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Abstract

Footage of Other Worlds: Unveiling the Dynamical Architecture of Young Exoplanetary
Systems

by

Jason Jinfei Wang

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor James R. Graham, Chair

This thesis focuses around using the Gemini Planet Imager (GPI), an instrument designed to
directly-image exoplanets, as part of the GPI Exoplanet Survey (GPIES), a multi-year survey
to image and characterize Jovian exoplanets orbiting at Solar System Scales (5-100 au). The
first half of this thesis is on building the data analysis infrastructure for GPIES. I helped
commission GPI by characterizing the ability to measure the position and flux of a star when
it is placed behind an occulting mask specifically designed to suppress starlight. I also led
the development of the automated data processing infrastructure for GPIES that handles all
of the data storage, indexing, and processing. This data infrastructure has optimized survey
execution, ensured uniform data products, and characterized instrument performance. In the
second half of this thesis, I characterize two notable exoplanetary systems through precise
astrometry and orbital analysis. I present improvements to astrometric data analysis that
allow us to measure the position of β Pic b to one milliarcsecond, the most precise astrometry
of an exoplanet to date. I tighten constraints on its orbit, including timing a window in
which circumplanetary material of this young exoplanet could be transiting the star. Lastly,
I apply the same astrometry techniques to the HR 8799 system which harbors four Jovian
exoplanets. I add dynamical stability priors on my orbit fits using an N-body integrator
to find stable orbits in the system. Through this, I explore possible orbital resonances and
place dynamical constraints on the masses of the planets.
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Chapter 1

Introduction

1.1 Imaging Extrasolar Planets
Unlike stars that shine bright from nuclear fusion, planets are faint. Even in our own

Solar System, the discovery of the furthest-out planets required distinguishing faint sources
of light that slowly orbit the Sun from near stationary stars in the background and highly
eccentric comets. As detecting planets in our Solar System is based on observing sunlight
reflecting off of these worlds, planets further from the Sun become harder to find and require
better telescopes. Due to this, the efforts to image all of the planets in our own Solar System
has spanned many centuries (Herschel & Watson 1781; Galle 1846; Leonard 1930). Even
now, the largest telescopes in the world have been searching the skies for a possible ninth
planet in our Solar System that has eluded centuries of telescopes (Batygin & Brown 2016).

Imaging exoplanets comes with the added difficulty that the light from the faint planet
resides next to a bright host star in the sky. Unlike Solar System planets which can be on
the other side of the sky from the Sun, exoplanets can never get far from their stars from our
point of view on Earth. A planet at 5 AU around a nearby star at 10 pc would only have an
angular separation in the sky of 0.5′′. At these separations, detecting reflected starlight off
the atmospheres or surfaces of these planets is impractical with our current instrumentation.
Jupiter is a billion times fainter than the Sun, Earth is another ten times fainter than Jupiter,
and both are inaccessible until future space missions (Crill & Siegler 2017).

Thankfully, we are not limited to only detecting mature exoplanets through reflected
starlight. As a planet forms, it is heated by the material it accretes. Over time, it radiates
away its heat from formation as it cools. Even though the exact physics of planet formation
and accretion of materials is uncertain, planets that are only ten million years old are hot
(∼ 500−1500 K) and are only 10−4-10−6 times fainter in the near-infrared than stars similar
to the Sun (Baraffe et al. 2003; Marley et al. 2007). This is several orders of magnitude
brighter than they would be if they only reflected starlight. Thus, nearly all attempts to
image exoplanets to date have targeted young systems to look for hot, young exoplanets
(e.g., McBride et al. 2011).

With a perfect circular telescope with no optical aberrations and with no atmospheric
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Figure 1.1 : One-dimensional plot of the signals of a star and planet. Fluxes are normalized to
the peak flux of the star. The planet is 10−6 times fainter than the star and separated by 0.4′′.
This assumes a perfect 8-m circular telescope in the absence of both optical aberrations and an
atmosphere.

turbulence, a young Jovian planet that is within an arcsecond of a star is still extremely hard
to image. Figure 1.1 shows the relative signal of a planet and a star for a case representative
of the faintest planets that can be detected by current imaging instruments. The ringing
signal of the star is due to the diffraction of starlight through a perfect circular aperture (i.e.,
due to the fundamental wavelike property of light). To see these planets, a coronagraph is
needed to suppress diffraction and keep starlight away from the regions in the image where
we are looking for planets.

Very few coronagraphs have been used in space for exoplanet imaging. With the corona-
graphs on the Hubble Space Telescope ending operations in 2008, we will need to wait until
the launch of the James Webb Space Telescope for another space coronagraph (Beichman
et al. 2010). Otherwise, we must be able to handle atmospheric turbulence in order to use
coronagraphs with ground-based telescopes, which have done the bulk of exoplanet imaging.
Turbulence in the Earth’s atmosphere will smear out the light from each source by ≈ 1′′.
This may be tolerable for an equal-brightness stellar binary, but will render a faint planet
invisible. The planet both will have its light spread over a large portion of the image and
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will have the bright blur of the star on top of that. To mitigate this issue, ground-based
telescopes use adaptive optics (AO) systems to correct for distortions in the wavefront of
light due to Earth’s atmosphere in order to spatially separate the light of the planet from
the light of the star. Note that for eventual imaging of exo-Earths, even space telescopes will
need AO systems to correct for optical aberrations due to thermal drifts in the instrument
(Crill & Siegler 2017).

Not all exoplanets are unveiled simply by taking images behind a coronagraph and AO
system. The majority of imaged exoplanet discoveries also required further removal of stel-
lar glare by post-processing the data. Post-processing relies on observing strategies that
decorrelate the signals of a planet from its star in the images. This thesis will focus on two
strategies. The first is angular differential imaging (ADI), where the sky rotates due to the
Earth’s rotation so planets around a star rotate over the course of a night while the diffrac-
tion pattern of the star stays constant over time since it depends only on the orientation
of the instrument (Marois et al. 2006a). The second is spectral differential imaging (SDI),
where the stellar diffraction pattern moves out radially from the location of the star with
increasing wavelength, while the signal of the planet stays at a constant location (Marois
et al. 2000). In both ADI and SDI, the way and amount the star and planet decorrelate from
each other is known: in ADI, we know how much a planet rotates based on its location in the
sky; in SDI, we know how much the stellar diffraction moves based on the wavelengths the
data were taken at. This information can then be put into algorithms that seek to remove
the stellar light.

Many post-processing algorithms have been used. For this thesis, we use Karhunen-Loève
Image Projection (KLIP; Soummer et al. 2012; Pueyo et al. 2015). KLIP uses principal
component analysis (PCA) to model and subtract the signal of the star in the data. One ad-
vantage of KLIP is that the number of PCA modes to use is tunable, which limits overfitting
the data and removing the signal of planets. This is an issue with ADI and SDI since these
observing strategies do not remove the planet in the images, but rather mostly decorrelate
the signal from the stellar signal. Thus, planet signal will significantly leak into the model
of the star, but only after a certain number of PCA modes. Thus, KLIP provides a tunable
parameter, the number of PCA modes, which allows us to trade of between maximizing the
signal of the planet and suppressing stellar diffraction.

Thus, to image other worlds, we require the combination of AO systems to correct for
atmospheric turbulence, coronagraphs to suppress the glare of the star, and post-processing
techniques that leverage specific observation strategies to remove the residual signal of the
star. With the current technology available to us, we are able to image young, Jovian planets
and study how they formed.

1.2 Studying Imaged Worlds
Because of the technical challenges in directly imaging planets, we have found < 10 plan-

ets with orbital separations < 100 au (Bowler 2016). Despite the paucity of imaged planets,
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we can characterize in detail each planet we image by studying its orbit and spectrum. First,
we must correctly extract out the position, flux, or spectrum of the planet in the data. This
is particularly difficult, as post-processing distorts the signal of the planet due to overfitting
the stellar diffraction pattern it was trying to subtract. The standard in the field has been
using simulated planets to calibrate this effect or to inject a negative planet profile with
opposite flux at the location of planet so that after post-processing there is only noise at
the location (Marois et al. 2010a; Lagrange et al. 2010). Most recently, analytical methods
have been developed that can calculate the distortions induced by algorithms such as KLIP
(Pueyo 2016). While a technical detail at times, properly measuring the planet in the data
is crucial to understanding their nature (Nielsen et al. 2017).

Direct imaging and transit spectroscopy are the only ways to study the atmosphere of
exoplanets, but the two probe completely different planets: direct-imaging is sensitive to
planets at large separations (≥ 5 au) whereas transit spectroscopy only studies planets that
are close in to the star with short orbital periods (≤ 100 days). By directly obtaining the
spectra of giant planets and measuring molecular absorption features, we can infer their
abundances and thus the composition of the planet. Since these giant planets lie between
different snow lines (radial distances from the star beyond which the equilibrium temper-
ature is cold enough that certain molecules solidify), the composition of the planets can
inform us on their formation mechanisms and accretion histories (Öberg et al. 2011). Due
to uncertainties in the atmospheric models, these analyses are difficult, but the work to date
has favored core accretion (Pollack et al. 1996) for forming these directly imaged planets
(Konopacky et al. 2013; Lavie et al. 2017).

By obtaining images of planets over time, we can observe the motion of these exoplanets
and gain insights into the dynamics of the system. However, directly-imaged exoplanets orbit
at at separations > 5 au from their stars, with the shortest known period to be ∼20 years
(Wang et al. 2016). No exoplanet has been directly observed for a full orbit yet. Inferring the
orbits from partial orbital arcs requires precise astrometry and robust statistical methods.
Precise astrometry requires high angular resolution, good coronagraphs, and well calibrated
instruments. The statistical precision, σx, of an astrometric measurement is approximated
as

σx = σPSF/SNR. (1.1)
Here, we assumed that the point spread function (PSF) of the planet can be approximated by
a symmetric 2-D Gaussian function with standard deviation σPSF (Birney et al. 2006). The
planet is detected with a certain signal-to-noise ratio (SNR) that depends on the brightness
of the planet and the amplitude of the noise, which has contributions both from the ability
to suppress the stellar glare and any detector or photon noise. If we assume we are using
a really good AO system on a 8-m telescope observing at the diffraction limit at 1.6 µm
(σPSF ≈ 20 mas), we need a coronagraphic instrument and post-processing algorithms good
enough to achieve a SNR of at least 20 to obtain 1 mas astrometry of the planet. Astrometry
is often obtained by multiple instruments, especially for astrometric baselines that span many
years, so calibrating multiple instruments together is another challenge. Finally, when we
measure the planet’s position, it needs to be in terms of relative offset from its host star



1.2. STUDYING IMAGED WORLDS 5

2 1 0 1 2
X (au)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Y
 (a

u)

e = 0, i = 30
e = 0.3, i = 0

Figure 1.2 : Two orbits plotted in 2-D projection to show a degeneracy in the orbital parameters.
The orbit in the solid blue line is circular, but inclined 30◦ along the y-axis. The dotted red orbit
is face-on but has an eccentricity of 0.3 with periastron along y=0. The projections of the orbits
onto the 2-D sky plane are very similar on the right side.

to have physical meaning (e.g., for Keplerian orbits). As we typically place stars behind
a coronagraphic mask, locating the star is equally important as locating the planet. In
the design of recent exoplanet imaging instruments, fiducial spots are created by diffracting
starlight before it is occulted by the coronagraph, a technique we will discuss further in this
thesis (Marois et al. 2006b; Sivaramakrishnan & Oppenheimer 2006).

With partial orbit arcs, and without much, if any, knowledge of the position or velocity
of the planet towards/away from Earth, many orbital solutions can satisfy the same data.
At least six orbital parameters are required to describe a planet orbiting a star (Green
1985). Typically, there are many local minima in this six-dimensional space. For example,
Figure 1.2 shows how, with a small orbital arc, degeneracies exist between an inclined or
eccentric orbit. Many studies in the literature have used least squares fits, which currently



1.2. STUDYING IMAGED WORLDS 6

in implementation only probe finite families of orbits (e.g., Marois et al. 2008; Zurlo et al.
2016). Recently, Bayesian techniques that use Markov chain Monte Carlo (MCMC) methods
have been developed and can consider all the possible orbital degeneracies (Kalas et al. 2013;
Macintosh et al. 2014; Pueyo et al. 2015; Millar-Blanchaer et al. 2015).

After we overcome the technical challenges in measuring the orbit of a directly imaged
exoplanet, we are rewarded with insights into the dynamics of the system. The exoplanet
β Pic b is one of the best examples of this (Lagrange et al. 2010). The star is known to harbor
a debris disk with a strong warp feature (Burrows et al. 1995; Mouillet et al. 1997; Heap
et al. 2000). By measuring the orientation of its orbit as well as excluding other possible
planets through stability arguments, we know that β Pic b is responsible for driven the warp
feature (Dawson et al. 2011; Lagrange et al. 2012). It is also launching comets into the star
(Thébault & Beust 2001; Millar-Blanchaer et al. 2015), but it alone may not be responsible
for cleaning out the cavity of the debris disk (Millar-Blanchaer et al. 2015). Lastly, the
planet’s orbit is so nearly edge-on that, while the planet does not pass in front of the star,
its Hill sphere does and offers one of the best opportunities to probe the circumplanetary
environment of a young exoplanet (Stuik et al. 2017; Mékarnia et al. 2017; de Mooij et al.
2017).

While the dynamics in other systems might be less clear than in the β Pic system, orbital
analysis still can provide many insights. The HR 8799 system harbors four super-Jupiters
orbiting between 15 and 70 au (Marois et al. 2008, 2010b). Tightly packing planets between
∼ 5-7MJup likely requires orbital resonances and offers an unique opportunity to constrain
the masses of these planets dynamically (Fabrycky & Murray-Clay 2010; Goździewski &
Migaszewski 2014). Peculiarly, the orbit of Fomalhaut b looks to cross the debris disk in the
system, but the debris disk shows no signs of disturbance, hinting that the planet may be
low-mass and bright due to light reflected off of a shroud of dust around the planet (Kalas
et al. 2013). By studying both the orbit of HD 95086 b and the debris disk, we know that
the gap in the debris disk is too wide for the one known planet to carve by itself and there
should be other unseen planets closer in to the star (Rameau et al. 2016).

Finally, establishing long-baselines to constrain the orbit of these planets will provide
synergies with the Gaia mission (Perryman et al. 2014). Gaia will measure the astrometric
reflex motion of the host star due to planets orbiting it, leading to model-independent mea-
surements of the masses of these planets. However, its five year mission is short, and will
only measure a partial orbital arc for these known systems. By combining Gaia measure-
ments with longer-term astrometry from direct imaging, we can have better constraints on
the masses of these planets (Sozzetti et al. 2016). These dynamical masses can then be used
to constrain models of planet formation, as the mass and luminosity of the planet encodes
information on how the planet formed (Baraffe et al. 2003; Marley et al. 2007).
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1.3 This Dissertation
This dissertation revolves around using the Gemini Planet Imager (GPI; Macintosh et al.

2014). GPI combines a high-order AO system (Poyneer et al. 2016), an apodized-pupil Lyot
coronagraph (Soummer et al. 2011b), and an integral field spectrograph (IFS) that takes
simultaneous images and spectra between 1 and 2.4 µm with spectral resolution between
30 and 80 (Chilcote et al. 2012; Larkin et al. 2014). The IFS can alternatively be used for
imaging polarimetry instead of spectroscopy to look for polarized light from debris disks
and the atmospheres of exoplanets (Perrin et al. 2015). GPI was finished, delivered to the
Gemini South telescope in Chile, and began its commissioning in 2013. After a year of
commissioning, the GPI Exoplanet Survey (GPIES) began a multi-year search around 600
young and nearby stars for Jupiter-like exoplanets orbiting beyond 5 au (McBride et al.
2011). GPIES aims to discover new planets with its improved performance over previous
instruments, characterize imaged exoplanets through measuring their orbits and spectra,
constrain the frequency of giant planets at Solar System scales, and resolve the circumstellar
dust that is left over from planet formation.

The first half of this dissertation can generally be described as developing data anal-
ysis instrumentation: building and understanding the infrastructure for GPI data reduc-
tion. Chapter 2 is instrument commissioning work on understanding the astrometric and
spectrophotometric calibration of the star, from which relative measurements of the plan-
ets properties are made, and is published in Wang et al. (2014). Chapter 3 describes the
automated data processing system that was developed for GPIES that handles all data pro-
cessing, storage, and indexing and is published in Wang et al. (2018). The second half of
the thesis uses GPI to make the most precise astrometric measurements of directly-imaged
exoplanets and characterizes the dynamics of exoplanetary systems through orbital analysis.
Chapter 4 introduces data analysis improvements to obtain one milliarcsecond astrometry
of exoplanets and applies it to the well-studied exoplanet β Pic b. This work was published
in Wang et al. (2016). Finally, Chapter 5 explores the orbits of the four planets orbiting HR
8799, and in particular how the application of dynamical stability constraints can strongly
constrain both the orbits and masses of the planets in the system. As of writing, this work
has been reviewed by the GPIES collaboration and submitted to a refereed journal. This
thesis also contains two appendices. Appendix A is a published appendix to Chapter 4.
Appendix B details a frequentist approach to measuring the astrometry of directly imaged
exoplanets, from which we can properly combine uncertainties on the planet’s location with
frequentist astrometric calibration uncertainties.

During my thesis, I have also written an open-source Python implementation of KLIP
called pyKLIP (Wang et al. 2015). pyKLIP supports data from most major high-contrast
imaging instruments and has a GenericData interface for everything else. In addition to
removing the glare of the star with KLIP, it provides the tools to do scientific analysis such
as searching for planets, quantifying sensitivity, extracting the position and spectrum of
a planet, and characterizing the morphology of debris disks. We also have a full site of
documentation on how to use and develop for pyKLIP. Unfortunately, I did not have the

http://pyklip.readthedocs.io/en/latest/
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time to write a section on it as part of my thesis, but felt it was important to point out
this contribution to the field. As of writing this thesis, pyKLIP has been used in over 25
publications.
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Chapter 2

Gemini Planet Imager Observational
Calibrations VIII: Characterization and
Role of Satellite Spots

A version of this chapter was first published in Proceedings of the SPIE : Wang et al. (2014).

The Gemini Planet Imager (GPI) combines extreme adaptive optics, an integral field
spectrograph, and a high performance coronagraph to directly image extrasolar planets in the
near-infrared. Because the coronagraph blocks most of the light from the star, it prevents the
properties of the host star from being measured directly. Satellite spots created by diffraction
from a square grid in the pupil plane can be used to locate the star and extract its spectrum.
We describe the techniques implemented into the GPI Data Reduction Pipeline to measure
the properties of the satellite spots and discuss the precision of the reconstructed astrometry
and spectrophotometry of the occulted star. We find the astrometric precision of the satellite
spots in an H-band datacube to be 0.05 pixels and is best when individual satellite spots
have a signal to noise ratio (SNR) of > 20. In regards to satellite spot spectrophotometry,
we find that the total flux from the satellite spots is stable to ∼ 7% and scales linearly with
central star brightness and that the shape of the satellite spot spectrum varies on the 2%
level.

2.1 Introduction
The Gemini Planet Image (GPI) is a new facility-class adaptive optics (AO) instrument

for the Gemini Observatory that is optimized for coronagraphic observations of bright (I <
9 mag.) natural guide stars. The principal science goal of GPI is imaging the environment of
young (∼ 125 Myr) stars in the solar neighborhood (∼ 50 pc) to discover and characterize self-
luminous planets and planetary debris disks. GPI uses low resolving power (R ∼ 45) spectra
to study exoplanet atmospheres and astrometry to quantify their kinematics (McBride et al.
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2011).
Astrometry of exoplanets is necessary to discriminate between background objects and

physically associated bodies and to measure their orbital elements. The semimajor axis,
orbital inclination (relative to other components of the system), and eccentricity all carry
important clues to their origin and evolution. Due to the large semimajor axis separa-
tion of GPI-detected planets, orbital periods are long (10—1000 yr) and orbital coverage is
necessarily incomplete. While such fragmentary data can be used to reconstruct the orbit
using modern statistical techniques (Kalas et al. 2013; Macintosh et al. 2014), the lack of a
complete orbit places milli-acrsecond requirements on the accuracy and precision (Graham
2009).

Near-IR ground-based spectrophotometry has to be corrected for strong wavelength de-
pendent absorption by the terrestrial atmosphere (notably by H2O and CO2). Tradition-
ally, this correction is constructed from contemporaneous observations of calibration stars of
known spectral type (typically A or G dwarf stars) at similar airmass. However, this requires
additional planning and overhead for each star that is to be observed. It is more efficient
when this calibration is done simultaneously with the science observations.

Coronagraphic observations pose a unique problem for differential spectrophotometry
and astrometry of an exoplanet relative to its primary, which is occulted. To overcome
this obstacle, GPI includes a square grid in a pupil plane which acts as a two-dimensional
amplitude grating. The grid is superimposed on the the pre-occulter pupil apodizer (left
image of Figure 2.1). Diffraction of starlight from this grating injects first-order diffraction
spots into the field of view for a given wavelength. In each wavelength channel in spectral
mode, this creates reference spots that we term “satellite spots” (center image of Figure
2.1). In broadband polarimetry mode, the satellite spots become streaks extending radially
outward from the location of the star (right image of Figure 2.1). These satellite spots
preserve the information needed to reconstruct the spectrum and location of the occulted
star: the diffraction pattern is centered on the true stellar position and is imprinted with an
attenuated version of the stellar spectrum (Sivaramakrishnan & Oppenheimer 2006; Marois
et al. 2006b). In this report we discuss how we measure the satellite spots and investigate
the spectrophotometric and astrometric properties of these diffraction spots.

2.2 Satellite Spot Extraction
The raw data from the integral field unit is reduced using the GPI Data Reduction

Pipeline (DRP; Perrin et al. 2014). For both spectral and polarimetry mode, the data
are dark-subtracted, corrected for flexure, and extracted into three-dimensional datacubes,
where the x and y dimensions are angular coordinates on the sky. In spectral mode, the
z-dimension of the datacube consists of the flux in 37 wavelength channels; in polarimetry
mode, the z-dimension consists of the broadband flux in two orthogonal polarization modes.

There are a couple of steps that are important to properly measuring the satellite spots.
Extracting the flux from each microlens (particularly in spectral mode) is challenging, espe-
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Figure 2.1 : Left: An image of the H-band apodized pupil mask fabricated by Aktiwave LLC,
Rochester, NY. Center: A wavelength slice from an H-band spectral datacube taken in the lab
showing both the first order diffraction spots used for calibration and the second order spots that
peek out from the edge of the detector. Right: A total intensity H-band image from a polarimetry
mode datacube taken in the lab showing both the first-order and second-order diffraction spots.

cially in the presence of instrument flexure between the microlens array and the dectector
(Wolff et al. 2014). We characterize flexure shifts by taking argon arc lamp spectra after the
telescope slews to a new target. Additionally, we apply a geometric distortion correction to
all the images to rectify the position of the satellite spots (Konopacky et al. 2014).

2.2.1 Spectral Mode

Locating & Measuring the Satellite Spots

Locating the satellite spots in the reduced spectral data cubes is typically achieved in two
steps. First, an approximate set of spot locations is determined from one wavelength slice
of the cube (this step can be bypassed if guesses for the locations of the satellite spots are
manually supplied). These approximate locations are then scaled linearly with wavelength
to find initial positions for all cube slices, which are then used to fit the precise location of
each spot in each slice independently.

The first step of the procedure is described in detail in Savransky et al. (2013). Briefly,
we assume that the four satellite spots form a perfect square in the image, and that they
are relatively bright as compared with their neighboring pixels (although they need not be
the brightest features in the image, nor even brighter than the median image value). These
assumptions allow us to carry out an efficient search of the image. We iteratively construct
a list of candidate spot locations, identifying the current brightest point in the image, and
then removing it, along with a radius of x pixels about it, from the search region (the value



2.2. SATELLITE SPOT EXTRACTION 12

of x is determined by the average size of a satellite spot in all cube wavelengths). These
bright images are stored in the expanding set {ri}Ni=1, where each vector (ri) is the two-
dimentional pixel coordinate of the candidate location. As the list is being built, we conduct
a breadth-first search for pixels sets forming perfect squares, where each node is a subtree
whose branches represent all of the combinations of the root node with three other elements
of {ri}. The value of all terminal nodes is binary, given by operating on the set of six
distances between any four points ({ri}4i=1):

{dk}6k=1 = {‖ri − rj‖ : i, j ∈ {4C2}} , (2.1)

where {4C2} is the set of two element sets representing all combinations of four elements taken
two at a time, without repetition. Assuming the set of distances is ordered by increasing
magnitude, the four points define a square if and only if the first four distances ({dk}4k=1)
are equal, the last two distances ({dk}6k=5) are equal, and the ratio of the magnitudes of the
two subsets of distances is

√
2.

This search is made much more efficient by introducing a pruning heuristic, namely that
all perfect squares contain right triangles. For any subset of three of the four candidate
vertices, the corresponding subset of distances:

{d′k}3k=1 = {‖ri − rj‖ : i, j ∈ {3C2}} , (2.2)

must contain two elements that are equal, and one element that is
√

2 times larger. This
is a necessary, but not sufficient, condition for defining a square. This condition allows us
to prune whole branches of the tree, and greatly improve the search efficiency. This is also
the smallest subtree that can be tested, as any two arbitrary points can form an edge of a
square.

Once identified, the approximate satellite spot locations can be refined by fitting a tem-
plate point spread function (PSF) to the area around the approximate location. The usual
approach is to assume a fixed-width Gaussian PSF as the template, and to use this in a
matched filter (convolving with the pixels around the approximate location to find the best-
fit offset).

When extracting the peak flux of a satellite spot, we first fit the full width half maximum
(FWHM) to the actual data to calculate the standard devation of the Gaussian template.
We then use this Gaussian template of fixed width in the convolution and fit for the height
of the Gaussian. This fitting step also allows us to relax the assumption of a symmetric
PSF, as we can fit the FWHM in two orthogonal directions and thereby account for any
PSF ellipticity.

In order to ensure that our brightness assumption holds, we typically apply a high-pass
filter to the image prior to beginning the satellite spot search. The high-pass filter is also
applied when estimating the precise spot locations (so as not to bias the astrometry with a
background gradient) and can be optionally applied when fitting the spot peaks to exclude
the residual AO halo from contrast calculations. We can also include specific constraints on
the admissible size of elements in the distance sets in Eqs. (2.1) and (2.2), based on prior
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knowledge of the approximate relative separation of satellite spots in each wavelength band,
which further allows us to prune the search tree and increase the efficiency of the original
search.

Locating the Central Star

In the current GPI pipeline, the central star is located by taking a simple mean of all
4× 37 satellite spot positions. We rely on the fact that after distortion correction, opposite
pairs of satellite spots are displaced equally and in the opposite direction in both x and y
from the central star. For lab data, this technique works well as any single poorly measured
satellite spot will have little effect on the measured central star position.

However, most on-sky data taken during GPI commissioning runs were without the at-
mospheric dispersion corrector (ADC) and suffers from atmospheric differential refraction
(ADR)(Hibon et al. 2014). Due to this, the central star is in a different position in each
wavelength slice and a simple mean of all satellite spots can be biased in the case where a
companion and its primary have different spectral shapes. The simplest approach to mitigate
ADR effects is to measure the star position in each slice individually. This technique works
well as long as the satellite spots are bright in each individual frame. We use this technique
for all of the astrometric stability analysis in this paper to disentangle ADR effects from our
satellite spot measurements. An illustrative description on how we locate the occulted star
position is described in section 2.3 and Figure 2.3.

2.2.2 Polarimetry Mode

In broadband polarimetric images, the satellite spots are smeared radially outwards from
the central star. The true location of the star would have all four streaks pointing towards
it, excluding effects from ADR which will be discussed in section 2.3.2.

Locating the Central Star

To take advantage of the streaks of satellite spots, we take a simplified Radon transform
of the image, implementing a technique similar to (Pueyo et al. 2015) with P1640 images.
We will summarize the procedure here. First, we combine the two orthogonal polarization
channels to form a total intensity image. We also run a high pass filter on the image by
subtracting a median filtered image created with a 9× 9 pixel box to calculate the median.
If there are any visible objects (e.g. binaries) in the image, we manually mask them out
at this point as they will interfere will the Radon transform. Then, we begin the Radon
transform technique. We pick a guess for the center of the image and draw straight lines
that go through this point. For each line, we compute the line integral of the image along
that line (this corresponds to one point in Radon space). We then sum the square of the line
integral along each of the lines (summing the square of each of the corresponding points in
Radon space). Thus, we have gotten a measure of how much light is “pointed" at this pixel.
We do this for each pixel in a small search area around the initial guessed center of the image
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Figure 2.2 : Left: A total intensity image of HIP 118666 in polarimetry mode with the central star
masked. The image has been high-pass filtered using a median filter. The red box indicates the
search area for the star center. Note that atmospheric differential refraction effects are apparent as
the satellite spots do not all point back to the same location. Right: Map of the search box where
each pixel represents the total intensity of all straight lines that pass through that pixel which we
calculate using a Radon transform. This is before we interpolate this map to a finer resolution.
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(see the left image of Figure 2.2). At this point, we have created a map of the intensity of
the image in Radon space for each pixel (see right image of Figure 2.2). The pixel with the
most power harbors the location of the central star. To achieve subpixel accuracy, we then
interpolate this map to a finer resolution and pick out the subpixel that has the greatest
value.

Several of the steps we have outlined are introduced because of computational efficiency.
Ideally, given infinite computational resources, we would interpolate the image before per-
forming the Radon transform to achieve subpixel resolution. However, if we did do this, the
computational time increases by a factor of order N4 where N is the over sampling factor
(i.e. N = 2 means doubling the image sampling). This is because the Radon transform
method we use scales as N2 and we need to do it for ever pixel in a search box which also
grows as N2. We also limit our search box to a small area near the true center for the same
reason. Using the default 280×280 pixel image and an 11×11 pixel search box, this routine
runs in a few seconds on a 3 GHz core.

Measuring Satellite Spot Fluxes

Because the satellite spots are smeared into streaks, a precise flux measurement requires
the development of new techniques to address this issue. We defer this work to a future
paper and will not present any characterization of satellite spot photometry in polarimetry
mode.

2.3 Astrometric Stability
In the following section, we present on the ability of the satellite spots to locate the

occulted star. Because we can extract more information out of the satellite spots in spectral
mode since they are not smeared out, we will focus most of our analysis on the spectral mode
of GPI. We will then compare the spectral mode stability to the polarimetry mode stability.

First, we note that it is difficult to establish the absolute accuracy and precision of the
satellite spots. Images taken without the coronagraph that reveal both the star and the
satellite spots would establish the reliability of reconstructing the star position. However,
we have found it is impossible to achieve good signal to noise on the satellite spots without
saturating the central star. Another technique of selecting long sequences of coronagraphic
images and measuring the occulted star position is strongly affected by uncorrected tip/tip
errors that cause the star to move and also cannot be used for this task.

Using known astrometric binaries was a promising method we investigated. By measuring
the relative separation of the binary companion and the occulted star, we could characterize
the satellite spot astrometric accuracy. However, this method presents similar challenges.
Known companions that fit into GPI’s field of view are bright and saturate before we can
obtain good signal to noise on the satellite spots. Thus, we have not been able to perform an
absolute calibration of our ability to locate the occulted star. After an extensive search of
all binaries, we found that the binary star system HIP 70931 has a faint enough companion
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Figure 2.3 : Sample GPI images of the HIP 70931 binary system. These images have gone through
the basic steps in the pipeline to be extracted into datacubes, but no further processing of the data
has been done. Left: The 1.663 µm wavelength slice of the first image taken in spectral mode on
2014 March 24 08:48 of HIP 70931. Overlaid on top is a schematic of how we measure the binary
separation. The occulted star position is located using the satellite spots in green. From the inferred
star position, the binary separation can then be measured (yellow). Right: A total intensity H-band
image from the first exposure of the 2014 March 24 polarimetry mode dataset of HIP 70931.

and is therefore a suitable target to perform a binary separation analysis. Figure 2.3 shows
some GPI data for this binary and a schematic of how we perform the astrometry analysis.
The orbital parameters of this system have not yet been well characterized and cannot be
used for an absolute calibration. We will instead present our relative stability analysis.

2.3.1 Spectral Mode

In spectral mode, we measure the separation of the binary system in each wavelength
slice of each datacube. Then, we average the separations calculated for each datacube to
obtain the measured separation of that particular datacube. We do this to obtain similar
centroiding precision as the regular pipeline processing step of finding the star center using
all the wavelength slices together while allowing us to disentangle effects due to ADR. For
HIP 70931, the companion and satellite spots are sufficiently bright to work with individual
wavelength slices. The companion is also much brighter than the satellite spots (∼ 10 times
brighter than the combined flux from all four satellite spots), so the uncertainty in the
measured separation should probe errors in the satellite spot centroids. We use the same
Gaussian matched filter approach for locating the companion as the satellite spots to reduce
systematic biases.
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HIP 70931 was observed on four separate nights in spectral mode (see Table 2.1 for a
listing of nights and bands). We note that on 2014 May 10 and 2014 May 11, cloudy weather
interfered with the observations and forced us to increase exposure times to compensate for
extinction. Data on 2014 May 13 was taken during AO testing, causing the data quality to
vary as AO parameters were adjusted. To mitigate this, we discarded any frames where the
FWHM of the binary companion was greater than four pixels. We also discarded any frames
in any of the datasets where the binary companion overlaps with a satellite spot.

In Figure 2.4, we plot the measured separation in each wavelength slice of each datacube
as a function of average satellite spot signal to noise ratio (SNR). SNR was calculated
by aperture photometry using an aperture radius of 5 pixels to measure the flux, a sky
annulus between 8 and 12 pixels to measure the sky background, and the assumption that
the scatter is Poisson noise. We see that the astrometric precision of the satellite spots
decreases significantly when the average SNR of the four satellite spots in a single wavelength
slice falls below ∼ 20. In the following analysis of the astrometric precision of the satellite
spots, we do not consider any individual wavelength slice where the average satellite spot
SNR < 20. This SNR corresponds to a photon noise accuracy limit of < 0.2 pixels as given
by FWHM/SNR for an individual satellite spot in H-band (typical FWHM of < 4.0 pixels).
If we combine the four satellite spots, this would then limit the uncertainty on the position
of the occulted star to < 0.1 pixels. This leads us to conclude that future observations taken
with GPI should ensure SNR of individual satellite spots to be above 20 to ensure the central
star can be located precisely.

Within a single exposure, the errors seem to be dominated by photon noise. In Table
2.1, we log the average scatter in the separation measured in each slice of a datacube and
the theoretical limit on centroiding accuracy due to purely photon noise for a single slice.
We calculate this limit using the expression (FWHM/fSNR)/2. fSNR is the average signal
to noise of the four satellite spots after running a high-pass filter (median filter subtraction
with a 9 × 9 pixel box) on the image, since this is done before locating the spots in our
algorithm. We divide the centroid precision of a single satellite spot by

√
4 = 2 to get the

precision of locating the occulted star since we take the mean of the four satellite spots to
locate the star. We find that the scatter in the measured separation approaches the photon
noise limit of the central star position. Thus, within a single datacube we conclude that the
majority of the error in centroiding on the central star is dominated by photon noise in the
satellite spots.
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Figure 2.4 : Separation of the binary system HIP 70931 as a function of the average signal to noise
ratio (SNR) of the four satellite spots in a wavelength slice of a datacube. Each faded circle in
the background represents a separation calculated for an individual wavelength slice of a datacube,
with color representing wavelength (red is J-band, green is H-band, and blue is K1, the first half
of K-band). Overlaid on top are boxplots with the center of the box being the median, the edges
of the box being the first and third quartiles of the data, and the edges of the whiskers being the
most extreme points. Each boxplot represents a SNR range of 10, except for the last box, which
represents SNR > 80 and is wider. The color of the box indicates the fraction of points in each bin
from each wavelength band (i.e. the red bin has almost exclusively points from K1 and the yellow
bin is a mix of H and K1 data).
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Table 2.1 : Measurement of the HIP 70931 binary separation for various observation sequences in spectral mode. We list the
average internal scatter of measurements from wavelength slices within a single datacube (“Internal Scatter”), the photon noise
limit for centroiding precision of occulted star for an individual slice (“(FWHM/fSNR)/2”), and the mean separation and sample
standard deviation as calculated from combining datacubes in an observing sequence (“Measured Separation”).

Observation Start
(UT) Band Frames

Internal Scatter1
(pixels)

(FWHM/fSNR)/2
(pixels)

Measured Separation2

(pixels)
2014 March 24 08:48 H 7 0.03 0.03 52.26± 0.01

2014 March 24 09:07 H 4 0.03 0.03 52.04± 0.02

2014 May 10 03:52 H 10 0.04 0.03 52.26± 0.05

2014 May 10 05:46 J 9 0.03 0.02 52.36± 0.03

2014 May 11 04:22 H 6 0.08 0.06 52.26± 0.04

2014 May 11 05:08 K1 7 0.10 0.06 52.17± 0.03

2014 May 13 03:28 H 31 0.04 0.04 52.25± 0.05

All H Combined H 58 0.05 0.04 52.24± 0.07

Clipped H Combined3 H 54 0.05 0.04 52.26± 0.05
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We can no longer reach down to the photon noise limit when averaging datacubes to-
gether. When looking at the measured separation between datacubes in a single epoch,
we would expect the photon noise floor for the sample standard deviation to be around
(FWHM/fSNR)/

√
37× 4 ≈ 0.005 pixels in H-band since we are now averaging over all

satellite spots in all slices of a datacube. The last column of values in Table 2.1 shows that
we do not get down to that level of precision, hitting a noise floor between 0.01 and 0.05
pixels. In fact, some observing sequences saw an increase in scatter when combining values
from different datacubes. Looking at Figure 2.5, we see trends in the measured separation
as a function of time. It is especially pronounced in the last four exposures taken on 2014
March 24 and in the dip in the measured separation on 2014 May 13.

We speculate this could be due to one or more of the following effects. Qualitatively
from looking at the images as they evolve in time, we noticed that the PSF changes due to
uncorrected wavefront aberrations. This could cause biases in our centroiding routine. In
particular, the satellite spots, which are a diffraction phenomenon, do not have the same
PSF as a star imaged on the detector. The satellite spots are slightly elongated along
one axis due to diffraction since the wavelength channels span a finite wavelength range.
Additionally, speckle noise near the satellite spots and diffraction spikes from the occulted
star, which are aligned with the satellite spots, vary in time and can bias the centroiding if
positioned correctly. However, we have not determined if any of these effects is the cause of
the variations we see. We do note that we do not see any trends in the measured separation
as a function of wavelength or as a function of the satellite spot distance from the occulted
star (a proxy for plate scale).

Altogether, in the four different epochs of observation in H-band plotted in Figure 2.5,
we find that despite the uncertainties, the data agree very well. The mean separations listed
in Table 2.1 are almost identical for these four epochs. When we combine these four nights
of observations, we find the uncertainty in the occulted star position is 0.07 pixels. If we
eliminate the four outlier points from 09:00 on 2014 March 24, the uncertainty decreases
down to 0.05 pixels (or ∼ 0.7 mas), which we take as the uncertainty in the central star
position for an H-band datacube along one axis. When moving to other bands (J and K1),
we see a systematic disagreement with H-band on the order of 0.1 pixels. Since almost all of
the astrometric calibration and analysis has been done at H-band, it is not surprising that
we have not accounted for some chromatic effects.

Our uncertainties in satellite spot astrometry should not greatly impact GPI’s science
performance though. This error term is below the 1.8 mas per epoch requirement for GPI
astrometry. Astrometric uncertainties in plate scale and distortion are of comparable mag-
nitude (Konopacky et al. 2014). Additionally, when it comes to GPI’s main science goal,
exoplanets, we will likely be limited by the low SNR of the exoplanet itself - we would need
a SNR of greater than 30 for centroid errors due to photon noise from the exoplanet to fall

1rms scatter of separations measured between slices of each individual datacube
2error quoted is sample standard deviation in the measured separation among datacubes
3removed data from the four exposures taken at 2014 March 24 09:07 that appear to be outliers (see

Figure 2.5)



2.3. ASTROMETRIC STABILITY 21

8.5 9.0
2014 March 24

52.0

52.1

52.2

52.3

52.4

52.5

Se
pa

ra
tio

n 
(p

ix
el

s)

4.0 4.5 5.0 5.5 6.0
2014 May 10

4.5 5.0 5.5
2014 May 11

3.5 4.0 4.5
2014 May 13

Time (UT)

J-spec
H-spec
H-pol
K-spec

Figure 2.5 : Measured separation of the binary system HIP 70931 as a function of time. Each circle
represents the mean separation measured in a single datacube, with error bars representing the rms
scatter within the datacube and color representing wavelength of the data as denoted in the legend.
The three different sizes of markers represent 3 different signal to noise bins: the smallest symbols
indicate datacubes with a median satellite spot SNR of less than 40, medium sized ones are for
SNR between 40 and 60, and the largest markers for SNR greater than 60. Black crosses represent
separations calculated in polarimetry mode in H-band. The horizontal dashed line represents the
mean separation calculated with all of the H-band spectral data, excluding the four images with
abnormally low separation taken 2014 March 24.



2.4. SPECTROPHOTOMETRIC STABILITY 22

under 0.1 pixels in H-band.

2.3.2 Polarimetry Mode

Limited data are available to characterize satellite spot astrometry in polarimetry mode.
We will focus on ten observations of the binary HIP 70931 taken on 24 March 2014 in
between the two spectral mode observations discussed in the previous section. Using the
Radon transform technique described in section 2.2.2 to find the occulted star, we measure
a binary separation of 52.23± 0.06 pixels. The measured separation and error is comparable
to the spectral data (see Figure 2.5).

We note the lack of systematic bias between the polarimetry and spectral data. All
of the HIP 70931 data taken on 24 March 2014 are without the atmospheric dispersion
corrector (ADC) at an airmass of ∼ 1.15. In spectral mode, we were able to mitigate
chromatic effects by analyzing each wavelength slice independently, something we are not
able to do in polarimetry mode. Despite that, finding comparable separations indicate that
atmospheric differential refraction (ADR) does not significantly affect the satellite spots
astrometric precision in polarimetry mode, at least not for binary star systems taken in H-
band at airmasses less than about 1.15. It remains to be seen how great of an effect ADR is
for planets, which differ more in color with respect to their host stars, and at low elevations
when ADR effects are the largest. This however should be mitigated with the commissioning
of the ADC (Hibon et al. 2014).

Table 2.2 : Measurements of the grid ratio (ratio of brightness of the occulted star to the total
brightness of all four satellite spots) and corresponding magnitude difference

Target Date Filter Grid Ratio ∆m (mags)
β Pic 2013-11-18 H 5433 ± 1790 9.3 ± 0.4
β Pic 2013-12-10 H 5395 ± 953 9.3 ± 0.2
β Pic 2013-12-11 H 4569 ± 1936 9.2 ± 0.5

HD 118335 2014-03-25 H 6147 ± 964 9.5 ± 0.2

2.4 Spectrophotometric Stability
We used data collected on targets observed in the coronagraphic mode, during the first

two commissioning runs in November and December of 2013, in order to measure the spot
flux as a function of target magnitude (Figure 2.6). The observations were reduced using the
typical reduction primitives within the GPI DRP. The background within each image was
subtracted by applying a high-pass filter, with the satellite spots being masked to prevent
self-subtraction. Aperture photometry was then performed on the four satellite spots within
each wavelength slice of the reduced data cube. These measurements, obtained with the H
and K1 filters, show a linear trend of decreasing satellite spot flux as a function of stellar
flux.
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Figure 2.6 : The average flux measured within the 11th to 14th wavelength slice of the reduced
data cubes for the four satellite spots (differentiated by symbol) in the H-band (red dashed line
and symbols), and K1-band (black dashed line and symbols). The fits to the measured fluxes as a
function of magnitude are consistent with the expected relation of m = −2.5 log(f) + c.
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The ratio of the flux of satellite spots, where we average the flux of all four spots, to the
flux of the star behind the occulting mask was also estimated using two different techniques
and is presented in Table 2.2. A detailed discussion of all the photometry results from the
GPI photometric calibration program presented at this conference (Maire et al. 2014).

2.4.1 Long duration monitoring

To measure the spectrophotometric stability of GPI, data taken on multiple stellar targets
with time-series durations spanning several minutes to multiple nights were analyzed. The
data presented in this paper were collected primarily in the first and second calibration runs
over Nov, Dec 2013 and Mar 2014.

Figure 2.7 and 2.8 show preliminary results on the long-term stability of the GPI spot
data for β Pic, used as a proxy for the stability of the integral field spectrograph (IFS). In
Figure 2.7 we have analyzed a single slice near the middle of the wavelength cube (1.662 µm),
to estimate the stability of the spot photometry. The aperture photometry was performed
using a 5-pixel radius aperture on unsharp-masked (9 px box median filtered) images. Plotted
in the figure are the trends for each of the individual satellite spots, the sum of the diagonal
spots and the sum of all four spots in the field. The sum of all four spots has the lowest
scatter amongst the different trends plotted on the figure. The sum of spots is used for
the measurement of spectrophotometric monitoring over shorter time durations in the next
section. Figure 2.8 shows the same dataset as the one used for Figure 2.7, however it plots
the spectral response of the sum of all four satellite spots for each of the spectral cubes
observed over the three nights. The spectra have been all been normalized over the same
spectral range to enable comparison of the scatter in the dataset, and the residual scatter
over the three nights is ∼2% indicating that the spot spectra are fairly stable and consistent
across the three nights.

2.4.2 Short duration monitoring

For the J-band, two separate continuous data sets were identified, each of which span
time periods of ∼15-25 min. These data were reduced using standard methods as described
in Section 2, and then we measured aperture photometry of the spots using DAOPHOT. Since
the data is collected over a short duration and taken at low airmass, we chose to not correct
the photometry for airmass or seeing variations. For the J-band data we chose two separate
targets, β Pic and HIP 47115, which is of similar brightness as HR 8799. Figure 2.9 shows
the sum of the spots (which was found to be the most stable choice) over the time duration.
For the stack of 60s exposures, the β Pic J-band data shows ∼6% scatter over the duration
of the data and for HIP 47115 it is ∼10%.

For the H-band, we utilized data taken on β Pic and HD 8049 both of which have
companions visible within the GPI field-of-view. Figure 2.10 shows the variations in the
data. The normalized spot flux has variations of ∼ 7% in the longer duration β Pic A spot
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Figure 2.7 : GPI photometric monitoring of β Pic. Plotted in the figure are the photometric data
of individual spots in a 5 pixel aperture for a single wavelength slice. Also plotted are the sum of
the two diagonal spots and all four spots represented by the dashed and solid lines. The sum of all
four spots has the lowest relative scatter amongst the various combinations.

light curves and ∼2% and ∼1% variations in the spots and companion in the HD 8049 system
respectively.

2.5 Future Work
Future work on improving satellite spot astrometric precision will proceed in three main

areas. First, we will investigate the time-varying errors that are likely hindering the satellite
spot astrometric precision. We will look at logs from the AO system to try to correlate
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Figure 2.8 : GPI spectrophotometric monitoring of β Pic. Plotted in the figure is the spot spectrum
taken over three epochs during the GPI commissioning run. The data are all normalized to the
same region of the spectrum and the error bars are indicative of the scatter and the stability of the
instrument over these short exposure times.
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Figure 2.9 : GPI photometric stability in the J-band. Measurements involve two different stars
(β Pic and HIP 47115) with short time-series taken on the 10 and 12 Dec 2013. Aperture photometry
with a 5 px aperture was used to estimate the flux for all the data.
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Figure 2.10 : GPI photometric stability in the H-band. Measurements involve using two different
stars (β Pic and HD 8049) with short and long time baseline observations. Aperture photometry
with a 5 px aperture was used to estimate the flux for the entire data set.
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the variations we see in the PSFs and the measured binary separation to anything physical.
Next, we can improve the theoretical photon noise limit on relative centroiding within a
datacube by combining satellite spots measured in all wavelength channels in a datacube
to locate the occulted star. We will develop a least-squares fit to all the satellite spots to
calculate a center, compensating for ADR or residual ADR if data is taken with the ADC.
Having a model that connects the measurements from all 37 wavelength channels can improve
robustness in locating the central star (e.g. insensitive to one bad satellite spot location)
and help with images with low SNR satellite spots where the four satellite spots in a single
wavelength slice are not precise enough. Lastly, we will continue searching for an astrometric
calibrator suitable for GPI that will allow us to make an absolute calibration on satellite
spot astrometry.

Future work on measuring the spectrophotometric stability of the GPI spots will require
longer duration datasets, preferably over multiple hours in all the wavelengths. The length
of the datasets we have now, less than ∼ 40 minutes in all wavelengths aside from the H-
band, currently limits the measurements. Furthermore we need to measure the stability
not just as a function of time but also across the different wavelengths. Some multi-epoch
and multi-wavelength data exists for this work and further data will be collected over the
final commissioning run to completely characterize the spot spectrophotometric stability.
Additionally, we will develop techniques to measure and characterize satellite spot fluxes in
polarimetry mode.
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Chapter 3

Automated data processing architecture
for the Gemini Planet Imager Exoplanet
Survey

A version of this chapter was first published in Journal of Astronomical Telescopes, Instru-
ments, and Systems : Wang et al. (2018).

The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging
survey of 600 stars to discover and characterize young Jovian exoplanets and their environ-
ments. We have developed an automated data architecture to process and index all data
related to the survey uniformly. An automated and flexible data processing framework,
which we term the Data Cruncher, combines multiple data reduction pipelines together to
process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no
human intervention, fully reduced and calibrated data products are available less than an
hour after the data are taken to expedite follow-up on potential objects of interest. The Data
Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as im-
provements are made to our data reduction pipelines. A backend MySQL database indexes
all files, which are synced to the cloud, and a front-end web server allows for easy browsing
of all files associated with GPIES. To help observers, quicklook displays show reduced data
as they are processed in real-time, and chatbots on Slack post observing information as well
as reduced data products. Together, the GPIES automated data processing architecture
reduces our workload, provides real-time data reduction, optimizes our observing strategy,
and maintains a homogeneously reduced dataset to study planet occurrence and instrument
performance.
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3.1 INTRODUCTION
The Gemini Planet Imager (GPI) is a high contrast imaging instrument on the Gem-

ini South telescope designed to directly image young, recently formed exoplanets and their
planet-forming environments (Graham et al. 2007; Macintosh et al. 2014). To suppress
the glare of the bright host star to see faint planets and circumstellar material, GPI is
equipped with a high-order adaptive optics (AO) system to correct for atmospheric turbu-
lence (Poyneer et al. 2016) and an apodized-pupil Lyot coronagraph to suppress diffraction
from the star (Soummer et al. 2011b). To image and characterize planets and disks, an
infrared integral field spectrograph (IFS) sits behind the AO system and coronagraph. The
IFS uses a microlens array to disperse light from a 2.8 × 2.8 arcsecond field of view onto a
HAWAII 2-RG detector in one of five filters, Y , J , H, K1, and K2, where K-band has been
split into two filters. The IFS supports both a spectral mode, with a spectral resolving power
R between 30 and 80 depending on the wavelength, and a polarimetry mode that allows for
broadband imaging polarimetry using a Wollaston prism and a rotating waveplate(Chilcote
et al. 2012; Larkin et al. 2014; Perrin et al. 2015).

The GPI Exoplanet Survey (GPIES) is a multi-year survey of 600 young, nearby stars
with GPI to discover new planets, characterize the orbits and atmospheres of directly-imaged
planets, constrain giant planet occurrence rates, and resolve planet-forming environments.
GPIES is searching for planets in spectral mode in H-band around 600 stars, following-up
and characterizing planet candidates in multiple wavelength bands at multiple epochs, and
looking for resolved circumstellar material in polarized, scattered light around a subset of
stars.

From both a technical and scientific perspective, GPIES requires an automated infrastruc-
ture to handle the data associated with the survey. Technically, both the size and complexity
of data processing requirements make manual bookkeeping impractical. Over several years,
GPIES will accumulate more than 30,000 raw frames of science data and a roughly equal
number of raw frames of calibration data. While this is not close to the scale of the largest
surveys in astronomy, it is large enough that we need automated methods to track and orga-
nize the data. Additionally, data reduction for GPIES is non-trivial, requiring a pipeline to
reduce IFS data and complex algorithms to model and subtract out the diffracted light from
the host stars. For each raw IFS frame, we must calibrate and extract ∼35,000 microspectra
from the detector to make a single spectral datacube. If we consider each wavelength slice of
each spectral datacube as an individual frame for data processing, which effectively is how
it gets treated, then we will need to subtract the diffracted light of the star from over one
million frames using multiple algorithms to mitigate algorithmic biases. To maintain data
consistency, we need an automated system to reprocess all of our data as upgrades and bug
fixes are applied to our data reduction pipelines.

Scientifically, we need the infrastructure to make sense of all the data from GPIES.
Consistently processed data is important to maintain a homogeneous dataset to use for
statistical planet occurrence studies. Being able to easily access specific data from across the
entire survey is important to understand trends in instrument performance, inform observing
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Figure 3.1 : Schematic of the GPIES automated data processing infrastructure. Boxes represent
the different components of the infrastructure that are described in Section 3.3. The boxes are
colored so that black represents the telescope, blue represents data storage, orange represents data
processing modules, and teal represents user-facing services. Arrows indicate the flow of data or
information from one component to another.

strategies, and prioritize future instrument upgrades. Finally, having real-time processing
during the observing night is extremely advantageous for optimizing observing strategy.
Fully-reduced data that is processed and displayed in real time helps observers assess the
data quality being achieved. It also allows observers to identify candidate companions within
an hour of the observations so that the most promising candidates can be followed up the
same night or the following night.

Thus, we have built an automated data processing infrastructure capable of storing all
of the data, processing all science and calibration data in real-time, reprocessing the entire
campaign as necessary, and providing powerful but easy-to-use tools to search across all
data from the survey. The individual components and how they fit together are displayed
in Figure 3.1.

Section 3.2 details all of the data reduction steps for GPIES, which we have auto-
mated. The different components that comprise the data infrastructure, including the Data
Cruncher, a key component that automatically reduces all GPIES data, are described in
Section 3.3. In Section 3.4, we describe the benefits of this automated architecture for ob-
serving, data processing efficiency, instrument performance, and survey statistics. Finally, in
Section 3.5, we conclude with plans for future steps to take for the automated data processing
architecture.
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3.2 Data Reduction for GPIES

3.2.1 Calibration Data

All processing of calibration files uses the Data Parser module of the open-source and pub-
licly available GPI DRP (Perrin et al. 2014, 2016). The Data Parser can be used through its
GUI interface or programmatically in IDL using the parse_fileset_to_recipes() function
that is associated with the parsercore object. Either way, the Data Parser is automatically
able to identify and create data reduction steps for all of our calibration data.

In addition to the standard observatory calibration sequence of dark frames that are
taken at a variety of exposure times, GPIES takes a sequence of 80 60 s dark frames at the
end of each night, as most of the campaign uses 60 s exposure times. Each sequence of darks
of the same exposure time is combined to produce one dark frame(Ingraham et al. 2014).

Wavelength calibration frames, or “wavecals," are taken at two times: during the day
and right before each science sequence. During the day, deep sequences are taken with both
the argon and xenon arc lamps at each band as part of the standard observatory calibration
sequence. These are processed to be “master wavecals" since they are of high SNR and allow
for the wavelength solution of each microspectra to be computed individually. Before each
science sequence, GPIES takes a 30 s argon arc lamp observation at the band the science
data is to be observed in (except inK-band, where an H-band arc lamp frame is taken). This
frame is processed using the “Quick Wavelength Solution" recipe template, which measures
shifts in the microspectra due to instrument flexure by using a master wavecal and computing
the global offset in both X and Y necessary to shift the master wavecal to align with the
microspectra of the argon arc lamp. This frame is only used to correct for flexure, and relies
on the master wavecal for the rest of the wavelength solution. The accuracy of the GPI
wavelength solution is < 2 nm in each band (Wolff et al. 2014).

For polarimetry data, we need calibration files that specify the locations and the shapes
(fit as 2-D Gaussians) of the polarization spot pairs for each lenslet. Each spot in the pair
corresponds to the intensity in a given polarization channel of a spatial pixel in a polarimetry
datacube. The calibration files provide the required mapping between each spot on the
detector and its location within the final datacube (where the 3rd dimension represents the
polarization state). Calibration files are generated in each band for the polarimetry spot
calibration using the flat field lamp of the Gemini calibration unit, GCAL, and processed
using the GPI DRP Data Parser.

3.2.2 Spectral Mode

The majority of data from GPIES comes in the form of IFS data, where the raw data
consists of ∼35,000 microspectra spread across the detector.
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Constructing Spectral Datacubes

To extract the microspectra into a more useful data product, we use the GPI DRP to
construct spectral datacubes. The datacubes are constructed and calibrated using the steps
listed in Table 3.1, which are slightly different than those of the default recipes offered as
part of the GPI DRP. Each step corresponds to a primitive, one specific reduction task, that
can be run in the GPI DRP.

While most of the primitives are straightforward, there are a few points to clarify. The
wavelength calibration that is loaded in is typically the argon arc snapshot taken right before
each science sequence described in Section 3.2.1. In K-band, the master wavecal is loaded in
since H-band arc snapshots are taken instead. To then correct for instrument flexure, we use
the “BandShift" method of the “Update Spot Shifts for Flexure" primitive. For sequences
not in K-band, this only corrects for shifts of the microspectra due to flexure caused by
changes in the elevation of the telescope between the snapshot arc and the current science
frame. For a K-band sequence, this feature also corrects for the shift between the current
data and the master K-band wavecal that is loaded in by measuring the offset between the
H-band master wavecal and the H-band arc snapshot that was taken before the sequence.
This requires the H- and K-band master wavecals to be taken together without the telescope
having been moved in between so that they experience the same flexure.

Due to a few large clusters of bad pixels on the detector, we are not able to interpolate
over all bad pixels in the 2-D frame. Some bad pixels are propagated to the datacube, where
we can use neighboring spatial pixels in the datacube that are far apart in the 2-D frame to
fix the remaining bad pixels.

The satellite spots, four fiducial spots created by diffraction of starlight off of a grid and
centered on the location of the star (Marois et al. 2006b; Sivaramakrishnan & Oppenheimer
2006), are used for locating the occulted star and calibrating the data photometrically. The
GPI DRP measures the position and flux of each satellite spot, and stores them to the header
of the datacube. The mean of the positions of the four spots in each wavelength channel
is also written into the header as the location of the star at each wavelength. It is up to
the various post-processing pipelines whether to use these numbers or to recalculate them.
In particular, it is important to measure the flux of the satellite spots and astrophysical
sources in the same way to mitigate biases, so often the satellite spot fluxes are recomputed.
However, the values stored here are used to calibrate the single-frame contrast curves, so
they are important to log.

Stellar PSF Subtraction

Taking all of the datacubes obtained in a sequence on a given target, we use angular dif-
ferential imaging (ADI; Marois et al. 2006a) and spectral differential imaging (SDI; Marois
et al. 2000) to distinguish the light of the star from the light of other astrophysical sources,
so that we can model and subtract out the stellar point spread function (“stellar PSF sub-
traction"). To avoid dependence on a single stellar PSF subtraction algorithm, we use both
the classical ADI algorithm (cADI)(Marois et al. 2006a) and pyKLIP(Wang et al. 2015), an
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Table 3.1 : GPI DRP processing steps to make a spectral datacube.
Primitive Name Purpose
Load Wavelength Calibration Reads in the appropriate wavelength calibra-

tion file
Subtract Dark Background Finds an appropriate dark frame and sub-

tracts it from the raw 2-D image
Update Spot Shifts for Flexure Corrects for shifts in the microspectra due to

instrument flexure(Wolff et al. 2014)
Interpolate Bad Pixels in 2D
Frame

Identifies and fixes bad pixels(Ingraham
et al. 2014)

Assemble Spectral Datacube Extracts the data into a 3-D cube using a
3-pixel wide moving box

Interpolate Wavelength Axis Interpolates the wavelength dimension to be
37 equally-spaced channels

Interpolate Bad Pixels in Cube Fixes any remaining bad pixels using spa-
tially nearby pixels

Correct Distortion Corrects for optical distortion. The dat-
acubes are saved after this step, and follow-
ing steps only modify the header information.

Measure Satellite Spot Locations Automatically finds satellite spots using a
computer vision algorithm and fits their loca-
tions with a Gaussian(Savransky et al. 2013;
Wang et al. 2014)

Filter Datacube Spatially Subtracts off a 15-pixel median filter from
the image to high-pass filter the image for
the following steps. The filtered image is not
saved to disk.

Measure Satellite Spot Peak
Fluxes

Uses a Gaussian matched filter and the lo-
cation of the satellite spots in the header to
measure the flux of each satellite spot

Measure Contrast Measures the single-frame contrast. Then it
saves the 1-D contrast curve to a FITS file
and contrasts at three fiducial separations to
the header of the datacube
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open-source Python implementation of Karhunen-Loève Image Projection (KLIP)(Soummer
et al. 2012; Pueyo et al. 2015), to provide two separate subtractions of the stellar PSF. The
cADI pipeline is quick so it is used for real-time reductions, while the pyKLIP pipeline is
used for our final sensitivity analysis.

Using cADI, we perform two subtractions. The first is a basic ADI reduction where
the images are collapsed into broadband images using the mean, high-pass filtered using
a Fourier filter with a smooth cutoff frequency of four spatial cycles, subtracted with the
mean of the broadband image sequence, rotated North-up, and collapsed in time to form
one 2-D stellar-PSF-subtracted image. The second reduction is similar to the first except
before collapsing into broadband images, it includes an SDI pre-processing step where in
each spectral cube, each frame is subtracted by the median of all frames in the same spectral
cube. The latter subtraction is better suited for planets with sharp molecular absorption
features in the spectrum, while the former works better for all other cases.

Using pyKLIP, we perform three reductions to search for astrophysical signals: one gen-
eral reduction, one optimized for T-dwarfs with strong molecular absorption features, and
one optimized for circumstellar disks. In the first general-purpose reduction, we first high-
pass filter the images using an 11-pixel full-width half-maximum (FWHM) Gaussian filter
in Fourier space to remove broad features caused by the seeing and wind-shake while mini-
mizing attenuation of high-frequency point source signals of planets. Gaussians with smaller
FWHMs were found to subtract out too much point source signal. Then, the images are
duplicated once for each spectral channel to be aligned to a common center and magnified
using bicubic spline interpolation so that the speckles are aligned at that wavelength (i.e.,
so that the data at that wavelength do not need to be magnified through interpolation).
Then, we break the images into nine annuli that increase logarithmically with separation
and break each annulus into four azimuthal sectors. For each frame in a given sector, we
build our Karhunen-Loève (KL) modes using the 300 most correlated reference frames where
a hypothetical planet at the center of the sector would have moved at least one pixel due to
a combination of ADI field rotation and SDI rescaling of the speckles. One pixel, which is
about a third of the FWHM of the planet PSF in H-band, was chosen empirically to maxi-
mize the SNR of potential planets. Since the number of KL-modes to use varies depending
on the dataset, we save images that use 1, 10, 20, 30, and 50 KL-modes to reconstruct and
subtract off the stellar PSF. The images are all rotated to be North-up. We then save six
separate data products. Five are spectral datacubes, one for each KL-mode cutoff, where we
have collapsed all the data in time. The last one is a KL-mode cube where we have collapsed
the images in both time and wavelength, leaving the third dimension to be the number of
KL-modes used to model the stellar PSF. This cube allow for quick visual inspection of
the dataset to determine what the optimal number of KL-modes to use is and to search for
planets.

The second reduction optimized for T-dwarfs is similar to the first except for two changes.
First, the exclusion criterion of one pixel is weighted so that reference images where the planet
is faint due to molecular absorption is preferred. This means that even if the hypothetical
planet did not move one pixel due to ADI and SDI, as long as it is faint enough at that
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wavelength compared to at the wavelength we are trying to perform stellar PSF subtraction,
the image will be included in the reference library. Appendix A.1.3 of Ruffio et al. (2017)
explains this in quantitative detail and illustrates this selection process for a typical GPI
dataset. Second, the KL-mode cube is collapsed in wavelength using a weighted mean where
the weights are the fluxes for each spectral channel of a model T-dwarf atmosphere.

The third reduction is optimized for disks and again is similar to the first reduction except
for three changes: the images are not high-pass filtered to avoid removing disk structure, the
images only use ADI so only images at the same wavelength are used to build the reference
data, and more conservative KL-mode cutoffs of 1, 3, 10, 20, 50 are saved.

Contrast Curves

After stellar PSF subtraction, we compute the sensitivity to planets in the dataset. In
this paper, we will use the term “contrast" to refer to the flux ratio between the faintest
planet we can detect and its star, and the term “contrast curve" to refer to our achieved
contrasts in a dataset as a function of projected separation from the star.

For GPIES, we typically are sensitive to planets with L-type and T-type spectra. Due to
the strong molecular absorption of methane in T-type spectra, we have improved sensitivity
to T-type planets since we can use all the spectral channels where the planet is dim due to
methane absorption to be more aggressive in modelling and subtracting out the stellar PSF
without significant self-subtraction of the planet itself (see Section 3.2.2). Thus, due to the
differing sensitivities, we produce contrast curves for both L- and T-type planets.

For L-type and T-type planets, we use the general reduction and the T-type optimized
reduction respectively to estimate the level of the noise in the image. We then cross corre-
late each reduction with a Gaussian function that has a FWHM of 3.5 pixels to smooth out
high-frequency noise and maximize the signal of potential planets, which have PSFs that are
roughly Gaussian (Ruffio et al. 2017). This cross correlation map is then used to estimate
the noise level as a function of separation by computing the standard deviation of concentric
annuli centered on the star. As we have a limited number of independent noise realizations,
we correct for small sample statistics assuming the noise distribution is Gaussian (Mawet
et al. 2014) and compute the planet brightness that corresponds to the 5σ-equivalent false
positive probability of 2.9× 10−7, and we take this to be our sensitivity limit (i.e., achieved
contrast). Thus, we produce a contrast curve for each planet spectral type that is uncali-
brated for flux biases introduced by the data reduction steps described in this section and
the previous section.

For each type of planetary spectrum, we then perform two more stellar PSF subtractions
using the same parameters as those used in Section 3.2.2, but after injecting simulated planet
signals. Simulated planets of that particular spectrum are injected as 2-D Gaussian signals
and are used to quantify flux biases due to stellar PSF subtraction. For these simulated
planet reductions, we inject planets at nine separations corresponding to the center of each
of the nine annuli and at four different position angles so that the simulated planets spiral
outward to avoid significantly influencing each other when using SDI. The second simulated
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planet reduction has the spiral arms offset by 45◦ with respect to the first. We use the same
Gaussian cross correlation routine that was used to estimate the noise level to measure the
flux of each simulated planet after stellar PSF subtraction and calibrate flux measurement
biases induced by our data reduction process. Then for each point in the contrast curve, we
correct for these flux measurement biases. For the contrast within 40 pixels (566 mas), the
calibration term is calculated as the linear interpolation between the two closest measured
flux calibration factors. Outside of 40 pixels, the correction factor applied is the average
correction factor for all simulated planets with separations greater than 40 pixels, as we
determined empirically that the calibration factor is constant in this regime to measurement
uncertainty (∼ 20%). This results in one T-type contrast curve and one L-type contrast
curve for each dataset.

3.2.3 Polarimetry Mode

Constructing Polarimetry Datacubes

Instead of a 37-channel spectral datacube, we use the GPI DRP to generate datacubes
where the third axis contains the two orthogonal polarizations of light. These polarimetry
datacubes are an intermediate product that we then use for stellar PSF subtraction. The
steps performed by the GPI DRP to generate polarimetry datacubes are listed in Table 3.2.

Stellar PSF Subtraction

For polarimetry data, we subtract the diffracted light of the host star using two methods:
polarimetric differential imaging (PDI) to look for polarized scattered light from circumstellar
dust around an unpolarized star and ADI to look for all scattered light from circumstellar
material.

To perform PDI, we use the GPI DRP to execute the steps listed in Table 3.3. This
outputs 3-D Stokes cubes where the third dimension contains the four components of the
Stokes vectors. We also generate radial Stokes cubes by transforming the Stokes vectors into
a radial Stokes basis (Schmid et al. 2006). Since light from most debris disks is only scattered
once, and thus has a tangential polarization, the radial Stokes basis typically has all of the
polarized astrophysical signal in one Stokes parameter. For PDI, to account for instrumental
polarization, we measure and subtract out the apparent stellar polarization by measuring
the polarized signal behind the focal plane mask. One advantage of this technique is that
it is robust against apparent stellar polarization due to interstellar polarization, unresolved
disk structure, or other potential astrophysical polarization sources. Polarization from these
sources would also affect the stellar speckles and needs to be subtracted out since we are
only interested in the resolved polarized component in GPI’s field of view.

To look for an unpolarized astrophysical signal next to the star in our polarimetry data, we
sum the two orthogonal polarizations in each polarimetry cube and treat each cube as a single
broadband image. Then, pyKLIP uses ADI to model and subtract out the stellar PSF using
two different sets of reduction parameters. The images are not high-pass filtered before stellar
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Table 3.2 : GPI DRP processing steps for polarimetry datacubes.
Primitive Name Purpose
Load Polarimetry Spot Calibra-
tion

Loads in the appropriate calibration file with
the positions of the polarization spot pairs

Subtract Dark Background Finds an appropriate dark frame and sub-
tracts it from the raw 2-D image

Flexure 2D X Correlation with
Polcal

Corrects for instrument flexure by cross cor-
relating the spot calibration with the data
and finding the optimal global offset in X and
Y

Destripe Science Image Models and removes vibration-induced mi-
crophonics (Ingraham et al. 2014)

Interpolate Bad Pixels in 2D
Frame

Identifies and fixes bad pixels (Ingraham
et al. 2014)

Assemble Polarization Cube Constructs a 3-D datacube where the third
dimension is the two orthogonal polariza-
tions of light

Interpolate Bad Pixels in Cube Fixes any remaining bad pixels using spa-
tially nearby pixels

Correct Distortion Corrects for optical distortion (Konopacky
et al. 2014)

Measure Star Position for Po-
larimetry

Locates the position of the star using a
Radon-transform based algorithm (Wang
et al. 2014)

Measure Satellite Spot Flux in
Polarimetry

Measures the flux of each satellite spot us-
ing aperture photometry. The aperture is
elongated radially to match the shape of the
satellite spots (Hung et al. 2016).

Measure Contrast in Pol Mode Measures the contrast achieved in total in-
tensity in a single frame of observation
(Millar-Blanchaer et al. 2016)
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Table 3.3 : GPI DRP processing steps for PDI.
Primitive Name Purpose
Accumulate Images Gathers together all the images in memory

and demarcates that the following primitives
will be run on a series of images, rather than
on each image individually

Clean Polarization Pairs via Dou-
ble Difference

Removes polarized and unpolarized speckles
in the images using data taken with differ-
ent half-wave plate orientations(Perrin et al.
2015)

Smooth a 3D Cube Convolves each polarization image with a
Gaussian with a FWHM of 1 pixel to sup-
press pixel-to-pixel noise and improve the
noise properties in the final Stokes Cube
without sacrificing significant spatial infor-
mation.

Subtract Mean Stellar Polariza-
tion from podc

Uses an annulus inside the occulting mask
between 7 and 13 pixels from the star to mea-
sure the stellar polarization and subtract it
off (Millar-Blanchaer et al. 2016). The re-
sults are saved and can be referenced at a
later time.

Rotate North Up Rotates each image so that north is up and
east is left

Combine Polarization Sequence Takes the entire sequence and makes a single
3-D datacube where the third dimension is
the four Stokes parameters. This Stokes cube
is then saved to disk.

Convert Stokes Cube to Radial Transforms the Stokes cube into a radial
Stokes basis, which is also saved to disk

Get Statistics on Polarimetry
Vectors

Generates a histogram of polarization direc-
tions across the entire field of view and saves
the polarimetry quicklook display
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PSF subtraction to preserve extended disk emission. The first reduction, the conservative
one, divides the image into seven annuli, uses images where potential astrophysical sources
have moved by at least 3 pixels due to ADI to be used to model the stellar PSF, and
reconstructs the stellar PSF using 1, 3, 5, 10, 20, and 50 KL modes. The second reduction, the
aggressive one, divides the image into nine annuli, uses images where potential astrophysical
sources have moved by at least 1 pixel, and reconstructs the stellar PSF using 1, 2, 3, 4, 5,
10, 20, and 50 KL modes. We found that these two sets of parameters provide a conservative
and aggressive reduction for studying circumstellar materials. The conservative reduction
tries to mitigate stellar PSF subtraction biases on circumstellar material to preserve the
diffuse emission and disk morphology. The aggressive reduction allows one to search for
faint structure close in to the star.

3.3 The Components of the Automated GPIES Data In-
frastructure

To automatically download, index, process, and display all the data from GPIES, mul-
tiple components have been integrated together to form the automated data infrastructure.
Figure 3.1 provides a schematic of the various parts of the infrastructure, which we will
discuss in detail here. Roughly, the infrastructure is divided into data acquisition and stor-
age, data processing, and front-end interfaces. In Section 3.3.1, we will describe the data
acquisition and storage: data tools for quicklook quality checking on the summit (Section
3.3.1), the database that stores all of the metadata, target information, and planet sensitiv-
ity curves (Section 3.3.1), and Dropbox, which stores the raw and reduced images as well as
AO telemetry (Section 3.3.1). Next in Section 3.3.2, we will describe the functionality and
software implementation of the Data Cruncher, the automated data processing framework
that automatically processes all science and calibration data from GPIES. Quicklook soft-
ware, including one from the separate TLOCI pipeline (Marois et al. 2014), that creates real
time displays of the current observing sequence are discussed in Section 3.3.3. The rest of
this section is dedicated to our front-end interfaces. Our main user-facing front-end is the
Web Thingie, which hosts views into our database as well as observing tools (Section 3.3.4).
We also describe how collaborative tools such as Slack and our internal wiki are integrated
into our automated data infrastructure (Section 3.3.5).

3.3.1 Data Acquisition and Storage

A substantial amount of data is being generated by GPIES. About three years into
the survey, we have accumulated ∼23,000 raw science files and ∼26,000 raw calibration
files. Including reprocessed data, we have generated ∼27,000 quicklook datacubes, ∼5,600
reduced calibration files, ∼80,000 science-grade datacubes, ∼68,000 stellar-PSF-subtracted
images, and ∼61 million contrast curve data points. In addition to the science data, we also
have ∼73,000 raw telemetry files produced by the AO system to monitor its performance,
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the observing status of all 600 targets in the survey, and also information on the target
stars themselves. To handle all of the data while also making it available to the entire
collaboration, we use a combination of Dropbox and a MySQL database to store the data.

Summit Quicklooks and Data Download

After new IFS data are taken on the summit, an instance of the GPI DRP running on
the summit uses the GPI DRP Autoreducer module to automatically perform quicklook
reductions of the data. These quicklook reductions allow observers to assess data quality
and, for science data, provide a contrast curve to demonstrate the sensitivity achieved in
a single frame of data for understanding observing conditions. If the data are rendered
unusable due to issues like AO control loops opening or wind-shake moving the star off of
the coronagraph mask, the observer can log that particular file as bad through the GPItv
interface in the GPI DRP. The summit quicklook reductions provide observers the basic tools
to assess data quality so that observing can continue in the unlikely case the observatory
network connection fails and renders the rest of the data infrastructure ineffective. During
an observing sequence, the observer also periodically takes AO telemetry data every 5-10
minutes to allow for further analysis of AO system performance.

To move the data off the summit, automated scripts download the raw and quicklook
science data as well as the AO telemetry data to a server located at Cornell University that
hosts the MySQL database. While AO telemetry data is downloaded during daytime hours
to avoid saturating the network bandwidth during the night, IFS frames are written at a rate
of fewer than one per minute, so it is downloaded in real time along with the bad files log
without using significant network resources. The server at Cornell University then uploads
the data and metadata to Dropbox and the database respectively.

The Database

After receiving new data, the Cornell server adds entries for all of the data into a MySQL
database. For all of the science and calibration data taken by the IFS, header information and
metadata gets uploaded into the raw and reduced data tables. The raw table contains one
row for each raw file, with one column for each of the fields in the file headers (e.g., observing
mode, wavelength band, time of observation), along with a column for the unique identifier
(ID) for each file. The reduced table contains one row for each reduced file, produced either
by the quicklook GPI DRP on the summit or by the Data Cruncher afterwards. The reduced
data table contains information after some data processing has happened such as whether
the data product is a quicklook or science-grade reduction, the sensitivity achieved at some
fiducial separations, flux calibration conversions, as well as a unique ID for the reduced
file. To link the reduced data to their original raw data products, a third “Raw2Reduced"
table is a two column table where each row associates one raw file ID with one reduced file
ID. Multiple rows can specify that multiple raw files went into producing one reduced file.
Similarly, multiple rows could contain multiple reduced files that all used a single raw file, but
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not necessarily exclusively that raw file. Contrast curves associated with a given reduction
(either quicklook contrast curves from the summit or Data Cruncher contrast curves) are
stored in a contrast curve table where each row is the contrast for a given reduced file at a
given separation. Lastly, the bad files log is appended into the observing notes table, which
contains notes on each data frame. A row consists of a text comment, whether the bad file
flag was enabled, the user that submitted it, and time it was submitted, and the associated
raw data file it pertains to. Multiple rows can correspond to a single file to give a history of
bad-file marking.

Similarly, the AO data has a raw data table and a reduced data table in a similar fashion
as the IFS data, but with AO-relevant metadata stored in each of the tables (e.g., the
wavefront sensor frame rate, spatial filter size, and seeing). To make the most out of the
AO data, there exist tables that link the raw AO data to reduced AO data and the raw AO
telemetry to raw IFS data. The latter table allows AO performance metrics to be linked to
final sensitivity to planets.

In the database there also exist tables for GPIES targets. To keep track of the large
GPIES target list, we use several target tables. The basic target table contains information
on the target such as the celestial coordinates, an estimate for the age of the system, and
the target ID number. Then, there is a table with all of the photometry in the literature on
each target, a table of name aliases for each target, a table of binary companions associated
with each target, a table with spectral energy distribution (SED) fits for each target, a table
with the Gemini Observing Tool observing sequence numbers for each target, and a table of
observing statuses (e.g., observed, incomplete, candidate companion).

Dropbox

After the data are logged into the database, the raw and quicklook reductions are up-
loaded onto Dropbox. The raw and summit-reduced quicklook data are put into a read-only
directory, as they are not meant to be modified again. After the raw data are synced to
Dropbox, the Data Cruncher can then read and process the data automatically. The auto-
matically reduced data from the Data Cruncher also gets synced back onto Dropbox, and
then their metadata also stored into the database. All of the AO telemetry is also stored
and synced on Dropbox in its own folder.

Sometimes, it is necessary to reduce data by hand, especially when there is an astro-
physical source that requires further analysis. In these cases, individuals also upload their
own reductions and analysis outputs onto Dropbox so that they can be shared with others.
The only restriction is that these data products lie outside of the automatically generated
directories, to avoid being erased or moved. This is because after the Data Cruncher re-
processes the entire campaign, all of the automatically generated folders gets moved into
an archive section of Dropbox, and new reductions are moved into its place. The archive
contains subdirectories, each with an older version of all of the data reduced in the survey
by the Data Cruncher.
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3.3.2 The Data Cruncher

The Data Cruncher is a Python framework that automates all of the data processing
steps detailed in Section 3.2. The Data Cruncher is comprised of two parts: the “Processing
Backend" runs the various data reduction pipelines and controls the flow of data through the
pipelines, while a series of “Instructors" sends commands to the Processing Backend about
what data to process. Figure 3.2 illustrates how the Instructors and Processing Backend fit
together to generate data products for the survey. By separating the code between a unit
that focuses on the data processing and a unit that focuses on what data to process, we are
able to develop a modular and flexible framework. This allows us to scale the Data Cruncher
arbitrarily: multiple Instructors can use the same Processing Backend to process data for
multiple purposes, or a single Instructor can talk to many Processing Backends when a large
amount of data needs to be processed in a parallel fashion.

First, we will focus on the functionality of the Data Cruncher for GPIES. Without delving
into the technical details, one can think of the Data Cruncher as being able to produce all of
the desired data products given some raw GPI data. The technical software implementation
of the Data Cruncher, including the details on the Instructors and Processing Backends,
follows in Section 3.3.2 after we have provided some context for the software design.

Real-Time Reductions

When a raw data file is uploaded to Dropbox, the “Realtime Scanner" Instructor is
alerted and decides how to instruct the Processing Backend to process the file depending on
the context in which the file is taken. For example, if a new raw science frame is downloaded,
the Realtime Scanner will just instruct the generation of a datacube from the raw 2-D file
and the updating of the quicklook stellar PSF subtractions (described in Section 3.3.3) if the
object name in its file header is the same as the previous file’s. However, it will also send
instructions for the full stellar PSF subtraction of the current data sequence if the object
name is different, since this indicates that the observers have moved on to a new target.
The Realtime Scanner is able to handle all standard observing procedures for all spectral,
polarimetry, and calibration data taken as part of GPIES. The only exception is that the
Realtime Scanner is not programmed to handle processing thermal background frames and
subtracting them from the entire sequence. However, we find that thermal background
subtraction is only necessary in K-band for extended sources such as circumstellar disks,
for which we need to distinguish between the large-scale astrophysical emission of the disk
from the smooth thermal background. K-band imaging of disks is not a science-goal of
GPIES, so this only happens when the Data Cruncher processes queue programs led by
GPIES members. In these cases, manual reductions need to be performed.

On a 32-core machine with AMD Opteron 6378 processors clocked at 2.3 GHz, the Data
Cruncher generates quicklook reductions within 1 minute of receiving the data, generates the
first pyKLIP reduction 10 minutes after a sequence finishes, and generates fully-calibrated
contrast curves for both L- and T-type planets 1 hour after a sequence is complete.
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Figure 3.2 : Schematic of the Data Cruncher architecture. Boxes represent the different modules
of the Data Cruncher, which are discussed in Appendix 3.3.2. The light blue boxes represent the
various Instructors. The large light gray box represents the Processing Backend, which consists
of several smaller modules. Arrows indicate the flow of data or information from one module
to another. Samples of the different data products are shown and grouped by the pipeline that
produced them (either the GPI DRP or the stellar PSF subtraction pipelines).
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Reprocessing Individual Datasets

Sometimes, a single dataset needs to be reprocessed in order to exclude bad frames or to
fix bugs in the reduction pipelines. The Reprocessor module allows us to query the database
for certain datasets, find the corresponding files, and process them. For a specified target,
the user can request for data taken at a given wavelength band, on a given date, in a given
observing mode, and in a given observing program (whether GPIES or an affiliated proposal
by GPIES team members) to be processed. The user can also specify whether to process
the data completely from raw data, or to use the reduced datacubes and only run specified
post-processing algorithms. For example, a user can ask to reprocess all data on a target
taken in polarimetry mode when upgrades to the GPI DRP’s polarimetry reduction functions
happen. A user could also ask to regenerate the contrast curves for a given target at a given
band to exclude files where the data quality was poor.

Reprocessing the Entire Campaign

When the Data Cruncher runs on a supercomputer, we call the framework the Super
Data Cruncher. Many nodes, each a single computer, are requested, and each node runs
one instance of the Processing Backend to parallelize the embarrassingly parallel problem of
reprocessing the entire campaign. A single node is designated the controlling node and sends
commands to all of the Processing Backends to split up the work. The Super Data Cruncher
has successfully run on the Edison and Cori machines operated by the National Energy
Research Scientific Computing Center (NERSC) as well as the Comet machine operated by
the San Diego Supercomputer Center (SDSC) as part of the Extreme Science and Engineering
Discovery Environment (XSEDE; Towns et al. 2014). On Comet, using 30 nodes, with 24
cores per node for a total of 720 cores, we used 16,560 CPU hours, corresponding to 22.9
hours of wall-clock time, to reprocess all survey data up to the end of 2016 (17,008 frames
of raw IFS data).

Data Cruncher Software Implementation

Here, we will discuss how we implemented the Data Cruncher framework in software. In
general, thread synchronization, network communication, and file system interrupts are key
techniques for this implementation.

Processing Backend The Processing Backend manages the data flow through the three
data reduction pipelines discussed in Section 3.2 (GPI DRP, pyKLIP, and cADI). The Pro-
cessing Backend is broken up into Python threads that each manage one task and are depicted
as the boxes inside the Processing Backend box in Figure 3.2. The threads communicate with
each other by passing messages through queues and use monitors (implemented using the
Lock() and Condition() objects available in Python’s threading library) as the synchro-
nization construct to block threads that are waiting for new messages to be passed into the
queue. For example, after one pipeline finishes processing some intermediate data products,
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it can send a message about these data products to another thread via their communication
queue, alerting this second thread, which was previously sleeping since it had nothing to
do, of the new data to process. The Processing Backend has four different kinds of threads:
a network interface thread, the GPI DRP thread, stellar PSF subtraction threads, and the
GPIFileProcessor, the backbone that manages the data flow.

The network interface thread receives commands from Instructor processes. Instructors
pass messages that contain the file or files to be processed, the output directory, whether
the input data are raw 2-D images or 3-D datacubes, what kind of data it is (i.e., spectral,
polarimetry, or calibration data), and optional parameters such as which stellar PSF sub-
traction algorithms to use. There are three network interface threads available: web socket,
Message Passing Interface (MPI), or a regular queue. These threads are mutually exclusive
so only one thread ever runs. The web socket thread is used in most contexts, except when
run on a supercomputer. The network interface’s main purpose is to parse the received
messages and send the messages to the GPIFileProcessor.

The GPIFileProcessor thread manages all of the various pipeline threads. It receives
messages from the network interface and parses the instructions into work units that need
to be passed into the various pipelines. It then checks against the database to ensure that
the files are not marked as bad, discarding instructions for bad data as it goes along. All
good, raw, 2-D data are sent to the GPI DRP for data processing.

Because the GPI DRP was not designed to be fully automated to this degree and does not
fully expose all of its features programmatically, a few workarounds were required. The GPI
DRP uses a recipe directory, where each job is an XML file detailing the data reduction steps
that need to be executed on some data. These recipe files exist in three states: waiting to be
executed, in the processes of being executed, and finished being executed (either successful
or failed). The GPIFileProcessor writes XML recipe files into the queue directory, which
queues a job for the GPI DRP. The recipe for science data are custom recipes specified in
Section 3.2. For calibration files, an instance of the GPI DRP Data Parser is created, and
the Data Parser generates the appropriate recipes to be written into the queue.

Once a recipe file is written into the queue, we need to identify when the GPI DRP
finished that recipe so we can then run the appropriate post-processing algorithms. The
GPI DRP thread’s sole purpose is to track this. When the GPI DRP finishes processing a
recipe, it updates the recipe file to indicate whether the recipe succeeded or failed. Thus,
the GPI DRP thread uses the Python watchdog package to receive file system interrupts.
When a recipe file has been updated, the GPI DRP thread is awakened to run a function
that notifies the GPIFileProcessor that data has been processed.

Except in the case of quicklook reductions, the GPIFileProcessor waits on the condition
that all raw data are finished being processed by the GPI DRP, regardless of whether all files
were successfully processed, before running stellar PSF subtraction. When it is notified by
the GPI DRP thread that all queued raw files have been processed, then it passes jobs to the
stellar PSF subtraction threads. Generally, there are two stellar PSF subtraction threads
that run in parallel: one for pyKLIP and one for cADI. Both threads run their respective
pipelines as subprocesses rather than subthreads to avoid the Python global interpreter lock
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and to improve memory efficiency by relying on the operating system to free memory rather
than the Python garbage collector. As cADI does not require many computational resources,
it is practical to run the two threads in parallel. The cADI thread runs two reductions as
discussed in Section 3.2.2. The pyKLIP thread receives eight jobs for each spectral mode
dataset: three different stellar PSF subtractions optimized for different science objectives
as discussed in Section 3.2.2, four reductions to inject and recover fake planets to calibrate
out flux biases induced by the data processing, and one calculation of the contrast curve as
detailed in Section 3.2.2. These work units are broken up and prioritized so that if multiple
datasets have stellar PSF subtractions queued up, a single KLIP reduction for each dataset
is prioritized first, allowing for a fast initial look in real time during an observing night. For
polarimetry mode data, two pyKLIP reductions (as discussed in Section 3.2.3) are queued up
to look for total intensity disk signal. PDI reductions are also queued into the GPI DRP
queue to subtract the unpolarized stellar signal to look for polarized astrophysical emission.

For quicklook reductions, only cADI is used for spectral mode data and the GPI DRP still
performs the quicklook PDI reductions. Quicklook reductions are specified with a flag in the
instructions received by the network interface. Upon seeing this flag, the GPIFileProcessor
does not wait for all raw files to be finished by the GPI DRP. Rather, the goal is to have the
quicklook reduction done as fast as possible in real time with however many files have already
been processed. Because of this, when multiple files are downloaded by the Data Cruncher at
once due to latency in the file syncing, duplicate quicklook stellar PSF subtraction jobs are
created. To avoid having the same instruction multiple times in the stellar PSF subtraction
queue to improve efficiency, the queue through which jobs are passed to the stellar PSF
subtraction threads disallows duplicates.

Instructors Currently, we use three different Instructor interfaces that send commands
to the Processing Backends. Multiple Instructors can talk to the same Processing Backend,
and to practically handle this, we do not leave web sockets open, closing them immediately
after sending instructions so that another Instructor is able to connect without timing out.
Often times, the Instructor and the Processing Backend live on the same machine as the
Instructors do not consume much computing resources.

The Realtime Scanner module handles all of the real-time processing. It uses the Python
watchdog module to receive alerts from the operating system when new data are synced to
the computer and written to disk. Upon being alerted of a new file, the Realtime Scanner
decides how to process the file depending on the context in which the file is taken. To keep
track of the state of observing, the logic inside of the Realtime Scanner is implemented as
a finite state machine. The finite state machine logic handles almost all standard observing
procedures for spectral, polarimetry, and calibration data taken as part of GPIES. The only
exception are thermal background frames taken in K-band.

The Reprocessor Instructor is a series of Python functions that can be called on demand
to perform individual tasks such as reprocessing a single dataset on a target or processing
a list of raw files. Each function uses the mysql Python library to query the database
for the desired files requested by the user and sends commands to the Processing Backend
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to process the files appropriately. The Reprocessor can also query for all data from the
campaign, generate instructions to reprocess all of the raw data from scratch, and save the
commands to text files to be uploaded onto a supercomputing cluster that doesn’t have
direct database access.

The third Instructor is the controlling node for the Super Data Cruncher, which is what
the Data Cruncher is called when it runs on a supercomputer. Each node on the super-
computer runs one instance of the Processing Backend. The previous two instructors use
web sockets to communicate to the Processing Backend, but in supercomputer clusters, MPI
is the network interface of choice. The exception is the controlling node itself, which uses
a simple queue interface to pass instructions to its own Processing Backend, avoiding the
overhead of MPI. The controlling node reads instructions that have been pre-generated in a
text file to avoid setting up a connection to the database from the supercomputing center.
It then distributes the instructions across all of the nodes with a granularity level of a full
sequence on a single target.

Practically, the reprocessing of the entire campaign is done in two phases: once for the
raw 2-D data to make datacubes, and once to run stellar PSF subtraction on the datacubes.
As processing the raw data requires running the GPI DRP, and thus requiring IDL licenses
for each node, we typically only use ∼20 nodes to do this step. Afterwards, a script is
run to quality check the reductions, ensuring that calibration issues like flexure offsets are
handled properly. Then, the Super Data Cruncher runs stellar PSF subtraction and contrast
curve generation for all datasets. Due to IDL licensing issues, only a small subset of nodes
are designated to run all of the cADI reductions, but since the cADI reductions are fast
to compute, this does not slow down the reprocessing. pyKLIP stellar PSF subtraction and
contrast curve generation is evenly distributed across all of the nodes.

3.3.3 Quicklooks

During the observing night as data are taken and reduced in real time, quicklook tools
translate the data into easy-to-view images that are constantly refreshed as new data comes
in. Currently, we run three quicklook tools, which update every minute as new data are
taken. Each quicklook tool syncs images to a certain location on Dropbox so that it can be
picked up and displayed on web pages on the Web Thingie.

The first is the cADI quicklook tool. The Data Cruncher produces the two cADI re-
ductions of spectral mode data described in Section 3.2.2 every time new frames are taken
and uploaded to Dropbox. The cADI quicklook tool takes these reductions and creates a
four-panel plot to display stellar-PSF-subtracted images (Figure 3.3). The top two images
of the plot are just the data without any further processing. The bottom two images are
the signal-to-noise ratio (SNR) maps of the data after convolving the data with a Gaussian
function and weighing each pixel by the inverse of the noise in pixels of similar separations
from the star.

The second is the TLOCI quicklook display, which uses stellar-PSF-subtracted spectral
mode data from the TLOCI pipeline (Marois et al. 2014), independent of the Data Cruncher.
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Figure 3.3 : Example screenshots of the user-facing web front ends that are integrated with the
data processing infrastructure. Left: A dynamically generated page from the Web Thingie for one
single raw data file. This is one of multiple types of pages the Web Thingie can generate. Center:
The real-time cADI quicklook display that is automatically generated and updated in real time on
the Web Thingie. Right: An example of the observing support provided by the Slack chatbots.
Even though the weather was poor, the Data Cruncher continued to produce science-grade stellar-
PSF-subtracted data and the Summit bot provided updates on the weather conditions as requested.

The TLOCI pipeline typically uses the quicklook spectral datacubes made on the summit
so that it does not rely on the Data Cruncher for datacubes, but can be modified to point
at the spectral datacubes made by the Data Cruncher. The TLOCI quicklook display offers
four plots, two for L-dwarf reductions and two for T-dwarf reductions. For each spectral
type, there is a reduction done by a quick simple code, and a slower, but more sophisticated
code. TLOCI quicklook display also offers a simple planet detection code and quicklook
astrometry and spectra of candidates flagged by the planet detection code.

The last is the polarimetry quicklook display generated by the Data Cruncher through the
GPI DRP. This updates after every four images (corresponding to a full cycle of waveplate
positions) and displays images from both the linear and radial Stokes cubes produced by the
Data Cruncher that are described in Section 3.2.3.

3.3.4 The Web Thingie: Web Front End for Database and Observ-
ing Tools

Between all of the raw, reduced, calibration, and AO telemetry data generated by the
GPIES campaign, it quickly becomes hard to track down the specific files taken on specific
dates, and the associated reductions. Instead of requiring users to make SQL queries to
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the database themselves when they need to look for data, we have created a user-friendly
web front end, named the Web Thingie, to allow users to find data, mark files as bad, pick
targets, and look at real-time stellar PSF subtractions.

The Web Thingie is run on an Apache-based web server gateway interface using Flask,
a Python, Werkzeug-based web development framework. It uses Jinja2 to dynamically gen-
erate web pages from database queries. For example, instead of static web pages, the pages
that list all raw files taken on each date are generated from one template page with the
date populated by the user requested date and rows of a raw files table populated from a
database query. The Web Thingie can a page for any individual raw or reduced file stored
on Dropbox, for raw files taken on a specific date, for raw files corresponding to a specific
object, for raw files of a given calibration file type, for a calendar indicating dates under each
month in which GPI data was taken, among others.

Typically users are interested in data taken on a specific date or of a specific object,
so going to those pages will list all data from that date or object including the instrument
configuration, wavelength, time, and the data quality of the file. Once they do click on an
individual raw file, a web page following the same template as the one shown in Figure 3.3
is generated. There is a thumbnail image of the raw data frame, a list of important header
keywords, a link to a page that lists all the reduced data products that used this raw data
frame, existing notes on this data frame, and the ability to add more notes and mark whether
this frame is bad or not. If the data frame is bad, a large text banner in red font on the
top of the page indicates that. When the user clicks through to the list of all the reduced
data, they can scroll through and click on the desired reduced file to go to its page for more
information on the reduction.

Each target also gets its own page to help observers during a run. On the top of the page,
there are links to the SIMBAD page for the target, the internal wiki page for the target, and
the finder chart for crowded field stars. Then, the status of the target is listed regarding
whether spectral or polarimetry data needs to be taken. Basic information on the star as
well as binary companions and their separation and position angle are listed next, to help
observers pick the right star at the telescope. The page ends with a series of data quality
plots, which are generated dynamically. The first set of plots shows single-frame contrast,
AO wavefront error, and satellite spot flux as a function of image number for all observing
sequences on this target. These metrics indicate how conditions change over an observing
sequence and allow for comparison to previous observing sequences on the same target. The
second set of plots displays the histograms of all single-frame contrasts for all targets in the
database, all targets within 0.25 magnitudes, and all previous data from the same star. It
also displays the 16th, 50th, and 84th percentile single frame contrasts for all targets within
0.25 magnitudes. This allows observers to quickly compare the quality of the data from the
summit quicklook reductions that they are currently taking and see how they compare to
the rest of the campaign, allowing for a straightforward assessment of data quality.

To maintain target selection flexibility, dynamically generated target selection tools are
also available on the Web Thingie. At any given time of the night, a dynamic target list page
automatically orders targets by a parameterized score (McBride et al. 2011; Savransky et al.
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2013) that is a combination of the inherent proprieties of the system (e.g., age, distance) as
well as how easily observable the target is (e.g., targets that transit directly overhead need
to be observed just before transit for maximum field rotation for ADI). The list can also be
trimmed to only look at bright stars, or to avoid targets that require the telescope to point
in the current direction of the wind. The list also flags whether polarimetry observations
are needed, alerts observers to binary stars with colorfully flashing star icons to ensure that
the correct star is observed, and compares how much field rotation is achieved observing it
immediately versus the maximum achievable field rotation in a one-hour observing sequence.
Additionally, any target can be plotted on the “Nightly Planning Tool" page, which plots the
elevation, cumulative field rotation, and instantaneous field rotation over time to determine
the feasibility of observing the target at any given time. An offline target list also exists in
case the Web Thingie is ever inaccessible.

Lastly, the Web Thingie hosts three quicklook stellar PSF subtraction monitors to allow
observers to search for candidates and assess stellar-PSF-subtracted data quality in real time
as discussed in Section 3.3.3.

3.3.5 Collaborative Tools

To streamline collaboration across an international team, a series of tools are used. To
improve their utility, we have integrated some of these tools with the automated infrastruc-
ture.

Wiki

An internal wiki run on the Dokuwiki platform is used for documentation. The wiki
is used as a knowledge-base for information like troubleshooting the instrument. For data
analysis, a target page is automatically generated for each target, with an observing sum-
mary of that target automatically generated by the Data Cruncher. Users can then post
additional data analysis numbers, such as astrometry and photometry of candidates, as well
as summaries of the current state of data analysis.

Slack

The messaging application Slack is used to communicate efficiently between collaborators
located all across the world. The “#gpies-observing" channel allows for focused discussion
during the current observing run. Slack also has a programmatic API, allowing for the
development of software integrations. As shown in Figure 3.3, The Data Cruncher has a
chatbot interface (source code available at Github) which posts pyKLIP reductions as it
finishes them to #gpies-observing. When messaged, it also can retrieve images of previous
pyKLIP reductions on GPIES targets, tell the time in any time zone, provide sunrise and
sunset times for Gemini South, and display the current moon phase using an emoji. For
telescope and observing information, a “Summit Bot," also shown in Figure 3.3, was forked
from the Data Cruncher chatbot to run on the Gemini South summit computers and thus can

https://github.com/semaphoreP/datacruncher_slackbot
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access the state of the telescope, weather monitors, and cloud cameras, which have proved
extremely useful for remote observing when no one from the GPIES team is on the summit.
Together, the two chatbots assist in taking observations and analyzing data, reducing the
manpower needs for executing the survey. They also allow GPIES members outside of the
observing team to easily stay updated on observing status: within half an hour after an
observing sequence on a target is complete, GPIES members can look at the fully reduced
data the Data Cruncher chatbot posted onto Slack, without anyone in GPIES having to do
any data processing.

3.4 Utility of the Data Infrastructure
A fully automated data architecture from start to finish brings several benefits to GPIES

regarding observing efficiency, data processing, data archiving, instrumental performance,
and survey statistics.

3.4.1 Tools for Observers

A whole suite of tools has been developed to inform observers in real time, reducing the
complexity of decisions that need to be made during the night. Before and during the night,
the Summit Bot on Slack can be messaged to display environmental monitors and webcams
from the summit. This allows the observers to look at the current time series of data from
seeing monitors as well as look at in which directions in the sky there might be clouds. Since
all of this data appear on the #gpies-observing Slack channel, members of GPIES outside
from the core observing team can chime in, providing advice and improving the cohesion
of the team. Once conditions are good for observing, the automated target selection tool
on the Web Thingie allows for flexible scheduling of targets, giving observers the highest
priority target at any given time, after accounting for pointing restrictions. Once a target
is picked, and data are being acquired, the GPI DRP on the summit generates quicklook
datacubes to check for star alignment and image quality. Obviously bad data, such as when
the AO control loops open, can be marked as bad in the GPI DRP and the bad file flags
will be propagated into the database. Quicklook single-frame contrasts for the new data
can be compared to the histogram of all single-frame contrast of similar targets. This allows
observers to understand in what percentile the current observing conditions are, since single-
frame contrasts are the best predictors of final stellar-PSF-subtracted contrast for a whole
dataset (Bailey et al. 2016).

As we accumulate frames on a target, the quicklook stellar PSF subtraction pages on
the Web Thingie update in real-time. This is particularly useful when following up known
systems or candidate planets. Because of different observing conditions affecting AO perfor-
mance and stellar PSF stability, the exposure times to achieve a desired SNR for confirmation
or characterization of astrophysical sources will vary. The quicklook reductions, even though
they do not achieve the best stellar PSF subtraction, give us an excellent measure. If a
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candidate companion does not show up in the quicklook tools after a standard one-hour
follow-up sequence, observers can decide to add an extra hour to the follow-up observations.
Contrarily, if conditions are excellent and the quicklooks already detect the source at high
SNR, then observers can choose to cut a long sequence short, and move on to other targets.

After a sequence is complete, observers can use the Web Thingie to change the target sta-
tus flag, flagging it as complete, incomplete, or requiring follow-up of candidates. Typically,
ten minutes after a sequence is complete and with no human intervention, the Data Cruncher
Slack bot posts the final pyKLIP stellar-PSF-subtracted data onto #gpies-observing, al-
lowing for convenient viewing of the previous dataset and discussion of possible candidates
in the data.

3.4.2 Data Processing Speed and Consistency

To make inferences from a large survey, it is important that the data are processed
uniformly with the latest calibrations and bug-fixes. With such a large amount of data
over several years, an automated architecture to handle all of the various data types and
data processing needs can mitigate errors and reduce the workload, particularly for junior
members of the GPI collaboration who often are the ones reducing the data.

Using the Data Parser functionality of the GPI DRP, the Data Cruncher is able to identify
and process all calibration files taken before or during an observing run. Without the need to
trigger human intervention to process these data, we always have the latest calibration files
processed before each run and available on Dropbox. This also means that there is no need
to reprocess the data again immediately after the run. The real-time reductions generated
by the Data Cruncher are of science-grade and are used in papers.

Because of this, we have an extremely quick turnaround when we do detect interesting
objects. For example, when GPIES discovered HR 2562 B (Konopacky et al. 2016b), we could
watch in real time using the quicklooks on the Web Thingie as the companion appeared in
our data over the course of an hour. Preliminary analysis of the companion indicated a peaky
H-band spectrum indicative of a bound, L-type companion rather a background star, which
likely has a monotonically smooth spectrum. We had confidence in our preliminary analysis
since the wavelength calibration and spectral datacubes produced by the Data Cruncher
were of science grade. We knew we wanted to follow it up immediately to characterize
the spectrum at other wavelength bands, and we did so at the next possible opportunity
during the same observing run. Similar situations have happened with background objects,
for which spectra and astrometry were extracted within hours of observation and candidates
were identified as background objects within the same night by comparing with archival data.
The fast turnaround time on our data processing means we can quickly identify and prioritize
the most interesting objects found by GPIES. This becomes important when planets are rare
and weather conditions are bad.

When upgrades or bug-fixes to the various pipelines occur, the Super Data Cruncher is
able to reprocess the entire campaign on a supercomputer within a single day. This way,
we can maintain a homogeneous reduction process for all data, and observations collected
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at different times are not subject to varying systematic errors associated with changes in
the reduction process. Eliminating these systematic bugs in a uniform manner is necessary
when performing statistical analysis on the campaign.

3.4.3 Large-Scale Data Analysis

A large dataset that is uniformly processed enables a wide range of analyses that allow us
to better understand planets, our algorithms, and GPI itself. A critical final goal of the survey
is to place limits on the occurrence of giant planets at Solar System scales by comparing the
number of planets imaged to the sensitivity to planets based off contrast curves generated
by the Data Cruncher. Because the contrast curves are also stored in the database, both
single-frame and final stellar-PSF-subtracted contrasts can be correlated with target and
atmospheric keywords stored in the data headers. This allows us to understand instrument
performance by linking metrics generated by the AO system to metrics expressing planet
sensitivity generated by the Data Cruncher (Poyneer et al. 2016; Bailey et al. 2016). For
example in Bailey et al. (2016), we were able to construct the histogram of GPI performance
for stars of different brightness as well as show GPI’s AO correction is dependent on the speed
of atmospheric turbulence rather than just seeing. As another example, the measurements
of the apparent stellar polarization obtained throughout GPIES can be used to improve the
characterization of the instrumental polarization over previous methods (Millar-Blanchaer
et al. 2017).

The Data Cruncher cannot satisfy every data analysis need, since there are always ad-
ditional analyses to be done. While rarely are datacubes regenerated, manual stellar-PSF-
subtractions are done for scientifically interesting objects to optimize the reduction for that
object. Additionally, as new planet detection algorithms are developed, such as Forward
Model Matched Filter (FMMF; Ruffio et al. 2017), they are run using the uniformly pro-
cessed datacubes made by the Data Cruncher to characterize algorithm performance. While
the Data Cruncher is not the solution to all data reduction needs, it offers a solid infrastruc-
ture for others to run analysis on.

Also, because all data from GPIES are processed uniformly and available on Dropbox in
an organized fashion, publicly releasing GPIES data after the campaign will be straightfor-
ward as sharing the link to the Dropbox folder containing the most up-to-date reductions
from the Data Cruncher.

Most importantly, all of this data analysis is possible without a large effort by many
members of GPIES reducing the data by hand. A standard 1 hour GPIES observing sequence
takes 1 hour to manually generate all of the reduced data products. If follow-up observations
are included, ∼430 datasets have been observed, so assuming an eight-hour workday, it
would have required ∼54 days worth of work to manually reduce all of the data taken
so far once. Reprocessing the campaign would be incredibly time-consuming since each
reprocessing would take just as many work hours. Instead, the processing and reprocessing
of GPIES data is accomplished with minimal time investment by humans. This has allowed
GPIES members to focus on higher-level analysis and writing papers rather than processing
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data.

3.5 Future Steps
The successful design and implementation of the automated data architecture has been

one of the major accomplishments of the GPIES collaboration. A few additional features
remain desirable. Our top priority is to transition from planet detections by-eye to the FMMF
algorithm, which can automatically flag candidate companions with low false positive rates
(Ruffio et al. 2017). Automated application of FMMF has not been implemented, partially
due to the substantial computation cost of the current version of the algorithm. Simpler
planet detection algorithms have been implemented and tested in the Data Cruncher and
TLOCI pipeline, but these create more work than they save because they flag too many
false positives. After an automated planet detection algorithm is implemented into the Data
Cruncher, automated astrometry and spectrophotometry of candidates will follow. However,
given the rate of planet candidate detections (a few per observing run), it has not been an
efficient use of time to implement all of these features.

A natural application of the GPIES architecture would be to other direct imaging surveys,
past, present, and future. Given the similar data products and data processing needs, it
would be relatively straightforward to adapt many of our tools for these surveys. Using such
an infrastructure to uniformly process all the data would ensure archival data is processed
with the latest stellar PSF subtraction algorithms and contrast curves are removed of biases
between data reduction pipelines when combining results from multiple surveys.

Although GPIES has very specific data processing and technical needs, some of the
infrastructure from GPIES could be broadly applicable to other surveys of similar scales,
where the data volume is large enough that doing everything by hand is impractical, but
small enough that it lacks a dedicated team of professionals to manage all of the data.
Pieces of the infrastructure or general principles could be applicable to other surveys. Much
of the architecture described here can credit its success to the integration and design of the
entire system. Features such as linking all reduced data products to raw data products to
instrumental and weather condition keywords in a database can useful for other surveys, but
perhaps in different forms (e.g., there might be several intermediate data products that need
to be tracked). Another area to emphasize are the real-time processing and observing tools
that reduce the complexity of observing and streamline optimization of observing strategy.
Aggregating observing statistics and providing real-time observing conditions in convenient
ways such as a website or Slack can benefit other surveys too.

In the mean time, the GPIES team will enjoy the automation of the data processing for
the rest of the survey. The lack of updates to the Data Cruncher recently (∼2 commits a
month on average to our Git repository in 2017) is evidence that the infrastructure is running
smoothly, and that the team is reaping the benefits of the work put into the automation.
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Chapter 4

The Orbit and Transit Prospects for β
Pictoris b constrained with One
Milliarcsecond Astrometry

A version of this chapter was first published in The Astronomical Journal : Wang et al. (2016).

A principal scientific goal of the Gemini Planet Imager (GPI) is obtaining milliarcsec-
ond astrometry to constrain exoplanet orbits. However, astrometry of directly imaged ex-
oplanets is subject to biases, systematic errors, and speckle noise. Here we describe an
analytical procedure to forward model the signal of an exoplanet that accounts for both
the observing strategy (angular and spectral differential imaging) and the data reduction
method (Karhunen-Loève Image Projection algorithm). We use this forward model to mea-
sure the position of an exoplanet in a Bayesian framework employing Gaussian processes
and Markov-chain Monte Carlo (MCMC) to account for correlated noise. In the case of GPI
data on β Pic b, this technique, which we call Bayesian KLIP-FM Astrometry (BKA), out-
performs previous techniques and yields 1σ errors at or below the one milliarcsecond level.
We validate BKA by fitting a Keplerian orbit to 12 GPI observations along with previous
astrometry from other instruments. The statistical properties of the residuals confirm that
BKA is accurate and correctly estimates astrometric errors. Our constraints on the orbit of
β Pic b firmly rule out the possibility of a transit of the planet at 10σ significance. However,
we confirm that the Hill sphere of β Pic b will transit, giving us a rare chance to probe the
circumplanetary environment of a young, evolving exoplanet. We provide an ephemeris for
photometric monitoring of the Hill sphere transit event, which will begin at the start of April
in 2017 and finish at the end of January in 2018.
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4.1 Introduction
Astrometry is an essential tool for characterizing directly imaged exoplanets and their

physical relationship to other elements of the planetary system in which they reside. The
Gemini Planet Imager (GPI; Macintosh et al. 2014) was designed with a goal of achieving
≤1.8 mas astrometric accuracy (Graham 2009), which is necessary for characterizing the
eccentricity distribution of exoplanet orbits from the GPI Exoplanet Survey (Konopacky
et al. 2014). To do so, the astrometric calibration of GPI has continually been benchmarked
to well calibrated astrometric fields (Konopacky et al. 2014). This had led to some of the
most precise astrometry on directly imaged exoplanet systems to date (Millar-Blanchaer
et al. 2015; De Rosa et al. 2015; Rameau et al. 2016), allowing us to constrain or fit the first
ever orbit of some of these directly imaged exoplanets. However, limited by either the signal-
to-noise ratio (SNR) of these exoplanets or by biases in the various data analysis algorithms,
so far no astrometric study with GPI has achieved the design goal of 1.8 mas precision.

The importance of understanding planetary orbits is highlighted by the β Pictoris system,
a young (∼ 23 Myr; Mamajek & Bell 2014; Binks & Jeffries 2016) and nearby (19.3 pc; van
Leeuwen 2007) system that has been extensively studied. β Pic harbors a near edge-on debris
disk that was first imaged by Smith & Terrile (1984) and which was subsequently observed
to have a warp thought to be induced by a planet whose orbit is inclined relative to the
debris disk (Burrows et al. 1995; Mouillet et al. 1997; Heap et al. 2000). Additional indirect
signatures of a planet were derived from variable spectral features modeled as infalling comets
(Beust & Morbidelli 2000) and a peculiar light curve anomaly detected in 1981 (Lecavelier
Des Etangs et al. 1997).

Lagrange et al. (2009, 2010) then discovered β Pic b, a planet at an appropriate mass
(∼ 10 MJup) and semi-major axis (8− 13 AU) to be responsible for the previously observed
indirect signatures of planets. A key focus of subsequent observations was determining the
alignment of β Pic b relative to the main outer disk and the warp to determine if β Pic b is
causing the warp. By observing the disk and planet simultaneously, Lagrange et al. (2012)
concluded that the planet is misaligned from the main outer disk and consistent with being
responsible for the warp. Additionally, Dawson et al. (2011) ruled out the possibility of
having another giant planet in the system massive enough to cause the warp instead. Thus,
β Pic b is responsible for the warp in the debris disk. This was confirmed in astrometric
monitoring campaigns (Chauvin et al. 2012; Nielsen et al. 2014; Millar-Blanchaer et al. 2015)
which used homogeneous datasets to limit systematics and constrain the orbit of β Pic b.

Refining the orbital elements of β Pic b is not only crucial for investigating the dynamical
link between the planet and the disk warp, but also because β Pic b may transit its host
star once every ∼20 years. To date, there are no other known systems where the physical
properties of an exoplanet can be characterized by using both the direct imaging and tran-
sit techniques. Currently, the tightest constraint on the probability of transit is ∼0.06%,
obtained with a dedicated astrometric monitoring campaign with GPI (Millar-Blanchaer
et al. 2015). However, Lecavelier des Etangs & Vidal-Madjar (2016) point out that GPI
measurements from Millar-Blanchaer et al. (2015) have a higher position angle (PA) than
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astrometry from previous measurements, which could arise from a possible systematic cal-
ibration offset between GPI and previous instruments instead of actually due to β Pic b’s
orbit being slightly inclined away from edge on. We note there is currently no evidence of a
PA offset with the GPI astrometric calibration, and the GPI astrometry of HD 95086 b are
consistent with previous astrometry from other instruments (Rameau et al. 2016). However,
it is important to more accurately compute the orbit of β Pic b because in late 2017 to early
2018 (Millar-Blanchaer et al. 2015), it will be at its closest projected separation from the
star. The transit of the planet and/or any circumplanetary material orbiting around it could
therefore be detectable.

One of the obstacles in characterizing directly imaged exoplanets is that even with the
newest instrumentation, the glare of the host star covers the signal of the planet. In order to
subtract the point-spread function (PSF) of the star and maximize the SNR of the planet,
observing techniques such as Angular Differential Imaging (ADI; Marois et al. 2006a) and
Spectral Differential Imaging (SDI; Marois et al. 2000) and data reduction algorithms like
Karhunen-Loève Image Projection (KLIP; Soummer et al. 2012; Pueyo et al. 2015) are
used in combination to disentangle the PSF of the star from potential astrophysical sources.
However, these techniques distort the planet signal and create data reduction artifacts, which
are usually nuisance parameters that need to be calibrated out to obtain unbiased astrometry.

Forward modeling effects of observing techniques and data reduction algorithms on the
PSF of the planet was first done in the context of ADI and LOCI, showing significant
improvements in astrometry and photometry for simulated planets (Marois et al. 2010a;
Galicher & Marois 2011). In similar contexts with ADI and LOCI, Brandt et al. (2013)
and Esposito et al. (2014) used forward modeling to correct for the flux loss of exoplanets
and the flux and morphology of disks, respectively. For classical ADI (cADI), Cantalloube
et al. (2015) showed that forward modeling techniques can improve the sensitivity of cADI
and mitigate biases. The use of Markov-chain Monte Carlo (MCMC) in conjunction with
forward modeling was presented in Bottom et al. (2015) for reference differential imaging.

Recently, Pueyo (2016) introduced a method called KLIP-FM to analytically forward
model the degradation of a faint astrophysical signal that occurs when using least squares-
based PSF subtraction algorithms such as KLIP that is also generally applicable to any
observing strategy. Additionally, the computation of the forward model with KLIP-FM is
much quicker than negative fake planet injection methods (Marois et al. 2010a; Lagrange
et al. 2010), as the stellar PSF subtraction algorithm, KLIP, needs to be run only once. In this
paper, we demonstrate the advantages of KLIP-FM for precise astrometry and constraining
planetary orbits by applying it to GPI observations of β Pic b reduced using KLIP and
ADI+SDI. In Section 4.2, we describe our new astrometry technique, Bayesian KLIP-FM
Astrometry (BKA), in which we forward model the PSF of the planet with KLIP-FM and
then use the forward model in a Bayesian framework to measure the position of the planet
while also modeling the correlated nature of the noise. In Section 4.3, we validate our
technique by fitting an orbit to the data and showing that our astrometry and uncertainties
are consistent with Keplerian motion with no obvious systematics. Finally, in Section 4.4, we
apply our new astrometry to constrain the orbit of β Pic b and place the tightest constraints
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yet on the transit of the planet and its Hill sphere.

4.2 Observations and Data Reduction

4.2.1 Observations

To obtain a large temporal baseline of GPI astrometric points, we compiled GPI data of β
Pic from commissioning (Gemini program GS-ENG-GPI-COM), an astrometric monitoring
campaign of β Pic b (Gemini programs GS-2015A-Q-21 and GS-2015B-Q-9; PI: Graham),
the GPI Exoplanet Survey (GS-2014B-Q-500; PI: Macintosh), and a Gemini Large and Long
Program to characterize debris disks (GS-2015B-LP-6: PI: Chen). All the data used in the
following analysis are listed in Table 4.1. Most of these data were published and analyzed in
a previous study characterizing the orbit of β Pic b by Millar-Blanchaer et al. (2015). We
have reprocessed those data with the new astrometry methods presented in this paper and
combined them with five additional new epochs.

There were three datasets in Millar-Blanchaer et al. (2015) that we did not use. We did
not use the polarimetry dataset as there was no instrumental PSF obtained with the data to
forward model. The dataset on 2014 March 23 was taken during tests of the adaptive
optics (AO) system, causing the instrumental PSF to be highly varying and making it
unsuitable for forward modeling. The 2015 January 24 dataset contained artifacts in the
construction of the forward model that we could not remove. We chose not to include the
measured astrometry from Millar-Blanchaer et al. (2015) for the datasets we omitted in order
to maintain homogeneity in astrometric datasets and reduce potential systematic errors. We
also note that in the last dataset taken on 2016 January 21, there was saturation on the
edge of the occulting mask due to bad seeing. This affected the forward modeling of β Pic b,
which was also near the occulting mask so a large portion of the frames taken could not be
used in this analysis.
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Table 4.1 : Observations and Data Reduction Parameters for GPI Data on β Pic

UT date Program Filter

Exposure
time
(s)

Field
rotation

(◦)

Average
seeinga

(′′)
KL

modes

Exclusion
criteria
(pixels)

High-pass
filtered

Fitting
box size
(pixels)

2013 Nov 16 GS-ENG-GPI-COM K1 1789 26 1.09 7 4 No 13
2013 Nov 16 GS-ENG-GPI-COM K2 1253 18 0.93 7 4 No 13
2013 Nov 18 GS-ENG-GPI-COM H 2446 32 0.68 7 4 No 13
2013 Dec 10 GS-ENG-GPI-COM H 1312 39 0.77 7 4 No 13
2013 Dec 10 GS-ENG-GPI-COM J 1597 19 0.70 7 4 No 13
2013 Dec 11 GS-ENG-GPI-COM H 410 65 0.46 7 4 No 11
2014 Nov 8 GS-ENG-GPI-COM H 2147 25 0.77 7 4 No 11
2015 Apr 2 GS-2015A-Q-21 H 1312 10 0.51 2 2 No 11
2015 Nov 6 GS-2014B-Q-500 H 2207 28 -b 7 4 No 11
2015 Dec 5 GS-2015B-LP-6 J 4948 66 0.92 7 4 Yes 11
2015 Dec 22 GS-2015B-Q-9 H 2088 19 0.76 7 4 No 11
2016 Jan 21 GS-2015B-Q-9 H 954 17 1.18 10 2 Yes 7
aMeasured by the Gemini DIMM
bSeeing monitor data were not available for this observation
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4.2.2 Reducing Raw GPI Data

The raw integral field spectrograph (IFS) data were reduced to form three-dimensional
(3-D) spectral data cubes using the GPI Data Reduction Pipeline (DRP) version 1.2.1 or
1.3 (Perrin et al. 2014). There were no significant changes between the two versions of the
GPI DRP that impacted the astrometry of β Pic b. We used the same data reduction
process as in Millar-Blanchaer et al. (2015) and will summarize them here. First, dark
subtraction and bad pixel correction were applied to each two-dimensional (2-D) image. For
earlier datasets in which cryocooler vibration induced correlated noise on the detector, the
frames were “destriped” to remove this noise (Ingraham et al. 2014). Then, we corrected
for instrument flexure using an argon arc lamp taken before each sequence to align each
individual spectrum for extraction (Wolff et al. 2014). Then each 2-D frame was turned into
a spectral data cube, corrected for any remaining bad pixels, and corrected for distortion
(Konopacky et al. 2014). For the K -band data, thermal background frames were taken along
the sequence. We constructed thermal background cubes in the same fashion and subtracted
them from the K -band data.

To spatially register and photometrically calibrate our data, we used the GPI DRP to
measure the flux and location of the “satellite” spots, which are centered on the occulted
star and imprinted with its attenuated spectrum (Marois et al. 2006b; Sivaramakrishnan &
Oppenheimer 2006; Wang et al. 2014). The satellite spot fluxes were used to derive a flux
calibration in each spectral channel, which we used when constructing the forward models
in Section 4.2.4.

The location of the occulted star at each wavelength in each datacube was found using a
least squares fit to all of the satellite spots’ positions and the magnitude of the atmospheric
differential refraction. The occulted star center is used to align all the images together before
PSF subtraction, and is crucial for determining the astrometry of β Pic b relative to its host
star. The precision on the star center is 0.05 pixels (0.7 mas) for satellite spots with signal-
to-noise ratios (SNR) > 20 (Wang et al. 2014), which is certainly the case for all of our data
on bright stars like β Pic.

4.2.3 PSF Subtraction

To subtract the stellar PSF from each individual datacube, we used pyKLIP (Wang et al.
2015), a Python implementation of the KLIP algorithm. We used both ADI and SDI to
decorrelate the stellar PSF from the PSF of β Pic b. As we were only concerned with
β Pic b, we applied our PSF subtraction only on the annulus that included the planet,
rather than the full image.

We adjusted three main parameters for the PSF subtraction, depending on the dataset.
The first was the number of modes used from the Karhunen-Loève (KL) transform to model
the stellar PSF. The second was an exclusion criteria for picking reference PSFs. The ex-
clusion criteria is similar to the quantity Nδ in Lafrenière et al. (2007) and is defined by
the number of pixels that β Pic b would move azimuthally and radially in an observing
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sequence due to ADI and SDI. Thirdly, we toggled an ∼11 pixel wide spatial high-pass
filter that was applied to some datasets before PSF subtraction. The high-pass filter was
implemented using a Gaussian filter in Fourier space and the ∼11 pixel size was chosen to
remove low-frequency background without significantly distorting any point sources in the
image. In general, increasing the number of KL modes, decreasing the exclusion criteria, and
applying a high-pass filter improves the subtraction of the stellar PSF. However, taken to
the extreme, all three options attenuate signal from the planet. Additionally, for a planet as
bright as β Pic b, the forward modeling described in Section 4.2.4 may not be valid when the
PSF subtraction becomes too aggressive (Pueyo 2016). Thus, to optimize the signal of the
planet while maintaining the validity of the forward modeling, we varied these parameters
for each dataset. As β Pic b is bright, in most of the datasets we used an exclusion criteria
of four pixels, which is slightly greater than 1 λ/D, where λ is the wavelength and D is the
diameter of the telescope. When there was little field rotation for ADI, we decreased the
exclusion criteria to not overly restrict our reference PSFs, but also decreased the number of
KL modes used to avoid being too aggressive. When the speckle noise was too bright due to
observing at a shorter wavelength or when the planet moved closer to the star, we applied
a high-pass filter to remove some of the diffracted starlight. We list the chosen parameters
for each dataset in Table 4.1.

After PSF subtraction, all images were rotated so that north is up and east is left. Then,
all the frames were mean combined in both the spectral and temporal directions, resulting
in a single PSF-subtracted frame for each dataset.

4.2.4 Constructing the Forward Model

After stellar PSF subtraction, the PSF of the planet is distorted by over-subtraction,
caused by the presence of the planet in the data we are subtracting, and self-subtraction,
caused by the presence of the planet in the reference images. Over- and self-subtraction
perturbs the astrometric and photometric properties of the planet’s PSF and prevents a
straightforward measurement of its position. Typically, the biases and uncertainties in the
astrometry caused by stellar PSF subtraction are estimated by injecting fake planets into the
data at other PAs and comparing the retrieved position to the injected position. However,
the over-subtraction and self-subtraction that distorts the planet PSF is deterministically
caused by the existence of a planet in the data and its apparent motion in the reference
images induced by ADI and SDI. In turn, these features, if modeled, can inform us about
the location of the planet and improve our astrometric precision and accuracy.

Recently, Pueyo (2016) introduced KLIP-FM, an analytic framework to compute the
effect of a planet on the KL modes and use these perturbations to reconstruct the over-
subtraction and self-subtraction features. Using this technique, we are able to generate the
PSF of the planet after PSF subtraction (see Appendix A.1 for a detailed description of
the procedure). Briefly, we use the PSF of the planet before PSF subtraction, the apparent
motion of the planet due to ADI and SDI, and a model of the planet spectrum to compute
the distorted PSF of the planet after PSF subtraction. The result is a 2-D broadband planet
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Figure 4.1 : (Left) An image of β Pic b from the 2013 November 18 GPI H -band data after stellar
PSF subtraction. (Right) Unoptimized forward model of β Pic b for the same dataset. The forward
model has not been optimized to fit the data yet using the MCMC procedure discussed in Section
4.2.5, but should already be accurate to within a pixel. The best fit forward models and residuals
for each GPI dataset are in Appendix A.2. The star is to the upper left of the planet and far outside
the region shown here.

PSF, which we call F , centered at (x0, y0), our initial estimate for the location of the planet.
For our GPI data, the forward models were generated using the implementation of KLIP-

FM in pyKLIP. For each dataset, we used the same parameters as our PSF subtraction to
construct the forward model. To construct a model of the instrumental PSF at each wave-
length, we used the average PSF of the satellite spots across all images for that wavelength.
We used a basic center of light centroiding routine to measuring an approximate x and y
positions of the planet (x0 and y0) in the PSF-subtracted image. This initial estimate for
the position is good to within a pixel for our GPI data. For the input planet spectrum of the
forward model, we used the normalized best-fit model spectrum from Chilcote et al. (2015),
which has an effective temperature of 1650 K and a log(g) = 4.0 (cgs units). We scaled
the spectrum by eye to approximately match the contrast of β Pic b in our data and used
the satellite spot fluxes to convert from contrast to digital numbers. We found that varying
the spectrum and photometry had negligible impacts on our measured astrometry. Even a
spectrum differing by ∼25% in shape changed the astrometry by < 0.2 mas, significantly
smaller than the uncertainties we find in the following analysis.

With this input information, we used pyKLIP to generate one forward-modeled PSF, F ,
for each dataset. In Figure 4.1, we show an example forward-modeled PSF (not optimized
to fit the data) and comparison to data for our 2014 November 18 dataset on β Pic b.
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Qualitatively, the forward model matches all the features seen in data, including the promi-
nent negative self-subtraction lobes on either side of the planet. As pyKLIP parallelizes the
computation, the generation of the forward models is quick. On a 32 core machine with
AMD Opteron 6378 processors clocked at 2.3 GHz, forward models for all 37 channels of a
representative 37 cube GPI dataset were generated in 15 minutes: 4 minutes of overheads for
preprocessing and generating the instrumental PSFs and 11 minutes to execute KLIP-FM
and create the forward model. We note that we chose to run the forward model on a large
annulus to examine noise properties in the data and that the computation time for KLIP-FM
decreases ∼20-30% if a small sector around the planet was used instead.

4.2.5 Locating the Planet with Bayesian Parameter Estimation

To use the forward-modeled PSF, F , to perform astrometry, we developed a Bayesian
framework to fit F to the data, account for correlated noise, and estimate our fitting uncer-
tainties. First, ignoring the correlated noise, we can use three parameters to fit the forward
model to the data: the location on the planet in x (xp), the location of the planet in y (yp),
and a scale factor (α) to match the flux of F to the data. We can then write the posterior
probability for xp, yp, and α given the data D using Bayes’ Theorem as

P (xp, yp, α|D) = P (D|xp, yp, α)P (xp, yp, α), (4.1)

ignoring normalization constants. The first term on the right-hand side is the likelihood and
the second is the prior.

To construct the likelihood, we must first use our input parameters and F to generate a
model to compare to the data. We scale F by α and recenter it from its guessed location
(x0, y0) to (xp, yp). The residual, R, between the model and the data, D, in fitting region
F is calculated by

R ≡ R(xp, yp, α) = (D − αF (xp, yp))F , (4.2)

where fitting region F is a fixed rectangular box centered at the approximate location of the
planet in the data. We pick the size of the fitting region to be a few λ/D to encompass the
PSF and the self-subtraction wings. We varied the fitting box size for each of our datasets
in order to keep the fit focused on the area where signal from the planet can be seen. We
list the size of the fitting box for each dataset in Table 4.1. Note that we do not fit any
background term to the image, as one of the first steps of KLIP is to subtract off the mean
of the image, removing any spatially constant background.

For data with uncorrelated Gaussian errors, the log of the likelihood function of the
parameters for a particular set of data is

P (D|xp, yp, α) = lnL(xp, yp, α)

= −1

2

Npix∑
i

[
R2
i (xp, yp, α)

σ2
i

+ ln(2πσi)

]
,

(4.3)
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where σi is the uncertainty in pixel i and Npix is the number of pixels in the fitting region.
However, the assumption of uncorrelated errors does not hold for images limited by speckle
noise. Except in the cases of very aggressive PSF subtraction or at much greater separations
from the star, the residual noise after PSF subtraction in GPI data of a bright star like β
Pic is still dominated by correlated speckle noise, which has a correlation scale that depends
on the aggressiveness of the PSF subtraction. Due to the bright nature of β Pic b, we could
not use a very aggressive reduction to ensure that the planet remained a perturbation on
our KL modes, thereby preserving the validity of the analytical forward modeling technique.
The conservative PSF subtraction combined with the close separation of β Pic b from its
bright host star required us to capture the correlated nature of the noise. We thus write our
likelihood function instead as

lnL = −1

2
(RTC−1R + ln(detC) +Npix ln(2π)), (4.4)

where C is the covariance matrix of size Npix ×Npix and R is a Npix × 1 matrix.
We applied a Gaussian process framework to characterize the covariance in the noise (see

Czekala et al. (2015) for an in-depth explanation of the application of Gaussian processes to
astronomical data). We only aim to model the correlations within each individual speckle,
which spans λ/D in spatial extent. While in a single unprocessed frame speckle noise also has
additional correlations on much larger scales, there are no significant correlations between
speckles at larger spatial scales in our small fitting region due to stellar PSF subtraction
with KLIP and averaging uncorrelated speckles together when collapsing the frames in our
ADI+SDI sequence. Thus, within our fitting region, the dominant correlation in our noise
is from pixels within a single speckle, and thus is the one correlation we modeled.

Following the procedure in Czekala et al. (2015) for fitting one-dimensional (1-D) correla-
tions in stellar spectra, we used the Matérn covariance function parametrized with ν = 3/2
to model the correlated speckle noise. We chose the Matérn function with ν = 3/2 as it
better fits the correlations at larger separations compared to a simple squared exponential
relation. However, we note that switching between covariance functions that have similar
shapes does not significantly alter the error bars. We also chose to assume symmetric noise
as we did not find any difference in the correlation scale of our noise in the radial and az-
imuthal directions. This is likely be due to the fact that we used both ADI and SDI to model
the stellar PSF and thus are better at subtracting speckle noise, which, before PSF subtrac-
tion, is more correlated radially than azimuthally due to the finite spectral bandwidth of
the data. In instruments that are not able to utilize SDI, it might be necessary to separate
the noise into radial and azimuthal components, each with its own characteristic correlation
length. Thus, for our purposes, we chose the symmetric Matérn covariance function with
ν = 3/2, which defines the covariance between two pixels i and j separated by a distance of
rij =

√
(xi − xj)2 + (yi − yj)2 as

Cij = σiσj

(
1 +

√
3rij
l

)
exp

(
−
√

3rij
l

)
, (4.5)
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where σi and σj are the noise for each pixel and l is a characteristic correlation length scale
that increases when noise is correlated at larger spatial scales. We calculated the uncertainty
for each pixel by computing the standard deviation of pixels in an annulus with a width of
∼ 2λ/D (6 pixels), centered on the star, and with a mean radius equal to the distance
between that pixel and the star. Any pixels containing signal from the planet were masked
and not used in estimating the noise in the annulus.

The correlation length l is not fixed, but rather kept as a nuisance parameter in our
Bayesian framework that we will marginalize over in the end. Thus, the final posterior we
are trying to calculate is really

P (xp, yp, α, l|D) = P (D|xp, yp, α, l)P (xp, yp, α, l), (4.6)

where α and l are both nuisance parameter as we are only interested in the astrometry.
Compared to our likelihood function, our prior is relatively straightforward. We use

uniform priors in x and y within 2 pixels from our initial guess location. Similarly, we use an
uniform prior between 0 and 5 for α to determine how much to scale F , which was already
scaled to an approximate contrast of β Pic b. The correlation length l has a uniform prior
between 0 and 10 pixels, which provides an ample range to explore the correlations within
individual speckles of size λ/D ≈ 3 pixels.

We used the Goodman & Weare (2010) Affine Invariant MCMC sampler implemented in
the emcee Python package (Foreman-Mackey et al. 2013) to sample the posterior distribution
and custom cython code to quickly generate the covariance matrix as we vary l. The MCMC
sampler was run for 800 steps using 100 walkers, with a “burn-in” of 200 steps beforehand. In
Figure 4.2, we show the posterior distributions from the MCMC fit for the 2014 November
18 H -band dataset as a representative posterior distribution. The value of l is close to
λ/D ≈ 3 pixels, indicating that we are accurately fitting the correlated speckle noise. We
use the resulting posterior distributions to calculate the most likely values and uncertainties
for the location of β Pic b in our image at each epoch.

We note that this method’s estimated uncertainties are Bayesian, and that it is incom-
mensurable to include frequentist uncertainities used in the astrometric calibration or com-
pare with frequentist methods from previous analyses. Thus, the statistical analysis in the
following paragraphs of this section is improper. In Appendix B, we offer an alternative
frequentist method for estimating the location of the planet in the data that still includes
the forward modeling of the planet PSF and the handling of correlated noise. We show in
Appendix B that we can reach a similar conclusion when properly combining uncertainties.

To convert our results to more useful physical values, we need to convert our measured
location of β Pic b to its positional offset from its host star in right ascension (RA) and
declination (Dec). As our images are already rotated so that −x is positive RA and +y is
positive Dec, it is straightforward to convert from image fates to sky coordinates. We use
the satellite spots to measure the location of the star behind the coronagraph, which has a
precision of 0.7 mas (Wang et al. 2014). This allows us to derive the separation of the planet
from the star in pixels. To convert from pixel separations to physical separations in RA and
Dec, we use the most recent astrometric calibration numbers from De Rosa et al. (2015): a
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plate scale of 14.166 ± 0.007 mas lenslet−1 and a residual north angle offset of 0.◦10 ± 0.◦13
from the north angle value used in the GPI DRP (versions 1.2.1 to 1.3, the current version).
These astrometric calibration numbers show no significant change over time, so we apply
them to all our epochs of data. Then, we assume all of these error terms are uncorrelated
and add them in quadrature with our measurement errors from our MCMC fit to determine
our full astrometric precision.

The combination of the forward-modeled PSF and the Bayesian framework makes up the
Bayesian KLIP-FM Astrometry technique we introduce in this work. We apply BKA for all
12 GPI datasets and report the measured astrometry and error budgets in Table 4.2. The
best-fit forward models and residuals to the fit are shown in Appendix A.2. On most of our
datasets, we are not limited just by the uncertainty in the location of the planet, which was
as low as 0.3 mas. The uncertainties in the location of the star and North angle also make
significant contributions to the error budget. Typically, we achieved ∼1 mas precision on the
relative astrometry between β Pic b and its host star. This is a factor of ∼2–4 improvement
over previous techniques (Millar-Blanchaer et al. 2015) using the same data, indicating that
this technique can be useful in reanalysis of archival data to obtain better astrometry in
cases where the limiting factor is the uncertainty on the planet position. In two of the later
datasets where the planet is observed closer in, we were limited by the SNR of the planet and
unable to achieve 1 mas precision. In the 2015 December 5 dataset, the noise was higher due
to the planet being fainter relative to the star in J -band. In the 2016 January 21 dataset,
a combination of poor seeing and a small amount of usable data limited our astrometric
precision.

Overall, though, this GPI β Pic b data is an excellent demonstration for Bayesian KLIP-
FM Astrometry as the planet is bright enough that the extended PSF features, such as
the negative self-subtraction lobes, are clearly seen and provide significant information to
constrain the position of the planet. For fainter planets, the extended features are harder
to distinguish from the noise. As one of the main advantages of BKA over techniques that
do not forward model the PSF is being able to forward model the extended self-subtraction
lobes, the astrometric improvement would not be as large for lower signal-to-noise ratio
planets. There still should be some improvement, though due to accurately modeling the
over-subtraction on the core of the PSF and small contributions from the extended features
even if they are hard to distinguish from noise. Regardless, in addition to the improved
precision, BKA should also more accurately estimate the uncertainties as it fits for the
correlation scale of the noise at the location of the planet.
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Figure 4.2 : Posterior distribution of the four parameters in the MCMC fit for the astrometry for
the 2014 November 18 epoch. The vertical dashed lines in the marginalized posterior distribution
plots indicate the 16th, 50th, and 84th percentile values.
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Table 4.2 : Astrometric Error Budget and Measured Astrometry of β Pic b

Contributions to Error Budget Measured Astrometry

Dataset

Planet
x/y
(mas)

Star
x/y
(mas)

Plate
Scale
(mas)

PA
(◦)

∆RA
(mas)

∆Dec
(mas)

Radial
Separation

(mas)
Position Angle

(◦)
2013 Nov 16 K1 0.6/0.7 0.7/0.7 0.3 0.13 -228.5 ± 1.3 -366.2 ± 1.1 431.6 ± 1.0 212.0 ± 0.2
2013 Nov 16 K2 0.5/0.4 0.7/0.7 0.3 0.13 -229.2 ± 1.2 -364.5 ± 1.0 430.6 ± 0.9 212.2 ± 0.2
2013 Nov 18 H 0.3/0.3 0.7/0.7 0.3 0.13 -229.1 ± 1.1 -364.7 ± 1.0 430.6 ± 0.8 212.1 ± 0.2
2013 Dec 10 H 0.4/0.4 0.7/0.7 0.3 0.13 -227.9 ± 1.2 -359.9 ± 1.0 426.0 ± 0.9 212.3 ± 0.2
2013 Dec 10 J 0.6/0.7 0.7/0.7 0.3 0.13 -227.2 ± 1.3 -361.1 ± 1.2 426.6 ± 1.1 212.2 ± 0.2
2013 Dec 11 H 0.5/0.4 0.7/0.7 0.3 0.13 -227.8 ± 1.2 -359.2 ± 1.0 425.4 ± 0.9 212.4 ± 0.2
2014 Nov 8 H 0.5/0.5 0.7/0.7 0.2 0.13 -194.0 ± 1.1 -299.1 ± 1.0 356.5 ± 0.9 213.0 ± 0.2
2015 Apr 2 H 0.4/0.5 0.7/0.7 0.2 0.13 -172.1 ± 1.0 -266.5 ± 1.0 317.2 ± 0.9 212.9 ± 0.2
2015 Nov 6 H 0.7/0.7 0.7/0.7 0.2 0.13 -137.8 ± 1.1 -207.2 ± 1.0 248.8 ± 1.0 213.6 ± 0.3
2015 Dec 5 J 1.2/1.3 0.7/0.7 0.2 0.13 -133.9 ± 1.5 -200.5 ± 1.5 241.1 ± 1.4 213.7 ± 0.4
2015 Dec 22 H 0.5/0.5 0.7/0.7 0.2 0.13 -130.0 ± 1.0 -194.7 ± 0.9 234.1 ± 0.9 213.7 ± 0.2
2016 Jan 21 H 1.8/1.6 0.7/0.7 0.2 0.13 -126.8 ± 2.0 -185.8 ± 1.8 225.0 ± 1.8 214.3 ± 0.5
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Table 4.3 : Orbital Parameters of β Pic b

Posterior Percentiles

Parameter Unit Prior Range Prior Distribution 16 50 84
Semi-major axis (a) au 4− 40 Uniform in log a 9.02 9.66 10.78

Epoch of Periastron (τ) - −1.0− 1.0 Uniform in τ 0.32 0.73 0.87
Argument of Periastron (ω) ◦ −360− 360 Uniform in ω 192.8 205.8 258.4

Longitude of the Ascending Node (Ω) ◦ 25− 85 Uniform in Ω 31.67 31.76 31.84
Inclination (i) ◦ 81− 99 Uniform in cos i 88.70 88.81 88.93
Eccentricity (e) - 0.00001− 0.99 Uniform in e 0.027 0.080 0.171
Total Mass (MT ) M� 0− 3 Uniform in M� 1.76 1.80 1.83

Derived Parameters
Period (P ) years - - 20.21 22.47 26.24

Hill Sphere Ingress MJD - - 57,840 57,846 57,854
1/2 Hill Sphere Ingress MJD - - 57,916 57,924 57,934
Closest Approach Date MJD - - 57,986 57,996 58,008
1/2 Hill Sphere Egress MJD - - 58,056 58,069 58,082
Hill Sphere Egress MJD - - 58,132 58,147 58,162
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4.3 Validation through Orbit Fitting
To explore the validity of our new astrometry technique, we fit a Keplerian orbit to our

12 epochs of astrometry. Since each epoch of astrometry is fit independently, and since the
Keplerian orbit is agnostic toward the exact data-reduction methods, having all 12 epochs of
astrometry fit the Keperlain orbit would only be possible if all of the astrometry is accurate
and precise. If there are errors in estimating the magnitude of the uncertainties or any
remaining biases in our measurements, we expect them to become evident in the residuals
of the Keplerian fit either as systematic trends or fit outliers.

We followed the same analysis as in Millar-Blanchaer et al. (2015) to obtain the orbital
elements of β Pic b using a MCMC fit with the parallel-tempered sampler implemented in
emcee. We combined the 12 GPI astrometric points presented here along with the datasets
presented in Chauvin et al. (2012) and Nielsen et al. (2014). Unlike Millar-Blanchaer et al.
(2015), we did not explicitly include the radial velocity measurement of β Pic b from Snellen
et al. (2014) in order to limit potential systematics between instruments, but we do use it
to constrain the prior on the PA of the ascending node and thus the direction of the orbit
(i.e., we know that that β Pic b has been moving toward us since ∼2007). Our model of the
orbit fits the same seven parameters as Millar-Blanchaer et al. (2015). For convenience, the
parameters are listed in Table 4.3.

The MCMC sampler was run for 30,000 steps using 1024 walkers at each of the 20
temperatures after 30,000 steps of “burn-in” to allow the walkers to converge. We thinned the
chains to remove any remaining correlations, keeping every 75th step to result in effectively
400 samples per walker for a total of 409,600 samples to construct our posterior.

The posteriors on the seven parameters in our model are shown in Figure 4.3 and the
16%, 50%, and 84% percentiles of the marginalized posterior distribution for each parameter
is listed in Table 4.3. For comparison, we plot 500 randomly chosen possible orbits along
with the measured astrometry in Figure 4.4. The fit residuals of our measured GPI points are
shown in Figure 4.5. The residuals in RA and Dec offset (which are the parameters we use
in our MCMC) are consistent with zero and do not show any systematics. The residuals in
radial separation and PA, neither of which are used in our fit, are slightly further away from
zero, but do not indicate any obvious errors in either our astrometry or our error estimates.

To quantitatively assess the validity of our measurements, we use the reduced chi-squared
(χ2

red) statistic, which measures how consistent our astrometry is with a Keplerian orbit.
Ideally, χ2

red would be unity if all measurements and uncertainties were accurate. However,
biases and improperly estimated errors would cause it to deviate from unity. Due to system-
atic astrometric calibration offsets between instruments that have not been characterized, we
expect χ2

red to be slightly above unity. For example, Millar-Blanchaer et al. (2015) reported
a χ2

red of 1.55+0.09
−0.05 when combining GPI astrometry, measured using standard techniques in

the field, with previous astrometric measurements
Even with ∼2–4 times smaller error bars on the GPI points, the χ2

red of our accepted
orbits is 1.53+0.08

−0.06, unchanged from the 1.55+0.09
−0.05 reported in Millar-Blanchaer et al. (2015).

With BKA contributing 12 out of the 30 astrometry measurements, if the BKA technique
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contained biases larger than one milliarcsecond, they would have caused a significant increase
in χ2

red. Likewise, if we had been too optimistic with our error estimates, χ2
red should have

also increased as the reported uncertainties would not have matched the scatter in the
measurements. The lack of increase in χ2

red indicates that the more precise astrometry from
BKA is not biased and has accurate uncertainties.

In addition to the Keplerian orbit fit, we can examine the accuracy of our estimated
one milliarcsecond uncertainties by looking at the astrometry measured on the same or
consecutive days. As we do not expect the planet’s position to change significantly in the
span of a single day, the three measurements in 2013 November and the three measurements
in 2013 December ought to be consistent with each other. Indeed, our measurements in Table
4.2 indicate that in both sets of astrometry, the measurements agree at the milliarcsecond
level, confirming that our estimated uncertainties are accurate.

Thus, the well behaved residuals of our GPI measurements and the lack of change in
χ2
red from Millar-Blanchaer et al. (2015) even with significantly smaller error bars lead us

to conclude the measured astrometry using BKA are accurate and free from biases. The
fact the residuals are consistent with zero, the lack of change in χ2

red, and the consistency of
repeated measurements taken around the same time all indicate that the one milliarcsecond
uncertainties estimated from BKA are also accurate. Together, these multiple assessments
of the validity of BKA all indicate that this technique is both accurate and precise.

4.4 Discussion

4.4.1 The Orbit of β Pic b

Having demonstrated the accuracy and precision of this new technique, we now analyze
the new constraints on the orbit of β Pic b. Not surprisingly, the estimates for a and e have
not changed significantly from Millar-Blanchaer et al. (2015) since the GPI points reanalyzed
in this paper do not have a sufficiently long time baseline to constrain these parameters. As
seen in Figure 4.4, all but one astrometric measurement is on one-half of the orbit curve.
The other half of the orbit is not as well constrained, leaving a degeneracy in a and e. This
degeneracy can be broken with more measurements obtained when the planet appears on the
other side of the star. Better constraints on a and e will provide better insight on how β Pic b
interacts with the debris disk and potential unseen planets in the system. The new total
mass of the system,MT = 1.80+0.03

−0.04 M�, is significantly higher than theMT = 1.61±0.05 M�
from Millar-Blanchaer et al. (2015). This new total system mass, which effectively measures
the mass of the star at this precision, is in better agreement with the stellar mass of 1.75 M�
derived from stellar photometry (Crifo et al. 1997). Our measurement of the position angle
of the ascending node, Ω, slightly improves upon the value obtained by Millar-Blanchaer
et al. (2015), but the overall value remains consistent. Thus, β Pic b is still consistent with
being the planet responsible for the known warp in the debris disk (e.g. Dawson et al. 2011).
Compared to Millar-Blanchaer et al. (2015), the argument of the periastron, ω in our fit
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has increased from 156◦+33
−76 to 206◦+52

−13. This new value is consistent with ω = 200◦ ± 20◦

that is required for the falling evaporating bodies (FEBs) scenario proposed by Thébault &
Beust (2001) to explain redshifted absorption features in β Pic’s spectrum. Note that under
previous definitions of the orbital parameters, this has been expressed as ω = −70◦ ± 20◦

from the line of sight. This scenario also requires a slightly eccentric orbit, which is consistent
with our derived orbital parameters. For a more in-depth discussion of β Pic b’s relationship
to the debris disk and the FEB scenario, we direct the reader to Millar-Blanchaer et al.
(2015).

The biggest improvement in our understanding of the orbit of β Pic b is the improved
constraint on the inclination of the orbit. We find the inclination to be i = 88.◦81+0.12

−0.11 which
allows us to place the tightest constraints on the probability that β Pic b will transit its
host star. Assuming an angular diameter of the star of 0.736 mas (Defrère et al. 2012)
and considering the range of a from our orbit fit, we find that in most cases, we need
|i − 90◦| < 0.05◦ in order for the planet to transit. With our current constraints on the
inclination, we have ruled out the possibility that β Pic b will transit at 10σ significance. This
tight constraint on the inclination and transit probability is due to the slightly longer time
baseline and the improved precision in the measured position angle of the GPI astrometry
compared to Millar-Blanchaer et al. (2015). For an edge-on orbit that transits the star, we
should see no significant change in PA over time. However, Figure 4.4 shows that the GPI
points alone reveal a significant increase in PA over time. Thus, regardless of systematic
astrometric calibration errors between instruments, we conclude that β Pic b will not transit
its star.

4.4.2 Hill Sphere Transit

Unlike the planet, β Pic b’s Hill sphere, the region around the planet that could contain
gravitationally bound circumplanetary material, will transit the star. We define the radius
of the Hill sphere as rH ≈ a(1−e) 3

√(
m
3M

)
using the approximate form proposed in Hamilton

& Burns (1992) where m is the mass of the planet and M is the mass of the star. Assuming
β Pic b follows a“hot-start" evolutionary track with a mass of 12.7 ± 0.3 MJup (Morzinski
et al. 2015) and using the range of semi-major axes, eccentricities, and stellar masses from
our MCMC orbit fit, rH = 1.165+0.013

−0.016 au (59.9+0.7
−0.9 mas). Given that our prediction for the

closest approach of β Pic b will be 9.9+0.9
−0.8 mas (0.19± 0.02 projected au) from the star, the

Hill sphere of β Pic b will transit the star, as shown in Figure 4.6.
From our MCMC orbit fit, we can compute when the transit of the Hill sphere will occur.

We pick five notable events to focus on: two are the ingress and egress of the Hill sphere
which are the extrema in time between which any circumplanetary material could transit;
another is the date of closest approach, which gives the opportunity to probe material closest
in to the planet; and the last two are the transit of the sphere that is 1/2 rH in radial extent.
Almost all stable prograde circumplanetary orbits reside within 1/2 rH (Shen & Tremaine
2008), so it is more likely to find material within half a Hill sphere. In Table 4.3, we list our
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constraints on the date of these events, and in Figure 4.3, we plot the posterior distribution
for these events. The duration of the Hill sphere transit will be long: ingress is ∼2017 April
3 and egress is ∼2018 January 29. The 1/2 Hill sphere begins transit ∼2017 June 20 and
ends transit on ∼2017 November 12, with closest approach on ∼2017 August 31.

Given the RA of β Pic (05h47m17s), the star will not be visible from most ground-
based observatories during almost the entire time between ingress of the Hill sphere and
closest approach. Ground-based telescopes in Antarctica, airborne observatories capable of
travelling to Antarctica, and space-based observatories would provide the only opportunities
to observe β Pic during this time period. The second half of the Hill sphere transit will
be visible from most southern hemisphere ground-based observatories, making β Pic a well
suited candidate for photometric monitoring in late 2017.

As it is a rare opportunity to probe circumplanetary material, it is not certain what will
be seen when the Hill sphere of β Pic b transits the star. One possibility is that satellites
could reside in the Hill sphere. To approximate the photometric transit depths, the 0.736 mas
angular diameter of the star corresponds to 1.53 R� or 1.065×106 km. Moons as large as
Ganymede (r = 2630 km) or Io (r = 1820 km) would give transit depths of 6×10−6 and
3×10−6, respectively. Detecting these photometric signatures will require a high cadence, as
any single satellite orbiting β Pic b will have a transit duration of ∼2 days. Additionally, β
Pic is a variable star with pulsation timescales of ∼0.5 hours and variability amplitudes in
B -band of < 5 mmags (Koen et al. 2003), so careful modeling of stellar activity is necessary
to be sensitive to these transit depths.

Another possibility is that, as β Pic b is still young and evolving, it may harbor a
circumplanetary disk or ring system comprised of leftover material from planet formation.
Such a hypothesis is not unprecedented as Kenworthy & Mamajek (2015) found evidence for
a large circumplanetary disk around an unseen planet in the 1SWASP J140747.93-394542.6
(hereafter J1407) system, which has a similar age (∼16 Myr; Mamajek et al. 2012) and thus
likely at a similar stage in its evolution. Kenworthy & Mamajek (2015) interpreted the series
of complex and deep eclipses in the J1407 light curve as from a circumplanetary disk 0.6 au
in radial extent in the process of forming rings due to newly formed satellites. It is plausible
that β Pic b can harbor a similar disk as a 0.6 au disk would be 1/2 rH in extent and
consistent with where we would expect stable orbits to reside around β Pic b. Additionally,
since β Pic b is young, it is plausible that there is a large amount of circumplanetary material
which has yet to be cleared out dynamically. Such a large disk would transit the star and be
suitable for detection through photometric monitoring of the host star if the disk is inclined
by & 18◦ with respect to the orbital plane of β Pic b. To maintain such an inclination, the
disk needs to be massive enough to prevent stellar tidal forces from aligning the disk to the
orbital plane (Zanazzi & Lai 2017).

So far, there have not been many observational constraints of circumplanetary material
around β Pic b. Lecavelier Des Etangs et al. (1997) reported a photometric event in 1981 and
hypothesized it could be due to the transit of a planet that cleared out a hole in the debris
disk around its Hill sphere. However, Millar-Blanchaer et al. (2015) show that the planet
is not embedded in the debris disk and we definitely show the planet itself will not transit.
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Still, our orbit models give a 8% and 4% chance the photometric event coincided with the
transit of the Hill sphere and 1/2 Hill sphere respectively, during which time material around
the planet could have passed in front of the star. Additionally, a circumplanetary disk or
ring may also be detectable through the planet’s spectral energy distribution (SED). The
planet’s near-infrared spectrum would experience extinction if the dust resides between us
and the planet, with the magnitude of extinction depending on the amount of dust. In the
near infrared, the extinction would be greater at shorter wavelengths due to the increased
scattering and absorption by dust and would produce a spectral slope in the planet’s near-
infrared SED. Dust around the planet would also scatter starlight, causing the planet’s SED
to appear brighter in the optical, as has been postulated for Fomalhaut b (Kalas et al. 2008).
Furthermore, the dust will produce millimeter emission. However, detecting circumplanetary
material in the planet’s SED will require being able to distinguish it from the circumstellar
disk with precise spectral data.

4.5 Conclusions
In the first part of this work, we have presented a new technique for more precise and

accurate astrometry of directly imaged exoplanets using a new analytical forward modeling
approach in a robust statistical framework.

• Using the KLIP-FM framework presented in Pueyo (2016), we are able to analytically
forward model the PSF of the planet through the data reduction process, giving us
better information on the location of the planet. We apply KLIP-FM to GPI data on
β Pic and forward model the PSF of β Pic b using the open source pyKLIP package.

• For a close-in planet orbiting a bright star like in the case of β Pic b, we are limited
by correlated speckle noise in our data. We developed a Bayesian framework utilizing
Gaussian processes and MCMC to account for the correlated noise and to find the
position of the planet simultaneously.

• With this technique, we have achieved the most precise astrometry on β Pic b to date.
On most of our GPI datasets, we achieve ∼1 mas precision on the relative separation
between β Pic b and its host star, a ∼2-4 fold improvement over previous techniques
using the same data (Millar-Blanchaer et al. 2015).

• In datasets where the astrometry is limited by noise and not by astrometric calibra-
tion uncertainty, Bayesian KLIP-FM Astrometry approach should improve astrometric
precision.

In the second part of this work, we apply our Bayesian KLIP-FM Astrometry technique
to the orbit of β Pic b.

• To validate this new astrometric technique, we used it to measure the position of
β Pic b in 12 epochs of GPI data. We combined these 12 astrometric points with
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2 previous astrometric monitoring campaigns and fit a Keplerian orbit using MCMC
methods. We find the residuals to the fit are consistent with zero and show no apparent
systematic trends, indicating that our fit is accurate and the uncertainties we estimate
are reliable.

• Due to the improved PA measurements from our technique, we have the tightest con-
straints on the inclination of the orbit and can exclude a possible transit of β Pic b at
10σ significance.

• While the planet will not transit, we are confident the Hill sphere around β Pic b
will transit. The Hill sphere will begin transit at the start of April in 2017 and finish
transiting at the end of January in 2018 with closest approach in the end of August in
2017. The transit of β Pic b’s Hill sphere should be our best chance in the near future
to investigate young circumplanetary material.

In the future, this MCMC forward modeling technique can be applied to photometry
and spectral extraction alongside of astrometry of directly imaged exoplanets, allowing for
improved characterization of their atmospheres. For β Pic b, continued monitoring of its
orbit will yield more insight into the dynamics of the star system, although the planet will
soon be too close to its star to be seen with current direct imaging instrumentation. However,
once the planet appears on the other side, continued astrometric monitoring should be able
to constrain the semi-major axis and eccentricity of the orbit much better, which will improve
our understanding of how β Pic b perturbs the disk and if there are other planets perturbing
β Pic b.
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Figure 4.3 : Posterior distributions for the seven orbital elements in our Keplerian orbit model
along with inferred distributions of possible dates for transit events in the top right corner. The
vertical dashed lines in the marginalized posterior distribution plots indicate the 16th, 50th, and
84th percentile values. For the transit events, the dotted line corresponds to the ingress and egress
of the full Hill sphere, the dashed line corresponds to the ingress and egress of the half Hill sphere,
and the solid line corresponds to the date of closest approach.
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Figure 4.4 : (Top) Offset of β Pic b in right ascension (blue) and declination (red) with respect to
β Pic as a function of time. We have plotted the measured data and 500 randomly chosen accepted
orbits from the MCMC sampler. (Middle) Radial separation of β Pic b from the star as a function
of time. The same 500 randomly-chosen orbits have are also plotted (Bottom) PA as a function of
time for the data and the 500 randomly chosen orbits. To keep the data compact, we have wrapped
PA by 180◦ to only consider position angles between 180◦ and 360◦. This allows easy comparison
to the 2003 point, which is nominally at a PA of 34.◦4 but here displayed at a PA of 214.◦4. The
dashed black line indicates a constant PA of 212.◦4, the weighted mean of all points. If the planet
were to transit, we would not be able to see a significant deviation from constant PA in time. For
all the plots, error bars are also plotted but many are too small to be seen on this scale.
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Figure 4.5 : Residuals to the orbit fit for the average of 500 randomly chosen accepted orbits. The
top row shows the residuals in ∆RA (blue) and ∆Dec (red) offset, which are the coordinates used in
the MCMC analysis to fit the orbit. We also plot radial separation (middle row) and position angle
(bottom row). The separation and position angle residuals were not optimized in the MCMC fit.
The right column is a zoom-in of the left column showing only the residuals of the GPI astrometry.
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Figure 4.6 : Region in the sky that the Hill sphere of β Pic b will sweep across during the closest
approach of the planet in 2017. One-hundred randomly chosen accepted orbits (blue) are plotted
along with the angular extents of their Hill spheres (light orange) and 1/2 Hill spheres (dark orange).
The star, β Pic, is shown in its true angular size (small yellow dot). Both the Hill sphere and 1/2

Hill sphere will pass in front of the star. Note that for clarity we are not plotting the orbital path
for β Pic b when it comes back in its orbit and passes behind the star.
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Chapter 5

Dynamical Constraints on the HR 8799
Planets with GPI

A version of this chapter has been submitted for publication in a refereed journal.

The HR 8799 system uniquely harbors four young super-Jupiters whose orbits can pro-
vide insights into the system’s dynamical history and constrain the masses of the planets
themselves. Using the Gemini Planet Imager (GPI), we obtained one milliarcsecond preci-
sion on the astrometry of these planets. We assessed four-planet orbit models with different
levels of constraints and found that assuming the planets are near 1:2:4:8 period commen-
surabilities, or are coplanar, does not worsen the fit. We added the prior that the planets
must have been stable for the age of the system (40 Myr) by running orbit configurations
from our posteriors through N -body simulations and varying the masses of the planets. We
found that only assuming the planets are both coplanar and near 1:2:4:8 period commen-
surabilities produces dynamically stable orbits in large quantities. Our posterior of stable
coplanar orbits tightly constrains the planets’ orbits, and we discuss implications for the
outermost planet b shaping the debris disk. A four-planet resonance lock is not necessary
for stability up to now. However, planet pairs d and e, and c and d, are each likely locked in
two-body resonances for stability if their component masses are above 6 MJup and 7 MJup,
respectively. We combined the dynamical and luminosity constraints on the masses using
hot-start evolutionary models and found the mass of planet b to be 5.8± 0.5 MJup, and the
masses of planets c, d, and e to be 7.2+0.6

−0.7 MJup each.

5.1 Introduction
High-contrast imaging spatially separates the faint light of planets from the bright glare

of their host star. By monitoring exoplanetary systems with high-contrast imaging, we are
able to obtain footage of these exoplanets in motion and trace out their orbits. Orbit analysis
has been a powerful tool in characterizing the dynamics of directly-imaged systems. Through
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orbital monitoring of β Pic b, we now know that the planet is responsible for inducing the
observed warp in the circumstellar debris disk (Dawson et al. 2011; Lagrange et al. 2012),
although it may not be alone in clearing out the cavity of the disk (Millar-Blanchaer et al.
2015). Precise orbital determination also has timed the Hill sphere transit of the planet
to between April of 2017 to January of 2018 (Wang et al. 2016), which offered a unique
opportunity to probe the circumplanetary environment of a young exoplanet (Stuik et al.
2017; Mékarnia et al. 2017; de Mooij et al. 2017). For HD 95086 b, by combining orbit fits
with constraints on the debris disk geometry, Rameau et al. (2016) showed that the planet
alone cannot be clearing out the gap in the system, and that additional planets reside closer
in to the star. The orbit of Fomalhaut b was shown to cross the debris disk in the system,
revealing that the planet cannot be a massive Jupiter-like planet, but rather a dwarf planet
shrouded by dust (Kalas et al. 2013). Finally, future orbital monitoring of 51 Eri b could
shed light on the interactions between the planet and the wide-separation binary GJ 3305
(De Rosa et al. 2015).

Long-term orbital monitoring can also lead to dynamical mass measurements of the
planets themselves, which will assess evolutionary models of young giant planets that all
current mass estimates of directly-imaged exoplanets are based on (Baraffe et al. 2003; Marley
et al. 2007). In the coming years, Gaia will measure the astrometric reflex motion of stars
hosting planets (Perryman et al. 2014). Gaia astrometry combined with long-term orbital
monitoring from direct imaging will provide the tightest model-independent constraints on
the masses of the planets (Sozzetti et al. 2016). Alternatively, multi-planet systems where
planets mutually perturb their orbits provide another way to constrain the masses of the
planets in the system. In resonant systems where the dynamical timescales are close to the
orbital timescales, such mutual perturbations have been measured in short period planets as
variations in the host star’s radial velocity signature (e.g., Marcy et al. 2001; Rivera et al.
2010) and as transit timing variations (e.g., Agol et al. 2005; Holman &Murray 2005), leading
to direct measurements of the masses. Due to the long orbital periods of known directly-
imaged systems, such a direct measurement of the mutual perturbations on the orbits has
been impossible with the current observational baselines, none of which span a full orbital
period. Still, upper limits on the masses of the planets based on dynamical stability can be
obtained. Stability mass constraints have been used to characterize exoplanets discovered
in compact systems, such as TRAPPIST-1 (e.g., Quarles et al. 2017; Tamayo et al. 2017),
Kepler-36 (Deck et al. 2012), and the HR 8799 system discussed in this paper.

HR 8799 is unique among directly-imaged systems as it is the only one known to harbor
four planets (Marois et al. 2008, 2010b). The planets orbit ∼15-70 au from the star between
two rings of rocky bodies, similar to the configuration of the giant planets in our own Solar
System (Su et al. 2009). The outer belt has been resolved with far-infrared and millimeter
observations, although the exact orientation and inner edge of the disk are not entirely agreed
upon (Hughes et al. 2011; Matthews et al. 2014; Booth et al. 2016; Wilner et al. 2018).
Assuming “hot-start" evolutionary models and an age of 30 Myr, Marois et al. (2008, 2010b)
translated the planet luminosities into masses: planet b is ∼5 MJup while the inner three
planets are ∼7 MJup (Marois et al. 2008, 2010b). However, as the evolutionary models are
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uncertain at these early ages, so are the exact masses of the planets. Fortunately, dynamics
can provide an additional constraint on the masses of the planets, even if their long orbital
periods mean we cannot detect planet-planet interactions and fully constrain the masses this
way.

Since the discovery of the HR 8799 planets, their orbits have been closely monitored.
Keplerian orbits have been fit to the astrometry obtained from many instruments using
least-squares techniques that look for families of orbits or Bayesian parameter estimation
with Markov-chain Monte Carlo (MCMC) methods that explore the full posterior of orbital
parameters (Soummer et al. 2011a; Currie et al. 2012; Esposito et al. 2013; Maire et al. 2015;
Pueyo et al. 2015; Zurlo et al. 2016; Konopacky et al. 2016a; Wertz et al. 2017). Fitting
the planets independently, some studies have reported planet d to be misaligned in its orbit
relative to the other planets (Currie et al. 2012; Esposito et al. 2013; Pueyo et al. 2015) or
one of the inner planets having eccentricities above 0.2 (Maire et al. 2015; Wertz et al. 2017).
However, several of the authors have noted that unaccounted astrometric calibration offsets
between instruments may be inducing inclination and eccentricity biases (Pueyo et al. 2015;
Maire et al. 2015; Konopacky et al. 2016a). Recently, Konopacky et al. (2016a) presented
self-consistent astrometry using only measurements from Keck and found that coplanar and
low-eccentricity solutions were consistent with the data. Despite the uniform analysis, the
7 years of Keck data still only cover a short arc of these orbits that have periods between
∼40-400 years, leaving many possible orbital configurations.

The measured astrometry is not the only constraint on the orbit of these planets. HR
8799 is part of the Columba moving group (Zuckerman et al. 2011), a group of stars that
formed together 42+6

−4 Myr ago (Bell et al. 2015). Thus the four planets need to be stable
dynamically for almost the same amount of time. Studies using N -body simulations have
explored the dynamical constraints on the orbital parameters and masses. These studies
have found stable orbits using the nominal luminosity-derived masses from Marois et al.
(2010b) without invoking orbital resonances (Sudol & Haghighipour 2012; Götberg et al.
2016) or to even higher masses assuming long-term resonance lock of the planets (Fabrycky
& Murray-Clay 2010; Marois et al. 2010b; Goździewski & Migaszewski 2014; Gozdziewski &
Migaszewski 2018). However, many of these studies initialize or fit the simulated orbits to
one astrometric measurement, leaving a gap between orbit fits from the data and dynamical
constraints from simulations (Fabrycky & Murray-Clay 2010; Marois et al. 2010b; Sudol &
Haghighipour 2012; Götberg et al. 2016). To connect simulations to the data more rigorously,
Goździewski & Migaszewski (2014) developed a novel technique to lock the planets into
resonance and then search for times and orientations that matched all of the available data.
Their orbit and mass constraints though only apply to the family of orbits that slowly
migrated into a four-planet resonance lock.

A few attempts have been made to include stability in the orbit fitting of this system.
Analytical prescriptions have been used to remove the orbits that are most obviously not
dynamically stable (Pueyo et al. 2015; Konopacky et al. 2016a). Esposito et al. (2013) ran
N -body simulations on their orbital fits from a least-squares algorithm and only found stable
orbits up to 5 MJup. In general, finding stable orbits in the orbit fits has been impractical
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Table 5.1 : GPI Observations of HR 8799

UT Date Filter
Exposure
Time (s)

Field
Rotation (◦)

Planets
Imaged

2013 Nov 17 K1 2130 17 cde
2014 Sep 12 H 3107 19 bcd
2016 Sep 19 H 3579 21 cde

with short orbital arcs. Having only the 2-D sky projection of an arc of an orbit, even with
milliarcsecond-level precision, cannot break many degeneracies in the orbital parameters
resulting in too wide a variety of orbital solutions which are nearly all unstable.

In this paper, we present an analysis that better bridges the gap between orbit fits and
dynamical constraints by incorporating N -body simulations as a rejection sampling step
of our Bayesian orbit fit to enforce stability. In Section 5.2, we show we have obtained
one milliarcsecond astrometry of all four planets using the Gemini Planet Imager (GPI;
Macintosh et al. 2014) and the open-source pyKLIP data reduction package (Wang et al.
2015). In Section 5.3, we combine the precise GPI measurements with the uniformly-reduced
Keck astrometry measured by Konopacky et al. (2016a) and fit multiple orbital models with
different assumptions about coplanarity and resonance using MCMC techniques that sample
the full posterior of possible orbital configurations. In Section 5.4, we take the posteriors of
orbits from our Bayesian analysis and simulate them for 40 Myr using the REBOUND N -body
integrator (Rein & Liu 2012) to find the posterior of stable orbits after applying a dynamical
stability prior. We discuss the consequences of our results, such as planets shaping the cold
debris disk, the necessity of orbital resonances for stability, dynamical limits on the masses
of the planets, and the future stability of the system.

5.2 Observations and Data Reduction
To obtain astrometry of the planets, we used three epochs of observations of HR 8799

taken with the integral field spectroscopy (IFS) mode of GPI. Two epochs were from instru-
ment commissioning (Gemini program GS-ENG-GPI-COM) and one epoch from the GPI
Exoplanet Survey (Gemini program GS-2015B-Q-500; PI: Macintosh). Details of the three
observations are listed in Table 5.1. While HR 8799 b is normally located outside of the
field of view of GPI, we steered the field of view on the detector during the 2014 September
12 observations to see planet b, although the conditions in this dataset were too poor to see
planet e.

Raw IFS data from each epoch were processed to create 3-D spectral datacubes using the
automated data reduction system for the GPI Exoplanet Survey (Wang et al. 2018). Briefly,
the data were dark subtracted, individual micro-spectra on the detector were extracted to
form spectral datacubes, bad pixels were corrected, distortion in the image was corrected,
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Table 5.2 : Astrometric Measurements of the HR 8799 planets

UT Date Planet KL Modes
Exclusion

Criterion (pixels)
Radial

Separation (mas)
Position Angle

(◦)

2013 Nov 17 c 10 3 949.5 ± 0.9 325.18 ± 0.14
d 10 3 654.6 ± 0.9 214.15 ± 0.15
e 20 1.5 382.6 ± 2.1 265.13 ± 0.24

2014 Sep 12 b 10 1.5 1721.2 ± 1.4 65.46 ± 0.14
c 10 1.5 949.0 ± 1.1 326.53 ± 0.14
d 10 1.5 662.5 ± 1.3 216.57 ± 0.17

2016 Sep 19 c 10 2 944.2 ± 1.0 330.01 ± 0.14
d 10 2 674.5 ± 1.0 221.81 ± 0.15
e 10 1 384.8 ± 1.7 281.68 ± 0.25

and satellite spots, fiducial diffraction spots centered about the location of the star, were
located. See Appendix A of Wang et al. (2018) for details.

We used the Karhunen-Loève Image Projection algorithm (KLIP; Soummer et al. 2012;
Pueyo et al. 2015) to subtract off the stellar glare and the Bayesian KLIP-FM Astrometry
(BKA) technique (Wang et al. 2016) to measure the astrometry of each planet. BKA for-
ward models the distortions to the planet point spread function (PSF) induced by KLIP
in subtracting the stellar PSF and fits for the planet position while also accounting for the
correlated noise in the image as a Gaussian process. In Wang et al. (2016), we used this
technique to obtain one milliarcsecond astrometry on β Pic b. We used the KLIP and BKA
implementations available in the pyKLIP package (Wang et al. 2015) from commit 4f56e34.
For all the reductions, we first ran a high-pass filter to suppress the low spatial frequency
background, constructed the instrumental PSF from the satellite spots, selected an annulus
containing each planet to run KLIP on, and averaged the data in time and wavelength. To
optimize the detection of each planet, we varied the number of Karhunen-Loève (KL) modes
to model the stellar PSF, and the minimum number of pixels the planet needed to move in
the reference images due to angular differential imaging (Marois et al. 2006a) and spectral
differential imaging (Marois et al. 2000). We listed these parameters in Table 5.2. To mea-
sure the planets’ astrometry, we used the emcee package (Foreman-Mackey et al. 2013) to
sample the posterior distribution for the location of the planet while also fitting the noise as a
Gaussian process with spatial correlation described by the same Matérn covariance function
as used in Wang et al. (2016). For each planet, our Markov-chain Monte Carlo sampler used
100 walkers, and each walker was run for 800 steps, with a “burn-in" of 300 steps beforehand
that corresponded to at least three autocorrelation times for any chain. We then added
additional terms in our astrometric error budget in quadrature: a 0.05 pixel uncertainty in
locating the central star (Wang et al. 2014); a plate scale of 14.166 ± 0.007 mas lenslet−1;
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and a residual North offset of 0.◦10±0.◦13 (De Rosa et al. 2015). Our final astrometric results
are listed in Table 5.2.

We note that it is improper to combine our Bayesian uncertainties on the planet posi-
tion with the frequentist uncertainties of our astrometric calibration. In Appendix B, we
present a frequentist alternative that performs the same analysis, but with a commensurable
interpretation.

5.3 Orbit Fitting
To investigate the possible orbital solutions for the HR 8799 planets, we combined our

GPI measurements with those from Keck that were reported in Konopacky et al. (2016a).
We chose to consider only these two datasets to minimize unknown systematic errors in the
astrometric calibration across instruments. Specifically, the astrometric calibration of GPI is
derived from the same instrument at Keck that is used for their observations of HR 8799, so
systematic offsets between the two datasets are minimized (Konopacky et al. 2014; De Rosa
et al. 2015). While Hubble Space Telescope data from 1998 provides an additional 6 years of
baseline, the 20-30 mas 1σ uncertainties are not particularly constraining so we did not use
them (Soummer et al. 2011a).

In this section, we fit the four planet orbits to four orbital configurations with increasing
constraints: first, four Keplerian orbits that share the same parallax and stellar mass (Section
5.3.1); second, forcing coplanarity of the four planets (Section 5.3.2); third, forcing the four
planets to be near 1:2:4:8 period commensurabilities but with no coplanarity constraints
(Section 5.3.3); lastly, forcing both coplanarity and the periods to be near a 1:2:4:8 ratio
(Section 5.3.4). The constraints are intended to tighten the parameter space around stable
orbits, but we are not directly considering stable orbits in these orbit fits. Dynamical stability
constraints will be added in Section 5.4.

5.3.1 Unconstrained Orbits

First, we fit four independent Keplerian orbits to the data. We employed the same
Bayesian framework as Wang et al. (2016) that used Markov-chain Monte Carlo (MCMC)
to sample the posterior distribution of orbital elements. For each planet, we fit for the
conventional Keplerian orbital elements: semi-major axis (a), epoch of periastron after MJD
50,000 in units of fractional orbital period (τ), argument of periastron (ω), longitude of
the ascending node (Ω), inclination (i), and eccentricity (e). Our conventions follow those
defined in Alzner & Argyle (2012) for binary stars. In this approach each planet’s orbital
properties are independent, except we require that the four planets’ orbits use the same
parallax and total system mass, which we take to be the stellar mass. To account for the
uncertainties in the parallax and stellar mass, we assumed a Gaussian prior for the system
parallax of 24.76 ± 0.64 mas (Gaia Collaboration et al. 2016) and a Gaussian prior for the
stellar mass of 1.52± 0.15 M�, which is mass reported by Baines et al. (2012) but with an
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Table 5.3 : Orbital Parameters of HR 8799 bcde from Different Models

Body
Orbital
Element Unconstrained Coplanar Near 1:2:4:8

Near 1:2:4:8
Coplanar Low-e

b ab (au) 69.5+9.3
−7.0 66.4+4.1

−3.6 69.4+3.1
−4.0 69.5+2.6

−2.8
τb 0.54+0.14

−0.16 0.46+0.05
−0.06 0.40+0.11

−0.15 0.38+0.11
−0.12

ωb (◦) 92+30
−34 92± 15 95+49

−41 102+39
−46

Ωb (◦) 127+32
−93 126+12

−14 82+36
−16 78+13

−10
ib (◦) 29+7

−8 23± 5 23+4
−6 24± 3

eb 0.15± 0.05 0.15± 0.06 0.07+0.06
−0.05 0.05+0.04

−0.03
c ac (au) 37.6+2.2

−1.7 40.5+2.7
−1.7 41.2+2.3

−1.6 43.3+1.9
−1.7

τc 0.50+0.10
−0.18 0.14+0.18

−0.11 0.13+0.15
−0.09 0.09+0.02

−0.07
ωc (◦) 65+59

−29 52+83
−35 48+62

−29 63+60
−29

Ωc (◦) 110+38
−47 126+12

−14 112+17
−26 78+13

−10
ic (◦) 20+4

−5 23± 5 21+3
−4 24± 3

ec 0.09± 0.04 0.05+0.05
−0.03 0.04+0.05

−0.03 0.03+0.04
−0.02

d ad (au) 27.7+2.2
−1.7 25.3+1.3

−1.1 25.6+1.2
−1.3 25.6+1.0

−0.9
τd 0.79+0.07

−0.18 0.872+0.019
−0.016 0.85± 0.03 0.839± 0.20

ωd (◦) 144+13
−23 133+15

−11 148+22
−137 165+11

−157
Ωd (◦) 92+27

−15 126+12
−14 86+26

−16 78+13
−10

id (◦) 33± 4 23± 5 23+5
−6 24± 3

ed 0.15± 0.11 0.28± 0.04 0.20± 0.05 0.18+0.02
−0.03

e ae (au) 15.3+1.4
−1.1 14.0+0.7

−0.6 15.7+0.06
−0.07 15.4± 0.06

τe 0.71+0.17
−0.33 0.91+0.05

−0.06 0.10+0.15
−0.06 0.07+0.05

−0.04
ωe (◦) 100+27

−49 128+25
−18 86+44

−36 76+25
−21

Ωe (◦) 117± 17 126+12
−14 90+9

−19 78+13
−10

ie (◦) 31± 5 23± 5 28+3
−4 24± 3

ee 0.13+0.06
−0.05 0.16± 0.05 0.05+0.07

−0.04 0.08+0.03
−0.04

A Parallax (mas) 24.70± 0.16 24.60± 0.56 24.38± 0.62 24.38+0.54
−0.53

M? (M�) 1.48+0.05
−0.04 1.46+0.12

−0.11 1.42+0.12
−0.11 1.40± 0.10

χ2
ν 1.01+0.10

−0.07 0.88± 0.07 0.95+0.07
−0.06 0.94+0.12

−0.05
∆BIC 0+7

−6 −34± 0.06 −4+5
−6 −29+6

−4
Stable Orbits

(first 106 draws) 0 0 1 441

Note. — The quoted values for ω and Ω are wrapped to be between 0◦ and 180◦ so
posterior percentiles describe one of the two symmetric peaks. For each parameter, the
median value is reported with the superscript and subscript corresponding to the 84th and
16th percentiles of the distribution respectively. For a normal distribution, these values
correspond to the mean and 1σ range.
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Figure 5.1 : The posteriors of each planet’s orbital parameters for each of the four different models
considered in Section 5.3. Each row contains the four planet’s posteriors (color coded by planet) for
one model. For the coplanar models, the planets have the same Ω and i, so only one is plotted.
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additional 10% uncertainty to account for systematic model errors as was done in Konopacky
et al. (2016a). This case covers the full range of orbital parameters that are consistent with
the data; the three following orbit fits will explore subsets of this parameter space. Due to
the high dimensionality of the orbital parameters (26 in total), it will be incredibly difficult
to find the dynamically stable orbits if they reside in a very small subspace. Regardless,
this orbital fit is an important fiducial case to be used as a baseline model with minimal
assumptions. We will refer to this orbital fit as the “Unconstrained" fit.

We generally used uniform priors on our orbital parameters. For each planet, the prior
on a was uniform in log(a) between 1 and 100 au; the prior on τ was uniform between 0 and
1; the priors on ω and Ω were uniform from 0 to 2π; the prior on i is the geometric sin(i)
prior; and the prior on e was uniform between 0.000001 to 0.999.

We used the parallel-tempered affine-invariant sampler (Goodman & Weare 2010) im-
plemented in emcee (Foreman-Mackey et al. 2013) using 15 temperatures and 1500 walkers
per temperature. To improve the speed of convergence of the orbit fit, we initialized the
walkers by drawing from allowed orbital parameters of individual fits to each planet using
the same process. We ran each walker for 125,000 steps, after an initial burn in of 95,000
steps. Convergence was assessed using the autocorrelation time and confirming by-eye that
ω and Ω had symmetric peaks. On a 32 core machine with AMD Opteron 6378 processors
clocked at 2.3 GHz, this took seven days to complete, although we note that we did not make
an attempt to optimize the code. We then thinned the chains by a factor of 75 to mitigate
any correlation in the Markov chains. Taking only the lowest temperature walkers, we then
were left with 2,499,000 samples of the posterior distribution. The posterior distributions
are plotted in Figure 5.1 and reported in Table 5.3.

Following similar analyses from previous orbit fitting studies (e.g., Konopacky et al.
2016a; Wertz et al. 2017), we investigate the mutual inclination of the planets’ orbits by
plotting in Figure 5.2 Ω and i, the two orbital elements that describe the orientation of the
orbital plane. We see that the 1σ contours for the four planets do overlap near i ∼ 30◦ and
Ω ∼ 100◦, indicating coplanar orbital solutions exist. This result agrees with the assessment
of coplanarity by Konopacky et al. (2016a) using similar arguments, although they preferred
a different Ω. However, we note that only 0.005% of our sampled orbits have all four planets
being mutually inclined by < 10◦. This result likely indicates that without any constraints
on the orientation of the orbital planes, it is extremely inefficient to sample coplanar orbits
in large quantities. This is not surprising since the near-coplanar solutions are just a small
subset of an eight-dimensional space in which we have chosen uniform, uncorrelated priors
on each parameter. To more rigorously test coplanar orbits, we will fit directly for them
(Section 5.3.2) and assess the fits (Section 5.3.5).

5.3.2 Coplanar Orbits

As planets form from the circumstellar disk, it would not be surprising to find the planets
residing in coplanar orbits. The posteriors from the fit without constraints are consistent
with coplanarity, but does not strongly favor it. Here we will explicitly fit for coplanar orbits,
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Figure 5.2 : The posteriors of each planet’s angles Ω and i for the Unconstrained fit. Blue, magenta,
green, and yellow correspond to planets b, c, d, and e respectively. The 1σ contour is plotted on top
of each planet’s histogram. Overlapping regions indicate where coplanar orbits reside. Note that
Ω is wrapped to only consider angles between 0◦ and 180◦ as the posterior is identical as between
180◦ and 360◦ by construction.

and in Section 5.3.5, we will assess if this approach fits the data as well as the unconstrained
one. We modify our fit so that all four planets share the same values of Ω and i, reducing
the fit to 20 orbital parameters. We will refer to this orbital fit as the “Coplanar" fit.

We used a parallel-tempered sampler with 15 temperatures and 1500 walkers per tem-
perature. We ran each walker for 87,500 steps, after an initial burn in of 132,500 steps.
Convergence was assessed in the same way as in Section 5.3.1. We again thinned the chains
by a factor of 75, and formed our posterior distribution from the lowest temperature chains.
Our posterior distribution has 1,749,000 samples. The posteriors are plotted in Figure 5.1
and reported in Table 5.3.

From the posteriors in Figure 5.1, we see that the angles Ω and i that define the ori-
entation of the orbital plane are consistent with the orbital planes of the four planets of
the Unconstrained fit. The Coplanar orbits favor inclinations between 20◦ and 30◦, which
is ∼10◦ more face-on than the solutions from Konopacky et al. (2016a) with just the Keck
data alone. We still find Ω > 90◦, which is not preferred for coplanar orbits in Konopacky
et al. (2016a). We also note that forcing the system to be coplanar causes the eccentricity of
planet d to be much higher, with < 2% of the allowed orbits having e < 0.2. This was due
to nearly all of planet d’s low eccentricity orbits from the Unconstrained fit lying outside of
the range of allowed orbital planes from the Coplanar fit. As Ω and i are constrained by the
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other three planets, raising ed provided a way to obtain the best fits to the data.

5.3.3 Near 1:2:4:8 Period Ratio Orbits

We then investigated resonant orbits, focusing in particular on the 1:2:4:8 resonance,
where consecutive pairs of planets are in 2:1 period resonance. We will first choose to
be agnostic about the four planets’ mutual inclinations. Because these planets are not
massless, even if they are in resonance, they do not necessarily reside at the exact period
commensurabilities. Additionally, precession of the planets’ longitude of periastrons can
further offset the observed period ratios from exact integer values. We note that previous
orbit fitting work has assumed exact period commensurabilities when assessing if the fits
were consistent with certain resonances.

At high planet masses like the HR 8799 planets, stable period ratios for the 2:1 two-body
resonance tend to be larger than 2 due to resonance overlaps at smaller period ratios causing
instability (Morrison & Kratter 2016). Thus, instead of fixing the period ratio of the planet
pairs, we use a parameter that gives each period ratio room to float. We picked our priors
empirically from our own preliminary analysis of where the stable orbits existed. Our prior
on the period ratio between b:c and c:d is a uniform distribution between 1.8 and 2.4. For
the d:e period ratio, we choose a narrower uniform prior between 1.8 and 2.2, because we
found all of the dynamically stable orbits were in this more narrow range and limiting it
as such improved the efficiency of finding dynamically stable orbits (Section 5.4). We will
show in Section 5.4.2 that our choices for our priors did not exclude stable orbits. We note
that we effectively replaced the parameters for the semi-major axes of the outer planets with
their period ratios, so we did not reduce the number of parameters in our MCMC fit even
though the parameter space has shrunk. We will refer to this orbital fit as the “Near 1:2:4:8"
fit, which as the naming implies, only places the period ratios near resonance and does not
guarantee the planets are indeed in resonance at all.

We initialized the walkers using coplanar solutions, which delayed convergence and caused
the walkers to take a considerable amount of time to fully explore all of the allowed parameter
space. We ran our parallel-tempered sampler with 15 temperatures and 1500 walkers per
temperature for 75,000 steps, after a burn in of 495,000 steps that was chosen using the same
metric for convergence as Section 5.3.1. We performed the same thinning of the chains by
a factor of 75. The resulting posterior was taken from the lowest temperature walkers and
has 1,500,000 samples. The posteriors are plotted in Figure 5.1 and reported in Table 5.3.

5.3.4 Near 1:2:4:8 Period Ratio Coplanar Low-e Orbits

Lastly, we looked at coplanar resonant orbits. We applied both the coplanarity and period
ratio constraints from Sections 5.3.2 and 5.3.3. We also applied an additional constraint that
the eccentricity of all of the orbits have to be less than 0.2. In Section 5.3.2, we found that
< 2% of the coplanar orbits have ed < 0.2. From preliminary analysis done concurrently
with the orbit fits, we could only find stable orbits when all planets had e < 0.2. This fact
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will be further reinforced by the analysis in Section 5.4.2. Thus, we do not believe we lost
stable orbits by applying this additional constraint, and merely improved the efficiency of
finding stable orbits. We will refer to this orbital fit as the “Near 1:2:4:8 Coplanar" fit, which,
like the Near 1:2:4:8 fit, does not guarantee the planets are actually in resonance.

For this 20-parameter orbit fit, we used a parallel-tempered sampler with 15 temperatures
and 1500 walkers per temperature. We ran each walker for 125,000 steps, after an initial
burn in of 95,000 steps. Convergence was confirmed using the metrics defined in Section
5.3.1. We again thinned the chains by a factor of 75, and formed our posterior distribution
from the lowest temperature chains. This resulted in 2,499,000 samples of the posterior. The
posteriors are plotted in Figure 5.1 and reported in Table 5.3.

As we expected, the posterior for the eccentricity of planet d runs up right against our
prior bounds. Without stability constraints, higher eccentricity orbits are favored. Just
like in the Coplanar orbit fit, we find an orbital inclination for the system in the 20◦ and
30◦ range. However, Ω is now in agreement with that found in Konopacky et al. (2016a) for
coplanar orbits, unlike our previous orbit fits. It is likely this was a small family of orbits
that were not represented in the 1σ range of our previous analyses.

5.3.5 Goodness of Fit

We used the reduced chi-squared (χ2
ν) statistic to measure the goodness of fit of a model.

Since the highest likelihood model often does not represent the whole posterior of possible
orbital configurations, we compute χ2

ν on 1000 randomly drawn allowed orbits for each model.
We list the 16th, 50th, and 84th percentiles in Table 5.3. For the Unconstrained model, we
found χ2

ν ≈ 1, indicating the unconstrained Keplerian orbits can suitably describe the data
as one might expect if the uncertainties are estimated accurately, given it is a physical model.
The other three models have χ2

ν similarly close to unity, showing they also fit the data well.
We also investigated if more-restrictive models with additional, dynamically-motivated

constraints better describe the data than the fiducial Unconstrained case. We calculated the
Bayesian Information Criteria (BIC; Schwarz 1978; Liddle 2007) as a simplified alternative
to full Bayesian model comparison. The BIC assesses how well a model fits the data and
penalizes models that have more free parameters. Models with lower BIC are preferred. We
define the ∆BIC as the difference between the BICs of a more restrictive model and the
median BIC of the Unconstrained model. We also calculate ∆BIC using the same 1000
randomly drawn orbits for each model, and list the 16th, 50th, and 84th percentiles for this
value in Table 5.3.

We find the ∆BIC is negative for the other three models relative to the Unconstrained fit.
This indicates that adding constraints that tend the data towards what we believe are stable
orbits makes the fits better, as we discard some parameter space containing likely unstable
orbits that do not reflect reality. We also note that χ2

ν and ∆BIC are not perfect metrics as
they only consider the number of free parameters in the models, and not the total parameter
space being considered. In particular, when we limit the period ratios, this does not decrease
the number of free parameters while significantly limiting the space of possible orbits. Thus,
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we see these goodness of fit metrics favor the coplanar solutions as they explicitly reduce
the number of parameters in the model. It would be better to have computed the Bayes
factor between each pair of models to more rigorously compare models, but the Bayes factor
is computationally difficult to calculate with a high-dimensional problem like this and our
MCMC samplers were only set up to perform parameter estimation. Because of this, we
do not think it is valid to conclude from solely these two metrics that coplanar orbits are
favored. However, we can assert that adding constraints to the orbit fit does not worsen
the fit from the fiducial case, and thus the constraints are reasonable given the current
astrometric data. This conclusion agrees with the analysis from Konopacky et al. (2016a),
who found that coplanar orbits and orbits near 1:2:4:8 period ratios were fully consistent
with the Keck astrometry. While the metrics we have employed cannot decide which orbit
model should be favored, the stability constraints to the system that are investigated in the
following section will clearly show what the realistic orbits are.

5.4 Dynamical Constraints
Keplerian motion is not the only constraint on the orbits of the planets. We also know

that these four planets must also have survived from their formation up to this point. The
star is 42+6

−4 Myr old (Bell et al. 2015), so these orbits must have also been stable for roughly
the same time, since giant planets likely formed quickly before the gas disk dispersed in the
first few Myr (Williams & Cieza 2011). As the gas disk is difficult to model and exists for
only a short period of the system’s lifetime, we do not simulate the time between planet
formation and gas disk dispersal. Thus, we investigated which orbital configurations allowed
by astrometric measurements are also stable if we simulate the four planets’ orbits backwards
in time for 40 Myr. In this section, we will apply this dynamical constraint on each of the four
orbit fits (Unconstrained, Coplanar, Near 1:2:4:8, Near 1:2:4:8 Coplanar), and investigate
the family of stable orbits that arise.

5.4.1 Stability of Orbital Models

We used the REBOUND N -body simulation package (Rein & Liu 2012) with the WHFast
integrator (Rein & Tamayo 2015). To set up a simulation, we added particles for planets e,
d, c, b in that order, using a chosen set of orbital parameters from our fits and placing them
at the predicted location on MJD 56609, the date of the first GPI epoch. We drew masses
for each of the planets in a process described in the following paragraph, and set the primary
mass to be the stellar mass from our orbit fits. We then reversed the present velocities of the
planets and integrated the system for 40 Myr to simulate the past dynamical history of the
system, using fixed timesteps equal to 1% of planet e’s initial orbital period. We considered
a configuration unstable if two planets passed too close, or if one planet was ejected from
the system. We considered an encounter too close if any two planets passed with a distance
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less than the initial mutual Hill radius of planets d and e, which we approximated as

RHd,e = ae

(
Me +Md

3M?

)1/3

, (5.1)

where Me,Md,M? refer to the masses of planet e, planet d, and the primary respectively.
We considered a planet to be ejected if it moved further than 500 au from the star. Any
orbit that survived for 40 Myr without encountering either condition is considered stable.

To assess the dynamical stability of allowed orbital configurations for each model, we
performed rejection sampling to assess which orbit models contained significant amounts
of stable orbits. We drew one million random orbital configurations from each of the four
model posteriors. The orbit fits do not specify the mass of the planets so we needed to add
additional parameters for them. For simplicity, we set planets c, d, and e to be equal in
mass as we would expect due to their similar luminosities (Marois et al. 2010b). We drew
the mass of these planets, Mcde, from a uniform prior between 4 and 11 MJup to encompass
the uncertainty on the luminosity-derived masses from Marois et al. (2010b). We drew the
mass of planet b, Mb, from a uniform prior between 3 MJup and Mcde to account for its lower
luminosity. We will discuss using a more informative prior based on the planets’ luminosities
in Section 5.4.4. We ran each of the configurations through the REBOUND setup described
previously. Our dynamical stability prior sets the probability of an orbit to be 0 if the system
is not stable, and 1 if it is stable, discarding the unstable orbits in our rejection sampling.
In Table 5.3, we record the number of stable orbits from each of the configurations.

We found that the Unconstrained and Coplanar orbit solutions did not yield any stable
orbits after one million draws. Especially for the Unconstrained case, the lack of stable
draws does not mean that these models are inconsistent with stable orbits, but rather that
the islands of stability in this high dimensional space are small and were not sampled even
after millions of MCMC draws. Simply, these models do not currently allow for a practical
search of stable orbits.

Both models that assume that the planets’ orbital periods are near the 1:2:4:8 period
ratio do yield stable orbits, with the model not assuming coplanarity, the Near 1:2:4:8 model,
resulting in just one stable orbit after one million draws. This model encompasses all of the
parameter space explored by the Near 1:2:4:8 Coplanar model so it is the more general
model. We explored this model further by running twenty million REBOUND simulations in
total, leading to 50 stable orbits.

We find that for masses of the inner three planets greater than 5 MJup, the maximum
mutual inclination between any pair of planets in a stable system is < 8◦, although we
only have few samples in this regime (14 stable orbits spanning 8 unique present-day orbital
configurations). We also do not find stable orbits above 6 MJup, which likely reiterates the
difficulty of finding stable noncoplanar orbits due to the high-dimensionality of the problem.
Thus, with the limited orbital arcs we have so far, looking for noncoplanar stable orbits
is impractical. Since in Section 5.3 we found that our astrometry is consistent with the
system being coplanar, we will focus on those orbits since we can find many stable orbits
with this assumption (hundreds per million tries). We will leave the thorough exploration
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Figure 5.3 : Posterior of stable orbital elements for coplanar configurations of the four planets.
These posteriors show all stable orbits withMcde > 4 MJup and 3 MJup < Mb < Mcde. As discussed
in Section 5.4.2, solutions with higher planet masses lie within a smaller region of this space.

of orbits with mutual inclinations for future work with longer astrometric baselines and
more computation time. However, in our preliminary analysis, it seems that the mutual
inclinations are probably small in order for the system to be stable.

5.4.2 Stable Coplanar Orbital Solutions

For the rest of the analysis, we focus on the orbital parameters from the Near 1:2:4:8
Coplanar fit. We increase the number of N -body simulations from one million to twenty-two
million, obtaining 9792 stable orbital configurations. We plot the initial osculating orbital
elements (i.e., those on MJD 56609) of these stable orbits in Figure 5.3 and list them in
Table 5.4.

We find that the posteriors have tightened significantly after applying the dynamical
stability constraint. Figure 5.4 visually compares the spread of possible orbits on the 2-D
sky plane for the orbit fits with increasing constraints placed on them. The stable coplanar
orbits appear as a well defined ellipse with minimal uncertainty for each planet’s orbit. This
is also reflected visually and numerically in the posterior percentiles. The middle 68%, the
difference between the 84th and 16th percentiles, of the semi-major axes of the planets
decreased by 1.5 to 4.5 times when compared to the Unconstrained case, and by a factor
of 1.17 to 1.50 when compared to the Near 1:2:4:8 Coplanar fit that the stable orbits were
drawn from. Similarly, the middle 68% of the eccentricities also decreased by a factor between
2.2 and 4.7 compared to the Unconstrained fits. In fact, the fractional uncertainty on the
semi-major axes is about the same as the fractional uncertainty of the Gaia DR1 parallax of
the system (≈2%). The inclusion of the parallax from Gaia Data Release 2, released after
this analysis was completed, should reduce its contribution to the semi-major axis and total
system mass uncertainties by a factor of 7 (Gaia Collaboration et al. 2018). We have chosen
not to rerun our analysis since the conclusions in this paper do not strongly depend on the
exact semi-major axes of the orbits, and we will leave this for a future work.

The stable orbits, despite being much more restrictive, are good fits to the data. Ag-
gregating 1000 random orbits, we find a χ2

ν = 1.01+0.06
−0.05 that is just as good as the fiducial

Unconstrained model. The ∆BIC is similarly comparable to the other models. Although,
once again we note that BIC does not account for the narrower parameter space due to the
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Table 5.4 : Stable Coplanar Orbital Parameters of HR 8799 bcde

Body
Orbital
Element

Stable
Coplanar

b ab (au) 70.8+0.19
−0.18

τb 0.46+0.31
−0.26

ωb (◦) 87± 58
Ωb (◦) 67.9+5.9

−5.2
ib (◦) 26.8± 2.3
eb 0.018+0.018

−0.013
c ac (au) 43.1+1.3

−1.4
τc 0.43+0.15

−0.24
ωc (◦) 67+59

−39
Ωc (◦) 67.9+5.9

−5.2
ic (◦) 26.8± 2.3
ec 0.022+0.023

−0.017
d ad (au) 26.2+0.9

−0.7
τd 0.839+0.020

−0.017
ωd (◦) 17+12

−11
Ωd (◦) 67.9+5.9

−5.2
id (◦) 26.8± 2.3
ed 0.129+0.022

−0.025
e ae (au) 16.2± 0.5

τe 0.124+0.019
−0.013

ωe (◦) 110± 9
Ωe (◦) 67.9+5.9

−5.2
ie (◦) 26.8± 2.3
ee 0.118+0.019

−0.028
A Parallax (′′) 24.30+0.49

−0.69
M? (M�) 1.47+0.11

−0.08
χ2
ν 1.01+0.06

−0.05
∆BIC −22+6

−4

Note. — Values are reported in
the same way as Table 5.3
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Figure 5.4 : A comparison of 200 allowed orbits from the Unconstrained (Section 5.3.1), Near 1:2:4:8
Coplanar (Section 5.3.4), and dynamically stable coplanar solutions (Section 5.4.2) projected onto
the sky plane. The black star in the middle represents the location of the star, the black circles are
the measured astrometry (uncertainties too small to show on this scale), and the current orbit for
each planet is colored in the same way as Figures 5.1 and 5.3 (i.e., planet b is blue, c is red, d is
green, and e is yellow).

additional stability constraint. We conclude that these stable orbits are a small, but allowed
part of a much larger space that we have explored through our Bayesian analysis.

The masses of the stable configurations are plotted in Figure 5.5. We will discuss mass
constraints in Section 5.4.4 in detail. Briefly here, we can see that stable orbits exist with
the mass of the inner three planets at almost 9 MJup, and separately with the mass of planet
b to be nearly 7 MJup. Also, the majority of stable orbits we found are low mass. 95.6% of
the orbits have Mcde < 6 MJup and 73.0% of the orbits have Mcde < 5 MJup. This highlights
the difficulty in finding stable high mass solutions when starting with our current orbit fits.

With these stable orbits, we can look at the mass dependence on the orbital parameters
to justify our choices of prior constraints in doing the Near 1:2:4:8 Coplanar orbit fit. In
Figure 5.6, we plot the range of period ratios and eccentricities of stable orbits as a function
of Mcde. We see that for Mcde > 6 MJup, none of the period ratios or the eccentricities are
close to the bounds set by our priors. Below 6 MJup, the period ratio of planet d to e as
well as the eccentricities of d and e are near the upper bound in the extreme case, indicating
our prior may be excluding some low-mass stable orbits. Since the interquartile range of
these parameters is far away from these bounds, only a few extreme low-mass cases have
been excluded, so the effect should be minimal. As the masses increase, we see the range
in the allowed parameter space decreases, indicating that the highest mass stable orbits
reside in a subspace of the parameters we are exploring. Thus, we conclude that we are
not unnecessarily excluding stable orbit configurations with our choice of priors that were
designed to improve the efficiency of finding stable orbits.

There are several notable features in our posteriors of stable orbital configurations. The
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Figure 5.5 : The distribution of masses of the stable orbits from Section 5.4.2 (blue) and comparison
to the priors from which the masses were drawn (gray). The main plot in the bottom left shows the
2-D distribution of masses. The contour lines represent 15th, 35th, 55th, 75th, and 95th percentiles
of the distribution, with everything outside the 95th percentile plotted individually as points. The
top and right panels show 1-D histograms for Mcde and Mb respectively, with the frequency in each
bin plotted on a logarithmic scale to highlight the high mass bins. The gray priors are plotted in
the same fashion as the blue posteriors.

bimodality of the eccentricity posteriors is clear. The outer planets b and c have e ∼ 0 while
the inner planets d and e have e ∼ 0.1. These eccentricities agree well with what was found
by Goździewski & Migaszewski (2014) who migrated planets into resonance lock, rotated the
orientations to match the astrometry, and selected orbital configurations with a χ2

ν cutoff.
Given that this conclusion was reached by two completely different analysis methods, the
fact the inner two planets have slightly eccentric orbits while the outer two planets are
in near-circular orbits is a notable result that seems to be required for most stable orbital
configurations that are consistent with the measured astrometry. The increased eccentricities
of planets d and e, and the proximity of all four planets to 1:2:4:8 period commensurabilities,
are consistent with an early evolutionary period of convergent inward migration of all four
planets, trapping of planet pairs d & e and c & d into 2:1 resonances, and pumping of the
orbital eccentricities of d and e by continued migration while in resonance lock (e.g., Yu &
Tremaine 2001; see also section 5.4.3).

Also, comparing our stable orbits with those of Goździewski & Migaszewski (2014) and
Gozdziewski & Migaszewski (2018), we note that most orbital parameters agree fairly well
except for the semi-major axes of the planets, which we find to be significantly larger.
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Figure 5.6 : The distribution of current period ratios and eccentricities as a function of mass of
the inner three planets for stable orbits. For Mcde < 7 MJup, the data is binned into one box plot
per MJup. Each box shows the 25th, 50th, and 75th percentiles of the given distribution, while
the whiskers show the extrema. Above 7 MJup, points are plotted individually as they are sparse
enough. The bounds of the priors are plotted as gray dot-dashed lines, except for the upper bound
of the d:e period ratio which is the yellow dotted line. These plots show how the range of allowed
period ratios and eccentricities decrease as planet mass increases. Above Mcde > 6 MJup, the full
range of stable orbits are not near the prior bounds.

For example, only 0.11% of our orbital solutions have ac ≤ 39.4 au, the best fit solution
of Goździewski & Migaszewski (2014). Our uncertainties in parallax and stellar mass are
consistent with the fixed parallax and stellar mass they used, so the difference in a is not
just a result of different system parameters. We also generally have larger uncertainties on
our values, which can be due to a combination of allowing lower mass orbits, not strictly
enforcing 1:2:4:8 resonance lock, and a more systematic exploration of parameter space.

As the orbits are coplanar, each planet’s argument of periastron can be used to measure
the relative orientation of the planets’ orbits. As both planet b and c have extremely low
eccentricities, ω is basically unconstrained for these planets and is not notable since their
orbits are near circular. The significant nonzero eccentricity of planets d and e however
correspond to sharp peaks in ω for both planets. While a broader peak was already seen
in ωd in the Near 1:2:4:8 Coplanar fits before enforcing stability constraints, the addition
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of dynamical stability has disallowed circular orbits of planet e, giving rise to a sharp peak
in ωe. Interestingly, the orientation of the orbits of planets d and e are not aligned, with
ωe−ωd = 94+11

−9 degrees, essentially perpendicular to being aligned. We note that Goździewski
& Migaszewski (2014) also found a similar result.

The period ratios of the planets shown in Figure 5.6 heavily favor period ratios above
the nominal 2:1. We find period ratios Pb/Pc = 2.11± 0.06, Pc/Pd = 2.10+0.04

−0.05, and Pd/Pe =
2.06+0.03

−0.04. For Pc/Pd and Pd/Pe, the data favors period ratios above two. This can been
seen by computing the period ratios using the median a for the Near 1:2:4:8 Coplanar fits
from Table 5.3 that do not have a dynamical prior applied. It seems that these period
ratios are at these high values to satisfy the astrometry. For Pb/Pc, the data allows both
period ratios above and below two, so having it strongly favor values above 2 (only 2% of
stable configurations have Pb/Pc < 2) indicates that spacing the two planets slightly further
apart enhances stability. The period ratios driven by the astrometry could be indicative
of a primordial period ratio. In particular, the planets could have experienced eccentricity
damping while in resonance and were repelled to period ratios greater than 2 while still
maintaining resonance lock (Lithwick & Wu 2012; Batygin & Morbidelli 2013). As disk
gas is the primary mechanism for eccentricity dissipation of Jupiter-mass planets at large-
separations,1 this may indicate that the planets were in or near their current location during
the gas disk stage (Dong & Dawson 2016).

We found the system has an inclination of i = 26.◦8±2.◦3 and longitude of ascending node
of Ω = 68.◦0+5.9

−5.3, consistent with the work by Konopacky et al. (2016a) fitting coplanar orbits,
but a few times more precise. Both i and Ω match the debris disk inclination of 26◦±3◦ and
position angle of 62◦ ± 3◦ derived from far-infrared Herschel observations (Matthews et al.
2014). While the inclination is also consistent with the millimeter observations of the debris
disk by the Submillimeter Array (SMA) and the Atacama Large Millimeter/submillimeter
Array (ALMA), Ω is higher than the position angle of the disk of 35.◦6+9.4

−10.1 in the millimeter
(Wilner et al. 2018). This implies the disk in the millimeter is mutually inclined from the
planetary orbital plane by 16+22

−11 degrees. If this offset is real, we would be observing a
process that decouples the millimeter planetesimals from the planets and smaller dust grains
probed by Herschel. However, it is not clear what could cause that. As reported in Section
5.4.1, we do not find high mass solutions that are mutually inclined by over 8◦, so it seems
unlikely that planet b is torquing the disk, although we cannot definitely exclude planet b
being inclined from the rest of the planets. Still, it would not explain why the smaller dust
seen by Herschel are indeed coplanar with the planets. Deeper observations of the debris
disk are needed to determine if the debris disk is coplanar to the planets.

Previous works have considered the need for an additional planet to carve the inner edge
of the outer belt of debris (Booth et al. 2016; Read et al. 2018). Here we investigated whether

1Note, however, that damping of planetary eccentricity by gas dynamical friction does not conserve the
planet’s orbital angular momentum, contrary to damping of eccentricity by tidal dissipation in the planet;
the latter, not the former, is considered by Lithwick & Wu (2012) and Batygin & Morbidelli (2013). However,
the general mechanism of resonant repulsion also occurs for eccentricity damping by gas dynamical friction
(e.g., as simulated for giant planets at wide sparations by Dong & Dawson 2016).
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planet b is consistent with sculpting the inner edge of the outer belt, assuming the planets
are coplanar or nearly so to the disk; the possible millimeter-wave offset of 16+22

−11 deg cited
above is assumed negligible in this regard. Since planet b’s orbit is likely near-circular, with
95% of the allowed stable orbits having eb < 0.05, we can compute the clearing zone of
planet b using the following equation from Morrison & Malhotra (2015) for the outer edge
of a planet’s chaotic zone, validated for high-mass planets like HR 8799 b:

Rin = ap + 1.7ap(Mp/M?)
0.31. (5.2)

Here Rin is the inner radius of the disk and corresponds to the outer edge of a planet’s
clearing zone, ap is the semi-major axis of the planet, Mp is the mass of the planet, and
M? is the mass of the star. Plugging in the numbers from our dynamically stable orbits, we
find Rin = 89+3

−2 au when considering all stable orbits, and Rin = 93+3
−2 au when considering

only stable orbits with Mb > 5 MJup. When compared to the inner edge of 104+8
−12 au

derived by Wilner et al. (2018), our median value of the inner edge when only considering
Mb > 5 MJup is consistent with their middle 68% credible interval, while our median value
when considering all of our stable solutions equally is slightly below this credible interval.
However, given that our quoted numbers on the inner disk edge depends on our priors on
the mass of the planet and given the uncertainty in the inner disk edge (Booth et al. 2016;
Wilner et al. 2018), a 1σ disagreement is not significant. Our orbit fits place planet b at a
location consistent with sculpting the inner edge of the debris disk, although finer studies of
the dynamical interactions of system and more refined system parameters will help clarify
the picture.

5.4.3 Orbital Resonances

Having stable orbits near integer period ratios does not guarantee resonance. To explore
possible orbital resonances in our stable configurations, we saved the state of each stable
system every 200 years using the SimulationArchive feature of REBOUND (Rein & Tamayo
2017). We looked at the resonant angles of each system as a function of time to infer the
resonant nature of the system: planets in resonance will have a corresponding resonant angle
that is librating, but the angle will circulate if the planets are not in resonance. For this four
planet system, we looked at nine resonant angles. The first six angles are two-body resonant
angles that look at whether consecutive planets are in 2:1 resonance. These 2:1 resonant
angles are defined by

θi:j,k = λj − 2λi +$k, k ∈ {i, j}. (5.3)

Here, $ = Ω +ω is the longitude of periastron, and λ = $+M is the mean longitude where
M is the mean anomaly. The labels i and j refer to the labels of a consecutive pair of planets
with the inner planet being j, and k refers to either i or j, resulting in two resonant angles
per pair of planets and thus six two-body resonant angles in total for the three consecutive
pairs of planets. For example, the 2:1 resonant angle for planets c and d using planet d’s $
would be written as θc:d,d. In a similar notation, the three-body 1:2:4 Laplace resonance can
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Figure 5.7 : Demonstration of the algorithm to identify librating and circulating segments of each
critical angle. The top, middle, and bottom plots show a purely librating, transitioning, and purely
circulating angle respectively. The points colored red show regions identified as circulating, and the
points colored blue show regions identified as librating. In this example, θd:e,e is always librating
with a librating center of 0◦ and a libration amplitude of 36◦. θc:d:e is librating only 33% of the time
and θb:c,b is circulating 98% of the time so librating amplitudes and centers are not well defined.

be written as
θi:j:k = λk − 3λj + 2λi, (5.4)

where the innermost planet is k, and the outermost planet is i. Lastly, we looked at the
same four-body 1:2:4:8 resonant angle as Goździewski & Migaszewski (2014):

θb:c:d:e = λe − 2λd − λc + 2λb. (5.5)

In our simulations, we found that these resonant angles varied in behavior, with some
continuously librating (i.e., locked in resonance for 40 Myr), some continuously circulating,
and some transitioning between the two over the 40 Myr orbit integration. To analyze all of
the simulations uniformly, we developed an algorithm to identify libration and compute the
fraction of time a resonant angle is librating or circulating over the course of a simulation.
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Figure 5.8 : Distribution of systems in the space of libration fraction versus planet mass. Contours
are 25th, 50th, 75th, and 97th percentiles (e.g., 97% of systems lie within the 97th percentile
contour). Above that, individual points that correspond to particular stable orbital configurations
are plotted. Libration fractions of 100% indicate resonance lock, while libration fractions < 5%
indicate the planets are probably never in resonance.

The algorithm takes advantage of the fact that librations oscillate around a fixed value
while circulating angles are monotonically changing. Briefly, the algorithm uses a Fourier
transform to identify the periodicity of the data, smooths it on that scale, and computes the
time derivative of the smoothed angle over the time series. Any sections of the time derivative
with significant deviations from zero are deemed circulating and the rest are deemed librating.
Figure 5.8 shows an example of this algorithm classifying librating and circulating sections
of a few resonant angles. We note that this method is not perfect, and requires a subjective
threshold to determine when a deviation is significant. However, inspecting the results from
several resonant angles by eye, the algorithm seems comparable to by-eye identification, and
seems to accurately identify resonant angles that are librating continuously (i.e., librating
100% of the time). For systems which by eye are transitioning quickly or which are always
circulating, we estimate that we misidentified ∼5% of the time-series. This error is small,
and the gain in having an automated algorithm to uniformly analyze all of these time-series
is large.

We apply this algorithm to all nine resonant angles for each of our simulations. We
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plot the libration fraction, the fraction of time in the last 40 Myr during which that angle
is librating, for each angle in Figure 5.8. At low masses (Mcde < 6MJup), the scatter in
the libration fraction is high for all angles, indicating resonance lock for any subset of the
planets is not necessary for stable orbits at low masses. Several of the angles never reach
100% libration fraction at any mass, indicating that all of the stable orbital configurations
we found do not have all four planets in resonant lock. While we do not see any four planet
resonant chains, it might be possible they reside in a small island of parameter space that our
MCMC did not sample. All resonance angles involving planet b never reach 100% libration
fraction. Planet b may occasionally come into resonance with the inner planets, but does
not remain there. It is not too surprising that planet b does not favor resonance, insofar as
the magnitude of the resonant potential associated with θb:j,b is proportional to the planet’s
orbital eccentricity eb (e.g., Murray & Dermott 1999), and its median eccentricity is the
lowest among the four planets.

The inner three planets do favor resonance more than planet b. Above ∼6 MJup, a large
majority of stable orbits have θd:e,e librating 100% of the time. Similarly, above ∼7 MJup,
θc:d,d is always librating for most stable orbits. For all masses, these two angles are always
librating some of the time. However, the other two resonant angles, θd:e,d and θc:d,c, appear
primarily transitioning between libration and circulation, with θd:e,d trending to libration at
high masses. This bheavior is also reflected in the three-body resonant angle between the
inner three planets, with only 1.2% of the stable orbits having this three-body angle librating
for at least 90% of the time. Still, this behavior indicates that the inner planets being in
a 1:2:4 three-body resonance is both consistent with the data and dynamically stable for
masses up to 8 MJup. In these cases, the libration center of θc:d:e often jumps between ∼ 90◦

and ∼ −90◦, but typically keeping |$d−$e| ∼ 90◦. However, the 1:2:4 three-body resonance
is not required for stability, even at high masses.

When the three planets are not locked in resonance together, pairs of planets can be in
resonance. We find, averaged across the ensemble of simulations, these two-body resonant
angles librate around 0◦. However, in a single simulation, the libration center can be offset
from 0◦, a phenomenon know as asymmetric libration (e.g., Murray-Clay & Chiang 2005) that
is observed for two body angles in other resonant chain systems (e.g., Kepler-80, MacDonald
et al. 2016) and is caused by the gravitational effect of a third planet. For the situation
where θd:e,e librates but θd:e,d does not, conjunction of planets d and e always occurs at the
periastron of planet e’s orbit, but is completely uncorrelated planet d’s orbit. In the case
where both θd:e,e and θc:d,d librate but the three-body angle θc:d:e does not, planet e’s orbit
orients itself so that it is lined up to the conjunction with planet d, while planet d’s longitude
of periastron is driven by the conjunction with planet c, which is not locked in with planet
e. In this case, consecutive planet pairs appear to be locked in resonance for 40 Myr, but
three-body resonance lock does not exist.

Having planets d and e and planets c and d locked in two-body resonances fits well
with the picture that they were locked in resonance quickly after formation, before the
gaseous protoplanetary disk disappeared. After the planets migrated into resonance lock, the
eccentricities of e and d were both amplified by their resonant migration in the gas disk and
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damped by the gas, pushing the planets to larger period ratios. After the gas dispersed, the
planets maintained their primordial eccentricities and period ratios, with these parameters
only oscillating as the planets exchange energy and angular momentum in resonance.

5.4.4 Dynamical Mass Limits

As we only have a short orbital arc of data, we are limited on the mass constraints
we can place based solely on dynamical considerations. We have not yet measured the
perturbations of the planets’ orbits by each other. Without seeing a significant effect, we
cannot place a lower bound on the masses of the planets dynamically. Impractically, we may
need to measure the change in the orbital elements of the planets after many orbits, akin
to the masses derived from transit timing variations (Agol et al. 2005; Holman & Murray
2005). Thus, dynamical constraints based on short orbital arcs cannot fully constrain the
masses alone.

Looking at Figure 5.5 again, our stable orbits heavily favor low masses, since we cannot
place a lower bound on the masses and we used a uniform prior. For high masses, Mcde >
8 MJup, we have only a few stable orbits, all with the mass of the planet b near the lower-
bound of what we would expect, indicating a possible upper limit to the masses of the planets.
However, we cannot verify this is because of a lack of sampling of stable orbits. That is, the
probability of drawing a stable orbital configuration with Mcde > 8 MJup and Mb > 5 MJup

might be so small that we do not expect to find one with our current sampling. We are
potentially limited by the fact that 2.5 million samples of the posterior are not sufficient
when the posterior has 20 dimensions and the islands of stability at extremely high masses
are extremely small. Thus, there is no indication of a sharp drop-off that would point to
a firm upper limit on the mass based on dynamical considerations. In fact, Goździewski &
Migaszewski (2014) and Gozdziewski & Migaszewski (2018) found stable orbits above 9MJup

for the inner three planets, indicating higher-mass stable orbits exist if one forces the entire
system to be in a 4-planet resonance lock. It might be that we missed those systems since
we did not enforce such a global lock and therefore had a larger parameter space of allowed
stable orbits. If we acknowledge that we are dependent on our choice of priors for the mass
of the planets, we can say that 99.9% of the orbits that are dynamically stable for the last
40 Myr have Mcde < 7.6 MJup and Mb < 6.3 MJup for this particular choice of prior. These
mass upper limits are consistent with the luminosity derived masses of Mcde = 7 MJup and
Mb = 5 MJup based on hot-start evolutionary models (Marois et al. 2008, 2010b).

We also investigated using a mass prior based on the measured luminosity and hot-start
evolutionary models. Since it is computationally intensive to rerun all 22 million N -body
simulations, we instead weighted each sample drawn from the previous prior distribution with
the relative change in probability due to switching to a luminosity-based prior, resulting in
a down-weighting of the lowest mass configurations which are disfavored by the measured
luminosities. To accomplish this, we reevaluated the luminosity-derived masses with newest
age estimates for the Columba moving group from Bell et al. (2015) which we approximate
as a Gaussian distribution of 42 ± 5 Myr. This age has better stated uncertainties than
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Figure 5.9 : The histogram of dynamically stable masses after being weighted by the luminosity
prior on the planet masses assuming hot-start evolutionary tracks. Planet b is in blue, and planets
c, d, and e are assumed to follow the same red histogram.

the 30-60 Myr range given in Marois et al. (2010b). We still used the same luminosities
measured by Marois et al. (2008) and Marois et al. (2010b), as there has not been an update
to them with stated uncertainties. Using the Baraffe et al. (2003) hot-start cooling tracks,
we get model-dependent masses of 6.0 ± 0.7, 8.7 ± 1.0, 8.7 ± 1.0, and 8.7 ± 1.7 MJup for
planets b, c, d, and e respectively. To stay self-consistent with our simulations that fix the
masses of the inner three planets to be the same, we choose to use the 8.7 ± 1.0 MJup of
planets c and d for the mass of the planet e also. Otherwise, planet e will tend toward
lower masses, and be inconsistent with our simulation assumption of equal masses for the
inner three planets. Indeed, spectrophotometric measurements from the latest generation of
high-contrast imagers confirm that planet e has similar near-infrared fluxes to planet c and
d, and not planet b (Zurlo et al. 2016; Greenbaum et al. 2018), so our assumption should
be robust. Altogether, when combining the luminosity and dynamical constraints for the
mass assuming hot-start evolutionary tracks, we get a mass of 5.8 ± 0.5 MJup for planet b
and 7.2+0.6

−0.7 MJup for planets c, d, and e. These mass distributions are plotted in Figure 5.9.
Note that our mass estimates depend on the resonances we found the planets to be in, and
that higher masses can be achieved by assuming four planet resonance lock (Goździewski &
Migaszewski 2014; Gozdziewski & Migaszewski 2018).

It is uncertain exactly how bright planets are during the first 100 Myr as it depends
on uncertain formation mechanisms. Planet cooling tracks are instead parameterized by a
quantity like the initial entropy of the material that formed the planet (Spiegel & Burrows
2012). Since the hot-start models really are the high-entropy upper limit with regards to
planet formation models, the masses estimated assuming these tracks are the lowest masses
for the planets. Thus, we can use the hot-start model to quote a lower limit on the mass.
Combining the dynamical constraints with the luminosity prior on the masses from the hot-
start model, we find 95% of the stable systems have Mb > 4.9 MJup and Mcde > 6.1 MJup.
Alternatively, we can use the upper limits on the masses from dynamical stability alone to
constrain the initial conditions of the cooling tracks. Using the same stated luminosities and
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Figure 5.10 : The stability time of the dynamically stable orbits integrating forwards in time for
up to 1 Gyr. Contours are 25th, 50th, 75th, and 97th percentiles. The horizontal blue dotted line
indicates 40 Myr, the time we integrated the systems backwards as reference.

age of the system and using the Spiegel & Burrows (2012) warm-start models, our upper
limits of Mcde < 7.6 MJup and Mb < 6.3 MJup would then correspond to a lower limit on the
initial entropy of 9 kB per baryon.

5.4.5 Long-Term Dynamical Stability

Even though the system has been stable for ∼40 Myr, we investigate whether the system
we see today is reflective of the final state of system, or whether this configuration is a tran-
sient one. We used the saved SimulationArchive of each stable orbit, reversed the velocities
again, and now integrated them forwards in time for up to 1 Gyr. We used the same criteria
to assess stability as before. We plot the amount of time in the future each system is stable
as a function of the mass of the inner three planets in Figure 5.10.

We find orbits that are stable for 1 Gyr up to 6 MJup. Above 7 MJup, none of our orbits
are stable for over 100 Myr. Thus, if these planets have masses above 7MJup as is favored by
our combined dynamical and luminosity constraint, then the system is not likely stable. As
there is evidence in our own Solar System of dynamical upheaval of our less-tightly-packed
gas giants early on (Tsiganis et al. 2005), it is not surprising to find that the HR 8799 system
will become unstable.

Certain resonances do seem to improve stability. In particular, in systems where the
three-body angle θc:d:e is librating at least 50% of the time, systems are 10 times less likely
to go unstable in 1 Myr and 4 times less likely to become unstable in the 10 Myr than
systems with θc:d:e librating less than 50% of the time. There does not appear to be strong
correlation between the two-body angles and stability except for θb:c,c. Systems for which
θb:c,c is libration more than 30% of the time are 5 and 15 times more likely to be stable for
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at least 1 Myr and 10 Myr respectively than systems where this angle librates less than 30%
of the time. While certain resonances seem to prevent systems from short-term instabilities,
there is no indication that spending more time in resonance or achieving resonance lock
improves stability at the 1 Gyr level. This perhaps is due to the fact we did not find systems
with the four planets locked in resonance, which could have improved longer term stability.

5.5 Conclusion
This paper has aimed to explore the dynamically stable orbits of the HR 8799 system.

In the first part of the paper, we continued to demonstrate the precise astrometry that can
be achieved by GPI and explored various assumptions on the orbits of the planets.

• Using GPI IFS data from 2014-2016, we measured the astrometry of the HR 8799 with
one milliarcsecond precision using the open-source pyKLIP package.

• We utilized MCMC methods to fully explore the 20+ dimensional space of orbital
configurations using Bayesian parameter estimation and different assumptions on the
coplanarity and resonant nature of the system.

• We found that assuming the system is coplanar or the system is near the 1:2:4:8 period
ratio resonance does not significantly worsen the fit to the data, and in fact might
make it better. We find including both assumptions provide adequate fits to the data,
agreeing well with the conclusions of Konopacky et al. (2016a).

In the second half of this paper, we have presented the first attempt to rigorously fold
in dynamical constraints into orbit fits of a directly imaged system, and demonstrated the
power of including a dynamical prior.

• We performed rejection sampling on our posteriors of orbit fits to apply our prior of
dynamical stability. Using the REBOUND N -body integrator, we ran orbits backwards in
time for 40 Myr, the age of the system, varying the masses of the planets and looked
for the stable orbital configurations.

• We find that coplanar orbits near the 1:2:4:8 resonance produces orders of magnitude
more stable orbits than any other scenario. We find a few orbits near 1:2:4:8 resonance
with some mutual inclinations that are stable, but the inefficiency of finding them
makes studying that family of orbits impractical with current astrometric data.

• As demonstrated by Figure 5.4, the stable coplanar orbits lie within a small fraction
of the allowed orbital space. In this subspace, we find the outer two planets have near
zero eccentricity, while the inner two planets have e ∼ 0.1.

• Our orbits are consistent with being coplanar with the Herschel -derived debris disk
plane, but misaligned with the plane derived from SMA and ALMA by 16+22

−11 degrees.
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Our fitted orbit for planet b is consistent with that planet sculpting the inner edge of
the debris disk in the millimeter, assuming the orbits are close enough to coplanar.

• If Mcde & 6 MJup, planet e needs to be locked in resonance with planet d in order for
the system to be stable. Likewise, ifMcde & 7 MJup, planet d is likely in resonance lock
with planet c. Although we find stable configurations where the inner three planets
are in a 1:2:4 Laplace resonance, such a 3-body resonance is not required, as we found
many stable configurations where only pairs of planets are in resonance. Planet b does
not need to be in resonance for this system to be stable so far.

• Using a uniform prior on Mcde and a slightly low-mass-favored prior on Mb, we find
99.9% of our stable orbits have Mb < 6.3 MJup and Mcde < 7.6 MJup. Folding in the
mass constraints from the planet luminosities and hot-start evolutionary models, we
find Mb = 5.8 ± 0.5 MJup and Mcde = 7.2+0.6

−0.7 MJup. Either way, our mass constraints
are consistent with hot-start evolutionary tracks.

• We do not find systems with the inner planets above 7 MJup that are stable for the
next 1 Gyr.

In the future, as more of the orbital arcs are traced out with precise astrometry, it will
become clearer where in the 20+ dimensional space the planets’ true orbital configuration
lie. In the meantime using more computational power, we can attempt search for stable
orbits that are not forced to be exactly coplanar, are stable at higher masses, or are stable
at other resonances. Additionally, the new parallax value from Gaia Data Release 2 (Gaia
Collaboration et al. 2018) should help tighten the constraints on the semi-major axes of
the planets and total mass of the system for the stable coplanar solutions. Even a decade
since its discovery, the HR 8799 planetary system is one of the most unique and interesting
systems that we know, and combining both detailed dynamical studies with atmospheric
characterization will help us understand how these planets formed and how they will interact.

Our technique of performing rejection sampling to apply dynamical constraints after
MCMC sampling of the orbital parameters can also be applied to other directly-imaged
multi-planet systems to better constrain the orbits with just a short orbital arc. Here we have
shown that even with < 15% of the full orbit covered, we can constrain orbital parameters
to a few percent. This can remove the orbital uncertainty that comes with exoplanets
discovered through imaging alone, where we typically need to wait for long-period planets
to complete a orbital revolution before fully-constraining its orbit. This is also potentially
valuable for future space-based imaging missions that search for exo-Earths in multi-planet
systems, since this method can estimate the mass and orbit with a small orbital arc. This
can allow for the mission to better prioritize which exo-Earth candidates are observed with
expensive spectroscopic observations by determining which are most likely Earth-mass and
orbiting at a favorable distance from the star.
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Appendix A

Appendix for Chapter 4

A.1 Analytic Forward Modeling of the Planet PSF after
Stellar PSF Subtraction

Using the notation of Pueyo (2016), we can analytically forward model the PSF of the
planet through the process of stellar PSF subtraction. Let us denote the target image as
Tλp,tp(x), which is taken at wavelength λp and time tp and contains the pixels x from which
we want to subtract the stellar PSF.

To forward model the PSF of the planet, we need a model of the PSF of the planet
prior to stellar PSF subtraction. For our GPI data, we use the satellite spots to generate a
realization of an unocculted and unprocessed point source as a function of wavelength. Using
this model, we can generate Aλp,tp(x), a frame that consists solely of the unprocessed PSF
of the planet in the target frame. The initial estimate for the planet’s position in the frame
is determined using an input separation and PA of the planet and the location of the star.
Similarly, we can also generate an array of frames, each containing the unprocessed PSF of
the planet for each image in the reference library, accounting for the fact that the planet
position changes due to ADI field rotation and due to SDI rescaling to align speckles. In
these frames, the PSF shape only depends on the wavelength of the frame and the position
of the PSF depends on the apparent movement of the planet in the data due to ADI and
SDI. This array of unprocessed PSFs of the planet will be used to calculate the perturbation
of the KL modes due to the existence of the planet.

Assuming a spectrum, f , of the planet in the case of IFS data (for imaging data, f
is just a scalar), we can compute ∆Zk(x), the perturbation on the kth KL mode, Zk(x),
due to the existence of a planet, using equation E18 or E20 of Pueyo (2016). We will not
write out explicitly the exact formula to compute ∆Zk here since we have not made any
modifications to it. We note that we use Equation E18 from Pueyo (2016) to compute ∆Zk
as it is computationally faster than Equation E20 for a fixed input spectrum. We calculate
the perturbed ∆Zk for the first kKlip KL modes, where kKlip is the number of KL modes we
choose to use in our PSF subtraction.
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From here, the forward-modeled PSF of the planet for this frame is computed as

Fλp,tp(x) = Aλp,tp(x)

−

KKlip∑
k=1

< Aλp,tp(x), Zk(x) > Zk(x)


−

KKlip∑
k=1

(
< Tλp,tp(x), Zk(x) > ∆Zk(x)

+ < Tλp,tp(x),∆Zk(x) > Zk(x)
) , (A.1)

where < •, • > is the inner product. Equation A.1 is very similar to Eq. F7 in Pueyo
(2016), but is focused on generating the forward model with a fixed input spectrum and not
concerned with keeping the planet’s spectrum as a free parameter for spectral extraction. As
mentioned in Pueyo (2016), the term in the first square bracket is the over-subtraction term
that is due to the projection of the KL modes on data with a planet in it, and the terms in
the second square bracket are the self-subtraction terms due to the presence of a planet in
the reference images influencing the KL modes.

After generating forward models for each frame, we take the mean of all the forward
models in time to give us a single forward-modeled PSF cube, Fλp(x) that still has spectral
information in the third dimension. In principle, this PSF cube can be used to retrieve
spectral information from the data, but it is outside of the scope of this paper. For our
astrometry purposes, we also take the mean in wavelength, generating a single 2-D forward-
modeled PSF, which we call F , for each dataset.

A.2 BKA Fit Residuals
In Figure A.1, we plot the residuals to the best-fit model for each epoch using BKA. As

β Pic b moves closer to its host star, the magnitude of speckle noise increases relative to the
signal of β Pic b. This is especially true in the last epoch when β Pic b was closest to its
star. However, the fit was still accurate as the bright positive core of the PSF of the planet
was successfully modeled and not seen in the residuals, which are consistent with noise.
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Figure A.1 : The data, best fit forward model, and residual map after the model as been subtracted
from the data for each of the twelve datasets. In each row, we plot two datasets. For each dataset,
we plot the data (left), best fit forward model (center), and residual map (right) on the same color
scale. While the scale of each dataset is different, zero is mapped to the same color for all the
datasets.
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Appendix B

Astrometry with Forward Modeled PSFs
in a Frequentist Framework

In Chapter 4, we introduced a procedure to fit the location of a directly-imaged planet
using a forward-modeled PSF of the planet in a Bayesian framework. The choice of using
a Bayesian framework was improper in this context. While we could obtain the posterior
distribution of the planet’s location in the image, converting the measurement to an astro-
physical quantity, the angular distance between the the planet and star, requires using the
astrometric calibration of GPI and associated uncertainties. As the uncertainties in the as-
trometric calibration of GPI was derived with a frequentist methodology (Konopacky et al.
2014), it is not commensurable to simply combine the Bayesian uncertainties on the location
of the planet and the frequentist uncertainties in the astrometric calibration. Repeating the
astrometric calibration in a Bayesian framework is possible in order to be compatible with
the Bayesian planet astrometry, but would require a significant amount of work.

Here, we present a frequentist framework to measure the position of the planet that pre-
serves the forward modeling and covariance estimation that was developed for the Bayesian
technique. We will use the same notation as Section 4.2.5. Using pyKLIP, we are able to
produce a forward-model planet PSF, F , alongside of the data, D, which is the image of the
planet with residual speckle noise due to the imperfect subtraction of the stellar PSF. We
want to estimate the location of the planet (xp, yp) in the 2-D image and a scale factor α
that matches the brightness of the forward model to the planet. We still want to address the
covariances in our images, which are dominated by spatially-correlated speckle noise (photon
noise is generally negligible for GPI spectroscopy data). Speckle noise is due to both the
changing atmosphere and thermal drifts in the instrument. At any location in the image,
the brightness of speckles follows a modified Rice distribution with a positive tail, and any
realization of speckle noise is coherent in time for less than a second (Fitzgerald & Graham
2006). Thus, in each of our datacubes (∼60 s exposures), each location contains a sum of
many speckles. Each individual speckle also has the same spatial size as a point source (∼3
pixels for GPI data). As we observe using ADI, the sky rotates in our images at a rate
governed by the Earth’s rotation. To sum all of our datacubes together, we must rotate each
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frame to compensate for the apparent rotation of the sky. As the net rotation for each of our
sequences is much greater than the size of a speckle, when we are combining our datacubes,
we are adding many independent speckles, where each sample is a sum of many realizations
of that speckle over time. By the central limit theorem, the noise in the final combination
of data is approximately Gaussian. Thus, we will perform maximum likelihood estimation
using a Gaussian likelihood function.

We can write our likelihood function in the same functional form as Section 4.2.5:

P (D|xp, yp, α, l) = lnL(xp, yp, α, l)

= −1

2
(RTC−1l R + ln(detCl) +Npix ln(2π)).

(B.1)

In the same notation as before, R ≡ R(xp, yp, α) = (D − αF (xp, yp))F , where F is the fitting
region defined by a fixed rectangular box centered at the approximate location of the planet
in the data with Npix datapoints in it. R is a Npix×1 matrix and Cl is the covariance matrix
of size Npix×Npix with a parametrized characteristic spatial correlation size l that we fit for.
We use the same Matérn covariance function with ν = 3/2 as in Section 4.2.5, where the
only free parameter is the characteristic correlation length scale l. The noise of each pixel is
estimated as the standard deviation of pixels in an annulus that is centered on the star with
a mean radius corresponding to the distance between that pixel and the star and a width of
6 pixels. We use these noise estimates to fix the amplitude of each element of Cl.

To find the parameters of our model that maximize the probability of obtaining the data
we have recorded, we use the open-source scipy.optimize.minimize routine available in
version 1.0 of scipy to minimize the negative of our likelihood function as an equivalent
optimization to maximizing the likelihood function. We perform this optimization twice.
First, we use the keyword method=‘Nelder-Mead’ to use a Simplex algorithm that was the
most robust in finding the global minimum. Using the solution from the Simplex algorithm
as the initial guess, we run it again using the keyword method=‘BFGS’ which uses a quasi-
Newton method that also approximates the Hessian inverse during the optimization.

We take the solution from the BFGS method as our estimate for the position of the
planet in the data. We use the Hessian inverse estimated at the solution to approximate the
covariance of the fitted parameters. We find that the off-diagonal terms are two-orders of
magnitude smaller than the diagonal entries, indicating the parameters xp and yp are mostly
independent. Thus, we estimate the uncertainties on the position of the planet as the square
root of the diagonal entries of the Hessian inverse that correspond to xp and yp. We convert
the measured location of the planet in the image to a relative separation from the star using
the astrometric calibration numbers from De Rosa et al. (2015). Uncertainties on the star
center, plate scale, and north angle were assumed to be uncorrelated and added in quadrature
with the estimated uncertainty on the planet position to obtain the final uncertainty on the
relative offset between the planet and the star.

We demonstrate this technique on the 2013 November 16 data and obtain the following
measurements: ∆RA = −228.5 ± 1.3 mas, ∆Dec = −366.2 ± 1.1, Sep = 431.7 ± 1.0, and
PA = 212.0 ± 0.2 degrees. These values are 2-3 times more precise than those reported



124

in Millar-Blanchaer et al. (2015), and demonstrate the ability to reach one milliarcsecond
precision with this technique.


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Imaging Extrasolar Planets
	Studying Imaged Worlds
	This Dissertation

	Gemini Planet Imager Observational Calibrations VIII: Characterization and Role of Satellite Spots
	Introduction
	Satellite Spot Extraction
	Spectral Mode
	Polarimetry Mode

	Astrometric Stability
	Spectral Mode
	Polarimetry Mode

	Spectrophotometric Stability
	Long duration monitoring
	Short duration monitoring

	Future Work

	Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey
	INTRODUCTION
	Data Reduction for GPIES
	Calibration Data
	Spectral Mode
	Polarimetry Mode

	The Components of the Automated GPIES Data Infrastructure
	Data Acquisition and Storage
	The Data Cruncher
	Quicklooks
	The Web Thingie: Web Front End for Database and Observing Tools
	Collaborative Tools

	Utility of the Data Infrastructure
	Tools for Observers
	Data Processing Speed and Consistency
	Large-Scale Data Analysis

	Future Steps

	The Orbit and Transit Prospects for  Pictoris b constrained with One Milliarcsecond Astrometry
	Introduction
	Observations and Data Reduction
	Observations
	Reducing Raw GPI Data
	PSF Subtraction
	Constructing the Forward Model
	Locating the Planet with Bayesian Parameter Estimation

	Validation through Orbit Fitting
	Discussion
	The Orbit of  Pic b
	Hill Sphere Transit

	Conclusions

	Dynamical Constraints on the HR 8799 Planets with GPI
	Introduction
	Observations and Data Reduction
	Orbit Fitting
	Unconstrained Orbits
	Coplanar Orbits 
	Near 1:2:4:8 Period Ratio Orbits 
	Near 1:2:4:8 Period Ratio Coplanar Low-e Orbits
	Goodness of Fit

	Dynamical Constraints 
	Stability of Orbital Models
	Stable Coplanar Orbital Solutions
	Orbital Resonances
	Dynamical Mass Limits 
	Long-Term Dynamical Stability

	Conclusion
	Acknowledgements

	Bibliography
	Appendix for Chapter 4
	Analytic Forward Modeling of the Planet PSF after Stellar PSF Subtraction
	BKA Fit Residuals

	Astrometry with Forward Modeled PSFs in a Frequentist Framework



