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Abstract This work explores the use of data-driven methods, including machine
learning and sparse sampling, for systems in fluid dynamics. In particular, camera
images of a transitional separation bubble are used with dimensionality reduction
and supervised classification techniques to discriminate between an actuated and
an unactuated flow. After classification is demonstrated on full-resolution image
data, similar classification performance is obtained using heavily sub-sampled pix-
els from the images. Finally, a sparse sensor optimization based on compressed
sensing is used to determine optimal pixel locations for accurate classification. With
5-10 specially selected sensors, the median cross-validated classification accuracy is
≥ 97%, as opposed to a random set of 5-10 pixels, which result in classification ac-
curacy of 70-80%. The methods developed here apply broadly to high-dimensional
data from fluid dynamics experiments. Relevant connections between sparse sam-
pling and the representation of high-dimensional data in a low-rank feature space
are discussed.

Keywords– Flow visualization, reduced-order models, proper orthogonal decompo-
sition, machine learning, classification, sparse sampling, compressed sensing.

1 The importance of data science in fluid dynamics

Fluid dynamics plays a central role in numerous scientific, industrial, and techno-
logical applications, including transportation (planes, trains, automobiles), energy
(wind, tidal, combustion), and mixing (medicine, chocolate), to name only a few.
Understanding and controlling fluid flows provides an opportunity to dramatically
improve performance in these systems, resulting in lift increase, drag reduction,
and mixing enhancement, all of which further important engineering goals of the
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modern world [1]. Rapidly developing methods in data science, largely borne out
of the computer science, statistics, and applied mathematics communities, offer a
paradigm shift in our ability to measure, model, and manipulate fluid flows.

Fluid flows are often characterized by high-dimensional, multi-scale, and non-
linear phenomena that evolve on an attractor. Although the Navier-Stokes equations
provide a detailed partial differential equation model, it is often difficult to use this
representation for engineering design and control. An insightful quote of Richard
Feynman, in his lecture on fluid mechanics, summarizes the central dilemma [2]:

“The test of science is its ability to predict. Had you never visited the earth, could you pre-
dict the thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful sunset?"

Instead of analyzing equations in isolation, we collect measurements of flows
in relevant configurations and develop a hierarchy of models to describe critical
features of the flow, rather than every subtle detail. In particular, extracting large
coherent structures in fluids has provided valuable insights. The proper orthogo-
nal decomposition (POD) [3, 4, 5, 6], which is often formulated using the singular
value decomposition (SVD) [7, 8, 9], is a form of dimensionality reduction, which
takes high-dimensional data from simulations or experiments and extracts relevant
low-dimensional features. In many ways, these fundamental techniques in dimen-
sionality reduction for fluids are among the first use of data-science in complex sys-
tems. Importantly, many of the most successful methods in model reduction, such as
Galerkin projection onto POD modes, take a hybrid approach, where data is com-
bined with our knowledge of the Navier-Stokes equations to enforce dynamics [1].

Reduced-order modeling has been especially important in obtaining computa-
tionally efficient models suitable for closed-loop feedback flow control. Many com-
peting design constraints factor into effective control design, although one of the
most important considerations is the latency in making a control decision, with
larger latency imposing fundamental limitations on robust performance [10]. Thus,
as flow speeds increase and flow structures become more complex, it becomes in-
creasingly important to make fast control decisions based on efficient low-order
models. A major open problem in control theory, with particular relevance for flow
control, is the optimal placement of sensors and actuators for a control objective.

Powerful new techniques from data-science are poised to transform the analy-
sis of complex data from dynamical systems, such as fluids. In particular, machine
learning [11, 12] provides advanced capabilities to extract features and correlations.
Sparse sampling techniques, including compressed sensing [13, 14, 15, 16, 17, 18],
sparse regression [19, 20, 21], and sparse classification [22, 23, 24], allow for the
recovery of relevant large-scale information from surprisingly few measurements.

Here, we combine machine learning and sparse sampling for efficient measure-
ment and characterization of a fluid system. An overarching goal is to reduce the
burden of data acquisition and processing. Specifically, we apply sparse classi-
fication to fluid imaging. Flow visualization, such as particle image velocimetry
(PIV) [25, 26, 27], is a cornerstone in fluid mechanics, providing an understanding
of flow structures and mechanisms that may be manipulated by closed-loop feed-
back flow control. Real-time feedback control based on PIV is becoming increas-
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ingly feasible, although it remains expensive, both in hardware cost and computa-
tional power. The methods here are designed to extract valuable data from inexpen-
sive camera images of bubble visualizations, and they may also be used with PIV to
reduce the data required for reconstruction, resulting in higher sampling rates and
more inexpensive time-resolved systems. Finally, we design optimal sensor loca-
tions for categorical decisions [24], which may be eventually used for control.

1.1 Recent advances in sparsity and machine learning for fluids

Advanced methods from machine learning and compressed sensing have already be-
gun to enter fluid dynamics. Unsupervised clustering has proven effective in deter-
mining probabilistic reduced-order models based on data from the mixing layer [28],
and it has also been used to determine when to switch between various POD sub-
spaces [29]. Graph theory has recently been applied to understand the network struc-
ture underlying unsteady fluids [30]. Finally, machine learning control, based on
genetic programming [31], has been applied to numerous closed-loop flow control
experiments with impressive performance increases that exceed many alternative
control strategies [32, 33, 34].

Sparse sensing has rapidly been embraced by fluid dynamics researchers, most
likely due to the ability to sample considerably less often than suggested by the
Shannon-Nyquist sampling theorem [35, 36]. Although fluids data is typically quite
large, is expensive to collect and analyze, and has a large separation of spatial and
temporal scales, it generally has dominant low-dimensional structures that are useful
for analysis and control. Compressed sensing has been applied in a variety of con-
texts in fluid dynamics [37, 38, 39, 40]. Sparsity techniques have also been applied
to the computation of the dynamic mode decomposition (DMD) [41, 42, 43], in-
cluding promoting sparsity for mode selection [44], spatial compressed DMD [45],
and non-time resolved sampling strategies designed for particle image velocimetry
(PIV) [46, 47]. The DMD is rapidly developing, with data science, machine learn-
ing, and control extensions [48, 49, 50, 51, 52, 53]. Sparsity methods have also been
applied more broadly in dynamical systems [54, 55, 56, 57].

1.2 Fluids in the era of Big Data

Fluid dynamics is one of the original big-data communities, routinely working with
rich data sets that are large, unwieldy, and require high-performance computing to
analyze and visualize. Big data means many different things to different people,
and it is a vital part of the growing data science movement. For some, big data
implies data management: databases, data scrubbing, archiving, and reproducible
analysis. For others, big data implies scaleable architectures for applying advanced
data analysis on growing volumes of data. Yet another perspective sees big data as a
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challenge to mine and visualize hidden patterns inside unwieldy high-dimensional
data.

We are in a fortunate position where there is additional high-value data to collect
for increasingly complex and engineering-relevant flows. This data will continue to
be generated in higher detail and greater volumes with advances in computational
and experimental techniques. As a community, we should view big data as a big
opportunity to coordinate our data collection and analysis efforts to solve pressing
real-world challenges. Continued efforts to collect increasing volumes of data must
be met with advanced data analytics to extract the most value from these data. The
computational methods also inform how we should collect data to maximize the
useful information.

2 Experimental description

Experiments are conducted in a low-speed water tunnel at the Institute PPRIME,
Poitiers. The closed-circuit, free surface water tunnel has a test section of 2.1m
length, 0.5m width and 0.34m height. The ramp model consists of a flat plate of
length L = 100mm followed by a smooth ramp of height 60mm and length 600mm.
The model is 498mm wide and spans the width of the test section, except for 1mm
gaps between the walls and the ramp. The ramp leading edge divides the oncoming
flow into an upper stream following the ramp contour and a stream below the model.
Downstream of the ramp, a horizontal plate prolongates the separated flow to reduce
the impact of temporal changes in the flow structure during forcing. The stagnation
point on the leading edge is controlled by adjustable pressure losses at the outlet of
the upper stream. The Reynolds number is given as Re =UL/ν with respect to the
free-stream velocity U , and the kinematic viscosity ν of water. A schematic of the
experimental arrangement is shown in Fig. 1 (left).

Beginning from the leading edge, a laminar zero pressure gradient boundary
layer develops along the flat plate. Above the smooth ramp this boundary layer sepa-
rates under the influence of an adverse pressure gradient which is fixed by the shape
of the ramp. Downstream of the flow detachment, the newly-formed separated shear
layer becomes unstable and undergoes laminar-to-turbulent transition, allowing the
flow to reattach. Between the wall and the separated main flow, recirculating fluid
marks the extensions of the laminar separation bubble (LSB). The ramp contour fol-
lows a polynomial shape of order 7 for which Sommer [58] numerically determined
the position of the laminar separation bubble.

To obtain a satisfactory spatial resolution of the visualized separated flow re-
gion, the Reynolds number is fixed to Re = 7900± 100, for which the separation
bubble extends over more than 50% of the ramp length. Locally-controlled forcing
is enabled by a stainless steel wire of 0.13± 0.01mm in diameter and supported
by an oscillating holder. The wire crosses the span of the model and is located at
90± 2.5mm downstream of the leading edge. A vertical sinusoidal motion of the
wire is imposed using a line servo (RS-2 modelcraft) piloted by an Arduino-Due
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Fig. 1 Schematic illustrating experimental set-up, including bubble visualization for separated
flow past a backward facing ramp.

Baseline Controlled

t = 0.118 s t = 0.118 s

t = 0.597 s t = 0.597 s

t = 1.098 s t = 1.098 s

t = 1.598 s t = 1.598 s

Fig. 2 Bubble visualizations for flow past a ramp. The baseline case is without control (left) and
the case with control (right) is used to manipulate the separation length.

Baseline

Controlled

Fig. 1 (left) Schematic illustrating the experimental set-up, including bubble visualizations of the
separated flow past a backward facing ramp. (right) Bubble visualizations for flow past a ramp are
shown for the baseline case (top) and the case with control (bottom).

microprocessor. The frequency is varied between 0.1 and 3Hz to enable the actua-
tion of the Kelvin-Helmholtz instability along the separated shear layer. In all ex-
periments, the oscillation amplitude is set at 3±1mm and the mean vertical position
of the oscillating wire is assigned to 3.5± 0.5mm above the ramp model. Accord-
ing to the preliminary tests these settings proved to be highly efficient to excite the
Kelvin-Helmholtz instability.

Flow visualizations are obtained using the hydrogen bubble technique [59]. For
that purpose, a 0.050± 0.005mm thick stainless steel wire deformed into a zigzag
pattern is fixed in the middle of the ramp at 300± 5mm downstream of the lead-
ing edge. When applying a negative potential, between 30 and 90 Volts, hydrogen
bubbles are produced at the wire and convected downstream. A computer controlled
function generator is employed to trigger the release of bubbles to obtain periodic
timelines. These timelines mark the position of the separated shear layer and patches
related to the rolling up of tracer particles by vortical structures during reattachment,
as shown in Fig. 1 (right) for the baseline and controlled cases.

The images have a resolution of 2116× 812 pixels, and they are acquired at
10 Hz. During the process of recording the image sequence, the bubble diameter in-
crease and the timely precision of bubble release diminishes due to electrochemical
processes close to the electrodes. Furthermore, during their progression in the down-
stream direction, the bubbles shrink. Therefore, the intensity of light reflections and
contrast change in time and space during an image sequence. In the following anal-
ysis, we classify baseline and control cases using the full image data, with lighting
changes, etc., and we also use an isolated data set that consists of a short sequence of
images with constant lighting and bubble density. Throughout, these will be referred
to as “Full Data" and “Isolated Data", with the modifiers “Baseline" or “Controlled".
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Fig. 2 Schematic illustrating the use of PCA (feature extraction) and LDA (supervised classifier)
for the automatic classification of data into two categories B and C.

3 Classification of fluids based on image data

Here, we demonstrate supervised learning techniques to distinguish between the
baseline and controlled fluid flow fields from camera images. Supervised learning
requires labeled training data, where the desired distinction (i.e., baseline vs con-
trolled) is recorded in a vector of labels (i.e., ‘B’ corresponds to baseline images
and ‘C’ corresponds to controlled images). In contrast, unsupervised learning, such
as K-means, seeks to find natural clustering of the data in some feature space.

3.1 Methods – machine learning and dimensionality reduction

The methods presented here are general, and may be used to estimate other relevant
flow quantities, as long as there is a labeled set of training data. Figure 2 shows a
schematic of the supervised classification algorithm used in this work. A data matrix
X=

[
XB XC

]
is constructed by concatenating image vectors from the baseline (‘B’)

and controlled (‘C’) cases. Each image is reshaped into a large column vector with
as many rows as pixels in the original image, similar to how velocity fields are
stacked in the method of snapshots [9]. The mean image is subtracted from X.

Next, a low-rank feature space, Ψ , is obtained by applying the principal compo-
nents analysis (PCA), which is closely related to POD/SVD:

X =ΨΣV∗. (1)

In this low-dimensional coordinate system, the data is assumed to separate into clus-
ters according to the labels. Often the basis Ψ is truncated to only contain ener-
getic modes. A state x may be approximated in this truncated coordinate system as
x≈Ψα , where α are the PCA/POD coordinates of x in Ψ .

Finally, it is possible to identify the direction w in feature space that optimally
separates the data clusters using the linear discriminant analysis (LDA) [11, 12].
Once the discriminant vector w is determined, it is possible to project images into a
decision space by taking the inner product of the image PCA coordinates α with w.

η = wT
α = wT

Ψ
T x. (2)

The value of η determines whether the image x is classified as category ‘B’ or ‘C’.
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The performance of a classifier is determined using cross-validation, whereby
the data is randomly partitioned into a training set (80%) and a test set (20%). The
classifier is built using only training data and it is then used to predict labels in the
test set; the percentage of correctly identified test labels determines the accuracy of
the classifier. Many rounds of cross-validation are performed on different 80%/20%
random shuffling of the data.

There are many alternatives to the choices above. First, if the data does not clus-
ter in a PCA feature space, then feature engineering will be critical to determine the
transformations that isolate features to distinguish the data. Next, there is a host of
advanced supervised learning techniques including quadratic discriminant analysis
(QDA), support vector machines (SVM), and decision trees, to name a few [11, 12].
However, we prefer to use PCA/LDA because of the ease of implementation and
their usefulness with optimization algorithms in later sections. And most impor-
tantly, the data is well-separated with LDA in a PCA feature space.

PCA is often computed using an SVD, which is a spatial-temporal decomposition
of data X into a hierarchy of spatial coherent structures, given by the columns of Ψ ,
and temporal coherent patterns, given by the columns of V. The importance of each
mode is quantified by the entries of the diagonal matrix Σ . For high-dimensional
data the SVD may be computed using the method of snapshots [9]:

X∗X = VΣ
2V∗ =⇒ X∗XV = VΣ

2. (3)

Thus Σ and V may be obtained by an eigendecomposition of the symmetric matrix
X∗X. Afterwards, the modes Ψ may be constructed as: Ψ = XVΣ

−1. Note that Ψ

and V are both unitary matrices.

3.2 Classification results on high resolution image data

Figure 3 shows the results of principal components analysis on the high-resolution
full image sequence data. The modal variance decays somewhat slowly, and the
modes and coefficients are shown below. Mode 2 corresponds to a lighting change
observed in the full image sequence, which can also be seen in the spikes in the
temporal coefficients in both the baseline and controlled data. When performing
PCA on the isolated image sequence, there is no longer a mode corresponding to a
change in lighting, and the modal energy decays more rapidly.

Figure 4 shows the baseline and controlled data projected into the first three PCA
coordinates, for both the full image sequence data and the isolated image sequence
data. In both cases, the baseline and control sequences are well separated, although
the separation is better for the isolated images, which have more uniform conditions.
Figure 5 shows the separating plane determined by LDA. Table 1 quantifies the
performance of LDA classification in a PCA space with 5 modes and with 10 modes.
With 10 PCA modes, the LDA classifier is perfect in both the isolated and full image
sequences. Using only 5 modes, the full image sequence has around 4% error.
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Fig. 3 PCA results on full image sequence data. The singular values (top) indicate the energy of
each mode. The PCA modes (left) and coefficients (right) show dominant spatial/temporal features.
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Table 1 Performance of LDA classification in a PCA feature space with 5 and 10 modes on the
full image sequence data and the isolated image sequence data.

Full Image Sequence Isolated Image Sequence

E
rr

or 5 Modes 3.82±1.79% 0.00%
10 Modes 0.00% 0.00%
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Fig. 5 The LDA separating plane is shown for one instance of cross-validation. Although all con-
trolled data are correctly classified, any purple squares to the right of the plane are misclassified,
and are also labeled with black crosses.

4 Sparse classification on compressed/subsampled data

After demonstrating in the previous section that flows may be classified accu-
rately using full-resolution images, here we show that similar classification may be
achieved using heavily subsampled or compressed image data. This is important to
reduce the data acquisition and processing required for high-level decisions. Reduc-
ing processing is important for mobile applications, where on-board computations
are power constrained, and for control, where the fastest decision is desirable.

4.1 Methods – sparsity and low rank structures

In this section, we assume that we take subsampled or compressed measurements
Y, which are related to the full resolution data X by:

Y = CX. (4)

The matrix C ∈ Rp×n is a measurement matrix. It may consist of p random rows
of the identity matrix, which would correspond to p single-pixel measurements at
those locations. Alternatively, C may be a matrix of independent, identically dis-
tributed Gaussian or Bernoulli random variables. Random Gaussian measurements
are generically powerful for signal reconstruction [15], but single pixel measure-
ments are particularly useful for engineering purposes. Beyond their use in classi-
fying images, we may consider point sensor placement on a wing or in the ocean or
atmosphere to accumulate information about complex time-varying flows.
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Even with a significant reduction in the data, accurate classification is possible,
since the relevant information exists in a low-dimensional subspace. Interestingly,
the ability to infer structures from subsampled data is not new [60]. Nearly all natu-
ral images are sparse in a discrete Fourier transform (DFT) basis, meaning that most
of the Fourier coefficients are small and may be neglected; this is the foundation of
image compression. Fluid velocity fields are also sparse in the Fourier domain [38].

If the data X is sparse in a basis Ψ (either DFT or PCA), then we may write:

Y = CX = CΨS, (5)

where the columns of S are sparse vectors (i.e., mostly zero), and the basis Ψ is a
unitary matrix. Compressed sensing is based on the observation that under certain
conditions on the measurement matrix C, the projection CΨ will act as a near isom-
etry on sparse vectors [14, 15, 16]. This means that inner products of the columns of
Y will be similar to the inner products of corresponding columns of S. Further, since
Ψ is unitary in the case of a DFT or PCA basis, these inner products of columns of
Y will also resemble inner products of columns of X. Thus, using the method of
snapshots, we recover the dominant correlations in the data X from the SVD of Y:

Y∗Y≈ X∗X = S∗S. (6)

4.2 Classification results on subsampled data

Figure 6 shows the PCA projection of the baseline and controlled data for random
single-pixel subsampling of the data. In the top row, p = 1718 random pixels are
used, which account for 0.1% of the total pixels in the image. Decreasing the number
of random pixels causes the clusters to merge, making classification more difficult.

Figure 7 shows the cross-validated classification error versus the number of ran-
dom sensors chosen. In both the top and the bottom plots, LDA classification is
applied in a PCA feature space with 10 modes, and 1000 instances were used for
cross-validation. For the isolated image sequence data, the median error is 0% for
as few as 34 random sensors, and for the full image sequence data, the median error
is 0% for 344 random sensors. As might be expected, it is easier to classify baseline
and control images in the isolated image sequence, because it is more uniform and
coherent. However, depending on the 80%/20% partition used for cross-validation,
the classification error may be nearly 50%.

The ability to perform accurate classification with p∼O(10)–O(100) randomly
selected single-pixel sensors has significant implications in the data-driven process-
ing and control of fluid systems from optical measurements. First, less spatial data
must be collected, reducing data transfer and making improved temporal sampling
rates possible. Second, all computations are done in a low-dimensional subspace,
making it possible to make control decisions with low latency.
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5 Optimal sensor placement and enhanced sparsity

In the previous section, we demonstrated that machine learning may be applied to
heavily subsampled data, although performance was degraded at large compression
ratios. Here, we demonstrate an algorithm that optimizes sensor locations for cat-
egorical decisions, resulting in accurate classification with an order of magnitude
less sensors than achieved with random placement [24].

5.1 Methods – optimal sensor placement

One of the cornerstone advances in compressed sensing is that it is now possible to
solve for the sparsest solution vector to an underdetermined system of equations

Ax = b, (7)

using convex optimization. Previously, solving for the sparsest vector x would in-
volve a combinatorial brute-force search to find the x with smallest `0 norm, where
‖x‖0 is equal to the number of nonzero elements in x. However, it is now known
that we may approximate the sparsest solution with high probability by minimiz-
ing the `1 norm, ‖x‖1 = ∑

N
k=1 |xk|, which is a convex minimization. Therefore, it is

now possible to solve increasingly large systems in a way that scales favorably with
Moore’s law of exponentially increasing computer power. There are a number of
technical restrictions on the sizes of x and b as well as the spectral properties of the
matrix A [14, 15, 16].

Recently, the `1 convex-minimization architecture has been leveraged to solve for
optimal sensor placement for categorical decision making [24]. This optimization
seeks to find a small number of pixels that are able to capture as much information
as possible about the position of an image in the decision space. Specifically, we
seek to find the sparsest vector s ∈ Rn that satisfies the following relationship:

s = argmin
s′
‖s′‖1 such that Ψ

T s = w. (8)

The vector s is the size of a full image, but it contains mostly zeros. Since w is
in an r-dimensional feature space, Eq. (8) may be solved with a vector s with at
most r nonzero components. Thus, it is possible to sample the image data at these
r critical pixel locations, and perform classification in an r dimensional subspace.
This is called the sparse sensor placement optimization for classification (SSPOC)
algorithm. We will demonstrate that accurate classification may be achieved using
an order of magnitude fewer sensors, as compared with randomly placed sensors.
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5.2 Classification on optimized sensors

Figure 8 shows the PCA clustering of data using 6 optimal sensor locations (top) and
6 randomly chosen pixels (bottom). The cluster separation with optimal sensors is
striking, when compared with the clusters from random sensors. The cross-validated
classification performance is shown in Fig. 9. The optimal 6 sensor locations provide
a significant improvement over random.
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Fig. 8 PCA clustering of data using optimal sensors (top) and using random sensors (bottom).

Figure 10 shows the ensemble of sensor locations determined by the SSPOC
algorithm over 100 instances of cross-validation. A number of interesting features
are found in this data, including sampling of the boundary layer profile and the
shear layer. The boundary layer sampling is more pronounced in the isolated image
sequence data. In the baseline case, the shear layer remains steady and is nearly hor-
izontal, as opposed to the controlled case, where the Kelvin-Helmholtz instability
causes vortex roll-up to occur much sooner (see Fig. 11).

In the image sequence of the controlled case, the disturbance propagation can be
observed close to the ramp wall before the flow actually separates. This may explain
why so few sensors are along the separation line in the isolated image sequence.
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Fig. 9 Comparison of cross-validated error using optimal sensor locations (black) and random
sensors (red) on the full image sequence (top) and the isolate image sequence (bottom). Here, the
LDA classification is done directly in the pixel space.

6 Conclusions and discussion

In this analysis, we demonstrate that methods from machine learning and sparse
sampling may be applied to classify fluid flows from inexpensive camera images.
In particular, we use linear discriminant analysis (LDA) clustering techniques in a
POD/PCA reduced subspace to classify images of a transitional separation bubble
with and without forcing. Sparsity techniques are used to demonstrate that similar
classification performance can be obtained with many fewer pixel measurements.
Finally, a sparse sensor optimization algorithm is used to determine the fewest pixel
sensors required for classification. We find that a small handful of sensors (between
5 and 10) result in a median cross-validated classification performance of ≥ 97%.

There are numerous avenues to extend this work in fluid dynamics. First, it would
be natural to apply these methods to multi-way classification in flows with more
distinct states. It may also be possible to estimate the phase of a periodic or quasi-
periodic flow for use in a closed-loop feedback control strategy. The sparse esti-
mation of bifurcation regimes may also be useful for parameterized reduced-order
modeling techniques [28, 29]. It is also imperative that we do not apply machine
learning naively to fluids data without respecting the constraints and dynamics im-
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Fig. 10 Optimal sensor locations (red) for full image sequence data (top) and isolated image se-
quence data (bottom). A single cross-validation instance is shown on the left, and the ensemble of
sensor locations are shown on the right. In each case, the second row provides a zoom-in near the
ramp. The size of the circle denotes how frequently this location was chosen in the ensemble.

Baseline Controlled

Fig. 11 Bubble visualizations for flow past a ramp with zoom-in around inlet.
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posed by the flow physics. Modern tools from data science tell us how to measure
and on what space to perform computations, but they do not guarantee that the basic
physics will be enforced, such as conservation of energy. A hybrid approach, com-
bining data methods with physics will likely be essential in future robust nonlinear
flow control strategies.

The proposed sparse classification algorithm has been demonstrated on a rel-
atively low-dimensional flow with large-scale coherent structures. This geometry
is certainly relevant for many practical flows, such as are found in small aircraft
and bio-locomotion. However, these methods also scale to more complex high-
dimensional data. For example, similar algorithms have been applied to sparse
face recognition using images, and these examples require significantly more POD
modes for accurate signal reconstruction. In the context of higher-dimensional data,
a hierarchical categorization may be favorable, where a series of descriptors are
identified for a given flow. Modifying the cost function for sparse sensor selection
to include multiple categorization tasks is an interesting and important direction of
future work.

Although the basic algorithms scale to larger data sets with a greater variety
of features, there are a number of challenges that may occur specifically for high-
dimensional fluids. First, the method described above is able to classify flows based
on large spatially non-localized features, relying on the incoherence of point mea-
surements with spatial Fourier modes. However, as flow velocities increase, a num-
ber of flow structures become smaller and faster; if these spatially compact features
are important to classification, they will be challenging to locate and identify us-
ing point measurements. Richer random-projection measurements may need to be
employed in these cases. In addition, coherent structure identification methods such
as POD or DMD assume a separation of variables, and they don’t capture traveling
vorticity and local features well. This limits the applicability of these methods for
convective turbulence, where structures do not repeatably occupy the same pixels.
One potential solution to this problem is to perform classification on the magnitude
of the spatial Fourier transform, which removes the phase information.

The simultaneous explosion of data, the miniaturization of sensing and actuation
hardware, and the renaissance of techniques in applied mathematics make this an
exciting time for data-driven control in fluid dynamics. Data streams are becom-
ing increasingly large and inexpensive, both from experimental measurement and
from CFD. In the era of Big Data, it is tempting to continually gather more data
and apply the same analyses to larger data matrices. With increasingly large data
sets, innovative methods to distill meaningful features from data will become more
important. Furthermore, bio-inspired engineering and control design will likely fa-
vor low-dimensional computations that evolve on subspaces or manifolds that cap-
ture relevant information for control and decision tasks using subsampled data. The
prospect of big data in fluid dynamics is promising, and we must continue to em-
brace smart data analysis techniques to complement our big data.
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