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Abstract

Footage of Other Worlds: Unveiling the Dynamical Architecture of Young Exoplanetary
Systems

by
Jason Jinfei Wang
Doctor of Philosophy in Astrophysics
University of California, Berkeley

Professor James R. Graham, Chair

This thesis focuses around using the Gemini Planet Imager (GPI), an instrument designed to
directly-image exoplanets, as part of the GPI Exoplanet Survey (GPIES), a multi-year survey
to image and characterize Jovian exoplanets orbiting at Solar System Scales (5-100 au). The
first half of this thesis is on building the data analysis infrastructure for GPIES. I helped
commission GPI by characterizing the ability to measure the position and flux of a star when
it is placed behind an occulting mask specifically designed to suppress starlight. I also led
the development of the automated data processing infrastructure for GPIES that handles all
of the data storage, indexing, and processing. This data infrastructure has optimized survey
execution, ensured uniform data products, and characterized instrument performance. In the
second half of this thesis, I characterize two notable exoplanetary systems through precise
astrometry and orbital analysis. I present improvements to astrometric data analysis that
allow us to measure the position of 5 Pic b to one milliarcsecond, the most precise astrometry
of an exoplanet to date. I tighten constraints on its orbit, including timing a window in
which circumplanetary material of this young exoplanet could be transiting the star. Lastly,
I apply the same astrometry techniques to the HR 8799 system which harbors four Jovian
exoplanets. I add dynamical stability priors on my orbit fits using an N-body integrator
to find stable orbits in the system. Through this, I explore possible orbital resonances and
place dynamical constraints on the masses of the planets.



I dedicate this dissertation to my family.
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Chapter 1

Introduction

1.1 Imaging Extrasolar Planets

Unlike stars that shine bright from nuclear fusion, planets are faint. Even in our own
Solar System, the discovery of the furthest-out planets required distinguishing faint sources
of light that slowly orbit the Sun from near stationary stars in the background and highly
eccentric comets. As detecting planets in our Solar System is based on observing sunlight
reflecting off of these worlds, planets further from the Sun become harder to find and require
better telescopes. Due to this, the efforts to image all of the planets in our own Solar System
has spanned many centuries (Herschel & Watson 1781; Galle 1846; Leonard 1930). Even
now, the largest telescopes in the world have been searching the skies for a possible ninth
planet in our Solar System that has eluded centuries of telescopes (Batygin & Brown 2016).

Imaging exoplanets comes with the added difficulty that the light from the faint planet
resides next to a bright host star in the sky. Unlike Solar System planets which can be on
the other side of the sky from the Sun, exoplanets can never get far from their stars from our
point of view on Earth. A planet at 5 AU around a nearby star at 10 pc would only have an
angular separation in the sky of 0.5”. At these separations, detecting reflected starlight off
the atmospheres or surfaces of these planets is impractical with our current instrumentation.
Jupiter is a billion times fainter than the Sun, Earth is another ten times fainter than Jupiter,
and both are inaccessible until future space missions (Crill & Siegler 2017).

Thankfully, we are not limited to only detecting mature exoplanets through reflected
starlight. As a planet forms, it is heated by the material it accretes. Over time, it radiates
away its heat from formation as it cools. Even though the exact physics of planet formation
and accretion of materials is uncertain, planets that are only ten million years old are hot
(~ 500 — 1500 K) and are only 1074-107° times fainter in the near-infrared than stars similar
to the Sun (Baraffe et al. 2003; Marley et al. 2007). This is several orders of magnitude
brighter than they would be if they only reflected starlight. Thus, nearly all attempts to
image exoplanets to date have targeted young systems to look for hot, young exoplanets
(e.g., McBride et al. 2011).

With a perfect circular telescope with no optical aberrations and with no atmospheric
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Figure 1.1: One-dimensional plot of the signals of a star and planet. Fluxes are normalized to
the peak flux of the star. The planet is 107 times fainter than the star and separated by 0.4”.
This assumes a perfect 8-m circular telescope in the absence of both optical aberrations and an
atmosphere.

turbulence, a young Jovian planet that is within an arcsecond of a star is still extremely hard
to image. Figure 1.1 shows the relative signal of a planet and a star for a case representative
of the faintest planets that can be detected by current imaging instruments. The ringing
signal of the star is due to the diffraction of starlight through a perfect circular aperture (i.e.,
due to the fundamental wavelike property of light). To see these planets, a coronagraph is
needed to suppress diffraction and keep starlight away from the regions in the image where
we are looking for planets.

Very few coronagraphs have been used in space for exoplanet imaging. With the corona-
graphs on the Hubble Space Telescope ending operations in 2008, we will need to wait until
the launch of the James Webb Space Telescope for another space coronagraph (Beichman
et al. 2010). Otherwise, we must be able to handle atmospheric turbulence in order to use
coronagraphs with ground-based telescopes, which have done the bulk of exoplanet imaging.
Turbulence in the Earth’s atmosphere will smear out the light from each source by ~ 1”.
This may be tolerable for an equal-brightness stellar binary, but will render a faint planet
invisible. The planet both will have its light spread over a large portion of the image and
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will have the bright blur of the star on top of that. To mitigate this issue, ground-based
telescopes use adaptive optics (AO) systems to correct for distortions in the wavefront of
light due to Earth’s atmosphere in order to spatially separate the light of the planet from
the light of the star. Note that for eventual imaging of exo-Earths, even space telescopes will
need AO systems to correct for optical aberrations due to thermal drifts in the instrument
(Crill & Siegler 2017).

Not all exoplanets are unveiled simply by taking images behind a coronagraph and AO
system. The majority of imaged exoplanet discoveries also required further removal of stel-
lar glare by post-processing the data. Post-processing relies on observing strategies that
decorrelate the signals of a planet from its star in the images. This thesis will focus on two
strategies. The first is angular differential imaging (ADI), where the sky rotates due to the
Earth’s rotation so planets around a star rotate over the course of a night while the diffrac-
tion pattern of the star stays constant over time since it depends only on the orientation
of the instrument (Marois et al. 2006a). The second is spectral differential imaging (SDI),
where the stellar diffraction pattern moves out radially from the location of the star with
increasing wavelength, while the signal of the planet stays at a constant location (Marois
et al. 2000). In both ADI and SDI, the way and amount the star and planet decorrelate from
each other is known: in ADI, we know how much a planet rotates based on its location in the
sky; in SDI, we know how much the stellar diffraction moves based on the wavelengths the
data were taken at. This information can then be put into algorithms that seek to remove
the stellar light.

Many post-processing algorithms have been used. For this thesis, we use Karhunen-Loéve
Image Projection (KLIP; Soummer et al. 2012; Pueyo et al. 2015). KLIP uses principal
component analysis (PCA) to model and subtract the signal of the star in the data. One ad-
vantage of KLIP is that the number of PCA modes to use is tunable, which limits overfitting
the data and removing the signal of planets. This is an issue with ADI and SDI since these
observing strategies do not remove the planet in the images, but rather mostly decorrelate
the signal from the stellar signal. Thus, planet signal will significantly leak into the model
of the star, but only after a certain number of PCA modes. Thus, KLIP provides a tunable
parameter, the number of PCA modes, which allows us to trade of between maximizing the
signal of the planet and suppressing stellar diffraction.

Thus, to image other worlds, we require the combination of AO systems to correct for
atmospheric turbulence, coronagraphs to suppress the glare of the star, and post-processing
techniques that leverage specific observation strategies to remove the residual signal of the
star. With the current technology available to us, we are able to image young, Jovian planets
and study how they formed.

1.2 Studying Imaged Worlds

Because of the technical challenges in directly imaging planets, we have found < 10 plan-
ets with orbital separations < 100 au (Bowler 2016). Despite the paucity of imaged planets,
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we can characterize in detail each planet we image by studying its orbit and spectrum. First,
we must correctly extract out the position, flux, or spectrum of the planet in the data. This
is particularly difficult, as post-processing distorts the signal of the planet due to overfitting
the stellar diffraction pattern it was trying to subtract. The standard in the field has been
using simulated planets to calibrate this effect or to inject a negative planet profile with
opposite flux at the location of planet so that after post-processing there is only noise at
the location (Marois et al. 2010a; Lagrange et al. 2010). Most recently, analytical methods
have been developed that can calculate the distortions induced by algorithms such as KLIP
(Pueyo 2016). While a technical detail at times, properly measuring the planet in the data
is crucial to understanding their nature (Nielsen et al. 2017).

Direct imaging and transit spectroscopy are the only ways to study the atmosphere of
exoplanets, but the two probe completely different planets: direct-imaging is sensitive to
planets at large separations (> 5 au) whereas transit spectroscopy only studies planets that
are close in to the star with short orbital periods (< 100 days). By directly obtaining the
spectra of giant planets and measuring molecular absorption features, we can infer their
abundances and thus the composition of the planet. Since these giant planets lie between
different snow lines (radial distances from the star beyond which the equilibrium temper-
ature is cold enough that certain molecules solidify), the composition of the planets can
inform us on their formation mechanisms and accretion histories (Oberg et al. 2011). Due
to uncertainties in the atmospheric models, these analyses are difficult, but the work to date
has favored core accretion (Pollack et al. 1996) for forming these directly imaged planets
(Konopacky et al. 2013; Lavie et al. 2017).

By obtaining images of planets over time, we can observe the motion of these exoplanets
and gain insights into the dynamics of the system. However, directly-imaged exoplanets orbit
at at separations > 5 au from their stars, with the shortest known period to be ~20 years
(Wang et al. 2016). No exoplanet has been directly observed for a full orbit yet. Inferring the
orbits from partial orbital arcs requires precise astrometry and robust statistical methods.
Precise astrometry requires high angular resolution, good coronagraphs, and well calibrated
instruments. The statistical precision, o,, of an astrometric measurement is approximated
as

Op = UPSF/SNR. (11)

Here, we assumed that the point spread function (PSF) of the planet can be approximated by
a symmetric 2-D Gaussian function with standard deviation opgr (Birney et al. 2006). The
planet is detected with a certain signal-to-noise ratio (SNR) that depends on the brightness
of the planet and the amplitude of the noise, which has contributions both from the ability
to suppress the stellar glare and any detector or photon noise. If we assume we are using
a really good AO system on a 8-m telescope observing at the diffraction limit at 1.6 pm
(ocpsr =~ 20 mas), we need a coronagraphic instrument and post-processing algorithms good
enough to achieve a SNR of at least 20 to obtain 1 mas astrometry of the planet. Astrometry
is often obtained by multiple instruments, especially for astrometric baselines that span many
years, so calibrating multiple instruments together is another challenge. Finally, when we
measure the planet’s position, it needs to be in terms of relative offset from its host star
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Figure 1.2: Two orbits plotted in 2-D projection to show a degeneracy in the orbital parameters.
The orbit in the solid blue line is circular, but inclined 30° along the y-axis. The dotted red orbit
is face-on but has an eccentricity of 0.3 with periastron along y=0. The projections of the orbits
onto the 2-D sky plane are very similar on the right side.

to have physical meaning (e.g., for Keplerian orbits). As we typically place stars behind
a coronagraphic mask, locating the star is equally important as locating the planet. In
the design of recent exoplanet imaging instruments, fiducial spots are created by diffracting
starlight before it is occulted by the coronagraph, a technique we will discuss further in this
thesis (Marois et al. 2006b; Sivaramakrishnan & Oppenheimer 2006).

With partial orbit arcs, and without much, if any, knowledge of the position or velocity
of the planet towards/away from Earth, many orbital solutions can satisfy the same data.
At least six orbital parameters are required to describe a planet orbiting a star (Green
1985). Typically, there are many local minima in this six-dimensional space. For example,
Figure 1.2 shows how, with a small orbital arc, degeneracies exist between an inclined or
eccentric orbit. Many studies in the literature have used least squares fits, which currently
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in implementation only probe finite families of orbits (e.g., Marois et al. 2008; Zurlo et al.
2016). Recently, Bayesian techniques that use Markov chain Monte Carlo (MCMC) methods
have been developed and can consider all the possible orbital degeneracies (Kalas et al. 2013;
Macintosh et al. 2014; Pueyo et al. 2015; Millar-Blanchaer et al. 2015).

After we overcome the technical challenges in measuring the orbit of a directly imaged
exoplanet, we are rewarded with insights into the dynamics of the system. The exoplanet
S Pic b is one of the best examples of this (Lagrange et al. 2010). The star is known to harbor
a debris disk with a strong warp feature (Burrows et al. 1995; Mouillet et al. 1997; Heap
et al. 2000). By measuring the orientation of its orbit as well as excluding other possible
planets through stability arguments, we know that § Pic b is responsible for driven the warp
feature (Dawson et al. 2011; Lagrange et al. 2012). It is also launching comets into the star
(Thébault & Beust 2001; Millar-Blanchaer et al. 2015), but it alone may not be responsible
for cleaning out the cavity of the debris disk (Millar-Blanchaer et al. 2015). Lastly, the
planet’s orbit is so nearly edge-on that, while the planet does not pass in front of the star,
its Hill sphere does and offers one of the best opportunities to probe the circumplanetary
environment of a young exoplanet (Stuik et al. 2017; Mékarnia et al. 2017; de Mooij et al.
2017).

While the dynamics in other systems might be less clear than in the 8 Pic system, orbital
analysis still can provide many insights. The HR 8799 system harbors four super-Jupiters
orbiting between 15 and 70 au (Marois et al. 2008, 2010b). Tightly packing planets between
~ 5-TM j,p likely requires orbital resonances and offers an unique opportunity to constrain
the masses of these planets dynamically (Fabrycky & Murray-Clay 2010; Gozdziewski &
Migaszewski 2014). Peculiarly, the orbit of Fomalhaut b looks to cross the debris disk in the
system, but the debris disk shows no signs of disturbance, hinting that the planet may be
low-mass and bright due to light reflected off of a shroud of dust around the planet (Kalas
et al. 2013). By studying both the orbit of HD 95086 b and the debris disk, we know that
the gap in the debris disk is too wide for the one known planet to carve by itself and there
should be other unseen planets closer in to the star (Rameau et al. 2016).

Finally, establishing long-baselines to constrain the orbit of these planets will provide
synergies with the Gaia mission (Perryman et al. 2014). Gaia will measure the astrometric
reflex motion of the host star due to planets orbiting it, leading to model-independent mea-
surements of the masses of these planets. However, its five year mission is short, and will
only measure a partial orbital arc for these known systems. By combining Gaia measure-
ments with longer-term astrometry from direct imaging, we can have better constraints on
the masses of these planets (Sozzetti et al. 2016). These dynamical masses can then be used
to constrain models of planet formation, as the mass and luminosity of the planet encodes
information on how the planet formed (Baraffe et al. 2003; Marley et al. 2007).
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1.3 This Dissertation

This dissertation revolves around using the Gemini Planet Imager (GPI; Macintosh et al.
2014). GPI combines a high-order AO system (Poyneer et al. 2016), an apodized-pupil Lyot
coronagraph (Soummer et al. 2011b), and an integral field spectrograph (IFS) that takes
simultaneous images and spectra between 1 and 2.4 pum with spectral resolution between
30 and 80 (Chilcote et al. 2012; Larkin et al. 2014). The IFS can alternatively be used for
imaging polarimetry instead of spectroscopy to look for polarized light from debris disks
and the atmospheres of exoplanets (Perrin et al. 2015). GPI was finished, delivered to the
Gemini South telescope in Chile, and began its commissioning in 2013. After a year of
commissioning, the GPI Exoplanet Survey (GPIES) began a multi-year search around 600
young and nearby stars for Jupiter-like exoplanets orbiting beyond 5 au (McBride et al.
2011). GPIES aims to discover new planets with its improved performance over previous
instruments, characterize imaged exoplanets through measuring their orbits and spectra,
constrain the frequency of giant planets at Solar System scales, and resolve the circumstellar
dust that is left over from planet formation.

The first half of this dissertation can generally be described as developing data anal-
ysis instrumentation: building and understanding the infrastructure for GPI data reduc-
tion. Chapter 2 is instrument commissioning work on understanding the astrometric and
spectrophotometric calibration of the star, from which relative measurements of the plan-
ets properties are made, and is published in Wang et al. (2014). Chapter 3 describes the
automated data processing system that was developed for GPIES that handles all data pro-
cessing, storage, and indexing and is published in Wang et al. (2018). The second half of
the thesis uses GPI to make the most precise astrometric measurements of directly-imaged
exoplanets and characterizes the dynamics of exoplanetary systems through orbital analysis.
Chapter 4 introduces data analysis improvements to obtain one milliarcsecond astrometry
of exoplanets and applies it to the well-studied exoplanet § Pic b. This work was published
in Wang et al. (2016). Finally, Chapter 5 explores the orbits of the four planets orbiting HR
8799, and in particular how the application of dynamical stability constraints can strongly
constrain both the orbits and masses of the planets in the system. As of writing, this work
has been reviewed by the GPIES collaboration and submitted to a refereed journal. This
thesis also contains two appendices. Appendix A is a published appendix to Chapter 4.
Appendix B details a frequentist approach to measuring the astrometry of directly imaged
exoplanets, from which we can properly combine uncertainties on the planet’s location with
frequentist astrometric calibration uncertainties.

During my thesis, I have also written an open-source Python implementation of KLIP
called pyKLIP (Wang et al. 2015). pyKLIP supports data from most major high-contrast
imaging instruments and has a GenericData interface for everything else. In addition to
removing the glare of the star with KLIP, it provides the tools to do scientific analysis such
as searching for planets, quantifying sensitivity, extracting the position and spectrum of
a planet, and characterizing the morphology of debris disks. We also have a full site of
documentation on how to use and develop for pyKLIP. Unfortunately, I did not have the
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time to write a section on it as part of my thesis, but felt it was important to point out
this contribution to the field. As of writing this thesis, pyKLIP has been used in over 25

publications.



Chapter 2

Gemini Planet Imager Observational
Calibrations VI1II: Characterization and
Role of Satellite Spots

A version of this chapter was first published in Proceedings of the SPIE: Wang et al. (2014).

The Gemini Planet Imager (GPI) combines extreme adaptive optics, an integral field
spectrograph, and a high performance coronagraph to directly image extrasolar planets in the
near-infrared. Because the coronagraph blocks most of the light from the star, it prevents the
properties of the host star from being measured directly. Satellite spots created by diffraction
from a square grid in the pupil plane can be used to locate the star and extract its spectrum.
We describe the techniques implemented into the GPI Data Reduction Pipeline to measure
the properties of the satellite spots and discuss the precision of the reconstructed astrometry
and spectrophotometry of the occulted star. We find the astrometric precision of the satellite
spots in an H-band datacube to be 0.05 pixels and is best when individual satellite spots
have a signal to noise ratio (SNR) of > 20. In regards to satellite spot spectrophotometry,
we find that the total flux from the satellite spots is stable to ~ 7% and scales linearly with
central star brightness and that the shape of the satellite spot spectrum varies on the 2%
level.

2.1 Introduction

The Gemini Planet Image (GPI) is a new facility-class adaptive optics (AO) instrument
for the Gemini Observatory that is optimized for coronagraphic observations of bright (I <
9 mag.) natural guide stars. The principal science goal of GPI is imaging the environment of
young (~ 125 Myr) stars in the solar neighborhood (~ 50 pc) to discover and characterize self-
luminous planets and planetary debris disks. GPI uses low resolving power (R ~ 45) spectra
to study exoplanet atmospheres and astrometry to quantify their kinematics (McBride et al.
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2011).

Astrometry of exoplanets is necessary to discriminate between background objects and
physically associated bodies and to measure their orbital elements. The semimajor axis,
orbital inclination (relative to other components of the system), and eccentricity all carry
important clues to their origin and evolution. Due to the large semimajor axis separa-
tion of GPI-detected planets, orbital periods are long (10—1000 yr) and orbital coverage is
necessarily incomplete. While such fragmentary data can be used to reconstruct the orbit
using modern statistical techniques (Kalas et al. 2013; Macintosh et al. 2014), the lack of a
complete orbit places milli-acrsecond requirements on the accuracy and precision (Graham
2009).

Near-IR ground-based spectrophotometry has to be corrected for strong wavelength de-
pendent absorption by the terrestrial atmosphere (notably by H,O and CO,). Tradition-
ally, this correction is constructed from contemporaneous observations of calibration stars of
known spectral type (typically A or G dwarf stars) at similar airmass. However, this requires
additional planning and overhead for each star that is to be observed. It is more efficient
when this calibration is done simultaneously with the science observations.

Coronagraphic observations pose a unique problem for differential spectrophotometry
and astrometry of an exoplanet relative to its primary, which is occulted. To overcome
this obstacle, GPI includes a square grid in a pupil plane which acts as a two-dimensional
amplitude grating. The grid is superimposed on the the pre-occulter pupil apodizer (left
image of Figure 2.1). Diffraction of starlight from this grating injects first-order diffraction
spots into the field of view for a given wavelength. In each wavelength channel in spectral
mode, this creates reference spots that we term “satellite spots” (center image of Figure
2.1). In broadband polarimetry mode, the satellite spots become streaks extending radially
outward from the location of the star (right image of Figure 2.1). These satellite spots
preserve the information needed to reconstruct the spectrum and location of the occulted
star: the diffraction pattern is centered on the true stellar position and is imprinted with an
attenuated version of the stellar spectrum (Sivaramakrishnan & Oppenheimer 2006; Marois
et al. 2006b). In this report we discuss how we measure the satellite spots and investigate
the spectrophotometric and astrometric properties of these diffraction spots.

2.2 Satellite Spot Extraction

The raw data from the integral field unit is reduced using the GPI Data Reduction
Pipeline (DRP; Perrin et al. 2014). For both spectral and polarimetry mode, the data
are dark-subtracted, corrected for flexure, and extracted into three-dimensional datacubes,
where the x and y dimensions are angular coordinates on the sky. In spectral mode, the
z-dimension of the datacube consists of the flux in 37 wavelength channels; in polarimetry
mode, the z-dimension consists of the broadband flux in two orthogonal polarization modes.

There are a couple of steps that are important to properly measuring the satellite spots.
Extracting the flux from each microlens (particularly in spectral mode) is challenging, espe-
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Figure 2.1:  Left: An image of the H-band apodized pupil mask fabricated by Aktiwave LLC,
Rochester, NY. Center: A wavelength slice from an H-band spectral datacube taken in the lab
showing both the first order diffraction spots used for calibration and the second order spots that
peek out from the edge of the detector. Right: A total intensity H-band image from a polarimetry
mode datacube taken in the lab showing both the first-order and second-order diffraction spots.

cially in the presence of instrument flexure between the microlens array and the dectector
(Wolff et al. 2014). We characterize flexure shifts by taking argon arc lamp spectra after the
telescope slews to a new target. Additionally, we apply a geometric distortion correction to
all the images to rectify the position of the satellite spots (Konopacky et al. 2014).

2.2.1 Spectral Mode
Locating & Measuring the Satellite Spots

Locating the satellite spots in the reduced spectral data cubes is typically achieved in two
steps. First, an approximate set of spot locations is determined from one wavelength slice
of the cube (this step can be bypassed if guesses for the locations of the satellite spots are
manually supplied). These approximate locations are then scaled linearly with wavelength
to find initial positions for all cube slices, which are then used to fit the precise location of
each spot in each slice independently.

The first step of the procedure is described in detail in Savransky et al. (2013). Briefly,
we assume that the four satellite spots form a perfect square in the image, and that they
are relatively bright as compared with their neighboring pixels (although they need not be
the brightest features in the image, nor even brighter than the median image value). These
assumptions allow us to carry out an efficient search of the image. We iteratively construct
a list of candidate spot locations, identifying the current brightest point in the image, and
then removing it, along with a radius of x pixels about it, from the search region (the value
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of z is determined by the average size of a satellite spot in all cube wavelengths). These
bright images are stored in the expanding set {r;}¥,, where each vector (r;) is the two-
dimentional pixel coordinate of the candidate location. As the list is being built, we conduct
a breadth-first search for pixels sets forming perfect squares, where each node is a subtree
whose branches represent all of the combinations of the root node with three other elements
of {r;}. The value of all terminal nodes is binary, given by operating on the set of six
distances between any four points ({r;}’_,):

{di}ic = {llri = xjll 4,5 € {aCa}} (2.1)

where {4,C5} is the set of two element sets representing all combinations of four elements taken
two at a time, without repetition. Assuming the set of distances is ordered by increasing
magnitude, the four points define a square if and only if the first four distances ({dy};_;)
are equal, the last two distances ({d;}$_5) are equal, and the ratio of the magnitudes of the
two subsets of distances is v/2.

This search is made much more efficient by introducing a pruning heuristic, namely that
all perfect squares contain right triangles. For any subset of three of the four candidate
vertices, the corresponding subset of distances:

{difiey = {llri — x50l 04,5 € {3Ca}} (2.2)

must contain two elements that are equal, and one element that is v/2 times larger. This
is a necessary, but not sufficient, condition for defining a square. This condition allows us
to prune whole branches of the tree, and greatly improve the search efficiency. This is also
the smallest subtree that can be tested, as any two arbitrary points can form an edge of a
square.

Once identified, the approximate satellite spot locations can be refined by fitting a tem-
plate point spread function (PSF) to the area around the approximate location. The usual
approach is to assume a fixed-width Gaussian PSF as the template, and to use this in a
matched filter (convolving with the pixels around the approximate location to find the best-
fit offset).

When extracting the peak flux of a satellite spot, we first fit the full width half maximum
(FWHM) to the actual data to calculate the standard devation of the Gaussian template.
We then use this Gaussian template of fixed width in the convolution and fit for the height
of the Gaussian. This fitting step also allows us to relax the assumption of a symmetric
PSF, as we can fit the FWHM in two orthogonal directions and thereby account for any
PSF ellipticity.

In order to ensure that our brightness assumption holds, we typically apply a high-pass
filter to the image prior to beginning the satellite spot search. The high-pass filter is also
applied when estimating the precise spot locations (so as not to bias the astrometry with a
background gradient) and can be optionally applied when fitting the spot peaks to exclude
the residual AO halo from contrast calculations. We can also include specific constraints on
the admissible size of elements in the distance sets in Eqgs. (2.1) and (2.2), based on prior
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knowledge of the approximate relative separation of satellite spots in each wavelength band,
which further allows us to prune the search tree and increase the efficiency of the original
search.

Locating the Central Star

In the current GPI pipeline, the central star is located by taking a simple mean of all
4 x 37 satellite spot positions. We rely on the fact that after distortion correction, opposite
pairs of satellite spots are displaced equally and in the opposite direction in both z and y
from the central star. For lab data, this technique works well as any single poorly measured
satellite spot will have little effect on the measured central star position.

However, most on-sky data taken during GPI commissioning runs were without the at-
mospheric dispersion corrector (ADC) and suffers from atmospheric differential refraction
(ADR)(Hibon et al. 2014). Due to this, the central star is in a different position in each
wavelength slice and a simple mean of all satellite spots can be biased in the case where a
companion and its primary have different spectral shapes. The simplest approach to mitigate
ADR effects is to measure the star position in each slice individually. This technique works
well as long as the satellite spots are bright in each individual frame. We use this technique
for all of the astrometric stability analysis in this paper to disentangle ADR effects from our
satellite spot measurements. An illustrative description on how we locate the occulted star
position is described in section 2.3 and Figure 2.3.

2.2.2 Polarimetry Mode

In broadband polarimetric images, the satellite spots are smeared radially outwards from
the central star. The true location of the star would have all four streaks pointing towards
it, excluding effects from ADR which will be discussed in section 2.3.2.

Locating the Central Star

To take advantage of the streaks of satellite spots, we take a simplified Radon transform
of the image, implementing a technique similar to (Pueyo et al. 2015) with P1640 images.
We will summarize the procedure here. First, we combine the two orthogonal polarization
channels to form a total intensity image. We also run a high pass filter on the image by
subtracting a median filtered image created with a 9 x 9 pixel box to calculate the median.
If there are any visible objects (e.g. binaries) in the image, we manually mask them out
at this point as they will interfere will the Radon transform. Then, we begin the Radon
transform technique. We pick a guess for the center of the image and draw straight lines
that go through this point. For each line, we compute the line integral of the image along
that line (this corresponds to one point in Radon space). We then sum the square of the line
integral along each of the lines (summing the square of each of the corresponding points in
Radon space). Thus, we have gotten a measure of how much light is “pointed" at this pixel.
We do this for each pixel in a small search area around the initial guessed center of the image
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Figure 2.2: Left: A total intensity image of HIP 118666 in polarimetry mode with the central star
masked. The image has been high-pass filtered using a median filter. The red box indicates the
search area for the star center. Note that atmospheric differential refraction effects are apparent as
the satellite spots do not all point back to the same location. Right: Map of the search box where
each pixel represents the total intensity of all straight lines that pass through that pixel which we
calculate using a Radon transform. This is before we interpolate this map to a finer resolution.
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(see the left image of Figure 2.2). At this point, we have created a map of the intensity of
the image in Radon space for each pixel (see right image of Figure 2.2). The pixel with the
most power harbors the location of the central star. To achieve subpixel accuracy, we then
interpolate this map to a finer resolution and pick out the subpixel that has the greatest
value.

Several of the steps we have outlined are introduced because of computational efficiency.
Ideally, given infinite computational resources, we would interpolate the image before per-
forming the Radon transform to achieve subpixel resolution. However, if we did do this, the
computational time increases by a factor of order N* where N is the over sampling factor
(i.,e. N = 2 means doubling the image sampling). This is because the Radon transform
method we use scales as N? and we need to do it for ever pixel in a search box which also
grows as N2. We also limit our search box to a small area near the true center for the same
reason. Using the default 280 x 280 pixel image and an 11 x 11 pixel search box, this routine
runs in a few seconds on a 3 GHz core.

Measuring Satellite Spot Fluxes

Because the satellite spots are smeared into streaks, a precise flux measurement requires
the development of new techniques to address this issue. We defer this work to a future
paper and will not present any characterization of satellite spot photometry in polarimetry
mode.

2.3 Astrometric Stability

In the following section, we present on the ability of the satellite spots to locate the
occulted star. Because we can extract more information out of the satellite spots in spectral
mode since they are not smeared out, we will focus most of our analysis on the spectral mode
of GPI. We will then compare the spectral mode stability to the polarimetry mode stability.

First, we note that it is difficult to establish the absolute accuracy and precision of the
satellite spots. Images taken without the coronagraph that reveal both the star and the
satellite spots would establish the reliability of reconstructing the star position. However,
we have found it is impossible to achieve good signal to noise on the satellite spots without
saturating the central star. Another technique of selecting long sequences of coronagraphic
images and measuring the occulted star position is strongly affected by uncorrected tip/tip
errors that cause the star to move and also cannot be used for this task.

Using known astrometric binaries was a promising method we investigated. By measuring
the relative separation of the binary companion and the occulted star, we could characterize
the satellite spot astrometric accuracy. However, this method presents similar challenges.
Known companions that fit into GPI’s field of view are bright and saturate before we can
obtain good signal to noise on the satellite spots. Thus, we have not been able to perform an
absolute calibration of our ability to locate the occulted star. After an extensive search of
all binaries, we found that the binary star system HIP 70931 has a faint enough companion
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Figure 2.3: Sample GPI images of the HIP 70931 binary system. These images have gone through
the basic steps in the pipeline to be extracted into datacubes, but no further processing of the data
has been done. Left: The 1.663 pm wavelength slice of the first image taken in spectral mode on
2014 March 24 08:48 of HIP 70931. Overlaid on top is a schematic of how we measure the binary
separation. The occulted star position is located using the satellite spots in green. From the inferred
star position, the binary separation can then be measured (yellow). Right: A total intensity H-band
image from the first exposure of the 2014 March 24 polarimetry mode dataset of HIP 70931.

and is therefore a suitable target to perform a binary separation analysis. Figure 2.3 shows
some GPI data for this binary and a schematic of how we perform the astrometry analysis.
The orbital parameters of this system have not yet been well characterized and cannot be
used for an absolute calibration. We will instead present our relative stability analysis.

2.3.1 Spectral Mode

In spectral mode, we measure the separation of the binary system in each wavelength
slice of each datacube. Then, we average the separations calculated for each datacube to
obtain the measured separation of that particular datacube. We do this to obtain similar
centroiding precision as the regular pipeline processing step of finding the star center using
all the wavelength slices together while allowing us to disentangle effects due to ADR. For
HIP 70931, the companion and satellite spots are sufficiently bright to work with individual
wavelength slices. The companion is also much brighter than the satellite spots (~ 10 times
brighter than the combined flux from all four satellite spots), so the uncertainty in the
measured separation should probe errors in the satellite spot centroids. We use the same
Gaussian matched filter approach for locating the companion as the satellite spots to reduce
systematic biases.
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HIP 70931 was observed on four separate nights in spectral mode (see Table 2.1 for a
listing of nights and bands). We note that on 2014 May 10 and 2014 May 11, cloudy weather
interfered with the observations and forced us to increase exposure times to compensate for
extinction. Data on 2014 May 13 was taken during AO testing, causing the data quality to
vary as AO parameters were adjusted. To mitigate this, we discarded any frames where the
FWHM of the binary companion was greater than four pixels. We also discarded any frames
in any of the datasets where the binary companion overlaps with a satellite spot.

In Figure 2.4, we plot the measured separation in each wavelength slice of each datacube
as a function of average satellite spot signal to noise ratio (SNR). SNR was calculated
by aperture photometry using an aperture radius of 5 pixels to measure the flux, a sky
annulus between 8 and 12 pixels to measure the sky background, and the assumption that
the scatter is Poisson noise. We see that the astrometric precision of the satellite spots
decreases significantly when the average SNR of the four satellite spots in a single wavelength
slice falls below ~ 20. In the following analysis of the astrometric precision of the satellite
spots, we do not consider any individual wavelength slice where the average satellite spot
SNR < 20. This SNR corresponds to a photon noise accuracy limit of < 0.2 pixels as given
by FWHM /SNR for an individual satellite spot in H-band (typical FWHM of < 4.0 pixels).
If we combine the four satellite spots, this would then limit the uncertainty on the position
of the occulted star to < 0.1 pixels. This leads us to conclude that future observations taken
with GPI should ensure SNR of individual satellite spots to be above 20 to ensure the central
star can be located precisely.

Within a single exposure, the errors seem to be dominated by photon noise. In Table
2.1, we log the average scatter in the separation measured in each slice of a datacube and
the theoretical limit on centroiding accuracy due to purely photon noise for a single slice.
We calculate this limit using the expression (FWHM/fSNR)/2. fSNR is the average signal
to noise of the four satellite spots after running a high-pass filter (median filter subtraction
with a 9 x 9 pixel box) on the image, since this is done before locating the spots in our
algorithm. We divide the centroid precision of a single satellite spot by v/4 = 2 to get the
precision of locating the occulted star since we take the mean of the four satellite spots to
locate the star. We find that the scatter in the measured separation approaches the photon
noise limit of the central star position. Thus, within a single datacube we conclude that the
majority of the error in centroiding on the central star is dominated by photon noise in the
satellite spots.
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Figure 2.4 : Separation of the binary system HIP 70931 as a function of the average signal to noise
ratio (SNR) of the four satellite spots in a wavelength slice of a datacube. Each faded circle in
the background represents a separation calculated for an individual wavelength slice of a datacube,
with color representing wavelength (red is J-band, green is H-band, and blue is K1, the first half
of K-band). Overlaid on top are boxplots with the center of the box being the median, the edges
of the box being the first and third quartiles of the data, and the edges of the whiskers being the
most extreme points. Each boxplot represents a SNR range of 10, except for the last box, which
represents SNR, > 80 and is wider. The color of the box indicates the fraction of points in each bin
from each wavelength band (i.e. the red bin has almost exclusively points from K7 and the yellow
bin is a mix of H and K1 data).



Table 2.1: Measurement of the HIP 70931 binary separation for various observation sequences in spectral mode. We list the
average internal scatter of measurements from wavelength slices within a single datacube (“Internal Scatter”), the photon noise
limit for centroiding precision of occulted star for an individual slice (“(FWHM/fSNR)/2”), and the mean separation and sample
standard deviation as calculated from combining datacubes in an observing sequence (“Measured Separation”).

Observation Start Internal Scatter! | (FWHM/ISNR)/2 [ Measured Separation®
(UT) Band | Frames (pixels) (pixels) (pixels)

2014 March 24 08:48 H 7 0.03 0.03 592.26 =0.01
2014 March 24 09:07 H 4 0.03 0.03 52.04 + 0.02
2014 May 10 03:52 H 10 0.04 0.03 52.26 £0.05
2014 May 10 05:46 J 0.03 0.02 52.36 £0.03
2014 May 11 04:22 H 0.08 0.06 52.26 £0.04
2014 May 11 05:08 K1 7 0.10 0.06 52.17£0.03
2014 May 13 03:28 H 31 0.04 0.04 52.25 1+ 0.05
All H Combined H 58 0.05 0.04 52.24 +0.07
Clipped H Combined? H o4 0.05 0.04 52.26 £0.05
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We can no longer reach down to the photon noise limit when averaging datacubes to-
gether. When looking at the measured separation between datacubes in a single epoch,
we would expect the photon noise floor for the sample standard deviation to be around
(FWHM/fSNR)/+/37 x 4 ~ 0.005 pixels in H-band since we are now averaging over all
satellite spots in all slices of a datacube. The last column of values in Table 2.1 shows that
we do not get down to that level of precision, hitting a noise floor between 0.01 and 0.05
pixels. In fact, some observing sequences saw an increase in scatter when combining values
from different datacubes. Looking at Figure 2.5, we see trends in the measured separation
as a function of time. It is especially pronounced in the last four exposures taken on 2014
March 24 and in the dip in the measured separation on 2014 May 13.

We speculate this could be due to one or more of the following effects. Qualitatively
from looking at the images as they evolve in time, we noticed that the PSF changes due to
uncorrected wavefront aberrations. This could cause biases in our centroiding routine. In
particular, the satellite spots, which are a diffraction phenomenon, do not have the same
PSF as a star imaged on the detector. The satellite spots are slightly elongated along
one axis due to diffraction since the wavelength channels span a finite wavelength range.
Additionally, speckle noise near the satellite spots and diffraction spikes from the occulted
star, which are aligned with the satellite spots, vary in time and can bias the centroiding if
positioned correctly. However, we have not determined if any of these effects is the cause of
the variations we see. We do note that we do not see any trends in the measured separation
as a function of wavelength or as a function of the satellite spot distance from the occulted
star (a proxy for plate scale).

Altogether, in the four different epochs of observation in H-band plotted in Figure 2.5,
we find that despite the uncertainties, the data agree very well. The mean separations listed
in Table 2.1 are almost identical for these four epochs. When we combine these four nights
of observations, we find the uncertainty in the occulted star position is 0.07 pixels. If we
eliminate the four outlier points from 09:00 on 2014 March 24, the uncertainty decreases
down to 0.05 pixels (or ~ 0.7 mas), which we take as the uncertainty in the central star
position for an H-band datacube along one axis. When moving to other bands (J and K1),
we see a systematic disagreement with H-band on the order of 0.1 pixels. Since almost all of
the astrometric calibration and analysis has been done at H-band, it is not surprising that
we have not accounted for some chromatic effects.

Our uncertainties in satellite spot astrometry should not greatly impact GPI’s science
performance though. This error term is below the 1.8 mas per epoch requirement for GPI
astrometry. Astrometric uncertainties in plate scale and distortion are of comparable mag-
nitude (Konopacky et al. 2014). Additionally, when it comes to GPI’s main science goal,
exoplanets, we will likely be limited by the low SNR of the exoplanet itself - we would need
a SNR of greater than 30 for centroid errors due to photon noise from the exoplanet to fall

Irms scatter of separations measured between slices of each individual datacube

2error quoted is sample standard deviation in the measured separation among datacubes

3removed data from the four exposures taken at 2014 March 24 09:07 that appear to be outliers (see
Figure 2.5)
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Figure 2.5: Measured separation of the binary system HIP 70931 as a function of time. Each circle
represents the mean separation measured in a single datacube, with error bars representing the rms
scatter within the datacube and color representing wavelength of the data as denoted in the legend.
The three different sizes of markers represent 3 different signal to noise bins: the smallest symbols
indicate datacubes with a median satellite spot SNR of less than 40, medium sized ones are for
SNR between 40 and 60, and the largest markers for SNR greater than 60. Black crosses represent
separations calculated in polarimetry mode in H-band. The horizontal dashed line represents the
mean separation calculated with all of the H-band spectral data, excluding the four images with
abnormally low separation taken 2014 March 24.
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under 0.1 pixels in H-band.

2.3.2 Polarimetry Mode

Limited data are available to characterize satellite spot astrometry in polarimetry mode.
We will focus on ten observations of the binary HIP 70931 taken on 24 March 2014 in
between the two spectral mode observations discussed in the previous section. Using the
Radon transform technique described in section 2.2.2 to find the occulted star, we measure
a binary separation of 52.23 + 0.06 pixels. The measured separation and error is comparable
to the spectral data (see Figure 2.5).

We note the lack of systematic bias between the polarimetry and spectral data. All
of the HIP 70931 data taken on 24 March 2014 are without the atmospheric dispersion
corrector (ADC) at an airmass of ~ 1.15. In spectral mode, we were able to mitigate
chromatic effects by analyzing each wavelength slice independently, something we are not
able to do in polarimetry mode. Despite that, finding comparable separations indicate that
atmospheric differential refraction (ADR) does not significantly affect the satellite spots
astrometric precision in polarimetry mode, at least not for binary star systems taken in H-
band at airmasses less than about 1.15. It remains to be seen how great of an effect ADR is
for planets, which differ more in color with respect to their host stars, and at low elevations

when ADR effects are the largest. This however should be mitigated with the commissioning
of the ADC (Hibon et al. 2014).

Table 2.2: Measurements of the grid ratio (ratio of brightness of the occulted star to the total
brightness of all four satellite spots) and corresponding magnitude difference

Target Date Filter | Grid Ratio | Am (mags)
[ Pic 2013-11-18 H 5433 £ 1790 | 9.3 £ 04
B Pic 2013-12-10 H 5395 £ 953 9.3 £ 0.2
£ Pic 2013-12-11 H 4569 £ 1936 | 9.2 £ 0.5
HD 118335 | 2014-03-25 H 6147 £ 964 9.5 £0.2

2.4 Spectrophotometric Stability

We used data collected on targets observed in the coronagraphic mode, during the first
two commissioning runs in November and December of 2013, in order to measure the spot
flux as a function of target magnitude (Figure 2.6). The observations were reduced using the
typical reduction primitives within the GPI DRP. The background within each image was
subtracted by applying a high-pass filter, with the satellite spots being masked to prevent
self-subtraction. Aperture photometry was then performed on the four satellite spots within
each wavelength slice of the reduced data cube. These measurements, obtained with the H
and K1 filters, show a linear trend of decreasing satellite spot flux as a function of stellar
flux.
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Figure 2.6:

The average flux measured within the 11th to 14th wavelength slice of the reduced

data cubes for the four satellite spots (differentiated by symbol) in the H-band (red dashed line
and symbols), and K1-band (black dashed line and symbols). The fits to the measured fluxes as a
function of magnitude are consistent with the expected relation of m = —2.5log(f) + c.
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The ratio of the flux of satellite spots, where we average the flux of all four spots, to the
flux of the star behind the occulting mask was also estimated using two different techniques
and is presented in Table 2.2. A detailed discussion of all the photometry results from the
GPI photometric calibration program presented at this conference (Maire et al. 2014).

2.4.1 Long duration monitoring

To measure the spectrophotometric stability of GPI, data taken on multiple stellar targets
with time-series durations spanning several minutes to multiple nights were analyzed. The
data presented in this paper were collected primarily in the first and second calibration runs
over Nov, Dec 2013 and Mar 2014.

Figure 2.7 and 2.8 show preliminary results on the long-term stability of the GPI spot
data for 8 Pic, used as a proxy for the stability of the integral field spectrograph (IFS). In
Figure 2.7 we have analyzed a single slice near the middle of the wavelength cube (1.662 pm),
to estimate the stability of the spot photometry. The aperture photometry was performed
using a 5-pixel radius aperture on unsharp-masked (9 px box median filtered) images. Plotted
in the figure are the trends for each of the individual satellite spots, the sum of the diagonal
spots and the sum of all four spots in the field. The sum of all four spots has the lowest
scatter amongst the different trends plotted on the figure. The sum of spots is used for
the measurement of spectrophotometric monitoring over shorter time durations in the next
section. Figure 2.8 shows the same dataset as the one used for Figure 2.7, however it plots
the spectral response of the sum of all four satellite spots for each of the spectral cubes
observed over the three nights. The spectra have been all been normalized over the same
spectral range to enable comparison of the scatter in the dataset, and the residual scatter
over the three nights is ~2% indicating that the spot spectra are fairly stable and consistent
across the three nights.

2.4.2 Short duration monitoring

For the J-band, two separate continuous data sets were identified, each of which span
time periods of ~15-25 min. These data were reduced using standard methods as described
in Section 2, and then we measured aperture photometry of the spots using DAOPHOT. Since
the data is collected over a short duration and taken at low airmass, we chose to not correct
the photometry for airmass or seeing variations. For the J-band data we chose two separate
targets, 8 Pic and HIP 47115, which is of similar brightness as HR 8799. Figure 2.9 shows
the sum of the spots (which was found to be the most stable choice) over the time duration.
For the stack of 60s exposures, the 8 Pic J-band data shows ~6% scatter over the duration
of the data and for HIP 47115 it is ~10%.

For the H-band, we utilized data taken on # Pic and HD 8049 both of which have
companions visible within the GPI field-of-view. Figure 2.10 shows the variations in the
data. The normalized spot flux has variations of ~ 7% in the longer duration § Pic A spot
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Figure 2.7: GPI photometric monitoring of 8 Pic. Plotted in the figure are the photometric data
of individual spots in a 5 pixel aperture for a single wavelength slice. Also plotted are the sum of
the two diagonal spots and all four spots represented by the dashed and solid lines. The sum of all
four spots has the lowest relative scatter amongst the various combinations.

light curves and ~2% and ~1% variations in the spots and companion in the HD 8049 system

respectively.

2.5 Future Work

Future work on improving satellite spot astrometric precision will proceed in three main
areas. First, we will investigate the time-varying errors that are likely hindering the satellite
spot astrometric precision. We will look at logs from the AO system to try to correlate



2.5. FUTURE WORK 26

1.05¢

1.00

0.95¢

Normalized Flux

0.90

0.85F

—— Beta Pic - 18 Nov

0.80}
—— Beta Pic - 10 Dec

¢ —— Beta Pic- 11 Dec

0.75

150 155 1.60 165 170 175 1.80
Wavelength (um)

Figure 2.8: GPI spectrophotometric monitoring of 8 Pic. Plotted in the figure is the spot spectrum
taken over three epochs during the GPI commissioning run. The data are all normalized to the
same region of the spectrum and the error bars are indicative of the scatter and the stability of the

instrument over these short exposure times.
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Figure 2.9: GPI photometric stability in the J-band. Measurements involve two different stars
(8 Pic and HIP 47115) with short time-series taken on the 10 and 12 Dec 2013. Aperture photometry
with a 5 px aperture was used to estimate the flux for all the data.
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Figure 2.10: GPI photometric stability in the H-band. Measurements involve using two different
stars (8 Pic and HD 8049) with short and long time baseline observations. Aperture photometry
with a 5 px aperture was used to estimate the flux for the entire data set.
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the variations we see in the PSFs and the measured binary separation to anything physical.
Next, we can improve the theoretical photon noise limit on relative centroiding within a
datacube by combining satellite spots measured in all wavelength channels in a datacube
to locate the occulted star. We will develop a least-squares fit to all the satellite spots to
calculate a center, compensating for ADR or residual ADR if data is taken with the ADC.
Having a model that connects the measurements from all 37 wavelength channels can improve
robustness in locating the central star (e.g. insensitive to one bad satellite spot location)
and help with images with low SNR satellite spots where the four satellite spots in a single
wavelength slice are not precise enough. Lastly, we will continue searching for an astrometric
calibrator suitable for GPI that will allow us to make an absolute calibration on satellite
spot astrometry.

Future work on measuring the spectrophotometric stability of the GPI spots will require
longer duration datasets, preferably over multiple hours in all the wavelengths. The length
of the datasets we have now, less than ~ 40 minutes in all wavelengths aside from the H-
band, currently limits the measurements. Furthermore we need to measure the stability
not just as a function of time but also across the different wavelengths. Some multi-epoch
and multi-wavelength data exists for this work and further data will be collected over the
final commissioning run to completely characterize the spot spectrophotometric stability.
Additionally, we will develop techniques to measure and characterize satellite spot fluxe