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Abstract

Distributionally Robust Formulation and Model Selection for the Graphical Lasso

by

Pedro A. Cisneros

Building on a recent framework for distributionally robust optimization, we consider

estimation of the inverse covariance matrix for multivariate data. We provide a novel

notion of a Wasserstein ambiguity set specifically tailored to this estimation problem,

leading to a tractable class of regularized estimators. Special cases include penalized

likelihood estimators for Gaussian data, specifically the graphical lasso estimator. As a

consequence of this formulation, the radius of the Wasserstein ambiguity set is directly

related to the regularization parameter in the estimation problem. Using this relation-

ship, the level of robustness of the estimation procedure can be shown to correspond to

the level of confidence with which the ambiguity set contains a distribution with the pop-

ulation covariance. Furthermore, a unique feature of our formulation is that the radius

can be expressed in closed-form as a function of the ordinary sample covariance matrix.

Taking advantage of this finding, we develop a simple algorithm to determine a regu-

larization parameter for graphical lasso, using only the bootstrapped sample covariance

matrices, meaning that computationally expensive repeated evaluation of the graphical

lasso algorithm is not necessary. Alternatively, the distributionally robust formulation

can also quantify the robustness of the corresponding estimator if one uses an off-the-shelf

method such as cross-validation. Finally, we numerically study the obtained regulariza-

tion criterion and analyze the robustness of other automated tuning procedures used in

practice.
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Chapter 1

Introduction

In statistics and machine learning, the covariance matrix Σ of a random vector X ∈ Rd

is a fundamental quantity for characterizing marginal pairwise dependencies between

variables. Furthermore, the inverse covariance matrix Ω = Σ−1 provides information

about the conditional linear dependency structure between the variables. For example,

in the case that X is Gaussian, Ωjk = 0 if and only if the jth and kth variables of

X are conditionally independent given the rest. Such relationships are of interest in

many applications such as environmental science, biology, and neuroscience [1, 2, 3], and

have given rise to various statistical and machine learning methods for inverse covariance

estimation.

Given an independent sample Xi ∼ X, i = 1, . . . , n, the sample covariance An =

1
n

∑n
i=1 XiX

>
i , which is the maximum likelihood estimator if X is Gaussian, can be a

poor estimator of Σ unless d/n is very small. Driven by a so-called high dimensional

setting where n � d, where An is not invertible, regularized estimation of the precision

matrix has gained significant interest [4, 5, 6, 7, 8, 9]. Such regularization procedures

are useful even when An is a stable estimate (i.e., positive definite with small condition

number), since the inverse covariance estimate A−1
n is dense and will not reflect the
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Introduction Chapter 1

sparsity of corresponding nonzero elements in Ω.

Distributionally Robust Optimization: Let Sd be the set of d × d symmetric

matrices, and S++
d ⊂ Sd be the subset of positive definite symmetric matrices. Given a

loss function l(X;K) for K ∈ S++
d and X ∈ Rd, a classical approach would be to estimate

Ω by minimizing the empirical loss
∑n

i=1 l(Xi;K) over K ∈ S++
d , perhaps including a

regularization or penalty term. The error in this estimate arises from the discrepancy

between the true data-generating distribution and the observed training samples, and

can be assessed by various tools such as concentration bounds or rates of convergence.

In contrast, distributionally robust optimization (DRO) is a technique that explicitly

incorporates uncertainty about the distribution of the Xi into the estimation procedure.

For an introduction on the general topic of DRO, we refer to the works [10, 11, 12] and

the references therein. In the context of inverse covariance estimation, a distributionally

robust estimate of Ω is obtained by solving

inf
K∈S++

d

sup
P∈S

EP [l(K;X)], (1.1)

where S, known as an ambiguity set, is a collection of probability measures on Rd. As

pointed out in [11], a natural choice for S is the neighborhood {P | D(P, µ) ≤ δ}, with µ

being a chosen baseline model, δ being some tolerance level which defines the uncertainty

size of the ambiguity set, and D being some discrepancy metric between two probability

measures. In a practical setting, we have access to some samples (or data points) from the

unknown distribution, and thus, a good candidate for the baseline model is the empirical

measure.

Very recent work by [13], also analyzed by [14], used the DRO framework to construct

a new regularized (dense) inverse covariance estimator. Working under the assumption

that X is Gaussian, the authors construct an ambiguity set S of Gaussian distributions

2



Introduction Chapter 1

that, up to a certain tolerance level, are consistent with the observed data. Recent

work on DRO in other machine learning problems has revealed explicit connections to

well-known regularized estimators, specifically regularized logistic regression [10] and the

square-root lasso for linear models [15]; however, such a connection to regularized sparse

inverse covariance estimators that are used in practice has yet to be made.

The Graphical Lasso: One of the most common methods to recover the sparsity

pattern in Ω is to add an l1-regularization term to the Gaussian likelihood function, mo-

tivated by the consideration of the Gaussian Graphical Model (GGM). A sparse estimate

of Ω = Σ−1 is produced by minimizing

Lλ(K) =
1

n

n∑
i=1

X>i KXi − log |K|+ λ
d∑
i=1

d∑
j=1

|kij|, (1.2)

where kij is the (i, j) entry of K and λ > 0 is a user-specified regularization parameter [16,

6, 9]. Although several algorithms exist to solve this objective function [6, 17, 18], the

minimizer of (1.2) is often referred to as graphical lasso estimator [6]. The first two terms

of (1.2) are related to Stein’s loss [19] when evaluated at the empirical measure, and also

correspond to the negative log-likelihood up to an additive constant if X is Gaussian.

The performance of the graphical lasso estimator in high-dimensional settings has been

investigated [20, 21], as well as modifications and extensions that implement some notion

of robustness, i.e., for making it robust to outliers or relaxing the normality assumptions

in the data [7, 22, 23, 24, 25].

Besides its theoretical relevance, the graphical lasso and its extensions also enjoy many

practical advantages. For example, it has been used as a network inference tool. In these

applications, the precision matrix can indicate which nodes in a network are conditionally

independent given information from remaining nodes, thus giving an indication of net-

work functionality. This has been important in neuroscience applications when studying

3



Introduction Chapter 1

the inference of brain connectivity [26, 27, 2]. Applications in gene regulatory networks

and metabolomics have also been reported [28, 29, 3].

The performance of the graphical lasso estimator hinges critically on the choice of λ.

While there have been studies on how to properly tune λ to obtain a consistent estimator

or to establish correct detection of nonzero elements in the precision matrix [20, 16, 30],

in practice, this selection is often made through automated methods like cross-validation.

Contributions: In this paper, we propose a distributionally robust reformulation of

the graphical lasso estimator in (1.2). Following [10, 15, 31], we utilize the Wasserstein

metric to quantify distributional uncertainty for the construction of the ambiguity set.

The following points summarize our main contributions.

• We formulate a class of DRO problems for inverse covariance estimation, leading to

a tractable class of `p-norm regularized estimators. As the graphical lasso estima-

tor (1.2) is a special case, this provides us with a new interpretation of this popular

technique. This DRO formulation is made possible by a novel type of ambiguity

set, now defined as a collection of measures on matrices. This nontrivial adaptation

is necessary due to the fact that a direct generalization of other DRO approaches

using vector-valued data (e.g., [12]) does not result in a closed-form regularization

problem, and thus does not provide the desired connection to the graphical lasso.

• We use this formulation to suggest a criterion for the selection of the regularization

parameter in the estimation problem in the classical regime n > d. This criterion

follows the Robust Wasserstein Profile (RWP) inference recently introduced by [15],

which makes no assumption on the normality of the data, and which we tailor to

our specific problem. The proposed criterion expresses the regularization parameter

as an explicit function of the sample covariance An, unlike other instances where

RWP has been implemented which rely on stochastic dominance arguments.

4



Introduction Chapter 1

• We formulate a novel robust selection (RobSel) algorithm for regularization pa-

rameter choice. Focusing on the graphical lasso, we provide numerical results that

compare the performance of cross-validation and our proposed algorithm for the

selection of the regularization term.

The paper is organized as follows. In Section 2 we describe our main theoretical

result: the distributionally robust formulation of the regularized inverse covariance (log-

likelihood) estimation, from which graphical lasso is a particular instance. In Section 3 we

propose a criterion for choosing the regularization parameter inspired by this formulation

and outline the bootstrap-based RobSel algorithm for its computation. In Section 4 we

present some numerical results comparing the proposed criterion of Section 3 with cross-

validation. Finally, we state some concluding remarks and future research directions in

Section 5. All proofs of theoretical results can be found in the supplementary material.

5



Chapter 2

Distributionally Robust

Optimization, Graphical lasso and

Model Selection

2.1 A Distributionally Robust Formulation of the

Graphical lasso

First, we provide preliminary details on notation. Given a matrix A ∈ Rd×d, ajk

denotes its (j, k) entry and vec(A) ∈ Rd2 denotes its vectorized form, which we assume

to be in a row major fashion. For matrices denoted by Greek letters, its entries are simply

denoted by appropriate subscripts, i.e. Σjk. The operator | · |, when applied to a matrix,

denotes its determinant; when applied to a scalar or a vector, it denotes the absolute

value or entry-wise absolute value, respectively. The `p-norm of a vector is denoted by

‖·‖p. We use the symbol ⇒ to denote convergence in distribution.

Recall that X ∈ Rd is a zero-mean random vector with covariance matrix Σ ∈ S++
d .

6
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Let Q0 be the probability law for X and Ω = Σ−1 be the precision matrix. Define the

graphical loss function as

l(X;K) = X>KX − log |K|

= trace(KXX>)− log |K|.
(2.1)

Then EQ0 [l(K;X)] = trace(KΣ)− log |K| is a convex function of K over the convex cone

S++
d . Using the first-order optimality criterion, we observe that K = Ω sets the gradient

∂
∂K
EQ0 [l(X,K)] = Σ−K−1 equal to the zero matrix (see [32, Appendix A] for details on

this differentiation). Hence,

arg min
K∈S++

d

EQ0 [l(X;K)] = Ω.

so that (2.1) is a consistent loss function.

Now, if we consider an iid random sample X1, · · · , Xn ∼ X, n > d, with empirical

measure Qn, then

arg min
K∈S++

d

EQn [l(X;K)] = arg min
K∈S++

d

1

n

n∑
i=1

l(Xi;K)

= A−1
n

with An = 1
n

∑n
i=1XiX

>
i . Thus, as described in the Introduction, a natural approach

would be to implement the DRO procedure outlined in [31] by building an ambiguity set

based on perturbations of Qn, leading to the DRO estimate given by (1.1). However,

this approach does not convert (1.1) into a regularized estimation problem as desired,

since the inner supremum cannot be explicitly given in closed-form. For more details,

see section A in the supplementary material.

7
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As an alternative, let P0 represent the measure of the random matrix W = XX> on

Sd induced by Q0 and, similarly let Pn be empirical measure of the sample Wi = XiX
>
i ,

i = 1, . . . , n. Redefining the graphical loss function l : Sd × S++
d as

l(W ;K) = trace(KW )− log |K|, (2.2)

then

Ω = arg min
K∈S++

d

EP0 [l(W ;K)]

A−1
n = arg min

K∈S++
d

EPn [l(W ;K)].

This observation leads to a tractable DRO formulation by constructing ambiguity sets

built around the empirical measure Pn. The DRO formulation for inverse covariance

estimation becomes

min
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP [l(W ;K)]. (2.3)

The ambiguity set in this formulation is specified by the collection of measures

{P | Dc(P,Pn) ≤ δ} ,

which we now describe. Given two probability distributions P1 and P2 on Sd and some

transportation cost function c : Sd×Sd → [0,∞) (which we will specify below), we define

the optimal transport cost between P1 and P2 as

Dc(P1, P2) = inf{Eπ [c (U, V )] |π ∈ P (Sd × Sd) , π
U

= P1, πV = P2} (2.4)

where P (Sd × Sd) is the set of joint probability distributions π of (U, V ) supported on

8
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Sd × Sd, and π
U

and π
V

denote the marginals of U and V under π, respectively. In this

paper, we are interested in cost functions

c(U, V ) = ‖vec(U)− vec(V )‖ρq , (2.5)

with U, V ∈ Sd, ρ ≥ 1, q ∈ [1,∞]. As pointed out by [15], the resulting optimal transport

cost D1/ρ
c is the Wasserstein distance of order ρ. Our first theoretical result demonstrates

that the optimization in (2.3) corresponds to a class of regularized estimators under the

graphical loss function (2.2).

Theorem 2.1.1 (DRO formulation of regularized inverse covariance estimation)

Consider the cost function in (2.5) for a fixed ρ ≥ 1. Then,

min
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= min

K∈S++
d

{
trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p

}
,

(2.6)

where 1
p

+ 1
q

= 1.

Proof: Consider K ∈ S++
d . Observe that the function l(·;K) : Sd → R is Borel

measurable since it is a continuous function. Then, we use the duality result for the DRO

formulation from Proposition A.2.2 from the appendix of this paper and obtain

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
sup
W∈Sd
{l(W ;K)− γc(W,Wi)}

)}
. (2.7)

9
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Let ∆ := W −Wi. Then,

sup
W∈Sd
{l(W ;K)− γc(W,Wi)}

= sup
W∈Sd
{trace(KW )− log |K| − γ ‖vec(W )− vec(Wi)‖ρq}

= sup
∆∈Sd
{trace(K(∆ +Wi))− γ ‖vec(∆)‖ρq} − log |K|

= sup
∆∈Sd
{trace(K∆)− γ ‖vec(∆)‖ρq}+ trace(KWi)− log |K|

= sup
∆∈M(K)

{‖vec(∆)‖q ‖vec(K)‖p − γ ‖vec(∆)‖ρq}+ trace(KWi)− log |K|

(2.8)

with M(K) = {∆ ∈ Sd | trace(K∆) > 0, |∆ij|q = θ|kij|p for some θ > 0} so that the

fourth line follows from selecting a ∆ ∈ Sd (since K ∈ S++
d ) such that Holder’s in-

equality holds tightly (with 1
p

+ 1
q

= 1). In fact, Holder’s inequality holds tightly if and

only if ∆ ∈ M(K) [33, Chapter 9], even for the limiting case q = ∞, p = 1. Observe

that there exist multiple ∆ ∈ Sd that can satisfy Holder’s inequality tightly. As a conse-

quence, we are still free to choose the magnitude of the q-norm of such vec(∆) (and this

is what we will use next).

Now, the argument inside the supremum in the last line of (A.5) is a polynomial

function on ‖vec(∆)‖q. We have to analyze two cases.

Case 1: ρ = 1. In this case we observe that, by setting

ε(γ,K) = sup∆∈M(K){‖vec(∆)‖q (‖vec(K)‖p − γ)}:

• if γ ≥ ‖vec(K)‖p, then ε(γ,K) = 0 (in particular, if γ = ‖vec(K)‖p, the optimizer

is ∆ = 0d×d);

• if γ < ‖vec(K)‖p, then ε(γ,K) =∞;

so that, recalling (2.7), due to the outside infimum to be taken over γ ≥ 0; and so we

10
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must have that

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥‖vec(K)‖p

{
γδ +

1

n

n∑
i=1

(trace(KWi)− log |K|)

}

from which we immediately obtain (2.6).

Case 2: ρ > 1. By differentiation and basic calculus (e.g., using the first and second

derivative test) we obtain that the maximizer

∆∗ = arg sup
∆∈M(K)

{‖vec(∆)‖q ‖vec(K)‖p − γ ‖vec(∆)‖ρq}

is such that ‖vec(∆∗)‖q =
(
‖vec(K)‖p

γρ

) 1
ρ−1

. Then,

sup
W∈Sd
{l(W ;K)− γc(W,Wi)} =

‖vec(K)‖
ρ
ρ−1
p

(γρ)
1
ρ−1

− γ
(‖vec(K)‖p

γρ

) ρ
ρ−1

+ trace(KWi)

− log |K|

= ‖vec(K)‖
ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace(KWi)− log |K|.

(2.9)

11



Distributionally Robust Optimization, Graphical lasso and Model Selection Chapter 2

Replacing this back in (2.7),

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace(KWi)− log |K|

)}

= inf
γ≥0

{
γδ + ‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace

(
K

1

n

n∑
i=1

Wi

)
− log |K|

}

= inf
γ≥0

{
γδ + ‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

}
+ trace(KAn)− log |K|.

(2.10)

Now, we observe that the argument inside the infimum in the last line of (2.10) is a

function that grows to infinity when γ → 0 or γ →∞, so that the minimum is attained

for some optimal γ. By using the first and second derivative tests, we obtain that the

minimizer is γ∗ =
‖vec(K)‖p

ρδ
ρ−1
ρ

. Then, replacing this back in (2.10) and then this in (2.7),

we finally obtain (2.6) after some algebraic simplification.

Theorem 2.1.1 is a remarkable theoretical result that provides a mapping between

the regularization parameter and the uncertainty size δ of the ambiguity set in the DRO

formulation. Then, the regularization problem reduces to determining a good criterion

for choosing δ, which we explore in Section 2.2. Moreover, we obtain the graphical lasso

formulation (1.2) by setting q =∞ in (2.5). From (2.6), a smaller ambiguity set implies

less robustness being introduced in the estimation problem by reducing the importance

of the regularization term. Conversely, a larger regularization term increases the number

of nuisance distributions inside the ambiguity set, and thus the robustness.

Remark 2.1.2 The ambiguity set used in (2.6) makes no assumptions on the normality

of the distribution of the samples {X1, . . . , Xn}. Then, (2.6) tells us that adding a penal-

ization to the precision matrix gives a robustness in terms of the distributions that the

12
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samples may have, which do not necessarily have to be Gaussian for this formulation to

hold. Furthermore, it holds independent of the relationship between n and d.

2.2 Selection of the regularization parameter

This section follows closely the line of thought recently introduced by [15] in the anal-

ysis of regularized estimators under the DRO formulation. Specifically, we will demon-

strate that the ambiguity set {P : Dc(P,Pn) ≤ δ} represents a confidence region for

Ω = Σ−1, and use the techniques of [15] to explicitly connect the amibiguity size δ with

a confidence level. As previously stated, l(W ;K) is a differentiable function on K ∈ S++
d

with ∂
∂K
l(W ;K) = W −K−1, so that

EP0

[
∂

∂K
l(W ;K)

∣∣∣
K=Ω

]
= 0d×d. (2.11)

Hence, even though the loss function l(W ;K) has been inspired from the log-likehood

estimation of the covariance matrix Σ for samples of Gaussian random vectors, equa-

tion (2.11) is transparent to any underlying distribution of the data. For any K ∈ S++
d ,

define the set

O(K) :=
{
P ∈ P(Sd)

∣∣∣EP [ ∂

∂K ′
l(W ;K ′)

∣∣∣
K′=K

]
= 0d×d

}
, (2.12)

corresponding to all probability measures with covariance K−1, i.e. for which K is an

optimal loss minimization parameter; here, P(Sd) denotes the set of all probability distri-

butions supported on Sd. Thus, O(Ω) contains all probability measures with covariance

matrix agreeing with that of X.

Implicitly, the Wasserstein ambiguity set {P : Dc(P,Pn) ≤ δ} is linked to the

13
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collection of covariance matrices

Cn(δ) :={K ∈ S++
d | there exists P ∈ O(K) ∩ {P | Dc(P,Pn) ≤ δ}}

=
⋃

P : Dc(P,Pn)≤δ

arg min
K∈S++

d

EP [l(W ;K)].
(2.13)

We refer to Cn(δ) as the set of plausible selections for Ω.

Lemma 2.2.1 (Interchangeability in the DRO formulation) Consider the setting

of Theorem 2.1.1. Then, for n > d, the following holds with probability one:

inf
K∈S++

d

sup
P : Dc(P,Pn)≤δ

EP
[
l
(
W ;K

)]
= sup

P : Dc(P,Pn)≤δ
inf

K∈S++
d

EP
[
l
(
W ;K

)]
. (2.14)

Proof: Consider K ∈ S++
d and define g(K) = supP : Dc(P,Pn)≤δ EP

[
l
(
W ;K

)]
for a

fixed δ. We prove (2.14), by a direct application of Proposition 8 of [15, Appendix C],

observing that we satisfy the three conditions for its application:

1. g is convex on S++
d and finite,

2. there exists b ∈ R such that the sublevel set κb = {K | g(K) ≤ b} is compact and

non-empty,

3. EP [l(W ;K)] is lower semi-continuous and convex as a function of K throughout κb

for any P ∈ {P | Dc(P,Pn) ≤ δ}.

First, we observe that

EP0 [l(W,K)] = EP0 [trace(KW )− log |K| ≤ trace(KEP0 [W ]) <∞,

14
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since EQ0(‖X‖
2
2) <∞. Then, using Theorem 2.1.1, the function

g(K) = sup
P : Dc(P,Pn)≤δ

EP
[
l
(
W ;K

)]
= trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p

is finite. Moreover, we also claim it is convex for all K ∈ S++
d . This follows from the

fact that trace(KAn) − log |K| and ‖vec(K)‖p, p ∈ [1,∞] are two convex functions on

K ∈ S++
d , and from the fact that the nonnegative weighted sum of two convex functions

is another convex function [32]. This proves 1.

Now, we claim that g(K) is radially unbounded, i.e., g(K)→∞ as ‖vec(K)‖p →∞.

To see this, recall that trace(KAn)− log |K| is a differentiable convex function in K that

is minimized whenever K−1 = An, since An is invertible for n > d almost surely. Then,

g(K) = trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p ≥ d− log |A−1
n |+ δ1/ρ ‖vec(K)‖p ,

from which it immediately follows that g(K)→∞ as ‖vec(K)‖p →∞.

Now, again, since g(K) is also convex and continuous in S++
d , we conclude that the

level sets κb = {K | g(K) ≤ b} are compact and nonempty as long as b > l(W ;K) +

δ1/ρ ‖vec(K)‖p. This proves 2. Moreover, since l(W ;K) is convex and continuous on any

K ∈ S++
d , it follows that EP [l(W ;K)] for any P ∈ {P | Dc(P,Pn) ≤ δ} is also continuous

and convex on any K ∈ S++
d , thus 3 follows immediately.

Lemma 2.2.1 states that any estimator obtained by minimizing the left-hand side of

(2.14) must be in Cn(δ), otherwise the right-hand side of (2.14) would be strictly greater

than the left. Thus, in line with the goal of providing a robust estimator, the idea is

to choose δ so that Cn(δ) also contains the true inverse covariance matrix Ω with high

confidence.

15
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As P0 is the weak limit of Pn, we will eventually have that Ω ∈ Cn(δ) with high

probability for any δ, so that Cn(δ) is a confidence region for Ω. From this observation,

we can choose the uncertainty size δ optimally by the criterion

δ = inf {δ > 0 | P (Ω ∈ Cn(δ)) ≥ 1− α} , (2.15)

i.e., for a specified confidence level 1−α, we choose δ so that Cn(δ) is a (1−α)-confidence

region for Ω.

To continue our anlaysis, we make use of the so-called Robust Wasserstein Profile

(RWP) function Rn introduced by [15],

Rn(K) = inf {Dc(P,Pn) | P ∈ O(K)}

= inf
{
Dc(P,Pn)

∣∣∣EP [ ∂

∂K ′
l(W ;K ′)

∣∣∣
K′=K

]
= 0d×d

}
,

(2.16)

for K ∈ S++
d , which has the geometric interpretation of being the minimum distance

between the empirical distribution and any distribution that satisfies the optimality con-

dition for the precision matrix K. Then, using the equivalence of events {Ω ∈ Cn(δ)} =

{O(Ω) ∩ {P | Dc(P,Pn) ≤ δ} 6= ∅} = {Rn(Ω) ≤ δ}, (2.15) becomes equivalent to

δ = arg inf {δ > 0 | P (Rn(Ω) ≤ δ) ≥ 1− α} , (2.17)

i.e., the optimal selection of δ is the 1− α quantile of Rn(Ω). Indeed, the set

{P | Dc(P,Pn) ≤ Rn(Ω)} is the smallest ambiguity set around the empirical measure

Pn such that there exists a distribution for which Ω is an optimal loss minimization

parameter. In contrast to previously reported applications of the RWP function on

linear regression and logistic regression [15], our problem allows for a (finite sample)

closed form expression of this function. This is due to the fact that we have recast the
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covariance Σ as the mean of the random matrix XX>, so that the following result gives

a nontrivial generalization of [15, Example 3].

Theorem 2.2.2 (RWP function) Consider the cost function in (2.5) for a fixed ρ ≥ 1.

For K ∈ S++
d , consider Rn(K) as in (2.16). Then,

Rn(K) =
∥∥vec(An −K−1)

∥∥ρ
q
. (2.18)

Proof:

Consider K ∈ S++
d . Setting h(U ;K) = U − K−1, it is clear that we satisfy the

conditions for applying Proposition A.2.1 in the Appendix, and so we obtain

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd
{trace(Λ>(U −K−1))− ‖vec(U)− vec(Wi)‖ρq}

}
(2.19)

Now, letting ∆ := U −W>
i

sup
U∈Sd
{trace(Λ>(U −K−1))−‖vec(U)− vec(Wi)‖ρq}

= sup
∆∈Sd
{trace(Λ>(∆ +Wi −K−1))− ‖vec(∆)‖ρq}

= sup
∆∈Sd
{trace(Λ>∆)− ‖vec(∆)‖ρq}+ trace(Λ>(Wi −K−1))

= sup
∆∈M(Λ)

{‖vec(Λ)‖p ‖vec(∆)‖q − ‖vec(∆)‖ρq}

+ trace(Λ>(Wi −K−1))

(2.20)

withM(Λ) as in the proof of Theorem 2.1.1, so that the third line follows from selecting

a ∆ ∈ Sd such that Holder’s inequality holds tightly (with 1
p

+ 1
q

= 1), whose existence

has been explained in the proof of Theorem 2.1.1. Thus, we are still free to choose the

17
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magnitude of the q-norm of such vec(∆) (and this is what we will use next).

Now, the argument inside the supremum in the last line of (2.20) is a polynomial

function on ‖vec(∆)‖q. We have to analyze two cases.

Case 1: ρ = 1. In this case we observe that, by setting

ε(Λ) = sup∆∈Sd{‖vec(∆)‖q (‖vec(Λ)‖p − 1)}:

• if ‖vec(Λ)‖p ≤ 1, then ε(Λ) = 0 (in particular, if ‖vec(Λ)‖p < 1, the optimizer is

∆ = 0d×d);

• if ‖vec(Λ)‖p > 1, then ε(Λ) =∞;

so that, recalling (2.19), we see that if ‖vec(Λ)‖p > 1, then Rn(K) = −∞. Then, we

obtain that

Rn(K) = sup
Λ∈Sd:‖vec(Λ)‖p≤1

{
− 1

n

n∑
i=1

trace(Λ>(Wi −K−1)

}

= sup
Λ∈Sd:‖vec(Λ)‖p≤1

{
− trace(Λ>(An −K−1)

}
= sup

Λ∈Sd:‖vec(Λ)‖p≤1

{
vec(Λ)>vec(An −K−1)

}
=
∥∥vec(An −K−1)

∥∥
q

where the third line results from the fact that Λ is a free variable so we can flip its

sign, and the last line follows from the the analysis of conjugate norms and the fact that

Λ, An −K−1 ∈ Sd. We thus obtained (2.18).

Case 2: ρ > 1. By differentiation and basic calculus (e.g., using the first and second

derivative test) we obtain that the maximizer

∆∗ = arg sup
∆∈Sd
{‖vec(∆)‖q ‖vec(Λ)‖p − γ ‖vec(∆)‖ρq}

18
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is such that ‖vec(∆∗)‖q =
(
‖vec(K)‖p

ρ

) 1
ρ−1

. Then, replacing this back in (2.19),

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

(
‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

+ trace(Λ>(Wi −K−1))

)}

= sup
Λ∈Sd

{
−‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

− trace(Λ>(An −K−1))

}
= sup

Λ∈Sd

{
trace(Λ>(An −K−1))− ‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

}
= sup

Λ∈Sd

{
‖vec(Λ)‖p

∥∥vec(An −K−1)
∥∥
q
− ‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

}
.

Again, by differentiation and basic calculus, we obtain that the maximizer Λ∗ is such

that ‖vec(Λ∗)‖p = ρ ‖vec(An −K−1)‖ρ−1
q . Replacing this value back in our previous

expression, we get that Rn(K) = ‖vec(An −K−1)‖ρq , and thus we showed (2.18).

We now establish important convergence guarantees on the RWP function in the

following corollary.

Corollary 2.2.3 (Asymptotic behavior of the RWP function) Suppose that the con-

ditions of Theorem 2.2.2 hold, and that EQ0(‖X‖
4
2) < ∞. Let H ∈ Sd be a matrix

of jointly Gaussian random variables with zero mean and such that Cov(hij, hk`) =

E[wijwk`]− ΣijΣk` = E[xixjxkx`]− ΣijΣk`. Then,

nρ/2Rn(Ω)⇒ ‖vec(H)‖ρq . (2.21)

Proof: By the central limit theorem, we observe that
√
n(An − Σ) ⇒ H, and by

the continuous mapping theorem, we get that

nρ/2Rn(Ω) =
∥∥√nvec(An − Σ)

∥∥ρ
q
⇒ ‖vec(H)‖ρq .
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Remark 2.2.4 Turning our attention back to Theorem 2.1.1, a robust selection for the

ambiguity size or regularization parameter λ = δ1/ρ, as obtained from Theorem 2.2.2, is

δ1/ρ = inf
{
δ > 0 | P (‖vec(An − Σ)‖q ≤ δ) ≥ 1− α

}
(2.22)

As a result, this robust selection for λ results in a class of estimators, given by minimizers

of the right-hand side of (2.6), that are invariant to the choice of ρ in (2.5). Thus, for

simplicity, we will set ρ = 1 in the remainder of the paper.

Remark 2.2.5 Let r1−α be the (1−α) quantile from the distribution of the right-hand side

of (2.21). Then, for any fixed α, the robust selection δ in (2.22) satisfies n1/2δ → r1−α, so

that the optimal decay rate of n−1/2 for λ is automatically chosen by the RWP function.

As solving (2.22) requires knowledge of Σ, we now outline the robust selection (Rob-

Sel) algorithm for data-adaptive choice of the regularization parameter δ for our inverse

covariance estimation with an `p penalization parameter. The special case p = 1 corre-

sponds to the graphical lasso in (1.2), in which case we will also use the notation δ = λ.

The asymptotic result in Corollary 2.2.3 invokes a central limit theorem, and thus moti-

vates the approximation of the RWP function through bootstrapping, which we further

explain and evaluate its numerical performance in the next section. Let α ∈ (0, 1) be a

prespecified confidence level and B a large integer such that (B + 1)(1 − α) is also an

integer.

Algorithm RobSel algorithm for estimation of the regularization parameter λ

1: For b = 1, . . . , B, obtain a bootstrap sample X∗1b, . . . , X
∗
nb by sampling uniformly

and with replacement from the data, and compute the bootstrap RWP function
R∗n,b =

∥∥A∗n,b − An∥∥q, with the empirical covariance A∗n,b computed from the bootstrap

sample.
2: Set λ to be the bootstrap order statistic R∗n,((B+1)(1−α)).
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RobSel can potentially provide considerable computational savings over cross-validation

in practice. Computing sample covariance matrices for each of B bootstrap samples has

cost O(Bnd2). On the other hand, it is known that each iteration of graphical lasso

can cost O(d3) in the worst case [30]; therefore, performing an F -fold cross-validation

to search over L-grid of regularization parameters, each taking T -iterations of graphical

lasso, would cost O(FLTd3).
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Numerical Evaluation

The true precision matrix Ω ∈ S++
d used to generate simulated data has been constructed

as follows. First, generate an adjacency matrix of an undirected Erdős-Renyi graph

with equal edge probability and without self-loops. Then, the weight of each edge is

sampled uniformly between [0.5, 1], and the sign of each non-zero weight is positive or

negative with equal probability of 0.5. Finally, the diagonal entries of this weighted

adjacency matrix are set to 1 and the matrix is made diagonally dominant by following a

procedure described in [34], which ensures that the resulting matrix Ω is positive definite.

Throughout this numerical study section, a randomly generated sparse matrix Ω (edge

probability 0.1 and d = 100) is fixed. Using this Ω, a total of N = 200 datasets (of

varying size n) were generated as independent observations from a multivariate zero-

mean Gaussian distribution, i.e., N (0d,Ω
−1).

Consider the problem of choosing the regularization parameter λ (equivalently, the

ambiguity size parameter δ) to obtain graphical lasso estimates K̂λ of Ω using the sim-

ulated datasets. An R software package, glasso, from CRAN was used throughout our

numerical experiments. Below, we compare two different criteria for choosing λ. The

first criterion is Robust Selection (RS), which follows our proposed RobSel algorithm
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with B = 200 sets of bootstrap samples. We present here results mainly for n > d, but

additional results in the high-dimensional regime n < d can be found in the supplemen-

tary material. The second criterion is a 5-fold cross-validation (CV) procedure. The

performance on the validation set is the evaluation of the graphical loss function under

the empirical measure of the samples on the training set.

Recall the elements in the confusion matrix to be true positives (TP), true nega-

tives (TN), false positives (FP) and false negatives (FN). We compare model selection

performance of λ chosen by the two different approaches: λRS and λCV . The following

comparison metrics are used:

• True positive rate (TPR) and false detection rate (FDR): TPR = TP
TP+FN

is the

proportion of nonzero entries of Ω that are correctly identified in K̂λ, and FDR =

FN
FN+TP

is the proportion of zero entries of Ω that are incorrectly identified as

nonzeros in K̂λ.

• Matthew’s Correlation Coefficient (MCC): MCC summarizes all counts in the con-

fusion matrix in contrast to other measures like TPR and FDR. More details about

MCC is given in supplemental subsection D.1.

In the remainder of this section, we compare the model selection performance (FDR,

TPR, MCC) from our simulation results. As mentioned in Remark 2.2.5, supplemental

subsection D.2 shows that λRS decreases as n increases as is also observed to be true

with λCV . Furthermore, across the tested range of α, the regularization λRS are all

larger than λCV for any n. Then, our distributionally robust representation (2.6) allows

us to observe that even for small values of n, CV always chooses a λ that corresponds to

smaller ambiguity sets than RS.

To assess the accuracy of RobSel in estimating λ = δ for a given α, we approximated

the right-hand side of (2.22) using the N = 200 data sets and the true covariance Σ,
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giving the “true” value λRWP . Figures in supplemental subsection D.3 show that the

performance obtained by λRWP is similar to the one obtained by λRS for all comparison

metrics. This finite sample behavior of RS indicates that the RobSel bootstrap algorithm

reliably approximates the desired robustness level corresponding to the choice of α. These

plots also indicate that the RS criterion is more conservative than CV in achieving a lower

FDR across different sample sizes, due to providing larger values for λ (see supplemental

subsection D.2). More specifically, Fig. 3.1 shows that RS gives a better performance

than CV in terms of FDR even for smaller values of n and this performance improves

even more as n increases.

Moreover, the trade-off between the preference for robustness and the preference for

a higher density estimation of nonzero entries in the precision matrix can be observed

in terms of the Matthews correlation coefficient (MCC), as shown in Fig. 3.2. Higher

values in the curve of MCC implies values of λ that describe a better classification of the

entries of Ω as either zero or nonzero (see supplemental subsection D.1 for more details).

We observe that CV is placed at the left of the optimal value of the MCC and its under-

performance is due to the overestimation of nonzero entries in Ω. On the other hand, RS

is to the right of the optimal value and its under-performance is due to its conservative

overestimation of zero entries in Ω induced by its robust nature. Then, it is up to the

experimenter to know which method to use depending on whether she desires to control

for the overestimation of zero or nonzero entries. Remarkably, for large numbers of n,

RS seems to be much closer to the optimal performance than CV according to the MCC,

and it does this by maintaining a lower FDR than CV while increasing its TPR.

Our results from the MCC analysis and supplemental subsection D.3 also indicate

that we should aim for higher values of α if we want a performance closer to CV in terms

of TPR when using the RS criterion, with the advantage of still maintaining a better

performance than CV in terms of the FDR. In contrast, if we want more conservative
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results, we should aim for lower values of α. This is a good property of RS: it allows

the use of a single parameter α ∈ (0, 1) to adjust the importance of the regularization

term. As mentioned before section 4, a practical importance of RS is that it provides a

candidate for λ with potentially considerable computational savings over CV.
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Figure 3.1: False Detection Rate (FDR) for seven different sample sizes, with both
axes in logarithmic scale. For each sample size, the average FDR is plotted for both
criteria, cross-validation (CV) and RobSel (RS). For RS, a point is plotted with a
different symbol for each different value of the parameter α (some points may not be
plotted for lower values of α, since those values gave no true positive detected, and so
FDR was not well-defined).
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Figure 3.2: Matthews correlation coefficient (MCC) for three different sample sizes.
The curves in the upper plot are the average MCC obtained over N = 200 datasets.
The lower plot are boxplots for the CV and RS (with parameter α = 0.9) methods
for the different choices of n.
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Appendix Title

A.1 Using a different ambiguity set

Recall that X ∈ Rd is a zero-mean random vector with covariance matrix Σ ∈ S++
d

and measure Q0, and that we consider an iid random sample X1, · · · , Xn ∼ X, n > d,

with empirical measure Qn. Since we use the graphical loss function as in equation (2.1),

we are interested in finding a tractable or closed-form expression for the optimization

problem

sup
Q: Dc′ (Q,Qn)≤δ

EQ[l(X;K)] (A.1)

with K ∈ S++
d . Ideally, the solution should be connected to the graphical lasso estima-

tor, since it is one of the most commonly-used sparse inverse covariance estimators in

practice. The ambiguity set in this formulation is specified by the collection of measures

{Q | D′c′(Q,Qn) ≤ δ}, which we now describe. Given two probability distributions Q1

and Q2 on Rd and some transportation cost function c′ : Rd × Rd → [0,∞) (which we
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will specify below), we define the optimal transport cost between Q1 and Q2 as

D′c′(Q1, Q2) = inf{Eπ [c′ (u, v)] |π ∈ P
(
Rd × Rd

)
,

πu = Q1, πv = Q2}
(A.2)

where P
(
Rd × Rd

)
is the set of joint probability distributions π of (u, v) supported on

Rd × Rd, and πu and πv denote the marginals of u and v under π, respectively. In this

paper, we are interested in cost functions

c′(u, v) = ‖u− v‖ρq , (A.3)

with u, v ∈ Rd, ρ ≥ 1, q ∈ [1,∞].

Now, observe that the function l(·;K) : Rd → R is Borel measurable since it is a

continuous function. Then, we use the duality result from Proposition 4 of [15, version

2] and obtain

sup
P : D′c′ (Q,Qn)≤δ

EQ
[
l(X;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
sup
u∈Rd
{l(u;K)− γc′(u,Xi)}

)}
. (A.4)

Let ∆ := u−Xi. Then

sup
u∈Rd
{l(u;K)− γc(u,Xi)}

= sup
u∈Rd
{uTKu− log |K| − γ ‖u−Xi‖ρq}

= sup
∆∈Rd
{(∆ +Xi)

TK(∆ +Xi)− γ ‖∆‖ρq} − log |K|.

(A.5)

Replacing this expression back in (A.4), it may be difficult, if not impossible, to obtain

a closed form optimization problem over K. Even if such a simplification is possible, it

will not provide the desired connection to the graphical lasso estimator. That is why, in
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this paper, as outlined in Section 2.1, we redefine the ambiguity set to obtain a desired

closed form as expressed in Theorem 2.1.1 in a more transparent way.

A.2 Applicability of the dual representations of the

RWP function and the DRO formulation

The dual representations of the RWP function and the DRO formulation for the case

in which the space of probability measures is P(Rd × Rd) is studied in the paper [15].

In this paper, we are interested in the case P(Sd × Sd). In other words, we consider the

samples to be in Sd instead of Rd. We want to emphasize that the derivations of these

dual representations rely on the dual formulation of the so called “problem of moments”

or a specific class of “Chebyshev-type inequalities” referenced in the work by [35]. The

derivation by Isii is actually more general in the sense that is applied to more general

probability spaces than the ones used in this paper and in [15] (in fact, it is stated for

general spaces of non-negative measures).

Throughout this section, we consider an integrable function h : Sd × Sd → Sd, and a

lower semi-continuous function c : Sd×Sd → [0,∞) such that c(U,U) = 0 for any U ∈ Sd

and such that the set

Ω := {(U ′,W ′) ∈ Sd × Sd | c(U ′,W ′) <∞}

is Borel measurable and non-empty. Also consider an iid random sample W1, · · · ,Wn ∼

W with W coming from a distribution on P(Sd).

Now, let us focus first on the RWP function in the following proposition which par-

allels [15, Proposition 3].
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Proposition A.2.1 Consider K ∈ S++
d . Let h(·, K) be Borel measurable. Also, suppose

that 0d×d lies in the interior of the convex hull of {h(U ′, C) | U ′ ∈ Sd}. Then,

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd
{trace(Λ>h(U ;K))− c(U,Wi)}

}
.

Proof: Consider the proof of [15, Proposition 3]. If we:

• set the estimating equation by E[h(W ;K)] = 0d×d,

• set

Rn(K) = inf {Eπ[c(U,W )] | Eπ[h(U ;K)] = 0n×n, πW = Pn, π ∈ P(Sd × Sd)} ,

with πW denoting the marginal distribution of W ,

• consider the previously defined Ω,

then we obtain that, following the rest of this proof (and using [35, Theorem 1] with its

special case):

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd
{vec(Λ)>vec(h(U ;K))− c(U,Wi)}

}

= sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd
{trace(Λ>h(U ;K))− c(U,Wi)}

}
,

thus obtaining the dual representation of the RWP function.

The following proposition for the dual representation of the DRO formulation paral-

lels [15, Proposition 1].

Proposition A.2.2 For γ ≥ 0 and loss functions l(U ′;K) that are upper semi-continuous
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in U ′ ∈ Sd for each K ∈ S++
d , let

φγ(Wi;K) = sup
U∈Sd
{l(U ;K)− γc(U,Wi))} . (A.6)

Then

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= min

γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Wi;K)

}
.

Proof: The proof for the dual representation of the DRO for our domain of sym-

metric matrices is also very similar to the one described in Proposition 4 of [15, version

2], just by following appropriate similar changes as we did for the proof of A.2.1.

A.3 Additional figures, tables and additional analy-

sis for the numerical results

A.3.1 Matthews correlation coefficient analysis

Let true positives (TP) be the number of nonzero off-diagonal entries of Ω that are

correctly identified, false negatives (FN) be the number of its nonzero off-diagonal entries

that are incorrectly identified as zeros, false positives (FP) be the number of its zero off-

diagonal entries that are incorrectly identified as nonzeros, and true negatives (TN) be the

number of its zero off-diagonal entries that are correctly identified. Given the estimated

precision matrix K̂, the Matthews correlation coefficient (MCC) [36] is defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FP )
, (A.7)

and, whenever the denominator is zero, it can be arbitrarily set to one. It can be shown

that MCC ∈ [−1,+1], and +1 is interpreted as a perfect prediction (of both zero and
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nonzero values), 0 is interpreted as prediction no better than a random one, and −1 is

interpreted as indicating total disagreement between prediction and observation.

MCC has been argued to be one of the most informative coefficients for assessing the

performance of binary classification (in this case, classifying if an entry of the precision

matrix is zero or nonzero) since it summarizes all information from the TP, TN, FP and

FN quantities [37, 36], in contrast to other measures like TPR and FPR.

A.3.2 Regularization parameters

All the plots related to the RS criterion for choosing λ have in their x-axis the values

α ∈ {0.10, 0.21, 0.33, 0.44, 0.56, 0.67, 0.79, 0.90}. We study the cases for sample sizes

n ∈ {75, 200, 1000}.
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Figure A.1: n = 75
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Figure A.2: n = 200

0.10 0.21 0.33 0.44 0.56 0.67 0.79 0.90

0.12

0.13

0.14

0.15

0.16

0.17

(a) RS

 
0.044

0.046

0.048

0.05

(b) CV

Figure A.3: n = 1000

A.3.3 Performance figures for different choices of the regular-

ization parameter

All the plots related to the RS and RWP criteria for choosing λ have in their x-axis

the values

α ∈ {0.10, 0.21, 0.33, 0.44, 0.56, 0.67, 0.79, 0.90}. We study the cases for sample sizes

n ∈ {75, 200, 1000}.
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n = 75
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Figure A.4: True positive rate (%)
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Figure A.5: False detection rate (%)

n = 200

0.10 0.21 0.33 0.44 0.56 0.67 0.79 0.90

0

0.5

1

1.5

(a) RS

1

15

20

25

(b) CV

0.10 0.21 0.33 0.44 0.56 0.67 0.79 0.90

0

0.5

1

1.5

(c) RWP

Figure A.6: True positive rate (%)
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Figure A.7: False detection rate (%)

n = 1000
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Figure A.8: True positive rate (%)
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