 11 calc R . . H13C H 0.04570 .48640 .85340 .097 Uiso 11 calc R . . C14 C 0.4997(4) 0.4333(3) 0.6270(2) 0.0330(10) Uani $11 \mathrm{~d} .$. H14A H 0.48180 .45240 .57690 .040 Uiso 11 calc R . . H14B H 0.50160 .35770 .62990 .040 Uiso 11 calc R . . C15 C 0.6267(4) 0.4755(3) 0.6481(3) 0.0356(11) Uani $11 \mathrm{~d} .$. C16 C 0.7110(5) 0.5068(4) 0.5966(3) 0.0498(13) Uani $11 \mathrm{~d} . \quad$. H16A H 0.68680 .50800 .54790 .060 Uiso 11 calc R . . C17 C 0.8330(5) 0.5371(5) 0.6161(4) 0.0688(18) Uani $11 \mathrm{~d} . \quad$. H17A H 0.89130 .55560 .58030 .083 Uiso 11 calc R . . C18 C 0.8666(5) 0.5396(4) 0.6867(4) 0.0659(18) Uani $11 \mathrm{~d} . \quad$. H18A H 0.94740 .56170 .70000 .079 Uiso 11 calc R . . C19 C 0.7826(5) 0.5099(4) 0.7384(3) 0.0578(15) Uani $11 \mathrm{~d} .$. H19A H 0.80580 .51100 .78730 .069 Uiso 11 calc R . . C20 C 0.6635(5) 0.4782(4) 0.7187(3) 0.0480(13) Uani $11 \mathrm{~d} .$. H20A H 0.60640 .45800 .75470 .058 Uiso 11 calc R . . $\mathrm{C} 21 \mathrm{C} 0.3801(4) 0.5824(3) 0.6617(2) 0.0380(11)$ Uani $11 \mathrm{~d} .$. . H21A H 0.3368 0.5919 0.6155 0.046 Uiso 11 calc R . .

н21B н 0.46260 .61550 .65770 .046 Uiso 11 calc R . .
C22 C 0.3071(4) 0.6364(3) 0.7187(2) 0.0354(11) Uani $11 \mathrm{~d} .$. C23 C 0.1892(5) 0.6791(4) 0.7048(3) 0.0452(12) Uani $11 \mathrm{~d} .$. H23A H 0.15430 .67110 .65860 .054 Uiso 11 calc R . . C24 C 0.1220(5) 0.7325(4) 0.7562(3) 0.0538(14) Uani $11 \mathrm{~d} \cdot$. . H24A H 0.04210 .75920 .74540 .065 Uiso 11 calc R. . C25 C 0.1726(5) 0.7460(4) 0.8230(3) 0.0525(14) Uani $11 \mathrm{~d} .$. H25A H 0.12870 .78340 .85830 .063 Uiso 11 calc R . . C26 C 0.2891(6) 0.7043(4) 0.8384(3) 0.0555(15) Uani $11 \mathrm{~d} .$. . H26A H 0.32390 .71320 .88460 .067 Uiso 11 calc R . . C27 C 0.3539(5) 0.6505(3) 0.7873(3) 0.0410(12) Uani $11 \mathrm{~d} .$. H27A H 0.43260 .62230 .79910 .049 Uiso 11 calc R . . N1 N 0.3985(3) 0.4725(3) 0.67354(18) 0.0282(8) Uani $11 \mathrm{~d} . .$. N2 N 0.5232(4) 0.4025(4) 0.8778(2) 0.0629(13) Uani $11 \mathrm{~d} . \quad$. N3 N 0.6181(4) 0.3738(4) 0.9072(2) 0.0587(12) Uani $11 \mathrm{~d} .$. . N4 N 0.7138(5) 0.3540(6) 0.9307(3) 0.102(2) Uani 1 1 d... $0100.2809(3) 0.3303(2) 0.55148(15) 0.0449(9)$ Uani $11 \mathrm{~d} .$. . O2 O 0.3413(2) 0.2341(2) 0.65038(14) 0.0295(7) Uani $11 \mathrm{~d} .$. $0300.1960(3) 0.3252(2) 0.85259(14) 0.0303(7)$ Uani $11 \mathrm{~d} . \quad$. $0400.2251(3) 0.3759(3) 0.97094(17) 0.0558(10)$ Uani $11 \mathrm{~d} . \quad$.
loop_

```
    _atom_site_aniso_label
    _atom_site_aniso_U_11
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    _atom_site_aniso_U_23
    _atom_site_aniso_U_13
```

```
    _atom_site_aniso_U_12
C1 0.048(3) 0.032(2) 0.057(3) 0.016(2) -0.012(3) -0.012(2)
C2 0.030(2) 0.036(2) 0.033(2) 0.002(2) -0.005(2) -0.002(2)
C3 0.019(2) 0.032(2) 0.032(2) 0.0001(18) 0.0067(18) -0.0012(18)
C4 0.030(2) 0.025(2) 0.029(2) 0.0019(17) 0.0073(19) 0.0032(18)
C5 0.026(2) 0.031(2) 0.031(2) 0.0024(18) 0.0013(19) 0.0039(19)
C6 0.035(3) 0.043(3) 0.030(2) -0.003(2) 0.001(2) 0.009(2)
C7 0.048(3) 0.100(5) 0.040(3) -0.015(3) -0.008(3) 0.025(3)
C8 0.065(4) 0.052(3) 0.036(3) -0.014(2) -0.001(3) -0.012(3)
C9 0.053(3) 0.040(3) 0.025(2) -0.002(2) -0.006(2) -0.015(2)
C10 0.051(3) 0.052(3) 0.044(3) -0.001(3) -0.011(3) -0.013(3)
C11 0.053(3) 0.078(4) 0.060(4) -0.011(3) 0.027(3) -0.008(3)
C12 0.034(2) 0.045(3) 0.025(2) -0.001(2) 0.003(2) 0.004(2)
C13 0.064(4) 0.063(4) 0.066(4) 0.012(3) 0.018(3) 0.030(3)
C14 0.035(2) 0.029(2) 0.035(3) -0.0006(19) 0.001(2) -0.001(2)
C15 0.033(2) 0.025(2) 0.049(3) -0.006(2) 0.012(2) 0.004(2)
C16 0.050(3) 0.046(3) 0.054(3) -0.005(2) 0.020(3) -0.008(3)
C17 0.051(3) 0.060(4) 0.096(5) -0.006(4) 0.033(4) -0.028(3)
C18 0.038(3) 0.049(3) 0.111(6) -0.025(4) 0.002(3) -0.012(3)
C19 0.045(3) 0.054(3) 0.074(4) -0.027(3) -0.005(3) -0.001(3)
C20 0.041(3) 0.055(3) 0.048(3) -0.010(3) 0.004(2) -0.003(3)
C21 0.037(3) 0.037(2) 0.039(3) 0.004(2) 0.009(2) -0.002(2)
C22 0.044(3) 0.017(2) 0.045(3) 0.0009(19) 0.006(2) -0.008(2)
C23 0.039(3) 0.038(3) 0.059(3) 0.008(3) -0.004(2) 0.000(2)
C24 0.037(3) 0.034(3) 0.090(4) -0.011(3) 0.005(3) 0.004(2)
C25 0.052(3) 0.041(3) 0.065(4) -0.026(3) 0.011(3) -0.010(3)
C26 0.061(4) 0.053(3) 0.053(3) -0.016(3) -0.004(3) -0.020(3)
C27 0.036(3) 0.036(3) 0.051(3) 0.000(2) 0.002(2) -0.011(2)
```

```
N1 0.0283(18) 0.0227(17) 0.0337(19) 0.0009(16) 0.0051(16) 0.0050(16)
N2 0.039(3) 0.089(4) 0.061(3) 0.005(3) -0.015(2) -0.007(3)
N3 0.038(3) 0.094(4) 0.044(2) -0.019(3) 0.003(2) 0.006(3)
N4 0.038(3) 0.151(6) 0.118(5) -0.004(4) -0.021(3) 0.013(4)
O1 0.065(2) 0.0408(19) 0.0287(16) 0.0032(15) -0.0125(16) -0.0049(18)
O2 0.0295(16) 0.0337(16) 0.0254(15) -0.0026(13) -0.0020(13) 0.0011(13)
O3 0.0290(16) 0.0345(15) 0.0274(14) -0.0047(13) 0.0036(13) 0.0000(13)
O4 0.046(2) 0.081(3) 0.0398(19) -0.0129(18) 0.0017(16) 0.000(2)
_geom_special_details
;
    All esds (except the esd in the dihedral angle between two l.s.
planes)
    are estimated using the full covariance matrix. The cell esds are
taken
    into account individually in the estimation of esds in distances,
angles
    and torsion angles; correlations between esds in cell parameters are
only
    used when they are defined by crystal symmetry. An approximate
(isotropic)
    treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop_
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_distance
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
```

```
C1 O1 1.412(6) . ?
C1 C2 1.520(6) . ?
C2 N1 1.475(5) . ?
C2 C3 1.523(6) . ?
C3 O2 1.434(5) . ?
C3 C4 1.529(6). ?
C4 C5 1.488(5). ?
C5 O3 1.434(5) . ?
C5 C6 1.511(6) . ?
C6 N2 1.478(6) . ?
C6 C7 1.483(6) . ?
C7 04 1.365(6) . ?
C8 C9 1.516(7) . ?
C9 O1 1.400(5). ?
C9 O2 1.416(5). ?
C9 C10 1.538(6). ?
C11 C12 1.500(7) . ?
C12 O3 1.412(5). ?
C12 O4 1.413(5). ?
C12 C13 1.491(7) . ?
C14 N1 1.470(5).?
C14 C15 1.510(6).?
C15 C20 1.368(7) . ?
C15 C16 1.371(6) . ?
C16 C17 1.404(8) . ?
C17 C18 1.359(9) . ?
C18 C19 1.366(8) . ?
C19 C20 1.381(7) . ?
```

```
C21 N1 1.452(5).?
C21 C22 1.487(6). ?
C22 C27 1.377(6) . ?
C22 C23 1.396(7) . ?
C23 C24 1.378(7) . ?
C24 C25 1.361(8) . ?
C25 C26 1.382(8) . ?
C26 C27 1.364(7) . ?
N2 N3 1.208(6) . ?
N3 N4 1.136(6) . ?
loop_
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
O1 C1 C2 113.2(4) . . ?
N1 C2 C1 116.2(4) . . ?
N1 C2 C3 114.3(3) . . ?
C1 C2 C3 106.3(3) . . ?
O2 C3 C2 111.9(3) . . ?
O2 C3 C4 105.2(3) . . ?
C2 C3 C4 116.0(3) . . ?
C5 C4 C3 115.5(3) . . ?
O3 C5 C4 108.8(3) . . ?
```

```
O3 C5 C6 108.2(3) . . ?
C4 C5 C6 113.3(3) . . ?
N2 C6 C7 108.5(4) . . ?
N2 C6 C5 107.0(4) . . ?
C7 C6 C5 109.5(4) . . ?
O4 C7 C6 113.2(5) . . ?
O1 C9 O2 110.1(3) . . ?
O1 C9 C8 106.7(4) . . ?
O2 C9 C8 104.5(4) . . ?
O1 C9 C10 111.7(4) . . ?
O2 C9 C10 110.8(4) . . ?
C8 C9 C10 112.7(4) . . ?
O3 C12 O4 109.9(3) . . ?
O3 C12 C13 112.8(4) . . ?
O4 C12 C13 112.1(4) . . ?
O3 C12 C11 106.5(4) . . ?
O4 C12 C11 104.2(4) . . ?
C13 C12 C11 110.9(4) . . ?
N1 C14 C15 112.3(3) . . ?
C20 C15 C16 118.2(5) . . ?
C20 C15 C14 120.9(4) . . ?
C16 C15 C14 120.8(4) . . ?
C15 C16 C17 120.6(5) . . ?
C18 C17 C16 119.9(5) . . ?
C17 C18 C19 119.9(5) . . ?
C18 C19 C20 119.9(5) . . ?
C15 C20 C19 121.6(5) . . ?
N1 C21 C22 115.0(4) . . ?
```

```
C27 C22 C23 116.3(4) . . ?
C27 C22 C21 122.0(4) . . ?
C23 C22 C21 121.6(4) . . ?
C24 C23 C22 122.4(5) . . ?
C25 C24 C23 119.3(5) . . ?
C24 C25 C26 119.6(5) . . ?
C27 C26 C25 120.5(5) . . ?
C26 C27 C22 121.8(5) . . ?
C21 N1 C14 110.3(3) . . ?
C21 N1 C2 112.0(3) . . ?
C14 N1 C2 115.2(3) . . ?
N3 N2 C6 117.8(5) . . ?
N4 N3 N2 172.9(7) . . ?
C9 O1 C1 115.0(3) . . ?
C9 O2 C3 116.3(3) . . ?
C12 O3 C5 115.4(3) . . ?
C7 O4 C12 116.2(4) . . ?
_diffrn_measured_fraction_theta_max 0.999
_diffrn_reflns_theta_full 23.75
_diffrn_measured_fraction_theta_full 0.999
_refine_diff_density_max 0.260
_refine_diff_density_min -0.194
_refine_diff_density_rms 0.048
```

Compound 312

```
data_molin02
    _audit_creation_method SHELXL-97
_chemical_name_systematic
;
    ?
```

```
;
_chemical_name_common TMF1
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
    -'C24 H31 -N O6'
_chemical_formula_weight 429.50
loop_
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    ''c' 'C' -0.01\overline{8}1 0.0091
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0311 0.0180
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0492 0.0322
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_space_group_name_H-M
loop_
    _symmetry_equiv_pos_as_xyz
    ''x, y, z'
    '-x, y+1/2, -z'
_cell_length_a
9.3200(8)
__cell__length_b
_cell_length_c
_cell_angle_alpha
_cell_angle_beta
__cell__angle_gamma
_cell_volume
_cell_formula_units_Z
_cell_measure\overline{ment_temperature}
_cell_measurement_reflns_used
_cell_measurement_theta_min
_cell_measurement_theta_max 68.21
_exptl_crystal_description block
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.12
__exptl_crystal_size_mid 0.08
_exptl_crystal_size_min 0.05
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.276
__exptl_crystal_density_method
_exptl_crystal_F_000
__exptl_absorpt_cōefficient_mu
_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min 0.9157
_exptl_absorpt_correction_T_max 0.9.9636
```

```
_symmetry_cell_setting
```

```
_symmetry_cell_setting
```

```
*)
4.60
    'not measured'
460
0.747
multi-scan
```

Monoclinic
P2 (1)

```
_exptl_absorpt_process_details
_diffrn_refln_scan_width
_diffrn_refln_scan_rate
_space_group.centring_type
_space_group.IT_number
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature
_diffrn_radiation_wavelength
_diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measurement_device_type
_diffrn_measurement_method
_diffrn_reflns_number
_diffrn_reflns_av_R_equivalents
_diffrn_reflns_av_sigmaI/netI
__diffrn_reflns_limit_h_min
_diffrn_reflns_limit_h_max
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_k_max
_diffrn_reflns_limit_l_min
_diffrn_reflns_limit_l_max
_diffrn_reflns_theta_min
_diffrn_reflns_theta_max
_reflns_number_total
_reflns_number_gt
_reflns_threshold_expression
_computing_data_collection
_computing_cell_refinement
_computing_data_reduction
_computing_structure_solution
_computing_structure_refinement
_computing_molecular_graphics
_computing_publication_material
_refine_special_details
;
    Refinement of F^^^^ against ALL reflections. The weighted R-factor wR
and
    goodness of fit S are based on F^^2^, conventional R-factors R are
based
    on F, with F set to zero for negative F^^2^. The threshold expression
of
    F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc.
and is
    not relevant to the choice of reflections for refinement. R-factors
based
    on F^2^ are statistically about twice as large as those based on F,
and R-
    factors based on ALL data will be even larger.
```

```
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[\s^2^(FO^2^)+(0.0366P)^2^+0.1734P] where
P=(FO^2^+2FC^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack 0.06(12)
_chemical_absolute_configuration ad
_refine_l\overline{s_number_reflns 3528}
_refine_ls_number_parameters 284
_refine_ls_number_restraints 1
_refine_ls_R_factor_all 0.0273
_refine_ls_R_factor_gt 0.0267
_refine_ls_wR_factor_ref 0.0676
_refine_ls_wR_factor_gt 0.0671
_refine_ls_goodness_of_fit_ref 1.048
__refine_ls_restrainēd_\overline{S_al\}}1.04
_refine_ls_shift/su_max
_refine_ls_shift/su_mean 0.000
loop_
    _atōm_site_label
    __atom_site_type_symbol
    _atom_site_fract_x
    _atom_site_fract_y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_adp_type
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refinement_flags
    _atom_site_disorder_assembly
        atom_site_disorder_group
C\overline{1}C 0.9989\overline{6}(15) 0.6\overline{7046(12) 0.95939(13) 0.0151(3) Uani 1 1 d . . .}
H1 H 1.0241 0.7478 0.9533 0.018 Uiso 1 1 calc R . .
C2 C 0.83500(16) 0.65592(12) 0.86358(13) 0.0151(3) Uani 1 1 d . . .
H2 H 0.7667 0.7044 0.8942 0.018 Uiso 1 1 calc R . .
C3 C 0.81276(16) 0.67682(12) 0.70829(13) 0.0158(3) Uani 1 1 d . . .
H3 H 0.9139 0.6751 0.6941 0.019 Uiso 1 1 calc R . .
C4 C 0.67163(16) 0.53002(12) 0.73111(14) 0.0167(3) Uani 1 1 d . . .
C5 C 0.73908(17) 0.78442(12) 0.66311(14) 0.0182(3) Uani 1 1 d . . .
C6 C 0.51727(17) 0.56956(13) 0.73086(15) 0.0232(3) Uani 1 1 d . . .
H6A H 0.4870 0.5297 0.8003 0.035 Uiso 1 1 calc R . .
H6B H 0.4418 0.5583 0.6386 0.035 Uiso 1 1 calc R . .
H6C H 0.5235 0.6462 0.7535 0.035 Uiso 1 1 calc R . .
C7 C 0.67118(16) 0.41333(12) 0.69429(15) 0.0209(3) Uani 1 1 d . . .
```

H7A H 0.77500 .39050 .70460 .031 Uiso 11 calc R . .
Н7B H 0.60550 .40250 .59780 .031 Uiso 11 calc R . .
H7C H 0.63270 .37090 .75640 .031 Uiso 11 calc R . . C8 C 1.00938(16) 0.65073(13) 1.11033(14) 0.0179(3) Uani 11 d. . . H8A H 0.92570 .68841 .13090 .021 Uiso 11 calc R . . Н8B H 1.00100 .57311 .12670 .021 Uiso 11 calc R . .
C9 C 1.19820(19) 0.65187(13) 1.33449(14) 0.0224(3) Uani 11 d. . .
H9A H 1.10680 .64151 .36210 .027 Uiso 11 calc R . .
н9в H 1.26360 .70591 .39770 .027 Uiso 11 calc R . .
C10 C 1.42774(17) 0.56560(15) 1.34013(17) 0.0286(4) Uani $11 \mathrm{~d} . .$.
H10A H 1.41950 .59181 .24720 .043 Uiso 11 calc R . .
н10B H 1.47940 .49601 .35620 .043 Uiso 11 calc R . .
H10C H 1.48630 .61701 .41030 .043 Uiso 11 calc R . .
C11 C 1.25082(15) 0.66597(13) 0.93314(14) 0.0189(3) Uani 11 d. . .
H11A H 1.32420 .61590 .91460 .023 Uiso 11 calc R . .
H11B H 1.29240 .68751 .03210 .023 Uiso 11 calc R . .
C12 C 1.23687(16) 0.76419(13) 0.84349(15) 0.0181(3) Uani 11 d. . .
C13 C 1.26047(17) 0.86614(14) 0.90164(16) 0.0224(3) Uani 1 1 d. . .
H13 н 1.28160 .87420 .99890 .027 Uiso 11 calc R. .
C14 C 1.25377(18) 0.95670(13) 0.82004(19) 0.0270(3) Uani 11 d. . .
H14 H 1.27131 .02570 .86170 .032 Uiso 11 calc R . .
C15 C 1.22151(19) 0.94586(14) 0.67811(18) 0.0292(4) Uani 1 $1 \mathrm{~d} .$. .
H15 H 1.21591 .00740 .62170 .035 Uiso 11 calc R . .
C16 C 1.19739(18) 0.84476(15) 0.61886(16) 0.0276(4) Uani 11 d. . .
H16 H 1.17560 .83710 .52140 .033 Uiso 11 calc R . .
C17 C 1.20474(18) 0.75463(13) 0.70035(16) 0.0224(3) Uani $11 \mathrm{~d} .$. .
H17 H 1.18770 .68570 .65830 .027 Uiso 11 calc R . .
C18 C 1.13144(16) 0.49915(12) 0.96141(14) 0.0181(3) Uani $11 \mathrm{~d} .$. .
H18A H 1.03460 .46910 .96520 .022 Uiso 11 calc R . .
н18B H 1.20500 .49971 .05720 .022 Uiso 11 calc R . .
C19 C 1.19147(16) 0.42787(12) 0.87191(15) 0.0185(3) Uani $11 \mathrm{~d} .$. .
C20 C 1.31514(16) 0.36069(13) 0.93119(16) 0.0209(3) Uani $11 \mathrm{~d} . .$.
H20 H 1.36740 .36371 .02850 .025 Uiso 11 calc R . .
C21 C 1.36289(18) 0.28940(13) 0.84979(17) 0.0248(3) Uani $11 \mathrm{~d} . .$.
H21 H 1.4459 0.2427 0.8921 0.030 Uiso 1 1 calc R . .
C22 C 1.29066(19) 0.28575(14) 0.70770(18) 0.0285(4) Uani $11 \mathrm{~d} . .$.
H22 H 1.32380 .23700 .65210 .034 Uiso 1 1 calc R. .
C23 C 1.16925(19) 0.35392(16) 0.64699(16) 0.0296(4) Uani $11 \mathrm{~d} .$. .
H23 H 1.12010 .35260 .54910 .035 Uiso 11 calc R . .
C24 C 1.11903(17) 0.42390(14) 0.72805(16) 0.0238(3) Uani $11 \mathrm{~d} .$.
H24 H 1.03480 .46950 .68550 .029 Uiso 11 calc R. .
N1 N 1.10561(13) 0.60940(10) 0.90975(11) 0.0158(2) Uani $11 \mathrm{~d} . \quad$.
O1 O 0.78549(10) 0.54775(8) 0.86337(9) 0.0164(2) Uani 11 d. . .
O2 O 0.72306(11) 0.59057(8) 0.63551(9) 0.0170(2) Uani 11 d . . .
$0300.61029(12) 0.79944(9) 0.58949(11) 0.0273(3)$ Uani 11 d. . .
$0400.83944(12) 0.86178(9) 0.71914(11) 0.0237(2)$ Uani $11 \mathrm{~d} . .$.
H4 H 0.79820 .92190 .69560 .036 Uiso 11 calc R . .
O5 O 1.15365(12) 0.69069(9) 1.19811(10) 0.0209(2) Uani 11 d. . .
$0601.27816(11) 0.55400(9) 1.35002(10) 0.0210(2)$ Uani $11 \mathrm{~d} . \quad$.

```
loop
    _atom_site_aniso_label
    _atom_site_aniso_U_11
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    _atom_site_aniso_U_23
    _atom_site_aniso_U_13
```

```
    atom_site_aniso_U_12
C\overline{1}}0.0\overline{1}41(6\overline{)}0.01\overline{5}2\overline{(7)}0.0154(6) 0.0003(5) 0.0039(5) 0.0005(6
C2 0.0143(7) 0.0139(7) 0.0173(6) 0.0000(5) 0.0053(5) 0.0012(5)
C3 0.0144(6) 0.0161(7) 0.0157(6) -0.0005(5) 0.0036(5) -0.0013(6)
C4 0.0147(7) 0.0188(8) 0.0153(6) 0.0006(5) 0.0032(5) -0.0010(6)
C5 0.0186(7) 0.0203(8) 0.0160(6) 0.0011(6) 0.0061(6) 0.0000(6)
C6 0.0180(7) 0.0266(9) 0.0252(7) -0.0012(6) 0.0074(6) 0.0000(6)
C7 0.0203(7) 0.0189(8) 0.0215(7) -0.0007(6) 0.0044(6) -0.0007(6)
C8 0.0170(7) 0.0188(7) 0.0167(6) -0.0021(6) 0.0041(5) -0.0008(6)
C9 0.0311(9) 0.0176(7) 0.0158(6) -0.0007(6) 0.0040(6) 0.0014(6)
C10 0.0188(8) 0.0338(10) 0.0284(7) 0.0073(7) 0.0016(6) -0.0031(7)
C11 0.0130(6) 0.0229(8) 0.0197(6) 0.0016(6) 0.0039(5) -0.0012(6)
C12 0.0121(7) 0.0224(8) 0.0211(7) 0.0000(6) 0.0071(5) 0.0011(6)
C13 0.0189(7) 0.0248(8) 0.0240(7) -0.0023(6) 0.0081(5) 0.0003(6)
C14 0.0214(8) 0.0197(9) 0.0414(9) -0.0017(7) 0.0124(7) -0.0005(6)
C15 0.0268(8) 0.0270(9) 0.0390(9) 0.0137(7) 0.0179(7) 0.0055(7)
C16 0.0259(8) 0.0371(10) 0.0236(7) 0.0068(7) 0.0133(6) 0.0066(7)
C17 0.0216(8) 0.0241(8) 0.0236(7) 0.0001(6) 0.0106(6) 0.0029(6)
C18 0.0163(7) 0.0179(8) 0.0189(7) 0.0023(6) 0.0045(6) 0.0021(6)
C19 0.0157(7) 0.0180(7) 0.0225(7) 0.0014(6) 0.0074(5) -0.0008(6)
C20 0.0166(7) 0.0204(7) 0.0259(7) 0.0019(6) 0.0071(6) -0.0012(6)
C21 0.0170(7) 0.0211(8) 0.0377(8) 0.0038(7) 0.0108(6) 0.0044(6)
C22 0.0252(8) 0.0283(10) 0.0370(9) -0.0056(7) 0.0169(7) 0.0040(7)
C23 0.0279(8) 0.0365(10) 0.0248(7) -0.0039(7) 0.0095(6) 0.0049(8)
C24 0.0184(7) 0.0285(9) 0.0235(7) 0.0008(6) 0.0056(6) 0.0059(6)
N1 0.0131(6) 0.0159(6) 0.0188(5) 0.0015(5) 0.0056(5) 0.0012(5)
O1 0.0158(5) 0.0153(5) 0.0159(4) 0.0012(4) 0.0022(4) -0.0017(4)
O2 0.0186(5) 0.0171(5) 0.0150(4) -0.0011(4) 0.0048(4) -0.0030(4)
O3 0.0196(6) 0.0235(6) 0.0314(5) 0.0042(5) -0.0012(5) 0.0026(5)
O4 0.0211(5) 0.0149(5) 0.0301(5) 0.0015(4) 0.0016(4) 0.0014(4)
05 0.0234(5) 0.0199(6) 0.0144(4) -0.0009(4) -0.0007(4) -0.0046(5)
O6 0.0205(5) 0.0173(6) 0.0228(5) 0.0012(4) 0.0036(4) -0.0020(4)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s.
planes)
    are estimated using the full covariance matrix. The cell esds are
taken
    into account individually in the estimation of esds in distances,
angles
    and torsion angles; correlations between esds in cell parameters are
only
    used when they are defined by crystal symmetry. An approximate
(isotropic)
    treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop_
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_-distānce
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
C1 N1 1.4686(18). ?
```

```
C1 C2 1.5273(18) . ?
C1 C8 1.5288(18) . ?
C1 H1 1.0000 . ?
C2 O1 1.4256(18) . ?
C2 C3 1.5486(17) . ?
C2 H2 1.0000. ?
C3 O2 1.4126(17) . ?
C3 C5 1.508(2) . ?
C3 H3 1.0000 . ?
C4 O1 1.4297(16) . ?
C4 O2 1.4348(17) . ?
C4 C7 1.503(2) . ?
C4 C6 1.520(2) . ?
C5 O3 1.2009(18) . ?
C5 O4 1.3335(18) . ?
C6 H6A 0.9800 . ?
C6 H6B 0.9800 . ?
C6 H6C 0.9800 . ?
C7 H7A 0.9800 . ?
C7 H7B 0.9800 . ?
C7 H7C 0.9800 . ?
C8 O5 1.4352(17) . ?
C8 H8A 0.9900 . ?
C8 H8B 0.9900 . ?
C9 O5 1.3986(17) . ?
C9 O6 1.4114(19) . ?
C9 H9A 0.9900 . ?
C9 н9в 0.9900 . ?
C10 O6 1.4380(19) . ?
C10 H10A 0.9800 . ?
C10 H10B 0.9800 . ?
C10 H10C 0.9800 . ?
C11 N1 1.4739(18) . ?
C11 C12 1.508(2) . ?
C11 H11A 0.9900 . ?
C11 H11B 0.9900 . ?
C12 C13 1.389(2) . ?
C12 C17 1.394(2) . ?
C13 C14 1.392(2) . ?
C13 H13 0.9500. ?
C14 C15 1.383(2) . ?
C14 H14 0.9500 . ?
C15 C16 1.384(3) . ?
C15 H15 0.9500 . ?
C16 C17 1.386(2) . ?
C16 H16 0.9500 . ?
C17 H17 0.9500 . ?
C18 N1 1.4636(19) . ?
C18 C19 1.508(2) . ?
C18 H18A 0.9900 . ?
C18 H18B 0.9900 . ?
C19 C20 1.391(2) . ?
C19 C24 1.397(2) . ?
C20 C21 1.386(2) . ?
C20 H20 0.9500 . ?
C21 C22 1.381(2) . ?
C21 H21 0.9500. ?
```

```
C22 C23 1.386(2) . ?
C22 H22 0.9500. ?
C23 C24 1.386(2) . ?
C23 H23 0.9500 . ?
C24 H24 0.9500 . ?
O4 H4 0.8400 . ?
loop
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
N1 C1 \overline{C2 111.48(1\overline{1}) . . ?}
N1 C1 C8 116.01(11) . . ?
C2 C1 C8 109.93(11) . . ?
N1 C1 H1 106.3 . . ?
C2 C1 H1 106.3 . . ?
C8 C1 H1 106.3 . . ?
O1 C2 C1 111.60(11) . . ?
O1 C2 C3 102.95(10) . . ?
C1 C2 C3 113.59(11) . . ?
O1 C2 H2 109.5 . . ?
C1 C2 H2 109.5 . . ?
C3 C2 H2 109.5 . . ?
O2 C3 C5 112.76(11) . . ?
O2 C3 C2 105.31(11) . . ?
C5 C3 C2 110.79(11) . . ?
O2 C3 H3 109.3 . . ?
C5 C3 H3 109.3 . . ?
C2 C3 H3 109.3 . . ?
O1 C4 O2 104.38(11) . . ?
O1 C4 C7 108.97(11) . . ?
O2 C4 C7 108.31(12) . . ?
O1 C4 C6 110.97(11) . . ?
O2 C4 C6 110.92(12) . . ?
C7 C4 C6 112.92(13) . . ?
O3 C5 O4 124.67(14) . . ?
O3 C5 C3 126.11(14) . . ?
O4 C5 C3 109.22(12) . . ?
C4 C6 H6A 109.5 . . ?
C4 C6 H6B 109.5 . . ?
H6A C6 H6B 109.5 . . ?
C4 C6 H6C 109.5 . . ?
H6A C6 H6C 109.5 . . ?
H6B C6 H6C 109.5 . . ?
C4 C7 H7A 109.5 . . ?
C4 C7 H7B 109.5 . . ?
H7A C7 H7B 109.5 . . ?
C4 C7 H7C 109.5 . . ?
H7A C7 H7C 109.5 . . ?
H7B C7 H7C 109.5 . . ?
O5 C8 C1 107.78(11) . . ?
O5 C8 H8A 110.1 . . ?
C1 C8 H8A 110.1 . . ?
```

```
O5 C8 H8B 110.1 . . ?
C1 C8 н8B 110.1 . . ?
H8A C8 H8B 108.5 . . ?
O5 C9 O6 112.50(12) . . ?
O5 C9 H9A 109.1 . . ?
O6 C9 H9A 109.1 . . ?
O5 С9 н9в 109.1 . . ?
O6 C9 н9B 109.1 . . ?
H9A C9 н9B 107.8 . . ?
O6 C10 H10A 109.5 . . ?
O6 C10 H10B 109.5 . . ?
H10A C10 H10B 109.5 . . ?
O6 C10 H10C 109.5 . . ?
H10A C10 H10C 109.5 . . ?
H10B C10 H10C 109.5 . . ?
N1 C11 C12 113.62(11) . . ?
N1 C11 H11A 108.8 . . ?
C12 C11 H11A 108.8 . . ?
N1 C11 H11B 108.8 . . ?
C12 C11 H11B 108.8 . . ?
H11A C11 H11B 107.7 . . ?
C13 C12 C17 118.27(14) . . ?
C13 C12 C11 121.03(13) . . ?
C17 C12 C11 120.68(14) . . ?
C12 C13 C14 121.23(14) . . ?
C12 C13 H13 119.4 . . ?
C14 C13 H13 119.4 . . ?
C15 C14 C13 119.79(16) . . ?
C15 C14 H14 120.1 . . ?
C13 C14 H14 120.1 . . ?
C14 C15 C16 119.54(15) . . ?
C14 C15 H15 120.2 . . ?
C16 C15 H15 120.2 . . ?
C15 C16 C17 120.59(15) . . ?
C15 C16 H16 119.7 . . ?
C17 C16 H16 119.7 . . ?
C16 C17 C12 120.58(15) . . ?
C16 C17 H17 119.7 . . ?
C12 C17 H17 119.7 . . ?
N1 C18 C19 112.71(12) . . ?
N1 C18 H18A 109.0 . . ?
C19 C18 H18A 109.0 . . ?
N1 C18 H18B 109.0 . . ?
C19 C18 H18B 109.0 . . ?
H18A C18 H18B 107.8 . . ?
C20 C19 C24 118.52(14) . . ?
C20 C19 C18 120.83(13) . . ?
C24 C19 C18 120.57(13) . . ?
C21 C20 C19 120.71(14) . . ?
C21 C20 H2O 119.6 . . ?
C19 C20 H2O 119.6 . . ?
C22 C21 C20 120.47(15) . . ?
C22 C21 H21 119.8 . . ?
C20 C21 H21 119.8 . . ?
C21 C22 C23 119.35(15) . . ?
C21 C22 H22 120.3 . . ?
```

```
C23 C22 H22 120.3 . . ?
C22 C23 C24 120.48(15) . . ?
C22 C23 H23 119.8 . . ?
C24 C23 H23 119.8 . . ?
C23 C24 C19 120.45(15) . . ?
C23 C24 H24 119.8 . . ?
C19 C24 H24 119.8 . . ?
C18 N1 C1 114.37(11) . . ?
C18 N1 C11 111.02(11) . . ?
C1 N1 C11 112.71(11) . . ?
C2 O1 C4 106.65(10) . . ?
C3 O2 C4 108.48(10) . . ?
C5 O4 H4 109.5 . . ?
C9 O5 C8 114.05(11) . . ?
C9 O6 C10 113.16(12) . . ?
_diffrn_measured_fraction_theta_max 0.970
_diffrn_reflns_theta_full 67.00
-diffrn-measurēd fra\overline{ction theta full 0.988}
_refine_diff_density_max 0.132
_refine_diff_density_min -0.196
_refine_diff_density_rms 0.043
```


Compound 378

```
data_mn1571
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    (4R)-4-(2-Benzenesulfonyl-(1S)-1-hydroxy-ethyl)-2,2-dimethyl-
oxazolidine-3-carboxylic
    acid tert-butyl ester
;
_chemical_name_common SG3rec
_chemical_melting_point ?
_chemical_formula_moiety 'C18 H27 N O6 S'
_chemical_formula_sum
'C18 H27 N O6 S'
_chemical_formula_weight 385.47
loop
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' 'C' -0.0181 0.0091
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0311 0.0180
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0492 0.0322
```

```
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'S' 'S' 0.3331 0.5567
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting orthorhombic
_symmetry_space_group_name_H-M 'P 21 21 21'
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x+1/2, -y, z+1/2'
    '-x, y+1/2, -z+1/2'
    'x+1/2, -y+1/2, -z'
_cell_length_a 9.6886(9)
_cell_length_b 9.7642(8)
_cell_length_c 21.0764(18)
_cell_angle_alpha 90.00
_cell_angle_beta 90.00
_cell_angle_gamma 90.00
_cell_volume
_cell_formula_units_Z
cell_measurement_temperature 130(2)
__cell_measurement_reflns_used 49
_cell_measurement_theta_min 5.0
_cell_measurement_theta_max 30.0
_exptl_crystal_description needle
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.70
_exptl_crystal_size_mid 0.06
_exptl_crystal_size_min 0.04
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.284
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 824
_exptl_absorpt_cōefficient_mu 1.726
_exptl_absorpt_correction_type empirical
_exptl_absorpt_correction_T_min 0.3779
_exptl_absorpt_correction_T_max 0.9342
_exptl_absorpt_process_de\overline{tai}ls
;XABS2, Parkin, S., Moezzi, B. and Hope, H. J. Appl. Crystallogr. 28
(1995)
53-56.
;
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature 130(2)
_diffrn_radiation_wavelength 1.54178
_diffrn_radiation_type CuK\a
_diffrn_radiation_source
_diffrn_radiation_monochromator 'nickel filter'
__diffrn_measuremeñt_device_type 'Siemens P4'
```

```
_diffrn_measurement_method \w
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 3
_diffrn_standards_interval_count 197
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <0.1
_diffrn_reflns_number 4713
_diffrn_reflns_av_R_equivalents 0.0433
_diffrn_reflns_av_sigmaI/netI 0.0497
_diffrn_reflns_limit_h_min -2
__diffrn_reflns_limit_h_max 10
_diffrn_reflns_limit_k_min -2
_diffrn_reflns_limit_k_max 10
_diffrn_reflns_limit_l_min -22
__diffrn_reflns_limit_l_max 22
_diffrn_reflns_theta_min 4.20
_diffrn_reflns_theta_max 56.10
_reflns_number_total_ 2598
_reflns_number_gt 2384
_reflns_threshold_expression I<2\s(I)
_computing_data_collection
_computing_cell_refinement
'P3-PC (Siemens, 1994)'
P3-PC
_computing_data_reduction
    'XDISK (Siemens, 1988)'
_computing_structure_solution
'SHELXS97 (Sheldrick, 1990)'
_computing_structure_refinement
_computing_molecular_graphics 'SHELXTL 5.1, XP (Sheldrick, 1994)'
    'SHELXL97 (Sheldrick, 1997)'
_computing_publication_material SHELXL97
_refine_special_details
;
    Refinement of F^^2^ against ALL reflections. The weighted R-factor wR
and
    goodness of fit S are based on F^^2^, conventional R-factors R are
based
    on F, with F set to zero for negative F^^2^. The threshold expression
of
    F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc.
and is
    not relevant to the choice of reflections for refinement. R-factors
based
    on F^2^ are statistically about twice as large as those based on F,
and R-
    factors based on ALL data will be even larger. The H atoms are riding
on their
    bonded carbons. The hydroxyl H was located on a difference Fourier map
    and
        refined with Uiso = 1.2 time the equivalent Uiso of the bonded H and a
        distance restraint of 0.84(2)\%A.
;
    _refine_ls_structure_factor_coef Fsqd
    _refine_ls_matrix_type full
    _refine_ls_weighting_scheme calc
_refine_ls_weighting_details
    'calc w=1/[\s`^2^(Fo^2^)+(0.0408P)^2^^+0.3904P] where
P}=(\mp@subsup{\textrm{FO}}{}{\wedge}\mp@subsup{2}{}{\wedge}+2\mp@subsup{\textrm{FC}}{}{\wedge}\mp@subsup{2}{}{\wedge})/\mp@subsup{3}{}{\prime
```

```
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack -0.01(2)
__chemic\overline{al_\overline{absolute_config}uration ad}
_refine_ls_number_reflns 2598
_refine_ls_number_parameters 243
_refine_ls_number_restraints 1
_refine_ls_R_factor_all 0.0426
_refine_ls_R_factor_gt 0.0368
_refine_ls_wR_factor_ref 0.0888
_refine_ls_wR_factor_gt 0.0852
_refine_ls_goodness_of_fit_ref 1.060
_refine_ls_restrainēd_\overline{S_al\overline{l}}1.060
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000
loop
    _atom_site_label
    _atom_site_type_symbol
    _atom_site_fract_x
    _atom_site_fract_y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_adp_type
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refinement_flags
    _atom_site_disorder_assembly
        _atom_site_disorder_group
```



```
O5 O 0.5059(2) -0.0684(2) 0.35965(9) 0.0261(5) Uani 1 1 d . . .
O18 O 0.2756(2) 0.2861(2) 0.27145(9) 0.0235(5) Uani 1 1 d . . .
O19 0 0.1653(2) 0.1806(2) 0.35322(10) 0.0301(6) Uani 1 1 d . . .
O20 O 0.6362(2) 0.0449(2) 0.19556(10) 0.0261(5) Uani 1 1 d D . .
H20 H 0.681(3) -0.025(2) 0.2039(16) 0.031 Uiso 1 1 d D . .
O25 O 0.2517(2) 0.0392(2) 0.07655(10) 0.0293(6) Uani 1 1 d . . .
O26 O 0.3991(2) -0.1459(2) 0.12035(10) 0.0315(6) Uani 1 1 d . . .
N3 N 0.3672(3) 0.0978(2) 0.31939(11) 0.0217(6) Uani 1 1 d . . .
C2 C 0.3745(3) -0.0066(3) 0.37162(14) 0.0254(7) Uani 1 1 d . . .
C4 C 0.5000(3) 0.1086(3) 0.28593(13) 0.0220(7) Uani 1 1 d . . .
H4 H 0.5280 0.2066 0.2811 0.026 Uiso 1 1 calc R . .
C5 C 0.5939(3) 0.0353(3) 0.33315(15) 0.0246(8) Uani 1 1 d . . .
H5A H 0.6744 -0.0061 0.3115 0.030 Uiso 1 1 calc R . .
H5B H 0.6270 0.0989 0.3664 0.030 Uiso 1 1 calc R . .
C6 C 0.5007(3) 0.0358(3) 0.22164(13) 0.0223(7) Uani 1 1 d . . .
H6 H 0.4767 -0.0628 0.2281 0.027 Uiso 1 1 calc R . .
C7 C 0.4021(3) 0.0971(3) 0.17423(13) 0.0226(8) Uani 1 1 d . . .
H7A H 0.4361 0.1890 0.1620 0.027 Uiso 1 1 calc R . .
H7B H 0.3110 0.1090 0.1947 0.027 Uiso 1 1 calc R . .
C9 C 0.5131(3) 0.0413(3) 0.04987(14) 0.0252(8) Uani 1 1 d . . .
```

```
C10 C 0.4880(4) 0.1463(4) 0.00702(15) 0.0339(9) Uani 1 1 d . . .
H10 H 0.4025 0.1938 0.0078 0.041 Uiso 1 1 calc R . .
C11 C 0.5882(4) 0.1815(4) -0.03697(16) 0.0444(11) Uani 1 1 d . . .
H11 H 0.5721 0.2535 -0.0664 0.053 Uiso 1 1 calc R .
C12 C 0.7111(4) 0.1114(4) -0.03764(18) 0.0472(11) Uani 1 1 d . . .
H12 H 0.7802 0.1356 -0.0676 0.057 Uiso 1 1 calc R . .
C13 C 0.7355(4) 0.0063(5) 0.00457(17) 0.0485(10) Uani 1 1 d . . .
H13 H 0.8208 -0.0417 0.0033 0.058 Uiso 1 1 calc R . .
C14 C 0.6358(3) -0.0298(4) 0.04911(15) 0.0349(9) Uani 1 1 d . . .
H14 H 0.6521 -0.1021 0.0784 0.042 Uiso 1 1 calc R . .
C15 C 0.3760(4) 0.0599(4) 0.43716(14) 0.0359(9) Uani 1 1 d . . .
H15A H 0.4456 0.1327 0.4381 0.054 Uiso 1 1 calc R . .
H15B H 0.3984 -0.0093 0.4692 0.054 Uiso 1 1 calc R . .
H15C H 0.2849 0.0990 0.4462 0.054 Uiso 1 1 calc R . .
C16 C 0.2678(4) -0.1172(3) 0.36499(17) 0.0360(9) Uani 1 1 d. . .
H16A H 0.2708 -0.1545 0.3218 0.054 Uiso 1 1 calc R . .
H16B H 0.1761 -0.0789 0.3733 0.054 Uiso 1 1 calc R . .
H16C H 0.2870 -0.1905 0.3955 0.054 Uiso 1 1 calc R . .
C17 C 0.2684(3) 0.1954(3) 0.31187(15) 0.0227(8) Uani 1 1 d . . .
C21 C 0.0306(3) 0.2506(4) 0.34484(16) 0.0281(8) Uani 1 1 d . . .
C22 C -0.0463(4) 0.2059(4) 0.40388(19) 0.0510(11) Uani 1 1 d . . .
H22A H -0.0557 0.1059 0.4039 0.077 Uiso 1 1 calc R . .
H22B H -0.1382 0.2479 0.4043 0.077 Uiso 1 1 calc R . .
H22C H 0.0051 0.2348 0.4416 0.077 Uiso 1 1 calc R . .
C23 C 0.0460(4) 0.4038(4) 0.3442(2) 0.0441(10) Uani 1 1 d . . .
H23A H 0.1073 0.4320 0.3789 0.066 Uiso 1 1 calc R . .
H23B H -0.0447 0.4466 0.3499 0.066 Uiso 1 1 calc R . .
H23C H 0.0855 0.4328 0.3036 0.066 Uiso 1 1 calc R . .
C24 C -0.0362(4) 0.1961(6) 0.28588(19) 0.0707(15) Uani 1 1 d . . .
H24A H -0.0405 0.0959 0.2881 0.106 Uiso 1 1 calc R . .
H24B H 0.0181 0.2235 0.2488 0.106 Uiso 1 1 calc R . .
H24C H -0.1299 0.2331 0.2822 0.106 Uiso 1 1 calc R . .
loop_
    _atom_site_aniso_label
    _atom_site_aniso_U_11
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    _atom_site_aniso_U_23
    _atom_site_aniso_U_13
    _atom_site_aniso_U_12
S8 0.0217(4) 0.0250(4) 0.0201(4) 0.0010(4) -0.0001(3) -0.0027(4)
O5 0.0255(12) 0.0243(12) 0.0284(12) 0.0043(10) 0.0014(11) 0.0015(11)
O18 0.0272(12) 0.0201(12) 0.0233(12) 0.0039(11) 0.0015(11) 0.0003(10)
O19 0.0246(12) 0.0349(13) 0.0309(13) 0.0097(12) 0.0121(11) 0.0103(11)
O20 0.0208(12) 0.0304(13) 0.0271(12) 0.0019(10) 0.0028(10) 0.0042(11)
025 0.0223(12) 0.0397(15) 0.0259(11) 0.0023(10) -0.0020(10) -0.0003(11)
O26 0.0445(14) 0.0211(12) 0.0288(12) 0.0000(10) -0.0013(12) -0.0023(12)
N3 0.0242(15) 0.0196(14) 0.0213(14) 0.0014(12) 0.0044(12) 0.0013(14)
C2 0.0251(16) 0.0268(17) 0.0242(16) 0.0081(15) 0.0051(14) 0.0062(19)
C4 0.0192(16) 0.0218(16) 0.0250(17) -0.0045(15) 0.0038(15) -0.0035(15)
C5 0.0241(18) 0.0255(19) 0.0243(16) -0.0008(15) 0.0001(15) 0.0037(16)
C6 0.0198(16) 0.0241(18) 0.0230(16) 0.0022(14) 0.0021(15) -0.0006(15)
C7 0.0256(18) 0.0244(18) 0.0179(16) 0.0006(14) 0.0050(14) -0.0009(17)
C9 0.0262(18) 0.033(2) 0.0169(15) -0.0058(15) 0.0028(15) -0.0068(16)
C10 0.046(2) 0.028(2) 0.0279(18) -0.0056(17) 0.0100(18) -0.0045(19)
C11 0.067(3) 0.037(2) 0.030(2) -0.0081(18) 0.018(2) -0.015(2)
```

```
C12 0.045(3) 0.061(3) 0.036(2) -0.020(2) 0.017(2) -0.029(2)
C13 0.0264(19) 0.080(3) 0.039(2) -0.025(3) 0.0077(17) -0.002(2)
C14 0.029(2) 0.049(2) 0.0264(17) -0.0107(18) -0.0001(17) 0.0000(19)
C15 0.043(2) 0.044(2) 0.0207(17) 0.0041(16) 0.0027(18) 0.010(2)
C16 0.0310(19) 0.029(2) 0.048(2) 0.0110(19) 0.0053(18) 0.0012(17)
C17 0.0238(18) 0.0215(18) 0.0227(17) -0.0060(16) 0.0012(15) -0.0015(16)
C21 0.0186(17) 0.033(2) 0.0330(18) 0.0026(17) 0.0015(16) 0.0018(16)
C22 0.040(2) 0.048(3) 0.066(3) 0.018(2) 0.027(2) 0.018(2)
C23 0.028(2) 0.035(2) 0.069(3) 0.002(2) 0.011(2) 0.0074(18)
C24 0.039(2) 0.114(4) 0.059(3) -0.021(3) -0.013(2) -0.009(3)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s.
planes)
    are estimated using the full covariance matrix. The cell esds are
taken
    into account individually in the estimation of esds in distances,
angles
    and torsion angles; correlations between esds in cell parameters are
only
    used when they are defined by crystal symmetry. An approximate
(isotropic)
    treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_distance
    __geom_bond_site_symmetry_2
    _geom_bond_publ_flag
S8 O25 1.440(2) . ?
S8 O26 1.442(2) . ?
S8 C9 1.771(3) . ?
S8 C7 1.790(3) . ?
O5 C2 1.431(4) . ?
O5 C5 1.436(4) . ?
O18 C17 1.231(4) . ?
O19 C17 1.334(4) . ?
O19 C21 1.485(4) . ?
O20 C6 1.426(4) . ?
O20 H20 0.828(18) . ?
N3 C17 1.359(4) . ?
N3 C4 1.471(4) . ?
N3 C2 1.502(4) . ?
C2 C16 1.501(5) . ?
C2 C15 1.527(4) . ?
C4 C5 1.526(4) . ?
C4 C6 1.530(4) . ?
C4 H4 1.0000 . ?
C5 H5A 0.9900 . ?
C5 H5B 0.9900 . ?
C6 C7 1.506(4) . ?
C6 H6 1.0000 . ?
C7 H7A 0.9900 . ?
```

```
C7 H7B 0.9900 . ?
C9 C14 1.378(5) . ?
C9 C10 1.387(4) . ?
C10 C11 1.386(5) . ?
C10 H10 0.9500 . ?
C11 C12 1.373(5) . ?
C11 H11 0.9500 . ?
C12 C13 1.379(6) . ?
C12 H12 0.9500 . ?
C13 C14 1.392(5) . ?
C13 H13 0.9500 . ?
C14 H14 0.9500 . ?
C15 H15A 0.9800 . ?
C15 H15B 0.9800 . ?
C15 H15C 0.9800 . ?
C16 H16A 0.9800 . ?
C16 H16B 0.9800 . ?
C16 H16C 0.9800 . ?
C21 C24 1.499(5) . ?
C21 C23 1.504(5) . ?
C21 C22 1.515(5) . ?
C22 H22A 0.9800 . ?
C22 H22B 0.9800 . ?
C22 H22C 0.9800 . ?
C23 H23A 0.9800 . ?
C23 H23B 0.9800 . ?
C23 H23C 0.9800 . ?
C24 H24A 0.9800 . ?
C24 H24B 0.9800 . ?
C24 H24C 0.9800 . ?
loop
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
025 S8-026 118.94(14) . . ?
O25 S8 C9 107.33(14) . . ?
O26 S8 C9 107.70(15) . . ?
O25 S8 C7 105.81(14) . . ?
O26 S8 C7 108.48(13) . . ?
C9 S8 C7 108.19(15) . . ?
C2 O5 C5 107.4(2) . . ?
C17 O19 C21 122.1(2) . . ?
C6 O20 H20 110(2) . . ?
C17 N3 C4 120.6(3) . . ?
C17 N3 C2 126.5(3) . . ?
C4 N3 C2 111.0(2) . . ?
O5 C2 C16 107.0(3) . . ?
O5 C2 N3 101.5(2) . . ?
C16 C2 N3 112.8(3) . . ?
O5 C2 C15 109.3(3) . . ?
C16 C2 C15 113.4(3) . . ?
```

```
N3 C2 C15 112.0(3) . . ?
N3 C4 C5 100.1(2) . . ?
N3 C4 C6 113.3(2) . . ?
C5 C4 C6 110.9(2) . . ?
N3 C4 H4 110.7 . . ?
C5 C4 H4 110.7 . . ?
C6 C4 H4 110.7 . . ?
O5 C5 C4 103.3(2) . . ?
O5 C5 H5A 111.1 . . ?
C4 C5 H5A 111.1 . . ?
O5 C5 H5B 111.1 . . ?
C4 C5 H5B 111.1 . . ?
H5A C5 H5B 109.1 . . ?
O20 C6 C7 107.6(2) . . ?
O20 C6 C4 108.4(2) . . ?
C7 C6 C4 113.6(2) . . ?
O20 C6 H6 109.0 . . ?
C7 C6 H6 109.0 . . ?
C4 C6 H6 109.0 . . ?
C6 C7 S8 113.8(2) . . ?
C6 C7 H7A 108.8 . . ?
S8 C7 H7A 108.8 . . ?
C6 C7 H7B 108.8 . . ?
S8 C7 H7B 108.8 . . ?
H7A C7 H7B 107.7 . . ?
C14 C9 C10 121.1(3) . . ?
C14 C9 S8 120.5(3) . . ?
C10 C9 S8 118.4(3) . . ?
C11 C10 C9 119.8(4) . . ?
C11 C10 H10 120.1 . . ?
C9 C10 H10 120.1 . . ?
C12 C11 C10 119.4(4) . . ?
C12 C11 H11 120.3 . . ?
C10 C11 H11 120.3 . . ?
C11 C12 C13 120.9(4) . . ?
C11 C12 H12 119.6 . . ?
C13 C12 H12 119.6 . . ?
C12 C13 C14 120.3(4) . . ?
C12 C13 H13 119.8 . . ?
C14 C13 H13 119.8 . . ?
C9 C14 C13 118.6(4) . . ?
C9 C14 H14 120.7 . . ?
C13 C14 H14 120.7 . . ?
C2 C15 H15A 109.5 . . ?
C2 C15 H15B 109.5 . . ?
H15A C15 H15B 109.5 . . ?
C2 C15 H15C 109.5 . . ?
H15A C15 H15C 109.5 . . ?
H15B C15 H15C 109.5 . . ?
C2 C16 H16A 109.5 . . ?
C2 C16 H16B 109.5 . . ?
H16A C16 H16B 109.5 . . ?
C2 C16 H16C 109.5 . . ?
H16A C16 H16C 109.5 . . ?
H16B C16 H16C 109.5 . . ?
O18 C17 O19 124.9(3) . . ?
O18 C17 N3 123.1(3) . . ?
```

```
O19 C17 N3 112.0(3) . . ?
O19 C21 C24 108.3(3) . . ?
O19 C21 C23 111.8(3) . . ?
C24 C21 C23 112.9(4) . . ?
O19 C21 C22 101.7(3) . . ?
C24 C21 C22 111.5(3) . . ?
C23 C21 C22 110.1(3) . . ?
C21 C22 H22A 109.5 . . ?
C21 C22 H22B 109.5 . . ?
H22A C22 H22B 109.5 . . ?
C21 C22 H22C 109.5 . . ?
H22A C22 H22C 109.5 . . ?
H22B C22 H22C 109.5 . . ?
C21 C23 H23A 109.5 . . ?
C21 C23 H23B 109.5 . . ?
H23A C23 H23B 109.5 . . ?
C21 C23 H23C 109.5 . . ?
H23A C23 H23C 109.5 . . ?
H23B C23 H23C 109.5 . . ?
C21 C24 H24A 109.5 . . ?
C21 C24 H24B 109.5 . . ?
H24A C24 H24B 109.5 . . ?
C21 C24 H24C 109.5 . . ?
H24A C24 H24C 109.5 . . ?
H24B C24 H24C 109.5 . . ?
loop
    _geom_hbond_atom_site_label_D
    _geom_hbond_atom_site_label_H
    _geom_hbond_atom_site_label_A
    _geom_hbond_distance_DH
    _geom_hbond_distance_HA
    _geom_hbond_distance_DA
    _geom_hbond_angle_DHA
    _geom_hbond_site_symmetry_A
O}\overline{2}0 H2\overline{0} O18-0.82\overline{8}(18) 1.9\overline{6}(2) 2.756(3) 161(3) 3_64
_diffrn_measured_fraction_theta_max 1.000
_diffrn_reflns_theta_full_ 56.10
_diffrn_measured_fraction_theta_full 1.000
_refine_diff_density_max - 0.1\overline{7}9
_refine_diff_density_min -0.256
_refine_diff_density_rms 0.041
```


Compund 389

```
data_mn1568
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    acetic Acid (3S)-3-acetoxy-(2R)-2-acetylamino-4benzenesulfonyl-butyl
ester
;
```

```
_chemical_name_common SSA2
_chemical_meltīng_point ?
_chemical_formula_moiety 'C16 H21 N O7 S'
_chemical_formula_sum
    C16 H21 N O7 S'
    _chemical_formula_weight
371.40
loop_
    _atom_type_symbol
    _atom_type_description
    _atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'C' 'C' 0.00%33 0.0016
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'N' 'N' 0.0061 0.0033
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'o' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'S' 'S' 0.1246 0.1234
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M 'P 21'
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x, y+1/2, -z'
_cell_length_a
    5.2433(7)
_cell_length_b
    8.5038(11)
_cell_length_c 19.318(3)
_cell_angle_\overline{alpha 90.00}
_cell_angle_beta 90.862(3)
_cell_angle_gamma 90.00
_cell_volume 861.3(2)
__cell_formula_units_Z
2
_cell_measure\overline{ment_temperature 293(2)}
_cell_measurement_reflns_used 950
_cell_measurement_theta_min 2.6
_cell_measurement_theta_max 20.0
_exptl_crystal_description plate
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.32
_exptl_crystal_size_mid 0.30
__exptl_crystal_size_min 0.13
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.432
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 - 392
_exptl_absorpt_coefficient_mu 0.227
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.931
```

```
_exptl_absorpt_correction_T_max 0.971
__exptl_absorpt_process_de\overline{tai}ls 'SADABS 2.10 (Sheldrick, 2003)'
_exptl_special_details
;
    ?
;
_diffrn_ambient_temperature
90(2)
__diffrn_radiation_type
_diffrn_radiation_source
_diffrn_radiation_monochromator
_diffrn_measurement_device_type
_diffrn_measurement_method
_diffrn_detector_arēa_resol_mean 8.3
_diffrn_standards_number 0
_diffrn_standards_interval_count
_diffrn_standards_interval_time ?
_diffrn_standards_decay_%- ?
_diffrn_reflns_number 4825
_diffrn_reflns_av_R_equivalents 0.0184
__diffrn_reflns_av_si=_igmaI/netI 0.0362
__diffrn_reflns_limit_h_min -6
_diffrn_reflns_limit_h_max 6
_diffrn_reflns_limit_k_min -10
_diffrn_reflns_limit____max 11
_diffrn_reflns_limit_l_min -25
_diffrn_reflns_limit_l_max 25
_diffrn_reflns_theta_min 2.11
_diffrn_reflns_theta_max 27.48
_reflns_number_total- 3717
_reflns_number_gt 3506
_reflns_threshold_expression I>2\s(I)
_computing_data_collection 'SMART 5.054 (Bruker, 2002)'
_computing_cell_refinement SMART
_computing_data_reduction
__computing_struc̄ture_solution 'SHELXS97 (Sheldrick, 1990)'
'SAINT 6.45A (Bruker, 2003)'
_computing_structure_refinement 'SHELXL97 (Sheldrick, 1997)'
_computing_molecular_graphics 'SHELXTL 5.1, XP (Sheldrick, 1994)'
_computing_publication_material SHELXL97
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR
and
    goodness of fit S are based on F^2^, conventional R-factors R are
based
    on F, with F set to zero for negative F^^^^. The threshold expression
of
    F^2^ > 2sigma(F^^2^) is used only for calculating R-factors(gt) etc.
and is
    not relevant to the choice of reflections for refinement. R-factors
based
    on F^2^ are statistically about twice as large as those based on F,
and R-
```

factors based on ALL data will be even larger. ;

```
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[\s`^2^(Fo^2^)+(0.0562P)^^2^+0.2268P] where
P=(FO^2^+2Fc^2^)/3'
    _atom_sites_solution_primary direct
    _atom_sites_solution_secondary difmap
    _atom_sites_solution_hydrogens geom
    _refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
    'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack 0.13(6)
_chemical_ābsolute_configuration ad
_refine_ls_number_reflns 3717
_refine_ls_number_parameters 232
_refine_ls_number_restraints 1
_refine_ls_R_factōr_all 0.0362
_refine_ls_R_factor_gt 0.0330
_refine_ls_wR_factor_ref 0.0867
_refine_ls_wR_factor_gt 0.0834
_refine_ls_goodness_of_fit_ref 0.941
__refine_ls_restrainēe__S_al\overline{l}}0.94
_refine_ls_shift/su_max 0.007
_refine_ls_shift/su_mean 0.000
```

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
S $\overline{5} \mathrm{~S} 0.50815(8) 0.59437(5) 0.35499(2) 0.01662(11)$ Uani $11 \mathrm{~d} . .$.
O12 0 0.1927(3) 0.98247(17) 0.08252(7) 0.0203(3) Uani $11 \mathrm{~d} \cdot$. .
$01500.4965(3) 1.0274(2) 0.00438(8) 0.0285(3)$ Uani $11 \mathrm{~d} . \quad$.
$0190-0.1941(3) 1.01495(17) 0.22905(7) 0.0216(3)$ Uani $11 \mathrm{~d} .$.
O20 O 0.3745(2) 0.57137(16) 0.19016(7) 0.0178(3) Uani $11 \mathrm{~d} .$. .
O23 O 0.8004(3) 0.56103(18) 0.17646(8) 0.0280(4) Uani $11 \mathrm{~d} \cdot$. .
O24 O $0.5555(3) 0.43773(18) 0.32895(7) 0.0230(3)$ Uani $11 \mathrm{~d} . \quad$.
$02500.7220(3) 0.69896(19) 0.36344(7) 0.0245(3)$ Uani $11 \mathrm{~d} . \quad$.
N16 N 0.2374(3) 0.98847(19) 0.22689(8) 0.0166(3) Uani 11 d. .
H16 H 0.38361 .02630 .24250 .020 Uiso 11 calc R . .
C1 C 0.3591(4) 0.8710(2) 0.11748(10) 0.0185(4) Uani $11 \mathrm{~d} .$.

H1A H 0.53310 .91480 .12310 .022 Uiso 11 calc R . .
н1в н 0.36920 .77170 .09090 .022 Uiso 11 calc R . .
C2 C 0.2401(4) 0.8423(2) 0.18769(9) 0.0159(4) Uani 1 1 d...
H2 H 0.06090 .80460 .18070 .019 Uiso 11 calc R . .
C3 C 0.3926(4) 0.7172(2) 0.22833(10) 0.0161(4) Uani 1 1 d...
н3 н 0.57510 .75010 .23310 .019 Uiso 11 calc R . .
C4 C 0.2807(4) 0.6881(2) 0.29954(10) 0.0179(4) Uani $11 \mathrm{~d} . \quad$.
H4A H 0.12720 .62100 .29480 .021 Uiso 11 calc R . .
H4B H 0.22870 .78950 .32020 .021 Uiso 1 1 calc R . .
C6 C 0.3576(3) 0.5755(2) 0.43603(9) 0.0167(4) Uani 11 d. . .
C7 C 0.4664(4) 0.6519(3) 0.49296(11) 0.0233(4) Uani $11 \mathrm{~d} .$.
H7 H 0.60960 .71900 .48750 .028 Uiso 11 calc R . .
C8 C 0.3614(4) 0.6283(3) 0.55819(11) 0.0274(5) Uani $11 \mathrm{~d} .$.
н8 H 0.43460 .67840 .59770 .033 Uiso 11 calc R . .
C9 C 0.1515(4) 0.5323(3) 0.56521(11) 0.0261(4) Uani $11 \mathrm{~d} . \quad$.
H9 H 0.08100 .51640 .60970 .031 Uiso 11 calc R . .
C10 C 0.0420(4) 0.4585(3) 0.50777(11) 0.0241(4) Uani $11 \mathrm{~d} . .$.
H10 H -0.10440 .39400 .51300 .029 Uiso 11 calc R . .
C11 C 0.1467(4) 0.4790(2) 0.44285(10) 0.0207(4) Uani $11 \mathrm{~d} .$.
H11 H 0.07450 .42750 .40360 .025 Uiso 11 calc R . .
C13 C 0.2868(4) 1.0530(2) 0.02614(10) 0.0185(4) Uani $11 \mathrm{~d} . \quad$.
C14 C 0.1002(4) 1.1677(3) -0.00496(11) 0.0260(5) Uani $11 \mathrm{~d} .$.
H14A H $0.05681 .1355-0.05240 .053(9)$ Uiso 11 calc R . .
H14B H $0.17671 .2729-0.00550 .051(9)$ Uiso 11 calc R . .
H14C H -0.05481 .16970 .0228 0.055(9) Uiso 11 calc R . .
C17 C 0.0208(3) 1.0693(2) 0.24061(9) 0.0171(4) Uani $11 \mathrm{~d} . .$.
C18 C 0.0594(4) 1.2307(2) 0.27025(11) 0.0219(4) Uani $11 \mathrm{~d} . .$.
H18A H -0.07951 .25490 .30190 .033 Uiso $11 \mathrm{calc} R$. .
H18B H 0.06021 .30800 .23270 .033 Uiso 11 calc R . .
H18C H 0.22271 .23460 .29550 .033 Uiso 11 calc R . .
C21 C 0.5935(4) 0.5028(2) 0.17016(10) 0.0180(4) Uani 11 d. . .
C22 C 0.5421(4) 0.3429(3) 0.13960(11) 0.0258(5) Uani $11 \mathrm{~d} .$.
H22A H 0.65590 .32520 .10060 .039 Uiso 11 calc R . .
H22B H 0.36440 .33720 .12340 .039 Uiso 11 calc R . .
H22C H 0.57270 .26210 .17500 .039 Uiso 11 calc R . .
loop
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
S $\overline{5} 0.0 \overline{153(2)} 0.01 \overline{8} 0(2) 0.0166(2) 0.00077(19) 0.00149(14) 0.00208(18)$
$0120.0183(7) 0.0226(8) 0.0200(7) 0.0043(5) 0.0006(5) 0.0028(6)$
015 0.0231(7) 0.0370(9) 0.0256(8) 0.0065(6) 0.0060(6) 0.0036(7)
019 0.0149(6) 0.0196(7) 0.0303(8) -0.0015(6) 0.0018(5) 0.0002(6)
$0200.0158(6) 0.0150(7) 0.0226(6)-0.0025(5) 0.0017(5) 0.0014(5)$
$0230.0172(7) 0.0246(9) 0.0424(9)-0.0055(6) 0.0076(6)-0.0004(6)$
024 0.0263(7) 0.0217(8) 0.0210(7) 0.0007(6) 0.0027(6) 0.0084(6)
025 0.0182(7) 0.0314(9) 0.0238(7) 0.0003(6) 0.0019(6) -0.0050(6)
N16 0.0157(7) 0.0158(8) 0.0183(7) -0.0003(6) 0.0002(6) -0.0008(6)
C1 0.0191(9) 0.0189(10) 0.0175(9) 0.0016(7) -0.0006(7) 0.0013(8)
C2 0.0165(8) 0.0133(9) 0.0177(9) -0.0006(7) 0.0014(7) 0.0003(7)
C3 0.0165(9) 0.0145(9) 0.0174(9) -0.0006(7) 0.0018(7) 0.0013(7)
C4 0.0155(9) 0.0181(10) 0.0200(9) 0.0029(7) 0.0018(7) 0.0048(7)

```
C6 0.0177(8) 0.0169(10) 0.0157(8) 0.0015(7) 0.0030(6) 0.0047(8)
C7 0.0236(10) 0.0233(10) 0.0230(10) -0.0031(8) 0.0010(8) -0.0021(8)
C8 0.0349(12) 0.0278(13) 0.0194(9) -0.0049(8) -0.0010(8) 0.0014(9)
C9 0.0350(12) 0.0240(10) 0.0195(10) 0.0010(8) 0.0063(8) 0.0063(9)
C10 0.0236(10) 0.0204(10) 0.0286(11) 0.0044(8) 0.0049(8) -0.0002(8)
C11 0.0222(10) 0.0202(10) 0.0198(9) -0.0003(8) -0.0001(7) 0.0012(8)
C13 0.0201(9) 0.0188(11) 0.0166(9) 0.0007(7) 0.0009(7) -0.0027(7)
C14 0.0242(11) 0.0285(11) 0.0252(10) 0.0072(9) -0.0006(8) 0.0022(9)
C17 0.0174(8) 0.0186(10) 0.0154(8) 0.0019(7) 0.0015(6) 0.0018(7)
C18 0.0220(10) 0.0186(10) 0.0253(10) -0.0021(8) 0.0016(8) -0.0001(8)
C21 0.0196(9) 0.0173(10) 0.0173(9) 0.0031(7) 0.0033(7) 0.0031(7)
C22 0.0321(11) 0.0191(11) 0.0262(11) -0.0031(8) 0.0040(9) 0.0027(9)
_geom_special_details
;
    All esds (except the esd in the dihedral angle between two l.s.
planes)
    are estimated using the full covariance matrix. The cell esds are
taken
    into account individually in the estimation of esds in distances,
angles
    and torsion angles; correlations between esds in cell parameters are
only
    used when they are defined by crystal symmetry. An approximate
    (isotropic)
    treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_distance
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
S\overline{5}025
S5 024 1.4467(15) . ?
S5 C6 1.7710(18) . ?
S5 C4 1.7793(19) . ?
O12 C13 1.344(2) . ?
O12 C1 1.449(2). ?
O15 C13 1.203(2) . ?
O19 C17 1.235(2) . ?
O20 C21 1.349(2) . ?
O20 C3 1.445(2). ?
O23 C21 1.197(2) . ?
N16 C17 1.357(2) . ?
N16 C2 1.456(2) . ?
N16 H16 0.8800 . ?
C1 C2 1.521(3) . ?
C1 H1A 0.9900 . ?
C1 H1B 0.9900 . ?
C2 C3 1.539(2) . ?
C2 H2 1.0000. ?
C3 C4 1.524(3) . ?
C3 H3 1.0000 . ?
C4 H4A 0.9900 . ?
```

```
C4 H4B 0.9900 . ?
C6 C11 1.385(3) . ?
C6 C7 1.392(3) . ?
C7 C8 1.397(3) . ?
C7 H7 0.9500 . ?
C8 C9 1.379(3) . ?
C8 H8 0.9500 . ?
C9 C10 1.391(3) . ?
C9 H9 0.9500 . ?
C10 C11 1.387(3) . ?
C10 H10 0.9500 . ?
C11 H11 0.9500 . ?
C13 C14 1.501(3) . ?
C14 H14A 0.9800 . ?
C14 H14B 0.9800 . ?
C14 H14C 0.9800 . ?
C17 C18 1.499(3) . ?
C18 H18A 0.9800 . ?
C18 H18B 0.9800 . ?
C18 H18C 0.9800 . ?
C21 C22 1.505(3) . ?
C22 H22A 0.9800 . ?
C22 H22B 0.9800 . ?
C22 H22C 0.9800 . ?
loop_
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
O25 S5 O24 118.11(9) . . ?
O25 S5 C6 108.22(9) . . ?
O24 S5 C6 107.76(9) . . ?
O25 S5 C4 107.79(9) . . ?
O24 S5 C4 108.67(9) . . ?
C6 S5 C4 105.62(9) . . ?
C13 012 C1 116.35(15) . . ?
C21 O20 C3 117.86(15) . . ?
C17 N16 C2 123.28(15) . . ?
C17 N16 H16 118.4 . . ?
C2 N16 H16 118.4 . . ?
O12 C1 C2 105.55(15) . . ?
012 C1 H1A 110.6. . ?
C2 C1 H1A 110.6 . . ?
O12 C1 H1B 110.6 . . ?
C2 C1 H1B 110.6 . . ?
H1A C1 H1B 108.8 . . ?
N16 C2 C1 109.51(16) . . ?
N16 C2 C3 109.50(15) . . ?
C1 C2 C3 110.40(15) . . ?
N16 C2 H2 109.1 . . ?
C1 C2 H2 109.1 . . ?
C3 C2 H2 109.1 . . ?
O20 C3 C4 107.35(15) . . ?
```

```
O20 C3 C2 107.66(14) . . ?
C4 C3 C2 111.64(15) . . ?
O20 C3 H3 110.0 . . ?
C4 C3 H3 110.0 . . ?
C2 C3 H3 110.0 . . ?
C3 C4 S5 110.66(13) . . ?
C3 C4 H4A 109.5 . . ?
S5 C4 H4A 109.5 . . ?
C3 C4 H4B 109.5 . . ?
S5 C4 H4B 109.5 . . ?
H4A C4 H4B 108.1 . . ?
C11 C6 C7 121.30(17) . . ?
C11 C6 S5 120.33(14) . . ?
C7 C6 S5 118.25(15) . . ?
C6 C7 C8 118.90(19) . . ?
C6 C7 H7 120.6 . . ?
C8 C7 H7 120.6 . . ?
C9 C8 C7 119.98(19) . . ?
C9 C8 H8 120.0 . . ?
C7 C8 H8 120.0 . . ?
C8 C9 C10 120.61(19) . . ?
C8 C9 H9 119.7 . . ?
C10 C9 H9 119.7 . . ?
C11 C10 C9 120.0(2) . . ?
C11 C10 H10 120.0 . . ?
C9 C10 H10 120.0 . . ?
C6 C11 C10 119.19(18) . . ?
C6 C11 H11 120.4 . . ?
C10 C11 H11 120.4 . . ?
O15 C13 O12 123.45(18) . . ?
O15 C13 C14 124.85(18) . . ?
O12 C13 C14 111.69(16) . . ?
C13 C14 H14A 109.5 . . ?
C13 C14 H14B 109.5 . . ?
H14A C14 H14B 109.5 . . ?
C13 C14 H14C 109.5 . . ?
H14A C14 H14C 109.5 . . ?
H14B C14 H14C 109.5 . . ?
O19 C17 N16 122.61(17) . . ?
O19 C17 C18 121.94(17) . . ?
N16 C17 C18 115.45(17) . . ?
C17 C18 H18A 109.5 . . ?
C17 C18 H18B 109.5 . . ?
H18A C18 H18B 109.5 . . ?
C17 C18 H18C 109.5 . . ?
H18A C18 H18C 109.5 . . ?
H18B C18 H18C 109.5 . . ?
O23 C21 020 124.48(18) . . ?
O23 C21 C22 124.74(19) . . ?
O20 C21 C22 110.77(17) . . ?
C21 C22 H22A 109.5 . . ?
C21 C22 H22B 109.5 . . ?
H22A C22 H22B 109.5 . . ?
C21 C22 H22C 109.5 . . ?
H22A C22 H22C 109.5 . . ?
H22B C22 H22C 109.5 . . ?
```

```
loop
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
    _geom_hbond_atom_site_label_A
    _geom_hbond_distance_\overline{DH}
    _geom_hbond_distance_HA
    _geom_hbond_distance_DA
    _geom_hbond_angle_DHA
    _geom_hbond_site_symmetry_A
N16 H16 O19 - 0.88-2.24 2.989(2) 143.5 1_655
_diffrn_measured_fraction_theta_max 0.991
_diffrn_reflns_theta_full 27.48
__diffrn_measurēd_fra\overline{ction_theta_full 0.991}
_refine_diff_density_max 0.311
_refine_diff_density_min -0.255
_refine_diff_density_rms 0.051
```

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 220
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) of compound 220
${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{\mathbf{2}} \mathrm{O}, 100 \mathrm{MHz}$) of compound 224
${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) of compound 224
w/ 0.5\% $\mathrm{CH}_{3} \mathrm{CN}$

7.3. Spectra

7.3.1.Chapter 2 Spectra

Spectrum 7.1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound 220

Spectrum 7.2: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 220

Spectrum 7.3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound 221

Spectrum 7.4: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 221

Spectrum 7.5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 222

Spectrum 7.6: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 222

Spectrum 7.7: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound 223

Spectrum 7.8: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 223

Spectrum 7.9: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 224

Spectrum 7.10: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}$) of compound 224

Spectrum 7.11: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 225

Spectrum 7.12: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 225

Spectrum 7.13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 228

Spectrum 7.14: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 228

Spectrum 7.15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 229

Spectrum 7.16: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 229

Spectrum 7.17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 230

Spectrum 7.18: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 230

Spectrum 7.19: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 231

Spectrum 7.20: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 231

Spectrum 7.21: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 233

Spectrum 7.22: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 233

Spectrum 7.23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 234

Spectrum 7.24: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 234

Spectrum 7.25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 235

Spectrum 7.27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 236

Spectrum 7.28: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 236

Spectrum 7.29: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 243

Spectrum 7.30: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 243

Spectrum 7.31: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 244

Spectrum 7.32: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 244

Spectrum 7.33: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 245

Spectrum 7.34: ${ }^{13} \mathrm{C}$ dept $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 245

Spectrum 7.35: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 246

Spectrum 7.36: ${ }^{13} \mathrm{C}$ dept $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound 246

Spectrum 7.37: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 247

l

Spectrum 7.38: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 247

Spectrum 7.39: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 249

Spectrum 7.40: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 249

Spectrum 7.41: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 250

Spectrum 7.42: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{2 5 0}$

Spectrum 7.43: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 251

Spectrum 7.44: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 251

V
Spectrum 7.45: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 252

\searrow
Spectrum 7.46: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 252

Spectrum 7.47: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 253

Spectrum 7.48: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 253

Spectrum 7.49: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 256

Spectrum 7.50: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 256

Spectrum 7.51: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 257

Spectrum 7.52: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 257

Spectrum 7.53: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 258

Spectrum 7.54: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 258

Spectrum 7.55: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 260

Spectrum 7.56: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 260

\searrow

Spectrum 7.57: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 261

Spectrum 7.58: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 261

Spectrum 7.59: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 262

Spectrum 7.60: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 262

Spectrum 7.61: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 269

Spectrum 7.62: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 269

Spectrum 7.63: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 271

Spectrum 7.64: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 271

Spectrum 7.65: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 273

Spectrum 7.66: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 273

Spectrum 7.67: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 274

Spectrum 7.68: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 274

Spectrum 7.69: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 275

Spectrum 7.70: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 275

Spectrum 7.71: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 277

Spectrum 7.72: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 277

7.3.2. Chapter 3 Spectra

Spectrum 7.73: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound (-)-1

Spectrum 7.74: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound (-)-1

Spectrum 7.75: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$ of compound (-)-279

Spectrum 7.76: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound (-)-279

Spectrum 7.77: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 285

Spectrum 7.78: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 285

Spectrum 7.79: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 286

Spectrum 7.80: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 286

l

Spectrum 7.81: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 287

Spectrum 7.82: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 287

Spectrum 7.83: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 290

Spectrum 7.84: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 290

Spectrum 7.85: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 291

Spectrum 7.86: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 291

\searrow

Spectrum 7.87: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 292

Spectrum 7.89: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 293

Spectrum 7.90: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 293

Spectrum 7.91: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 294

Spectrum 7.92: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 294

Spectrum 7.93: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 295

Spectrum 7.94: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 295

Spectrum 7.95: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 296

Spectrum 7.96: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 296

Spectrum 7.97: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 297

Spectrum 7.98: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 297

Spectrum 7.99: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 298

Spectrum 7.100: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 298

Spectrum 7.101: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 299

Spectrum 7.102: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 299

Spectrum 7.103: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 300

Spectrum 7.104: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 300

Spectrum 7.105: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound (+)-301

Spectrum 7.107: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound (+)-302

Spectrum 7.108: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $(+)-\mathbf{3 0 2}$

Spectrum 7.109: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 303

Spectrum 7.110: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 303

Spectrum 7.111: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 305

Spectrum 7.112: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 305

Spectrum 7.113: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 306

§

Spectrum 7.114: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 306

Spectrum 7.115: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 307

Spectrum 7.116: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 307

Spectrum 7.117: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 308

Spectrum 7.118: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 308

Spectrum 7.119: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 309

Spectrum 7.120: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{3 0 9}$

Spectrum 7.121: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 310

Spectrum 7.122: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ of compound $\mathbf{3 1 0}$

Spectrum 7.123: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 311

Spectrum 7.124: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 311

Spectrum 7.125: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 312

Spectrum 7.126: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 312

Spectrum 7.127: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 313

Spectrum 7.128: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 313

r

Spectrum 7.130: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 314

Spectrum 7.131: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 315

Spectrum 7.132: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 315

Spectrum 7.133: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $(-) \mathbf{- 3 1 9}$

Spectrum 7.134: ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound (-)-319

Spectrum 7.135: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $(+)$-319

Spectrum 7.136: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound (+)-319

Spectrum 7.137: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 0}$

Spectrum 7.138: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 0}$

Spectrum 7.139: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 321

Spectrum 7.140: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 321

Spectrum 7.141: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 322

Spectrum 7.142: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 322

Spectrum 7.143: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 323

Spectrum 7.144: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 2 3}$

Spectrum 7.145: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$) of compound 324

Spectrum 7.146: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$) of compound 324

Spectrum 7.147: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ of compound 329

Spectrum 7.148: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 329

7.3.3. Chapter 4 Spectra

Spectrum 7.149: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ of compound 334

Spectrum 7.150: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{3 3 4}$

Spectrum 7.151: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 339

Spectrum 7.152: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 339

Spectrum 7.153: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 342

Spectrum 7.154: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 342

Spectrum 7.155: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 344

Spectrum 7.156: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 344

Spectrum 7.157: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 346

Spectrum 7.158: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 346

Spectrum 7.159: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 349

Spectrum 7.160: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound 349

Spectrum 7.161: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound (-)-302

Spectrum 7.162: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ of compound (-)-302

7.3.4. Chapter 5 Spectra

Spectrum 7.163: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 350

Spectrum 7.164: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}\right)$ of compound 350

Spectrum 7.165: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right)$ of compound 351

Spectrum 7.166: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right)$ of compound $\mathbf{3 5 1}$

Spectrum 7.167: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 352

Spectrum 7.168: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$ w/ $\left.0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right)$ of compound 352

Spectrum 7.169: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 353

Spectrum 7.170: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}\right)$ of compound 353

Spectrum 7.171: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of compound 354

Spectrum 7.172: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} \mathrm{w} / 0.5 \% \mathrm{CH}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$ of compound 354

Spectrum 7.174: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 355

Spectrum 7.175: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 356

Spectrum 7.176: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 356

Spectrum 7.177: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 357

Spectrum 7.178: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 357

Spectrum 7.179: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 5 8}$

Spectrum 7.181: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 359

Spectrum 7.182: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 359

Spectrum 7.183: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 361

Spectrum 7.184: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 1}$

Spectrum 7.185: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ of compound 362

Spectrum 7.186: ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 2}$

7.3.5. Chapter 6 Spectra

Spectrum 7.187: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 6 3}$

\searrow
Spectrum 7.188: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 363

Spectrum 7.189: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 364

Spectrum 7.190: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 364

Spectrum 7.191: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 a}$

Spectrum 7.192: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 370a

Spectrum 7.194: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 7 0 b}$

Spectrum 7.195: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 378

Spectrum 7.196: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 378

Spectrum 7.197: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 379

Spectrum 7.198: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 379

Spectrum 7.199: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 385

Spectrum 7.200: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 385

Spectrum 7.201: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 386

Spectrum 7.202: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 386

Spectrum 7.203: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 7}$

Spectrum 7.204: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 7}$

Spectrum 7.205: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 8}$

Spectrum 7.207: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 9}$

Spectrum 7.208: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 8 9}$

Spectrum 7.209: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 390

Spectrum 7.210: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound $\mathbf{3 9 0}$

Spectrum 7.211: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 391

Spectrum 7.212: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 391

Spectrum 7.213: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 392

Spectrum 7.214: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 392

Spectrum 7.215: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 393

Spectrum 7.216: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 393

Spectrum 7.217: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 403

Spectrum 7.218: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 403

Spectrum 7.219: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 407

Spectrum 7.220: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 407

Spectrum 7.221: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 408

Spectrum 7.222: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 408

Spectrum 7.223: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 414

Spectrum 7.224: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 414

Spectrum 7.225: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 416

Spectrum 7.226: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 416

Spectrum 7.227: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 418

Spectrum 7.228: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 418

Spectrum 7.229: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 420

Spectrum 7.230: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ of compound 420

Spectrum 7.231: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right)$ of compound 421

Spectrum 7.232: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right)$ of compound 421

[^0]: ${ }^{\text {a }}$ Dess-Martin periodane oxidation

