UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Investigation on the Effects of Curriculum Learning through a Simulation Study

Permalink
https://escholarship.org/uc/item/2d5972zd

Author
Wong, Edward

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2d5972zq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Investigation on the Effects of Curriculum Learning through a Simulation Study

A thesis submitted in partial satisfaction of the
requirements for the degree
Master of Science
in
Computer Science

by

Edward Wong

Committee in charge:

Professor Kamalika Chaudhuri, Chair
Professor Yoav Freund
Professor Ndapa Nakashole

2018

Copyright
Edward Wong, 2018
All rights reserved.

The thesis of Edward Wong is approved, and it is accept-
able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2018

iii

DEDICATION

To my uncles Alan and John, for their unconditional support throughout my life.

v

TABLE OF CONTENTS

Signature Page e iii
Dedication L e v
Table of Contents e v
Listof Figures e e vii
Listof Tables e ix
Acknowledgements X
Abstractof the Thesis L Xxi
Chapter 1 Introduction 1
1.1 Background 1

1.2 Problem Statement, 2

Chapter 2 Related Work 4
2.1 Related Work on Curriculum Learning 4

2.2 Related work on Alternative Forms of Learning 5

2.2.1 Self-Paced Learning 5

222 ActivelLearning. 6

Chapter 3 Synthetic Data With Linear Classifiers 7
3.1 Introduction 7

3.2 Problem Setting 7

3.2.1 Stochastic Gradient Descent 8

3.2.2 Exponentiated Gradient Descent 8

3.2.3 Loss Function - LogisticLoss 9

3.3 Methodology 10

33.1 Data...... 10

3.4 Curriculum Metrics 10

34.1 Baselines 13

3.5 Algorithms Selection 14

3.6 Experimental Results 16

3.6.1 Hardness fromMargin 16

3.6.2 Hardness from Irrelevant Features 18

37 Discussion. 19

3.7.1 Hardness from Margin 19

3.7.2 Hardness from Irrelevant Features 20

Chapter 4

Chapter 5

Chapter 6

Bibliography

Real Data With Linear Classifiers 22
4.1 Introduction 22
4.2 Problem Setting Lo 22
4.2.1 Stochastic Gradient Descent 23
4.2.2 Loss Function - LogisticLoss 23
4.3 Methodology 24
431 Data. 24
44 Curriculum Metricso 24
44.1 Baselines 25
4.5 Algorithm Selection. 26
4.6 Experimental Results 26
47 DISCUSSION . . . v v v v i e e e e e e e e e e e e e 34
Neural Networks 36
5.1 Introduction 36
5.2 Problem Setting 37
5.2.1 Loss Function - Cross Entropy Loss 37
5.2.2 Activation Functions 37
5.2.3 BackPropagation, 38
5.2.4 Output Layer - Softmax Regression 38
5.3 Methodology 39
53.1 Data. 39
54 Curriculum Metrics 41
54.1 MNISTDataset 41
542 ShapeDataset 41
543 Baselines 42
544 ShapeDataset oo 43
5.5 Neural Network Model Selection 43
5.5.1 MNISTDataset 43
552 ShapeDataset 45
5.6 Experimental Results, 45
5.6.1 MNISTDataset 45
5.6.2 ShapeDataset 49
5.7 Discussion. e 49
Conclusion 52
6.1 FutureWork 53
.. 54

Vi

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 3.4:
Figure 3.5:
Figure 3.6:

Figure 4.1:
Figure 4.2:
Figure 4.3:

Figure 4.4:
Figure 4.5:
Figure 4.6:

Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:

LIST OF FIGURES

Objective Function Value Trace on Test Set
Test Error Rate Trace
Hardness measured by margin. ¢ = 1, A = 0.1. Blue = Hard-to-Easy, Red =
Random, Green = Easy-to-Hard, Light Blue = Half-Half, Magenta = Easy-Half 15

Objective Function Value Trace on Test Set 17
Test Error Rate Trace 17
Hardness measured by L; of irrelevant features. D = 16, ¢ = 4. Blue =

Hard-to-Easy, Red = Random, Green = Easy-to-Hard 17
Objective Function Value Traceon TestSet 27
Test Error Rate Trace 27
Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA

reduced dimensionality to 50. Data is MNIST 3 v 5. Blue = Hard-to-Easy,

Red = Random, Green = Easy-to-Hard 27
Objective Function Value Traceon TestSet 29
Test Error Rate Trace 29
Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA

reduced dimensionality to 75. Data is MNIST 3 v 5. Blue = Hard-to-Easy,

Red = Random, Green = Easy-to-Hard 29
Objective Function Value Traceon TestSet 31
Test Error Rate Trace 31
Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA

reduced dimensionality to 50. Data is MNIST 1 v 8. Blue = Hard-to-Easy,

Red = Random, Green = Easy-to-Hard 31
Objective Function Value Traceon TestSet 33
Test Error Rate Trace 33
Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA

reduced dimensionality to 75. Data is MNIST 1 v 8. Blue = Hard-to-Easy,

Red = Random, Green = Easy-to-Hard 33
Example Rectangle 40
Example Triangle 40
Example Ellipse 40
Samples from the Shape dataset 40
Example Square 44
Example Equilateral Triangle 44
ExampleCircle 44
Samples from Easy ShapesOnly 44
The Architecture of the Convolutional Neural Network 46
Test Error Rate Trace 47
Training Error Rate Trace 47

vil

Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:

Error Rate Figures for MNIST on Neural Networks 47

Test Error Rate Trace ZoomedIn 48
Training Error Rate Trace ZoomedIn 48
Zoomed In Error Rate Figures for MNIST on Neural Networks 48
Test ErrorRate Trace 50
Training Error Rate Trace 50

Error Rate Figures for Shape Dataset with Convolutional Neural Networks 50

viii

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 5.1:

Table 5.2:

LIST OF TABLES

The final error rate averaged over 20 runs using SGD and synthetic data with
the margin as the metric of hardness.
The final objective function value averaged over 20 runs using SGD and
synthetic data with the margin as the metric of hardness.
The final error rate averaged over 20 runs using EGD and noisy synthetic data
with the L-1 norm of the irrelevant features as the metric of hardness.
The final objective function value averaged over 20 runs using EGD and noisy
synthetic data with the L-1 norm of the irrelevant features as the metric of
hardness. L L

The final error rate averaged over 20 runs using SGD and MNIST 3 v 5 (50

dimensions after PCA) as the dataset with the margin as the metric of hardness.

The final objective function value averaged over 20 runs using SGD and
MNIST 3 v 5 (50 dimensions after PCA) as the dataset with the margin as the
metricof hardness. L
The final error rate averaged over 20 runs using SGD and MNIST 3 v 5 (75

dimensions after PCA) as the dataset with the margin as the metric of hardness.

The final objective function value averaged over 20 runs using SGD and
MNIST 3 v 5 (75 dimensions after PCA) as the dataset with the margin as the
metricof hardness.
The final error rate averaged over 20 runs using SGD and MNIST 1 v 8 (50

dimensions after PCA) as the dataset with the margin as the metric of hardness.

The final objective function value averaged over 20 runs using SGD and
MNIST 1 v 8 (50 dimensions after PCA) as the dataset with the margin as the
metricof hardness. L
The final error rate averaged over 20 runs using SGD and MNIST 1 v 8 (75

dimensions after PCA) as the dataset with the margin as the metric of hardness.

The final objective function value averaged over 20 runs using SGD and
MNIST 1 v 8 (75 dimensions after PCA) as the dataset with the margin as the
metricof hardness.o

The final test error rate averaged over 10 runs using a neural network and
MNIST as the dataset.
The final test error rate averaged over 10 runs using a convolutional neural
network and generated shapes as the dataset.

X

16

18

19

28

28

30

30

32

32

34

ACKNOWLEDGEMENTS

I am so appreciative to have had the opportunity to embark on this journey. I would like to
thank Kamalika Chaudhuri for constantly providing support and guidance throughout the course
of the project.

I would also like to thank Shuang Song for working with me and being a mentor to me

throughout it all.

ABSTRACT OF THE THESIS

Investigation on the Effects of Curriculum Learning through a Simulation Study

by

Edward Wong

Master of Science in Computer Science

University of California San Diego, 2018

Professor Kamalika Chaudhuri, Chair

Machine learning has consistently proved to be useful in many applications. An integral
facet allowing for machine learning is the training step. The training step of the models may
take up excessive time and hardware resources. This is especially relevant when considering
the fact that the performance of the models depend heavily on the aptitude of the training step.
Depending on the scale of the application, any increase in performance during the training step
may pay large dividends regarding the efficiency and success of the model as a whole. A heuristic
commonly implemented as part of the training steps within models is the ordering of training
samples with some predefined knowledge, more popularly known as curriculum learning. The

common assumption resides in the belief that applying curriculum learning will generally improve

xi

results. In this study, experiments were performed through the utilization of curriculum learning,
while isolating certain variables to analyze the effect of curriculum learning as a whole. Within
the experiments, different metrics of hardness will be explored. The training process will train on
samples which will be ordered based on the different metrics of hardness. The orderings typically
covered are Easy-to-Hard, Hard-to-Easy, and Random. Easy-to-Hard matches the analogy of how
humans and animals typically learn. In Easy-to-Hard, the learner is presented with the easiest
samples followed by progressively harder samples. In Hard-to-Easy, the learner is presented
with the hardest samples followed by progressively easier samples. In Random, the learner is
presented with samples that maintain no inherent ordering. Results obtained during this study
reveal that curriculum learning does indeed have an effect on performance, but the effects can both
be positive or negative, depending on the the metric of hardness. Such results garnered evidence
that, when selecting a curriculum strategy for a setting, one should use care as the effectiveness

of the training can be either diminished or enhanced based on the metric of hardness chosen.

xii

Chapter 1

Introduction

1.1 Background

The main characteristic of supervised learning is that there is a requirement that the dataset
is labeled. Machine learning typically starts with a pre-defined model. The goal is for the model
to be able to produce the correct label or output from the given data or input. To do so, the model
is trained against a labeled dataset. By training, the models parameters are optimized in order to
correctly classify samples from the same underlying distribution in which the training set was
drawn from.

Curriculum learning is based in the belief that learning process may become faster or
the performance of the learner is improved when the learning process is structured. This is
not a new or unique belief, as structured learning is universally used amongst humans and
animals, as seen in the public school systems or within animal training programs. In Mathematics,
individuals typically learn counting before learning addition and subtraction. After addition and
subtraction, most students will then learn multiplication and division. This trend reveals how
structured learning allows for concepts to build on top of one another, just as when humans learn

mathematics. In the context of humans and animals, the process of learning in small incremental

steps is called shaping [9].

In this work, the idea of structured learning shall be used but within a context of machine
learning. Experimentation will be conducted exclusively through supervised learning. Structure
shall be applied to the learning or the training process of certain machine learning models under
certain settings to determine whether or not it does provide additional utility. The goal is to
develop an understanding of when curriculum learning works for the purpose of supervised

learning.

1.2 Problem Statement

Curriculum-based learning used within machine-learning applications may increase the
efficiency of the learning process as a whole when structured in specific ways that enable machine-
learning algorithms to converge faster and at lower error rates. The objective of this research is to
investigate when and where curriculum learning works through experimentation with examples by
which isolated variables are obtainable; such examples include the manner in which the hardness
of the data is quantified as well as the types of data being assessed.

Curriculum learning in real-life comes from static knowledge about what concepts build
on each other or what concepts are easier. For example, counting may be easier to learn than
addition. In addition, one may need to learn how to count before one can learn how to add. For
these reasons, humans typically learn counting before then learning addition. However, this is
somewhat of an abstract notion of how to define hardness and how to structure a curriculum.
To be able to apply curriculum learning in a supervised learning setting, the quantification
of the hardness of a sample has to be well-defined. In this paper, different measurements of
hardness will be explored. The measurements of hardness can range from the margin from the
decision boundary for a sample, to the amount of artificial noise added to a sample, or in a shape

classification experiment, shapes such as circles, squares, and equilateral triangles are considered

easier than the more general class of ellipses, rectangles, and triangles.

The types of data that may undergo experimentation are synthetic and real-world data.
Synthetic, or generated data, is easier to experiment with, as certain properties may be guaranteed,
and therefore experimental results are clearer and trends may become more apparent. However, in
order to be relevant within a real-world context, curriculum learning strategies must be analyzed
with respect to not only synthetic data, but also real-world data in order to correctly assess the
effects of each through comparison.

The machine learning algorithms used to construct models from data may be impacted by
different curriculum learning approaches in numerous ways. Within this study, experimentation
will occur on models that begin with a simple linear classifier, ranging all the way to a deep
convolutional neural network.

Experiments regarding synthetic data with linear classifiers will be the topic of Chapter 3.
The metrics of hardness explored in Chapter 3 will be the margin from the decision boundary and
the amount of artificial noise added to each sample. In Chapter 4, the experiments will be dealing
with real data. For measuring hardness in this case, a pretrained model will be used to estimate
the margin. The topic of Chapter 4 will be the experiments with neural networks. A difference
between 1 and the probability generated by the softmax layer for the true class of a sample will
be used as a substitute for margin. In addition, a different notion of hardness will be used for the
shape recognition problem. Out of the the general class of shapes for ellipses, rectangles, and

triangles, only circles, squares, and equilateral triangles will be considered easy samples.

Chapter 2

Related Work

Prior work on this topic broadly falls into three categories — work on curriculum learning

and other related concepts such as self-paced learning and active-learning.

2.1 Related Work on Curriculum Learning

Previous research conducted by Bengio, Louradour, Collobert, and Weston [1] introduced
curriculum learning for machine learning settings. Their research [1] suggests that applying
curriculum learning may improve the speed of convergence during the training process. In
addition, curriculum learning could possibly improve the quality of the local minima which the
model converges towards. The aforementioned research [1] generalizes on the work done in
previous research, where the goal was to learn a simple grammar in a recurrent neural network.
The training process focused on learning easier aspects of the grammar, meanwhile gradually
expanding its resources and learning the more intricate details of the grammar [5]. Curriculum

learning has since been applied successfully to achieve state of the art results in many machine

learning problems, such as facial recognition [11]. The work here attempts to replicate the shape
experiments done in [1]. In addition, the work here will explore different settings in which to

apply curriculum learning.

2.2 Related work on Alternative Forms of Learning

In supervised learning, the training set utilized is not necessarily unstructured. Rather,
consideration may be taken when structuring the data for training purposes. These alternative
forms of learning adhere the same to the idea that there exists samples that are more beneficial

than others for training a model at specific points in the training process.

2.2.1 Self-Paced Learning

One alternative form of learning would be self-paced learning. Both self-paced and
supervised learning involve the idea that structured learning may lead to improved learner
performance or improved learning speeds. In curriculum learning, the structure comes from static
prior knowledge, or well-defined metrics of hardness. In self-paced learning, the structure is
dynamically defined through the specific needs of the learner as they develop [6]. For example,
instead of a teacher fixing a curriculum for a student, the analogy would be the curriculum being
dynamically adjusted according to the students abilities. Self-paced learning has also been applied
successfully in machine learning settings, such as in latent variable models. A sample may be
considered easy if the model is confident in determining the value of the hidden variable, or when

the model is confident in in predicting the true output of said sample. Applying a self-paced

learning algorithm outperforms state of the art methods for learning latent structural SVM model
in four applications object localization, noun phrase coreference, motif finding and handwritten
digit recognition [10]. The work in this paper differentiates from self-paced learning in that a
structuring of learning will come from some predefined notion, and not dynamically with respect

to the current learner.

2.2.2 Active Learning

Another alternative form of learning is active learning. In active learning within a machine
learning context, the learner has a dataset in which each sample’s label is initially unknown, but
the label for a specific sample may be obtained at some cost [4, 12]. The goal in active-learning is
to learn a classifier without inducing too much cost. There are many settings where samples are
costly to label, such as in image classification problems due to their necessity for manual human
effort for labeling. Active learning allows for a cost efficient process for classifying images
because it provides a framework by which cost is considered when seeking to learn a classifier [7].
The work in this paper differentiates from active learning in that there is no cost of labeling, as the
labels are known in supervised learning. In active-learning, the goal is to select good samples to
obtain labels for. Inversely, in curriculum learning and self-paced learning, the labels are already
known and the goal is to discover what orderings of data allows for an expedited learning process

by the learner.

Chapter 3

Synthetic Data With Linear Classifiers

3.1 Introduction

The properties of real data cannot be guaranteed, and often, it may be difficult dealing
with the inherent complexities often found in real-world data. Synthetic data is cleaner in that
it maintains the advantage of guaranteed properties as dedicated by the way in which the data
was generated. Therefore, it is necessary to first examine the results of the application of certain

curriculum learning strategies against synthetic data.

3.2 Problem Setting

In this section, a linear classification problem will be considered through the use of
synthetic data. For any sample x in d-dimensional space, the classification label of x will be

either positive or negative, as are binary labels, and the objective is to learn a vector w such that

w! - x >= 0 for positive samples of x and w’ - x < 0 for negative samples. To achieve this, an

initialization of the vector w is made, followed by the use of certain machine learning algorithms
in order to update w. The machine learning algorithms used in this chapter are Stochastic Gradient

Descent and Exponentiated Gradient Descent.

3.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an algorithm that may be used for the purpose
of learning the classifier vector w through the iterative updating of w in order to lower the loss
function [13]. Starting with some initial wo € W where W is the set of all possible vectors in

n-dimensional space, the following update is iteratively applied:

Wil = Wt _T]l (VE(Wluxiﬂyit) +}\’Wf>

where 1, = ¢/\/t

The hyperparameters A and ¢ remain optimized through the use of a hold-out or validation

set.

3.2.2 Exponentiated Gradient Descent

Exponentiated Gradient Descent (EGD) is another algorithm used to learn the classifier
vector w [8]. EGD consists of two vectors, w' and w™, which are the positive and negative parts
of the classifier w respectively. Therefore, w = w™ —w™, such that for a pre-defined scaling

factor D, Y4, (w” +w;") = D after each iteration. Both vectors are initialized as w| = w| =

(D/(2d),...,D/(2d)). Fort =1,...,T, the algorithm calculates the gradient V f(w;) at the

current w; = w;” —w, , and updates w' and w™ as follows:

L whexp(-nDIV(w)])
Wit = Z

_ w, ;exp(M: D[V f(wy)]:)
Wt+1,i = Zt

where

d

Zi =Y wliexp(=n;D[Vf(wp)]i) +w,;exp(m D[V f (wr)];)
i=1

is used for normalization and 1), is the learning rate. We choose 1; = ¢/+/t for some constant c.
As with the Stochastic Gradient Descent method, all hyperparameters are optimized by using a

hold-out or validation set.

3.2.3 Loss Function - Logistic Loss

For both the SGD and EGD methods, the algorithms are defined in terms of a loss function.
For both the SGD and EGD methods, implementation of the logistic loss function is enacted,

defined as:

L(we,xi,,yi,) = W

3.3 Methodology

3.3.1 Data

The synthetically generated data samples x € D, where D is the data set and k is the

number of dimensions, will have the following properties:

1. VxeD/Yk =1

e This means that each sample lies on the unit hypersphere in the k-th dimension, which

is to say that each sample has a 1-2 norm of 1.

2. Let f be the probability density function that represents the relative frequency of generating
a particular sample for dataset D. Within the context of this experiment, f(x') = f(x¥)

where x' and x* have a 1-2 norm of 1.

e This is another way of stating that samples are generated uniformly on the unit
hypersphere, therefore identifying that at any point on the hypersphere, it is as likely

to appear within the dataset D as any other.

3.4 Curriculum Metrics

All the samples within this experiment’s dataset D lie on the unit hypersphere. To
formulate this into a classification problem, it is necessary to have a mechanism by which to apply
a classification label per individial sample. If k is the dimensionality of the samples x € D, then a

start may be had through the generation of a random vector w*, which is also k-dimensional. w*

10

is used to label each sample x € D in the following way.

VxeD
1. If xT -w* >= 0 then we label this sample x as 1, or positive
2. If xT - w* < 0 then we label this sample x as 0, or negative

The vector w* essentially defines a hyperplane through the origin, which splits the dataset
into 2 sets, a positive set and a negative set. The classification problem becomes that of determin-

ing which of the sets a given sample x € D lies in.

Hardness by Margin

The hyperplane defined by w* is the decision boundary for this classification problem.
Intuitively, samples further from the decision boundary habitually represent easily classified
samples, whereas samples that are closer to the decision boundary tend to remain more difficult
to classify. The trend regarding the difficulty in classifying samples according to their relation
to the decision boundary shall be called ‘Hardness by Margin’, and it will be quantified by the
margin between w* and a sample x. Given a sample x¢ and a sample x”, sample x° is considered

easier than sample x” if and only if:

W*T')Ce‘ >]w*T-xh

11

Hardness by Irrelevant Features

After defining wx and concurrently labeling every sample x € D, the addition of irrelevant
features is applied to both w* and every sample x € D. This allows for the testing of the effect
of curriculum learning when the measurement of hardness is quantified by the noisiness of data
samples. To do this, n irrelevant dimensions are added, bringing the total dimensionality of the
dataset to n + k, continued by the application of the following operations to w*, as well as to each

sample x € D:
1. Append a vector of n 0’s to wx to produce a w* that includes dimensions of noise.
e (’s are appended here as each of the additional » dimensions are irrelevant.

2. For all x € D, generation of an n-dimensional vector, by which each of the n entries are
uniformly distributed from [1,1], is carried out. Then, a scaling factor is applied, also drawn

from a uniform distribution of [.5,1.5].

e The scaling factor is responsible for the mechanism in which irrelevant features may
become emphasized in some samples more so than in others, allowing for a larger

variance in noise for the samples within the dataset.

After these operations, a hardness function may be defined for each sample based on the noisiness
maintained within the irrelevant features. This hardness function of /(x) may be defined as the

following:

h(x)="Y. |xil

i=k+1

12

The output of the hardness function is simply the sum of the absolute value of all the irrelevant
features. Therefore, the example x, is considered to be easier than the example xy, if 2(x.) < h(x),
which is to say that sample x, contains less noise in terms of the dimensions of irrelevant features

present.

3.4.1 Baselines

To analyze the effect of curriculum learning on machine learning efficiency, it is necessary
to define several different approaches to training, all of which may be comparable. For this
experiment, five different approaches shall be taken. Given a training set of real-world data

samples, the samples shall be presented in training in the following manner:

1. Easy-to-Hard — The samples are sorted by the metric of hardness, and the easiest samples

will be used first for algorithmic training, followed by progressively harder samples.

2. Random — The samples are in an arbitrary order. This is a common practice used in
machine learning applications, by which there are no inherent ordering of samples used for

algorithmic training.

3. Hard-to-Easy — The samples are sorted by the metric of hardness, and the hardest samples
will be used first for algorithmic training, followed by progressively easier samples. This is

a reversal of the Easy-to-Hard approach.

4. Hard-Half - This is similar to the Hard-To-Easy approach, differentiated by the exception

of using the hardest half of the dataset.

13

5. Easy-Half - This is similar to the Easy-To-Hard approach, except that we only use the

easiest half of the dataset.

Note that Hard-Half and Easy-Half methodologies are only used in the Hardness by
Margin experiments for the purpose of analyzing the effects of a curriculum-based approach

being implemented on the learning efficiency of the algorithm.

3.5 Algorithms Selection

SGD - Hardness by Margin

For the experiments implementing the Hardness by Margin as the metric of difficulty for
a given sample, implementation of the Stochastic Gradient Descent (SGD) algorithm is used

towards the development of the classification model.

EGD - Hardness by Irrelevant Features

For experiments implementing Hardness by Irrelevant Features as the metric of difficulty,
use of the Exponentiated Gradient Descent (EGD) algorithm is administered. Use of EGD rather
than SGD for this experiment is due to the nature of EDG, as EGD is an algorithm that works

particularly well when there are irrelevant features within the data.

14

0.82 T T T T
— Hard Examples First

0.80 — Easy Examples First |
— Normal/Random Examples
0.78 7\ \ — Hard Half |

— Easy Half

=1
~
o

Objective Function Value
o o
~d -~
N IS

0.70

0.68

0.66 . \ . . \ . .
0 5 10 15 20 25 30 35 40

Figure 3.1: Objective Function Value Trace on Test Set

SN—01 — Hard Examples First
05 o — Easy Examples First 1
g — Normal/Random Examples
. | — Hard Half
| — Easy Half
0.4+ y 1
(3]
U
[+
=
3
<
= 0.3} 1
I
fr
0.2} 1
0.1 s \ s ‘
0 10 20 30 40 50

Figure 3.2: Test Error Rate Trace

Figure 3.3: Hardness measured by margin. ¢ = 1, A = 0.1. Blue = Hard-to-Easy, Red = Random,
Green = Easy-to-Hard, Light Blue = Half-Half, Magenta = Easy-Half

15

3.6 Experimental Results

3.6.1 Hardness from Margin

Figure 3.3 depicts the results of the Hardness by Margin experiment, where the hardness
of a sample has been measured based on the margin between the perfect classifier vector w* and
the given sample x. With the generation of 1500 synthetic data samples, samples are split into a
training set of 500 samples, a validation/holdout set of 500 samples, and a test set of 500 samples,
with each sample featuring 25 dimensions that are made up of 25 relevant features, allowing
for 0 irrelevant features. The hyperparameters were ¢ = 1, A = 0.1. The error rate trace and the
objective function value trace consist of the function output averaged over 20 runs at constant
intervals. The final error rate and final objective function value are based on the function outputs
extrapolated from the final w, obtained only after training on every sample in the training set,

averaged over the 20 runs.

Table 3.1: The final error rate averaged over 20 runs using SGD and synthetic data with the
margin as the metric of hardness.

Average Error Rate Standard Deviation
Easy-to-Hard 0.173 0.026
Random 0.138 0.024
Hard-to-Easy 0.114 0.027
Hard-Half 0.345 0.053
Easy-Half 0.172 0.033

16

— Hard Examples First
— Easy Examples First
Normal/Random Examples

Figure 3.4: Objective Function Value Trace on Test Set

— Hard Examples First
— Easy Examples First
— Normal/Random Examples

Figure 3.5: Test Error Rate Trace

Figure 3.6: Hardness measured by L; of irrelevant features. D = 16, ¢ = 4. Blue = Hard-to-Easy,
Red = Random, Green = Easy-to-Hard

17

Table 3.2: The final objective function value averaged over 20 runs using SGD and synthetic
data with the margin as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.672 0.0033
Random 0.671 0.0028
Hard-to-Easy 0.670 0.0030
Hard-Half 0.692 0.0084
Easy-Half 0.686 0.0072

3.6.2 Hardness from Irrelevant Features

Figure 3.6 shows the results of the Hardness from Irrelevant Features, where the hardness
of a sample is measured based on the L; norm of irrelevant features. 750 synthetic data samples
are then generated and split into a training set of 250 samples, a validation/holdout set of 250
samples, and a test set of 250 samples, with d = 5 relevant features and k = 95 irrelevant features.
The hyperparameters are maintained as ¢ = 4 and scaling factor D = 16. The error rate trace
and objective function value trace consist of the function output averaged over 20 runs being
sampled at constant intervals. The final error rate and final objective function value are based on
the function outputs extrapolated from the final w, obtained only after training on every sample in

the training set, averaged over the 20 runs.

18

Table 3.3: The final error rate averaged over 20 runs using EGD and noisy synthetic data with
the L-1 norm of the irrelevant features as the metric of hardness.

H Average Error Rate Standard Deviation H

Easy-to-Hard 0.0556 0.022
Random 0.0818 0.036
Hard-to-Easy 0.114 0.046

Table 3.4: The final objective function value averaged over 20 runs using EGD and noisy
synthetic data with the L-1 norm of the irrelevant features as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.228 0.0032
Random 0.242 0.0046
Hard-to-Easy 0.281 0.0051

3.7 Discussion

The trends identified from the results of both experiments (Hardness by Margin and
Hardness by Irrelevant Features) were present even when changing the dimensionality of the data

and the number of samples in the data set.

3.7.1 Hardness from Margin

As seen from Figure 3.3, there are clear results when applying curriculum based training.
In the beginning of algorithm training, the Easy-to-Hard curriculum resulted in a lower test
error rate than the Random and Hard-to-Easy curriculums. From this, it is identified that a great
marginal utility is clear when training the algorithm on easy examples initally.

At the conclusion of Easy-to-Hard training, where the algorithm is training on the hardest

19

samples in the data set, it was found that test error increased. This contradicts previous assump-
tions which maintain that large quantities of data training should generally produce better results.
Findings showed that training on the hardest samples as defined by Hardness by Margin in-fact
provided negative utility when the model is relatively converged.

Consequently, we see that although initial training using the Hard-to-Easy approach
produced a higher test error rate than Random and Easy-to-Hard, the final error rate was lower,
attributable to the fact training ended with the easiest samples.

These results exemplify the way in which the easiest samples in the data set provided
much more utility for training, concurrently exemplifying how training on the hardest examples
may inadvertently have an adverse effect on model performance when the model is relatively
converged. Curriculum learning that focuses primarily on the easiest examples in a data set, as
defined by Hardness by Margin, presents the potential of allowing for potential faster convergence

and convergence to a more accurate model.

3.7.2 Hardness from Irrelevant Features

As seen from Figure 3.6, there are also clear effects that arise from applying curriculum
based training within a different context. The learning rate of the algorithm decreases as a function
of time, and experimental results reveal that the test errors produced by the final model were
highest when the algorithm trained on the most difficult samples first, attributable to the fact that
the learning rate was highest.

These results provide evidence which support training on the samples that are least noisy

within the irrelevant dimensions, produces a more accurate classification model especially when

20

the learning rate is relatively high.

21

Chapter 4

Real Data With Linear Classifiers

4.1 Introduction

The goal of applying curriculum learning against machine learning applications lies in a
desire to develop a system that does not simply improve outcomes derived from synthetic data,
but rather improves outcomes applicable towards real-world scenarios involving real-world data.
Curriculum strategies should be examined and analyzed in order to assess the effects observed

when used against real-world data.

4.2 Problem Setting

To analyze the effects curriculum learning has on real-world data sets, a linear classifica-
tion problem shall be formulated using real-world data. For any sample x in d-dimensional space,

the label of x will either be positive or negative, as are binary labels. The goal is to learn a vector

22

w such that w’ - x >= 0 for positive examples x and w’ - x < 0 for negative samples. To set up
such an experiment, initializing of the vector w and concurrent application of machine learning
algorithms are enacted in order to update its weights for the purpose of improving the accuracy
of the classification model. In this section, the Stochastic Gradient Descent (SGD) algorithm is

utilized.

4.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an algorithm that may be used to learn the classifier
vector w through iterative updating w, which may lower the loss function. Starting with some
initial wy € W where W is the set of all possible vectors in n-dimensional space, we iteratively

apply the following update:

Wil =W —Ms (Ve(Wtaxi,a)’i,) +7\’Wt)

where 1, = ¢/\/t

The hyperparameters A and ¢ are optimized by using a hold-out or validation set.

4.2.2 Loss Function - Logistic Loss
Stochastic Gradient Descent (SGD) is defined in terms of a loss function. The logistic

loss function will be implemented, defined as:

14 i) = T TN
(Wtaxt yz) 1+6Xp(yWTX>

23

4.3 Methodology

4.3.1 Data

The MNIST (Modified National Institute of Standards and Technology) dataset shall be
utilized, which is a large dataset of handwritten numeric digits commonly used to formulate
pattern recognition and machine learning problems. To construct a binary linear classification
problem, it is necessary to reduce the number of classes of samples from the MNIST dataset
down to two classes. Therefore, filtering samples from the MNIST dataset through only 2 digits

allows for one of the digits to be positive and the other to be negative.

Preprocessing of Data

PCA (Principle Component Analysis) will be used to reduce the dimensionality of the
samples [15]. The primary function of the PCA serves to create a manageable classification prob-
lem, allowing for a quicker running and iteration of the experiment through lower dimensionality

within the problem.

4.4 Curriculum Metrics

In the previous experiments on synthetic data, samples were generated uniformly on the
hypersphere. From this, it is allowable to randomly select a vector w* that defined a hyperplane
dividing the hypersphere into two distinct regions, by which samples are concurrently labeled

according to which side of the hyperplane they appeared present within. In doing so, it was made

24

possible to define an objective margin between a given sample and the decision boundary, which
was then used to quantify the hardness of that sample.

With real-world data, a vector w* is no longer able to be defined, resulting in a splitting
of the data perfectly into the two regions necessary prior to quantify hardness for the samples.
However, it is possible to learn a sufficient w* through running a normal training algorithm for a
linear classifier on the data. The resulting w* may be used to define the hyperplane. By measuring

the margin of each sample from this hyperplane, the hardness of a given sample is quantifiable.

Hardness by Margin

After learning a vector w that defines the decision boundary in order to classify samples,
Hardness by Margin may be defined in the same manner as the synthetic data. Intuitively, a
sample that lies closer to the hyperplane, may be defined as being harder to classify, and a sample
lying further away from the hyperplane as being easier. The measured margin between w* and a
sample x is then used to quantify the hardness of that sample. Given a sample x¢ and a sample x”,

one may say that the sample x° is easier than sample x" if and only if

W*T‘xe| > |W*T-Xh

4.4.1 Baselines

To analyze the effect of curriculum learning on machine learning efficiency, it is necessary
to define several different approaches to training, all of which may be comparable. For this

experiment, three different approaches shall be taken. Given a training set of real-world data

25

samples, the samples shall be presented in training in the following manner:

1. Easy-to-Hard — The samples are sorted by the metric of hardness, with the easiest samples

being trained first followed by the training of progressively harder samples.

2. Random — The samples are in an arbitrary order. This is commonly used in practices
regarding machine learning applications, where there is no inherent ordering of samples

used when training the algorithm.

3. Hard-to-Easy — The samples are sorted by the metric of hardness, with the hardest samples
trained first followed by progressively easier samples. This is the reverse of the Easy-to-

Hard approach.

4.5 Algorithm Selection

For this experiment, we will use the Stochastic Gradient Descent (SGD) algorithm to

learn the vector w.

4.6 Experimental Results

MNIST 3 v 5 PCA Reduced to 50 dimensions

Figure 4.3 shows the results of MNIST 3 v 5, where the algorithm trained on the data set
only after reducing the dimensionality of the samples to 50. In order to formulate the appropriate

linear classification problem, samples taken from MNIST were solely the digit 3 or the digit 5. By

26

4.0 T T T T T T

— Hard Examples First
35} —— Easy Examples First J
— Normal/Random Examples
@
]
b |
=
S
9]
c -
&
2]
=
.E]
Q
o
0.0 I . I I . I I
0 50 100 150 200 250 300 350 400
Figure 4.1: Objective Function Value Trace on Test Set
0.6 T T T T T T
— Hard Examples First
— Easy Examples First
0.5} — Normal/Random Examples ||
.]
1]
=
!
4“—5‘ .
o
s
i

0.0 | L | | L | |
0 50 100 150 200 250 300 350 400

Figure 4.2: Test Error Rate Trace

Figure 4.3: Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA reduced
dimensionality to 50. Data is MNIST 3 v 5. Blue = Hard-to-Easy, Red = Random, Green =
Easy-to-Hard

27

first running a training algorithm on the data set as normally performed, a vector w was learned
that yielded a 0.058 % test error. This was then used to measure and quantify the hardness by
margin of each of the samples within the data set. The hyperparameters of the Stochastic Gradient
Descent algorithm used in this experiment were A = 0.01 and ¢ = 1. The error rate trace and the

objective function value trace were then averaged over 20 runs at constant intervals.

Table 4.1: The final error rate averaged over 20 runs using SGD and MNIST 3 v 5 (50 dimensions
after PCA) as the dataset with the margin as the metric of hardness.

H Average Error Rate Standard Deviation H

Easy-to-Hard 0.0594 0.0076
Random 0.0575 0.0074
Hard-to-Easy 0.0592 0.0048

Table 4.2: The final objective function value averaged over 20 runs using SGD and MNIST 3 v
5 (50 dimensions after PCA) as the dataset with the margin as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.234 0.0177
Random 0.217 0.0187
Hard-to-Easy 0.205 0.01062

MNIST 3 v 5 PCA Reduced to 75 dimensions

Figure 4.6 shows the results of MNIST 3 v 5, where the algorithm trained on the data set
after reduction of the dimensionality of the samples to 75. In order to formulate the appropriate

linear classification problem, samples taken from MNIST were solely the digit 3 or the digit 5. By

28

4.0 T T T T T T

— Hard Examples First
3.5 —— Easy Examples First J
— Normal/Random Examples
@
]
p |
=
S
9]
c -
&
2]
=
.E]
Q
o
0.0 I . I I . I I
0 50 100 150 200 250 300 350 400
Figure 4.4: Objective Function Value Trace on Test Set
0.6 T T T T T T
— Hard Examples First
— Easy Examples First
0.5} Normal/Random Examples [
0.4 1
g
1]
=
203 |
o
s
i
0.2} R
0.1} R

0.0 | L | | L | |
0 50 100 150 200 250 300 350 400

Figure 4.5: Test Error Rate Trace

Figure 4.6: Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA reduced
dimensionality to 75. Data is MNIST 3 v 5. Blue = Hard-to-Easy, Red = Random, Green =
Easy-to-Hard

29

first running a training algorithm on the data set as normally performed, a vector w was learned
that yielded a 0.068 % test error. This was then used to measure and quantify the hardness by
margin of each of the samples within the data set. The hyperparameters of the Stochastic Gradient
Descent algorithm used in this experiment were A = 0.01 and ¢ = 1. The error rate trace and the

objective function value trace were then averaged over 20 runs at constant intervals.

Table 4.3: The final error rate averaged over 20 runs using SGD and MNIST 3 v 5 (75 dimensions
after PCA) as the dataset with the margin as the metric of hardness.

H Average Error Rate Standard Deviation H

Easy-to-Hard 0.0579 0.0073
Random 0.0546 0.0045
Hard-to-Easy 0.0589 0.0053

Table 4.4: The final objective function value averaged over 20 runs using SGD and MNIST 3 v
5 (75 dimensions after PCA) as the dataset with the margin as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.2428 0.0180
Random 0.2313 0.0097
Hard-to-Easy 0.2171 0.0103

MNIST 1 v 8 PCA Reduced to 50 dimensions

Figure 4.9 shows the results of MNIST 1 v 8, where the algorithm trained on the data set
after reduction of the dimensionality of the samples to 50. In order to formulate the appropriate

linear classification problem, samples taken from MNIST were solely the digit 1 or the digit 8.

30

25 T T T T T T T

— Hard Examples First
—— Easy Examples First
2.0 — Normal/Random Examples | |
@
]
g
c 15}]
S
9]
c
&
2]
2 1.0} |
o
2
Q
o
05} R
0.0 L

0 50 100 150 200 250 300 350 400 450

Figure 4.7: Objective Function Value Trace on Test Set

0.6 T T T T T T T

— Hard Examples First

— Easy Examples First
0.5} — Normal/Random Examples ||
0.4 1

Error Rate Trace
o
w
.

o
]
|

0.1} g

0.0 | | | L | | L |
0 30 100 150 200 250 300 350 400 450

Figure 4.8: Test Error Rate Trace

Figure 4.9: Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA reduced
dimensionality to 50. Data is MNIST 1 v 8. Blue = Hard-to-Easy, Red = Random, Green =
Easy-to-Hard

By first running the appropriate training algorithm on the data set as normally performed, a vector
w was learned that yielded a 0.028 % test error. This was then used to measure and quantify
the hardness by margin of each of the samples within the data set. The hyperparameters of the
Stochastic Gradient Descent algorithm used in this experiment were A = 0.01 and ¢ = 1. The
error rate trace and the objective function value trace were then averaged over 20 runs at constant

intervals.

Table 4.5: The final error rate averaged over 20 runs using SGD and MNIST 1 v 8 (50 dimensions
after PCA) as the dataset with the margin as the metric of hardness.

H Average Error Rate Standard Deviation H

Easy-to-Hard 0.0292 0.0038
Random 0.0305 0.0043
Hard-to-Easy 0.0319 0.0047

Table 4.6: The final objective function value averaged over 20 runs using SGD and MNIST 1 v
8 (50 dimensions after PCA) as the dataset with the margin as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.1582 0.0190
Random 0.1368 0.0129
Hard-to-Easy 0.1368 0.0096

MNIST 1 v 8 PCA Reduced to 75 dimensions

Figure 4.12 shows the results of MNIST 1 v 8, where the algorithm trained on the data set

after reduction of the dimensionality of the samples to 75. In order to formulate the appropriate

32

3.0 T T T T T T T

— Hard Examples First
—— Easy Examples First
2.5} — Normal/Random Examples ||
g
= 2.0H .
<
=
k]
E
5 15t .
@
2
5
= 1.0 R
o
0.5} R
0.0 . . . \ . . \ .
0 50 100 150 200 250 300 350 400 450
Figure 4.10: Objective Function Value Trace on Test Set
0.6 T T T T T T T
— Hard Examples First
— Easy Examples First
0.5} — Normal/Random Examples ||
. i
1]
=
i}
4{—5" -
o
5
v

0.0 | | | L | | L |
0 30 100 150 200 250 300 350 400 450

Figure 4.11: Test Error Rate Trace

Figure 4.12: Hardness measured by margin of a pretrained w. A = 0.01, ¢ = 1. PCA reduced
dimensionality to 75. Data is MNIST 1 v 8. Blue = Hard-to-Easy, Red = Random, Green =
Easy-to-Hard

33

linear classification problem, samples taken from MNIST were solely the digit 1 or the digit 8. By
first running a training algorithm on the data set as normally performed, a vector w was learned
that yielded a 0.029 % test error. This was then used to measure and quantify the hardness by
margin of each of the samples within the data set. The hyperparameters of the Stochastic Gradient
Descent algorithm used in this experiment were A = 0.01 and ¢ = 1. The error rate trace and the

objective function value trace were then averaged over 20 runs at constant intervals.

Table 4.7: The final error rate averaged over 20 runs using SGD and MNIST 1 v 8 (75 dimensions
after PCA) as the dataset with the margin as the metric of hardness.

H Average Error Rate Standard Deviation H

Easy-to-Hard 0.0321 0.0036
Random 0.0326 0.0043
Hard-to-Easy 0.0313 0.0029

Table 4.8: The final objective function value averaged over 20 runs using SGD and MNIST 1 v
8 (75 dimensions after PCA) as the dataset with the margin as the metric of hardness.

H Average Objective Function Value Standard Deviation H

Easy-to-Hard 0.1770 0.0162
Random 0.1669 0.0172
Hard-to-Easy 0.1518 0.0091

4.7 Discussion

The trends identified within real-world data experimentation yielded different results

than those found in synthetic data experimentation. In order to accurately compare the impact

34

varying levels of classification difficulty had on the effects of curriculum learning, both a hard
classification problem, which was the problem of classifying the digit 3 versus 5, and an easy
classification problem, which was classifying the digit 1 versus 8, were experimented upon. In
order to see if dimensionality may be correlated with observable trends in the experimental results,
experimentation occured when varying the dimensionality reduction of the data using PCA.
The main trends observed identified that Easy-to-Hard maintained a slower convergence
rate than Random and Hard-to-Easy. Random and Easy-to-Hard had a large marginal decrease in
error rate initially, whereas Hard-to-Easy would start off with a relatively much higher error rate,
but eventually decreased in error rate much faster. Although each converged at a relatively similar
error rates, it is clear that the rate of convergence varies within different curriculum strategies.

Hard-to-Easy tends to converge quickest despite having higher error rates early on in training.

35

Chapter 5

Neural Networks

5.1 Introduction

Curriculum learning strategies are often implemented when training neural networks, as
it offers the opportunity for faster convergence rates and improved model accuracy. Due to the
common usage of neural networks, it remains imperative that experimentation continues regarding
neural networks uses in order to provide more comprehensive and necessary analysis. In the
following experiments, curriculum strategies will be applied towards training neural networks in
an attempt to develop understanding of the effects of curriculum based training on such neural

networks.

36

5.2 Problem Setting

In this section, multi-class classification problems on both real and synthetic data shall be
considered. The machine learning model being applied to the data is a neural network. Neural
networks are defined by the hidden layers of neural units that lie between the input and output
layers within the network, as well as by the number of neural units and activation functions of

said hidden layers.

5.2.1 Loss Function - Cross Entropy Loss

Here, a Cross Entropy Loss function for multiple classes is implemented during experi-

mentation.

E=-%,5_ 'y

5.2.2 Activation Functions

In order to achieve non-linearity, different types of activation functions are applied to the

hidden layers within the neural network [2]. Some of these activation functions include:

1
+eX

1. Sigmoid - g(x) = 5
2. Tanh - g(x) = tanh(x)

3. ReLu - g(x) = max(0,x)

37

5.2.3 Back Propagation

During training of a neural network, the goal is learning the weights for each of the
connections between the units in a neural network. Back propagation is a generalization of the
gradient descent algorithm for neural networks which contains hidden layers [14]. The updated
rule is as follows:

W,'j:W,'j—T]*Sj*Zi

where w;; is the weight for the connection from node i to node j, z; is the activation at node i, 1 is

the stepsize. If j is an output unit, 8, is defined as:

8; = (tj—j)

where ¢#; is the target output and y; is the current output. However if j is a hidden unit, §; is

defined as:

8j=4g'(a;)) drxwijk
k

where g'(a;) is the gradient of the activation function.

5.2.4 Output Layer - Softmax Regression

A softmax layer will be used for the output layer of the neural network. The softmax layer
will normalize the outputs, allowing for their interpretations as probabilities. The following may

be applied against the softmax layer:

38

o exp(ax)
Tpexp(ap)

where ay, is the sum of the activations into the output unit k. The classification decision of the

neural network is defined as the output with the highest probability value, i.e., argmaxy (y).

5.3 Methodology

5.3.1 Data
MNIST

As with previous experimentation using real-world data, the use of the MNIST dataset
of handwritten digits are again used. Within this experiment, the MNIST naturally presents

multi-class classification problem as there are 10 numeric digits.

Generated Shapes

Initial experimentation included an attempt to replicate the findings within a 2009 Curricu-
lum Learning study [1]. Within the context of the 2009 study, the classification problem aims to
distinguish between several different shapes. The shapes that the dataset consists of are ellipses,
rectangles, and triangles. Random generation of these shapes were used to fill the dataset, and
the sizes and orientations of each of the shapes were chosen randomly as well. Examples of the

shapes can be seen in 5.4.

39

Figure 5.1: Example Rectangle

Figure 5.2: Example Triangle

Figure 5.3: Example Ellipse

Figure 5.4: Samples from the Shape dataset

40

5.4 Curriculum Metrics

5.4.1 MNIST Dataset

As in previous experiments, it is necessary to quantify hardness for each of the examples.
To do so, a neural network is trained to classify the digits of MNIST, and concurrently it uses the
output of the trained neural network to quantify the hardness of a sample. Recall that the output
layer of the neural network is a softmax layer. This allows for the interpretation of the output
from the forward propagation of a sample in a neural networks as the probability a sample will be
in each of the possible classes, e.g., yx = Pr(x € k). After training a neural network on the data
set, sample x may be ran through it. Quantification of the hardness of sample x where the true

class is ¢ may then be obtained as follows:

1 —Pr(x€c)

The higher the value, the harder the sample is considered. Intuitively, one would consider that, if
the true class is of a sample x is ¢, a higher value for 1 — Pr(x € ¢) would mean the neural net
struggled when classifying the sample x as class c¢. This is attributable to Pr(x € ¢), which is the

probability of the sample belonging to that class as relatively low.

5.4.2 Shape Dataset

In the experiment from the 2009 Curriculum Learning paper[1], which is undergoing

the attempted replication, the multi-class classification problem involves distinguishing between

41

ellipses, rectangles, and triangles. The 2009 Curriculum Learning paper states that the easy
examples are circles, squares, and equilateral triangles, and for the purposes of this study,

hardness will be interpreted in the same way [1].

5.4.3 Baselines

MNIST Dataset

For the following experiments, three different ways to train the neural network based on
the hardness of the samples will be defined. The training therefore proceeds in the following

ways:

1. Easy-to-Hard — The samples are sorted by the metric of hardness, and the easiest samples

will be used first for training, followed by progressively harder samples.

2. Random — The samples are in an arbitrary order. This is commonly used in practice of
machine learning applications, where there is no inherent ordering of samples used when

training the algorithm.

3. Hard-to-Easy — The samples are sorted by the metric of hardness, and the hardest samples
will be used first for training, followed by progressively easier samples. This is the reverse

of the Easy-to-Hard approach.

42

5.4.4 Shape Dataset

In the case of shape identification, the distinction between a sample being hard or easy is a
binary property. If the shape is a circle, square, or an equilateral triangle, the sample is considered
easy. If it is not any of the above, it is considered hard. Training of the neural network with the

following curriculum strategies shall proceed as follows:

1. Easy Shapes Only - The training set consists of only circles, squares, and equilateral

triangles. Examples of easy shapes may be seen in Figure 5.8.

2. Hard Shapes Only - The training set consists of ellipses which are not circles, rectangles

which are not squares and triangles which are not equilateral.

3. Easy and Hard Shapes Only - The training set consists of a random mixture of easy and

hard shapes.

5.5 Neural Network Model Selection

5.5.1 MNIST Dataset

To quantify the hardness of the samples within MNIST, using the output from a pre-trained
neural network allows for the training of a new neural network against the data, providing a
probability value for quantify the hardness of each sample. Use of a neural network with 1 hidden
layer constructed of 64 hidden units with logistic activation functions. Once the hardness of each

of the samples has been quantified, the data sets are then prepared according to each appropriate

43

Figure 5.5: Example Square

Figure 5.6: Example Equilateral Triangle

Figure 5.7: Example Circle

Figure 5.8: Samples from Easy Shapes Only

44

method as described in Baselines, and experimental results are produced through training with a

neural network of the same architecture.

5.5.2 Shape Dataset

We use a convolutional neural network for this image classification problem [3]. The

architecture is specified in Figure 5.9.

5.6 Experimental Results

5.6.1 MNIST Dataset

To achieve consistent, stable gradients, the use of batched gradient descent or back
propagation with 10 examples per batch is implemented. A stepsize of 0.01 or n = 0.01 is also

used.

Table 5.1: The final test error rate averaged over 10 runs using a neural network and MNIST as
the dataset.

H Average Error Rate Standard Deviation H

Easy to Hard 0.1152 0.062
Random .1055 0.047
Hard to Easy 0.1031 0.052

Within the results, the error rate trace for both the training set and the test set is present,
including a magnified version aiding in identifying the trends in Figure 5.18 and Figure 5.15. The

traces for the error rates are averaged over 10 runs.

45

Input

1
w 1
Comv SxS

[Batch MNormalization]

v ' x6
Comv SXS |

[Batch Normalization]

|

[hlax Fool 2x2]

]] o<1
Conv Sx5 |

[Batch MNormalization]

= L x1s
Cony SX5 |

[Batch Mormalization]

l

[Mhax Pool Zx2]

|

L x1s
Conv 5x5 |

[Batch Wormalization]

= L s
Conwv Sx5 |

[Batch Normalization]

|

Linear 2034x 120]

|

[Linear 120mE4

¥

Linear E4x3

!

Output

]
L

—

Figure 5.9: The Architecture of the Convolutional Neural Network

46

—— Easy Examples First
—— Random Examples
—— Hard Examples First
0.8 1
3
8 0.6
S
i
i
(8}
= 0.4
0.2 A
0 250 500 750 1000 1250 1500 1750 2000
Figure 5.10: Test Error Rate Trace
—— Easy Examples First
0.9 9 —— Random Examples
—— Hard Examples First
0.8 A
9 0.7 1
©
o
S 0.6
&
()]
£ 051
=
g
= 0.4 1
0.3 A
0.2 A

0 250 500 750 1000 1250 1500 1750 2000

Figure 5.11: Training Error Rate Trace

Figure 5.12: Error Rate Figures for MNIST on Neural Networks

47

0.7 —— Easy Examples First
' —— Random Examples
—— Hard Examples First
0.6
9 0.5 1
@©
4
S
t= 0.4+
Ll
i
(8}
~ 03
0.2 1
0.1 A
50 100 150 200 250 300 350
Figure 5.13: Test Error Rate Trace Zoomed In
[T T
—— Easy Examples First
—— Random Examples
0354 — Hard Examples First
()
© 0.30 1
o
s
o
2 0.25 1
S
g
'_
0.20 1
0.15 A

100 150 200 250 300 350 400

Figure 5.14: Training Error Rate Trace Zoomed In

Figure 5.15: Zoomed In Error Rate Figures for MNIST on Neural Networks

48

5.6.2 Shape Dataset

For the shape dataset, batch sizes of 1000 samples are used. The Adam optimizer was
also used, which is an extension of the Stochastic Gradient Descent algorithm, in order to train
the neural network weights while implementing a learning rate of 0.001. The following metrics

and graphs are averaged over 10 runs:

Table 5.2: The final test error rate averaged over 10 runs using a convolutional neural network
and generated shapes as the dataset.

H Average Error Rate Standard Deviation H

Easy Shapes Only 0.1112 0.0223
Easy and Hard Shapes 0.0955 0.0194
Hard Shapes Only 0.1141 0.0211

5.7 Discussion

Analysis of the experimental results yielded a number of trends. One of the trends
discovered was that, artificially applying a curriculum strategy towards training the neural network
actually produced slightly worse results than if the training was performed naively. In the case
of the MNIST dataset, although all the strategies converge to a relatively similar final test error
rate, the magnified images of the graphs show that applying no curriculum (i.e. random sample
ordering) produced a marginally lower error rates.

In the Shapes Dataset case, it was found that filtering the training set in order to consist
solely of easy shapes for the Easy Shapes Only curriculum strategy resulted in lower performance.

The curriculum that produced the lowest test error rate was when the training set used a mixture

49

0.7
—— Easy Shapes Only
—— Hard Shapes Only
0.6 4 —— Easy + Hard Shapes
0.5
z
o]
o
5 0.4
L™=
L
b
Lib)
= 0.3+
0.2
0.1 ~
T T T T T T T T
0 10 20 30 40 50 60 70
Figure 5.16: Test Error Rate Trace
0.7 1 —— Easy Shapes Only
—— Hard Shapes Only
0.6 - —— Easy + Hard Shapes
I 0.5 A
151
o
1
2 0.4 -
w
(=]
£
£ 0.3+
i
F_
0.2
0.1 4
T T T T T T T T
0 10 20 30 40 50 60 70

Figure 5.17: Training Error Rate Trace

Figure 5.18: Error Rate Figures for Shape Dataset with Convolutional Neural Networks

50

of both easy shapes and hard shapes. One possible rationale for this discovery comes from the
fact that easy shapes and hard shapes better represents the distribution from which the dataset
was generated from. Training only on easy shapes as defined in [1] may not necessarily help to
generalize the ability of the convolutional neural network in classifying images between ellipses,

rectangles, and triangles.

51

Chapter 6

Conclusion

Results from the experiments conducted for the purpose of this study clearly identify
trends by which applying curriculum learning provides an effect on the performance amongst
the final classifiers and convergence rates. In the experiments involving synthetic data and linear
classifiers, it was found that there exists curriculum strategies which may improve final classifier
performance and also potentially improving the speed of convergence. Another observation
encountered revealed that, depending on the definition of hardness or difficulty of a sample,
training may garner a decrease in performance when the hardest samples are used in training
when the classifier was relatively converged.

In experiments involving real data and linear classifiers, it was found that although each
of the methods of training presented relatively similar final test error rates. Hard-to-Easy or an
anti-curriculum strategy tended to present worst performance initially before then converging
quicker than the other methods.

In experiments based on neural networks, it was found that the application of curriculum

52

strategy may bring about adverse effects on both the final classifier performance.

When comparing these findings to other forms of testing, it was clear certain scenarios
do exist where the application of curriculum learning may be beneficial. However, there also
exists settings where applying particular curriculum strategies could ultimately have an adverse
effect overall. These findings lead to the belief that one should use caution when selecting an

appropriate curriculum strategy for any specific machine learning setting.

6.1 Future Work

In this study, specific settings were examined through the application of a particular
curriculum learning strategy followed by analysis of the results. However, for the cases in which
applying a curriculum strategy did not work, it remains feasible for one to believe that there may
exist a curriculum learning strategy which may be effective. Should there exist a curriculum
learning strategy which may prove effective, it may be beneficial to examine whether it is possible
to develop a methodical process for uncovering the appropriate curriculum strategy in each
unique machine learning setting. Should this not be true, it would mean perhaps an appropriate
curriculum strategy exists only in specific scenarios.

All concepts and finding expressed in this report were accomplished through examining
experimental results. A deeper understanding of the effects of curriculum learning may be
understood through theoretical results. Theoretical results may explain our experimental results
derived from this work, and it may also provide better guidance on how and when to apply

curriculum learning in novel machine learning settings.

53

Bibliography

[1] Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, pages 41-48, New York, NY, USA, 2009. ACM.

[2] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911-917, Jul 1995.

[3] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3642-3649, June 2012.

[4] Sanjoy Dasgupta. Two faces of active learning. Theoretical Computer Science, 412(19):1767
— 1781, 2011. Algorithmic Learning Theory (ALT 2009).

[5] Jeffrey L. Elman. Learning and development in neural networks: The importance of starting
small. Cognition, 48(1):71-99, 1993.

[6] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced
curriculum learning, 2015.

[7] A. J. Joshi, E. Porikli, and N. Papanikolopoulos. Multi-class active learning for image
classification. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 2372-2379, June 2009.

[8] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1 — 63, 1997.

[9] Kai A. Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps.
Cognition, 110(3):380 — 394, 2009.

[10] M. P. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23, pages 1189—1197. Curran
Associates, Inc., 2010.

54

[11] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In The IEEE Conference on Computer Vision and
Fattern Recognition (CVPR), June 2015.

[12] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1-114, 2012.

[13] Ohad Shamir. Making gradient descent optimal for strongly convex stochastic optimization.
CoRR, abs/1109.5647, 2011.

[14] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550-1560, Oct 1990.

[15] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 2(1):37 — 52, 1987. Proceedings of the Multivariate
Statistical Workshop for Geologists and Geochemists.

55

