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EXAFS investigation of the local structure in URu2−xFexSi2: Evidence for distortions below 100 K

F. Bridges ,1,* R. Dudschus,1 C. Mackeen,1 T. Keiber,2 C. H. Booth,3 and M. B. Maple2

1Physics Department, University of California, Santa Cruz, California 95064, USA
2Physics Department, University of California, San Diego, California 92093, USA

3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

X-ray absorption measurements at the U LIII, Ru K , and Fe  K edges are reported for the hidden order (HO) 
material URu2−xFexSi2 (x = 0, 0.05, 0.08, 0.10, 0.12, 0.15, and 0.20) as a function of x and temperature T . 
When Fe is substituted for Ru, the local structure about Fe shrinks slightly and the first neighbor Fe-Si bond 
length decreases by ≈ 0.05 Å. More importantly excess disorder is observed below 80–100 K (the coherence 
temperature T ∗) in plots of the Debye-Waller factor σ 2 (σ is the width of the pair distribution function); at 
low T the data deviate from the usual Einstein or correlated-Debye model plots. This excess disorder is most 
prominent for the Ru-Si bond, and σ 2 actually increases below 80 K. These results suggest a local orthorhombic 
distortion with B1g-like symmetry that develops below 80–100 K. A model that describes these local distortions is 
presented, and discussed in terms of other measurements that indicate a breaking of fourfold symmetry at low T . 
In addition, the square root of the difference between σ 2 (T ) for the Ru-Si pair and a Debye fit to these data serves 
as an order parameter for this orthorhombic distortion, in the temperature range below 100 K. This quantity is a 
length related to a-b, the difference between the a and b lattice constants in the orthorhombic phase, and provides 
a connection between this distortion and T ∗. X-ray absorption near edge structure (XANES) measurements also 
show that there are no changes in the edge positions down to 0.1 eV for any edge as a function of x, for  T in the 
HO regime.

I. INTRODUCTION

The compound URu2Si2 is one of the most interesting
heavy fermion f -electron materials known [1–4]. At To =
17.5 K, an unusual phase transition from a paramagnetic
(PM) phase to a “hidden order” (HO) phase is observed in
specific heat [1,2], electrical resistivity [2,5], and magnetic
susceptibility [1,2] measurements. Surprisingly, in the HO
phase there is no significant magnetic moment (<0.03 μB),
and the nature of this transition has eluded explanation for
more than three decades [1,2,4]. This lack of an ordered
moment in the HO phase also suggests that the U f electrons
may be partially delocalized.

Under modest hydrostatic pressure, the HO phase gives
way to a large moment, antiferromagnetic (LMAFM) phase,
for which the U atom has a significant local moment
(∼0.4 μB) [7]. However, this moment is still small compared
to the moment per U atom in other magnetic compounds such
as UT2Si2 and UT2Ge2 (T = Co, Ni, Cu) with moments be-
tween 1.4 and 2.9 μB. Similar changes occur when the system
is tuned by chemical substitution on the Ru site. One such
substituent is Fe [8], and the incorporation of this smaller ion
into the lattice (Fig. 1) appears to act as a “chemical pressure”
and reproduces the applied pressure phase diagram [7,9–11];
i.e., the transition temperature To initially increases with x, and
above a critical pressure, about 0.8 GPa at T = 0 [9] (or x
concentration = 0.10), the system is in the LMAFM phase.
However, pressure and x concentration are not completely
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equivalent; with pressure, the percentage compression of the
a and c lattice constants are nearly the same [12]. For Fe
substitution, the a-axis parameter decreases with x while the
c axis is essentially unchanged [8].

A number of investigations on single crystals of URu2Si2

and URu2−xFexSi2, which probe the properties of these ma-
terials near the HO or LMAFM transitions, have also been
reported using a range of techniques, including neutron
diffraction [13], high resolution x-ray diffraction [14–16], in-
frared spectroscopy [17], nuclear magnetic resonance (NMR)
and nuclear quadrupolar resonance (NQR) [18–23], Ra-
man spectroscopy [24–26], and inelastic neutron scattering
[27,28]. Many however, are only for URu2Si2, and no studies
probe the environment about the Fe atom or whether there
are changes about Ru or U when Fe is incorporated into the
lattice. Since the magnetism is related to U, small changes in
the shape or position of the U LIII absorption edge might occur
between the HO phase and the LMAF phase.

An interesting feature of this system, which is often ig-
nored, is the large drop in the electrical resistivity ρ with
decreasing temperature below ≈80–100 K [2,5]. This gen-
erates a broad maximum in ρ(T ) at a temperature known as
T ∗, which is ascribed to the formation of a coherent heavy
Fermi liquid ground state in heavy fermion systems [29]. The
temperature T ∗ is referred to as the coherence temperature.
Above T ∗ ≈ 100 K, the resistivity increases with decreasing
T as a result of Kondo spin-flip scattering of conduction
electrons by isolated Kondo sites. Lobo et al. [30] observe
spectral weight transfer in optical conductivity studies of
the coherent heavy Fermi liquid phase. These studies of the
formation of the heavy Fermi liquid state do not include
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FIG. 1. The unit cell for URu2Si2; the U atoms (largest spheres,
teal) occupy a simple body-centered tetragonal lattice. Around each
U atom are eight Ru atoms (intermediate-size spheres, white) that
form two square planar arrays and eight Si atoms (smallest spheres,
blue) that form a cagelike structure. From Ref. [6]. Space group:
I4/mmm; atom sites: U (0, 0, 0), Ru (0, 0.5, 0.25), Si (0, 0, 0.371);
a = 4.13076 Å, c = 9.5785 Å.

any possible local structural changes below T ∗. Finally, at
low temperatures the coherent heavy fermion ground state is
unstable to the formation of the HO phase below To = 17.5 K.

Finally, there is growing evidence that the fourfold rota-
tional symmetry of the tetragonal lattice (Fig. 1) is broken
at low T , as reported in magnetic torque [31], cyclotron
resonance [32], and high resolution x-ray diffraction [14,15]
experiments, as well as in ultrasonic measurements of the
elastic constants [33,34], changes in resistivity induced us-
ing anisotropic strains [35], and softening of the B1g mode
in Raman studies [26]. These studies suggest that a small
orthorhombic-like distortion of the tetragonal structure devel-
ops. Interestingly, one high resolution x-ray diffraction study
under pressure shows a tiny splitting of a Bragg reflection
and hence symmetry breaking, starting near 90–100 K. The
appearance of this splitting may be related to the drop in
resistivity below T ∗. In addition, other experiments suggest
symmetry breaking along the c axis to form a chirality den-
sity wave, with the space group changing from I4/mmm to
P4/mnc [25]. These experiments suggest several different
low T structures, but as of yet, these differences have not
been reconciled. A complication, however, is that there are
conflicting reports as to whether or not symmetry breaking
occurs. This controversy will be further addressed in the
Discussion section.

In this study the local structure about U, Ru, and Fe is
investigated as a function of temperature T and x (0–0.2)
for the URu2−xFexSi2 system, using the extended x-ray ab-
sorption fine structure (EXAFS) technique. The main results

are: (1) The environment about Fe is slightly contracted, and
(2) unusual local distortions are observed below 80 K, which
are largest for the Ru-Si pair. These results suggest that a
small orthorhombic transition develops below 80–100 K (i.e.,
near T ∗). If this transition occurs, then the sample must be
highly twinned on the nanoscale, both to relieve strain, and
to understand the tiny effects observed in some diffraction
experiments. A possible model will be discussed in Sec. VI.
In addition, possible changes in the electronic structure are
probed using the corresponding x-ray absorption near edge
structure (XANES) technique. The XANES plots show no
shifts as x increases from 0 to 0.2 (through the critical value of
x ∼ 0.1 above which the HO phase changes to the LMAFM
phase), indicating a lack of either changes in the localization
of the 5 f U orbital between these phases or of significant
changes in the Ru 4d orbitals.

II. EXPERIMENTAL DETAILS

Samples of URu2−xFexSi2 with x = 0, 0.05, 0.08, 0.10,
0.12, 0.15, and 0.20 were derived from single crystals that
were prepared using the Czochralski method in a tetra-arc
furnace [6]. Small pieces of the crystals were powdered,
passed through a 25 μm sieve, and then spread uniformly on
tape using a brush. In this process, larger particles are removed
and the remaining particles are �5 μm. Two layers of tape
were then pressed together to form a double layer and cut into
strips. Four strips were stacked to make each EXAFS sample
and the step heights were ∼0.4–0.5 at the Ru K and U LIII

edges.
X-ray absorption transmission data were collected at the

Ru K and U LIII edges using a Si 220 monochromator on
beamline 4-1 at the Stanford Synchrotron Radiation Light-
source (SSRL). Data were collected as a function of tempera-
ture (4–300 K) using an Oxford helium cryostat and a standard
transmission setup (see the Supplemental Material [36]). To
monitor any energy drift, a reference sample [36] was placed
between the I1 and a third ionization chamber I2. The energy
was calibrated by setting the energy at the half height of the
edge step of the reference absorption edge to 17172.0 eV for
UO2 and 22117.0 eV for the Ru foil. Also the vertical slit size
was adjusted so that the monochromator energy resolution
was well below the core-hole lifetime broadening energy.

The Fe K edge data were collected in fluorescence mode
using a Ge fluorescence detector, with the samples oriented
at 45◦ to the incident beam. The incoming count rate was
below 40 000 for all samples and no dead time correction was
needed. The energy was calibrated by setting the energy at
the half height of the edge step of the absorption from an Fe
reference foil to 7112.0 eV.

The absorption data were reduced using the program
RSXAP [37], which incorporates standard techniques to re-
move the backgrounds, below and above the edge; it also
includes self-absorption corrections [38] which were small,
less than 2%. After removing the pre-edge background, the
edges were normalized just above the edge—the normalized
edges are discussed in Sec. III. Examples of the extracted
k-space data for the U LIII edge are shown in Fig. 2 for each
Fe concentration at 4 K. Similar k-space data for the Ru and
Fe K edges are provided in the Supplemental Material [36].
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FIG. 2. The k-space data kχ (k) for the U LIII edge for each
sample at 4 K. Traces are offset vertically by 0.3 for clarity, with
x = 0 at the bottom and 0.2 at the top. Note plots are very similar but
the amplitude is slightly higher at high k for the low Fe concentration
samples.

For each temperature, three scans were collected to check re-
producibility and to estimate errors on parameters. Traces for
a given sample at a fixed temperature overlap extremely well.

III. XANES DATA

The position and shape of each absorption edge provides
information about the electronic structure on the excited atom.
The energy range of interest is typically from 20 eV below
the edge to 50 eV above it; this range is referred to as the

XANES (x-ray absorption near edge structure) region. The
edge position generally shifts slightly with charge transfer
between atoms (as observed for different valences) and with
changes in the bond lengths. Because the system at low T
changes from a HO phase with no magnetic order (low x) to an
AFM phase with a significant ordered U moment (above x =
0.10), it was anticipated that tiny changes might be observed
in the U LIII edge data as x increased through x = 0.10.

To look for tiny shifts in the edge position, the energy must
be corrected for any small drifts of the monochromator. Data
for a reference sample (at room temperature) were collected
concurrently for each edge scan. The position of the reference
edge was determined for each scan and compared to a fiducial
scan to obtain relative drifts for every scan—these small
calibration corrections, less than 1 eV, were applied to the
edge scans for the atom of interest.

With these corrections, the edges for all concentrations
overlapped extremely well at low T , to within 0.1 eV, as
shown in Fig. 3 for the U LIII edge, the Ru, and Fe K edges
at low T . The inset for the U LIII edge shows the variations
in edge positions are less than 0.1 eV. The insets for Ru and
Fe K edges magnify the structural features for these edges;
there are tiny variations, but XANES calculations are not good
enough to model such small changes. For the Ru K edge, the
variations near μ ∼ 0.94 do not change systematically with
x and the scatter (∼0.005) for this feature is a measure of
the uncertainty in the amplitude for the XANES. For the Fe
XANES, there are tiny features near 7106.5 and 7121 eV;
the amplitude fluctuates slightly at these features, mainly as
a result of the lower signal to noise for the fluorescence data.
The deviations for x = 0.05 are somewhat larger.
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FIG. 3. (a) Plots of the U LIII edge XANES as a function of Fe concentration at 4 K. The energy for each sample has been corrected slightly 
using the U LIII edge data for the UO2 reference sample (see text). The inset provides an expanded view near the half-height point, showing 
that the spread of positions is �0.1 eV. (b) Similar plots for the Ru K edge XANES for each sample, at 7 K. Likewise, the energy has been 
corrected using a Ru foil reference sample. Any edge shifts at the half-height point are �0.1 eV. The inset for these data magnifies the small 
structure near 22 132 eV, and shows that the tiny amplitude changes are less than 0.3%. (c) Plots of the Fe K edge XANES (fluorescence), 
energy calibrated with an Fe foil, for the Fe doped samples; noise level is higher because of the low Fe concentrations. Within the noise all 
traces overlap well except for x = 0.05. For that scan (red line), the peak near 7121 eV is slightly higher, and the structure shown in the inset 
for the tiny feature at 7106.5 eV has a lower amplitude. Again, shifts are �0.1 eV. The possible shifts for all edges are at the limit of our ability 
to correct energy shifts using reference data.
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FIG. 4. r-space data for the Ru K and U LIII edges (k weighting) as a function of T for the x = 0.10 sample. For the Ru K edge, the FT
range is 3.6–14.5 Å−1 while that for the U LIII edge is 3.5–14.8 Å−1. The first three peaks for the Ru K edge data correspond roughly to Ru-Si,
Ru-Ru, and Ru-U. For U the large peak near 2.85 Å arises from the overlap of the peaks for the U-Si and U-Ru pairs, and includes a tiny
contribution from a weak U-Fe pair.

Similar results are found at T = 20 K, which is above
any HO or AFM transition temperatures (see the Supple-
mental Material [36] Fig. S1); again there are no shifts of
any edges within 0.1 eV. However, for the Fe K edge, the
x = 0.05 scans again have a tiny amplitude deviation near
7106.5 and 7121 eV, as observed below 10 K. Overall the
XANES data indicate no observable change in edge position
(i.e., no significant changes in the local charge or the local
bonds lengths) for all atoms at low T in the host lattice as
a function of Fe concentration; changes in resonant x-ray
emission spectroscopy (RXES) measurements [39,40] with x
are likely very small.

IV. EXAFS DATA

The k-space data in Fig. 2 were then Fourier transformed
(FT) into r space. The FT ranges were: Ru K edge, 3.6–14.5
Å−1, and for the U LIII edge, 3.5–14.8 Å−1. In each case the FT
window was Gaussian broadened by 0.2 Å−1. A few examples
are plotted as a function of T in Fig. 4 for the Ru K and U LIII

edges, with x = 0.10. In such plots, peaks at different values
of r correspond to shells of neighbors at different distances.

The structure for URu2Si2 is shown in Fig. 1: the relative
distances and number of neighbors at a given distance are
easily visualized. The important pairs that we will focus on
are the closest Ru-Si, Ru-Ru, and Ru-U pairs at the Ru K
edge, and the closest U-Si, U-Ru, and U-U pairs for the U
LIII edge.

The EXAFS data were fit in r space to a sum of pair
functions calculated using FEFF7 [41]; these fits extended
beyond the above pair distances to roughly account for any
potential overlap with the peaks of interest. Fits of the U LIII

and Ru K edge EXAFS data are discussed in more detail in
Sec. V.

As shown in Fig. 4 for the Ru K and U LIII edges, the
temperature dependence is weak for the first neighbor peak
(shortest bonds) indicating high correlations in the motions of
the excited atom and its nearest neighbors, and very stiff ef-

fective spring constants. The T dependence becomes stronger
for more distant neighbors, where the relative motions are less
correlated and the spring constants are smaller. In such plots,
peaks at different values of r correspond to shells of neighbors
at different distances from the excited atom; the peak position
is slightly shifted to shorter r compared to actual distances, by
well known and calculable phase factors [42].

For the Ru K edge, the Ru-Si, Ru-Ru, and Ru-U peaks are
reasonably well separated and occur near 1.95, 2.7, and 3.1 Å;
however, for the U LIII edge, the peaks for the shortest U-Si
and U-Ru pairs overlap to form the EXAFS peak near 2.85 Å,
complicating the analysis. Furthermore, for the Fe substituted
samples, there will be a small U-Fe peak that also overlaps
these peaks, and this contribution increases with x. Fortu-
nately, the functions calculated from FEFF7 [41] for these
overlapping peaks have different shapes and amplitudes (see
Fig. S4 in the Supplemental Material [36]), and parameters
for the U-Si and U-Ru pairs can be extracted. Nevertheless,
some correlations between a few parameters are important;
consequently, additional constraints are needed, as discussed
in Sec. V. In contrast, the small U-U peak near 4 Å is quite
well isolated.

The corresponding r-space data for the Fe K edge are
shown in the Supplemental Material [36] Fig. S3. The data are
quite similar to those for the Ru K edge in Fig. 4: the peaks
occur at very nearly the same positions as expected, since Fe
substitutes for Ru, and the T dependencies of the first three
peaks are comparable.

V. EXAFS ANALYSIS

Ru K edge (k weighted) and U LIII edge (k2 weighted)
EXAFS data were fit in r space to a sum of scattering-pair
functions calculated using FEFF7 [41]. These fits extended
well beyond the above pair distances and usually included 8–
10 FEFF7 functions including multiscattering (MS) pathways.
The amplitude reduction parameter S2

o was determined from
an average of fits to the low T data: S2

o = 1.0 for the U LIII

edge and 0.9 for the Ru K edge.



For the Ru K edge, initial fits showed that the Ru-Fe
peaks were very small and these peaks were not used in the
final fits. Nine peaks were used: two Ru-Si, two Ru-Ru, and
two Ru-U peaks, plus three small MS peaks. The amplitudes
were constrained to the coordination numbers for the crystal
structure (see Fig. 1), with the amplitudes of peaks involving
Ru neighbors modified to account for the small decrease in
the number of Ru neighbors as a result of Fe doping. The
width of the pair distribution function σ was allowed to vary
for each peak. The shortest Ru-Si, Ru-Ru, and Ru-U peak
distances were also allowed to vary independently but longer
pair distances were constrained, based on the crystal structure
and the pair distance for the shortest Ru-Ru peak. Overall, 13
parameters were varied: nine σ parameters, three distances,
plus the shift in the edge energy �Eo. For the fit range in
r space (1.9–4.0 Å) and the FT range (3.6–14.5 Å−1), 3.5
degrees of freedom (dof) remain using Stern’s criteria [43].
For the U LIII edge, eight peaks were used in the fits: two
U-Si, two U-Ru, and the shortest U-U peak. The second U-U
peak (near 5.6 Å) has no significant amplitude within the fit
range. Two small U-Fe peaks plus one MS peak were also
included. Again, all amplitudes were constrained to the crystal
structure with modifications to account for the Fe doping on
the Ru site. The short U-Fe peak was not negligible, but was
constrained based on the σ and r parameters from the Fe-U
peak in the Fe K edge data (see the Supplemental Material
[36] Figs. S9 and S11). Four pair distances (U-Si, U-Ru, U-U,
and the second, small U-Si peak at 3.55 Å) were allowed to
vary, plus σ for all peaks except the short, small, U-Fe peak.
Overall, 12 parameters were varied, and for the long fit range
(2.1–5.3 Å) and FT range (3.5–14.8 Å−1), 13 dof remained
based on Stern’s criteria [43]. Example fits for each edge and
a table of parameters at low T , for x = 0, are given in the
Supplemental Material [36] Fig. S6 and Table S1.

An important parameter in this study is the Debye-Waller
factor σ 2(T ). For every atom pair, σ 2(T ) is obtained from the
fits, for each scan, and for each value of T and x. The values
are averaged (typically three scans), and the variation in value
provides an estimate of the relative errors; this procedure
is used to estimate the relative error. In most cases these
relative errors are comparable to or smaller than the size of
the symbols plotted in Secs. V B and V B 2.

The main exception occurs in the analysis of σ 2(T ) for the
U-Si pair because of the correlation between σ 2(T ) and the
value of RU-Ru for the dominant U-Ru peak (see Fig. S5 in
the Supplemental Material [36]). To minimize the variation
in σ 2(T ) for U-Si, the data for the position of the U-Ru
peak as a function of T (for a given data set) were fit to a
straight line and these linearized values used for the U-Ru
distance in the final fits. However, this procedure introduces
additional uncertainty for σ 2(T ), of order ±0.00025 Å2, and
is particularly important for the region below 100 K. Thus
deviations for the U-Si peak at low T are not reliable within
this larger uncertainty.

A. Pair distances

Among the parameters extracted in these fits are the pair
distances for several near-neighbor atom pairs. These are
plotted in Figs. S7 and S8 in the Supplemental Material [36]

for the Ru K and U LIII edge data, and show a small thermal
expansion with increasing T . For the Ru-Si, Ru-Ru, and Ru-U
pairs, the average pair distances at 300 K agree well with
the known structure [6] to within 0.005 Å, which is typical
for high quality data [44]. However, there are deviations
for the U LIII data; the first two U-Si peaks are shorter by
approximately 0.02 and 0.05 Å, respectively, compared to the
distances calculated for the I4/mmm space group obtained
from diffraction [6].

The third neighbor U-U distance (see Fig. S8 right in the
Supplemental Material [36]) appears to contract slightly with
temperature at high T , but there is overlap of the small U-U
peak with further neighbor peaks; fitting all these additional
peaks would introduce too many parameters. Consequently,
this tiny deviation at high temperatures is not significant.
However at low T , below 20 K, the peak is very well defined
and there is a consistent shift of the U-U distance to slightly
shorter values as x increases. The total shift is roughly 0.007 Å
from x = 0 to x = 0.2 (see Fig. S8). The U-U distances
corresponds to the average a lattice parameter and is less
than 4.12 Å at low T for all samples—the magnitude of a is
relevant in the Discussion section when comparing with other
results.

The distances for the Fe-X pairs (X = Si, Ru, and U),
extracted from fits of the Fe K edge data, are shorter than their
Ru-X counterparts, as shown in Fig. S9 of the Supplemental
Materials [36]. These shorter distances are expected from
the observed decrease in the lattice constants with increasing
x. The largest effect is for the Fe-Si bond distance which
is ≈0.05 Å shorter than the corresponding Ru-Si distance.
However, this is surprising considering that the ionic radius
for Fe is about 0.17 Å smaller than Ru, suggesting that the Fe-
Si bond is significantly weaker. A comparison of the changes
in the Fe-Si distances with changes in the a lattice parameters
with x is given in Sec. VII.

B. σ2(T ) plots and fits

The σ 2(T ) data, as a function of x and T , were extracted
from the fits for each atom pair. Initially a correlated-Debye
or an Einstein model (equations below) were fit to these data
from 4–300 K; this approach is typical when modeling σ 2(T )
data. In most of the final fits the correlated-Debye model
was used but in a few cases results from both models are
compared.

For the Einstein model, which models σ 2 from a single
vibrational mode, the equation for σ 2

E is given by [42,45]

σ 2
E (T ) = σ 2

static + h̄2

2μabkBθE
coth

θE

2T
, (1)

where θE is the Einstein temperature which gives the oscil-
lation frequency of the Einstein vibrator, μab is the effective
(reduced) mass of the atom pair, and kB is Boltzmann’s
constant. The correlated-Debye model is given by [42,46,47]

σ 2
cDebye = 3h̄

2MR

∫ ωD

0

ω

ω3
D

Ci j coth

(
h̄ω

2kBT

)
dω + σ 2

static, (2)

where ωD is the Debye frequency, Ci j is a correlation function
given by 1 − sin(ωri j/c)/(ωri j/c), and c = ωD

kD
where kD is

the Debye wave number. In both cases, σ 2
static is the static
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FIG. 5. The Debye-Waller factor for the first Ru-Ru pair as a
function of T for each concentration. The solid line is a fit to the
correlated-Debye model. The solid data points represent the first
set of data, while the open data points represent the second set of
data, for x = 0.0, 0.1, and 0.2. The correlated-Debye curve was fit
across all data points from 4–300 K, and fit both the low and high
temperature data within the error of the data. Error bars for the points
are comparable to the symbol size; errors in the Debye temperature
are ±6 K, and comparable to the variation between samples. The data
for each value of x are successively offset vertically by 0.0003 Å2.

offset from nonthermal broadening, and σ 2(T ∼ 0) with zero
static offset gives the zero-point motion contribution to σ 2 for
a given atom pair.

1. Ru K edge

After plotting σ 2(T ) for several atom pairs it quickly
became clear that not all such data could be described by
either the Debye or Einstein models. Before considering some
of the anomalous results, the analysis of the σ 2(T ) data for
the Ru-Ru peak (from the Ru K edge data) are presented
in Fig. 5. These data are well described by the correlated-
Debye model (and also the Einstein model) and fits over more
restricted temperature ranges yield very similar Debye curves.
The Debye temperatures are all close to 400 K, indicative
of an intermediate-strength effective bond. The Debye curves
would all nearly overlap if plotted on the same scale; however,
each data set is offset in the figure for ease in visualization,
because the scatter of the data points about the correlated-
Debye curve is small. For x = 0.05, for which there are no
data above 200 K, the Debye temperature for x = 0.08 was
used.

For the Ru-Si and Ru-U peaks σ 2(T ) does not follow
the Debye model, particularly for the first neighbor Ru-Si
peak. Plots of σ 2(T ) for these two pairs are shown in Fig. 6.
Surprisingly, σ 2(T ) in the Ru-Si plots actually increases for

every sample below roughly 70 K. This is inconsistent with
any thermal vibration model and suggests a splitting of the
Ru-Si peak at low T , similar to that observed for the filled
skutterudite compound PrRu4P12 below the metal/insulator
transition [48]. Such data cannot follow a correlated-Debye
model at low T and the fit to this model was restricted to
100–320 K to extract a Debye temperature, of order 750 K.
This high value indicates a very stiff bond; it is, in fact,
the stiffest bond in the system. The excess disorder for the
Ru-Si pair starts to develop below 80–100 K and increases
down to roughly 20–30 K where it becomes constant at about
0.0004 Å2 for all samples. In terms of a splitting into two
hypothetical unresolved (equal amplitude) peaks, the splitting
would be roughly 0.04 Å [42]. Note that for this data set, the
r-space resolution is about 0.11 Å.

Note that some unusual phonon density of states (DOS)
cannot also describe this increase in σ 2 at low T . Every
phonon mode contributes to σ 2 with a function of the form
used in Eq. (1) (excluding the σ 2

static term), monotonically
increasing with T for every mode, for any ω or wave vector
q. This was shown explicitly in a study of a four-atom one-
dimensional (1D) toy model [49]; the individual contributions
to σ 2(T ) from each mode (one acoustic, three optical, with
one optical mode overlapping the acoustic mode); each has the
same general shape, a monotonic increase with T . Note that
the correlated-Debye model is a weighted sum over Einstein-
like functions, with the weighting given by the Debye DOS,
and so the same argument applies.

The σ 2(T ) data for the Ru-U peak also deviate from the
Debye model. Initially, fits were made using a correlated-
Debye model over the range 4–300 K. Surprisingly the σ 2

data for every sample were systematically below the Debye
curve near 100 K and above the curve near 300 K (not shown
in plot), unlike the σ 2 results for the Ru-Ru pair, in Fig. 5.

Based on the excess disorder observed for the Ru-Si pair
at low T , fits for the Ru-U pair were then restricted to the
range 100–300 K. The Debye curves from these fits follow
all the data well above 100 K and are also plotted in Fig. 6.
Generally at low T , the data lie above the Debye curve (see
insets), indicating excess disorder at low T for Ru-U as well.
Possible models to describe it are discussed in Sec. VI. Also,
the much lower Debye temperature for the third neighbor Ru-
U pairs (≈208 K) indicates a much weaker effective spring
constant.

2. U LIII edge: σ2(T )

Similarly, from the U LIII edge fits, σ 2(T ) is extracted for
the first few atom pairs, for each scan. The averaged values
of σ 2(T ) are plotted for the U-U pair in Fig. 7. Initial fits
to a correlated-Debye or Einstein model for this pair, from
0–320 K, showed a similar deviation to that observed above
for Ru-U; the points are below the fit near 100 to 150 K and
above the curve near 300 K for every sample (not plotted).
Again using a restricted fit range from 100–320 K, the Debye
fit agrees well with the data at and above 100 K; at lower
T the data points are systematically above the Debye curve
indicating some small excess disorder for every sample.

The σ 2(T ) data for the U-Si and U-Ru peaks are plotted
in the Supplemental Material [36] Fig. S10. As noted above
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FIG. 6. Left: The Debye-Waller factor σ 2 as a function of temperature for the first Ru-Si peak, at each concentration x. The solid line shows
a fit to the correlated-Debye model. The final fit to this Debye model was fit across all data points from 100 to 300 K as discussed in the text.
The solid data points represent the first set of data, while the open data points represent the second set of data, for x = 0.0, 0.1, and 0.2, in both
graphs. The Debye curves for Ru-Si deviate significantly from the low temperature data (by 0.0004 Å2), below ≈70–80 K, providing evidence
of excess static disorder. The σ 2(T ) data above 100 K increase slowly with T leading to a very high Debye temperature of order 750 K. Three
examples of an Einstein fit are shown as black dashes for x = 0.0, 0.10, and 0.20; they deviate slightly from the Debye fit, but only at low T .
Right: The Debye-Waller factor for the Ru-U pair as a function of T for each concentration; the solid line is a fit to the Debye model, from
100 to 320 K. The Debye curve, for samples with many data points at higher T , deviates from the low temperature data (see insets), providing
evidence of excess static disorder below 80 K. Note the much larger y scale for Ru-U; although the deviation is comparable in magnitude to
that for Ru-Si, it appears small on this scale. The thermal disorder for Ru-U grows much faster with T , consistent with a third neighbor pair
and a low Debye temperature. The error bars for individual points are comparable to the symbol size. The errors for the Debye temperatures
are ±30 K for Ru-Si and ±5 K for Ru-U.

in Sec. V, there are correlations between σ 2
U-Si(T ) and the

distance for the U-Ru peak [but no significant variations for
σ 2

U-Ru(T )]. In the fit of the U LIII edge data, a linear fit to
the U-Ru distance data was used to constrain RU-Ru(T ); this
constraint reduced variations in σ 2

U-Si from one temperature
to another. However, the systematic error associated with this
approach can be estimated by considering different choices of
the T dependence below 100 K. Using this method, we esti-
mate the potential systematic error from the deviation from the
Debye curve for the U-Si peak could be up to ±0.00025 Å2.
The best fit of σ 2(T ) for U-Si, shown in Fig. S10 of the
Supplemental Material [36], fits the Debye curve well down
to 40 K; the tiny deviation below 40 K is not significant. As
plotted, the data suggest that any excess disorder for the U-Si
peak is small.

VI. POSSIBLE MODEL FOR DISTORTIONS

The plots of σ 2(T ) for the various atom pairs provide a
measure of the excess local distortions that develop below 80–
100 K, for some atom pairs. The largest effect is for the Ru-Si
pair for which σ 2(T ) actually increases below 80 K. The
Ru-U, U-Ru, and U-U pairs also have some excess distortion
at low T , while the Ru-Ru peak clearly does not. The U-Si
peak also appears to have no significant low-T distortion but
there is uncertainty for this pair as a result of correlations be-
tween σ 2 and the U-Ru distance parameter. Several distortion
models were then considered to see if any were consistent
with the excess disorder that is observed in EXAFS below
80–100 K. The only model that is consistent with all the data
is a local orthorhombic distortion of the tetragonal unit cell,
in which the a axis shortens, the b axis lengthens (or vice
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FIG. 7. σ 2 as a function of T for the U-U atom pair, at each value
of x. For each data set the solid line is a fit to a correlated-Debye
model over the restricted temperature range 100–300 K. For fits over
the entire T range from 4–300 K, the data near 100 K were always
below the Debye curve while near 300 K the data were always above
the curve. Below ≈80 K the data are above the Debye curve (as
observed for Ru-U) indicating excess disorder at low T . Error bars
on individual points are comparable to the symbol size; the errors
for the Debye temperatures are ±5 K. For each sample the plots are
successively displaced vertically by 0.0015 Å.

versa), and the Ru also move up or down along the c axis.
For this distortion the Ru-Ru pair distance remains constant;
note this would not be the case for an orthorhombic distortion
at 45◦ to the a and b axes. The distortion might happen on a
local scale (nanoscale twinning) and then the crystal would
appear tetragonal to long range probes. It is not clear whether
a local orthorhombic distortion drives the structural change,
or c-axis off-center displacements of the Ru atoms leads to
the orthorhombic distortion.

In Fig. 8 the distortions within the Ru and U planes are
shown for this model on an enlarged scale, as viewed along the
c axis. The initially square cross section becomes a rectangle;
the arrows show the case for which the a axis becomes shorter
and the b axis lengthens. Making the usual assumption that
the displacements along a and b are equal in magnitude,
the Ru-Ru bond length remains constant while the U-U pair
splits into two slightly shorter and two slightly longer pair
distances. This distortion will lead to a broadening of the U-U
pair distribution function but no change for the Ru-Ru pair
distribution function. Note also that the U atom is displaced
along both the a and b directions within the ab plane, with
the U displacement nearly perpendicular to the U-Si bond.
Consequently, there would be little excess disorder of the U-Si
distribution function at low T , for this model.

(a)
Ru

(b)

U

Si

FIG. 8. Changes in the (a) Ru-Ru pairs and (b) the U-U and
U-Si pairs under an orthorhombic distortion, as viewed along the
c axis. The Ru atoms are yellow (open symbols with crosshatch
after the distortion). In (b) the Si atom is blue and the U atoms are
cyan; the displaced U atoms are light cyan and crosshatched. The
pair distances for the nearest Ru-Ru and U-Si pairs remain constant,
while the pair distribution function for U-U splits slightly, with the
longer pair distance along the horizontal and shorter distance along
the vertical.

Next consider the environment about Ru under this or-
thorhombic distortion. Every Ru has two Si neighbors ori-
ented along the a axis with the other two Si neighbors
oriented along the b axis (Fig. 9). Recalling that the Ru-
Si bond is the stiffest bond in the system, then under an
orthorhombic distortion in which the a axis shortens and the
b axis lengthens, the lower two Ru-Si bonds are thus com-
pressed while the upper two bonds are stretched [Fig. 9(a)].
This combination of compression and stretching will apply an
upward force on this Ru atom, and lead to a small upwards
displacement. Conversely, if the compression is along the b
axis (and stretching along a) this Ru atom will be displaced
downwards [Fig. 9(b)].

Note, however, that if an orthorhombic distortion is applied
to the URu2Si2 unit cell, some Ru atoms will move upwards
and some will move downwards as shown in Fig. 9(c), where
the top half of the unit cell (Fig. 1) is shown with a compres-
sion of the a axis and an expansion along the b axis. If the
compression is along the b axis the Ru displacements become
reversed.

An interesting feature exhibited by the model in Fig. 9(c) is
that if one Ru atom is displaced upwards it will tend to drive a
local orthorhombic distortion because of the very strong Ru-Si
bond strength, plus the fact that such a Ru displacement would
place two Ru-Si bonds under compression and the other two
under tension. The closest Ru neighbors will be displaced in
the opposite direction.

Finally, if a Ru atom is displaced upwards it will move
towards two U atoms and shorten those two Ru-U bonds; it
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FIG. 9. (a) and (b) Orthorhombic distortion of the Ru-Si pairs. The Si atoms (blue) will either move together or move apart, dictating the
displacement of the Ru atom (yellow) along the c axis (vertical). (a) A contraction of the distance between two Si atoms along the a axis (a-b
plane), pushing the Ru atom upward; similarly, the separation of Si atoms along the b axis also shifts the Ru atom up. (b) A compression
along b and expansion along a which displaces the Ru atom downward along the c axis. (c) Top half of the unit cell for URu2Si2 under the
orthorhombic distortion, as discussed in the text. Again, the cyan spheres are U, the yellow spheres are Ru, and the blue spheres are Si. The
arrows show the direction of compression and elongation when the orthorhombic distortion is present, in this case a compression of the a axis.
The square cross section of the tetragonal unit cell is transformed into a rectangle as shown previously in Fig. 8. Irrespective of which axis is
compressed, locally there will always be two Ru atoms displaced upwards and two downwards.

will also move away from the two U atoms below it (only one
shown) and lengthen the lower two Ru-U bonds. Thus this
distortion is consistent with the observed excess distortion that
develops for such atom pairs below 80–100 K.

The excess distortion begins to appear below 80–100 K
and grows as T is lowered; it reaches a maximum near 20–
25 K and then is essentially constant for lower temperatures.
Near 80 K the excess distortion is still small suggesting that
initially only a small fraction of unit cells become distorted.
If this happens randomly throughout the crystal, there will
be an increase in entropy, as these distorted unit cells form
with elongations randomly along either the a or b axes; i.e.,
two choices. The number of possibilities is then 2N and the
corresponding entropy of disorder is kBN ln2 where N is the
number of randomly distorted unit cells. As T is decreased,
the number of distorted cells will grow and the entropy will
also increase. Below the temperature at which orthorhombic
distortions of the unit cell begin to form, there will be short
range fluctuations, such as occur for all phase transitions.
In this case the fluctuations will be between distorted and
undistorted cells, or between changes in the direction of the
local distortion (along a or b). Because the distortion is small
compared to the amplitude for thermal phonons and phonon
frequencies are high (timescale of 10−12 s), fast thermal
fluctuations may persist down to low temperatures. We discuss
this model further in the next section.

A possible space group that describes the local structure
in Fig. 9(c) is the orthorhombic group Pnnm (No. 58), with
sites: U at 2a (0, 0, 0); Si at 4e (0, 0, 0.371); and Ru at 4 f
(0, 0, 0.2467). The a and b lattice constants are split by 0.03–
0.04 Å. Using a = 4.114 Å; b = 4.144 Å; c = 9.5085 Å, the
Ru-Si splitting is 0.043 Å, the U-U splitting is 0.03 Å, and
the U-Ru splitting is 0.037 Å, comparable to the values that
correspond to the observed excess disorder at 20 K.

VII. DISCUSSION

The results from the Fe K edge analysis show that the Fe-Si
bond is shorter by ∼0.05 Å and the Fe-Ru distance by 0.03 Å,
independent of x. However, for other near neighbor pair dis-

tances in the host lattice, no significant changes are observed
to within 0.005 Å, for x up to 0.2. Thus Fe substitution is not
equivalent to a uniform pressure; the distortions are localized
about the Fe atom. The Fe-Si bond has components along the
c axis as well as in the a-b plane and the contribution to the
observed contraction is not easy to determine. However, the
Fe-Ru pair distance is in the a-b plane and the projection
along either a or b of the Fe-Ru pair contraction is about
0.02 Å. Since at 10% Fe the average spacing between Fe
atoms in the a-b plane should be about two lattice constants
(8 Å), and remembering that two Fe-Ru pair distances must
be considered, then the fractional change is about 0.04/8 or
0.005. The expected fractional contraction of the a lattice con-
stant at x = 0.2 (10% Fe) is about 0.004, based on the work
of Kanchanavatee et al. [8] This contraction is in reasonable
agreement with the EXAFS model and and indicates that the
nonuniform contraction about the Fe atom accounts for the
observed average contraction of the a lattice constant.

The static distortion discussed in Sec. VI [Fig. 9(c)] has
the same symmetry as the B1g mode in Raman spectroscopy;
these local distortions break the fourfold rotation symmetry
of the tetragonal unit cell below 80–100 K. Buhot et al. [26]
observe a softening of the B1g mode below about 100 K,
which is the expected behavior when the crystal undergoes
an orthorhombic distortion in which the a axis lengthens
and the b axis contracts (or vice versa). Similarly, ultrasonic
measurements [33,34] report a softening of the transverse
(c11-c12) mode which again corresponds to a mode with B1g

symmetry (or �3 symmetry of the tetragonal group). Thus the
Raman and ultrasonic experiments are in agreement with the
local distortions reported here.

Some high resolution diffraction experiments [14,15] do
report a small splitting, but not all diffraction experiments
agree [16]. The reports showing a splitting [14,15] consider
orthogonal domains that are locally strained, but they report
slightly different types of orthorhombic distortions; Tonegawa
et al. [14] find a distortion at 45◦ to the a or b axes, with
B2g symmetry; here the elongation or contraction is along
the 1, 1, 0 (or 1,−1, 0) axis. Choi et al. [15] report an or-
thorhombic distortion with elongations along either the a or



b axes (space group Immm, No. 71), similar to the model
developed from the EXAFS data (space group Pnnm). The
main difference is that Choi et al. did not consider small
displacements of the Ru atom along the c axis. In addition,
the magnitude of the distortion reported in these diffraction
experiments is about two orders of magnitude smaller at
ambient [14] or low pressure [15] than observed in EXAFS; a
displacement this small would not be observed as a change in
σ 2 in EXAFS studies. In contrast however, Tabata et al. [16]
observed no evidence for a splitting of any x-ray diffraction
peaks in their single crystal studies near the HO transition.

In their high resolution synchrotron diffraction experi-
ments as a function of pressure, Choi et al. [15] found that
some Bragg peaks split, but only for pressures above a small
critical pressure pc ≈ 3 kbar. More interestingly, they note
that the a parameter varies significantly in the literature and
they therefore interpret their results in terms of a critical value
ac of the a lattice parameter at low T (below To), ac ≈
4.1225 Å. Bragg peak splitting then occurs when a < ac, as
observed by Tonegawa et al. [14] at ambient pressure and by
Choi et al. [15] for pressures above pc. For larger values of a
no splitting occurs, as observed by Tabata et al. [16] and Choi
et al. [15] at ambient pressure. As pressure is increased the
splitting observed by Choi et al. [15] increases, by roughly
a factor of 2 at 17 kbar. Choi et al.’s proposal that there is
a critical value for ac at low T will need further verification,
but it does explain discrepancies between different diffraction
experiments and may also be relevant for comparisons with
other experimental techniques (such as NMR/NQR discussed
below), for which the results appear to be inconsistent. In
particular, the EXAFS results for the U-U distance at low
T , averaged over four temperatures below 20 K, decreases
linearly with x, and is always below 4.12 Å—see Fig S7 and
Sec. V A; hence our samples have an a lattice parameter that
is below the critical value proposed by Choi et al. [15].

Even more surprising is that the orthorhombic splitting
observed by Choi et al. [15] extends up to approximately
100 K, and that the transition from the tetragonal to or-
thorhombic phase is nearly independent of temperature from
5 to 17 kbar. It is likely that this result is related to both
the resistivity maxima near T ∗ and to the excess disorder
observed in EXAFS.

A set of experiments that question the breaking of fourfold
symmetry at low temperatures are the NMR and NQR studies
[18–23]. 29Si NMR measurements by Takagi et al. [18,19]
find an increased linewidth for temperatures below To, which
is interpreted in terms of a small internal local magnetic
field (or local magnetic susceptibility); however, coupling
between magnetism and any tiny structural distortion would
be very small. Because 29Si is a spin-1/2 nucleus, there is no
electric quadrupole moment that would couple to an electric
field gradient, and consequently the 29Si NMR signal is not
directly related to any structural disorder. Also, no anisotropy
is observed for fields applied along 100 and 110 directions, for
either the 29Si or 99Ru NMR measurements. Mito et al. [20]
also find no evidence of a symmetry change, above and below
To, using a combination of both 99Ru NMR and 101Ru NQR
measurements. They report that the asymmetry parameter η

in the quadrupole Hamiltonian is zero within an uncertainty
of 0.0015.

A similar set of NMR/NQR studies was also carried out
by Kambe et al. [21–23] using highly enriched 29Si to obtain
an 11-fold increase in signal to noise. In their earlier studies
[21,22] they observed a small excess contribution to the Si
NMR linewidth below To that they modeled with a twofold
symmetry component, suggesting a breaking of the fourfold
symmetry. However, in their recent paper [23] they suggest
that this excess broadening with twofold symmetry arises
from extrinsic magnetic defects. They also find, in agreement
with Mito et al. [20], that η is very close to zero.

It is not obvious how these different results can be rec-
onciled. In fact, Buhot et al. [26] noted this issue earlier
and suggested that the diffraction results and the softening of
the B1g mode in Raman spectroscopy might not be related,
and this may eventually prove correct. However, there is
another possibility: if the distorted domains considered by
Tonegawa et al. [14] and Choi et al. [15] are actually nanoscale
domains, and remain small over most (or all) of the relevant
temperature range, then local probes will see the full distortion
but diffraction will only measure an average over many small
domains. That average can be much smaller and will depend
on the particular structure of the domains in a given sample.

The local elongation along one axis and compression along
the other below 80–100 K will introduce local shear strains.
To minimize such strain over the entire sample, there must
be comparable fractions of compressed and elongated regions
along both the a and b directions. If these nanoscaled regions
start to coalesce as T is lowered, somewhat larger domains
will develop, most likely aligned along the 1, 1, 0 or 1,−1, 0
axes, as for such domains there will be a large but comparable
number of short and long lattice constants along the original
a and b axes. One possibility is depicted in Fig. 10 where
1 by 4 unit cell regions, with elongations along either the a
or b directions, are stacked to form small domains aligned
along 1, 1, 0. Note that scans along 1, 0, 0 or 0, 1, 0 will give
an average lattice constant essentially unchanged from the
tetragonal structure. Scans along 1,−1, 0 for this domain
structure will also average over many domains and be nearly
the same as for the tetragonal structure, depending on the
distortions in each phase boundary. Along the 1, 1, 0 direction
however, there is a much longer coherence length, and effects
from the orthorhombic distortions should develop. Because
of these small distortions, plus the different shear strains
that develop in the two regions, the unshaded and shaded
regions will have slightly different diffraction patterns for
scans along 1, 1, 0. When large domains form, the original
1, 1, 0 planes of the tetragonal structure are rotated slightly,
and in opposite directions for orthorhombic elongations along
1, 0, 0 and 0, 1, 0. However, for small domains, as depicted in
Fig. 10, it is not clear how the nearby grain boundaries will
modify the orientation of these planes. Also, note that for the
orthorhombic distortion shown in Figs. 8 and 9, the distance
between the 1, 1, 0 planes does not change to first order (ex-
pansion along one direction nearly cancels contraction along
the perpendicular direction) and changes in the diffraction
pattern for 1, 1, 0 scans will therefore be very small: the
second order change in the lattice spacing along 1, 1, 0 varies
as (�/a)2 where � is the orthorhombic distortion |a-b|. The
observed pattern will depend on the size of the domains
and the local shear strains. Such small differences could be
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FIG. 10. Possible nanoscaled domains along the 1, 1, 0 direction
when small orthorhombic distortions develop along the a or b axes,
as show in Fig. 9. Here small, 1 × 4 unit cell regions, are stacked
to make larger domains. The open regions are elongated along the a
axis while the cyan colored regions are elongated along the b axis,
as shown by the horizontal and vertical arrows. This arrangement
minimizes strain along both a and b. Along either axis, there are
alternating regions with long and short lattice constants; the average
lattice constant will be nearly unchanged from the tetragonal value.
In addition, because of the small orthorhombic distortions of these
small domains, the unshaded regions will have a shear strain along
the a axis, while the cyan shaded regions will have a shear strain
along the b axis. The 110 planes become rotated slightly under the
orthorhombic distortion, and the diffraction patterns for a scan along
1, 1, 0, will then be slightly different for the unshaded and shaded
regions.

interpreted as very tiny changes in lattice constants. Of course
other domains should also develop along the 1,−1, 0 direc-
tion, and differences between 1, 1, 0 and 1,−1, 0 scans would
depend on the details of the domain formation. This example
serves primarily to show that the results from diffraction and
local probes might be reconciled if the domains are very small,
but further analysis will be needed.

In addition, Choi et al. [15] have proposed that splitting
is only observed if the a lattice parameter is below a critical
value ac, and reconciled the differences between different
diffraction results as discussed above. In terms of the domain
structures shown in Fig. 10, this might imply that distorted
domains do not form when a > ac. Perhaps that could explain
the lack of symmetry breaking in the NMR work of Takagi
et al. [18,19] since Tabata et al. [16] used the same samples as
Takagi et al., and for those samples a > ac. Unfortunately, the
a lattice constants at low T for the studies by Mito et al. [20]
and Kambe et al. [21–23] are not reported. If those samples
also have larger values of a, that might explain the conflicting
results. It is also not clear how large the domains need to be
for NMR/NQR to see structural effects, although Kambe et al.
[22] suggest at least a few unit cells. Finally, there is one other
important difference between NMR and x-ray techniques, and

that is the timescale. NMR is a relatively slow probe in the
MHz regime while x-ray techniques are very fast of order
10−15 s. The distortions reported are all small compared to
thermal phonon disorder (the phonon timescale is of order
10−12 s) and it is therefore quite likely that unit-cell-sized
domains are fluctuating rapidly (from distorted to undistorted,
or between elongations along the a and b axes), particularly
at the higher temperatures. Fluctuations are an important part
of all transitions and if they are fast, the NMR lines will be
motionally narrowed.

In addition, there are two other experiments that indicate
a breaking of the fourfold symmetry, but are more difficult to
interpret, namely, the magnetic torque experiments [31] and
the changes in resistivity in perpendicular directions under
applied biaxial strain in the a-b plane [35]. The interpretation
of these experiments depends on the details of the local
domain formation when the domains remain small.

As noted earlier, the random orthorhombic distortions of
the unit cell will introduce excess entropy in the system S =
kBN ln2, and S will increase as the number of distorted unit
cells N increases as T is lowered. If these unit-cell-scaled
distorted regions coalesce to form larger domains at low T ,
as described above, this will remove some entropy as some
of the initially nanosized regions become aligned, as shown
in Fig. 10. That raises an interesting question: is the low T
transition to either the HO or LMAFM phases the final step in
this process, where a fraction of the randomly distorted unit
cells become aligned over a small T range, thereby giving
up significant entropy? Although the distortion reported by
Tonegawa et al. [14] is very small, there is a step change
near 17.5 K for x = 0, suggesting that this tiny structural
distortion is indeed related to the entropy change observed
in specific heat measurements at the HO transition. However,
the distortion reported by Choi et al. [15] exists up to 100 K
and does not show any step near 17 K. The magnitude of
the relative distortion observed in EXAFS is of order �/a ∼
0.01. Using the second order change in the 1, 1, 0 lattice
spacings described above, the effect in diffraction should be
(�/a)2 ∼ (0.01)2, or 10−4 which is consistent with the small
change reported by Tonegawa et al. [14] and Choi et al. [15].
Note that there appears to be little difference in the low T
transition as a function of x, between a transition to the HO
or to the LMAFM states. The model suggested by the EXAFS
data is independent of the nature of the low T phase and hence
can apply to all ranges of x from 0 to 0.2. Consequently, this
transition would be a continuous function of x.

Phase transitions are usually associated with an order pa-
rameter that goes to zero at some critical value of T (or for
some other external parameter). Choi et al. [15] defined an
order parameter (a − b)/(a + b) that goes to zero near 100 K.
In EXAFS the difference between the values of σ 2 and a
Debye fit for the Ru-Si pair below 100 K is a measure of the
excess disorder and the square root of this quantity is a length
that is very similar to the order parameter suggested by Choi
et al. Because of the variations in σ 2 shown in Fig. 6 from one
sample to the next, the fluctuations in this difference function
are large. To minimize these fluctuations the difference func-
tions for the various samples are first averaged before taking
the square root; this ignores any tiny changes associated with
the different concentrations of Fe. This quantity is plotted in
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FIG. 11. The square root of the average of the differences be-
tween the σ 2 data and a Debye fit for the Ru-Si pair. The blue
squares are an average over all seven samples in the first data set,
while the red solid circles are an average over samples with three
Fe concentrations x = 0.0, 0.1, and 0.2, in the second data set.
This averaged quantity provides an order parameter for the small
orthorhombic distortion observed, which is proportional to that used
by Choi et al. [15]. The black dotted line is a power-law fit as a guide
to the eye from 0–110 K.

Fig. 11 for the two data sets; blue squares are an average over
all seven samples in the first data set, while the red circles are
an average over three samples used in the second data set for
x = 0.0, 0.1, and 0.2. The points from 4 to 110 K were fit to a
power law: (�σ 2)1/2 = A ∗ (To − T )0.39 with To = 104 K and
A = 3.35 × 10−3. This fit is shown as a black dotted line and
serves as a guide to the eye. The data have too much scatter to
see any significant change at To, and Choi et al. [15] also did
not see any step at this HO (or LMAFM) transition.

Finally, how do the local distortions relate to the forma-
tion of the coherent heavy Fermi liquid ground state that is
proposed as the explanation for the drop in resistivity below
≈80–100 K? Models for the heavy Fermi liquid ground states
of correlated f -electron systems only consider electronic
behavior [29,50] and generally ignore the lattice. However,
a small change in the symmetry of the lattice can shift the
electronic states significantly—could this shift the Fermi level
in distorted regions into a band with a low dispersion in k
space (and high effective mass)?

VIII. CONCLUSIONS

An extensive XANES and EXAFS study of URu2−xFexSi2

(x = 0 to 0.2) has been carried out as a function of Fe
concentration and temperature from 4–300 K. The XANES
experiments show that the U, Ru, and Fe edges do not change
with x; any shifts of the edges are less than 0.1 eV. Thus
changes with x for future RXES experiments will likely be
very small.

The detailed EXAFS study shows that the compression of
the lattice with Fe substitution is mostly localized about the
Fe atoms. Thus, although Fe substitution is often considered
as a “chemical” pressure, it is nonuniform. Although the
substitution of Fe on the Ru site does lead to a net contraction
in the ab plane and a shift of the low temperature phase from
HO to LMAFM, its effect on other structural properties is
weak. The σ 2 plots for a given pair are all similar, as are the
Debye temperatures.

A more important observation is an unusual local disorder
that is observed for several atom pairs below 80–100 K,
which is essentially independent of the Fe concentration. This
cannot be explained as arising from phonons. The effect is
most prominent for the Ru-Si bond; here the excess disorder
increases as the temperature is decreased down to ≈20 K. In
contrast, the Ru-Ru pair shows no excess disorder at low T .

Increased disorder at low T indicates an unresolved split-
ting of the pair distribution function, and for the Ru-Si bond is
about 0.04 Å. Combining the results for the six pairs, Ru-Si,
Ru-Ru, Ru-U, U-Si, U-Ru, and U-U, leads to an orthorhombic
distortion having B1g-like symmetry, with a contraction along
the a axis, an expansion along the b axis (or vice versa), and
alternating displacements of the Ru atom along the c axis as
shown in Fig. 9(c). A space group that describes this distortion
is Pnnm (No. 58), with U at (0, 0, 0), Si at (0, 0, 0.37), and
Ru at (0, 0, 0.2467). This space group is very similar to that
proposed by Choi et al. [15], but allows the Ru atom to shift
slightly along the c axis, away from (0, 0, 0.25).

A model is proposed in which only nanoscale domains
form at low T , aligned primarily along the (1, 1, 0) or
(1,−1, 0) directions (Fig. 10). For such a twinned structure,
the average lattice constant for diffraction scans along the a
or b axes will be unchanged, while the lattice plane spacings
along (1, 1, 0) are also unchanged to first order. The second
order change in spacing along (1, 1, 0) varies as (�/a)2 where
� is the orthorhombic distortion extracted from the EXAFS
analysis. Within this model, the tiny changes observed in some
high resolution diffraction experiments [14,15] are consistent
with the magnitude of the orthorhombic distortion extracted
from the EXAFS analysis. Thus this model, together with
the critical value for the a lattice parameter proposed by
Choi et al., can reconcile several, at first disparate, results:
the Raman [26] and ultrasonic [33,34] experiments that show
a softening of a mode with B1g-like symmetry, the EXAFS
reported here, the high resolution diffraction experiments
[14–16], and to some extent, the NMR/NQR measurements
[18–23]. More work is needed to explore these differences.

Furthermore, this model suggests that the transition from
a paramagnetic phase to an ordered phase (HO or LMAFM)
at low T should be a continuous function of x and not be
dependent on the magnetism. This low temperature transition
may be the final step in the evolution of an orthorhombic
distortion that begins to develop near 100 K, but for which
large domains never form.

The square root of the difference at low T , between σ 2(T )
for the Ru-Si pair and Debye fits of these data (100–300 K),
serves as an order parameter for this small orthorhombic
distortion. The difference functions for each data set are
averaged to reduce fluctuations and the difference goes to zero
near 100 K. It rises smoothly down to 20 K and then saturates;
similar behavior, with a critical temperature near 100 K, was
observed for the order parameter used by Choi et al. [15] for
a range of hydrostatic pressures.
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