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Abstract

Covariance structure analysis is often used for inference and for dimen-
sion reduction with high dimensional data. When data is not normally dis-
tributed, the asymptotic distribution free (ADF) method is often used to fit
a proposed model. This approach uses a weight matrix based on the inverse
of the matrix formed by the sample fourth moments and sample covariances.
The ADF test statistic is asymptotically distributed as a chi-square variate,
but its empirical performance rejects the true model too often at all but
impractically large sample sizes. By comparing mean and covariance struc-
ture analysis with its peer in the multivariate linear model, we propose some
modified ADF test statistics as F-tests whose distributions we approximate
using F-distributions. Empirical studies show that the distributions of the
new F-tests are more closely approximated by F-distributions than are the
original ADF statistics when referred to chi-square distributions. Detailed
analysis indicates why the ADF statistic fails on large models. An explana-
tion for the improved behavior of Yuan and Bentler’s statistic is also given.

Implications for power analysis and model tests in other areas are discussed.

Key words: Mean and covariance structure, high dimensional data, F-

test, Hotelling’s T2, asymptotic distribution free.



1 Introduction

High dimensional data are often collected in the social and behavioral
sciences. In order to evaluate hypothesized model structures involving the
relations among the observed and unobserved latent variables, as well as for
dimension reduction purposes, researchers make extensive use of covariance
structure analysis. Austin and Calderén (in press), Faulbaum and Bentler
(1994), Hoyle (1995), and Bentler and Dudgeon (1996) provide reviews.
When data obey a multivariate normal distribution, classical normal the-
ory maximum likelihood and the corresponding likelihood ratio test will give
efficient estimators and reliable inference. Since most data sets in social and
behavioral sciences are not normally distributed (Micceri, 1989), researchers
have to seek other methods which do not depend on the underlying distri-
bution. The most widely known such method is the asymptotically distribu-
tion free (ADF) generalized least squares method proposed by Browne (1982,
1984) and Chamberlain (1982).

Let X, ..., X, be a p-dimensional sample of size n with EX, = u
and var(X;) = Y. In covariance structure analysis, a proposed structure
Y = 3(0), where 0 is a g-dimensional unknown vector, is hypothesized. An
important problem is to get an efficient estimator of # and to test the ad-
equacy of the proposed structure. Let S be the sample covariance of X;,
vech(.) be an operator which transforms a symmetric matrix to a vector by
picking its nonduplicate elements, Y; = vech[(X; — X)(X; — X)7], and S, be
the sample covariance of Y;. The ADF method is to model S by ¥(8) with



estimator én obtained by minimizing
F(0) = (s = 0(0))TW, (s — a(0)), (1.1)

where W, = Sy—l and
TW =nF,(0,) (1.2)

is its test statistic. Let p* = p(p + 1)/2, then under the hypothesized model
the asymptotic distribution of T'() is chi-square with p* — ¢ degrees of free-
dom. Consequently, quantiles from XZ*_q are used to judge the significance of
T and correspondingly the quality of the hypothetical model. The pleas-
ing aspect of ADF is that it gives correct inference and efficient estimators
when model size is small and the sample size is large enough. However, in
a factor analysis model with 15 indicators and 3 factors, the ADF method
required sample size 5000 to give reliable inference in a simulation study of
Hu, Bentler and Kano (1992). In a practical situation, model sizes larger
than the one used by Hu et al. are not uncommon, while a sample size of
more than 5000 is rarely obtainable. In small samples, the ADF method
severely overrejects the true model (Chou, Bentler, & Satorra, 1991; Henly,
1993; Muthén & Kaplan, 1992), even with an unbiased weight matrix (Chan,
Yung, & Bentler 1995).

More generally, the mean and covariance matrix can be modeled simul-
taneously. Let Z; = (XTI, vechT(X;XT))T and 7(0) = vech[u(0)uT(0)].
Sérbom (1974) described the case of multivariate normal data. Bentler (1989)
and Muthén (1989) considered ADF estimation of models with structured
means. An alternative approch was taken by Satorra (1992) and Browne
and Arminger (1995), who considered modeling Z by £(0) = (u7(0),o7(0) +

77(0))T. The estimator 0., is obtained by minimizing

F(0) = (Z = £(0)"W,(Z = £(0)) (1.3)



with weight matrix W, = 571 and S, is the sample covariance of Z;. The

corresponding index

TG =nkF,(0,) (1.4)

is used as a test statistic using a chi-square distribution X]27-I-p*—q as its ap-
proximation. By looking at Z; as response variables, mean and covariance
structure analysis can be regarded as a nonlinear regression model. Yuan and
Bentler (1995) proposed using the inverse of sum of cross products of the fit-
ted residuals as a weight matrix instead of using S7'. The corresponding
statistic of Yuan and Bentler is 7*) = T'®)/(1 4+ T®)/n), which also follows

X]27-I-p*—q and is asymptotically distribution free. These authors found the em-
pirical behavior of 73 to be similar to that of T(1), i.e., it rejects the true
model too often. They reported that 7'(*) gives much more reliable inference
for small to intermediate sample sizes. Yuan and Bentler further proposed
using the inverse of the sum of cross products of fitted residuals as a weight
matrix in (1.1). The corresponding test statistic is 7(2) = T() /(1 4 T(1) /n),
whose asymptotic distribution is also XZ*—q' The empirical performance of
T(2) was found to be similar to that of T, i.e., it gives more accurate in-

ferences about model correctness in small to medium sample sizes than does

the classical test Tr(bl).

In the literature on regression, researchers often use an F-distribution to
approximate a test statistic instead of a chi-square distribution when sam-
ple size is not so large. The advocates include Gallant (1975a, b) and Neill
(1988) in nonlinear regression, Arnold (1980) in linear models with nonnor-
mal errors, and many others. Since mean and covariance structure analysis
is a special form of nonlinear regression, we can also use an F-distribution
to approximate the distribution of the associated test statistics when sample

size is not so large. Development of the relevant theory will be the main focus



of this paper. By comparing covariance structure analysis with its peer in the
linear model, we will also give an explanation of why T'(1) and T'(®) behave so
badly when fitting a large model even when sample size is relatively large.
A detailed analysis and explanation of the correct behavior of 7'(2) and 7'(#)

will also be given.

2 Comparison of a Mean and Covariance
Structure with Its Linear Peer

We shall approach the F-test of model structure via Hotelling’s T'? statis-
tic. Let X;, ..., X,, be asample from N, (y, %), X and S be the sample mean
and sample covariance. Then Hotelling’s T'? statistic for testing p = pq is
given by T? = n(X — )T S=1(X — yip). More generally, let A be an r x p
matrix of rank r(< p), then Hotelling’s statistic for testing Ay = b is given
by

T? = n(AX — b)T(ASAT)"Y(AX —b). (2.1)
We want to compare (2.1) with (1.4). This will be facilitated by rewriting
(1.4). From Lemma 1 of Yuan and Bentler (1995), we have

VI(Z=E(0,)) = {1=E(86)(E7 (89) W, E(0)) 7 ET (Bo) W, }v/m( Z—E(8,)) o, (1).

So we can write (1.4) as

TO) = n(Z—=E(00) {W, =W, E(06)(E7 (00)W,.£(00)) €T (00) W, H(Z—E(00))+0,(1).
(2.2)

Let fc(eo) be the (p + p*) x (p* — ¢) matrix whose column are orthogonal

to those of 5(00). Using Lemma 1 of Khatri (1966) and remembering that



n

W, = S71,(2.2) can be further written as

T = nl€T(00)(7 — EBIT(E (8,)5.E.(00) [ETB)(Z — E(0u))] + 0y(1).
(2.3)
By comparing (2.3) with (2.1), we can see that they have similar quadratic
forms with (2.3) testing if there is an 6, such that 53(00)(50 —£(6y)) = 0.
If such a hypothesis is rejected, doubt is raised on the structure £ = £(0).
In the context of covariance structure analysis, Browne (1984) gave a test
statistic in a form like (2.3). Chan (1995) found that this type of statistic

also rejects true models too often.

Since the scaled Hotelling statistic follows an F-distribution
(n = 1T/ {r(n = D)} ~ Fyuer, 2.4)

we have

T2 =r(n—-1)F,,_./(n—r). (2.5)

TN—Tr

From (2.5), we can easily get the first and second moments of T2. They are

respectively

ET?=(n—-1)r/(n—r—2), (2.6)
var(T?) =2r(n — 1) (n = 2)/{(n —r —2)% (n —r — 4)}. (2.7)

Even though the asymptotic distribution of 7? is x? as n — oo, the real
distribution of T is far from y? for small to medium sample sizes. The crit-
ical point of T2 is given by (3.4). To get some idea about this, consider the
model in Hu et al. (1992) and Yuan and Bentler (1995). With r = 87 and
the sample sizes used by Yuan and Bentler (1995), we list the corresponding
numerical means and standard deviations of 72 in Table 1, based on (2.6) and
(2.7). The mean, standard deviation and 95% critical value of y2_ are: 87,

V2 x 87 &~ 13.19 and 109.77 respectively. Comparing with the numbers in



Table 1 and Table 5, which gives the critical values C'* for o = 95% of T2, we
can see that if we use a chi-square distribution to approximate a Hotelling’s
T2, the hypothesis will be much more highly rejected. Even though the 72
statistic is used for testing a linear hypothesis under the assumption that the
data is normal, these tables give strong evidence and an expectation that the
chi-square distribution is a bad approximation to 73 for large models with
not so large sample sizes. Actually, Hotelling’s T'? test is robust to a class
of distributions much larger than normal® (Chase & Bulgren, 1971; Mardia,
1975; Kariya, 1981). This observation motivates the use of the T2 to approx-

imate the distribution of 7(®), or an F-distribution to approximate a rescaled
TG,
Table 1
Mean and Standard Deviation of T

Sample size Mean Stand deviation

150 212.51 51.03
200 155.97 31.87
300 123.28 22.32
500 105.63 17.67
1000 95.40 15.16

Similarly, the statistic 7(!) can also be written in a form like (2.3). So it
may also make sense to use a Hotelling’s T'? to approximate its distribution.
Since the Y; have an intercorrelation of order O(1/n), they are not totally
independent. Considering further that the distribution of 72 is robust to a

data matrix whose rows are not necessarily independent (e.g. Kariya, 1981),

T After the current research was completed, and this manuscript was in near-final form,
the second author discovered that W. Meredith (1995) also was thinking broadly about
the potential relevance of Hotelling’s 72 to Browne’s ADF statistic. Although his pa-
per focused on entirely different questions from those discussed here, Meredith suggested:
“Since W is sample based would it not be preferable to use a Hotelling T [sic] for evalu-
ation? Consider the remarkable robustness of the Hotelling test”. He gave no details or
mathematics on this suggestion, however.



there is further motivation for using the 7' to approximate 7'(Y). In practice,

these suggestions are most easily implemented via the F-distribution.

3 F-tests of Model Structure

In this section, we propose to scale T(Y) and T®) to create some new test

statistics. Using the relation (2.4), corresponding to T{!) we have

50 = fn — (5 — ) TO/{(n = V(" — q)}. (3.1)

This statistic is referred to an F-distribution with degrees of freedom p* — ¢
and n — (p* — ¢). Of course, the distribution of Y; may not fall into the

k3

class on which the Hotelling’s T2 is robust even if the data Y, are from a

family as defined in (1.3) of Kariya (1981). Since the structure ¥ = () is
nonlinear, the exact distribution of Tr(bl) will likely not be that of a 72, but
it may be close enough in practice. Then the F-distribution should describe

the distribution of (3.1). Similarly, we create a new variant of 7% given by

TG = {n—(p+p — )} /{(n = D(p+p —q)}. (3.2)

Again, we use the F-distribution with degrees of freedom p + p* — ¢ and
n — (p+ p* — ¢) to approximate the distribution of (3.2). For simplicity, we
shall call T*(1) and T*(®) “F-tests”. In order to see the empirical performance
of T*(1) considered as an F variate, we will resort to empirical simulation.
Similarly, we use empirical simulation to investigate the goodness of the ap-

proximation of T*) by its F variate.



The model we use here is the same as the one used by Hu et al. (1992)
and Yuan and Bentler (1995), a factor analysis model y = Af 4 e with 3
factors, each with its own 5 indicators. The number of unknown parameters
in the covariance structure is 33, with p* = 120, so p * —¢ = 87 for T(1). For
the mean and covariance structure analysis model, we let the mean p be a
free parameter, so ¢ = 15+ 33 = 48 and p + p* — ¢ = 87. Three distribution
conditions were used, they are respectively: (1) both f and e are normally
distributed, representing a multivariate normal distribution; (2) both f and e
follow a t-distribution with 10 degrees of freedom, representing a symmetric
but nonnormal distribution; (3) f are normally distributed while e follows a
lognormal distribution, representing a asymmetric distribution. As in Yuan
and Bentler (1995), we choose sample sizes: 150, 200, 300, 500, and 1000
respectively. For each condition, 500 replications were performed. We com-
puted the T*() for modeling the mean and covariance simultaneously and
the T*(1) for only covariance structure analysis. The rejection rates based on
95% quantile of the Fy; , g7 are given in Tables 2 to 4. In order to compare,
we also computed the rejection rates of T(), T, TG and T™ based on

the 95% quantile of the x2..

Table 2
Empirical Type I Errors For Different

Test Statistics: Normal Distribution
Sample Size

Statistics 150 200 300 500 1000
M 1517453 4847497 411 236 100
T=(1) 22/453  40/497 39 42 39
() 0/453  11/497 20 32 35
T 434/436  A77/496 406 234 100
T) 3/436  28/496 36 39 39
7 0/436  7/496 19 30 35




Table 3
Empirical Type I Errors For Different

Test Statistics: Multivariate t-distribution
Sample Size

Statistics 150 200 300 500 1000
Tél) 449/450 485/498 415 232 89
Tg(l) 14/450  27/498 31 33 30
Tf) 0/450 3/498 19 22 25
T7§3) 444 /445 481/497 406 229 88
T$(3) 2/445 21/497 27 31 28
T7§4) 0/445 2/497 13 22 24

Table 4

Empirical Type I Errors For Different

Test Statistics: Asymmetric Distribution
Sample Size

Statistics 150 200 300 500 1000
Tm 180/481 485/499 389 201 88
T+ 10/481  15/499 20 28 34
T 0/481  1/499 7 14 26
T 458/460 480/495 383 200 91
T3 1/460  10/495 16 26 33
T 0/460  0/495 6 15 26

From Tables 2 to 4, we can see that the empirical type I errors of 1T'(1)
and 1) are so large that they can not be used in practice. The empirical
type L errors of our F-tests 7(1) and 7(%) are a little over the nominal errors
in most of the cases for normal and symmetric data. For skewed data in Ta-
ble 4, the rejection rates of these F-tests are less than the nominal rates for
sample sizes 200 (counting the unconverged samples as rejection) and 300.
Based on the 500 replications, the statistics 72 and T4 give the smallest

rejection rates in all the cases studied. Overall, the performances of T*(1),



T+3), T'(2) and T4 are much better than those of T(1) and T'(3) with T'(2) and

n n n n n

T#) being nearer the nominal rate. Note that 7(V) > T'2) and T'®) > T®)

n

numerically.

The significance of T(), T*) and T*(1), T*() depends on the critical val-
ues from chi-square and F-distributions respectively, so we need numerical
methods to compare these statistics. Since T(2) and T'*) use chi-square dis-

tributions as their approximations, the critical values are given by

Co = nxF(a)/{n = x2(a)}, (3.3)

with r = p* —q and r = p+p* — ¢ corresponding to 7'(2) and 1) respectively,
where y2(a) is the upper a critical value of y2. Since T*(V) and T*() use
F-distributions as their approximations, from (3.1) and (3.2), their critical

values are given by

CC*Y =r(n—1)F (a)/(n —r), (3.4)

T N—T

with r = p* — ¢ and r = p + p* — ¢ respectively. For r = 87, which is used
in the empirical studies in Hu et al (1992) and Yuan and Bentler (1995), we
list some of the C', and C* for a = 95% in Table 5 based on (3.3) and (3.4)
for selected sample sizes. Hu et al. reported that the behavior of the ADF
statistic tends to nominal when sample sizes are around 5000. Comparing
the results from Table 5 with the 95% critical value of x2_, which is 109.77,
we can see why the sample size requirement for 7'(1) is so large. So when
sample sizes are around 5000, the three types of test statistics will give ap-
proximately the same rejection rates for the factor analysis model with r=87.
When sample sizes are less than 500, there will be some differences between
the test statistics T*(1), T=() and T2, T, with the rejection rates of the
F-tests T*(1) and T*®) necessarily being a little bit higher.

10



Table 5
Critical Values C', and C* For a = 95%

Sample Size
150 200 300 500 1000 3000 5000
C 409.33 243.33 173.12 140.65 123.31 113.94 112.24
Cx 305.23 212,95 162.65 136.51 121.72 113.49 111.98

So far our attention has been focused on the tail probability, which is
important for testing purposes. Sometimes, we may have interest in the whole
distribution of a statistic. For this, we rely on the Kolmogorov-Smirnov (K-
S) statistic to see the quality of the approximations to these different test
statistics. Let X5y < X3 < ... < X, be an ordered sample from a

continuous distribution. The empirical distribution function F, () is defined

by
0, xr < X(l)

Suppose we want to test if a sample is from a population whose distribution

function is F'(x). The K-S test statistic is given by
Dycs = sup |F, () — F(x)].

Easy to approach references on the K-S statistic can be found in Birnbaum
(1952), Gibbons (1985, sections 4.4-4.6 ), and Stuart and Ord (1991, §30.37-
§30.42). The 95% and 99% critical values of Dgg based on its asymptotic
distribution are 1.3581/y/n and 1.6276/y/n. For n=500, these critical values
are approximately 0.0607 and 0.0728.

Based on our empirical studies described earlier, the Dy ¢ was calculated

for each case. The statistics are listed in Tables 6 to 8, corresponding to

Tables 2 to 4. From these numbers, we can see that for sample size 150

11



the K-S statistics corresponding to T'() and 73) are almost 10 times larger
than those of 7*(1) and T*(), and about 6 times larger than those of 7(2)
and T4, The K-S statistics of our F-tests 7*(1) and 7*() are the smallest

n

for all sample sizes presented here. For sample sizes 300, 500, and 1000, the
K-S statistics corresponding to 7'(2) and T'4) are almost as good as those of
T+ and T*©) for normal data and symmetric data; for the skewed data,

those of T2, T and T*(1), T*() are similar when sample sizes are 500 and

1000. Five of the K-S statistics corresponding to T*(1) are not significant

under the 99% critical value, five for T*®), one for T(?), and one for T4,

Note that since there exist some nonconverging samples for sample sizes 150
and 200, the statistics corresponding to the converged samples may not be
independent. So for sample sizes 150 and 200, the statistics are given only

for exploratory purposes and to provide reference values.

Table 6
K-S Statistics For Different

Test Statistics: Normal Distribution
Sample Size
Statistics 150 200 300 500 1000
Tél) 9886 .9384  .7926  .537H .2845
Tﬁ(l) 0746 .1269 1371 .1072  .0534
1640 .1689  .1577 .1107 .0600
9853 .9343  .7890 .5314 .2833
T+3) 0914 .0922 1275 .1014 .0528

ﬁ(f) 1796 1459 .1498  .1060 .0592

33
L or

12



Table 7

K-S Statistics For Different
Test Statistics: Multivariate t-distribution

Sample Size

Statistics 150 200 300 500 1000
Tél) 9892 .9326 .7869 .5T18 .3022
Tﬁ(l) 0619 1144 1292 1243 .0723
T7§2) A557 1461 L1557 L1376 .0778
Tf’) 9871 .9286  .7807 .5691 .3012
T$(3) 1263 .0873 1172 .1193  .0708
T7§4) 2009 1309 1422 1334 .0760

Table 8

K-S Statistics For Different

Test Statistics: Asymmetric Distribution

Sample Size

Statistics 150 200 300 500 1000
T 9897 9314 7606 .5191 .3200
1) 0695 .0553 .0782 .0734 .0948
T 1683 1198 1141 .0840 .1004
T) 9905 9249 7578 5254 3195
T3) 1448 .0701  .0685 .0723 .0949
7 2183 1321 1050 .0891 .1028

Comparing the results with those in Tables 2 to 4, we can see that there
exists some discord between the measures of tail probability and the K-S
measures of distributional misfit. Approximations of our F-tests T*(1) and
T+3) by F-distributions are always the best judging by the K-S statistic,
while they are not as good as T/2) and T4) in overall approximations of tail
probabilities. Considering that most of the time these statistics are used
for testing purposes only, their tail probabilities are more important from a
practical point of view. An approximation to a distribution may not be uni-

versally good everywhere, may be good at the middle and bad at the tails or

13



vice versa. For example, the direct Edgeworth expansion usually gives a very
good approximation at the center of a distribution but can be very bad re-
garding tail probabilities (Barndorff-Nielsen & Cox, 1989, Chapter 4; Field &
Ronchetti, 1990), while the saddle point approximation focuses on improving
the approximation around a point of interest. Since the K-S statistic mea-
sures the distance between F,, () and F'(z), and the tail probability compares

a sample with a specific quantile, it is not surprising that the differences exist.

4 An Explanation for Yuan and Bentler’s
Statistic

From the empirical evidence in last section, the Hotelling’s T2 distribu-
tion, as transformed into an F variate, gives a much better approximation
to the behavior of Tr(bl) and TT(L:)’) than the large sample size based chi-square
distribution. The statistics TT(L?) and TT(L4) perform equally well when using
chi-square distributions as their approximations. We give an explanation for

these divergent results based on the T2 distribution.

Let X2 and X2_ be independent and follow chi-square distributions with

degrees of freedom r and n — r respectively. Then

X2/r
FT n—r R —
' Xg_T/(n —r)
follows an F-distribution with degrees of freedom r and n —r. It follows from
(2.5)
(n—1)X2

T2 = 2

(4.1)

14



So

T2 X2
= r . 4.2
14+T7%/n be/n—be_T/{n(n—l)} (4.2)
Rewrite (4.1) as
2
T2 = - 4.3
(n—r) Xp_p ( )

for easy comparison. Since the numerators in (4.2) and (4.3), the x? variates
used as their approximations are the same, the qualities of the approxima-
tions are really decided by the denominators. If a denominator equals 1,
then the approximation is perfect. As X2 /m — 1 when m increases, by
comparing (4.2) and (4.3), we can see that the denominator in (4.2) not only
recovers the degrees of freedom r but also changes the bias from a multi-
plicative factor (n —r)/(n — 1) to a minus factor of X2_ /n(n —1). Even
when a sample size n is very large, if r is not so small as in most practical
models, the bias brought in by (n —r)/(n — 1) can be overwhelming. For a
fixed n, the amount of bias in (4.3) will increase as r increases. On the other
hand, for each fixed n, the bias brought in by X2_ /n(n —1) will decrease as
model sizes increases. The maximum amount of bias is approximately 1/n

when r = 1.

Even though our explanation of the properties of TT(L?) and TT(L4) is based
on the T2 distributions, these properties are reflected in Tables 2 to 4 and 6
to 8. Furthermore, the empirical means and standard deviation of Tr(bl) and
T®) as reported in Hu et al (1992) and Yuan and Bentler (1995) are also

near those corresponding to Hotelling’s T2, as shown in Table 1.

15



5 Discussion

Outside the standard linear model, the distributions of most goodness of
fit test statistics are approximated by chi-square distributions. These approx-
imations are supported by large sample theory. However, these chi-square
approximations can be very bad, especially when the models are very large.
This problem occurs even when sample sizes are fairly large. In covariance
structure analysis, which is usually used for high dimensional data analysis,
this problem becomes obviously serious. Even though most researchers are
aware of this problem, they still continue to use a chi-square approximation
because of the lack of more reliable alternatives. Yung and Bentler (1994)
used a bootstrap method to improve the performance of Tr(bl) which is com-
putationly intensive. Yuan and Bentler (1995) proposed statistics TT(L?) and
TT(L4) which do not need extra computation beyond that of Tr(bl) and T7§3)‘ This
paper furthermore proposes the F-tests 7*(1) and 7 and proposes the use
of F-distributions to approximate their distributions. Our approach is mo-
tivated by the resemblance of T(1) and 7' to the Hotelling 7'2. Empirical
evidence shows that the F-distribution approximations are much better than
the large sample theory based chi-square approximations to the distributions
of T and T'3). The K-S statistics also suggest the reasonableness of the I'-
distribution approximations. As compared with T(2) and T*), the rejection
rates of T*(1) and T*() are a little bit higher for sample sizes 300 to 1000 for
symmetric data. For the asymmetric data, on the other hand, the rejection
rates of T*(1) and T*(® perform better than those of T'(2) and T'*) for sample

sizes under 500.

In this paper we have only investigated the test statistics and their dis-

tributions when hypothetical structures are correct. Under alternative hy-

16



potheses, noncentral chi-squares have been used to describe the distributions
of T
of T

—_

D and T(). From our limited experience in empirical study, the powers

3

—_

D and T'() are almost always 1 under a small departure from the null

3

hypothesis for any sample size. This is because for large sample sizes, the
noncentrality parameters are very large and the power should be approxi-
mately 1; while for small and medium sample sizes, the powers are almost
equal to 1 even if the null hypotheses are correct! A reason behind this is
that noncentral chi-square variates are bad approximations to the distribu-
tions of T1) and T) under alternative hypotheses. Since Hotelling’s 7
gives reasonable approximations to the distributions of 7(1) and T®), under
alternative hypotheses we also may approximate their distributions by non-
central Hotelling’s T'?’s and, consequently, approximate the distributions of
T+ and T*®) by noncentral F-distributions. Such approximations will have
asymptotically the same power as noncentral chi-square approximations to
those of T(V) and T'®), but there will be some differences for small to medium
sample sizes. This will have a measurable effect on the uses to which noncen-
tral distrubutions are put, for example, power analysis (e.g., Saris & Satorra,
1993) and practical measures of fit such as the comparative fit index (e.g.,
Bentler, 1989) (see also Hoyle, 1995). More informative conclusions need

further investigation and will be given elsewhere.

In this paper we have addressed only the goodness-of-fit x2 test for evalu-
ating model structure. In practice, however, researchers also evaluate sets of
restrictions via y? difference tests, Lagrange Multiplier tests, and Wald tests
(e.g., Bentler & Dijkstra, 1985; Satorra, 1989). The statistics involved in
these approaches are treated as asymptotic chi-square variates, and for the
reasons enumerated above we propose that our approach based on F-tests

may provide a more accurate evaluation of hypothesized restrictions. This
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topic will be addressed in a separate paper.

We have concentrated our development on tests associated with efficient
estimators. They also are relevant to nonefficient estimators. Consider, for
example, Browne’s (1984) test for a nonefficient estimator, e.g. the least
squares estimator. As noted previously, this is of the form 73, and Chan
(1995) found that it rejected true models too frequently. Clearly, our F-test
variant of T, that is T7*(), should also be a better test of model structure
at most realistic sample sizes than Browne’s original statistic for nonefficient

estimators. This suggestion will be evaluated fully elsewhere.

Even though our simulation studies are limited to mean and covariance
structure analysis, these types of test statistics can also be applied to other
areas in which the chi-square approximations reject the true models too of-
ten. An obvious extention is to multiple-sample ADF theory (e.g., Bentler,
Lee, and Weng, 1987; Muthén, 1989). Our statistics also should apply to cat-
egorical variables methods, since it has been reported that Muthén’s (1987)
LISCOMP and Joreskog and Sérbom’s (1993) LISREL test statistics over-
reject true models (e.g., Bentler, 1994; Dolan, 1994). Similarly, there are
usually a large number of parameters in principal component analysis, in
panel data analysis, and in log-linear models. If in these areas the rejection
rates of some x? approximations are higher than they should be, our pro-

posed test statistics may perform better.
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