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Abstract

Cognitive control is thought to regulate the conflict be-
tween stability—maintaining the current task in the face of
distraction—and flexibility—switching to a new task of greater
priority. However, evidence conflicts regarding when and to
what extent stability and flexibility trade-off. A normative the-
ory of flexibility and stability may help clarify when and why
we should expect such trade-offs to occur. Towards such a the-
ory, we model task-switching as a problem of decision-making
under uncertainty, in which the decision-maker must simulta-
neously infer both the identity of a stimulus and the task gov-
erning the correct response to that stimulus. We find that op-
timal behavior is either extremely stable or extremely flexible,
but not both, indicating a normative basis for a trade-off be-
tween the two. However, we also show that a sub-optimal but
more realistic decision-maker exhibits behavior between these
two extremes, and more closely resembles experimental data.

Keywords: cognitive control; decision making; computation;
drift-diffusion models

Introduction
Suppose you are writing a report on your recent research for
an imminent deadline. While you work, your co-workers gos-
sip loudly. You ignore the gossip and focus on your report.
You have exhibited cognitive stability: instead of reacting to
an irrelevant stimulus, you have continued executing the cur-
rent task. Then, one of your co-workers says that the building
is on fire and everyone must evacuate immediately. You stop
working on the report and leave. You have exhibited cogni-
tive flexibility: you put aside your previous task and switched
to a new one when it was adaptive to do so. Extant accounts
of cognitive stability and flexibility typically assume that the
two are opposed. The more strongly you focus on your re-
port (high stability), the harder it is to switch away from it to
fleeing the fire (low flexibility). While many empirical find-
ings support this supposition (Dreisbach & Goschke, 2004;
Dreisbach & Fröber, 2019), this support is not unanimous,
and some recent findings have suggested that stability and
flexibility can, at least under some circumstances, vary in-
dependently (Geddert & Egner, 2022).

When the empirical record conflicts, a computational ap-
proach may clarify. Is it obligatory that stability and flexi-
bility trade off against each other? Are specific assumptions

required to produce such a trade-off, or is such a trade-off re-
quired of adaptive behavior? A theory that addresses these
questions could help us understand when and why we ob-
serve stability-flexibility tradeoffs in human behavior. How-
ever, existing computational theories in this domain tend to
assume that such trade-offs exist, building a conflict between
stability and flexibility into the architecture of the models
themselves (Ueltzhöffer, Armbruster-Genç, & Fiebach, 2015;
Musslick, Jang, Shvartsman, Shenhav, & Cohen, 2018; Mus-
slick & Cohen, 2021). While such accounts provide valuable
insights into neural and cognitive systems that may exhibit
such trade-offs, they do not address questions of if or when
such trade-offs should actually occur. In contrast, here we
take a decision-theoretic approach, asking whether a trade-
off between stability and flexibility emerges naturally from
normative principles of optimal decision-making. We find
that such a trade-off can emerge from decision-making under
uncertainty: if both the stimulus and the task are unknown,
and must be concurrently inferred from the environment, then
stability and flexibility manifest as opposing strategies for re-
solving uncertainty.

Quantifying stability and flexibility

Before proceeding, we should specify precisely what we
mean by “stability” and “flexibility.” We operationalize “sta-
bility” as the slowing of reaction times that occurs when two
tasks disagree on the correct response to a single stimulus.
In multitasking experiments where humans alternate between
two tasks, they respond faster to stimuli for which both tasks
dictate the same action; such stimuli are termed “congruent”.
Conversely, for “incongruent” stimuli where the two tasks de-
mand different actions, responses are slower and less accu-
rate (MacLeod, 1991; Mante, Sussillo, Shenoy, & Newsome,
2013). The difference in reaction times between incongruent
and congruent trials, or the “congruency effect”, is our mea-
sure of stability, in that a smaller congruency effect indicates
a more stable focus on the current task.

We similarly operationalize “flexibility” as the slowing of
reaction times which occurs when the correct task changes
from one trial to the next. In multitasking experiments where

878
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



participants are cued on each trial to perform a particular task,
responses are faster on trials where the cued task is a “repeat”
of the previous trial’s task; conversely, responses are slower
on “switch” trials where the task differs from that of the previ-
ous trial (Rogers & Monsell, 1995; Monsell, Sumner, & Wa-
ters, 2003). The difference in reaction times between switch
and repeat trials, or the “switch cost”, is our measure of flex-
ibility, whereby a smaller switch cost indicates a greater de-
gree of flexibility.

For our decision-theoretic analysis of stability and flexibil-
ity, we model a multi-tasking experiment which permits both
stimulus (in)congruency and task switching.

Multitasking as sequential hypothesis testing
In order to perform a decision-theoretic analysis of a multi-
tasking experiment, we build on a long tradition in psychol-
ogy and neuroscience linking binary choices to statistical in-
ference. Specifically, we extend the sequential hypothesis
testing (SHT) framework, widely used to model binary de-
cisions, to describe optimal inference under multitasking.

Single task model
We begin by describing a single-task version of our model,
which we then extend to describe multi-tasking. Consider
a simple perceptual discrimination task. A task-relevant
stimulus R is presented, which can take one of two values:
R ∈ {rA,rB}. An agent must then choose between two simple
hypotheses: HA : R = rA versus HB : R = rB. At each time
point t the agent observes a noisy piece of binary evidence,
xr,t ∈ {−1,1}, pertaining to the stimulus:

p(xr,t = 1|R) =

{
σr if R = rA

1−σr if R = rB
, σr ≥ 0.5. (1)

To choose between HA and HB, the decision-maker need only
track a running sum yr of the evidence they have observed
thus far:

yr,t+1 = yr,t + xr,t , yr,1 = 0. (2)

At each time step t, the agent chooses an action at ∈
{aA,aB,aR}: actions aA or aB accept hypotheses A and B,
respectively, ending the trial; and action aR advances t by one
step and samples one more piece of evidence. If the agent
accepts a hypothesis, their expected payoff is the probability
that the hypothesis is true; for example, the payoff for aA is

u(aA,yr) := p(HA|yr) = logit−1(yrηr)

=
1

1+ exp−yrηr
,

ηr = log
σr

1−σr
.

(3)

If the agent instead chooses action aR and samples more ev-
idence from the stimulus, they pay a fixed sampling cost
u(aR,yr) = κ, κ < 0. This sampling cost forces the agent
to trade off speed and accuracy, with larger magnitudes of
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a) b)Single-task judgment Multi-task judgment
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Optimal behavior

Stim. motion evidence

Time

Threshold
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Distractor Task-relevant. Task cue
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Figure 1: Modeling multitasking as sequential hypothesis
testing. a) A single-task judgment, such as motion discrimi-
nation, can be modeled as the sequential testing of two sim-
ple hypotheses, A or B, each corresponding to a direction
of motion. Optimal behavior corresponds to a drift-diffusion
process where evidence for preferring A over B accumulates
until a threshold is reached. b) A multitask judgment. Hy-
potheses A and B correspond to combination of one of the
two stimulus dimensions (color and motion) and the task cue
(for illustration purposes, a dashed versus solid aperture). A
naive strategy is shown of sampling each source of evidence
sequentially up to a fixed threshold. This strategy is likely
inefficient, but the optimal strategy is not known.

κ pushing the agent to favor speed. The challenge for a
decision-maker is to know for what values of yr they should
continue sampling, and at what values they should accept a
hypothesis.

The optimal policy in this setting has a simple form: con-
tinue to sample until the accumulated evidence yr passes
a threshold, at which point choose the favored hypothesis
(Wald & Wolfowitz, 1948). Readers may recognize this as
a discrete-time version of the drift-diffusion model (DDM),
widely used to model binary decisions (Ratcliff, 1978; Bo-
gacz, Brown, Moehlis, Holmes, & Cohen, 2006); the term
σr acts as the drift rate, determining how rapidly and reliably
evidence accumulates.

Multitask model
Next, we extend our formulation to accommodate multi-
tasking, where the optimal policy will be more complicated.
Consider a stimulus with two attributes, one of which is rel-
evant (and which we continue to label R), the other being
an irrelevant distractor which we label D. Which attribute
is relevant and which is irrelevant depends on the current
task. We assume that the distractor also takes on two values
D ∈ {dA,dB}, favoring hypothesis A or B, respectively, and
that the task must be inferred from a task cue C ∈ {cR,cD},
which, a priori, can favor either the task-relevant or the dis-
tractor dimension of the stimulus. We assume that the task
cue is presented at the same time as the task stimulus. On
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each time step, in addition to xr,t , there exist pieces of evi-
dence xd,t ∈ {−1,1} and xc,t ∈ {−1,1} pertaining to the true
identity of D and C:

p(xd,t = 1|D) =

{
σd if D = dA

1−σd if D = dB
, σd = σr,

p(xc,t = 1|C) =

{
σc if C = cR

1−σc if C = cD
, σc ≥ 0.5.

(4)

Note that we assume that, as the agent lacks a priori knowl-
edge of the task cue, both the task-relevant dimension R and
the distractor dimension D have the same drift rate; we will
refer to their shared drift rate as σs.

At each time point the agent can terminate the trial by
choosing aA or aB, or instead choose to gather more evi-
dence. We assume our agent has selective attention and can
only sample one source of evidence at a time; they do this
by choosing aR, aD, or aC, which sample the task-relevant di-
mension, distractor dimension, or task cue respectively. The
accumulated evidence y for each of R, D, and C only advances
when the agent chooses to sample the corresponding evidence
source:

y j,t+1 =

{
y j,t + x j,t if at = a j

y j,t if at ̸= a j
, ∀ j ∈ {R,D,C}. (5)

Finally, HA is correct if R= rA and C = cr, or if D= dA and
C = Cd . Accordingly, the expected payoff for accepting HA
(or HB) now depends on the probabilities of all three unknown
aspects of the multitask experiment:

u(aA,y) := p(HA|y) = logit−1(yrηr)× logit−1(ycηc)+

logit−1(ydηd)× (1− logit−1(ycηc)).
(6)

How should an optimal decision-maker choose which
pieces of evidence to sample? There is no simple solution
for the optimal policy available to us here. However, given
values for σs, σc, and the sampling cost κ, we can solve
numerically for the optimal policy using dynamic program-
ming techniques (Sutton & Barto, 2018). Specifically, we
used value iteration to recursively determine the expected
future payoff from each state, repeating value updates until
expected payoffs converged. Then, in order to characterize
the nature of the optimal policies, we simulated agents per-
forming a multitask trial, choosing the action with the max-
imum expected future payoff at each time point, until they
accepted a hypothesis. Unless otherwise noted, all reported
statistics are averages across 10,000 simulations of an opti-
mal decision-maker. To make computation tractable, we re-
stricted the range of the y values to lie between −30 and 30.

Results
Instability in optimal behavior
First we ask whether optimal policies can exhibit cognitive
instability (Fig. 2). In the multitasking paradigm used here,

instability is measured by the congruency effect: whether
choices are impaired when the task-relevant stimulus R and
distractor D favor different responses (incongruent stimulus).

We find that the stability of optimal behavior depends crit-
ically on the relative drift rates of the stimulus, σs, and the
task cue, σc. When σs is the same as σc, the optimal policy is
to sample evidence from the task cue early in the trial, then to
transition to sampling evidence from the task-relevant stim-
ulus dimension; the distractor stimulus dimension is rarely,
if ever, sampled. As a consequence, the (in)congruency of
the distractor is of no consequence, and reaction times are
identical to congruent and incongruent stimuli. Accordingly,
behavior is highly stable.

When σc is comparatively low, the optimal policy shows
qualitative differences. Instead of sampling the task cue
first, optimal behavior involves sampling both the task-
relevant and task-irrelevant stimulus dimensions at similar
rates. Then, if the agent finds that the stimulus is congruent,
a response can be chosen without any evidence regarding the
task cue. However, if the agent instead infers that the stimulus
is incongruent, then they transition to sampling the task cue.
As a result, reaction times show a large congruency effect, a
hallmark of cognitive instability.

Flexibility in optimal behavior
We next ask whether optimal policies can exhibit cognitive
flexibility (Fig. 3). In the multitasking paradigm used here,
flexibility is measured by switch costs: whether choices are
slower when the current task differs from the previous task.
Our model has no explicit representation of trial-to-trial tran-
sitions, so we implement “pseudo” switch and repeat trials
by lowering or raising the prior probability of the task cue,
p(C = cR). Specifically, we set p(C = cR) = 0.8 for repeat
trials, and p(C = cR) = 0.2 for switch trials. In other words,
we assume that the previous task acts as a cue for the current
task, with the agent believing that the task which occurred
previously is more likely to occur again. Assumptions of this
sort are common in, e.g., dynamic belief models of sequential
effects across a variety of domains (A. J. Yu & Cohen, 2008;
Nguyen, Josić, & Kilpatrick, 2019), including task-switching
in particular (Jiang, Wagner, & Egner, 2018). The stimulus
dimensions R and D are assumed to be congruent.

As before, we find that the flexibility of optimal behavior
depends critically on the relative drift rates σs, and σc. When
σc matches σs, the optimal policy is again to sample the task
cue, then proceed to sample the relevant stimulus dimension.
On “repeat” trials, the starting point for the task cue evidence
yc is elevated in the direction of drift, so the repeat facilitates
faster responses; conversely, on “switch” trials, yc is shifted
away from the direction of drift, leading to slower responses.
As a consequence, optimal behavior exhibits switch costs and
looks “inflexible”.

In contrast, when σc is low the optimal agent chooses to
sample the stimulus dimension favored by the prior first, fol-
lowed by the other stimulus dimension. The agent rarely sam-
ples the task cue; accordingly, the impact of the switch versus
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Figure 2: Optimal decision-making can be stable (top) or unstable (bottom). a-c): Behavior when task cue and stimulus have
the same drift rate, σc = σs = 0.7. a) Example diffusion paths showing how accumulated evidence y evolves over the course
of a trial for each aspect of the multitask: the distractor stimulus D (top), the task-relevant stimulus R (middle), and task cue C
(bottom). Circles indicate when each diffusion path terminates. We compare example diffusion paths depending on whether the
distractor is congruent with the relevant stimulus, (D,R) = (dA,rA), or incongruent, (D,R) = (dB,rA). b) The probability of that
an agent will choose to sample the distractor (action aD), the task-relevant stimulus, (aR), or the task cue (aC), at different epochs
over the course of a trial. Each simulated diffusion path is binned into 5 sequential epochs; choice rates are first calculated in
each epoch for each simulation separately, then averaged within epochs across simulations such that, e.g., the last epoch is
aligned with the end of trial regardless of trial length. c) Average reaction times (equivalently, trial length) for congruent versus
incongruent stimuli. In this environment, the agent never samples the distractor stimulus, so behavior is stable and there is no
congruency effect. d-f) Behavior when (σc,σs) = (0.6,0.75). Here, the agent samples both the relevant and distractor stimulus
dimensions first, leading to high congruency effects.
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Figure 3: Optimal decision-making can be flexible (bottom) or inflexible (top). a-c): Behavior when task cue and stimulus have
the same drift rate, σc = σs = 0.7. Because the previous trial provides information for the current task, the baseline for yC is
increased for repeat trials and decreased for switch trials. This leads to switch costs (inflexibility) because the agent chooses to
sample the task cue first. d-f) Behavior when (σc,σs) = (0.6,0.8). The agent samples both stimulus dimensions instead of the
task cue. Accordingly, the starting point of yc does not matter, and there is no switch cost.
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repeat has little effect, leading to behavior that appears “flex-
ible” and robust to switch costs.

An abrupt transition between flexibility and
stability
Thus far we have shown that a high σc versus σs leads to
behavior that is stable but inflexible, while low σc (high σs)
leads to optimal behavior that is unstable but flexible. This
would appear to support a trade-off between stability and flex-
ibility; however, we have so far shown only two hand-picked
sets of σc and σs values.

To determine whether a stability-flexibility tradeoff holds
more generally across the range of potential parameters, we
systematically vary σc and σs across a 9× 9 grid of values
ranging from very high (0.95) to very low (0.55). For each
combination of σs and σc we estimate the relative congru-
ency effect (RTinc−RTcon)/RTcon, and the relative switch cost
(RTswitch −RTrep)/RTrep (Fig. 4).

The results show a sharp transition where, as σs exceeds
σc, congruency effects emerge abruptly from non-existent to
rapidly growing, leading to incongruent trials that are an or-
der of magnitude slower than congruent trials. Switch costs
are more variable and lower in magnitude than congruency
effects, but also show a sharp transition from low to high
switch costs in the same region. As a consequence, we see
an apparent “ridge” where nearby environments show starkly
opposed patterns of behavior, as illustrated in Figure 4b with
environments F and S. However, switch costs diminish as σc
increases, likely because the increasing evidence accumula-
tion rate of the task cue renders the information provided by
the previous trial irrelevant.

Finally, examining more closely the relationship between
switch costs and congruency effects in state S, we notice
that while congruency effects clearly dominate, we also ob-
serve a switch-by-congruency interaction whereby congru-
ency effects become worse on switch trials. This pattern is
sometimes observed in experimental data (Rogers & Mon-
sell, 1995; Kiesel et al., 2010); here it arises because the task
cue takes longer to resolve on switch trials.

Realistic behavior from a suboptimal
decision-maker
The optimal behaviors shown above exhibit at least two fea-
tures which contrast with typical human behavior in multi-
tasking experiments. First, optimal agents show a sharp
shift from extreme flexibility (high congruency effects with-
out switch costs) to extreme stability (high switch costs with-
out congruency effects). They also show far greater congru-
ency effects than switch costs. Human behavior, by contrast,
typically shows both switch costs and congruency effects to-
gether, and in similar orders of magnitude (Geddert & Egner,
2022). Moreover, in optimal agents, any non-zero congru-
ency effects require that the task cue be harder to resolve than
the stimulus. In typical multitasking experiments, by con-
trast, the stimuli and the task cue are of similar visual clarity
and salience, so it is unlikely that this requirement is satisfied.

We next asked whether more human-like performance
could be obtained in our model by implementing a more re-
alistic action selection mechanism. In our previous results,
the optimal decision-maker always picks the action with the
highest value, even when multiple actions have extremely
similar payoffs. A real decision-maker, by contrast, is un-
likely have accurate enough knowledge of the environment to
resolve very small differences in expected payoffs. In prac-
tice, knowledge of the environment is imperfect, and achiev-
ing good performance involves some amount of exploration
and trial-and-error. Because of this, most practical decision-
making systems involve some amount of randomness in their
choices (Sutton & Barto, 2018). One mechanism for achiev-
ing this is by introducing a softmax decision-rule, which is bi-
ased towards actions with higher expected payouts but leaves
some probability of choosing each action; the softmax rule
is frequently used in computational models of value-based
decision-making in humans and animals (Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006).

We find that when stimulus and task cue drift rates are sim-
ilar, modifying the decision-maker to use a softmax choice
rule results in a shift from extreme stability to a more bal-
anced policy exhibiting intermediate levels of both stability
and flexibility (Fig. 5). Systematically varying the amount
of noise in the softmax choice shows that as variability in-
creases, congruency effects emerge without eliminating the
switch costs exhibited by the optimal agent.

Discussion
We began this manuscript by asking whether the trade-off be-
tween stability and flexibility is obligatory. While our inves-
tigations do not give a definitive answer, we believe they pro-
vide a useful and clarifying perspective on the question, and
we give our own thoughts on the matter here.

In a decision-theoretic framework, we find that stability
and flexibility correspond to alternative strategies for resolv-
ing uncertainty. A “stable” strategy resolves the task cue
first, and only once the task is certain goes on to resolve
the relevant stimulus dimension; a “flexible” strategy in-
stead resolves stimulus (in)congruency first, then resolves the
task cue only if necessary. The most extreme versions of
these strategies are incompatible; if one exclusively priori-
tizes the task cue, one cannot also exclusively prioritize the
(in)congruency of the stimulus. In this sense, some kind of
trade-off is indeed obligatory.

However, “stability” and “flexibility” are not the only
strategies an agent could use, and neither is a decision-
maker obligated to slavishly adhere to one strategy or another.
Though optimal agents in our setting do, on average, look ex-
tremely flexible or extremely stable, in any individual trial the
randomness of the diffusion path may lead to unexpected be-
havior. Looking closely at individual diffusion paths in Figs
2 and 3, for example, one can see examples where the agent
has come to an incorrect conclusion regarding some aspect of
the decision task, and is led down a garden path of contradic-
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Figure 4: Stability and flexibility trade-off. a) We estimate the congruency effects (left) and the switch costs (right) under
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Figure 5: Switch costs and congruency effects in agents using a softmax choice rule, with varying levels of decision noise, at
σc = σs = 0.7. The low, medium, and high noise agents used inverse temperatures of 105, 103, and 100 respectively.

tory evidence forcing them to deviate from strict flexibility or
stability. Furthermore, whether extreme stability or extreme
flexibility are optimal can depend on very small differences
in the underlying multitask environment; in Figure 4 we saw
that even the small move from (F) to (S) induced dramatic
shifts in optimal policy. In any realistic environment, an agent
likely could not depend on knowing for certain which extreme
strategy were optimal.

If extreme flexibility and stability are not practically
and consistently achievable, we may expect more realistic
decision-makers to end up somewhere in the middle. Indeed,
when an agent adopts a softmax decision rule that forces them
away from extremes, their behavior does appear to match at
least the crudely stylized facts of the experimental literature:
switch costs and congruency effects co-occur in roughly sim-
ilar magnitudes. However, the middle between two extremes
is big and varied place and may contain strategies that are un-
related to the distinction between flexibility and stability. To

put it concisely, we propose that flexibility and stability do
necessarily trade-off at their extreme manifestations, but that
those extremes may not always be relevant. To what extent
the trade-off holds in the space between those extremes is yet
unknown.

The decision-theoretic model of multi-tasking we devel-
oped here is poorly suited to exploring that middle space, as
it predisposes agents to ruthlessly optimize for hyper-specific
circumstances. To probe this space, we may look to the liter-
atures in cognitive neuroscience regarding how people make
decisions across unknown and volatile environments, such as
in how people learn and explore complex maps (Botvinick,
Weinstein, Solway, & Barto, 2015; Behrens et al., 2018) or
track constantly evolving temporal dynamics (Ryali, Reddy,
& Yu, 2018; L. Q. Yu, Wilson, & Nassar, 2021; Wen, Ged-
dert, Madlon-Kay, & Egner, 2023). How does such open-
ended learning interact with the need to adaptively prioritize
certain tasks? Further research is, as ever, still necessary.
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