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ABSTRACT OF THE DISSERTATION 
 
 

Deconstructing Cell Fate Transition Dynamics and  

Epigenetic Heterogeneity using Single Cell Technology 

 

by 

 

Shan Sabri 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2020 

Professor Kathrin Plath, Co-Chair 

Professor Jason Ernst, Co-Chair 

 

 

The ability to create pluripotent stem cells (PSCs) from any tissue by a process called 

reprogramming (yielding induced pluripotent stem cells, iPSCs) has ushered in an era of 

personalized medicine. However, reprogramming protocols are not trivial and are nearly always 

inefficient, often yielding an efficiency of less than 0.1%. Similar low efficiencies occur for many 

of the forward differentiation protocols, where it is also a major question which cell types are made 

and how they compare to the cells present in vivo. In this work, we applied single cell RNA-

sequencing on iPSC reprogramming from different somatic cells to define the transcriptional 

changes in the process and the role of the reprogramming factors and somatic TFs in the 

reorganization of cell identity, revealing the critical role of intermediate ectopic gene expression. 

Changes to the reprogramming transcription factor complement results in similar intermediates 

while skewing the number of cells that reached particular cell stages. Intriguingly, distinct 

transcription factors induced unique novel ectopic transient gene networks, the character of which 
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influenced the efficiency of reprogramming. This work thoroughly describes the processes of cell-

fate decision-making, and uncovers the nature of the ectopic gene expression state as a gate 

keeper of reprogramming progression. 

Building on this, we also establish a novel computational method to deconvolve the 

epigenetic control of heterogeneous processes, such as reprogramming and differentiation, 

thereby uncovering mechanisms underlying cell type specifications and transitions. Using 

techniques from machine learning, we train models to learn the relationship between the 

transcriptome and epigenome from an atlas of homogeneous cell populations, then apply these 

models to single cell populations. Our results illustrate accurate deconvolution of a human fetal 

brain organoid for which we have predicted the H3K27ac epigenomic landscape, a histone 

modification mark that is nearly impossible to profile at single cell level.  

Together, my graduate work has focused on developing novel computational methods and 

analysis techniques that leverage single cell genomics for studying gene regulation while gaining 

insight into the mechanisms underlying cell fate change processes, as well as how to effectively 

derive single cell type chromatin state data. 
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Chapter 1. Introduction  

Pluripotent stem cells hold great promise in the field of personalized and regenerative medicine. 

Though for realizing their potential, it is essential to produce and forward differentiate these stem 

cells to desired cell fates, yet protocols for doing so are not trivial and often inefficient. In 2006, 

Kazutoshi Takahashi and Shinya Yamanaka made the groundbreaking observation that a cocktail 

of transcription factors, Oct4, Sox2, Klf4, and cMyc (commonly referred to as OSKM), can induce 

pluripotency in somatic cells resulting in induced pluripotent stem cells (iPSCs). Since this 

discovery, the amount of data gathered on iPSCs has been astonishing yet little is known 

molecularly about the inefficiencies of this process. The understanding of what regulatory 

mechanisms drive cellular reprogramming and differentiation is a fundamental question in the 

field of stem cell research. Knowing the cellular decision-making underlying the reprogramming 

of cells to induced pluripotency will allow researchers to deconstruct the process thereby 

identifying and overcoming bottle necks that hinder efficiency.  Reprogramming to iPSCs requires 

the silencing of the somatic program and activation of the pluripotency program while preventing 

alternative fates, but it still remains unclear how these events are regulated and related to each 

other, and what aspects are conserved when iPSCs are derived from different cell types. 

Various studies have employed genome-wide techniques to reveal changes in gene 

expression and chromatin state that occur during iPSC reprogramming at the population level. 

However, population-based studies cannot be used for a full understanding of the reprogramming 

process, because they produce an ensemble response with no knowledge of the cellular variance 

of that response. To overcome this, we have adapted and applied the droplet-based Drop-seq 

method to characterize the transcriptomes of individual cells in a high-throughput manner. We 

profiled 80,000+ individual cells at many time points and conditions to characterize transcriptional 

identities and dynamic trajectories describing paths from the starting to end states along 

reprogramming. My work has aimed to understand the fundamental question of why individual 
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cells follow distinct trajectories in differentiation and reprogramming processes, establish different 

cell states, and/or fail to reprogram or differentiate, even when starting from homogeneous cell 

populations grown in defined culture conditions. Doing so has provided a stepping stone towards 

the mechanistic dissection of cell fate change processes and the rational manipulation of cell fates 

for diverse applications.  

 In Chapter 2 we investigate cell fate transition dynamics along the path toward 

pluripotency using single cell technology. We profiled iPSC reprogramming from different somatic 

cells to define the transcriptional changes in the process and the role of the reprogramming factors 

and somatic TFs in the reorganization of cell identity. To address this, we develop a computational 

method, Gene Expression Network Discovery (GEND), for the discovery of co-regulated gene 

networks allowing us to captures both gradual transcriptional changes and rare populations with 

specific gene signatures. Using GEND, we reveal the critical role of intermediate ectopic gene 

expression. The ontology of genes within these ectopic networks are related to various 

developmental processes unrelated to iPSC reprogramming, indicating that genes normally 

expressed in different lineages are transiently upregulated during reprogramming, and that often 

in the same cell. We found that among those different lineage markers, are genes that facilitate 

the mesenchymal-to-epithelial transition, which is critical for pushing the cells towards the 

pluripotent state. Intriguingly, we show that changes to the reprogramming transcription factor 

complement results in the intermediate state being expanded or depleted, respectively, when the 

reprogramming process is enhanced or blocked. Our work provides a general framework for how 

one cell identity emerges from another in reprogramming processes, and uncovers mechanistic 

insight to enhancing the process.  

 In Chapter 3 we develop a computational method to deconvolve a bulk, population-level 

chromatin profile into the underlying heterogeneous cell subtypes using single cell gene 

expression information. To achieve this, we train machine learning models to learn the 
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relationship between the transcriptome and epigenome from an atlas of purified cell types, then 

apply these models to single cell subtypes. We show that a properly trained model can 

computationally predict enhancers in single cells from solely using gene expression information 

as input. Our results show accurate deconvolution of histone modification H3K27ac profile for a 

human fetal brain organoid into six underlying cell types defined by single cell sequencing. Our 

method alleviates the need for an additional chromatin assay or cells sorting to profile 

heterogeneous samples and provides valuable information to guide hypothesis generation, target 

prioritization, and design of follow-up experiments.   

 In Chapter 4 I present the works of two collaborations that have resulted in manuscripts. 

The first peer-reviewed manuscript is published in Cell Stem Cell and was in collaboration with 

Dr. April Pyle’s lab at UCLA. In this work, we develop a never-before-seen roadmap tracking how 

human skeletal muscle develops through a process called myogenesis, from an early embryonic 

state to adulthood, including the formation of muscle stem cells, which are essential to treat 

muscle disorders. We established a computational method, similar to that described in Chapter 

2, to map gene networks related to muscle progenitor and stem cells to a developmental 

continuum thereby allowing us to match genetic signatures found in pluripotent stem cell-derived 

muscle cells with their corresponding locations on the roadmap of human muscle development. 

Interestingly, we find some networks are enriched for cell types that support muscle cells. This 

developmental roadmap has laid a foundation for developing muscle stem cells in the lab that can 

be used for regenerative cell therapies for a variety of muscle diseases, including muscular 

dystrophies.  

 Here, I also present a manuscript in peer-review for publication from a collaboration with 

three institutions including Drs. Kathrin Plath and Brigitte Gomperts labs at UCLA, Dr. John 

Mahoney’s group at the Cystic Fibrosis Foundation and Dr. Barry Stripp’s lab at the Lung and 

Regenerative Medicine Institute of Cedars-Sinai Medical Center. We present a molecular atlas 
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defined by 38 patient samples of the proximal airway epithelium to define disease-related changes 

to the proximal airway of cystic fibrosis (CF) donors undergoing transplantation for end-stage lung 

disease as compared to the proximal airway of previously healthy lung donors. For the first time, 

we report novel identification of proximal airway epithelial basal, secretory, and ciliated molecular 

subtypes. We show that the secretory subtype is associated with mucosal immunity in CF donors 

while the ciliated subtype was found to have a larger number of transitioning precursors in these 

same donors suggesting greater plasticity than controls. Our results provide insights for the 

development of new targeted therapies for CF-related airway dysfunction. 

All studies in these chapters leverage high-throughput droplet-based single cell 

technology to profile thousands of cells in a variety of conditions to identify key genetic signatures 

and differences.  
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Chapter 2. Identification of conserved mechanisms underlying the gene expression 
changes during reprogramming processes 

 

Abstract.  

Reprogramming to iPSCs requires the silencing of the starting and activation of the pluripotency 

program while preventing alternative fates, but it still remains unclear how these events are 

regulated and related to each other, and what aspects are conserved when iPSCs are derived 

from different cell types. We applied single cell RNA-sequencing to of MEF-, Keratinocyte- and 

NSC-to-iPSC reprogramming and created a method to define gene networks over reprogramming 

time. 

For all three systems, cell fate transitions proceed via the silencing of the most tissue-

specific starting cell type genes, followed by stepwise silencing of more broadly expressed 

somatic genes, while upregulation of target cell genes starts with more broadly expressed genes 

and ending with most iPSC-specific genes. The most tissue specific somatic and iPSC genes are 

rarely expressed together, while the broader gene networks coexist. The silencing of the most 

somatic-specific genes enables expression of ectopic networks, including co-expression of genes 

from diverse lineages, not expressed in the starting and end states, which are unique in each 

reprogramming system. The ectopic networks are always silenced together with the broadly 

expressed somatic genes during induction of the most iPSC-specific genes.  

Mechanistically, the timing of these transitions is explained by the regulatory input from 

the reprogramming and somatic TFs and genomic architecture (CpG content, DNA accessibility, 

enhancer location). Stalling can occur by failure to silence somatic networks, via deviation through 

the induction of stress responses, and in an ectopic network expressing intermediate state.  

Changes to the reprogramming transcription factor complement results in similar 

intermediates while skewing the amount of cells that reached particular cell stages. Intriguingly, 

distinct transcription factors induced unique novel ectopic transient gene networks, the character 

of which influenced the efficiency of reprogramming. Thus, our work provides a general framework 
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for how one cell identity emerges from another in reprogramming processes, and uncovers the 

nature of the ectopic gene expression state as a gate keeper of reprogramming progression. 
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Introduction. 

The conversion of somatic cells to induced pluripotent stem cells (iPSCs) by the overexpression 

of the transcription factors (TFs) Oct4, Sox2, Klf4, and cMyc (OSKM)1 holds great promise for the 

treatment and understanding of diseases, and provides a powerful tool for studying mechanisms 

underlying cell fate changes1–3. To this end, profiling of reprogramming cultures with a multitude 

of genomics4–10, imaging and proteomics11 approaches has shown that reprogramming to iPSCs 

requires proliferation and entails the silencing of the starting somatic gene expression program, 

in the case of mesenchymal starting cells the mesenchymal to epithelial transition (MET), a 

process in which cells lose their mesenchymal characteristics and acquire epithelial features, and 

the induction of the pluripotency program. 

  However, as most cells fail to reprogram due to the inefficiency and asynchrony of 

reprogramming events, the relationship between these expression programs has remained 

unclear. Consequently, single cell RNA-sequencing (scRNA-seq) approaches12-15 have recently 

been applied to the reprogramming process, starting cell population that correlates with 

reprogramming potential, defined a continuum of cell states during reprogramming, and defined 

the role of signaling modulation.  

Despite these advances, it is still not well defined how the reprogramming transcriptomes 

changes, whether it occurs through binary switches, stochastic expression, coordinated gradual 

cascades, or through novel intermediates with co-expression. Moreover, which transcriptional 

changes are conserved when different starting cell types are reprogrammed, is still little 

understood. Insights into these questions are critical for elucidating the mechanisms underlying 

cell fate change during reprogramming. 

To address these issues, we applied single cell RNA-sequencing16 to the induction of 

iPSCs from mouse embryonic fibroblasts (MEFs), keratinocytes, and neural progenitors (NPCs), 

respectively. In these experiments, we also altered culture conditions, the stoichiometry of 
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reprogramming factors, and expressed somatic or pluripotency TFs together with OSKM, to define 

mechanisms associated with enhancement and inhibition of reprogramming, capturing 80,690 

single cell transcriptomes (median detection of 3884 UMIs and 1799 genes per cells) in total 

(Table 2-1). These data allowed us to define the steps towards iPSCs that are conserved across 

different cells of origin and underlying mechanisms. We also show that a similar transcription logic 

applies to trans-differentiation processes. Taken together, our work therefore uncovers general 

principles underlying transcription factor-induced cell fate changes. 
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Results. 

We applied single cell transcriptomics on the MEF-to-iPSC conversion, to first define transcription 

changes along the reprogramming trajectory in a well-studied system. We profiled a 

reprogramming time course of female MEFs carrying a doxycycline (dox)-inducible polycistronic 

OSKM cassette16,17 (Fig 1A, Supp Fig 1A, Table 2-1). Upon OSKM expression (Supp Fig S2-1B), 

virtually all cells shifted away from the starting MEF state, and shifted towards the iPSC state over 

time (Fig 2-1B, Supp Fig S2-1), which was confirmed with additional dimensionality reduction 

methods and in three additional time courses (Supp Fig S2-2). iPSCs were defined by well-

established molecular features such as silencing of somatic genes like TWIST and COL1A1, 

silencing of Xist and inactive X reactivation, and expression of the pluripotency markers Nanog, 

Esrrb, endogenously-encoded Pou5f1 and Sox2, and were first detected by day 9 consistent with 

the latency of iPSC induction (Fig 2-1C, Supp Fig S2-1C-F)1,5,,11,19–23. 

To delineate the molecular differences that arise as cells convert from MEFs into iPSCs, 

we developed a new method, Gene Expression Network Discovery, or GEND (Fig 2-1D). GEND 

is a fast, sensitive approach to discover sets of co-regulated genes which uniquely captures both 

gradual transcriptional changes and rare populations with specific gene signature, which we used 

to detect all cell identities. We identified networks with higher expression in MEFs than in iPSCs 

(somatic networks DOWN1-4) (Fig 2-1Ei), which differed in the number of cells expressing them 

from few (DOWN1) to nearly all cells (DOWN4), in the time points at which they were detected, 

and in their associated with Gene Ontology terms from extracellular matrix (DOWN1-3) to 

cytoskeleton regulation (DOWN4).  (Fig 2-1Ei/1F, Supp Fig S2-3). DOWN1 and DOWN2 were 

upregulated early in reprogramming (days 2-4), partially due to KSR addition (Supp Fig S2-4A-

E).  

We also identified eight programs that were more highly expressed in iPSCs than in MEFs 

(Fig 2-1Eii, pluripotency networks UP 1-8), and contained genes associated with mRNA 
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metabolism (UP1/2/5), chromatin organization (UP2-6), cell division (UP1-4,6), DNA repair 

(UP1,3-6), and embryonic development (UP6-8), based on GO analysis (Supp Fig S2-3). The 

UP6-8 networks contain many TFs including key regulators of the pluripotent state including 

Tcfcp2l1 and Tfap2c (UP6), endogenously expressed Sox2 and Pou5f1, Sall4, Nr5a2, Nanog, 

MycN, Lin28 (UP7), and Zfp42, Esrrb, Nr0b1 (UP8) (Fig 2-1Eii, Supp Fig S2-5). Similar to the 

DOWN programs, the UP programs differed in the number of cells expressing them from many 

cells (UP1) to few (UP8) and time points (Fig 2-1Eii/F, Supp Fig S2-3B).  

In addition to up- and downregulated genes, we reproducibly identified several additional 

networks (Fig 2-1E, Supp Fig S2-6), including five containing ectopically expressed genes, that 

are expressed in d2-24 cultures, but not in MEFs and iPSCs. The ectopic networks include the 

Osteogenic and Interferon response networks, the Neural and post-implantation epiblast 

networks, which had unique TF profiles (Neural: Nkx6-1, Ascl1 and Pou3f2, - Epiblast: FoxA1/A2, 

Gata4, Sox17, Lhx1, and Eomes), and the Transient network (Fig 2-1Eiii, Supp Fig S2-3). An 

epiblast-like cell stage had been proposed as an intermediate during reprogramming, however 

we performed a lineage tracing experiment using X chromosome reactivation and revealed that 

the post-implantation epiblast cells differentiated from pluripotent iPSCs (Supp Fig S2-7), 

indicating that they do not arise along the reprogramming path. 

The Transient program warranted further consideration as it contained genes previously 

found to be upregulated in the middle of reprogramming, such as Itgb4 and Ehf, and was present 

in cells which were more competent to finish reprogramming (Supp Fig S2-8A/B). The Transient 

network included genes that are normally in unrelated tissues, including Avil (highly expressed in 

stomach, intestine, brain), Cacna2d2 (brain and heart), Chst3 (most highly expressed in the 

spleen controlling T cell maintenance), Ehf (an epithelium-specific Ets transcription factor), and 

Prx (expressed highly in the brain with a function in Schwann cells), and Crym (a thyroid hormone 

binding protein in muscle, neurons, and prostate), which we confirmed to be translated mid-
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reprogramming (Supp Fig S2-8C-E). This network captures the previously reported upregulation 

of lineage-specific markers from unrelated lineages during reprogramming8, and show that these 

genes are co-expressed in individual cells (Supp Fig S2-8G). Despite the heterogeneity, these 

data show that the induction of coordinated cell fate programs is a rare event during 

reprogramming, limited to a small Neural network in this system. 

We next sought to find what other properties were correlated to the different proportions 

of cells that the various DOWN and UP networks are expressed in, from few cells (narrow) to 

many (broad). Calculating the ESC to MEF expression ratio of each network using population 

RNA-seq data, we found that the narrow DOWN1/2 networks were more fibroblast specific 

compared to the broader DOWN3/4 (6-10 fold vs 2-4 fold respectively), and upregulated genes 

become more ESC specific from the broadest UP1 to the narrowest UP8 network (from 2 fold to 

17 fold) (Fig 2-1G, Supp Fig S2-9A). We asked whether the narrower networks were also more 

restricted in their general tissue specificity. We determined the number of tissues where each 

gene within the networks was expressed, using ENCODE expression data from eighteen different 

tissues. DOWN1/2 were more restricted in their tissue expression than DOWN3/4, and UP 1-5 

were more broadly expressed than UP6-8 (Fig 2-1H). These findings show that the tissue 

specificity of genes is tied to the regulation of gene expression during reprograming. Pairwise 

expression scatterplots demonstrate the more broadly expressed networks such as DOWN3/4 

and UP1-5 are co-expressed in a large number of cells, however the narrow programs DOWN1/2 

and UP6-8 do not overlap (Fig 2-1I). This was confirmed by examining the expression of the most 

cell type specific MEF-and ESC genes (defined based on population RNA-seq data up or down 5 

fold (Table 2-2, Supp Fig S2-9). These data indicated that the most MEF-specific genes are 

downregulated before the most ESC-specific genes are upregulated. 

We therefore hypothesized that by ordering the reprogramming cells via a trajectory based 

on tissue specific gene antagonism, we could define the changes and overlaps in gene network 
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expression which are occurring during reprogramming time. Indeed, a trajectory based on MEF-

and ESC- specific gene antagonism, coined the trajectory score, was in close agreement with 

algorithmic progression modeling by Monocle224,25 (r=0.96, Fig 2-1J, Supp Fig S2-9K). This 

illustrates the existence of cells with an intermediate trajectory score exist which express only low 

levels of both MEF and ESC-specific genes, marking cells which capture the transition to the 

pluripotent state in the reduce dimensionality plots (Fig 2-1J). Along the reprogramming trajectory, 

DOWN1-4 and UP1-8 change in a gradual and stepwise manner (Fig 2-1K).  Gene networks with 

higher tissue specificity are more rapidly downregulated/ harder to upregulate, during 

reprogramming, than broader programs. In contrast, the Transient gene network was most 

strongly upregulated when the most tissue specific UP and DOWN genes were lowly expressed 

(Fig 2-1K, Supp Fig S2-8F).  

To define cell states that arise over reprogramming time, we developed a method, 

Combinatorial Expression of Networks Into Cell States (CENICS), to quantify the combinatorial 

expression of the DOWN, UP, Transient, Osteogenic, and Interferon networks. We designated 

cells as ‘On’ or ‘Off’ for the networks and determined the percentage of cells with combinations of 

these ‘On’ networks. By doing this for each reprogramming time point, we can precisely determine 

the appearance of novel cell states and stalling points over time (Fig 2-1L, Supp Fig S2-10). The 

majority of starting MEFs were positive for DOWN2/3/4 and were also positive for UP 1/2/5 

consistent with their broad expression character. Upon OSKM induction (d2-d4), many cells 

populate a surprising variety of new cell states (Fig 2-1Lii). For instance, some cells express 

DOWN1 and/or the Interferon or Osteogenic networks, which correlates with an increase in 

somatic identity along the trajectory axis (up to a score of -1.0). The DOWN1/Interferon networks 

are early responses which are lost from the culture at late time points, while the Osteogenic 

network is enriched in states which accumulate over d9-d15, consistent with the idea that these 

networks represent non-productive events. Other cells have downregulated DOWN2, induced the 

Transient network in the presence of DOWN3, and are closer to the iPSC state, consistent with 
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the transient network being expressed in productive intermediates. However, some cells also 

maintain the initial MEF state, indicating a highly heterogeneous penetrance of reprogramming 

efficacy. By day 9, the number of cells expressing the Transient network increases and 6% of 

cells express UP6 along with DOWN3 and Transient network expression, while another 7% 

express UP6-8 together, and lacked DOWN2 /3 and Transient gene expression, capturing the 

fully reprogrammed state. After several rounds of splitting (day 24/34), pluripotent cells with all 

UP programs have outcompeted the other cell states.  

The first cells along the trajectory which induced UP6 had lower expression of DOWN3 

and Transient networks compared to the prior cell states, and high expression of UP6 was 

correlated with loss of DOWN3 and Transient expression and gain of UP7/8 (Fig 2-1Liii).  Only a 

small proportion of cells with incomplete UP6-8 combinations accumulated over time, indicating 

that cells convert quickly through pre-pluripotent states after inducing UP6. Thus, the gradual 

upregulation of UP6 and repression of DOWN3 and the Transient networks is a critical for 

transition into the iPSC state, and only happens late in reprogramming (d9) with low efficiency. 

Intriguingly, UP6 transcription factors are sporadically expressed in an uncoordinated manner 

prior to this transition, indicating that co-expression in the same cell is related to suppression of 

DOWN3 (Fig 2-1Liii). Late intermediates that do not induce UP6 accumulate in a state expressing 

DOWN3 and Transient networks without the cell division networks (UP3/4) suggesting that cells 

in this state require proliferation to upregulate UP6, consistent with prior reports that cell 

proliferation is critical for iPSC generation. Based on correlation of the cell states, this induction 

of UP6 reflects a major inflection point in gene expression wherein the MEF character of the cell 

is finally lost (Fig 2-1M). This represents the largest change in cell identity, greater than the initial 

loss of DOWN2 and induction of the Transient network. Our data uncover that first the 

downregulation of DOWN2 and induction of the Transient network, and later of the 

DOWN3/Transient networks together with the induction of the UP6 program are major 

bottlenecks. 
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The loss of MEF identity at the DOWN3 to UP6 transition raised the question of how these 

events relate to the mesenchymal to epithelial transition (MET), a previously described key 

bottleneck of reprogramming. Taking well established mesenchymal and epithelial genes of MET, 

we surprisingly find that mesenchymal genes fall gradual beginning with the repression of 

DOWN2 through to the induction of UP7/8, while epithelial genes become expressed at high 

levels together only after DOWN3 is repressed, in UP6 positive cells. Consistent with this, sorting 

for E-Cadherin (Cdh1, the surrogate marker for the MET in the reprogramming field) expressing 

cells, at day 6 post OSKM induction (Supp Fig S2-11), we more strongly enriched for cells which 

expressed UP6 without DOWN3, and depleted for non-productive Interferon and Osteogenic 

states (Fig 2-1Ni/ii). Notably, at this d6 timepoint we detect a large latency of induction of UP7/8, 

as both sorted and unsorted cells accumulate in UP1-6 states. Cdh1+ sorted cells also existed in 

many DOWN3 positive states, indicating that CDH1 protein is produced stochastically prior to 

other epithelial genes, similar to other UP6 TFs (Supp Fig S2-11F/G). The co-expression of 

epithelial markers of MET happens concomitantly with the downregulation of DOWN3 alongside 

increasing UP6 expression, whereas the mesenchymal markers of MET are gradually lost at 

differing rates, suggesting these two processes are not strictly coordinated (Fig 2-1Niii).   

Together our data give rise to the following model (Fig 2-1O). Upon OSKM induction, cells 

acquire ectopic gene expression, either gaining Transient network expression or inducing 

differentiation/inflammatory responses (Osteogenic/DOWN1/Interferon), events have been 

previously associated with bifurcation into non-productive reprogramming paths. The next major 

step is loss of DOWN2, associated with lower DOWN3 expression, lower mesenchymal marker 

gene expression, higher Transient network expression, and a general increase in UP1-5 network 

genes including chromatin and replication regulators. This state potentiates the induction of UP6, 

which increases while DOWN3 is still expressed at low levels. High UP6 triggers the final loss of 

DOWN3 and Transient expression, and the simultaneous expression of epithelial genes, which 

correlates with a major shift in cell identity. Eventually, these cells express the final UP7/8 network 



 

 

 

 15

genes to establish to iPSC state. At different points along this path arise cells expressing the 

Osteogenic, Neural, and Epiblast gene signatures, and stalled non- dividing intermediates. These 

results were reproduced in 3 other experiments (Supp Figs S2-2, S2-6, S2-10). 

Next, we wanted to understand the regulatory mechanisms underlying the step-wise 

changes of the DOWN, UP, and Transient networks along the productive reprogramming path by 

analyzing CpG content, DNA methylation, chromatin accessibility, histone modifications, and 

transcription factor occupancy, properties which have been extensively examined during 

reprogramming. We found that the promoters of more cell type-specific DOWN1/2 genes often 

lack CpG islands and represent low and intermediate CpG density promoters (LCPs and ICPs), 

whereas those of DOWN3/4 genes that become repressed later in reprogramming more often 

contain CpG islands (HCPs, high CpG density promoters) (Fig 2-2A). The converse applies to 

upregulated genes, where the most broadly expressed genes (UP1-5) often carry promoters with 

CpG islands and those induced last (UP7/8) largely lack CpG islands (Fig 2-2A). In line with these 

observations, the promoter regions of UP7/8 genes are on average highly methylated in MEFs 

and reprogramming intermediates but not in the pluripotent state, in agreement with the control 

of LCP-containing genes by DNA methylation (Fig 2-2B). Similarly, promoters of DOWN1/2 genes 

are more methylated at late reprogramming stages (Fig 2-2B). These results are consistent with 

previous studies showing that DNA methylation is more dynamic at tissue specific genes, linking 

promoter architecture to timing of expression during reprogramming.  

Next we found that broad network genes have more open chromatin sites throughout 

reprogramming while the most-narrow networks (DOWN1, UP7/8) only have open chromatin sites 

when they are expressed (Fig 2-2C), suggesting that enhancer usage may differ between 

networks. We next analyzed what types of enhancers are associated with different gene networks, 

using previously defined MEF (ME), transient (TE), and ESC (PE) cell enhancer annotations4 (Fig 

2-2D). Approximately 70% of enhancers located within +/- 20kb of DOWN1/2 transcription start 
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sites were MEF enhancers. DOWN3 genes had a lower proportion of MEF enhancers but more 

transient and pluripotency enhancers, and DOWN4 was even more skewed towards pluripotency 

enhancers. This suggests that broadness of DOWN3 and 4 expression is due to the use of new 

enhancer sites which were not active in MEFs. Of all network genes, transient genes were most 

strongly enriched for transient enhancers. UP1-8 genes are associated with 70+% of pluripotency 

enhancers, and all are depleted for MEF enhancers, particularly UP6-8.  

Since UP genes have few differences in the proportion of PE enhancers nearby, we next 

considered whether the subclass of pluripotent enhancer was differentially distributed; gradually 

induced (E13) vs late induced(E16/17/18), and intergenic vs intragenic(E14-15) (Fig 2E). UP (1-

5) gene sets were enriched for intragenic enhancers (E14/15) situated in constitutively transcribed 

genes4, (Fig 2-2E/F), suggesting that the transcribed state of these enhancer regions promotes 

the early induction of these genes. UP4-8 genes are enriched for the gradually induced E13 

enhancers, while UP6/7/8 genes are depleted of E14 enhancers, consistent with their late 

induction, and are instead enriched for E16, E17, and E18, which open late in reprogramming. 

This suggests that the difficulty of upregulating UP6-8 networks is linked to a major shift in 

pluripotency enhancer usage, including a change from intragenic to intergenic enhancer usage. 

A similar observation applies to the DOWN programs, where the DOWN1 network is enriched 

only for intergenic MEF enhancers (E5,6,9,10), while DOWN2/3/4 are enriched for all MEF 

enhancers including intragenic E7/8. Intriguingly, DOWN3, DOWN4, and Transient are most 

enriched across various MEs, TEs, and PEs, suggesting these gene networks can be regulated 

by different enhancers over time. 

To understand if specific transcription factors control distinct enhancer elements, we 

scanned for motifs in each of the enhancer subclasses. We found that MEF enhancers were more 

strongly enriched for Jun, Fos, Fra, Runx, and Tead motifs, and that Pluripotent enhancers, 

particularly E13, E15 and E17, were most enriched for Klf, Oct, Sox, and the Oct-Sox-Tcf-Nanog 
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compound motif (Fig 2-2G, Supp Fig S2-12). The Oct, Sox, Klf motifs, and the compound motif 

had the highest relative motif density among PEs E13, E15, and E17; we additionally found the 

pluripotent TF Esrrb had specifically high motif density at these enhancers, consistent with the 

idea that TFs expressed late in reprogramming contribute to the opening of certain enhancers. 

Surprisingly, the transient E11/12 and pluripotent E13/14 enhancers contained strong motif 

enrichment for both the somatic and reprograming transcription factor motifs, whereas E15-E18 

have reduced AP-1 and Runx motif density. This suggested that these transient and less cell type 

specific pluripotent enhancers, and thereby broad UP/DOWN and transient genes, were regulated 

by both types of TFs. Indeed, many somatic TFs are DOWN3 network genes, such as Jun and 

CEBPB, are broadly expressed over much of reprogramming (Fig 2-2J). 

We took advantage of previously published bulk ChIP-seq profiles for the reprogramming 

factors generated at 48hours of MEF reprogramming culture, a stalled pre-iPSC intermediate, 

and ESCs4.  We found that genes were increasingly enriched for binding of the reprogramming 

factors from the most cell type-specific DOWN1 to the broadest program DOWN4 (Fig 2-2G). A 

similar result was obtained for UP programs, with broadly expressed up-regulated genes enriched 

for binding by all reprogramming factors across all reprogramming stages, and the most specific 

UP6/7/8 genes are specifically lacking early OSKM binding events (Fig 2-2G). Transient genes 

were enriched for O,S and K binding throughout reprogramming, except in ESC. 

We next looked at how somatic TFs may be contributing to the dynamic chromatin 

remodeling during reprogramming (Fig 2-2H). As with the OSKM TFs, somatic TFs were enriched 

at the broad networks (DOWN3/4, UP 1-5) and more depleted in the narrow networks at the early 

time point. The definition of the step-wise induction and repression of genes based on single cell 

data allowed us to uncover features of genomic architecture (CpG content, enhancer location, 

motif content) that define the complex transcriptional changes underlying reprogramming. 
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Given that our data indicated differential regulation of our gene expression networks by 

binding of reprogramming factors, somatic factors and pluripotent factors, we asked what effect 

an increase in the expression level of certain reprogramming factors, the ectopic expression of a 

somatic TF, or the precocious induction of an ES specific TF, would have on the reprogramming 

path. To test this, we infected MEFs carrying the OSKM-cassette 2 days prior to induction of 

OSKM with either the somatic factor Jun, or the reprogramming factors Oct4 or Klf4, or the 

specifically PE linked transcription factor Esrrb, and analyzed the ectopically expressing MEFs 

and the reprogramming process over time with a single cell RNA-seq time course (Fig 2-3A, Supp 

Fig S2-13). Each time course was compared to control OSKM-cassette cells infected only with 

RFP expressing virus. As expected, Jun blocked reprogramming (no cells past the trajectory 

score of 0.067), Klf4 and Oct4 had moderate effects on reprogramming, and Esrrb strongly 

enhanced iPSC colony formation (Supp Fig S2-13C-E).  

We found that all ectopic TFs allowed the downregulation of the most MEF specific genes, 

and, except in the JUN time course, that enabled the subsequent upregulation of ESC specific 

genes (Fig 2-3B). This demonstrates that even when a somatic transcription factor is 

overexpressed, cells move along the trajectory score defined by the most cell type specific genes 

(Supp Fig S2-13F) and that Jun expression does not especially enforce the starting state. 

Before defining new expression changes linked to ectopic TFs, we first analyzed the 

average expression of our previously established gene networks along the reprogramming 

trajectory, to compare changes to the order of transcriptional changes established in normal 

reprogramming (Fig 2-1). The average expression of the DOWN1-4, Transient and UP1-8 

networks was similar among all time courses (Fig 2-3C, Supp Fig S2-14). Thus, regardless of 

whether reprogramming was enhanced or blocked, the Transient network was expressed and the 

general gradual stepwise regulation of the UP and DOWN networks was preserved. However, 
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the proportion of cells at a given trajectory score differed between experiments (Fig 2-3D), 

suggesting the proportion of cells in reprogramming intermediates differs by experiment.  

Indeed, applying CENICS to perform cell state classification, using the same networks as 

time course 1, we found all time courses established the same intermediates as the control time 

course but in different proportions (Fig 3E). Expression of the previously described non-productive 

path networks (DOWN1, Interferon, and Osteogenic) were generally found in fewer cells in the 

Jun, Klf4, Oct4, and Esrrb time courses. We found that ectopic expression at d0 only led to major 

cells state changes in Klf4 expressing MEFs, with Transient gene expression in 7.5% of starting 

cells, indicating that Klf4 is sufficient to strongly induce these genes. By d3, Klf4 cells were found 

overrepresented in Transient expressing states and the earliest arising UP6 cells (still co-

expressing DOWN3) were depleted in the presence of Jun overexpression, increased in the Oct 

and Klf4 time courses, and dramatically amplified in the Esrrb time course. Klf4 and Esrrb 

overexpression both enhanced the downregulation of the strongly MEF-specific DOWN2. 

Surprisingly, although less efficiently than in control reprogramming, Jun expressing cells can still 

upregulation the Transient network and downregulate DOWN2. After d3 all time courses except 

Jun reach UP7/8 expressing states, but more Esrrb cells reached it sooner.  

Over time, cells accumulate in stall points including the typical DOWN3 and Transient 

expressing state: In Oct4 and Klf4, cells heavily accumulated in a DOWN3, UP6, and Transient 

expressing state, while cells from the Oct4 and Esrrb time course also were overrepresented in 

UP1-6 expressing states without DOWN3, beyond the typical stalling points. A very small 

proportion of Jun cells manage to induce low UP6 expression, but the majority of cells stall before 

reaching those advanced states, indicating that Jun overexpression impairs multiple transitions: 

the exit from the starting somatic states, early reprogramming intermediates and blocks the 

silencing of DOWN3 and Transient networks. Klf4, Oct4, and Esrrb all strongly enhance the 

generation of late reprogramming intermediates but surprisingly these intermediates do not 
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immediately resolve into fully established iPSCs. Specifically, Klf4 and some Oct4 cells remain 

stalled in DOWN3/Transient expressing states, while Esrrb and some Oct4 cells are delayed in 

UP1-6 states awaiting UP7/8 upregulation, consistent with the distinct genomic features of UP7/8 

genes (Fig 2-2). Despite this delay, Esrrb makes more UP6 intermediates earlier, which resolve 

more efficiently than in other time courses. Consistent with early and efficient UP6 expression, 

expression of ectopic ESRRB and OSKM for only three days results in iPSC colony formation 

(Supp Fig S2-13E). Taken together, these data show that the cell states and stepwise order of 

events are basically the same in all conditions, when considering previously defined networks. 

However, the proportion of intermediates and the intermediates where cells accumulate over time 

(stall) differ. 

Despite the conservation of average network gene expression along the trajectory, 

specific genes were expressed or downregulated precociously with respect to the trajectory score, 

such as the UP6 TF Tfcp2l1 upon Esrrb overexpression (Fig 2-3F, Supp Fig S2-15). Another 

example is Klf4 induced precocious induction of Cdh1 uniquely among MET signature genes 

(Supp Fig S2-16). These divergent targets raised the possibility that new gene patterns arose in 

the ectopic time courses. Therefore, we applied GEND and identified several unique networks 

specific to each overexpression experiment, some of which included over one thousand genes, 

consistent with control and overexpressing cells mixed poorly in tSNE space (Fig 2-3G-J). Some 

of these networks were induced by the ectopic TF in starting MEFs, such as Klf4-21, Klf4-26, and 

Oct4-37, while others were induced in intermediate reprogramming states (for instance Esrrb-23, 

Oct4-8, and Jun-11) (Fig 2-3I).  

Intriguingly, the two late stalling cell states (DOWN3, Transient and UP6, and UP1-6) often 

have the highest expression level of intermediate ectopic networks, and transitions out of these 

states towards completion of reprogramming, or the block of Jun reprogramming, are associated 

with their down regulation (Fig 2-3J). Thus, we conclude that at least some of these ectopically 
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expressed programs block the efficient induction of the pluripotency networks UP6-8. Many of 

these ectopic programs are enriched for metabolism related gene ontologies, but some of the Klf4 

and Oct4 ectopic network genes are related to differentiation processes and typically expressed 

in few tissues (Fig 2-3H, Supp Fig S2-17A). Intriguingly, they include many transcription factors 

linked to various differentiation processes, in particular the broad ectopic programs Jun-6 and 

Oct4-13 which have over 40 TFs each, in contrast to Esrrb-19, which includes precocious 

expression of many pluripotent TFs linked to stem cell maintenance (Supp Fig S2-17B/C).   

Taken together, in all instances of MEF reprogramming, ectopic expression networks can 

be observed. In normal OSKM reprogramming, we observe the Transient network, while when 

the reprogramming factor stoichiometry is altered or other transcription factors are added we 

uncovered additional ectopic networks. Depending on their nature, these networks enhance, stall, 

or block reprogramming (Fig 2-3K). Consistent with this idea, overexpression of MyoD in addition 

to OSKM induces skeletal muscle genes and completely blocks iPSC reprogramming (Supp Fig 

S2-18). 

We have shown all examined MEF reprogramming processes proceed via the stepwise 

downregulation of the somatic program and the overlapping stepwise upregulation of the target 

program, induction of key pluripotent genes after shutoff of key MEF programs, and induction of 

transient/ectopic gene signatures linked to reprogramming efficiency that are dependent on the 

reprogramming factor cocktail. Yet it remains unclear whether this logic applies when other 

somatic cells are reprogrammed by OSKM. To uncover the dynamics of different reprogramming 

systems, we obtained ssRNA-seq data from neural stem cell (NSC)- and keratinocyte- to-iPSC 

reprogramming, enabling the first single cell based comparison of three systems (MEF, NSC, 

Keratinocyte) towards a common iPSC target. 

We found that iPSC induction from NSCs was extremely inefficient (NSC+Dox), and the 

overexpression of Esrrb (NSC+Esrrb), as seen in the MEFs, enabled efficient reprogramming, 
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and a simple split of the culture enabled reprogramming in a few cells but with high latency 

(NSC+Split) (Fig 2-4A-C, Supp Fig S2-19). Similar to MEF reprogramming, the most NSC and 

ESC specific genes were mutually exclusive in all cases (Fig 2-4D), indicating that reprogramming 

NSCs first shut down their most NSC specific genes and later induce the most ESC specific genes 

and allowing us to order cells along the reprogramming axis (Fig 2-4E).  

Using GEND to determine the gene expression networks for NSC reprogramming, we 

detected several somatic (DOWNNSC 1-4) and pluripotent (UPNSC 1-5) networks that gradually 

change along the trajectory axis, and six ectopic programs (Fig 2-4F, Supp Fig S2-19D-E). 

Distinct GO terms were associated with the ectopic programs: NSC- E2/E3 (Neural), E4 

(Metabolism), E5/ E401 (Cell adhesion and vasculature) and E9/ E13 (Wound/Immune response) 

(Supp Fig S2-19D), and E2 contained a large number of differentiation-associated TFs. E5/401 

most resembled the expression pattern of the MEF Transient network (Fig 2-4F). 

The UPNSC and DOWNNSC networks could be divided into more and less cell type specific 

groups (Fig 2-4G, H). Specifically, DOWNNSC1-2 contained the most NSC-specific genes (such 

as Npas3 and Olig2) and displayed the strongest neural ontology terms, while DOWNNSC3-4 

genes were broadly expressed in many tissues; and UPNSC1-3 contained many ubiquitously 

expressed genes (including cell division genes in UP1) and UPNSC4-6 the pluripotency regulators, 

such as Zic3, Nanog, Sall4, Tfap2c, MycN. The NSC-specific (DOWNNSC1/2) are downregulated 

before the more broadly expressed NSC networks (DOWNNSC3/4), and similarly the less tissue 

specific UP genes (UPNSC1-3) are upregulated before the pluripotent-specific genes (UPNSC4-6) 

(Fig 2-4F). The broad UP and DOWN programs overlap expression, and have lower DNA 

methylation and higher CpG content at promoters (Fig 2-4I).  

Using CENICS to perform cell state classification with these NSC-specific networks (Fig 

2-4J), we find that over time, the NSC control time course cells increase in somatic identity by not 

shutting off the DOWN networks, strongly inducing NSC-E2/E3, and loses cell division signatures 



 

 

 

 23

(UP1). In contrast, NSC+Esrrb cells quickly downregulate the NSC specific narrow DOWN1/2 

networks, and induce the transient programs E4 and E401, moving towards the iPSC state. Yet 

the induction of UPNSC4-6, combined with the downregulation of DOWN3/4 and E401, only occurs 

with delay. NSC+Split cells can read advanced intermediate states, but are unable to efficiently 

downregulate the DOWN3/4 and E401 networks and upregulate the UP5 genes, indicating that 

reprogramming NSCs have trouble escaping the broad neural programs even after prolonged 

time. 

Taken together, similarly to MEF reprogramming, upon OSKM induction NSCs can either 

progress toward non-productive cell states in which the neural cell identity is enhanced, or they 

may downregulate the NSC specific narrow networks and induce transient networks to reach 

intermediate cell states. Cells reaching these intermediates then stall before they can 

downregulate the broad neural and transient networks, and upregulate the pluripotency specific 

programs UP4-6. 

Regarding Keratinocyte reprogramming, we again compared high and low efficiency 

systems (with and without the Keratinocyte stimulating substrate fibronectin), with both reaching 

the final iPSC stage but the +Fibro sample reaching it substantially faster and more efficiently (Fig 

2-4K-M, Supp Fig S2-20). 

 The overall characteristics of MEF-iPSC and NSC-iPSC reprogramming were also shared 

by Keratinocyte to iPSC reprogramming, with antagonistic expression of the most cell type 

specific genes (Fig 2-4N), gradual movement of cells along a trajectory score towards iPSC states 

(Fig 2-4O), and unique UP and DOWN gene networks which stratified into narrowly expressed 

cell type specific genes and broadly generally expressed genes (Fig 2-4P). These properties were 

again correlated with tissue specificity (Fig 2-4Q), start and end state specificity (Fig 2-4R) and 

general underlying promoter architecture and DNA methylation (Fig 2-4S). Strikingly, DOWN1/2 
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had only 1 TF, while DOWN4/5 had the most TFs, with those in DOWN5 having much broader 

tissue expression than those in DOWN4 (Supp Fig S2-20).  

 We also detect a range of ectopic programs peaking in intermediate states (Fig 2-4P) and 

with various GO terms, including E1 and E10 which interestingly possessed enhanced 

mesenchymal characteristics, including mesenchymal TFs and collagens.  

Upon OSKM induction (d3), CENECs revealed that a subset of +Fibro cells induce ectopic 

programs (E1,E6,E7,E10), some cells shift from DOWN1 expression to DOWN2/3, and very few 

cells reach states with low DOWN5 and with UP4-UP7 expression (Fig 2-4T), again showing the 

upregulation of later pluripotency genes is associated with the downregulation of the broadest 

somatic program. By d6, some +Fibro cells reach UP4-UP9 without DOWN network expression, 

but the majority of the most advanced cells are stalled prior to the UP8/9 induction, which is 

accomplished efficiently by d13. Non-productive states expressing mesenchymal ectopic 

programs emerge accumulate late in +Fibro. In the less efficient control, the majority of cells do 

not induce UP7 efficiently even by d17 and accumulate in intermediate states with DOWN4/5 and 

the transient E7 network expression. Thus, reaching a high UP7 low DOWN5 state, and UP8/9 

induction represent the key bottlenecks of keratinocyte reprogramming. Overall, NSC and 

Keratinocyte iPSC reprogramming proceed via similar stepwise transition through intermediate 

stages, but have, as in the MEF reprogramming perturbation experiments, context specific 

differences based on their starting state in the stalling points encountered, and again transiently 

expressed ectopic programs are associated with reprogramming blocks. NSCs have difficulty 

shutting down the broad general identity and neural ectopic networks, while Keratinocytes are 

particularly inhibited at upregulation of the narrow UP genes.  

 We next investigated which genes all three systems had in common, either as 

shared-repressed, shared-transient, or shared-induced during reprogramming using general 

induction/repression criteria (Fig 2-4U). Approximately 2100 downregulated genes are shared in 
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all three systems, including Jun and Fos family members, Runx1, and Cebpb, all of which have 

enriched motifs underlying regulatory sites during MEF reprogramming and interfere with the 

progression to the pluripotent state (Fig 2-2). This finding suggests that OSKM counteracts a 

conserved set of broadly expressed TFs in each of the three reprogramming systems, hinting at 

a mechanism through which OSKM can disassemble distinct cell identities. Ontology analysis 

shows that the downregulation of shared genes proceeds from differentiation/development terms 

to the regulation of organelles and membrane trafficking (Fig 2-4V, Supp Fig S2-21).  

 Over 1500 genes are upregulated in all three systems, sharing many of the pluripotency 

transcription factors. Ordering these genes along reprogramming time revealed that genes linked 

to general processes related to RNA and chromatin biology (Ncor1, Pcgf3, Tbl1xr1, Nipbl, Ctcf, 

Kdm5c, REST, and Jarid2) are the first to be upregulated, followed by cell cycle regulators, and 

culminating in the induction of stem and pluripotency cell regulators (Tfcp2l1, Tead4, Tfap2c, 

Nr5a2, Nanog, Mycn, and Zic3) (Fig 2-4V, Supp Fig S2-21).  

A very small proportion of transiently expressed genes was shared across the three 

reprogramming processes (including Ceacam1/2, Myb, Crym, and Chst3) (Fig 2-4U), consistent 

with the fact that ectopic genes were specific to each starting cell type. This indicates that each 

reprogramming cell type will generate a unique ectopic signature which will have differential 

effects on reprogramming efficiency. We hypothesized that divergent ectopic expression is a 

conserved feature of other reprogramming processes. To test this, we analyzed data from three 

published direct reprogramming systems; MEF-to-iNeuron and MEF-to-iCardiomyocyte (iCM), 

and MEF-to-Endoderm Progenitor (Supp Figure 2-22). Similar to iPSC reprogramming, we found 

that the most cell type specific networks were exclusively expressed, that the downregulation of 

the starting cell program was associated with induction of ectopic genes, and that each ectopic 

program had distinct GO terms, in all three systems. 
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Based on our analysis of multiple reprogramming systems, we conclude that these general 

principles define cell fate transition; 1) the most tissue-specific identity genes must first be 

silenced, 2) a broad general gene expression program is always maintained longer and together 

with reprogramming factors create novel ectopic programs, accompanied by induction of the 

broader target cell programs. Over reprogramming time, progressing cells eventually 3) silence 

the general somatic identity and ectopic program, and finally allow for 4) induction of the most 

target cell specific identity genes (Fig 2-4W). The nature of the ectopic programs has a large 

influence on the progression of reprogramming events. This represents a new framework for our 

understanding of the reprogramming process, and raises the question of whether differentiation 

processes occur via a similar logic. 

  



 

 

 

 27

Conclusion. 

A major question in the reprogramming field has been how somatic cells progress to the 

pluripotent state. Our analyses show that when reprogramming a cell to an end state, cells first 

need to suppress the narrow, tissue-specific gene expression programs. Following this, the 

gradual decommissioning of the broad general cell identity will allow for the establishment of 

various ectopic states that allow for the expression of genes normally expressed in different 

lineages. We show that the nature of the ectopic programs has a large influence on the 

progression of reprogramming events. As the poised cell state is established, various cell cycle 

and chromatin regulators are induced, likely leading to an increase in proliferation that has been 

associated with faithful reprogramming26–30. The induction of MET, probably favored due to the 

direct targeting of MET regulators by several reprogramming factors31, is followed by effective 

pluripotency gene upregulation, which in turn restricts the expression of other developmental 

targets. At this stage in reprogramming, cells must neutralize their ectopic networks and 

concurrently begin the induction of target cell programs in a stepwise manner in order to fully 

reprogram.  

 We show that despite gene expression differences, the enhancement or suppression of 

OSKM reprogramming follows the same path to pluripotency but enables variation in the latency. 

For example, the overexpression of Esrrb enables the progression along the path to pluripotency 

for a vast fraction of the cells by dramatically enhancing the transition to the poised expression 

state, emphasizing the importance of MEF-program silencing for reprogramming progression. By 

defining distinct steps on the path to pluripotency and insight underlying these progressions, our 

single cell analysis of the reprogramming process will allow for a targeted dissection of the 

mechanisms underlying each of these steps. 
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Figure Legends 

 

Figure 2-1. Single cell sequencing data of thousands of cells capture the transcriptional 

heterogeneity of reprogramming, latency of pluripotency induction and a number of etopic 

networks arising at an intermediate state. (A) Schematic of MEF-to-iPSC reprogramming time 

course 1 with time points taken for single cell sequencing indicated. The reprogramming culture 

was passaged four times post d15. Single cell transcriptomes are visualized on a tSNE 

embedding and colored by time point. (B) tSNE embedding of single cell transcriptomes with cells 

for each time point shown separately. (C) tSNE plots showing the normalized expression of 

selected marker genes in individual cells for all cells of time course 1. (D) Schematic of Gene 

Expression Network Discovery (GEND) analysis. (E) Average expression plots of genes assigned 

to the various Down (i), Up (ii), and Ectopic (iii) networks defined by GEND. Selected transcription 

factors associated with each network are labeled within each panel. (F) Barplot of the proportion 

of cells that express networks above 30% of their max expression. (G) Box plots showing the log 

ratio distribution of normalized expression for the network genes (Log2(RPKM+1)) from MEF- vs 

ESC- whole cell RNA Seq data. (H) Violin plots illustrating the distribution for each network of the 

number of tissues that are moderately expressing each gene (RPKM>1) from a tissue 

compendium. (I) Density scatter plots showing the pairwise relationship between the average 

expression of selected networks for individual cells.(J) Visualization of difference in average 

normalized MEF- and ESC-signature genes (log2 fold>5, p-value>0.01) expression levels, or the 

‘trajectory score’ (i), for each cell of time course 1. (ii) Line graph showing the smoothed average 

normalized ESC- and MEF- signature gene expression values over the trajectory score. (K) Graph 

of the smoothed average expression of individual networks against trajectory score, separated by 

class. Individual networks are colored according to the key at top. (L) Heatmap of the top 30 cell 

state combinations derived by CENICS, showing the combination of programs expressed over 

30% of maximum program expression (i), the percent of cells in each combination state (ii), and 

the average normalized expression for select networks in each state (iii). (M) Pairwise Pearson 



 

 

 

 29

correlation heatmap of cells expressing program combinations from (L). (N) As in (L), but for cells 

sorted for E-Cadherin on day 6. (O) Illustrated model showing the productive/non-productive 

reprogramming cell states during progression. 

 

Figure 2-2. Features of genomic architecture define the regulatory mechanisms underlying the 

step-wise changes of the DOWN, UP, and Transient networks along the productive 

reprogramming path. (A)Stacked bar graph showing the CpG content of promoters for genes in 

selected networks, classified as High CpG (HCP), Intermediate CpG (ICP), or Low CpG (LCP) 

promoters. (B) Heatmap illustrating the average percent of CpG methylation at gene promoters 

for selected networks, at four distinct stages of iPSC reprogramming. (C) As in (B), but showing 

the average number of ATAC peaks per program. Peaks are assigned to genes by taking genes 

assigned to a given network and tallying peaks that overlap +/- 20Kb TSS windows, which is then 

normalized and scaled. (D) Stacked bar graph showing the enrichment of chromatin states along 

selected networks. Chromatin states are computed using ChromHMM by learning a stacked 35-

state model. States are assigned to specific enhancers trajectories (E5-E10 = MEF enhancers 

(ME), E11-E12 = transient enhancers (TE) and E13-E18 = pluripotent enhancers (PE)) based on 

learned state enrichments.  

(E) Stacked bar graph showing the relative fraction of selected chromatin states that are 

intergenic, intragenic, or within +/- 2kb of the start site (TSS) of a gene. (F) Heatmap showing the 

enrichment of selected networks against chromatin states. Enrichment is computed by taking 

genes assigned to a given network and computing states that overlap +/- 20Kb TSS windows, 

and normalizing by a foreground containing all genes. (G) Density distribution of selected motifs 

centered at specific enhancer trajectories defined in (D). (H) Density distribution of the Jun/AP-1 

motif near genes within selected networks centered at ATAC peaks and overlapping with different 

enhancer classes as defined in (D). (I) Normalized expression is shown for selected Jun, Fos, 

Fra, Runx, and Tead genes. (J) Enrichment for ChIP-seq peaks for selected transcription factors 
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at four distinct stages (MEF, 48h, pre-iPSC, ESC) of iPSC reprogramming, within +/- 20kb of gene 

promoters for the given networks.  

 

Figure 2-3. Cell states and the stepwise order of events are conserved when the reprogramming 

process is modified through the overexpression of certain reprogramming factors. (A) Schematic 

showing viral overexpression of selected TFs in MEFs carrying the tet-inducible OSKM cassette, 

followed by scRNA-seq across various time points. (B) Scatter plot of average normalized MEF 

and ESC- signature gene expression across all individual cells from each overexpression 

experiment. The key at top indicates the density of cells. (C) Graph of the smoothed average 

expression of individual networks from time course 1 (Fig 2-1) against trajectory score for each 

experiment described in (A). Individual networks are colored according to the key at top and 

separated by network class. (D) Density distribution of cells along the trajectory score split by 

control for each experiment in (B). (E) Heatmap showing cell states derived by CENICS, key 

(black, white; top) followed by heatmaps (bottom) for each control and overexpression experiment 

with the percent of cell in each of the top 30 more frequent states is shown by time point. (F) 

Average expression of Tcfp2l1 by cell state per experiment. (G) tSNE plots divided by control and 

(i) Jun, (ii) Klf4, (iii) Oct4 and (iv) Esrrb overexpression for the average expression of novel ectopic 

network programs with corresponding violin plots illustrating the distribution of expression level. 

(H) Violin plots showing the number of expressed tissues (>1 RPKM) per gene in each network 

from a tissue compendium, for the novel ectopic networks. (I) Graph of the smoothed average 

expression of (i) Jun, (ii) Klf4, (iii) Oct4 and (iv) Esrrb ectopic networks against the trajectory score. 

(J) Heatmap showing the average normalized expression for the novel ectopic networks in each 

cell state from (Fig 2-3E). (K) Illustrated model showing the expression of various ectopic 

networks along the reprogramming trajectory.  
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Figure 2-4. The analysis of various reprogramming systems defines general principals of cell fate 

transitions. (A) Schematic of neural stem cells (NSCs)-to-iPSCs reprogramming time course via 

the induction of OSKM, OSKM+ overexpression of Esrrb or OSKM+ culture splits, with time points 

taken for single cell sequencing. (B) tSNE plots of NSC-to-iPSCs for each condition with NSC and 

iPSC populations outlined. (C) Violin distribution plots showing the average normalized 

expression of the UP7 network (from Fig 2-1) by timepoint and experiment. (D) Scatter plot of 

average normalized NSC- and ESC- signature gene expression across all individual cells from 

each experiment. (E) Density distribution of cells along the trajectory score for each experiment 

which day 0 cells having their own distribution. (F) Graph of the smoothed average expression of 

individual NSC-specific networks against trajectory score for each experiment described in (A). 

Individual networks are colored according to the key at top and separated by network class and 

experiment. (G) Violin plots showing the distribution of the number of expressed tissues from a 

tissue compendium, for genes in NSC-specific networks in (F). (H) Box plots showing the log ratio 

distribution of normalized expression (Log2(RPKM+1)) for NSC- and ESC- signature genes along 

the NSC-specific networks. (I) Heatmap illustrating the average percent of CpG methylation at 

promoters of NSC network genes within four distinct tissues (top) and a stacked bar graph 

showing the relative fraction of each CpG promoter class(bottom) for NSC-specific networks. (J) 

Heatmap of the top 30 cell states found by CENICS, with key (black, white; top) followed by 

heatmaps (bottom) for each NSC experiment with the percent of cell in a given time point in each 

cell state. (K) Schematic of Keratinocytes-to-iPSCs via, either with control plated-gelatin or with 

fibronectin-s reprogramming time courses with time points taken for single cell sequencing 

indicated. (L-T) as in (B-J), but with Keratinocyte-specific networks. (U) Venn diagrams illustrating 

the shared genes in broadly defined Down, Up and Transient classes (>2 fold expression in 

beginning, middle, or end of trajectory) across time course 1, the Keratinocyte experiments and 

the NSC experiments. (V) Gene Ontology (GO) terms associated with shared genes in (U). The 

top three GO terms for early to late gene bins along the trajectory were selected to populate the 
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list of terms. A dot represents significant presence of a GO term in that network, colored and sized 

by its significance, as shown by the key on the right. (W) Model showing the significant gene 

changes that are coordinated with all observed iPSC reprogramming progression events. 

 

Figure S2-1. Expression of canonical marker genes confirm latency of pluripotency. (A) Total 

fraction of cells captured by time point. tSNE embedding showing the (B) expression of the 

doxycycline (dox)-inducible polycistronic OSKM cassette, (C) simultaneous expression of 

endogenously-encoded Pou5f1 and Sox2, (D) silencing of Xist and inactive X reactivation, and 

(E) known somatic and pluripotent marker genes. (F) Total fraction of cells captured from each 

timepoint expressing marker genes in (E).  

 

Figure S2-2. Various dimensionality reduction techniques recapitulate transcriptional 

heterogeneity of reprogramming, latency of iPSC induction. (A)  Supplemental embedding of 

single cell data using (i) UMAP, (ii) Spring, and (iii) Palantir methods of dimensionality reduction 

on Time course 1 colored by time point. (B) As in (A), but facet by time point. (C) UMAP 

embedding of (i) full and facet (iii) Time courses 2, 3, and 4, containing timepoints described in 

(ii) schematic. (D) As in (C), but facet by time point. (E, F) Expression of marker genes in Figure 

2-1C on embedding described in (A) and (C). As in Figure S2-1C, D but on embeddings described 

in (A) and (C). 

 

Figure S2-3. Distribution of expression and Gene Ontology terms associated with Gene 

Expression Networks defined by GEND. (A) Violin plots illustrating the distribution of expression 

by timepoint for gene expression networks defined in Figure 2-1E. (B) Proportion of cells within a 

given timepoint with greater than 30% of the max expression of each gene expression network. 

Gene Ontology terms associated with expression (C) networks in Figure 2-1E and (D) Osteogenic 

ectopic network. Selected marker genes enriched in (E) neuronal and (F) post-implantation 
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epiblast networks. (G) Scatter plot of the per-cell average normalized expression of the post-

implantation epiblast state as a function of late UP networks where cells are colored according to 

their Trajectory Score.  

 

Figure S2-4. Culture conditions influence the gene expression changes in the first 48hrs of 

reprogramming. (A) Summary of the experimental conditions to assess the influence of culture 

conditions on gene expression at 48hrs of reprogramming. Briefly, wildtype (wt) or tetO OSKM 

MEFs were split and put under the various indicated culture media for 48hrs, containing either 

knockout serum replacement (KSR) or fetal bovine serum (FBS), with and without doxycycline, 

as indicated. Cells were isolated at 48 hrs for single cell RNA-seq. For the following panels in this 

figure, the different conditions are referred to as samples 1-5. (B) Heatmap of the expression of 

all genes that were at least two-fold more highly expressed in cells from a particular sample, with 

their names listed on the right. Notably, few genes were detected with this cut-off indicating that 

most gene expression changes at 48 hrs are relatively small, consistent with prior findings 35. We 

observed six categories of gene expression differences (noted with by the color code on the left), 

with genes up in FBS+OSKM (5 UP), up in KSR with dox (regardless of OSKM induction) and 

down in OSKM+FBS (“2 and 4 Up/5 DOWN”), up in KSR with dox (regardless of OSKM induction) 

(“2 and 4 UP“), down in KSR with dox (regardless of OSKM induction) (“2 and 4 DOWN“), down 

after dox addition (regardless of OSKM induction (“2, 4 and 5 DOWN”), and up after OSKM 

induction (“4 and 5 UP”). (C) Up to four most significantly enriched GO terms for each gene group 

in (B). Consistent with the shift observed in MEF signature gene expression in samples which 

were under KSR, the majority of ontology terms enriched in samples under KSR at 48hrs were 

fibroblast-related. (D) Normalized expression for several example genes from the KSR-induced 

genes (“2 and 4 UP“) and the OSKM-induced genes (“4 and 5 UP”) from (E), displayed on the 

tSNE map of time course 1. “2 and 4 UP” genes (Dcn, Itm2a, and Cxcl5) showed preferential 

induction near the top of the tSNE and reduced expression in intermediate and pluripotency cell 
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states. “4 and 5 UP” genes (Il1rn, Apod, and Tek) were also induced by OSKM induction and 

repressed in pluripotency-like cells. Thus, the first wave of gene response to OSKM at 48 hrs did 

not include pluripotency gene targets. (E) Stacked bar graph showing the number of genes in 

each network for each labeled sample in (A). (F) Normalized expression for several example 

genes from the KSR-induced genes (“2 and 4 UP“) and the OSKM-induced genes (“4 and 5 UP”) 

from (E), displayed on the tSNE map of time course 1 (Fig 1B). “2 and 4 UP” genes (Dcn, Itm2a, 

and Cxcl5) showed preferential induction near the top of the tSNE and reduced expression in 

intermediate and pluripotency cell states defined in Figure 2. “4 and 5 UP” genes (Il1rn, Apod, 

and Tek) were also induced by OSKM induction and repressed in pluripotency-like cells. Thus, 

the first wave of gene response to OSKM at 48 hrs did not include pluripotency gene targets. 

 

Figure S2-5. Relative timing of pluripotency regulator expression. (A) Table indicating the UP 

network assignment for pluripotency regulators. (B) tSNE plots of all cells in time course 1, 

showing the transcript level of each of the pluripotency regulator in (A). Notably, some 

pluripotency regulators are expressed in cells outside of the late pluripotent states (for instance 

Gdf3, Dppa5a, Sall1, Sall4, Nanog). However, the early induced pluripotency regulators were 

often not co-expressed in the same cells. (C) tSNE plots of the simultaneous expression of late 

UP network genes indicated in (A). 

 

Figure S2-6. Supplemental networks defined by GEND. (A) tSNE plots showing the expression 

of various supplemental gene networks defined by GEND. For the same networks in (A), we show 

the (B) distribution of expression of by time point, (C) proportion of cells expressing these 

networks with a threshold of greater than 30% of max expression, and (D) Gene ontology terms. 

(E) UMAP expression plots on the full time courses 2, 3, 4 embedding of the average normalized 

expression of main networks defined in Figure 2-1E. (F) As in (E), but with networks defined in 

(A). (G) Fraction of cells expressing each network defined in Figure 2-1E with a threshold of 
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greater than 30% of max expression. (H) As in (G), but with network in (A). (I) Pairwise density 

scatter plots of main DOWN gene networks as a function of UP gene networks, further labeled by 

Broad and Narrow categories. (J) Average smoothed line plots of main networks with selected 

ectopic networks on full time course 2, 3, 4 embedding.   

 

Figure S2-7. Lineage tracing experiment reveal the post-implantation epiblast cells differentiated 

from pluripotent iPSCs. (A) Schematic diagram of lineage tracing experiment where cells are 

sorted based on GFP. (B) tSNE embedding of cells from experiment in (A), colored by (i) 

timepoint, (ii) trajectory score, and (iii) selected somatic and pluripotency genes. (C) Average 

smoothed line plots showing the transcriptional dynamics of programs defined in Figure 2-1E. 

tSNE expression of (D) GFP construct and (E) pMX Xist transcript, also the (F) distribution of 

expression as a function of the trajectory score. (G) Density scatter plot of expression of (D) 

against (E). tSNE plots showing the expression of (H) late UP programs, (I) the post-implantation 

epiblast state and (J) two supplemental networks with associated (K) Gene Ontology terms. (L) 

K-means clustering of embedding in (B) and the X-linked GFP expression distribution showing 

enrichment in late pluripotent-like cells.  

 

Figure S2-8.  Transient network captures the upregulation of lineage-specific markers from 

unrelated lineages during reprogramming. Bar plots showing the enrichment of (A) Nanog+ 

colonies and (B) percent of colony forming cells or Itbg4+ sorted cells. (C) tSNE and (D) line plots 

showing the enrichment of selected Transient network genes. (E) DAPI and CRYM staining for 

colonies as a function of selected time points ranging from Day 0 to Day 12. (F) Scatter plot of 

average normalized MEF- and ESC-signature genes colored by average Transient network 

normalized expression. (G) tSNE plot of simultaneous expression of Transient network genes 

illustrating expression at an intermediate stage of reprogramming.  
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Figure S2-9. MEF-and ESC- specific gene antagonism is used to define an axis of reprogramming 

progression. (A) Boxplots showing the distribution of expression within population-level MEF and 

ESC samples as a function of gene networks defined in Figure 2-1E. (B) tSNE plots showing the 

average normalized expression of (i) MEF- and (ii) ESC-specific gene sets. (C) Time course 1 

single cell density scatter plot of the average MEF identity against the average ESC identity facet 

by time point. Reduced dimensionality plots showing the trajectory score on Time course 1 (E) 

tSNE facet by timepoint, (E) UMAP, (F) Spring, (G) Palantir, and (H) fully-embedded tSNE. (I) 

Monocle2 spanning tree colored by trajectory score. (J) tSNE overlaying Monocle2 Pseudotime 

showing (K) strong agreement with the trajectory score.  (L) Scatterplot showing the trajectory 

score against an imputed trajectory score (Imputing dropout on MEF- and ESC-signature genes). 

(M) Scatter plot with a smoothed regression line showing the relationship between the number of 

expressed genes and transcripts for each cell as a function of the trajectory score. (N) Violin plots 

showing the distribution of the Euclidean distance between cells that have been stratified into 8 

bins by position along the trajectory score. (O) Full UMAP embedding with trajectory score overlay 

on Time course 2, 3, and 4.  

 

Figure S2-10. Utilization of CENICS to pinpoint bottle necks along iPSC reprogramming. Heatmap 

of the top 100 cell state combinations derived by CENICS for (A) Time course 1, showing the 

combination of programs expressed over 30% of maximum program expression, the percent of 

cells in each combination state. (B) As in (A), but for the top 30 cell state combinations for the full 

time course 2, 3, 4. (D) The average normalized expression for MET UP/DOWN networks in each 

state combination from (B). 

 

Figure S2-11. Sorting for E-Cadherin expressing cells, at day 6 post OSKM induction. (A) Diagram 

of the experimental design of an independent reprogramming experiment in which cells were 

analyzed at d6 of reprogramming with and without sorting for the surface marker CDH1. (B) tSNE 
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map for all cells from the CDH1+ sorted and unsorted cell populations. The full tSNE embedding 

is colored light grey, and cells from the specific sample are colored by their expression (dark grey 

to purple, color scale shown at top). (C) As in (B), except that the trajectory score is shown for 

each cell. (D) tSNE plots showing the average normalized expression of main gene networks from 

Figure 2-1E. (E) Smoothed regression lines illustrating the expression trends of networks in (D) 

for CDH1+ cells. tSNE plots showing the simultaneous expression of (F) UP8 and (G) a set of 

genes from UP6-8, normalized expression of selected (H, I) MET signature genes, (J) the 

simultaneous expression of those MET genes, and finally the (K, L) simultaneous expression 

trend of these MET gene sets as a function of the trajectory score.  

 

Figure S2-12. Transcription factor control over enhancer elements. (A) As in Figure 2-2A but with 

additional ectopic networks. (B) The distribution of various histone modification profiles from 4 

distinct stages of iPSC reprogramming profiled at the population level around enhancer chromatin 

states. (C) As in Figure 2-2B but with programs in (A). (D) Motif p-value enrichment heatmap for 

chromatin states. (E) Selected Motif descriptions used for downstream panels. Motif density scan 

over TSS of genes within (F) selected intermediate DOWN, Transient, and UP networks; and (G) 

Early DOWN and Late UP networks.  

 

Figure S2-13. Overexpression of ectopic TFs to initiate iPSC reprogramming. tSNE embedding 

for the overexpression of each ectopic TF, facet by respective control experiment and colored by 

(A) timepoint and (B) normalized expression of respective ectopic TF. Bar charts showing Nanog+ 

colony counts for (C) Jun (D) Klf4 and Oct4 overexpression relative to their respective control 

experiments. (E) Bar chart of Dppa4+ colony counts for Esrrb overexpression. (F) tSNE plots 

showing trajectory scores for each over expression experiment described in (A).  
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Figure S2-14. Expression changes linked to ectopic TF overexpression among main gene 

networks. Pairwise average normalized expression plots between UP, Transient, and DOWN 

programs for (A) Jun, (B) Klf4, (C) Oct4, and (D) Esrrb.  

 

Figure S2-15. Relative timing of pluripotency regulator expression upon ectopic TF 

overexpression. (A) tSNE plots of all cells in each overexpression experiment, showing the 

normalized expression level of the selected pluripotency regulators.  

 

Figure S2-16. The effect of ectopic TF overexpression on MET signature genes. tSNE plots 

showing the normalized expression of selected (A) MET Down and (B) MET Up genes for each 

over expression experiment, facet by their respective controls. (C) Smoothed expression trend 

line illustrating the relationship between MET Up/Down genes as a function of each experiment’s 

trajectory score.  

  

Figure S2-17. Ectopic programs are enriched for metabolism and various differentiation 

processes. Dot plot showing Gene Ontology terms enriched in ectopically expression programs 

utilizing (A) all expressed genes and (B) transcription factor. (C) A table listing the TFs expressed 

in each ectopic program. (D) Pairwise scatter plots of main gene networks DOWN2-3, Transient 

and UP 6 against selected ectopic programs where each cell is colored by its trajectory score.  

  

Figure S2-18. Overexpression of MyoD to OSKM induces skeletal muscle genes and completely 

blocks iPSC reprogramming. (A) Schematic of MyoD experiment. (B) tSNE embedding of MyoD 

experiment where each cell is colored by its captured time point and facet by control experiment 

with matching time points. (C) tSNE plots of the average normalized expression of DOWN2-3, 

Transient and UP7 gene networks, also shown is the distribution of each network’s expression by 

captured time point. (D) tSNE of Tnnt2 normalized expression.  
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Figure S2-19. Enabling efficient NSC-to-iPSC reprogramming through the overexpression of 

Esrrb. (A) tSNE plots of gene networks UP7-8 and (B) selected pluripotency regulators for each 

NSC experiment with respective control. (C) Smoothed line plots showing the relationship 

between the average normalized MEF- and NSC-signature genes as a function of trajectory score 

for each experiment in (A, B). (D) Gene ontology and (E) tSNEs of the average normalized 

expression of the UPNSC, MID NSC, and DOWN NSC expression networks for each experiment in (A, 

B). (F) A table listing the TFs included within programs defined in (D, E). 

 

Figure S2-20. Enabling efficient Keratinocyte-to-iPSC reprogramming though Keratinocyte 

stimulating substrate fibronectin. As in Figure S2-19, but with Keratinocyte-to-iPSC 

reprogramming experiments.  

  

Figure S2-21. Expression and Gene ontology analysis of shared sets of genes among 3 

reprogramming systems.  (A) Dot plot showing the top 5 gene ontology terms for shared-

repressed and shared-induced gene sets of UP and DOWN gene networks. (B) Smoothed line 

plots over the trajectory score for the shared-repressed and shared-induced gene sets for time 

course 1, NSC- and Keratinocyte-to-iPSC reprogramming.  

 

Figure S2-22. Cell fate transition paradigm is conserved in other TF-induced direct 

reprogramming systems. For three published datasets containing MEF- (A) to-Induced neurons, 

(B) to-induce cardiomyocytes and (C) to-induced endoderm progenitors, we show smoothed line 

plots of the relationship between the start state program and the respective end state program 

along the trajectory score. We also include three classifications of gene sets designated to 

DOWN, Transient, and UP networks along the trajectory score, as well as, Gene Ontology terms 

of the Transient state program.  
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Figures 

Figure 2-1 – Single cell sequencing data of thousands of cells capture the transcriptional 
heterogeneity of reprogramming, latency of pluripotency induction and a number of ectopic 
networks arising at an intermediate state 
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Figure 2-2 – Features of genomic architecture define the regulatory mechanisms underlying the 
step-wise changes of the DOWN, UP, and Transient networks along the productive 
reprogramming path 
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Figure 2-3 – Cell states and the stepwise order of events are conserved when the reprogramming 
process is modified through the overexpression of certain reprogramming factors 
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Figure 2-4 – The analysis of various reprogramming systems defines general principals of cell 
fate transitions 
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Figure S2-1 – Expression of canonical marker genes confirm latency of pluripotency 
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Figure S2-2 – Various dimensionality reduction techniques recapitulate transcriptional 
heterogeneity of reprogramming, latency of iPSC induction 
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Figure S2-3 – Distribution of expression and Gene Ontology terms associated with Gene 
Expression Networks defined by GEND 
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Figure S2-4 – Culture conditions influence the gene expression changes in the first 48hrs of 
reprogramming 
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Figure S2-5 – Relative timing of pluripotency regulator expression 
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Figure S2-6 – Supplemental networks defined by GEND 
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Figure S2-7 – Lineage tracing experiment reveal the post-implantation epiblast cells differentiated 
from pluripotent iPSCs 
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Figure S2-8 – Transient network captures the upregulation of lineage-specific markers from 
unrelated lineages during reprogramming 
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Figure S2-9 – MEF-and ESC-specific gene antagonism is used to define an axis of 
reprogramming progression 
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Figure S2-10 – Utilization of CENICS to pinpoint bottle necks along iPSC reprogramming 
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Figure S2-11 – Sorting for E-Cadherin expressing cells, at day 6 post OSKM induction 
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Figure S2-12 – Transcription factor control over enhancer elements 
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Figure S2-13 – Overexpression of ectopic TFs to initiate iPSC reprogramming 
 

 
 
  



 

 

 

 57

Figure S2-14 – Expression changes linked to ectopic TF overexpression among main gene 
networks 
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Figure S2-15 – Relative timing of pluripotency regulator expression upon ectopic TF 
overexpression 
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Figure S2-16 – The effect of ectopic TF overexpression on MET signature genes 
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Figure S2-17 – Ectopic programs are enriched for metabolism and various differentiation 
processes 
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Figure S2-18 – Overexpression of MyoD in addition to OSKM induces skeletal muscle genes and 
completely blocks iPSC reprogramming   
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Figure S2-19 – Enabling efficient NSC-to-iPSC reprogramming through the overexpression of 
Esrrb 
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Figure S2-20 – Enabling efficient Keratinocyte-to-iPSC reprogramming though Keratinocyte 
stimulating substrate fibronectin 
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Figure S2-21 – Gene ontology analysis of shared sets of genes among 3 reprogramming systems  
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Figure S2-22 – Cell fate transition paradigm is conserved in other TF-induced direct 
reprogramming systems 
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Table 2-1 – Single cell sequencing statistics 
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Table 2-2 – Differentially expressed genes that define MEF- and ESC-signature genes based on 
population RNA-seq 

 

GeneID Mean Expression Log2FC SE Wald Statistic Wald Test P-Value BH Adjusted P-Value

Lin28a 493.72 -16.24 0.87 -18.66 1.00E-77 4.01E-75

Zfp42 438.16 -15.94 0.84 -19.03 1.06E-80 4.94E-78

Tdgf1 1625.07 -14.65 0.99 -14.83 1.01E-49 9.36E-48

Sall4 342.08 -14.56 0.84 -17.31 4.07E-67 9.89E-65

Tdh 611.70 -14.54 0.85 -17.17 4.80E-66 1.11E-63

Dppa4 208.03 -13.91 0.87 -15.98 1.64E-57 2.34E-55

Fgf4 520.41 -13.88 0.82 -16.97 1.39E-64 2.99E-62

L1td1 1911.79 -13.77 0.79 -17.37 1.37E-67 3.45E-65

Triml2 100.57 -13.61 0.91 -15.00 7.63E-51 7.51E-49

Esrrb 10228.58 -13.58 0.42 -32.03 3.80E-225 3.20E-221

Triml1 64.54 -13.36 0.97 -13.82 1.98E-43 1.30E-41

Dppa5a 1247.25 -13.25 1.04 -12.78 2.04E-37 9.37E-36

Nr0b1 251.38 -13.19 0.97 -13.64 2.42E-42 1.46E-40

Mageb16 48.31 -12.70 1.02 -12.44 1.68E-35 6.94E-34

Zscan10 209.17 -12.62 0.67 -18.84 3.80E-79 1.64E-76

Fam169a 320.20 -12.51 0.61 -20.61 2.21E-94 1.86E-91

Cecr2 177.87 -12.45 0.85 -14.66 1.11E-48 9.66E-47

Tcl1 51.18 -12.38 1.01 -12.21 2.72E-34 1.05E-32

Gpa33 122.38 -12.31 0.72 -17.01 6.38E-65 1.39E-62

Ano9 53.66 -11.97 0.82 -14.58 3.92E-48 3.26E-46

Grb7 68.62 -11.88 0.94 -12.63 1.50E-36 6.48E-35

Grhl2 41.70 -11.77 1.01 -11.70 1.33E-31 4.07E-30

Pou5f1 22813.48 -11.75 0.34 -34.61 1.84E-262 3.10E-258

Esrp1 93.35 -11.73 0.97 -12.08 1.40E-33 5.09E-32

Tcf15 38.43 -11.67 0.95 -12.33 6.63E-35 2.67E-33

Trh 235.86 -11.67 0.89 -13.04 6.98E-39 3.49E-37

Trap1a 118.02 -11.66 0.91 -12.78 2.12E-37 9.67E-36

Tex19.1 91.01 -11.54 0.98 -11.80 4.06E-32 1.32E-30

Dnmt3l 365.04 -11.32 0.50 -22.84 2.03E-115 3.11E-112

Cldn6 61.10 -11.23 0.80 -13.97 2.45E-44 1.69E-42

Gm13242 117.25 -11.19 0.86 -12.97 1.81E-38 8.87E-37

AU018091 355.23 -11.11 0.64 -17.33 2.65E-67 6.57E-65

Rbmxl2 67.07 -10.94 0.95 -11.52 1.09E-30 3.14E-29

Tcfap2c 172.78 -10.92 0.77 -14.11 3.32E-45 2.36E-43

LOC100303645 45.82 -10.86 0.98 -11.03 2.77E-28 6.75E-27

Nefh 53.21 -10.81 0.74 -14.61 2.46E-48 2.08E-46

Ap1m2 48.39 -10.69 0.88 -12.13 7.29E-34 2.71E-32

Epcam 282.34 -10.66 0.63 -16.82 1.66E-63 3.41E-61

Nodal 60.57 -10.62 1.05 -10.16 3.02E-24 5.39E-23

Tdrd12 74.06 -10.57 0.72 -14.73 4.45E-49 3.98E-47

Gm7325 89.17 -10.55 0.76 -13.81 2.09E-43 1.36E-41

Lefty2 90.63 -10.52 0.85 -12.43 1.90E-35 7.76E-34

2410007B07Rik 66.83 -10.44 1.00 -10.45 1.46E-25 2.91E-24

Dppa2 151.83 -10.39 0.69 -15.14 9.13E-52 9.60E-50

Foxh1 44.86 -10.04 0.80 -12.63 1.48E-36 6.44E-35

Slc28a1 114.48 -9.89 0.85 -11.67 1.82E-31 5.51E-30

Zfp819 38.35 -9.86 0.83 -11.95 6.70E-33 2.32E-31

Mcf2 41.10 -9.78 0.83 -11.72 1.05E-31 3.27E-30

Cdh1 961.04 -9.74 0.60 -16.16 1.03E-58 1.59E-56

Dsg2 482.99 -9.71 0.48 -20.08 1.03E-89 6.90E-87

Camkv 43.98 -9.64 0.81 -11.95 6.53E-33 2.27E-31

Gldc 327.40 -9.63 0.50 -19.31 4.60E-83 2.50E-80

Elf3 96.66 -9.57 0.93 -10.34 4.82E-25 9.19E-24

Tex14 76.71 -9.42 0.56 -16.75 5.30E-63 1.04E-60

Morc1 107.22 -9.33 0.61 -15.39 1.90E-53 2.19E-51

Lrrc34 63.53 -9.27 0.73 -12.78 2.24E-37 1.02E-35

Nphs1 131.56 -9.17 0.88 -10.43 1.75E-25 3.43E-24

Gm949 37.81 -9.12 0.76 -12.05 1.88E-33 6.74E-32

Gm13247 70.40 -9.11 0.63 -14.50 1.13E-47 9.22E-46

Bex1 322.81 -9.09 0.63 -14.43 3.56E-47 2.86E-45

Sox2 2181.29 -9.05 0.36 -25.15 1.51E-139 5.08E-136

Olig2 37.66 -9.05 1.00 -9.07 1.14E-19 1.39E-18

Hsd17b14 95.62 -9.05 0.55 -16.37 3.38E-60 5.68E-58

Slc39a4 70.74 -8.99 0.60 -14.93 1.97E-50 1.89E-48

Glt1d1 77.72 -8.73 0.68 -12.90 4.37E-38 2.08E-36

Gm6792 57.43 -8.69 0.92 -9.45 3.40E-21 4.78E-20

Pecam1 140.19 -8.67 0.77 -11.24 2.52E-29 6.61E-28

Upp1 585.26 -8.66 0.76 -11.42 3.15E-30 8.84E-29

Dppa3 47.53 -8.66 1.12 -7.76 8.20E-15 6.43E-14

Nr5a2 78.70 -8.64 1.02 -8.44 3.28E-17 3.17E-16

Syt9 119.84 -8.61 0.62 -13.88 8.12E-44 5.47E-42

Esx1 51.55 -8.59 1.03 -8.35 6.57E-17 6.17E-16

Zic3 381.23 -8.56 0.54 -15.77 5.32E-56 6.73E-54

Fbxo15 668.09 -8.53 0.68 -12.61 1.96E-36 8.43E-35

Krt17 39.31 -8.48 0.90 -9.45 3.33E-21 4.69E-20

Tex21 44.15 -8.43 0.97 -8.68 4.12E-18 4.31E-17

4930461G14Rik 100.86 -8.36 0.76 -11.01 3.47E-28 8.39E-27

Cldn4 227.16 -8.35 0.98 -8.53 1.47E-17 1.46E-16

Ocln 65.84 -8.34 0.70 -11.93 8.70E-33 2.99E-31

Phlda2 46.19 -8.33 0.67 -12.51 6.94E-36 2.90E-34

Zbtb32 150.11 -8.32 0.51 -16.45 8.20E-61 1.44E-58

Insm1 57.41 -8.32 0.88 -9.44 3.73E-21 5.22E-20

Sh3gl2 52.40 -8.30 0.57 -14.66 1.24E-48 1.07E-46

Hsf2bp 96.95 -8.26 0.44 -18.98 2.57E-80 1.17E-77

Ildr1 76.56 -8.24 0.91 -9.06 1.36E-19 1.65E-18

Sox1 178.36 -8.24 0.83 -9.88 5.21E-23 8.52E-22

Gm10664 297.48 -8.21 0.69 -11.92 9.10E-33 3.11E-31

Mtap7d2 39.18 -8.17 0.55 -14.95 1.51E-50 1.46E-48

Gng3 43.61 -8.17 0.90 -9.10 8.86E-20 1.09E-18

Aqp3 400.57 -8.11 0.59 -13.85 1.19E-43 7.98E-42

4930500J02Rik 66.90 -8.09 0.87 -9.25 2.26E-20 2.91E-19

Nefl 344.02 -8.08 0.69 -11.72 1.01E-31 3.17E-30

Trim71 280.49 -8.07 0.72 -11.26 2.10E-29 5.53E-28

Gdf3 117.53 -8.07 0.54 -15.04 4.19E-51 4.24E-49

Fgfbp1 1177.21 -8.07 0.75 -10.78 4.25E-27 9.42E-26

Lin28b 79.77 -8.03 0.90 -8.91 5.20E-19 5.94E-18

Wfdc2 118.43 -8.02 0.81 -9.85 6.72E-23 1.09E-21

Sox15 39.40 -8.01 0.62 -12.82 1.29E-37 6.00E-36
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Mreg 188.55 -7.98 0.45 -17.88 1.83E-71 5.23E-69

Tcfcp2l1 927.22 -7.98 0.63 -12.75 2.98E-37 1.34E-35

Nanog 37.06 -7.98 0.70 -11.33 9.06E-30 2.45E-28

Slc35f2 470.42 -7.94 0.36 -22.28 5.44E-110 7.04E-107

Trim6 271.33 -7.92 0.53 -14.80 1.46E-49 1.35E-47

Grik3 86.29 -7.91 0.76 -10.36 3.62E-25 6.95E-24

Kit 163.67 -7.89 0.57 -13.77 3.97E-43 2.54E-41

Gm13051 153.20 -7.88 0.73 -10.77 4.52E-27 9.96E-26

Bex4 125.13 -7.88 0.82 -9.61 7.05E-22 1.05E-20

Spnb3 47.65 -7.88 0.93 -8.44 3.17E-17 3.07E-16

Ina 57.66 -7.85 0.79 -9.90 4.36E-23 7.18E-22

Ppp2r2c 175.50 -7.80 0.67 -11.70 1.28E-31 3.96E-30

Gcnt3 570.51 -7.78 0.80 -9.69 3.39E-22 5.13E-21

Fut9 202.23 -7.71 0.69 -11.21 3.49E-29 9.05E-28

1600029D21Rik 72.45 -7.66 0.76 -10.14 3.70E-24 6.57E-23

Pipox 299.60 -7.61 0.67 -11.42 3.36E-30 9.37E-29

Alpk3 41.40 -7.60 0.91 -8.37 5.97E-17 5.62E-16

Padi4 42.21 -7.58 0.74 -10.27 9.83E-25 1.83E-23

Usp44 54.40 -7.52 0.82 -9.16 5.39E-20 6.72E-19

Cgn 116.88 -7.49 0.58 -12.90 4.73E-38 2.24E-36

Mycn 277.26 -7.46 0.52 -14.39 5.71E-47 4.49E-45

Calcoco2 36.69 -7.42 0.90 -8.23 1.85E-16 1.67E-15

1700019D03Rik 89.98 -7.41 0.72 -10.23 1.48E-24 2.71E-23

Pou3f1 44.00 -7.34 0.52 -14.25 4.60E-46 3.50E-44

Ybx2 128.64 -7.33 0.55 -13.29 2.67E-40 1.45E-38

Dlgap3 100.40 -7.32 0.61 -12.06 1.69E-33 6.08E-32

Dnahc8 62.98 -7.27 0.66 -10.99 4.45E-28 1.06E-26

1190003J15Rik 353.87 -7.25 0.78 -9.26 2.05E-20 2.66E-19

Podxl 1560.83 -7.23 0.63 -11.39 4.85E-30 1.34E-28

Rpp25 188.04 -7.22 0.41 -17.77 1.17E-70 3.18E-68

Tgm3 643.17 -7.20 0.64 -11.32 1.05E-29 2.84E-28

2310057J16Rik 137.38 -7.17 0.61 -11.77 5.38E-32 1.73E-30

Alpl 542.64 -7.15 0.59 -12.19 3.72E-34 1.42E-32

1-Sep 183.74 -7.15 0.37 -19.23 1.90E-82 9.71E-80

Rimklb 83.82 -7.13 0.69 -10.32 5.75E-25 1.09E-23

Rnf17 141.43 -7.12 0.39 -18.05 7.60E-73 2.37E-70

Bspry 50.66 -7.12 0.63 -11.36 6.73E-30 1.85E-28

Ush1c 212.70 -7.10 0.87 -8.14 4.05E-16 3.56E-15

Dtx1 52.36 -7.08 0.48 -14.62 2.11E-48 1.80E-46

Bex2 58.76 -7.08 0.77 -9.15 5.68E-20 7.08E-19

Casz1 112.03 -7.07 0.72 -9.77 1.47E-22 2.31E-21

Rasgrp2 65.68 -7.05 0.54 -13.04 7.40E-39 3.68E-37

Hap1 249.73 -7.05 0.55 -12.78 2.17E-37 9.91E-36

Cyp4f39 53.38 -7.02 0.93 -7.57 3.79E-14 2.80E-13

Hook1 192.82 -7.01 0.39 -17.88 1.77E-71 5.14E-69

Zfp936 38.48 -6.98 1.14 -6.13 8.75E-10 4.01E-09

Smtnl2 91.93 -6.98 0.58 -12.10 9.94E-34 3.65E-32

Vax2os2 52.80 -6.97 0.85 -8.22 2.01E-16 1.81E-15

Ckmt1 122.54 -6.97 0.77 -9.07 1.18E-19 1.44E-18

Slain1 41.55 -6.88 0.63 -10.91 1.01E-27 2.36E-26

Grhl3 57.50 -6.87 0.92 -7.44 9.86E-14 6.97E-13

Mapt 166.23 -6.82 0.52 -13.20 9.03E-40 4.79E-38

Slc2a3 1888.54 -6.81 0.38 -18.02 1.25E-72 3.84E-70

Clstn3 45.61 -6.77 0.72 -9.46 3.12E-21 4.40E-20

Ccdc88c 480.18 -6.75 0.49 -13.70 9.94E-43 6.19E-41

Ooep 81.68 -6.73 0.72 -9.35 9.06E-21 1.22E-19

Palm3 132.28 -6.71 0.55 -12.27 1.30E-34 5.15E-33

Sigirr 390.07 -6.68 0.70 -9.54 1.44E-21 2.09E-20

Zfp534 108.65 -6.68 0.92 -7.25 4.15E-13 2.73E-12

Olig1 84.46 -6.66 0.72 -9.23 2.73E-20 3.49E-19

Cyp2b23 326.41 -6.63 0.79 -8.40 4.35E-17 4.16E-16

Atp2c2 121.92 -6.62 1.06 -6.21 5.15E-10 2.43E-09

Robo4 38.94 -6.55 1.06 -6.19 5.94E-10 2.79E-09

Ttn 54.04 -6.53 0.89 -7.35 1.92E-13 1.31E-12

Ryr1 78.37 -6.51 0.50 -12.90 4.57E-38 2.17E-36

Mtap7 407.91 -6.51 0.29 -22.17 7.46E-109 8.96E-106

Folr1 79.36 -6.51 0.61 -10.61 2.73E-26 5.73E-25

Snhg11 53.79 -6.49 0.67 -9.75 1.90E-22 2.94E-21

Krt8 376.27 -6.49 0.88 -7.41 1.28E-13 8.86E-13

Slc38a5 3865.91 -6.48 1.01 -6.39 1.69E-10 8.41E-10

Dpysl5 44.28 -6.43 0.61 -10.47 1.14E-25 2.27E-24

St14 622.16 -6.42 0.48 -13.24 5.32E-40 2.84E-38

Cacna2d2 725.34 -6.39 0.67 -9.58 9.88E-22 1.45E-20

Gstp2 114.73 -6.36 0.69 -9.19 3.96E-20 5.01E-19

Tgm1 217.17 -6.32 0.56 -11.24 2.52E-29 6.61E-28

Esyt3 196.72 -6.32 0.79 -8.04 8.75E-16 7.46E-15

Hif3a 94.47 -6.28 0.66 -9.50 2.17E-21 3.09E-20

Tet1 1183.09 -6.27 0.52 -11.95 6.27E-33 2.19E-31

B4galnt3 55.30 -6.26 0.55 -11.32 1.05E-29 2.84E-28

Lad1 112.56 -6.24 0.83 -7.53 5.21E-14 3.79E-13

Dnmt3b 410.85 -6.22 0.26 -24.27 4.13E-130 9.94E-127

Mylpf 160.43 -6.22 0.47 -13.37 9.04E-41 5.02E-39

Piwil2 79.45 -6.21 0.54 -11.41 3.70E-30 1.02E-28

Nccrp1 1842.72 -6.18 0.92 -6.71 1.99E-11 1.11E-10

Fcho1 268.01 -6.16 0.49 -12.56 3.36E-36 1.43E-34

Zfp459 41.29 -6.11 0.66 -9.28 1.66E-20 2.19E-19

Klk1 3133.80 -6.11 0.94 -6.48 9.19E-11 4.73E-10

Spint1 222.60 -6.11 0.77 -7.96 1.72E-15 1.43E-14

Cpn1 100.09 -6.08 1.01 -6.00 1.94E-09 8.53E-09

Gli1 105.08 -6.08 0.55 -11.08 1.50E-28 3.75E-27

Nlrp1a 272.77 -6.06 0.58 -10.40 2.43E-25 4.72E-24

Lsr 109.38 -6.04 0.64 -9.40 5.42E-21 7.47E-20

Tjp3 72.74 -6.04 0.72 -8.40 4.63E-17 4.42E-16

Mapk4 54.54 -6.01 0.51 -11.90 1.16E-32 3.92E-31

Cbx7 287.20 -6.00 0.55 -10.85 2.09E-27 4.71E-26

Lrrc2 152.03 -5.99 0.71 -8.39 4.83E-17 4.60E-16

Lrp2 317.53 -5.95 0.64 -9.29 1.61E-20 2.12E-19

Ccnb1ip1 39.84 -5.93 0.68 -8.72 2.69E-18 2.87E-17

Syt7 64.43 -5.93 0.38 -15.45 7.18E-54 8.63E-52

Zfp473 82.76 -5.91 0.39 -15.18 4.60E-52 4.90E-50

Chchd10 1058.04 -5.90 0.63 -9.41 4.76E-21 6.61E-20
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Zfp296 182.71 -5.87 0.55 -10.66 1.51E-26 3.25E-25

Pkp3 133.91 -5.87 0.53 -11.01 3.43E-28 8.30E-27

Cubn 288.23 -5.86 0.67 -8.77 1.80E-18 1.96E-17

Mybl2 2078.26 -5.81 0.22 -26.52 6.27E-155 3.51E-151

Itgb7 875.82 -5.80 0.54 -10.71 9.57E-27 2.08E-25

Hal 49.13 -5.78 0.55 -10.54 5.80E-26 1.18E-24

Tmprss5 107.70 -5.78 0.90 -6.41 1.44E-10 7.23E-10

Cyp2s1 699.41 -5.72 0.62 -9.21 3.17E-20 4.04E-19

Jag2 449.13 -5.69 0.45 -12.76 2.65E-37 1.20E-35

Lefty1 132.89 -5.69 0.47 -12.18 3.78E-34 1.44E-32

Sall3 41.92 -5.68 0.64 -8.95 3.68E-19 4.27E-18

Celsr1 481.46 -5.64 0.39 -14.44 2.90E-47 2.33E-45

Rec8 40.90 -5.64 0.86 -6.57 4.91E-11 2.62E-10

Slc13a5 39.59 -5.63 0.67 -8.43 3.36E-17 3.24E-16

Spnb1 218.58 -5.63 0.66 -8.48 2.21E-17 2.16E-16

Car2 323.69 -5.61 0.60 -9.37 7.42E-21 1.01E-19

Myh14 117.50 -5.61 0.69 -8.14 4.11E-16 3.61E-15

Liph 118.56 -5.61 0.55 -10.20 2.02E-24 3.64E-23

Pllp 146.23 -5.60 0.68 -8.20 2.39E-16 2.15E-15

Plekhh1 304.84 -5.57 0.50 -11.22 3.10E-29 8.07E-28

B4galnt4 647.92 -5.56 0.46 -11.99 4.20E-33 1.47E-31

Rhpn2 79.58 -5.54 0.56 -9.83 8.52E-23 1.37E-21

Rab11fip4 64.09 -5.54 0.54 -10.32 5.47E-25 1.04E-23

Nup210 564.36 -5.52 0.65 -8.53 1.44E-17 1.44E-16

Ifitm1 1435.37 -5.49 0.55 -9.90 4.10E-23 6.78E-22

B3gnt7 205.48 -5.48 0.57 -9.58 9.96E-22 1.46E-20

Spnb4 109.50 -5.45 0.45 -12.24 1.84E-34 7.13E-33

Spna1 93.93 -5.45 0.53 -10.36 3.87E-25 7.40E-24

Hpcal4 39.16 -5.43 0.96 -5.64 1.72E-08 6.80E-08

Grtp1 240.13 -5.41 0.46 -11.74 7.74E-32 2.44E-30

Bcam 431.06 -5.41 0.39 -13.75 5.15E-43 3.26E-41

Kcnk5 120.80 -5.41 0.36 -15.03 4.41E-51 4.44E-49

Slc37a1 180.03 -5.41 0.53 -10.19 2.20E-24 3.96E-23

Amt 153.69 -5.39 0.41 -13.16 1.50E-39 7.83E-38

Ptch2 49.95 -5.39 0.66 -8.20 2.48E-16 2.22E-15

Pnldc1 37.20 -5.35 0.56 -9.48 2.44E-21 3.47E-20

Tesc 74.99 -5.35 0.60 -8.98 2.73E-19 3.20E-18

Zfp750 44.23 -5.32 0.61 -8.72 2.71E-18 2.89E-17

Dpp4 54.65 -5.31 0.71 -7.44 9.84E-14 6.95E-13

Frem2 288.20 -5.30 0.55 -9.71 2.86E-22 4.37E-21

Atp1a3 157.66 -5.26 0.82 -6.43 1.28E-10 6.48E-10

Epb4.9 121.32 -5.25 0.44 -11.85 2.20E-32 7.27E-31

Foxd3 63.82 -5.24 0.75 -6.96 3.38E-12 2.03E-11

Gm5860 44.82 -5.22 0.78 -6.69 2.29E-11 1.27E-10

Dmkn 131.57 -5.21 0.69 -7.58 3.41E-14 2.54E-13

Exoc3l 95.57 -5.18 0.59 -8.84 9.79E-19 1.09E-17

Rps6ka6 196.71 -5.17 0.48 -10.77 4.98E-27 1.09E-25

Cobl 1709.64 -5.16 0.38 -13.43 4.07E-41 2.32E-39

Gbx2 64.09 -5.14 0.88 -5.88 4.20E-09 1.79E-08

Dusp9 267.21 -5.13 0.61 -8.45 2.81E-17 2.73E-16

Fabp3 190.21 -5.12 0.38 -13.52 1.20E-41 6.99E-40

E130012A19Rik 444.81 -5.10 0.42 -12.28 1.09E-34 4.36E-33

C130074G19Rik 53.49 -5.06 0.60 -8.47 2.51E-17 2.44E-16

Zic5 80.69 -5.06 0.69 -7.32 2.47E-13 1.66E-12

N4bp3 257.54 -5.04 0.36 -13.82 1.83E-43 1.21E-41

Celsr3 48.05 -5.03 0.50 -10.08 6.45E-24 1.13E-22

Gata4 40.11 -5.03 0.81 -6.24 4.33E-10 2.06E-09

Prr15l 39.57 -5.03 1.18 -4.25 2.16E-05 5.84E-05

Krtdap 81.29 -5.02 1.01 -4.98 6.31E-07 2.09E-06

Enpp3 1882.63 -5.00 0.41 -12.15 5.50E-34 2.07E-32

Hoxa11as 454.75 5.01 0.54 9.26 1.98E-20 2.58E-19

Msrb3 4245.78 5.01 0.28 18.17 9.07E-74 3.05E-71

Pcdhb5 48.64 5.01 0.77 6.50 8.21E-11 4.26E-10

Hoxd13 1474.80 5.01 0.54 9.26 1.96E-20 2.55E-19

C430049B03Rik 89.98 5.02 0.49 10.23 1.41E-24 2.59E-23

Nckap5 91.99 5.03 0.75 6.75 1.49E-11 8.38E-11

Hoxd8 196.54 5.03 0.33 15.45 7.67E-54 9.15E-52

Col16a1 4685.18 5.04 0.25 20.55 7.50E-94 6.01E-91

Ptprd 1029.32 5.04 0.59 8.51 1.75E-17 1.73E-16

Rgs4 1177.96 5.04 0.44 11.36 6.70E-30 1.84E-28

Mid2 850.48 5.05 0.40 12.75 3.04E-37 1.36E-35

Cxcl12 8003.82 5.05 0.54 9.44 3.79E-21 5.31E-20

Adam12 3466.06 5.06 0.57 8.93 4.38E-19 5.03E-18

Slc2a10 368.31 5.06 0.39 12.93 3.20E-38 1.54E-36

Ptprc 166.58 5.07 0.84 6.01 1.90E-09 8.37E-09

Abca9 69.86 5.07 0.82 6.17 6.90E-10 3.21E-09

Ctso 381.79 5.07 0.36 14.11 3.20E-45 2.30E-43

Ano5 50.63 5.08 0.83 6.10 1.06E-09 4.82E-09

Fndc1 4271.59 5.08 0.53 9.52 1.66E-21 2.38E-20

Dpep1 398.06 5.08 0.59 8.69 3.65E-18 3.85E-17

Olfml2b 1712.23 5.09 0.35 14.34 1.23E-46 9.57E-45

Plscr2 191.57 5.09 0.61 8.37 5.90E-17 5.57E-16

Trp63 73.65 5.10 0.90 5.63 1.80E-08 7.10E-08

Fam20a 1142.70 5.10 0.51 10.05 9.52E-24 1.64E-22

Prkg1 600.55 5.10 0.52 9.75 1.76E-22 2.75E-21

Twist2 481.90 5.11 0.47 10.78 4.51E-27 9.94E-26

Csf1r 848.79 5.11 0.74 6.93 4.35E-12 2.59E-11

Akr1c14 390.30 5.11 0.80 6.42 1.39E-10 6.96E-10

Rnf150 1503.86 5.11 0.46 11.19 4.71E-29 1.21E-27

Zfp521 1707.38 5.11 0.50 10.32 5.99E-25 1.13E-23

Fam101b 1998.90 5.11 0.43 11.78 4.85E-32 1.57E-30

Hgf 159.17 5.13 0.74 6.98 2.97E-12 1.79E-11

Foxc1 878.69 5.14 0.44 11.77 5.63E-32 1.80E-30

Pcdh11x 63.28 5.14 0.75 6.86 7.00E-12 4.06E-11

Plek 391.11 5.14 0.74 6.94 3.93E-12 2.34E-11

Pcdhb20 94.23 5.15 0.46 11.14 8.38E-29 2.12E-27

Meox1 142.67 5.15 0.78 6.59 4.27E-11 2.29E-10

Col4a5 3739.62 5.16 0.36 14.25 4.43E-46 3.39E-44

Sla 44.92 5.16 0.91 5.68 1.36E-08 5.44E-08

Il16 61.68 5.17 0.80 6.47 1.01E-10 5.18E-10
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Nfix 2564.54 5.17 0.58 8.87 7.00E-19 7.93E-18

Ddr2 6861.93 5.17 0.32 16.39 2.09E-60 3.63E-58

Matn4 356.17 5.18 0.81 6.40 1.51E-10 7.58E-10

Igsf10 3224.11 5.18 0.62 8.29 1.10E-16 1.01E-15

Itm2a 5095.47 5.18 0.63 8.29 1.15E-16 1.06E-15

Dnm3os 2181.03 5.18 0.47 11.10 1.32E-28 3.32E-27

Shox2 146.64 5.18 0.55 9.40 5.72E-21 7.85E-20

Prr16 136.02 5.18 0.70 7.45 9.54E-14 6.75E-13

Col6a1 34014.76 5.19 0.49 10.61 2.61E-26 5.49E-25

Kcne4 83.80 5.19 0.74 7.01 2.38E-12 1.45E-11

Hand2 200.53 5.20 0.40 13.07 4.68E-39 2.36E-37

Stab1 748.05 5.20 0.88 5.93 3.04E-09 1.31E-08

Hoxa13 134.35 5.20 0.66 7.89 3.04E-15 2.48E-14

Pcdhb14 61.26 5.22 0.58 8.94 3.83E-19 4.43E-18

Slc9a9 209.49 5.24 0.66 7.99 1.35E-15 1.13E-14

Sfrp2 4689.54 5.24 1.05 5.00 5.60E-07 1.87E-06

Tox 176.96 5.25 0.67 7.86 3.95E-15 3.19E-14

Gdf10 254.32 5.26 0.98 5.35 9.01E-08 3.30E-07

Galnt13 229.43 5.26 1.03 5.10 3.35E-07 1.15E-06

Gm15663 38.81 5.26 0.64 8.21 2.12E-16 1.91E-15

Angpt1 772.83 5.27 0.69 7.58 3.37E-14 2.51E-13

Robo2 325.61 5.27 0.74 7.13 9.76E-13 6.17E-12

Slc8a1 912.22 5.27 0.48 10.89 1.24E-27 2.85E-26

Hs3st3a1 131.07 5.29 0.43 12.39 3.14E-35 1.28E-33

Adra1d 619.77 5.29 0.36 14.91 2.84E-50 2.70E-48

Gjb2 695.60 5.30 0.62 8.52 1.53E-17 1.52E-16

Spock3 103.66 5.30 0.83 6.40 1.53E-10 7.66E-10

Snai2 870.13 5.31 0.45 11.73 8.99E-32 2.82E-30

Cmya5 134.71 5.32 0.79 6.73 1.76E-11 9.81E-11

Mafb 474.84 5.32 0.62 8.63 6.09E-18 6.29E-17

Wnt16 343.67 5.32 0.62 8.58 9.73E-18 9.89E-17

Dcn 4019.44 5.32 0.52 10.18 2.52E-24 4.53E-23

Tspan11 285.22 5.34 0.76 7.06 1.64E-12 1.02E-11

Fbn1 40815.00 5.36 0.45 11.82 3.06E-32 1.00E-30

Hoxd12 348.47 5.37 0.76 7.11 1.18E-12 7.40E-12

A930038C07Rik 332.67 5.37 0.71 7.52 5.31E-14 3.86E-13

Clec2d 423.56 5.37 0.55 9.80 1.08E-22 1.71E-21

Gpr64 978.53 5.38 0.67 8.00 1.23E-15 1.04E-14

Scn7a 109.21 5.38 0.81 6.62 3.65E-11 1.98E-10

6330406I15Rik 2575.58 5.40 0.34 15.89 7.19E-57 9.69E-55

Nkx3-2 47.82 5.41 0.81 6.71 1.92E-11 1.07E-10

Fam198a 79.51 5.42 0.97 5.59 2.25E-08 8.82E-08

Col6a2 24286.75 5.45 0.52 10.52 7.02E-26 1.42E-24

Fat4 3610.19 5.46 0.74 7.41 1.30E-13 9.00E-13

Kif26b 1583.58 5.46 0.63 8.68 4.11E-18 4.30E-17

Cdh11 10018.54 5.47 0.40 13.76 4.27E-43 2.73E-41

Mylk 1029.10 5.47 0.54 10.13 4.26E-24 7.49E-23

Lair1 37.71 5.48 0.87 6.28 3.28E-10 1.58E-09

Il21r 43.52 5.49 0.90 6.07 1.27E-09 5.70E-09

Rbms3 1354.09 5.50 0.38 14.40 4.81E-47 3.80E-45

Adamts1 8031.58 5.50 0.59 9.32 1.19E-20 1.59E-19

Wisp1 6508.52 5.50 0.46 12.01 3.20E-33 1.13E-31

Htra3 763.20 5.53 0.67 8.24 1.77E-16 1.61E-15

Mef2c 371.99 5.53 0.63 8.81 1.28E-18 1.42E-17

Igf2 23821.61 5.53 0.57 9.69 3.20E-22 4.86E-21

Bmp3 45.57 5.54 0.98 5.66 1.51E-08 6.03E-08

Adamtsl3 1563.37 5.56 0.61 9.06 1.29E-19 1.56E-18

Dhrs9 202.75 5.56 0.86 6.48 9.30E-11 4.78E-10

Tgfbr2 5467.67 5.56 0.48 11.54 8.59E-31 2.50E-29

Col28a1 343.18 5.57 0.64 8.75 2.09E-18 2.25E-17

Dclk1 2001.81 5.57 0.62 8.95 3.49E-19 4.06E-18

Rspo3 909.35 5.58 0.68 8.20 2.34E-16 2.10E-15

C1qtnf6 2167.18 5.58 0.31 17.85 2.74E-71 7.70E-69

Col5a1 88100.99 5.58 0.39 14.15 1.93E-45 1.40E-43

Pcdhb19 106.65 5.59 0.52 10.82 2.83E-27 6.33E-26

Csgalnact1 1655.92 5.59 0.38 14.84 8.52E-50 7.96E-48

Fxyd1 221.61 5.60 0.90 6.22 5.11E-10 2.42E-09

Irx1 693.99 5.61 0.34 16.31 8.10E-60 1.31E-57

Dkk2 1004.07 5.62 0.67 8.34 7.72E-17 7.18E-16

Il1r1 1095.29 5.63 0.54 10.43 1.78E-25 3.49E-24

Igf1 1788.99 5.63 0.80 7.07 1.59E-12 9.83E-12

Lsp1 2011.06 5.65 0.34 16.64 3.61E-62 6.68E-60

Gm885 38.38 5.66 0.90 6.28 3.37E-10 1.62E-09

Clec11a 991.74 5.66 0.70 8.11 5.12E-16 4.45E-15

Chrdl1 166.06 5.69 0.77 7.38 1.64E-13 1.13E-12

Ldb2 191.76 5.69 0.61 9.40 5.31E-21 7.32E-20

H19 27870.60 5.70 0.57 10.00 1.55E-23 2.64E-22

Slc24a3 330.52 5.71 0.71 8.01 1.12E-15 9.49E-15

Hapln1 389.69 5.72 0.93 6.16 7.21E-10 3.35E-09

Pappa2 103.78 5.73 0.65 8.76 1.89E-18 2.05E-17

Gdf6 220.29 5.74 0.79 7.30 2.97E-13 1.99E-12

Col12a1 66704.18 5.74 0.55 10.42 2.04E-25 3.97E-24

Lrrn3 145.35 5.74 0.83 6.94 3.99E-12 2.38E-11

Gpm6b 1448.42 5.74 0.67 8.57 1.05E-17 1.06E-16

Sox5 137.38 5.75 0.68 8.43 3.58E-17 3.45E-16

Gm12824 736.29 5.75 0.82 7.00 2.62E-12 1.59E-11

Mrc1 1741.61 5.75 0.93 6.17 6.74E-10 3.14E-09

Cxcl5 2547.20 5.76 0.82 6.99 2.74E-12 1.66E-11

Sec16b 399.83 5.76 0.55 10.42 2.10E-25 4.08E-24

Tbx15 2992.59 5.77 0.38 15.19 3.95E-52 4.24E-50

Penk 7277.17 5.77 1.09 5.31 1.12E-07 4.07E-07

1500015O10Rik 1100.98 5.77 0.71 8.11 5.13E-16 4.46E-15

Erg 234.41 5.77 0.78 7.40 1.39E-13 9.64E-13

Pcdhb16 140.25 5.79 0.61 9.50 2.16E-21 3.08E-20

Cd300ld 41.40 5.81 0.95 6.11 1.02E-09 4.63E-09

Pcdh10 176.68 5.82 0.72 8.06 7.78E-16 6.66E-15

Thbs2 27576.84 5.82 0.49 11.79 4.50E-32 1.45E-30

Ptgfr 245.96 5.85 0.67 8.69 3.57E-18 3.77E-17

Vipr2 38.79 5.85 0.97 6.04 1.52E-09 6.77E-09

Dmrt2 44.74 5.87 0.76 7.75 9.13E-15 7.14E-14



 

 

 

 71

 
 

 
 
  

Arsi 717.30 5.88 0.72 8.21 2.27E-16 2.04E-15

Slc27a6 46.10 5.89 0.82 7.16 8.12E-13 5.17E-12

Tlr7 67.95 5.93 0.86 6.93 4.24E-12 2.52E-11

Wisp2 9559.04 5.94 0.59 10.14 3.83E-24 6.77E-23

Hoxa10 729.25 5.94 0.37 16.24 2.76E-59 4.30E-57

Podn 1810.86 5.95 0.64 9.25 2.19E-20 2.83E-19

Tmem119 2341.21 5.95 0.29 20.23 5.40E-91 4.13E-88

Col5a2 90968.52 5.96 0.34 17.51 1.17E-68 3.02E-66

Pgm5 374.54 5.96 0.67 8.90 5.35E-19 6.10E-18

Svep1 9399.53 5.96 0.76 7.80 6.00E-15 4.75E-14

Dpt 902.70 5.97 0.74 8.02 1.09E-15 9.21E-15

Hmcn1 1741.18 6.02 0.88 6.83 8.58E-12 4.93E-11

Eya4 642.03 6.02 0.56 10.77 4.60E-27 1.01E-25

Cpa6 142.14 6.03 0.50 12.06 1.75E-33 6.29E-32

Gprin3 98.16 6.04 0.84 7.15 8.65E-13 5.50E-12

Ptx3 4912.69 6.06 0.77 7.83 4.81E-15 3.85E-14

Fibin 774.77 6.06 0.54 11.23 2.99E-29 7.81E-28

Ebf3 450.67 6.06 0.48 12.52 5.73E-36 2.41E-34

Mfap4 2565.34 6.07 0.65 9.35 8.63E-21 1.17E-19

Fam180a 172.85 6.10 0.75 8.14 3.90E-16 3.44E-15

Pcdh18 1600.31 6.10 0.40 15.25 1.58E-52 1.72E-50

Pik3cg 80.17 6.13 0.96 6.41 1.45E-10 7.26E-10

Osr1 795.25 6.16 0.67 9.13 6.82E-20 8.40E-19

Chodl 117.55 6.23 0.85 7.30 2.84E-13 1.90E-12

Clec14a 287.37 6.24 0.80 7.77 7.76E-15 6.09E-14

C1qtnf3 1993.10 6.25 0.48 12.90 4.32E-38 2.06E-36

BC055004 107.80 6.27 0.96 6.55 5.70E-11 3.01E-10

Agtr2 842.16 6.27 1.02 6.13 8.69E-10 3.99E-09

Foxp2 281.25 6.27 0.69 9.05 1.40E-19 1.68E-18

Col1a1 203933.49 6.28 0.55 11.48 1.62E-30 4.61E-29

Capn6 2241.47 6.30 0.60 10.50 8.27E-26 1.66E-24

Tnn 1615.94 6.31 0.59 10.66 1.62E-26 3.48E-25

F13a1 289.46 6.31 0.88 7.18 7.05E-13 4.52E-12

Maf 690.29 6.32 0.67 9.43 3.98E-21 5.56E-20

Srpx 1027.35 6.33 0.46 13.82 2.00E-43 1.30E-41

Lum 3100.31 6.34 0.87 7.28 3.39E-13 2.25E-12

Col1a2 196788.78 6.36 0.35 18.15 1.25E-73 4.05E-71

Col11a1 16441.58 6.37 0.42 15.21 2.85E-52 3.08E-50

Tnmd 294.57 6.38 0.53 12.09 1.20E-33 4.40E-32

Ptprq 219.86 6.47 0.90 7.20 5.93E-13 3.83E-12

Gucy1a3 160.48 6.48 0.57 11.47 1.93E-30 5.48E-29

Abi3bp 5115.94 6.49 0.98 6.61 3.96E-11 2.14E-10

Col14a1 706.85 6.49 0.57 11.42 3.37E-30 9.37E-29

Fbln5 14206.22 6.53 0.25 25.66 3.18E-145 1.34E-141

Ccl12 88.35 6.58 0.98 6.74 1.55E-11 8.73E-11

Gxylt2 423.40 6.64 0.66 10.04 1.01E-23 1.74E-22

C1qtnf7 111.86 6.65 0.78 8.48 2.35E-17 2.29E-16

Adamts16 66.86 6.68 0.82 8.19 2.72E-16 2.42E-15

Fmod 5087.00 6.69 0.62 10.85 1.98E-27 4.47E-26

Zcchc5 1204.93 6.70 0.72 9.31 1.34E-20 1.78E-19

Lgr5 985.90 6.70 0.90 7.48 7.29E-14 5.22E-13

Gas1 4408.80 6.71 0.79 8.48 2.27E-17 2.22E-16

Ptn 4269.23 6.72 0.51 13.09 3.99E-39 2.02E-37

Cxcl15 551.42 6.74 0.98 6.90 5.38E-12 3.17E-11

Cbr2 811.93 6.81 0.69 9.86 6.51E-23 1.06E-21

Epha3 647.56 6.84 0.63 10.82 2.64E-27 5.93E-26

Igfbp5 5458.87 6.90 0.68 10.20 1.96E-24 3.55E-23

Gpr88 57.17 6.90 0.94 7.35 1.99E-13 1.35E-12

Cx3cr1 198.65 7.07 0.78 9.01 1.98E-19 2.35E-18

Col8a2 1783.00 7.09 0.84 8.41 4.13E-17 3.95E-16

Col3a1 129904.26 7.09 0.55 12.97 1.85E-38 9.04E-37

Palmd 603.68 7.17 0.67 10.70 1.01E-26 2.18E-25

Postn 48109.06 7.18 0.42 17.05 3.28E-65 7.27E-63

Tmem26 169.59 7.31 0.91 8.01 1.15E-15 9.71E-15

Fcrls 697.23 7.32 0.87 8.45 2.83E-17 2.75E-16

Fbn2 9045.40 7.37 0.59 12.55 3.91E-36 1.66E-34

Aspn 4866.84 7.38 0.55 13.48 2.14E-41 1.24E-39

Ogn 9428.26 7.38 0.67 11.04 2.37E-28 5.84E-27

Lrrc17 2845.52 7.79 0.38 20.76 1.07E-95 1.06E-92

Nov 3150.28 7.91 0.65 12.14 6.65E-34 2.49E-32

Eln 18771.38 7.93 0.74 10.71 8.82E-27 1.92E-25
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Method Details 

Cell lines and culture conditions 

Primary MEFs harboring a heterozygous R26-M2rtTA allele and dox-inducible polycistronic 

transgenic cassette coding for OSKM in the Col1A locus (tetO-OSKM)16,17 were harvested from 

day 14.5 embryos of timed mouse pregnancies. The Chancellor’s Animal Research Committee 

at University of California Los Angeles approved our animal breeding and research protocols for 

this purpose. For the reprogramming experiment involving the CDH1-positive population sort, 

MEFs were harvested from R26-M2rtTA mice which additionally carried a HMRPS-Bcl2 

transgene32. For Esrrb overexpression, a lentiviral construct encoding the tet-inducible Essrb 

cDNA, obtained from 13, was transfected alongside viral packaging vectors (pMDLg, pRSV-REV, 

pCMV-VSVG) into 293T cells using the CalPhos mammalian transfection kit (Clontech 062013) 

as per manufacturer’s instructions. Lentiviral production was performed for 48 hours, and the 

harvested supernatant used to infect tetO-OSKM/M2rtTA MEFs twice, once every 24 hours. For 

a control reprogramming time course for the Esrrb+ reprogramming experiment, tetO-

OSKM/M2rtTA MEFs were infected with a pMX retrovirus encoding the fluorophore Tomato (time 

course 3). MEFs were grown in ESC media containing knockout DMEM, 15% fetal bovine serum 

(FBS), recombinant leukemia inhibitory factor, b-mercaptoethanol, 1x penicillin/streptomycin, L-

glutamine, and non-essential amino acids. Reprogramming cultures were split by manual 

disruption in trypsin and were plated onto irradiated MEFs (feeders). To initiate reprogramming 

and Esrrb expression, respectively, cells were cultured in ESC medium containing 2mg/ml 

doxycycline, in media containing knockout serum replacement instead of FBS. For sorting of 

CDH1-positive cells, a day 6 reprogramming culture was collected by trypsin digestion followed 

by incubation with antibodies against CDH1 (Abcam ab11512) then incubated with anti-rat IGG 

Alexa 488 secondary antibody (Abcam ab150157), and sorting was performed as previously 

described 13 on a FACS Aria III sorter. 
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Immunostaining 

Cells were grown on coverslips pretreated with 0.3% gelatin (Sigma G2500). After fixation with 

4% paraformaldehyde, cells were washed with 1xPBS-0.05% Tween, and permeabilized with 

1xPBS-0.5% Triton-X. Primary antibody incubation was carried out at 4C overnight, secondary 

antibody incubation at RT for 30min, each in blocking buffer (5% donkey serum, 1xPBS, 0.2% 

Tween, and 0.2% fish skin gelatin). Antibodies used: anti-Crym (Abcam ab54669 1/200) and anti-

CDH1 (Abcam ab11512, 1/200). 

 

Single cell RNA-sequencing 

Reprogramming cultures from one well of a 6-well plate were harvested upon trypsin treatment, 

passed through a 40uM filter, and resuspended in 0.01% BSA in 1xPBS at approximately 150 

cells/ul. For time course 2, human cells (UCLA9 hESC) were mixed 1:1 into the cell mixture for 

the purpose of confirming lack of cross-species cell mixing (data not shown). Cells were co-flowed 

with barcodes beads (Chemgenes) in a microfluidics device (PDMS Drop-seq device, Flowjem), 

and isolated for reverse transcription as described 25. Libraries were constructed with KAPA 

polyermase and Nextera XT preparation kit as previously described 25. 

 

Processing, read alignment and digital gene expression (DGE) matrix construction 

Raw sequencing data were filtered by read quality, adapter- and polyA-trimmed, and reads 

satisfying a length threshold of 30 nucleotides were aligned to the mouse (mm9) genome using 

Bowtie2 (v2.2.9 with the ‘--very-sensitive’ mode). For all time course experiments, we filtered 

human and mixed species barcodes by a cutoff of <20% of mapped human reads allowable. 

Aligned reads were tagged to gene exons using Bedtools Intersect (v2.26.0). DGE matrices were 

then generated by counting gene transcripts for all cells within each time point from all Drop-seq 

experiments using custom Python scripts. To correct for any bead synthesis errors/read errors 

leading to false barcodes, reads with the same corresponding cell barcode were aggregated 
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together, and unique molecular identifiers (UMIs) and cell barcodes were merged within 1 

Hamming and 2 Levenshtein distances, respectively 52. We excluded cells with <500 expressed 

(>0 transcripts) genes and <1250 transcripts from all downstream analyses. For separation of 

transgenic and endogenous Pou5f1 and Sox2 reads, we took only reads which mapped to the 

respective unique 3’ UTR sequences (to the endogenous loci or the transgenic UTR) to determine 

transcript number. 

 

Dimensionality reduction of single cell RNA-seq data 

DGE matrices were normalized by the total number of transcripts per cell in log space by dividing 

raw counts by the total number of transcripts per cell, then multiplied by 10,000. Cells were 

projected onto a 2D embedding using t-Distributed Stochastic Neighbor Embedding (tSNE, 

perplexity set to 30), Uniform Manifold Approximation and Projection (UMAP, neighbors set to 

30), SPRING (standalone version 1.5, neighbors set to 5) or Palantir (standalone version 0.2.1, 

default parameters) with cell loadings associated with 30 principal components utilizing all 

expressed (>0 transcripts) genes as input (R packages ‘irlba’, ‘Rtsne’, ‘umap’). 

 

Trajectory score assignment 

MEF, ESC, NSC, and Keratinocyte bulk RNA-seq data were used to calculate signature genes. 

Signature genes were defined as those most differentially (log2FoldChange>5 and FDR<0.01) 

expressed genes between the starting cell type and the ending cell type. The average gene 

expression of these differential genes was computed for each cell, linearly transformed between 

0 and 1, and used as signature gene scores for each cell. The difference between these 

normalized scores, for each cell, was termed the trajectory score (ending signature gene score-

start signature gene score). For ESC- and MEF-signature scores, time course 1 had the maximum 

values across all experiments therefore, the trajectory score calculations for all other experiments 

used these maxima. Trajectory score ordering was compared to the pseudo-temporal ordering of 
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cells based on Monocle2 (R package ‘monocle’). Monocle2 analyses were performed using all 

expressed genes (>0 transcripts across all cells, just as the tSNE embedding was preformed) and 

default settings. 

 

Determination of gene expression changes during reprogramming 

To build gene expression networks, we define a gene’s weight within a given cell as a function of 

its expression and the cell’s progression along the trajectory score. A weight is computed for each 

cell and each gene, then averaged across cells to create a meta-weight. This meta-weight is used 

as a metric to bin genes into ‘rough’ networks. Each of these ‘rough’ networks are pruned by 

computing independent Pearson gene-to-gene correlation matrix using the expressed genes of a 

network and identify genes with correlation values greater than 0.20. We linked these genes with 

edges to its next most correlated gene and recursively expand the network until the correlation 

threshold is not met. We observe that gene networks typically stop expanding after 7 rounds of 

edge linking. Next, we K-means cluster our cells into 95 clusters reasoning roughly 50 cells per 

cluster, then the average expression of all gene members in a given network was computed for 

each cluster by taking the average of all normalized expression value for all genes and cells in 

the network. Because the number of gene networks are large and many gene networks exhibit 

similar expression, we recursively merge gene networks on the basis of expression correlation by 

computing a Pearson correlation matrix on the average expression values and link clusters with 

correlation values greater than 0.70. For plotting on tSNE graphs, average normalized expression 

of all genes in the network was calculated per cell. 

 

Stratification of genes according to CpG content 

Based on CpG content, we classified mouse promoters (-500bp +50 bp around the TSS of mm9 

annotated genes) into three groups, high CpG promoters (HCP), intermediate CpG promoters 

(ICP) and low CpG promoters (LCP) categories. CpG-poor correspond to LCP, weak CpG islands 
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to ICP and strong CpG islands to HCP. Classification was obtained by calculating the CpG 

observed vs expected ratios (R) within the aforementioned windows according to published 

criteria; LCPs R<=0.48, ICPs, 0.48<R<0.75, HCPs, R>=0.75. 

 

The single cell RNA-seq data are uploaded to Gene Expression Omnibus (GEO) and will be made 

publicly available upon publication. 
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Chapter 3. Genome–wide deconvolution of single cell type chromatin features from 
single cell gene expression data 

 
Introduction 

Understanding the mechanisms of how genes are regulated requires the quantification of the 

transcriptome and knowledge of how the chromatin is packed and modified. Population-based 

sequencing assays such as RNA-seq, ATAC-seq and ChIP-seq allow for the profiling of bulk 

tissues but are insensitive to cellular heterogeneity, such that they return an ensembled profile 

that smooth over rare or interesting subpopulations, thereby limiting their resolution when 

considering regulatory diversity underlying heterogeneous cell populations. Although in vivo cell 

types can be flow-sorted and studied, this is labor intensive and requires a priori knowledge of 

sorting markers. Beyond this, there are also practical limitations to using these population-based 

assays such as the lack of biological material when working with precious samples or the quality 

of available antibodies for detecting locus-specific enrichments (Kidder et al., 2011).  

Recent advancements in the field have allowed for the ability to profile the transcriptome 

(Klein et al., 2015; Macosko et al., 2015; Vickovic et al., 2016, Zheng et al., 2017) and epigenome 

(Buenrostro et al., 2015; Cusanovich et al., 2015; Satpathy et al., 2019) at single cell level and in 

a high-throughput manner. Currently, the standard for single cell methods include single cell RNA 

sequencing (scRNA-seq) (Zheng et al., 2017) for profiling the transcriptomic landscape, and 

single cell ATAC sequencing (scATAC-seq) (Satpathy et al., 2019) for measuring chromatin 

accessibility at single cell level. This has given researchers the ability to unravel a variety of 

biological contexts including tumor cell heterogeneity (Khoo et al., 2016; Satpathy et al., 2019) 

and iPSC reprogramming (Buganim et al., 2012; Polo et al., 2012; Schieginger et al. 2019), while 

also allowing the ability to create cell atlases to characterize a number of cell types and 

understand cell-to-cell relationships (Cao et al., 2017; Fincher et al., 2018; Han et al., 2018; 

Karaiskos et al., 2017; The Tabula Muris Consortium et al., 2017). Nevertheless, the output signal 

from these technologies is sparse and has a narrow dynamic range which is not enough to 
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accurately describe the activity of regulatory elements within a single cell. For reference, in a 

typical scATAC-seq dataset, each cell has 103–105 sequence reads (Zhou et al., 2019). In 

contrast, the human genome contains 106–107 cis-regulatory elements (CREs) (Zhou et al., 

2019), many of which are constituitively enriched. It has been shown that there are, on average, 

4,100 cell type-specific regulatory elements which are likely to be cell-selective regulatory regions 

(ranging from 1,700 in NHLF to 6,600 in GM12878) (Chen et al., 2013). Therefore, in either case 

in a typical cell, most of these CREs receive sparse read support. 

Recent advancements in the field have allowed for single cell multi-omics profiling 

unveiling the ability to jointly profile the transcriptiome and epigenome in the same cell. These 

include, but are not limited to, parallel analysis of individual cells for RNA expression and DNA 

accessibility by sequencing (scPaired-seq) (Zhu et al., 2019), single cell nucleosome occupancy 

and methylome-sequencing (scNOMe-seq) (Pott, 2017), and single cell nucleosome, methylation 

and transcription sequencing (scNMT-seq) (Clark et al., 2018). However, these multi-omics 

methods have lower throughput to analyze cells and they do not provide the throughput 

comparable to performing independent scRNA-seq or scATAC-seq to analyze massive numbers 

of cells. These complex assays are non-standard and require operational knowledge and high 

cost resulting in discrete and sparse output which limits the widespread promotion of these 

technologies.  

Profiling chromatin that has been post-translationally ultered with histone modifications or 

remodeled nucleosomes via regulatory proteins provides a means to explore CREs and their 

underlying regulation. Histone modifications, such as H3 lysine 27 acetylation (H3K27ac) or H3 

lysine 4 monomethylation (H3K4me1), allow for the separation of active and poised enhancers 

(Creyghton et al., 2010). Profiling these histone marks at the single cell level allows for the 

characterization of cell type-specific enhancer activity from heterogeneous samples. Drop-ChIP, 

a method that utilize microfluidics, DNA barcoding and next generation sequencing, has the ability 
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to produce low coverage maps of chromatin state in single cells (Rotem et al., 2015). However, 

the resulting single cell data are also sparse, capturing on the order of 1000 promoters or 

enhancers per cell (Rotem et al., 2015). The aggregation of chromatin information within a 

population of cells into a ‘pseudo-bulk’ sample, thereby smoothing over the chromatin landscapes 

of single cell types, is required to make any meaningful interpretations of the data. Taken together, 

although single cell genomic technologies are rapidly evolving and significant progress has been 

made in the field to overcome these limitations, accurately measuring the chromatin landscape 

for single cells remains a challenge.  

Previous studies have established computational frameworks to predict gene expression 

levels from histone modifications (Karlic et al., 2010; Dong et al., 2012) suggesting a relationship 

between gene expression levels and chromatin features. Building on this, Zhou et al (Zhou et al., 

2017) found that chromatin accessibility measured by DNase I hypersensitivity (DH) in a bulk 

sample can be predicted using the sample’s gene expression profile measured by Affymetrix exon 

array. The study is limited to using Affymetrix exon array data as predictiors, rather than using 

RNA-seq, which is considered the gold-standard for transcriptomic analysis and offers the ability 

to measure the transcriptome in small cell numbers. A follow-up study from the same group 

showed that various chromatin profiling technologies can be predicted by scRNA-seq (Zhou et 

al., 2019) using a reference atlas of cell types but prediction accuracy is largely based on the 

similarity between new samples and cell types within the atlas. When a new RNA-seq sample 

represents a unique new cell type considerably different from all cell types within the atlas data, 

then the prediction accuracy drops due to instability of extrapolation (Zhou et al., 2019). 

Predictions are also limited to only genomic regions with DH enrichments found within the atlas 

cell types. Another study takes a similar approach to deconvolve bulk samples into subpopulation-

specific data through a series of linear convolutions. Their method, DC3 (De-Convolution and 

Coupled-Clustering) (Zeng et al., 2019) takes a simplified approach and models a cost function 

as a linear relationship between the enhancer-promoter interaction strength from single cell Hi-C 
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(Kim et al., 2019), gene expression from scRNA-seq, and enhancter openness from scATAC-seq 

to deconvolve bulk signal (i.e., bulk sample loop counts) into subpopulation-specific signals. DC3 

requires, and relys heavily on, the input from these three sets of data. Furthermore, scHi-C (Kim 

et al., 2019) is used to estimate the regulatory potential between active regulatory elements and 

target genes in single cells, but the assay itself has not yet been established in the field 

(unpublished), and lacks the ability to capture a set of genomic interactions that distinguish 

between cell types. Additionally, the course scale (500kb bin size) is not fine enough to accurately 

link regulatory elements with target genes. Taken together, while existing scRNA-seq and ChIP-

seq technologies are readily available, there does not exist a framework for accurately 

deconvolving ChIP-seq profiles at the single cell type level using scRNA-seq alone.   

Here we investigate the feasibility of predicting the genome-wide chromatin maps at the 

single cell type level using a reference atlas of 146 purified cell types with matched population-

level RNA-seq and ChIP-seq data types. Using this atlas, we take a three-step modeling approach 

to accurately deconvolve bulk chromatin signal into subpopulation-level signal: (1) across-cell 

type modeling to learn the relationship between the transcriptome and epigenome across many 

cell types, (2) within-cell type modeling to leverage cell type-specific features, and (3) the 

integration of these techniques into an accurately predicted and unified signal intensity track. In 

this work, we deconvolve histone modification mark H3K27ac from ChIP-seq of a fetal brain 

organoid that was characterized into a variety to neuronal cell types by scRNA-seq. Doing so 

allows for the classification of cell type-specific regulatory elements, such as enhancers, and 

investigation of cell type-to-cell type variability of different regulatory elements. We validate our 

deconvolution accuracy by analyzing our predicted tracks for H3K27ac enrichment and relate 

these regions to cell type-specific motifs and transcription factor expression. We formalize this 

framework into a novel computational method called DeconR and can be used for the 

deconvolution of individual cell type ChIP-seq profiles from population-level ChIP-seq and single 
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cell RNA-seq data from the same sample or tissue (R package; 

https://github.com/ShanSabri/deconR).   



 

 

 

 85

Results.  

The DeconR algorithm 

We formulate the deconvolution of population-level ChIP-seq data into its underlying cell types by 

profiling single cell RNA-seq on the same sample or tissue. For each cell type in the single cell 

data, the goal is to predict genome-wide chromatin signal intensity maps that allow us to define 

cell type-specific chromatin features. DeconR achieves accurate deconvolution by leveraging a 

cell type reference atlas that consists of 146 distinct cell types with matched bulk RNA-seq and 

ChIP-seq data types (Figure 3-1, Supp Figure S3-1).  

As a first step, the input scRNA-seq data must be imputed for “dropout” artifacts, or the 

excess of zero counts due to the low amounts of mRNA sequenced within individual cells. We 

leverage the tool scImpute (Li and Li, 2018) to accurately identify likely dropout events and 

perform imputation without introducing new bias to the rest of the data. As a next step, the imputed 

scRNA-seq data must be clustered to define unique cell types. We utilize Seurat’s workflow 

(Butler et al., 2018) for data normalization, unsupervised graph-based clustering, followed by 

dimentionality reduction by Uniform Manifold Approximation and Projection (UMAP) (McInnes et 

al., 2018) to achieve this. To validate that our scRNA-seq clusters correspond to unique cell types, 

we measure and visualize the expression of canonical marker genes that are established in 

literature with the expectation that these markers are well-defined in the data. For single cell types 

that are not well characterized in literature, we perform differential gene expression analysis 

through Seurat (Butler et al., 2018) to identify marker genes enriched in the single cell type of 

interest and link these markers to Gene Ontology categories through Metascape (Zhou et al., 

2019).  

Once single cell types have been established in the scRNA-seq data, then we aggregrate 

the gene expression measurements for all cells contained within a given single cell type. The 
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creation of “pseudo-bulk” samples are needed in order to overcome the sequencing depth bias 

between scRNA-seq data and bulk RNA-seq data contained within the reference atlas. The use 

of dropout imputation (described above) also aids in correcting for this effect.  The “pseudo-bulk” 

samples derived from the scRNA-seq data are used as input to DeconR. 

DeconR leverages two modeling techniques, within-cell type and across-cell type, to 

accurately predict the chromatin landscape for populations of single cells derived from scRNA-

seq data (Figure 3-1). The across-cell type modeling technique is used to learn the relationship 

across cell type within the atlas. This approach consists of modeling a regression to predict the 

signal intensity for a genomic locus given gene expression features across training cell types in 

the reference atlas. However, modeling each locus independently requires one to deal with a 

challenging big data regression problem which involves fitting a model for each data point (200bp 

bin). This equates to training 15,181,508 regression models on the human genome, each with a 

large number of predictors (18,436 expressed genes). To cope with the high dimensionality and 

computational intensity, we cluster our genomic loci (200bp bins) across all training cell types into 

2000 clusters, hereon referred to as loci groups, then model each loci group independently. 

Rather than predicting the signal intensity at a given locus, we are now predicting the average 

signal intensity for a group of genomic loci. Clustering is performed using a big-data optimized 

version of K-means clustering (see Methods).  Loci groups are not bound to spatial restrictions 

but rather assembled by accessing signal intensity trends across all training cell types.  For each 

loci group, we compute an average signal intensity value at the cell type level. This reduced the 

number of models needed to train from >15,000,000 to 2,000, and as this loci group parameter is 

increased, the across-cell type model will approach a bin-by-bin fit. We show that as we increase 

this loci group parameter, the model accuracy plateaus indicating that there is not much to 

improve by stratifying into more groups thereby increasing the runtime and complexity (Supp 

Figure S3-2). For each grouping of genomic loci, we utilize all expressed genes (features) in a K-

nearest-neighbor regression framework to predict the average signal intensity value (response). 
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Using all expressed genes as features is reasonable as many regulatory elements are known to 

control genes over a long genomic distance and sometimes across many other genes. We have 

explored popular regression techniques such as Lasso (Tibshirani, 1996) and Elastic-net (Zou 

and Hastie, 2005) regression but found runtime to be significantly slower with no accuracy gain. 

Once genomic loci group-level models are trained, group-level predictions can be made and the 

predicted average signal intensity values are then substituted into each locus within the respective 

group.  

In addition to the across-cell types modeling, we establish a within-cell type modeling 

technique to capture cell-type specific regions that are typically not bound to a single loci group. 

The within-cell type modeling techniques holds the general assumption that the regulatory 

potential of a gene increases as a function of how close the gene is to a genomic regulatory 

element. Therefore, in this modeling technique we do not account for the entire transcriptome but 

rather only the gene neighborhood for which the regulatory element resides. To formulate this 

modeling technique as a regression, we take each genomic loci’s signal intensity value (response) 

and model it as a function of its nearby genes’ expression values, respective linear genomic 

distance to TSSs, and a binary encoded expression indicator to denote if a gene is expressed 

(features) for the entire genome (see Methods). In order to avoid a large feature space, we 

consider the five closest genes (15 total features for 5 of the closest genes: 5 gene expression 

values, 5 genomic distances in bp, 5 binary expression encodings) to each genomic locus (Supp 

Figure S3-2). We show that accounting for fewer genes will not provide as accurate predictions 

and including many genes has little accuracy gain with increased model complexity. For each cell 

type in the reference atlas, we split its genome into training and test sets by stratifying 

chromosomes into even number and odd number partitions. We train a genome-wide model to 

predict single intensity on the training set of chromosomes using the features described above, 

then evaluate the model accuracy on the held-out test set of chromosomes. The output prediction 

from each cell type-specific model is then averaged together to generate a robust prediction.  
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The modeling techniques described above are integrated together using Ridge linear 

regression to produce the final signal track prediction. Here, we include a feature that is predictive 

of cell type specificity such as the number of cell types within the reference atlas containing a 

peak at a given locus, in addition to the across- and within-cell type predictions. For a random, 

held-out set of 20 cell types from our reference atlas, we show this method of integration matches 

(3/20 cell types) or outperforms (17/20 cell types) a genome-wide static proportional split between 

both modeling techniques (Supp Figure S3-3). Interestingly, we see the highest accuracy gain for 

using this integration technique over an across- or within-cell type only model 

(ACROSS_100_WITHIN_0 or ACROSS_0_WITHIN_100) in the BSS00333 cell type, although 

overall predictive accurately for this cell type is poor and warrants further investigation. Integration 

models are trained on a cell type specific basis similar to the within-cell type training process and 

predictions are averged together. This model integration step may result in a better tradeoff 

between the prediction bias since the across-cell type modeling leverages information across all 

training cell types in the reference atlas and the within-cell type modeling captures cell type 

specific loci more accurately (Supp Figure S3-4B, Supp Figure S3-5).  

Lastly, the integrated prediction single cell type tracks are used to de-convolve the 

bulk/convolved signal track into its underlying cell type fractions. For a given locus, we 

proportionally scale each predicted signal intensity value across all predicted single cell type 

tracks to a relative proportion that sums to the signal intensity value of the convolved signal track. 

The deconvolved tracks can be used downstream analyses, such as for the classification of cell 

type-specific regulatory elements.  

Predicting and validating genome-wide H3K27ac ChIP-seq signal intensity from Within- and 

Across-cell type modeling techniques 

We use matched RNA-seq and H3k27ac ChIP-seq samples generated Encyclopedia of DNA 

Elements (ENCODE) (ENCODE Project Consortium) and Roadmap Epigenomics (Bernstein et 
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al., 2010) consortiums that covered a wide variety (n=146) of human cell types to train models to 

predict the genome-wide chromatin signal intensity from gene expression features (Supp Figure 

S3-1, Table 3-1). These data for all cell types within the reference atlas are processed uniformly 

(see Methods) such that genes expression values are size-factor normalized and signal intensity 

profiles are processed into 200bp non-overlapping bins and normalized to fragments per kilobase 

of exon model per million reads mapped (FPKM). We show that the relationship between the 

H3K27ac signal intensity around gene transcriptional start sites (TSSs +/-500bp) is strongly 

correlated (average Spearman R = 0.66) with gene expression (Supp Figure S3-6) consistent 

with previous claims that gene expression provides valuable information for predicting chromatin 

signal intensity (Karlic et al., 2010; Dong et al., 2012, Zhou et al., 2017; Zhou et al., 2019; Zeng 

et al., 2019). We leverage this relationship to train models to learn the associations between gene 

expression features and signal intensity at a given locus.   

 Using a random set of held-out cell types from the reference atlas, we use our within- and 

across-cell type models to predict H3K27ac signal intensity tracks for a held out set cell types in 

the reference atlas. With these tracks, we are able to call peaks and annotate genomic regions of 

H3K27ac enrichment (see Methods). Doing so allows us to compare regulatory elements in the 

ground truth signal track with those in the predicted signal tracks. To evaluate the performance of 

our predictions, we annotate the patterns of peak overlap as a binary (0=no peak, 1=peak present) 

three digit encoding, where the indices correspond to the across-cell type peaks, within-cell type 

peaks, and true peaks, respectively. For example, an encoding of 101 corresponds to the fraction 

of peak overlap between the across-cell type prediction and the ground truth track. By analyzing 

the data in this way, we are able to define 7 distinct patterns (011, 110, 010, 100, 101, 001, 111) 

of agreement in peak calls between the two modeling techniques and the ground truth. Each 

modeling technique captures slightly different information but the vast majority of peaks are 

shared among the across, within and ground truth tracks (Supp Figure S3-4A). In the case of cell 

type BSS01849, a transverse colon cell type, we see that over half (pattern 111, 55.63%) of all 
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called peaks match between the within- and across-cell type model predictions and ground truth. 

Interestingly, we see that 18.97% of peaks in this cell type are unique to the across-cell type 

prediction and ground truth (pattern 101) and that 1.19% of peaks are unique to the within-cell 

type prediction and ground truth (pattern 011). Downstream analyses of 011 peaks in the 

BSS00476 (GM23248, Primary Fibroblast) cell type conclude their enrichment over cell type-

specific genes (Supp Figure S3-4B). In this example, the within-cell type model is able to capture 

peaks over ICAM1, SBSN, DKMN, among other genes that are known to be upregulated in 

inflammatory diseases and expressed in the differentiated layers of skin (Piela-Smith et al., 1992; 

Horikoshi et al., 1995; Hasegawa et al., 2012).  

It is also worthy to note that predictive accuracy is a function of the strength of the 

relationship between the transcriptome and epigenome. Of the cell types in Figure S3-4A, 

BSS00333, a stromal fibroblast cell type, has the largest proportion of peaks (45.27%) that are 

not found in the respective predictive tracks (pattern 001). This cell type also contains the weakest 

relationship (Spearman R = 0.2541) between its gene expression and H3K27ac signal intensity 

distribution around TSSs, and has very poor predictive accuracy (Supp Figure S3-3, Supp Figure 

S3-4A, Supp Figure S3-6).  

H3K27ac deconvolution of a fetal brain organoid using scRNA-seq expression features  

We next asked whether one can use the DeconR framework to deconvolve a bulk heterogenous 

sample into its underlying cell types defined by scRNA-seq on the same sample. As a proof of 

concept, we preform single cell RNA-seq on a fusion of fetal brain organoids from the H9 cell line 

harvested at d149, d157 and d161 to demonstrate DeconR’s deconvolution performance (Figure 

3-2A). The protocol used to generate these organoids are well-established and result in organoids 

containing known cell types previously characterized (Watanabe et al., 2017; Samarasinghe et 

al., 2019). After scRNA-seq and downstream filtering, preprocessing and normalization, 7,287 

single cell transcriptomes (median UMI: 5,151, median genes: 2,596) with expression 
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measurements from 24,324 genes were obtained for downstream modeling. Through clustering 

and differential gene expression analyses, we are able to identity six unique neuronal-related cell 

types: maturing neurons (Stmn2+, Neurod6+), radial glia (Pax6+/Hopx+), interneurons 

(Lhx1+/Gabrg1+), intermediate progenitors (Eomes+), nigral neurons (Cebpb+/Vgf+/Hexim1+), 

and early astrocyte/glial cells (Igfbp7+/Ttr+/Cxcl14+) (Figure 3-2A). For each one of these single 

cell types, our goal is to predict the genome-wide H3K27ac signal intensity profile using the 

modeling approach previously described (Figure 3-1). We focus on chromatin modification 

H3K27ac because profiling this mark at single cell level is difficult and inefficient, and will shed 

light to the enhancer landscape for the underlying cell types without the need for additional 

assays. In order to systematically evaluate the performance of the predictions we perform motif 

and transcription factor binding analysis on the predictive output tracks and relate these data to 

the defined cell types supported by scRNA-seq.  

To overcome the inherent problem of sparsity and to accurately model the single cell data 

from a reference atlas of population-level cell types, we aggregate cells within each cell type 

create `pseudo-bulk` samples prior to normalization. To this point, we also apply scImpute (Li and 

Li, 2018) to impute the gene expression dropout prior to the creation of pseudo-bulk samples. 

DeconR was then applied to the imputed pseudo-bulk gene expression values to make signal 

intensity predictions at the single cell type level. The output prediction tracks from the across- and 

within-cell type modeling techniques are integrated together to form final predictions. The 

predicted single cell type tracks are then used to deconvolve the bulk chromain track.  

To evaluate the performance of the predictive signal intensity tracks we performed peak 

calling through MACS2 (Zhang et al., 2008; Feng et al., 2012) to identity areas in the genome that 

have been enriched for H3K27ac histone modifications, likely targeting enhancers and proximal 

and distal regions of TSSs. Constitutive peaks, or peaks that are enriched across all six single 

cell type prediction tracks, make up the majority of peak overlaps (n = 17,406) (Figure 3-2B). 
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However there exists a large set of peaks (n = 4,168) that are unique to the interneuron, maturing 

neuron, intermediate progenitor and nigral neuron cell types, which agrees with the hierarchal 

clustering clade of the correlation heatmap between these cell types, and the localized embedding 

of these single cell types on UMAP, indicating that the similarity in peak overlap is reflected by 

the similarity in gene expression for which the predictions are based. This suggests that DeconR 

is not introducing new bias and that the predicted signal intensity tracks are inline with the gene 

expression relationships between these single cell types. Interestingly, we notice the early 

astrocyte cell type being isolated from the other cell types on the UMAP embedding of gene 

expression, while also identified as the outgroup from the pseudo-bulk gene expression 

correlations, indicating that this cell type is most dissimilar from others in both the gene expression 

and chromain landscapes. In agreement with this, we show that there exists a large set of peaks 

(n = 8,098) unique to the early astrocyte cell type suggesting that its unique nature of gene 

expression agrees with its unique chromatin landscape.  

Using these peak calls, we performed regulatory element analysis through HOMER (Heinz 

et al., 2010) to discovery motif enrichments. The top significant motifs that overlap with 

corresponding differential genes for each cell type is displayed as a heatmap (Figure 3-2C). Our 

results show that enriched motifs agree with the expression of their corresponding transcription 

factors in each cell type. For example, nigral neurons have previously been characterized by their 

upregulation of Cebpb (Hu, 2011). In addition to Cebpb being most highly expressed in the 

pseudo-bulk nigral neuron cell type, the enriched peaks within this cell type contain Cebpb binding 

motifs. To this point, our results also show that the Smad3 motif and gene expression is most 

highly enriched in the early astrocyte cell type peaks. This data agrees with been previously 

shown data that Smad3 is a master regulator for early glial and astrocyte cell types (Stipursky 

and Gomes, 2007; Hamby et al., 2010; Stipursky et al., 2012). In addition, we show that Nanog 

gene expression and motifs are enriched within the neural progenitor cell type, which is in line 

with previous studies showing Nanog expression, in synchrony with WNT signaling, regulates 
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neural patterning, a process during neurogenesis which neural progenitor cells differentiate into 

neurons with distinct functions (Su et al., 2018). Our results also show an abundance of Sox gene 

family expression and motifs in the radial glia cell type. It has previously been shown that Sox2 

expression levels alone can distinguish radial glia from intermediate neural progenitors (Hutton 

and Pevny, 2011). It has also been shown that Cux2 is a master regulator for the devleiopment 

of neural progenitors (Lulianella et al., 2008) and that Cux1/2 are expressed in the developing 

brain, particularly in subventricular zone (SVZ) cells and their maturing layers (Cubelos et al., 

2007). These findings are in line with expression and motifs enriched within the maturing neurons 

cell type. Collectively, the analyses in this section show that predicting chromatin modification 

H3K27ac signal intensity tracks using scRNA-seq data is feasible. The prediction accuracy based 

on motif enrichment and RNA expression is highly consistent with previously published reports.  
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Discussion.  

This study examines the feasibility of deconvolving the chromatin landscape for cell types defined 

by single cell RNA sequencing by employing machine learning techniques. We formalize this 

framework into a user-friendly R package called DeconR (https://github.com/ShanSabri/deconR). 

DeconR is a novel computational method that can be used to unravel gene expression information 

to study the chromatin landscape at the single cell level. DeconR predictions can be used as a 

first pass measure to provide insights to hypothesis-driven questions or the design of follow up 

experiments without the need for an experimental assay, thereby forgoing the limitations of many 

single cell chromatin assays. Although the deconvolution made in this study is based on chromatin 

modification H3K27ac, DeconR is a general framework that leverages the relationship between 

the transcriptome and epigenome and can be applied to other data types for which a reference 

atlas can be created, such as DNase-seq or ATAC-seq data types with matched RNA-seq.  

 In our analyses, we show the accurate deconvolution of six distinct cell types within a 

human fetal brain organoid sample by predicting the chromatin landscape, specifically targeting 

ChIP-seq of H3K27ac chromatin modification, for these populations and relating regions enriched 

for H3K27ac chromatin modifications to cell type-specific bound transcription factors. Our results 

provide correlative insight into the underlying epigenetic heterogeneity without the need for 

additional experiments. DeconR utilizes the associations across an atlas of cell types to make 

chromatin prediction, but unlike previous studies, it does not rely solely on this. DeconR’s within-

cell type modeling technique is able to accurately predict regions that are cell type-specific and 

ultimately allows for the prediction and characterization of novel cell types that may not be found 

in a reference atlas.  Though as more training data becomes available, one can create a diverse 

atlas that will cover a variety of input tissues and cell types.  

Conventionally, single cell gene expression measurements are collected to explore the 

transcriptome by characterizing heterogeneous cell types with underlying gene signatures, 

pathways, and ontologies. We hope that DeconR can be used to add a new component of this 
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workflow by unleashing insights into the epigenetic landscape by using gene expression. DeconR 

can be readily applied to a number of gene expression studies and impact how gene expression 

is data is used.  
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Future Directions. 

 
In this study we describe a method of linking the epigenome to transcriptomic features in 

order to learn the relationship between these data. In doing so, we measure distance as 

a linear function along the genome, though in practice the genome is compacted into 

three-dimensional confirmation that are able to link promoters to distal enhancers. Next-

generation chromosome capture technologies, such as Hi-C (Belton et al., 2012) or scHI-

C (Kim et al., 2019), are able to measure the linkage of enhancer elements to promoters 

in a more accurate manner. Therefore, like previous studies, we believe that the 

integration of Hi-C data may be useful in tuning the distance feature of the within-cell type 

model to provide for more accurate linking. Though with this comes additional data 

dependencies for non-standard assays that may not be readily available.  

 In this work we focus on the deconvolution of ChIP-seq of the H3K27ac histone 

modification but we acknowledge that this framework is generalizable and can be applied 

to other histone modifications or assays, such as ATAC-seq or DNase-seq, to deconvolve 

bulk samples into their underlying heterogenous sub-samples. This study may be 

extended in the near future to overcome these limitations.   
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Figure Legends 

 
Figure 3-1. Schematic diagram of DeconR. Outline of the method for which a bulk chromatin 

signal intensity track is deconvolved into its underlying cell type fractions based on the 

subpopulations/clusters defined by scRNA-seq. DeconR utilizes two methods of modeling 

chromatin signal as a function of gene expression, both leverage an atlas of purified cell types 

with matched RNA-seq and chromatin data. In the across-cell type model, loci from the training 

set within the atlas are grouped based on signal intensity similarities and, for each group, a model 

is trained to predict the average signal intensity value based on a feature space containing all 

expressed genes. The within-cell type model leverages cell type-specific model to predict signal 

intensity of a locus given features that characterize that locus, such as the expression of nearby 

genes and their respective distance to their TSSs. Both of these modeling techniques are locally 

integrated together to form a final deconvolved track.  

 

Figure 3-2. Deconvolution of fetal brain organoids into 6 distinct neuronal subtypes. (A) tSNE 

embedding of single cell transcriptomes from a fetal brain organoid identifies six distinct cell types 

(maturing neurons, radial glia, interneurons, intermediate progenitors, nigral neurons, and early 

astrocyte/glial cells) though differential gene expression analysis. Highly differential genes, shown 

as a heatmap, are used to annotate cell types through expert knowledge and literature. For each 

of these defined cell types, DeconR computes pseudo-bulk aggregates at the cell type level and 

predicts the H3K27ac ChIP-seq landscape as shown as signal intensity tracks within a genome 

browser. The output cell type-specific tracks contain constitutive and differential peaks that can 

be used for downstream analyses such as motif and TF binding enrichment, as well as to gain a 

deeper understanding of their functional dynamics and relationships. (B) For each predicted track, 

we call peaks and access their similarity of overlap using an upset plot. The most common set of 

peaks (n = 17,406) are shared among all cell types. The second most common set (n = 8,098) is 

unique to the early astrocyte cell type which agrees with the inset heatmap, as it is the outlier 
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when considering the Spearman correlation coefficient between the transcriptome of the pseudo-

bulk aggregates, indicating the most dissimilar of the six defined cell types in (A). (C) For peak 

enriched in each cell type, motif analysis was preformed and the normalized expression of the 

TFs corresponding to these motifs are shown as a heatmap. The heatmap is column z-scaled on 

normalized expression values.  

 

Figure S3-1. Spearman correlation heatmap of reference atlas containing 146 cell types profiling 

the RNA-seq and ChIP-seq landscapes. Spearman correlation heatmaps of (Top) the gene 

expression landscape containing all expressed genes and (Bottom) the genome-wide chromatin 

landscape between all 146 cell types in the reference atlas.  

 

Figure S3-2. Selecting model hyperparameters as a function of accuracy. Box plots illustrating 

the distribution of RMSE for a random set of 30 cell types from the reference atlas as a function 

of (Top) across-cell type modeling loci-group stratification and (Bottom) within-cell type modeling 

of the number of nearest genes to each loci bin. By default, DeconR will set these 

hyperparameters to 2000 loci groups and five nearest genes for across- and within-cell type 

modeling techniques, respectively.  

 

Figure S3-3. The integration of across- and within-cell type models improves the overall prediction 

accuracy. Heatmap showing the Pearson correlation matrix of the agreement between a variety 

of integration techniques with ground truth tracks (y-axis) for 20 randomly held out cell types from 

the reference atlas (x-axis). Integration methods include using a static grid (step side of 10%) to 

proportionally allocated each modeling technique genome-wide. For example, integration 

technique ACROSS_60_WITHIN_40 corresponds to utilizing 60% of the across-cell type 

prediction with 40% of the within-cell type prediction genome-wide. The TRUTH ~ ACROSS + 

WITHIN integration models the true signal intensity as a function of the across and within 
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predictions, estimating genome-wide coefficients for integration. The TRUTH ~ ACROSS + 

WITHIN * NUM_CELLTYPES integration technique includes an interaction terms that denotes the 

number of cell types within the reference atlas that contain a peak at a given locus. We benchmark 

these grid integration methods with using regression-based approaches and show that, in all 20 

cell types, the integration which utilizes the interaction term matches (3/20 cell types) or out-

performs (17/20 cell types) the ACROSS_100_WITHIN_0 integration.  

 

Figure S3-4. Majority of predicted peaks overlap with ground truth peaks and across-cell type 

modeling captures proportionally more peaks in the ground truth than the within-cell type model. 

(A) Stacked bar graphs showing the proportion of six patterns of peak overlaps between across- 

and within-cell type modeling techniques with ground truth peak calls for a random set of 20 held 

out cell types from the reference atlas. (B) Genome browser view of the across-, within-cell type 

predictions, and ground truth tracks for a primary fibroblast cell type showing example cases of 

peak pattern 011 over cell type-specific genes.  

 

Figure S3-5 – Within-cell type modeling more accurately predicts cell type-specific regions than 

across-cell type modeling. (A) Density distribution for the number of cell types within the reference 

atlas containing a peak. The non-overlapping bimodality implies there are many peaks that are 

either cell type-specific (found in <10 cell types within the reference atlas) or constitutive (found 

in > 130 cell types within the reference atlas). (B) Boxplots measuring within- and across-cell type 

model accuracy, for a randomly held-out set of 20 cell types form the reference atlas, as a function 

of peak cell type specificity, or the number of cell types in the reference atlas containing a peak. 

Smoothed regression line overlays illistrate the overall trend of RMSE from cell type specific 

peaks to constitutive peaks. (C) As in (B) but showing the smoothed regression lines as a function 

of the cumulative fraction of all peaks. Here, we see the substantial improvement in model 
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accuracy for within-cell type modeling of cell type-specific peak, and across-cell type modeling for 

constitutive peaks. 

 

Figure S3-6. Spearman distribution of gene expression with average H3K27ac signal intensity 

around gene TSSs (+/- 500bp). (Top) Scatter plot of Pearson and Spearman correlation metrics 

measuring the agreement between normalized gene expression and average signal intensity 

around corresponding TSS (+/- 500bp) windows for each cell type in the reference atlas. Cell type 

BSS00333 is labeled as an outlier with both correlation metrics. (Bottom) Density distribution of 

the Spearman correlation agreement from (Top).   

 

Table 3-1. Metadata of EpiMap cell types with matched H3K27ac ChIP-seq and RNA-seq data in 

reference atlas. A table containing metadata for the 146 cell types within the reference atlas. 

Metadata fields include: ID, SampleName, Tissue, Project Source, Sex, Age and tissue/group 

classifications.   
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Figures 

 
Figure 3-1 – Schematic diagram of DeconR 
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Figure 3-2 – Deconvolution of fetal brain organoids into 6 distinct neuronal subtypes  
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Figure S3-1 – Spearman correlation heatmap of reference atlas containing 146 cell types profiling 
the RNA-seq and ChIP-seq landscapes 
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Figure S3-2 – Selecting model hyperparameters as a function of accuracy 
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Figure S3-3 – The integration of across- and within-cell type models improves the overall 
prediction accuracy 
 

 



 

 

 

 106 

Figure S3-4 – Majority of predicted peaks overlap with ground truth peaks and across-cell type 
modeling captures proportionally more peaks in the ground truth than the within-cell type model 
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Figure S3-5 – Within-cell type modeling more accurately predicts cell type-specific regions than 
across-cell type modeling 
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Figure S3-6 – Spearman distribution of gene expression with average H3K27ac signal intensity 
around gene TSSs (+/- 500bp) 
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Table 3-1 – Metadata of EpiMap cell types with matched H3K27ac ChIP-seq and RNA-seq data 
in reference atlas  
 

 

BSSID Group Secondary Extended.Info Lifestage Age AgeUnits Sex Type Project SampleName
BSS00043 Adipose NA ADIPOSE TISSUE adult 34 year male tissue Roadmap adipose_tissue_male_adult_(34_years)

BSS00189 Blood & T-cell NA CD4 T CELL adult 21 year male primary cell Roadmap CD4-positive,_alpha-beta_T_cell_male_adult_(21_year)

BSS00197 Blood & T-cell NA CD8 T CELL adult 21 year male primary cell Roadmap CD8-positive,_alpha-beta_T_cell_male_adult_(21_year)

BSS01419 Blood & T-cell NA MONONUCLEAR CELL adult 28 year female primary cell Roadmap peripheral_blood_mononuclear_cell_female_adult_(28_years)

BSS01424 Blood & T-cell NA MONONUCLEAR CELL adult 39 year male primary cell Roadmap peripheral_blood_mononuclear_cell_male_adult_(39_years)

BSS01689 Blood & T-cell NA T CELL adult 37 year male primary cell Roadmap T-cell_male_adult_(37_years)

BSS00089 Brain NA ASTROCYTE unknown unknown unknown primary cell ENCODE astrocyte

BSS01126 Brain NA HIPPOCAMPUS adult 81 year male tissue Roadmap layer_of_hippocampus_male_adult_(81_year)

BSS01562 Cancer Brain NEUROBLASTOMA child 4 year female cell line ENCODE SK-N-SH

BSS01391 Cancer HSC & B-cell B CELL LYMPHOMA adult 48 year male cell line ENCODE OCI-LY7

BSS01065 Cancer HSC & B-cell B CELL LYMPHOMA adult 72 year female cell line ENCODE Karpas-422

BSS00762 Cancer HSC & B-cell MYELOGENOUS LEUKEMIA adult 53 year female cell line ENCODE K562

BSS00558 Cancer Liver HEPATOCELLULAR CARCINOMA child 15 year male cell line ENCODE HepG2

BSS00017 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_10_minutes

BSS00019 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_15_minutes

BSS00021 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_20_minutes

BSS00022 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_25_minutes

BSS00027 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_5_minutes

BSS00016 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_10_hours

BSS00020 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_2_hours

BSS00023 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_3_hours

BSS00024 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_30_minutes

BSS00026 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_5_hours

BSS00028 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_6_hours

BSS00029 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_7_hours

BSS00018 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_12_hours

BSS00025 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_4_hours

BSS00030 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line GGR A549_treated_with_100_nM_dexamethasone_for_8_hours

BSS00007 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line ENCODE A549

BSS00015 Cancer Lung LUNG EPITHELIAL CARCINOMA adult 58 year male cell line ENCODE A549_treated_with_100_nM_dexamethasone_for_1_hour

BSS01226 Cancer Other MAMMARY GLAND ADENOCARCINOMA adult 69 year female cell line ENCODE MCF-7

BSS01405 Cancer Pancreas PANCREAS DUCT EPITHELIAL CARCINOMA unknown 56 year male cell line ENCODE Panc1

BSS00529 Cancer Reproductive CERVIX ADENOCARCINOMA adult 31 year female cell line ENCODE HeLa-S3

BSS01414 Cancer Reproductive PROSTATE ADENOCARCINOMA adult 62 year male cell line ENCODE PC-3

BSS00316 Digestive NA ESOPHAGUS adult 30 year female tissue Roadmap esophagus_female_adult_(30_years)

BSS00318 Digestive NA ESOPHAGUS adult 34 year male tissue Roadmap esophagus_male_adult_(34_years)

BSS00321 Digestive NA ESOPHAGUS MUSCULARIS MUCOSA adult 53 year female tissue ENCODE esophagus_muscularis_mucosa_female_adult_(53_years)

BSS00325 Digestive NA ESOPHAGUS SQUAMOUS EPITHELIUM adult 53 year female tissue ENCODE esophagus_squamous_epithelium_female_adult_(53_years)

BSS00381 Digestive NA GASTROESOPHAGEAL SPHINCTER adult 53 year female tissue ENCODE gastroesophageal_sphincter_female_adult_(53_years)

BSS01119 Digestive NA LARGE INTESTINE embryonic 108 day male tissue Roadmap large_intestine_male_embryo_(108_days)

BSS01426 Digestive NA PEYERS PATCH adult 53 year female tissue ENCODE Peyer_s_patch_female_adult_(53_years)

BSS01548 Digestive NA SIGMOID COLON child 3 year male tissue Roadmap sigmoid_colon_male_child_(3_years)

BSS01545 Digestive NA SIGMOID COLON adult 34 year male tissue Roadmap sigmoid_colon_male_adult_(34_years)

BSS01543 Digestive NA SIGMOID COLON adult 53 year female tissue ENCODE sigmoid_colon_female_adult_(53_years)

BSS01597 Digestive NA SMALL INTESTINE adult 34 year male tissue Roadmap small_intestine_male_adult_(34_years)

BSS01599 Digestive NA SMALL INTESTINE child 3 year male tissue Roadmap small_intestine_male_child_(3_years)

BSS01588 Digestive NA SMALL INTESTINE adult 30 year female tissue Roadmap small_intestine_female_adult_(30_years)

BSS01601 Digestive NA SMALL INTESTINE embryonic 108 day male tissue Roadmap small_intestine_male_embryo_(108_days)

BSS01637 Digestive NA STOMACH adult 30 year female tissue Roadmap stomach_female_adult_(30_years)

BSS01654 Digestive NA STOMACH child 3 year male tissue Roadmap stomach_male_child_(3_years)

BSS01651 Digestive NA STOMACH adult 34 year male tissue Roadmap stomach_male_adult_(34_years)

BSS01639 Digestive NA STOMACH adult 53 year female tissue ENCODE stomach_female_adult_(53_years)

BSS01851 Digestive NA TRANSVERSE COLON adult 54 year male tissue ENCODE transverse_colon_male_adult_(54_years)

BSS01849 Digestive NA TRANSVERSE COLON adult 53 year female tissue ENCODE transverse_colon_female_adult_(53_years)

BSS01850 Digestive NA TRANSVERSE COLON adult 37 year male tissue ENCODE transverse_colon_male_adult_(37_years)

BSS00283 Endocrine Pancreas ENDOCRINE PANCREAS adult 45 year male tissue Roadmap endocrine_pancreas_male_adult_(45_years)

BSS00281 Endocrine Pancreas ENDOCRINE PANCREAS adult 59 year unknown tissue Roadmap endocrine_pancreas_adult_(59_years)

BSS01399 Endocrine Reproductive OVARY adult 30 year female tissue Roadmap ovary_female_adult_(30_years)

BSS00046 Endocrine NA ADRENAL GLAND adult 30 year female tissue Roadmap adrenal_gland_female_adult_(30_years)

BSS00048 Endocrine NA ADRENAL GLAND adult 53 year female tissue ENCODE adrenal_gland_female_adult_(53_years)

BSS00054 Endocrine NA ADRENAL GLAND adult 34 year male tissue Roadmap adrenal_gland_male_adult_(34_years)

BSS00055 Endocrine NA ADRENAL GLAND adult 37 year male tissue ENCODE adrenal_gland_male_adult_(37_years)

BSS00056 Endocrine NA ADRENAL GLAND adult 54 year male tissue ENCODE adrenal_gland_male_adult_(54_years)

BSS01834 Endocrine NA THYROID GLAND adult 37 year male tissue ENCODE thyroid_gland_male_adult_(37_years)

BSS01832 Endocrine NA THYROID GLAND adult 53 year female tissue ENCODE thyroid_gland_female_adult_(53_years)

BSS01835 Endocrine NA THYROID GLAND adult 54 year male tissue ENCODE thyroid_gland_male_adult_(54_years)

BSS00296 Endothelial Placenta & EEM UMBILICAL VEIN ENDOTHELIAL CELL newborn unknown male primary cell ENCODE endothelial_cell_of_umbilical_vein_male_newborn

BSS00355 Epithelial NA FORESKIN KERATINOCYTE newborn 43500 day male primary cell GGR foreskin_keratinocyte_male_newborn_(2-4_days)

BSS00361 Epithelial NA FORESKIN KERATINOCYTE newborn 43500 day male primary cell GGR foreskin_keratinocyte_male_newborn_(2-4_days)_treated_with_1.2_mM_calcium_for_2.5_days

BSS00367 Epithelial NA FORESKIN KERATINOCYTE newborn 43500 day male primary cell GGR foreskin_keratinocyte_male_newborn_(2-4_days)_treated_with_1.2_mM_calcium_for_5.5_days

BSS00354 Epithelial NA FORESKIN KERATINOCYTE newborn unknown male primary cell Roadmap foreskin_keratinocyte_male_newborn

BSS01068 Epithelial NA KERATINOCYTE unknown unknown female primary cell ENCODE keratinocyte_female

BSS00112 ES-deriv Brain BIPOLAR NEURON DERIV adult 53 year male in vitro differentiated cells ENCODE bipolar_neuron_originated_from_GM23338_treated_with_0.5_mg_mL_doxycycline_hyclate_for_4_days

BSS01366 ES-deriv Brain NEURAL DERIV embryonic unknown male in vitro differentiated cells ENCODE neural_cell_originated_from_H1-hESC

BSS01370 ES-deriv Brain NEURAL PROGENITOR DERIV embryonic 5 day female in vitro differentiated cells ENCODE neural_progenitor_cell_originated_from_H9

BSS01371 ES-deriv Brain NEURAL PROGENITOR DERIV embryonic unknown male in vitro differentiated cells Roadmap neural_stem_progenitor_cell_originated_from_H1-hESC

BSS00171 ES-deriv Heart CARDIAC MUSCLE DERIV embryonic unknown unknown in vitro differentiated cells ENCODE cardiac_muscle_cell_originated_from_RUES2

BSS00556 ES-deriv Liver HEPATOCYTE DERIV embryonic 5 day female in vitro differentiated cells ENCODE hepatocyte_originated_from_H9

BSS01261 ES-deriv Mesench MESENCHYMAL STEM DERIV embryonic unknown male in vitro differentiated cells Roadmap mesenchymal_stem_cell_originated_from_H1-hESC

BSS01857 ES-deriv Placenta & EEM TROPHOBLAST DERIV embryonic unknown male in vitro differentiated cells Roadmap trophoblast_cell_originated_from_H1-hESC

BSS01612 ES-deriv Sm. Muscle SMOOTH MUSCLE DERIV embryonic 5 day female in vitro differentiated cells ENCODE smooth_muscle_cell_originated_from_H9

BSS00287 ES-deriv NA ENDODERMAL DERIV embryonic unknown male in vitro differentiated cells Roadmap endodermal_cell_originated_from_HUES64

BSS01263 ES-deriv NA MESENDODERM DERIV embryonic unknown male in vitro differentiated cells Roadmap mesendoderm_originated_from_H1-hESC

BSS01264 ES-deriv NA MESODERMAL DERIV embryonic unknown male in vitro differentiated cells Roadmap mesodermal_cell_originated_from_HUES64

BSS01866 ESC NA ESC embryonic unknown female cell line Roadmap UCSF-4

BSS00717 ESC NA ESC embryonic unknown male cell line Roadmap HUES64

BSS00478 ESC NA ESC embryonic unknown male cell line ENCODE H1-hESC

BSS00079 Heart NA AORTA adult 30 year female tissue Roadmap aorta_female_adult_(30_years)

BSS00080 Heart NA AORTA adult 34 year male tissue Roadmap aorta_male_adult_(34_years)

BSS00088 Heart NA ASCENDING AORTA adult 53 year female tissue ENCODE ascending_aorta_female_adult_(53_years)

BSS00513 Heart NA HEART LEFT VENTRICLE child 3 year male tissue Roadmap heart_left_ventricle_male_child_(3_years)

BSS00512 Heart NA HEART LEFT VENTRICLE adult 34 year male tissue Roadmap heart_left_ventricle_male_adult_(34_years)

BSS00507 Heart NA HEART LEFT VENTRICLE adult 53 year female tissue ENCODE heart_left_ventricle_female_adult_(53_years)

BSS01508 Heart NA HEART RIGHT ATRIUM adult 34 year male tissue Roadmap right_cardiac_atrium_male_adult_(34_years)

BSS01507 Heart NA HEART RIGHT ATRIUM adult 53 year female tissue ENCODE right_atrium_auricular_region_female_adult_(53_years)

BSS00524 Heart NA HEART RIGHT VENTRICLE adult 34 year male tissue Roadmap heart_right_ventricle_male_adult_(34_years)

BSS00525 Heart NA HEART RIGHT VENTRICLE child 3 year male tissue Roadmap heart_right_ventricle_male_child_(3_years)

BSS01815 Heart NA THORACIC AORTA adult 54 year male tissue ENCODE thoracic_aorta_male_adult_(54_years)

BSS01814 Heart NA THORACIC AORTA adult 37 year male tissue ENCODE thoracic_aorta_male_adult_(37_years)

BSS00101 HSC & B-cell NA B CELL adult 37 year male primary cell Roadmap B_cell_male_adult_(37_years)

BSS00178 HSC & B-cell NA CD14 MONOCYTE unknown unknown female primary cell ENCODE CD14-positive_monocyte_female

BSS00232 HSC & B-cell NA CD34 CMP adult 33 year female primary cell Roadmap common_myeloid_progenitor,_CD34-positive_female_adult_(33_years)

BSS01355 HSC & B-cell NA NK CELL adult 37 year male primary cell Roadmap natural_killer_cell_male_adult_(37_years)

BSS01519 Liver NA LIVER adult 53 year female tissue ENCODE right_lobe_of_liver_female_adult_(53_years)

BSS01201 Lung NA LUNG child 3 year male tissue Roadmap lung_male_child_(3_years)

BSS01190 Lung NA LUNG adult 30 year female tissue Roadmap lung_female_adult_(30_years)

BSS01870 Lung NA LUNG adult 53 year female tissue ENCODE upper_lobe_of_left_lung_female_adult_(53_years)

BSS00439 Lymphoblastoid NA LYMPHOBLASTOID CELL LINE adult unknown female cell line ENCODE GM12878

BSS00378 Muscle NA GASTROCNEMIUS MEDIALIS adult 37 year male tissue ENCODE gastrocnemius_medialis_male_adult_(37_years)

BSS00377 Muscle NA GASTROCNEMIUS MEDIALIS adult 53 year female tissue ENCODE gastrocnemius_medialis_female_adult_(53_years)

BSS00379 Muscle NA GASTROCNEMIUS MEDIALIS adult 54 year male tissue ENCODE gastrocnemius_medialis_male_adult_(54_years)

BSS01460 Muscle NA PSOAS MUSCLE adult 30 year female tissue Roadmap psoas_muscle_female_adult_(30_years)

BSS01462 Muscle NA PSOAS MUSCLE adult 34 year male tissue Roadmap psoas_muscle_male_adult_(34_years)
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BSS01463 Muscle NA PSOAS MUSCLE child 3 year male tissue Roadmap psoas_muscle_male_child_(3_years)

BSS01344 Myosat NA MYOTUBE adult 22 year male in vitro differentiated cells ENCODE myotube_originated_from_skeletal_muscle_myoblast

BSS01377 Neurosph NA NEUROSPHERE embryonic 15 week unknown primary cell Roadmap neurosphere_embryo_(15_weeks)_originated_from_ganglionic_eminence

BSS00146 Other NA BREAST EPITHELIUM adult 53 year female tissue ENCODE breast_epithelium_female_adult_(53_years)

BSS00368 Other NA FORESKIN MELANOCYTE newborn unknown male primary cell Roadmap foreskin_melanocyte_male_newborn

BSS00122 Pancreas NA BODY OF PANCREAS adult 53 year female tissue ENCODE body_of_pancreas_female_adult_(53_years)

BSS01406 Pancreas NA PANCREAS adult 30 year female tissue Roadmap pancreas_female_adult_(30_years)

BSS01407 Pancreas NA PANCREAS adult 34 year male tissue Roadmap pancreas_male_adult_(34_years)

BSS00074 Placenta & EEM NA AMNION embryonic 16 week male tissue Roadmap amnion_male_embryo_(16_weeks)

BSS00211 Placenta & EEM NA CHORION embryonic 40 week female tissue Roadmap chorion_female_embryo_(40_weeks)

BSS00212 Placenta & EEM NA CHORION embryonic 16 week male tissue Roadmap chorion_male_embryo_(16_weeks)

BSS00215 Placenta & EEM NA CHORIONIC VILLUS embryonic 40 week female tissue Roadmap chorionic_villus_female_embryo_(40_weeks)

BSS00216 Placenta & EEM NA CHORIONIC VILLUS embryonic 16 week male tissue Roadmap chorionic_villus_male_embryo_(16_weeks)

BSS00217 Placenta & EEM NA CHORIONIC VILLUS embryonic 38 week male tissue Roadmap chorionic_villus_male_embryo_(38_weeks)

BSS00214 Placenta & EEM NA CHORIONIC VILLUS embryonic 16 week unknown tissue Roadmap chorionic_villus_embryo_(16_weeks)

BSS01448 Placenta & EEM NA PLACENTA embryonic 38 week male tissue Roadmap placental_basal_plate_male_embryo_(38_weeks)

BSS01446 Placenta & EEM NA PLACENTA embryonic 40 week female tissue Roadmap placental_basal_plate_female_embryo_(40_weeks)

BSS01438 Placenta & EEM NA PLACENTA embryonic 113 day female tissue Roadmap placenta_female_embryo_(113_days)

BSS01860 Placenta & EEM NA TROPHOBLAST embryonic 40 week female tissue Roadmap trophoblast_female_embryo_(40_weeks)

BSS01841 PNS NA TIBIAL NERVE adult 53 year female tissue ENCODE tibial_nerve_female_adult_(53_years)

BSS01884 Reproductive NA UTERUS adult 53 year female tissue ENCODE uterus_female_adult_(53_years)

BSS01887 Reproductive NA VAGINA adult 53 year female tissue ENCODE vagina_female_adult_(53_years)

BSS01628 Spleen NA SPLEEN adult 30 year female tissue Roadmap spleen_female_adult_(30_years)

BSS01634 Spleen NA SPLEEN child 3 year male tissue Roadmap spleen_male_child_(3_years)

BSS01631 Spleen NA SPLEEN adult 34 year male tissue Roadmap spleen_male_adult_(34_years)

BSS01630 Spleen NA SPLEEN adult 53 year female tissue ENCODE spleen_female_adult_(53_years)

BSS00062 Stromal Lung LUNG FIBROBLAST embryonic 12 week male cell line ENCODE AG04450

BSS00720 Stromal Lung LUNG FIBROBLAST embryonic 16 week female cell line ENCODE IMR-90

BSS00332 Stromal NA BREAST FIBROBLAST adult 17 year female primary cell Roadmap fibroblast_of_breast_female_adult_(17_years)

BSS00333 Stromal NA BREAST FIBROBLAST adult 26 year female primary cell Roadmap fibroblast_of_breast_female_adult_(26_years)

BSS00353 Stromal NA FORESKIN FIBROBLAST newborn unknown male primary cell ENCODE foreskin_fibroblast_male_newborn

BSS00476 Stromal NA SKIN FIBROBLAST adult 53 year male cell line ENCODE GM23248

BSS01825 Thymus NA THYMUS child 3 year male tissue Roadmap thymus_male_child_(3_years)
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Method Details 

Organoid dissociation.  

The papain dissociation reagents were prepared according to manufacturer recommendations 

(http://www.worthington-biochem.com/PDS/cat.html), with a slight modification. Papain was 

resuspended in 5mL Hibernate E, to yield a final concentration of 20U/mL, to negate the need for 

95% O2/5% CO2 equilibration. DNAse was resuspended in EBSS as recommended and mixed 

gently to avoid shearing before being added to the papain solution. The final papain/DNAse 

solution was then incubated at 37C for 10 minutes prior to use to ensure complete solubilization. 

To dissociate, organoids were washed twice with Hibernate E in a 1.5mL eppendorf before being 

transferred to a 10cm dish in fresh Hibernate E. Organoids were gently diced using a single edge 

razor blade into small chunks. These chunks were then transferred to a 15mL tube and pelleted 

to remove the Hibernate E. Diced organoid chunks were subsequently resuspended in 5mL of 

papain/DNAse solution at a final concentration of 20U/mL. Organoids were incubated at 37C with 

constant agitation for 30 minutes. After 30 minutes, the organoids were manually titrated 5 times 

using a 5mL stripette to break up clumps, then placed at 37C for a further 15 minutes. After 15 

minutes, organoids were very gently titrated 10 times with a P1000 tip and placed for a further 15 

minutes at 37C. In total, organoids were incubated in papain for 1h to obtain a single cell solution. 

Resulting cells were then filtered through a 40µM strainer into a fresh 15mL tube and centrifuged 

at 300g for 10 minutes. The papain/DNAse solution was removed and cells were resuspended in 

Hibernate E and centrifuged again. This process was repeated once more to completely remove 

papain and the majority of cell debris. Finally, the cells were resuspended in 1mL of PBS with 

0.04% BSA and counted using live/dead stain Trypan blue on the countess II (Thermo Fisher 

#AMQAX1000). Cell solution was >80% live for subsequent single cell sequencing. The cell 

concentration was then adjusted to 1000 cells/µL for loading into the 10X scRNA chip and 5000 

cells/µL for the scATAC chip. 
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Single cell sequencing, processing and analysis.  

Single cell RNA-seq and single cell ATAC-seq libraries of the human H9 fetal brain organoid were 

constructed using the Chromium Single-Cell 3’ Library Kit (10X Genomics) for enzymatic 

fragmentation, end-repair, A-tailing, adapter ligation, ligation cleanup, sample index PCR, and 

PCR cleanup. After library quality control, sequencing libraries were loaded on an Illumina 

NovaSeq 6000 for sequencing and fastq file generation.  

 Raw fastq files for scRNA and scATAC were processed with the corresponding Cell 

Ranger software (10X Genomics) to map reads and filter barcodes. Briefly, the raw sequencing 

reads were aligned to the transcriptome using STAR (REF), using a hg19 human transcriptome 

reference from GENCODE. Expression counts for each gene in all samples were collapsed and 

normalized to unique molecular identifier (UMI) counts, yielding a large digital matrix with cell 

barcodes as rows and gene identities/peaks as columns. 

 Digital gene expression matrices were processed with the Seurat toolkit (REF) for 

downstream quality control followed by dimensionality reduction and the generation of cluster/cell 

type assignments and differential genes expression analysis. Peak matrices were processed in a 

similar fashion with the Signac toolkit (REF).  

 

Reference atlas generation. 

We used matched RNA-seq and H3K27ac ChIP-seq samples generated the Encyclopedia of DNA 

Elements (ENCODE) (ENCODE Project Consortium) and Roadmap Epigenomics Mapping 

Consortium (Bernstein et al., 2010) consortiums, aggregrated in a unified format by EpiMap (for 

Epigenome Integration across Multiple Annotation Projects) (REF), that covered a wide variety of 

human cell types to train models to predict the genome-wide chromatin signal intensity from gene 

expression features. RNA-seq of EpiMap samples were downloaded from 

https://personal.broadinstitute.org/cboix/epimap/extended_data/rnaseq_data/ and ChIP-seq data 
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from https://epigenome.wustl.edu/epimap/data/observed/. An atlas of 146 cell types was 

generated with matching RNA-seq and H3K27ac ChIP-seq data types (Table 3-1).   

 The ChIP-seq data was subset to include chromosomes 1-22 and X because samples 

contained a mixture of male and female cell types. These data were then uniformly processed 

into 200bp non-overlapping bins measuring reads as normalized fragments per kilobase of exon 

model per million reads mapped (FPKM). RNA-seq data was downloaded as a Log2 FPKM 

normalized table but had to be reshaped from long-format (3-column format: cellt ype, gene, fpkm 

value) to wide-format (gene by cellt ype matrix).  

 

DeconR model training and integration.  

 DeconR takes two modeling approaches, across- and within-cell type modeling, to 

accurately deconvolve the chromatin landscape in single cells. The across-cell type model 

requires the cell types within the reference atlas to be split into training, validation and test sets. 

As a first step, the genome-wide signal intensity values (15,181,508 200bp bins) of the training 

set are clustered into 2000 groups, termed loci groups, for each chromosome using an optimized 

K-means algorithm that leverages the Armadilla C++ library for large data (Struyf et al., 1996). 

For each group, within each chromosome, we train a K-nearest neighbor (KNN) regression model 

to predict the average signal intensity value for each cell type, given gene expression 

measurements for the respective cell type. In order to select the optimal number of nearest 

neighbors for each loci group, we perform a grid search by training each model with 1-73 nearest 

neighbors with a step size of 2, then select the number of nearest neighbors which minimizes the 

RMSE of the validation set. We choose a maximum of 73 neighbors as this corresponds to 50% 

of the number of cell types within the reference atlas. Allowing for more than 73 neighbors in the 

regression tends to over-smooth the predictions leading to less accurate estimates. Model 

performance is evaluated on the test set of cell types using root mean square error (RMSE) as a 

measure of accuracy.  
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 The within-cell type model takes advantage of cell type-specific relationships between the 

gene expression features and signal intensity values. A model is built for each cell type in the 

reference atlas by engineering features to describe positions along the genome. Each locus 

(200bp bin) within each cell type is associated with its five nearest genes. Features are 

constructed to denote the expression, linear genomic distance to TSSs, and expression encoding 

(0 = not expressed, 1 = expressed) for all nearest genes to the locus. We leverage the H2O.ai 

framework (REF; H2O.ai. H2O AutoML, June 2017. URL http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/automl.html. H2O version 3.30.0.1.) for model selection and automatic hyperparameter 

optimization through the use of the h2o.automl() function (https://docs.h2o.ai/h2o/latest-

stable/h2o-docs/automl.html). This function will optimally find a combination of a collection of 

prediction algorithms including, but not limited to, Gradient Boosting Machines (GBMs), Random 

Forests (RFs), a fixed grid of Generalized Linear Models (GLMs), and a near-default Deep Neural 

Net through a process known as stacking. This function can also take advantage of Nvidia GPUs 

for highly optimized model training. The predictions from each cell type-specific model is averaged 

to robustly estimate the signal intensity at a given locus.  

 The predicted output tracks from the across- and within-cell type models are integrated 

together using Ridge linear regression. Here, we include a feature that denotes the number of cell 

types within the reference atlas that contain a given peak (e.g num_celltypes). Coefficient are 

estimated for the across, within, and num_celltypes features on a cell type-specific basis. As with 

the within-cell type modeling, the predictions from each integration model are averaged together 

to provide a final prediction. The final predictions are used downstream to preform the 

deconvolution by using the predicted values at each locus as a proxy for single cell type fraction 

of the bulk, convolved chromatin signal.  

 

Overcoming dropout by imputation and pseudo-bulk aggregation of scRNA-seq cell types. 
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To overcome the inherent problem of dropout in single cell assays, we perform imputation with 

scImpute (Li and Li, 2018) to correct for gene expression values identified likely as dropout without 

introducing new biases to the data. After imputation, the single cell gene expression data is 

summed together at the gene-level for each cell type, creating pseudo-bulk cell types. Pseudo-

bulk cell types are size factor normalized to correct the total transcript count. Pseudo-bulk cell 

types are used to generated features and predictions for within- and across-cell type modeling 

techniques.  

 

Peak calling, motif and peak pattern analysis.  

Peaks are called on the integrated tracks using MAC2 (Zhang et al., 2008; Feng et al., 2012) with 

the command `macs2 bdgpeakcall -i ${file} -o ${file}_peaks.bed`. The resulting peak file is used 

for motif analysis through HOMER (Heinz et al., 2010) with the command `findMotifsGenome.pl 

${file}_peaks.bed hg19${file} -p 32 -size 200 -mask `.   

 A binarized peak consensus matrix is computed for each modeling techniques and the 

corresponding ground truth, for each cell type within the reference atlas. All called peaks for all 

signal intensity tracks are constructed into a binary matrix where 1 and 0 corresponding to the 

presence and absence of a peak, respectively. By constructing a matrix in this way we can 

analyze and sort for peaks within a given cell type as a three digit encoding (across, within, truth) 

or across single cell cell types previously described (Fig 3-2) as a six digit encoding (cluster1, 

cluster2, … , cluster6 or maturing_neurons, … , early_astrocyte_glial).   

 

Data, pre-trained models, and code availability  

The DeconR software is available through GitHub at https://github.com/ShanSabri/deconR. 

Instructions to download the reference atlas with pre-trained models for each of the 146 cell types 

used in this study, as well as source code, within-/across-/ integrated-cell type prediction tracks 
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with peaks and motif calls are uploaded to 

https://github.com/ShanSabri/deconR/blob/master/data.md.   
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Chapter 4. Utilization of Single Cell Technologies to Create Newfound Cellular and 
Molecular Atlases in Human Developmental Systems  

 

4.1 Developmental Trajectory of Human Skeletal Muscle Progenitor and Stem Cells across 

Development and from Pluripotent Stem Cells 

 
Introduction.  

Skeletal myogenesis starts early during development, which initially gives rise to prenatal 

skeletal muscle progenitor cells (SMPCs) and later on postnatal satellite cells (SCs) (Applebaum 

and Kalcheim, 2015; Cerletti et al., 2008; Chal and Pourquie, 2017; Sambasivan and Tajbakhsh, 

2007). Both populations are endowed with muscle stem cell properties including, in addition to 

the expression of the essential myogenic transcription factor (TF) PAX7, the ability to expand and 

fuse to generate new myofibers in vitro or in vivo (Sacco et al., 2008; Tierney et al., 2016). 

However, the molecular and functional differences between SMPCs and SCs are only beginning 

to be unveiled. In vivo, mouse SMPCs contribute to muscle establishment and growth, whereas 

SCs in mature muscles are typically quiescent and enter the cell cycle in the event of injury 

(Tierney and Sacco, 2016). In vitro, isolated mouse SMPCs proliferate and maintain PAX7 

expression longer than SCs. Moreover, following transplantation after muscle injury, mouse SCs 

are superior to fetal SMPCs to repopulate the stem cell niche and support long-term regeneration 

(Tierney et al., 2016). Despite studies on developmental myogenesis in model organisms, our 

knowledge of muscle ontogeny in human is limited (Schiaffino et al., 2015). 

Following developmental cues, we and others have developed directed differentiation 

protocols using human pluripotent stem cells (hPSCs) to generate myogenic cells including 

SMPCs or SC-like cells (Borchin et al., 2013; Chal et al., 2015; Hicks et al., 2018; Magli and 

Perlingeiro, 2017; Shelton et al., 2014; Xi et al., 2017; Xu et al., 2013). These cells may serve as 

potential sources for personalized cell replacement therapies for degenerative muscle diseases 

or sarcopenia. However, they have not been fully characterized and compared to in vivo human 

SMPCs or SCs to facilitate their proper translation to clinical usage. 

Here, we performed a comprehensive single cell RNA-sequencing (scRNA-seq) analysis 
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of myogenesis in human limb tissues across development. We identified skeletal muscle (SkM) 

cells as well as other supportive cell types present at distinct developmental stages. We also 

evaluated the myogenic and non-myogenic cell populations from three different directed 

differentiation strategies from hPSCs. Using the developmental trajectory built from the in vivo 

SMPCs and SCs, we mapped hPSC-derived progenitor cells to a developmental period 

corresponding to the embryonic-to-fetal transition (7-12 weeks prenatal) across all protocols. 

Further analysis identified gene groups differentially regulated across developmental stages and 

provided potential TF candidates that may regulate stage transitions. In summary, this work 

provides a critical resource to understand the developmental networks defining human skeletal 

myogenesis and can be used to aid molecular identification of myogenic cells derived from 

hPSCs. This work will enable the development of new approaches to mature and support the 

most regenerative cells from hPSCs for use in cell-based therapies. 
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Results. 

Identification of skeletal myogenic and supportive cell types using scRNA-seq across in vivo 

human development  

To gain a comprehensive view of cell populations present during human SkM ontogeny, we used 

scRNA-seq to evaluate human limb muscle tissues from embryonic (week 5-8), fetal (week 9-18) 

as well as postnatal juvenile (year 7-11) and adult (year 34-42) stages (see STAR Methods). To 

universally identify skeletal myogenic cells from different samples, we developed a computational 

tool called “Muscle.Score” that examines the average expression of a list of conserved genes 

representing myogenic cells of distinct developmental and differentiation status (PAX3, PAX7, 

PITX2, MYF5, MYF6, MYOD1, MYOG, NEB and MYH3). Using “Muscle.Score”, we were able to 

readily identify SkM cells at each developmental stage (Figure 4-1). Within mononucleated cells 

from whole limbs, SkM cells gradually increased in proportion from early embryonic (week 5-6; 

~5%) to the beginning of fetal (week 9; above 20%) stage (Figures 4-1A-D, 4-1I-L and S4-1I). At 

early fetal stage (week 12-14; ~35%), SkM cells constituted a major cell type of the non-

endothelial/hematopoietic lineages in limbs (Figures 4-1E, 4-1M and S4-1I). This proportion 

decreased during later fetal development (week 17-18; ~15%) and further dropped in postnatal 

juvenile and adult limb SkM tissues (below 10%) (Figures 4-1F-H, 4-1N-P and S4-1I). 

In addition to SkM cells, we also found various non-myogenic populations at distinct 

developmental timepoints. One highly dynamic population is formed by mesenchymal cell types. 

Early on (week 5-6), the mesenchyme of the developing limbs was relatively homogeneous, 

mainly comprised of DUSP6+ multipotent limb mesenchymal progenitors (Limb.Mesen) (Gros and 

Tabin, 2014; Reinhardt et al., 2019) (Figures 4-1A, 4-1I and S4-1A). As limbs develop (week 6-

9), the multipotent progenitors became more lineage restricted and SHOX2+ prechondrogenic 

(PreChondro) and SOX9+ chondrogenic (Chondro) progenitors became prominent (Akiyama et 

al., 2005; Barna and Niswander, 2007; Neufeld et al., 2014) (Figures 4-1B-D, 4-1J-L and S4-1B-

D). During fetal development (week 12-18), the mesenchymal cells expressed the mesenchymal 
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stromal cell (MSC) marker NT5E/CD73 (Figures 4-1E, 4-1F, 4-1M, 4-1N, S4-1E and S4-1F). At 

postnatal stage, the mesenchymal/stromal population was highly enriched for PDGFRA, a marker 

for fibro-adipogenic progenitors (FAPs) found in adult mouse SkM (Joe et al., 2010; Uezumi et 

al., 2010) (Figures 4-1G, 4-1H, 4-1O, 4-1P, S4-1G and S4-1H). Other cell types present at various 

levels across limb development include dermal fibroblasts and progenitors (Dermal; TWIST2+), 

Schwann cells (CDH19+), smooth muscle cells (SMCs; MYLK+) and tenogenic cells (Teno; 

TNMD+). Skin cells (KRT19+), endothelial cells (ECs; ESAM+) and the hematopoietic (Hema; 

SRGN+) lineages including red and white blood cells (RBCs and WBCs; HEMGN+ and AIF1+, 

respectively) were detected at early stages (week 5-9) (Figures 4-1A-1D, 4-1I-L and S4-1A and 

S4-1D), and only residuals of these cell types were found at later stages (week 12 and later) as 

they were either removed during tissue dissection (skin) or depleted during cell sorting (EC and 

Hema). In summary, using our scRNA-seq pipeline, we were able to identify dynamic cell 

populations of both myogenic and non-myogenic nature across human limb development. 

 

Skeletal myogenic subpopulations vary throughout human development  

At embryonic week 5-6, the myogenic population in the developing hindlimbs was relatively 

homogeneous and mainly consisted of PAX3+ myogenic progenitors (MPs) (Figure 4-2A). Later 

at week 6-7, a small subset of differentiating myoblasts-myocytes (MB-MC) were observed that 

expressed commitment and terminal differentiation markers including MYOD1, MYOG and MYH3 

(Figure 4-2B). At the same time, MPs increased PAX7 while decreasing PAX3 expression. The 

differentiating MB and MC subpopulations became more prominent during week 7-9 (Figures 4-

2C and 4-2D), consistent with the rapid expansion of SkM needed to support prenatal growth. 

During fetal week 12-18, we found a reduction of MBs and MCs (Figures 4-2E and 4-2F), possibly 

due to incorporation of most differentiated myogenic cells into multi-nucleated myofibers. At 

postnatal stage, SkM cells were mainly comprised of PAX7+ SCs with little to no differentiating 

cells detected (Figures 4-2G and 4-2H). 
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In addition to the myogenic subpopulations reflecting distinct differentiation status, we also 

found another subpopulation transiently present between weeks 7 and 18. This subset expressed 

the canonical myogenic markers, albeit at slightly lower levels. Compared to the main myogenic 

subpopulations (MP, MB and MC), these cells uniquely expressed genes suggesting a more 

mesenchymal-like nature, such as PDGFRA and OGN, and we termed them SkM mesenchymal 

subtype (SkM.Mesen) (Figures 4-2C-F). 

To better understand the molecular differences among myogenic subpopulations, we 

focused on fetal week 9 as an example as all four subpopulations were readily detected at this 

time point. We performed differential gene expression of the subpopulations, followed by gene 

ontology (GO) analysis as well as Gene Set Enrichment Analysis (GSEA). As expected, MCs 

were enriched for muscle contraction genes compared to MPs. Moreover, MCs highly expressed 

genes involved in mitochondria and oxidative phosphorylation (OxPhos) as well as calcium 

signaling (Figures 4-2I, 4-2L and S4-2A). Proliferating MPs were enriched for genes regulating 

cell cycle progression, RNA splicing and protein translation (Figures 4-2J and 4-2L). MYC and 

WNT/β-catenin pathways were also enriched in MPs compared to MCs (Figures 4-2L and S4-

2B). Another major category of genes enriched in MPs was the extracellular matrix (ECM), which 

included several members of the laminin family (Figures 4-2L and S4-2B). Interestingly, compared 

to the main myogenic subpopulations, SkM.Mesen cells were also highly enriched for ECM genes 

including collagens and regulators of collagen biosynthesis (Figures 4-2K, 4-2L and S4-2C). To 

rule out the possibility that the SkM.Mesen subtype was an artifact of misclassification of 

mesenchymal or skeletogenic cells into the myogenic population by using Seurat (Butler et al., 

2018), we employed Monocle (Cao et al., 2019), another commonly used scRNA-seq analysis 

package to independently confirm this population, and found that the vast majority of SkM.Mesen 

cells were co-clustered with the main SkM subpopulations (Figure S4-2D). Although SkM.Mesen 

cells expressed some pro-chondrogenic genes such as COL11A1 and OGN, they barely 

expressed the core chondrogenic determination genes such as SOX9 and COL2A1 compared to 
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the Chondro population (Figure S4-2E). Moreover, SkM.Mesen cells in general expressed higher 

levels of mesenchymal/fibroblastic markers (e.g., PDGFRA, DCN, and COL3A1) than the main 

myogenic subpopulations, but lower than the mesenchymal cell types (Limb.Mesen or 

PreChondro) (Figure S4-2E). 

To better characterize SkM.Mesen cells, we first performed immunohistochemical (IHC) 

stainings of PAX7, along with PDGFRA which is enriched in the SkM.Mesen subpopulation 

(Figures 4-2C-F). We found in human embryonic and fetal limb sections that a subset of PAX7-

expressing myogenic cells were co-stained with PDGFRA (Figures 4-3A and 4-3B), corroborating 

the presence of this myogenic subpopulation in vivo. To further explore myogenic subpopulations, 

we examined cell surface markers enriched in the SkM lineage over other cell types and identified 

CDH15 as a potential surface marker to isolate the total SkM population from human embryonic 

and fetal limbs (Figure 4-3C). Next, we performed flow cytometry analysis of CDH15 and 

PDGFRA (Figure 4-3D) and sorted cell fractions based on these two markers. In freshly sorted 

cells, myogenic genes PAX7, MYOD1 and MYOG were upregulated in both CDH15+ fractions 

compared to the CDH15- ones, which validated the usage of this marker for enriching the total 

myogenic cells. Interestingly, compared to the CDH15+PDGFRA- (15+P-) cells, the 

CDH15+PDGFRA+ (15+P+) cells showed lower expression of myogenic genes but higher 

expression of genes involved in osteogenesis (RUNX2 and COL1A1) as well as mesenchyme 

and ECM (PDGFRA, OGN and DCN) (Figure 4-3E). When subjected to myogenic and osteogenic 

differentiation in vitro, respectively, 15+P- cells showed more prevalent formation of MyHC+ 

myotubes and higher expression of terminal myogenic differentiation genes (Figures 4-3F and 4-

3G), while 15+P+ cells displayed increased Alizarin Red S-stained calcium depots and higher 

expression of osteogenic differentiation markers (Figures 4-3H and 4-3I). By focusing on SkM 

cells in the developing human hindlimbs, we were able to detect myogenic subpopulations 

representing not only various commitment status but also unique myogenic/osteogenic bipotential 

differentiation properties. 
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Skeletal muscle progenitor and stem cells at distinct stages of human development exhibit 

different gene expression programs 

We next isolated SMPCs (only the MP subpopulations from prenatal samples) and SCs (from 

postnatal samples) in silico and subjected them to trajectory analysis. These cells formed a 

developmental trajectory in the diffusion map (DM) space (Haghverdi et al., 2015) consistent with 

the ages of individual human samples. Unbiased clustering divided the trajectory into 5 major 

stages (Figures 4-4A, 4-4B and S4-3A). Stage 1 mainly consisted of week 5-6 early embryonic 

SMPCs, while stage 2 harbored the majority of cells beyond embryonic week 6 to early week 7. 

Late week 7-8 embryonic SMPCs and those from week 9 in fetal development distributed 

relatively equally between stages 2 and 3. During fetal development of week 12-18, cells gradually 

progressed from stage 3 to 4. We observed some degree of overlap among sample ages and 

computationally calculated “stages”, suggesting early prenatal myogenic development is a 

continuous process. Postnatal SCs from both juvenile and adult muscles comprised stage 5, and 

they diverged from the prenatal SMPCs on a separate trajectory (Figures 4-4A, 4-4B and S4-3A). 

Although SMPCs and SCs share some common molecular markers and functionalities 

(Sacco et al., 2008; Tierney et al., 2016), our developmental trajectory analysis indicates that they 

display significant differences at the transcriptomic level. To further investigate this, we examined 

differentially expressed genes (DEGs) between distinct stages and found multiple biological 

processes and pathways differentially regulated across development. Postnatal SCs were 

enriched for P53 pathway components (Figure 4-4C) while expressing virtually no cell cycle 

promoting genes (Figure 4-4D), consistent with their quiescent state in homeostatic SkM tissues 

(Flamini et al., 2018). Nevertheless, several growth factor/cytokine signaling genes were enriched 

in SCs (Figure 4-4E), suggesting SCs use specific pathways to actively maintain their quiescence 

(Price et al., 2014; Shea et al., 2010; Tierney et al., 2014). Two other major differentially regulated 

biological processes were ECM and cellular metabolism (Figures 4-4F and 4-4G). Multiple ECM 
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components showed dynamic expression patterns including collagens and laminins (Figure 4-

4F). For example, while COL2A1 was uniquely enriched in early embryonic SMPCs (stage 1), 

COL5A1 gradually increased up to later fetal period (stage 4) and was virtually undetectable at 

postnatal stage 5. Interestingly, genes facilitating major cellular metabolic pathways (e.g., 

glycolysis, TCA cycle and OxPhos) were progressively downregulated from early to late 

developmental stages, while metabolic inhibitors such as TXNIP and PDK4 were increased 

(Figure 4-4G). Other dynamically expressed gene sets included mesenchymal-like markers, 

myogenic cell surface molecules and Notch signaling components (Figures 4-4H-J). Interestingly, 

genes encoding the major components of the dystrophinglycoprotein complex (DGC) including 

dystrophin, dystroglycan and sarcoglycans, were increased along prenatal development with the 

highest expression at fetal week 17-18, and then decreased postnatally (Figure 4-4K). 

When examining the canonical TFs involved in myogenesis, we also found distinct 

expression patterns at each developmental stage (Figure 4-4L). EYA1, SIX1 and PITX2 showed 

gradually decreased expression as development progresses. PAX3 progressively decreased 

while PAX7 increased along development. To corroborate our in silico findings, we performed IHC 

stainings of PAX3 and PAX7 proteins. At week 6, developing human hindlimbs contain only 

PAX3+ and not PAX7+ SMPCs, and no MyHC+ myofibers could be detected (Figure S4-3B). At 

week 7, both PAX3 and PAX7 were detected in limbs, with the proximal region containing PAX7 

single positive cells while distal region harboring SMPCs transitioning from PAX3 to PAX7 

expression. At this stage, thin myofibers were present with single or low number of myonuclei 

(Figure S4-3C). In later fetal and adult stage muscles examined (quadriceps), myofibers 

continued to grow in size and SMPCs and SCs were exclusively PAX7+ (Figures S4-3D and S4-

3E). These results confirmed the findings of PAX3 and PAX7 transcript changes across 

development from our scRNA-seq analysis. 

To explore the common features distinguishing between postnatal SCs and prenatal 

SMPCs, we performed differential gene expression analysis comparing stage 5 SCs to each 
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individual stage SMPCs from stage 1-4. We intersected the upregulated genes in stage 5 SCs 

from each of the above comparisons and generated a list of 140 genes commonly enriched in 

SCs compared to SMPCs (Figure 4-3M). GO analysis showed several biological processes and 

signaling pathways were significantly overrepresented, including metabolic and nutrient 

regulation, intracellular trafficking, ECM organization and cell adhesion as well as FOXO-

mediated cell cycle regulation (Figure 4-3N). Interestingly, FOXO3 has been shown to promote 

quiescence of adult SCs in mice (Gopinath et al., 2014), suggesting that the FOXO family and 

related signaling pathways might play an important role in regulating the transition of proliferative 

prenatal SMPCs to quiescent postnatal SCs. 

Although we have identified CDH15 as a cell surface marker capable of isolating SkM 

cells from embryonic week 7 to fetal week 19 human limbs, this marker was not shown in our 

scRNA-seq dataset to be enriched in the myogenic population in embryonic week 5-6 limb tissues 

(Figure S4-4F), and no prospective markers for myogenic cell isolation have been established for 

this developmental stage. Thus, we performed differential gene expression analysis between 

myogenic and non-myogenic cells and found some known SkM cell surface markers enriched in 

myogenic vs. non-myogenic populations, such as MET and CXCR4 (Bareja et al., 2014; Yin et 

al., 2013). However, other markers were not expressed at this stage (e.g., CD82) (Alexander et 

al., 2016; Uezumi et al., 2016) or not distinguishing between myogenic and other cells (e.g., 

NCAM1 and ITGB1) (Figure S4-3G) (Castiglioni et al., 2014; Xu et al., 2015). Next, we examined 

co-expression of PAX3 and MET proteins in week 5-6 human limbs using IHC (Figure S4-3H). 

We found nearly overlapping expression patterns of these two proteins at the ventral or dorsal 

level, but there was a condensed population of PAX3- cells expressing low levels of MET across 

a small length at the central level. When co-stained with CDH2 (Hayashi and Ozawa, 1995; 

Yajima et al., 1999), these central cells were found to be PAX3-METlow/+CDH2- (Figure S4-3G; 

right panel mosaic images). Thus, we used MET and CDH2 to sort cells from human week 5-6 

limbs (Figure S4-3I), and found the MET+CDH2+ (M+C+) fractions highly enriched for PAX3 and 
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LBX1 transcripts compared to the MET- fractions or unsorted cells (Figure S4-3J). When cultured 

in vitro, only M+C+ cells were supported by the myogenic growth medium and expressed PAX3 

proteins, and they could form MyHC+ myotubes after switching to fusion conditions (Figure S4-

3K). 

Taken together, we mapped SMPCs and SCs from different in vivo stage human samples 

onto a developmental trajectory, and unequivocally demonstrated the highly dynamic gene 

expression profiles of these cells across development. We showed striking differences in 

expression of genes regulating cellular processes, including ECM and metabolism, and confirmed 

the observed in silico differences of the classical PAX3 and PAX7 myogenic TFs at the protein 

levels in human tissues. We also identified cell surface markers that enabled prospective isolation 

of the earliest PAX3+ myogenic population from week 5-6 developing human limbs. 

 

Directed myogenic differentiation of hPSCs generate heterogeneous cell types including both 

myogenic and non-myogenic cells 

Although there are numerous reports describing generation of SkM cells from hPSCs, 

there is often a large variation in efficiency and consistency in directed differentiation protocols 

(Kim et al., 2017). We reasoned that by using scRNA-seq, we could identify the different cell types 

present across representative protocols (See STAR Methods). The balance of myogenic and non-

myogenic populations may modulate the effectiveness of each differentiation towards SMPCs or 

SC-like cells. Using our recently published protocol (termed HX protocol) (Xi et al., 2017), we 

differentiated hPSCs towards the SkM lineage and profiled all live mononuclear cells in culture 

from 3-8 weeks of differentiation. To better track PAX7+ cells during differentiation, we used 

CRISPR-Cas9 directed homologous recombination to construct an endogenous PAX7-driven 

GFP reporter in hPSC cell lines (Figures S4-4A and S4-4B). These reporter cells were validated 

to enrich for PAX7 when GFP+ cells were sorted after artificial activation of the PAX7 locus by 



 

 

 

 131 

the dCas9-VPR system (Figures S4-4C-S4-4E) or from directed myogenic differentiation (Figures 

S4-4F-I). 

At week 3, the earliest differentiation time point examined, we detected very few SkM cells 

in dissociated and live-sorted cultures by our scRNA-seq approach. When the reporter cells were 

used to enrich for PAX7-GFP+ cells at this time point, the sorted populations mainly consisted of 

the neural lineage including neural progenitor cells (NPCs; SOX2+) and differentiated neurons 

(DCX+), while no skeletal myogenic cells could be detected (Figure 4-5A). Interestingly, the 

proportion of SkM cells dramatically increased one week later at week 4 in live sorted populations. 

At the same time, SkM cells increased to close to half of the PAX7-GFP+-sorted populations, 

which was accompanied by a significant decrease in the proportion of neural cells (Figures 4-5B 

and S4-5C). During week 5-6 of differentiation, the proportions of SkM cells in live-sorted 

populations were relatively stable, and they represented the major cell type in PAX7-GFP+-sorted 

populations (Figures 4-5C, 4-5D and S4-5C). The SkM cell proportions at week 8 of differentiation 

were slightly decreased in both live- and PAX7-GFP+-sorted populations (Figures 4-5E and S4-

5C). Our scRNA-seq approach also confirmed the enrichment of SkM cells by using a combination 

of surface markers recently published by our group (Hicks et al., 2018) (Figure 4-5C). 

In addition to SkM and neural cells, we also found multiple other cell types dynamically 

present in live-sorted populations during the course of differentiation. At week 3 of differentiation, 

we saw a large portion of chondrogenic cells (SOX9+/COL2A1+) and SMCs (MYLK+) dominating 

the cultures (Figure 4-5A), and these populations decreased over time and were absent at 6-8 

week time points (Figures 4-5D and 4-5E). Meanwhile, a mesenchymal population expressing 

high levels of PDGFRA and THY1 but not the chondrogenic markers SOX9 or COL2A1, arose at 

week 4 and increased in proportion towards later time points of differentiation (Figures 4-5B-E). 

Another small but persistent cell type seen during the course of directed differentiation (except 

week 5) was the Schwann cell population (CDH19+) (Figures 4-5A, 4-5B, 4-5D and 4-5E). 
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Using our scRNA-seq strategy, we also examined the directed myogenic differentiation 

cultures from two additional protocols widely used by our lab and others published by Chal et al 

and Shelton et al (here termed JC and MS protocol, respectively) (Chal et al., 2015; Shelton et 

al., 2014). At week 5 of differentiation by JC protocol, we observed both myogenic and 

nonmyogenic populations present in cultures (Figure S4-5A). The latter included NPCs, neurons, 

Schwann cells as well as a mesenchymal population expressing high levels of PDGFRA, THY1 

and DCN which is likely composed of subpopulations indicated by varying degrees of expression 

of additional markers (e.g., ALCAM, LUM and COL11A1). The cellular composition of the 

differentiation culture at week 6-7 using MS protocol were found to be quite different from that 

obtained from HX and JC protocols (Figure S4-5B). In addition to SkM cells, we observed a robust 

population highly expressing genes encoding cytokeratins (e.g., KRT19) or those pertaining to 

keratinization (e.g., PERP), and therefore is likely involved in epithelium development. There was 

another major population enriched for genes involved in skeletal development (e.g., COL1A1 and 

OGN) but lacking strong expression of the canonical commitment markers for the osteogenic, 

chondrogenic or tenogenic lineages. We also found a small subset of cells enriched for genes 

participating in cholesterol biosynthesis (CRABP1 and CRABP2) but the accurate identity of this 

population is yet to be determined. 

In conclusion, our scRNA-seq approach identified dynamic cellular compositions, both 

myogenic and non-myogenic, during the course of hPSC SkM directed differentiation across 

multiple protocols. This provides a unique resource to not only further explore hPSC-derived 

myogenic cells, but also other cell types present in the differentiation cultures and their potential 

influences on in vitro hPSC myogenesis. 

 
Skeletal muscle cells derived in vitro from hPSCs harbor multiple myogenic subpopulations 

during the course of directed differentiation 

Similar to our approach on studying in vivo human myogenesis, we bioinformatically isolated the 

SkM cells from cultures examined during 4-8 weeks of in vitro hPSC directed differentiation using 
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HX protocol. Consistent with our in vivo findings, we also found subpopulations representing 

different myogenic commitment status, i.e., MP, MB and MC cells at all time points of directed 

differentiation, and the relative distribution of these three subpopulations largely stayed constant 

regardless of differentiation timing or enrichment strategies (Figures 4-6A-D). Of note, we 

detected MBs and MCs within the SkM populations even from PAX7-GFP+-sorted fractions. This 

is likely due to the low expression of PAX7 in early committed MBs (Figures 4-6A-D, middle 

panels) and the high stability of the GFP proteins (Li et al., 1998) retained in committed cells that 

have previously expressed PAX7. Interestingly, MPs at 4 weeks of directed differentiation from 

live-sorted populations could be further subdivided into two subsets, enriching for PAX3 and 

PAX7, respectively. As expected, MPs at this differentiation time point from PAX7-GFP+-sorted 

SkM cells were mainly comprised of PAX7+ with only barely detectable PAX3+ progenitors 

(Figure 4-6A). However, at later time points MPs from either live- or PAX7-GFP+-sorted fractions 

did not show obvious expression of PAX3 and only expressed PAX7 (Figures 4-6B-D). This is 

similar to the PAX3 to PAX7 transition that we observed at early in vivo human limb myogenesis 

(Figures 4-2A2H, 4-4L and S4-3B-E). Reminiscent of the SkM.Mesen subpopulation found during 

week 7-18 of prenatal development (Figures 4-2C-F), we observed a small but consistent “side” 

population in all examined directed differentiation time points (we also termed these cells 

“SkM.Mesen” but in an in vitro context). This subset of cells showed slightly higher expression of 

myogenic activation and commitment markers MYOD1, MYOG and MYH3 than MPs, but much 

lower than MBs and MCs, suggesting they are not fully committed terminally differentiated muscle 

cells. Meanwhile, they showed appreciably lower expression of the stem/progenitor marker PAX7 

than MPs, and indeed this subpopulation was only detectable in live-sorted but not PAX7-GFP+-

enriched cell fractions (Figures 4-6A-D). 

When examining the SkM subpopulations from JC and MS protocols, we found similar 

MP, MB and MC subsets, though their relative proportions varied across different protocols 

(Figures S4-5D and S4-5E). Again, we observed the SkM.Mesen subpopulations from both 
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protocols that share many of the enriched genes and biological processes with similar populations 

from HX protocol as well as in vivo week 9 fetal samples (Figures 4-6E and S4-5F). 

Here, we consistently identified, across multiple hPSC myogenic differentiation protocols, 

major and rare subpopulations within the SkM cells. This allows us to better understand the 

dynamics of myogenic lineage development modeled in vitro by hPSCs. 

 

hPSC-SMPCs generated from multiple protocols align to a developmental stage of late embryonic 

to early fetal transition 

To determine the molecular identity of hPSC-derived SMPCs, we mapped the MP subpopulations 

from all differentiation time points generated from HX protocol along with the in vivo progenitor 

and stem cells on DM space. The in vivo cells largely retain their developmental trajectory from 

stage 1 to 5 as previously analyzed (Figure 4-4A), with minor changes possibly due to variations 

introduced by adding in the in vitro cells. SMPCs derived from hPSCs aligned to the stage 2-3 in 

vivo SMPCs along the DM1 component and diverged along DM2 which likely results from culture-

related effects (Figures 4-7A and 4-7B). To more quantitatively assess the developmental timing 

of the cells, we developed a more linear method to calculate each cell’s developmental score 

(“Dev.Score”), where we took into account the expression levels of postnatal vs. embryonic 

enriched genes in individual cells (see STAR Methods). Using this independent method, we again 

found in vitro hPSC-derived SMPCs aligned to in vivo SMPCs of stage 2 to 3, which corresponds 

to the embryonic week 7 to fetal week 12 transition period (Figure 4-7C). Furthermore, we 

included additional SMPCs generated from JC and MS protocols in our analysis pipeline and 

found that hPSC-SMPCs derived from all protocols mapped to a similar late embryonic to early 

fetal transition stage of human myogenesis (Figures S4-6A-D). 

To further explore the differences underlying the separation of in vivo and in vitro SMPCs, 

we compared the gene expression profiles of hPSC-derived myogenic progenitors from all three 

protocols to in vivo progenitors from stage 2 and 3, a developmental period that the hPSC-SMPCs 
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most closely align to. Hierarchical clustering of these five groups of cells showed major 

segregation based on source of in vivo or in vitro derivation, and within the in vitro hPSCSMPCs 

those generated from HX and JC protocols were closer to each other than those from MS protocol 

(Figure S3-6E). Next, we performed differential gene expression analysis between each of the 

three hPSC-SMPC populations compared to the stage 2 or 3 populations and found genes that 

are commonly enriched in either in vivo stage 2 or 3 cells (Figures S4-6F and S4-6G), and vice 

versa (Figures S4-6H and S4-6I). Subsequently, GO analysis of these genes revealed biological 

processes and signaling pathways consistently upregulated in SMPCs from in vivo stages 

compared to all of the three in vitro myogenic protocols. These include both positive (CCND1 and 

CDK6) and negative (SPRY1 and DUSP1) regulation of cell cycle indicating more orchestrated 

cell cycle progression, RNA splicing (RPS26 and RBM39), WNT signaling pathways (FRZB and 

TCF12) and SkM development (MYF5, MSTN and VGLL2) (Figures S4-6F, S4-6G and S4-6J). 

On the other hand, processes and pathways consistently enriched in in vitro derived cells from all 

three protocols include muscle contraction (MYL1, CKB and KLHL41), cell motility (NEFL and 

YBX3), lipid metabolism (FDFT1, NPC2 and TSPO) and ECM (DCN and MGP) (Figures S4-6H, 

S4-6I and S4-6K). These findings suggest that there are fundamental differences between 

SMPCs derived in vivo compared to in vitro, although they might represent a similar 

developmental stage. 

To better understand the gene regulatory networks distinguishing the different myogenic 

stem and progenitor cells arising during in vivo human development and derived from hPSC 

directed differentiation, we performed gene co-regulation analysis on our scRNA-seq data (see 

STAR Methods). We found co-regulated gene groups differentially expressed at distinct stages 

of myogenesis (Figure 4-7D) and performed GO analysis to explore the key biological 

processes/pathways enriched in these gene networks (Figure 4-7E). For example, gene groups 

12, 8 and 21 were upregulated in the in vitro hPSC-SMPCs compared to the in vivo cells, and 

they were enriched for GO terms such as ECM, muscle contraction and reactive oxygen species. 
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Cell cycle, translation, energy metabolism as well as morphogenesis and patterning were 

enriched in gene groups upregulated in early embryonic- as well as hPSCSMPCs, such as groups 

4, 1, 9 and 6. For gene groups upregulated in postnatal SCs (groups 10, 11, 2 and 5), enriched 

biological processes were in general involved in maintaining cellular homeostasis. Group 20 was 

found to be uniquely expressed at high levels in stage 4 SMPCs (fetal week 17-18) and was 

enriched for genes participating in neuromuscular junction establishment. Group 79 was 

expressed at a relatively stable level across prenatal development, but at low levels in hPSC-

SMPCs or postnatal SCs, and this group enriched for processes such as limb morphogenesis. 

Next, we focused on the TFs within each of the gene groups, as they have been shown to be the 

master regulators in cell fate decisions in multiple systems (Oh and Jang, 2019). We found distinct 

TF programs that were differentially enriched in embryonic/in vitro, fetal and postnatal stages 

(Figures 4-7F-H). These TFs included some canonical myogenic factors such as PITX2 and SIX1 

that were enriched in SMPCs from early in vivo stages and derived from hPSCs (Figure 4-7F), 

which is consistent with our previous findings (Figure 4-4L). However, most of these TFs are not 

classic myogenic genes, which indicates that maturation of myogenic progenitor and stem cells 

involves processes beyond the regulation of myogenic identity. Furthermore, using RNAscope 

coupled with IHC, we confirmed the dynamic expression patterns of selected TFs (NFIX, NFIC, 

KLF9 and CEBPD) in PAX7+ SMPCs/SCs in limb tissues from different embryonic, fetal and adult 

stages (Figure S4-7). Overall, these analyses provide potential candidate pathways and TFs to 

manipulate the maturation status of SMPCs in the future.  
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Discussion. 

Myogenesis occurs from early embryonic to postnatal periods and involves myogenic as well as 

other supportive cell types. Yet myogenic development in human is poorly understood. Although 

recent work has profiled skeletal muscles using scRNA-seq (Barruet et al., 2020; De Micheli et 

al., 2020; Dell'Orso et al., 2019; Giordani et al., 2019; Rubenstein et al., 2020; Tabula Muris 

Consortium et al., 2018), the scope was limited to adult tissues. In this work, we provide a 

comprehensive roadmap of in vivo human limb myogenesis at the single cell level across 

development from as early as embryonic week 5 up to adulthood. We also interrogated in vitro 

hPSC myogenic differentiation from multiple published protocols. Through trajectory analysis, we 

showed that myogenic progenitor and stem cells from different developmental stages possess 

distinct gene expression profiles, and hPSC-derived SMPCs align to an in vivo stage of late 

embryonic to early fetal transition. 

One interesting observation is the identification of a resident embryonic and fetal SkM 

subpopulation that expresses reduced canonical myogenic markers but increased levels of 

mesenchymal (e.g., PDGFRA, OGN, THY1 and DCN) and skeletal lineage genes (e.g., RUNX2, 

COL1A1, MGP and TNMD) (Figures 4-2, 4-3 and S4-2). When isolated and cultured in vitro, this 

SkM.Mesen subpopulation showed weaker myogenic fusion but stronger osteogenic 

differentiation capacities. These unique cells could represent a transient subset of myogenic cells 

existing during early myogenic development that have a higher propensity of osteogenic fate 

adoption. Indeed, it has been shown that human second trimester fetal SkM cells harbor myogenic 

and osteogenic bipotency when isolated and cultured in vitro (Castiglioni et al., 2014; Tanaka et 

al., 2012). A similar “side” population of SkM.Mesen was also detected from all three hPSC 

myogenic differentiation protocols (Figures 4-6 and S4-5). However, whether these in vitro 

SkM.Mesen cells are the same as those detected in vivo or a small subset drifting away from their 

myogenic identity due to culture conditions, needs to be further explored. It will also be interesting 

to fully characterize other cell types during the transition from prenatal to postnatal limb 
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development. Deciphering and co-opting the roles of supportive cells in vivo could increase our 

ability to mature and improve the functional potential of SMPCs derived from hPSCs in vitro. 

Our scRNA-seq pipeline enabled us to focus on the differences of the progenitor and stem 

cell subpopulations within the SkM lineage across development, avoiding potential influences 

such as commitment status from the other myogenic subpopulations. Accordingly, we were able 

to confidently map the developmental trajectory of SMPCs and SCs across development and 

identify gene expression differences that distinguishes each of them (Figures 4-4 and S4-3). 

Striking differences in ECM components have been recently reported in fetal and postnatal mouse 

myogenic progenitor and stem cells, and they are critical for the differential regenerative 

capacities of cells from different developmental stages (Tierney et al., 2016). Here, we also found 

that ECM gene expression is one of the key features that significantly changed across human 

development (Figure 4-4F), suggesting ECM remodeling as a critical process in response to both 

the intrinsic cues and extrinsic cell-cell/cell-matrix interactions during the SMPC-to-SC transition 

in human development. 

Metabolism is becoming a key feature of cell fate regulation in model organisms, including 

somite specification and mouse SC states (Koopman et al., 2014; Oginuma et al., 2017; Pala et 

al., 2018; Ryall, 2013; Ryall et al., 2015; Yucel et al., 2019), but has not been carefully evaluated 

throughout embryonic and fetal to adult development. We found that multiple genes participating 

in central metabolism were expressed at higher levels in early embryonic SMPCs and gradually 

decreased as cells transition to postnatal SCs. Consistently, negative metabolic regulators such 

as TXNIP, an inhibitor of glucose uptake and glycolysis and PDK4, which downregulates pyruvate 

entry into the mitochondrial TCA cycle, were found to be upregulated in postnatal SCs (Figure 4-

4G). This gene expression pattern most likely reflects the changing metabolic demands as 

actively expanding SMPCs during prenatal muscle establishment transition to quiescent SCs in 

postnatal homeostasis, and suggests that metabolic wiring distinguishes SMPC and SC states. 
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Although there are multiple protocols reporting generation of SkM cells from hPSCs, the 

heterogeneity and dynamics of cell types present in culture and within the myogenic populations 

have not been adequately studied. Using scRNA-seq, we undoubtedly found myogenic as well 

as significant numbers of non-myogenic populations from all three representative protocols 

examined (Figures 4-5 and S4-5). Both HX and JC protocols employ a sequential specification 

through presomitic mesoderm, somite, dermomyotome and SkM, and they yielded similar cell 

types in the differentiation cultures. Both of these two protocols generated neural cell types 

including NPCs, neurons and Schwann cells. It is worth noting that the WNT activation and BMP 

and TGFβ inhibition approach used in these protocols have also been employed in strategies to 

differentiate hPSCs towards neural crest (NC) cells (Chambers et al., 2009), which are ancestors 

of multiple cell types including peripheral neurons, Schwann cells, SMCs and craniofacial 

cartilage and bone, among others (Cheung et al., 2019). Thus, it is conceivable that the neural 

cell types generated from these protocols might be derived from NC cells that were specified 

along with somite early on during differentiation. Moreover, in HX protocol, we observed SMCs 

and chondrogenic cells present at early time points (week 3-4) but with decreased proportions 

(week 5) and eventually undetectable (week 6-8) towards later time points. These populations 

could be derivatives from either NC or somite cells (Brent and Tabin, 2002), and the decrease of 

their presence might reflect the unsuitableness of the myogenic conditions to support them in 

long-term culture. The origin of the mesenchymal populations starting at week 4 will be interesting 

to explore further and might be derived from a rare population generated early on during 

differentiation, or from cells not well-supported in culture that drift away from their original 

identities. Future in vitro lineage tracing and depletion experiments will be required to delineate 

the origins of these non-myogenic populations and their influences on the myogenic specification 

efficiencies of the protocols.  

This resource provides the ability for any lab performing hPSC differentiation to map the 

developmental identity of myogenic progenitor or stem cells. It is very striking that across all three 
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different protocols, SMPCs derived from hPSCs align comparably to the in vivo embryonic-to-fetal 

transition stage and are not equivalent to the postnatal juvenile and adult SCs (Figure 4-7 and 

Figure S4-6). Prolonging the length of directed differentiation (HX protocol; up to 8 weeks) does 

not seem to drive hPSC-SMPCs beyond this transitioning stage. Of note, even compared to the 

in vivo SMPCs at embryonic-to-fetal transition, hPSC-SMPCs still show fundamental differences 

in a wide range of biological processes (Figure S4-6). These suggest that stringent evaluation is 

required to correctly determine cell identity, molecular property and functional potential of 

myogenic derivatives across differentiation strategies from hPSCs. 

To better understand the regulatory network underlying myogenic development, we 

performed gene co-regulation analysis and identified developmental stage specific gene group 

signatures. Focusing on TFs within each group, we provide key TF programs that can serve as 

potential maturation factors for manipulating progenitor and stem cell states across development 

(Figure 4-7). We found canonical myogenic specification factors such as SIX1, PITX2 and PAX7. 

We also found other genes known to regulate SkM, such as ID2 and TCF12 (Zhao and Hoffman, 

2004) that were enriched in the embryonic and hPSC-derived SMPCs, SMAD1 (BMP signaling) 

(Sartori and Sandri, 2015) and PROX1 (Kivela et al., 2016; Petchey et al., 2014) that were 

increased from early embryonic to late fetal stage and decreased postnatally, and FOXO3 

(Sanchez et al., 2014) that was specifically expressed at high levels in postnatal SCs. 

Interestingly, we found all of the Nuclear Factor I family members (NFIA, NFIB, NFIC and NFIX) 

expressed at higher levels in late fetal or postnatal stages, suggesting this TF family might play 

an important role in myogenic maturation. In fact, NFIX has been reported to control the switch 

from embryonic-to-fetal myogenesis in both mouse and zebrafish (Messina et al., 2010; Pistocchi 

et al., 2013; Taglietti et al., 2018). Moreover, it is worth noting that the majority of the identified 

network genes are not typical myogenic TFs. For example, the Kruppel Like Factor family 

members KLF2, KLF4 and KLF9 were all enriched in postnatal SCs. This family of genes 

participates in the development and homeostasis of numerous tissues (McConnell and Yang, 
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2010), and KLF4 is well-known of its ability in induced pluripotency by acting as a pioneer factor 

that facilitates large scale chromatin remodeling (Schmidt and Plath, 2012; Takahashi and 

Yamanaka, 2016). Along this line, we also found other chromatin modifiers differentially 

expressed across development, including ARID5B, NCOA1 and NR3C1. These observations 

suggest a model where concerted efforts from canonical myogenic TFs as well as epigenetic and 

chromatin regulators are required to shape the gene regulatory landscapes and drive SMPC-to-

SC transition during development. This intricate interplay will also likely be required to instruct 

hPSCs to gain a SC-like state and maintain their cell fate identity in culture. 

In summary, this work serves as a resource for advancing our knowledge of human 

myogenesis. It also provides a tool for molecular identification of hPSC-derived SMPCs, and 

targets to guide the generation of the most regenerative cells for translational applications in SkM-

based regenerative medicine. 
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Figure Legends 

Figure 4-1. scRNA-seq identifies dynamic cell types across human limb development. See 

also Figure S4-1. (A-H) Left panels: single cells from human biological replicates grouped by age 

on tSNE plots and colored by cell type. Right panels: tSNE plots showing color-scaled 

“Muscle.Score” (purpleto-gray: high-to-low expression). SkM populations red-circled. (I-P) Bar 

plots of cell type distribution in biological replicates within age groups. 

 

Figure 4-2. Different skeletal myogenic subpopulations are present across human 

development. See also Figure S4-2. (A-H) Left panels: single cells classified as “SkM” within each 

age group on tSNE plots and colored by myogenic subtype. Right panels: dot plots of selected 

subtype markers. (I-K) Selected enriched GO terms from DEGs enriched in MC vs. MP (I), MP 

vs. MC (J) or SkM.Mesen vs. the main SkM subpopulations (MP, MB and MC) (K). (L) Heatmap 

of selected markers of different pathways across averaged SkM subpopulations. 

 

Figure 4-3. Prospective isolation and in vitro differentiation potential of the SkM.Mesen 

subpopulation in human embryonic and fetal limbs. See also Figure S4-2. (A and B) IHC staining 

of PAX7 and PDGFRA in human limb sections. Images in (B) show enlarged area of the boxed 

region in (A). Cross (x), PAX7+PDGFRA+; arrow, PAX7-PDGFRA+; arrowhead, 

PAX7+PDGFRA-. Scalebars represent 50 (A) or 20 (B) μm. Representative images are shown 

from 4 week 7-17 human embryonic and fetal limbs. (C) tSNE plots of CDH15 (purple-to-gray: 

high-to-low expression). (D) Flow cytometry analysis of CDH15 and PDGFRA co-expression. 

Representative FACS plots are shown from 3-4 samples for each age group. (E) Freshly sorted 

CDH15 (15) and PDGFRA (P) subpopulations were subjected to qRT-PCR for myogenic, 

osteogenic as well as mesenchymal and ECM gene expression. (F-I) Sorted 15+P- and 15+P+ 

cells subjected to myotube fusion followed by IF of MyHC (F) and qRT-PCR of myogenic 

commitment genes (G), or osteogenic conditions followed by Alizarin Red S staining (H) and qRT-
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PCR of osteogenic differentiation markers (I). Scalebars in (F) represent 100 μm. Data shown in 

(E-I) are representative of 2-3 human fetal limbs. Data of qRT-PCR are normalized to RPL13A as 

mean+SD of technical triplicates. 

 

Figure 4-4. Skeletal myogenic progenitor and stem cells display dynamic gene expression 

signatures across human development. See also Figure S4-3. (A) DM plot of single cells of in vivo 

SMPCs and SCs computationally clustered into 5 major stages. (B) Proportions of cells from each 

biological sample assigned to each computational stage. (C-L) Dot plots of selected markers for 

each labelled category. Pst, postnatal (including juvenile and adult). (M) Venn diagram of 

upregulated genes in stage 5 SCs compared to each stage of SMPCs from stage 1-4. (N) 

Selected enriched pathways from the 140 genes (M) commonly upregulated in SCs compared to 

each stage of SMPCs.  

 

Figure 4-5. scRNA-seq identifies skeletal myogenic populations as well as other cell types 

during hPSC differentiation. See also Figures S4-4 and S4-5. (A-E) From left to right. First panels: 

single cells from hPSC-derived samples using HX protocol grouped by differentiation time on 

tSNE plots and colored by cell type. Second panels: tSNE plots showing color-scaled 

“Muscle.Score” (purple-to-gray: high-to-low expression). The tiny SkM population at week 3 is 

red-circled. Third panels: bar plots of cell type distribution in enriched or unenriched samples at 

similar differentiation time points. Fourth panels: tSNE plots of selected cell type markers (purple-

to-gray: high-to-low expression). Small populations are boxed for easy visualization. 

 

Figure 4-6. scRNA-seq identifies myogenic subpopulations during hPSC myogenic 

differentiation. See also Figures S4-4 and S4-5. (A-D) Left panels: single cells classified as “SkM” 

derived using HX protocol at similar time points on tSNE plots and colored by myogenic subtype. 

Middle panels: dot plots of selected subtype markers. Right panels: bar plots of subtype 



 

 

 

 144 

distribution in enriched or unenriched samples at similar differentiation time points. (E) DEGs 

upregulated in SkM.Mesen vs. the main SkM subpopulations (MP, MB and MC) from three hPSC 

differentiation protocols as well as human fetal week 9 samples were subjected to GO enrichment 

analysis. Heatmap clustering of the top 20 shared GO groups based on enrichment p values. 

 

Figure 4-7. In vitro hPSC-SMPCs align to an embryonic-to-fetal transition stage of in vivo 

human myogenesis. See also Figures S4-6 and S4-7. (A) DM plot of single cells of in vivo and in 

vitro (HX protocol) SMPCs and SCs. (B) DM plots highlighting cells (in red) from individual in vivo 

or in vitro (HX protocol) stages. (C) Ridge plot of developmental score (“Dev.Score”) distribution 

across in vivo or in vitro (HX protocol) stages. (D) Heatmap of selected co-regulated gene groups 

(gene number > 50) across averaged in vivo or in vitro (HX protocol) stages. (E) Two selected 

enriched GO terms from each gene group are plotted and color-coded. (F-H) Dot plots of selected 

TFs differentially enriched in embryonic/in vitro, fetal and postnatal stages. 
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Figures 

 
Figure 4-1 – scRNA-seq identifies dynamic cell types across human limb development 
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Figure 4-2 – Different skeletal myogenic subpopulations are present across human 
Development 
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Figure 4-3 – Prospective isolation and in vitro differentiation potential of the SkM.Mesen 
subpopulation in human embryonic and fetal limbs. 
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Figure 4-4 – Skeletal myogenic progenitor and stem cells display dynamic gene expression 
signatures across human development 
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Figure 4-5 – scRNA-seq identifies skeletal myogenic populations as well as other cell types 
during hPSC differentiation 
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Figure 4-6 – scRNA-seq identifies myogenic subpopulations during hPSC myogenic 
differentiation 
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Figure 4-7 – In vitro hPSC-SMPCs align to an embryonic-to-fetal transition stage of in vivo 
human myogenesis. 
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Figure S4-1 – Cell types present in limbs and skeletal muscle tissues at different human 
developmental stages 
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Figure S4-2 – Characterization of skeletal myogenic subpopulations in human fetal limbs 
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Figure S4-3 – Distinct SMPC and SC populations across human development and isolation of 
myogenic cells from early human embryonic limbs 
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Figure S4-4 – Construction of the PAX7-GFP reporter cell lines 
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Figure S4-5 – scRNA-seq reveals heterogeneous cell types and skeletal muscle subpopulations 
from additional hPSC myogenic differentiation protocols 
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Figure S4-6 – In vitro SMPCs derived from multiple hPSC myogenic differentiation protocols are 
different from in vivo human myogenic progenitor cells during embryonic-to-fetal transition 
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Figure S4-7 – Validation of expression of TFs differentially expressed across human 
developmental stages 
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Method Details 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, April D. Pyle (apyle@mednet.ucla.edu). 

 

Materials availability 

Plasmids generated in this study will be provided upon request. 

 

Data and code availability 

Both raw sequencing reads and processed digital gene expression (DGE) matrices of scRNAseq 

datasets are deposited at NCBI GEO with accession number GSE147457. Interactive scRNA-seq 

data exploration can be accessed at skeletal-muscle.cells.ucsc.edu or aprilpylelab.com/datasets. 

General codes for computational analysis follow the instructions of the respective software and 

customized modifications will be available upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human tissues 

Human tissues of 9 weeks of gestation or younger were obtained from electively aborted embryos 

and fetuses following informed consent and de-identification in accordance with institutional 

guidelines, which was approved by the local research ethics committee of the University of 

Tübingen (#312/2016BO1 and #634/2017BO1). Human tissues of 12-18 weeks of gestation were 

obtained from the University of California Los Angeles (UCLA) Center for AIDS Research (CFAR) 

Gene and Cellular Therapy Core using institutional review board (IRB)-approved de-identified and 

consented electively aborted human fetuses. Skeletal muscles from the 7 years old human 

juvenile subject were obtained from leftover tissues from surgical procedures approved by the 



 

 

 

 160 

UCLA institutional IRB, with patient consent and de-identification. Skeletal muscles from the 11 

years old human juvenile subject and the two adult human subjects were obtained from donor 

autopsy provided by the National Disease Research Interchange (NDRI) with de-identification. 

Use of human tissues was IRB exempt by the UCLA Office of the Human Research Protection 

Program (IRB #15-000959). 

 

Cell lines 

The H9 human embryonic stem cells (WA09; WiCell Research Institute) are registered in the NIH 

Human Embryonic Stem Cell Registry with the Approval Number: NIH hESC-10-0062 

(https://grants.nih.gov/stem_cells/registry/current.htm?id=414). The PAX7-GFP reporter cell lines 

are derived from the H9 cells. 

 

Cell preparation for single cell RNA-sequencing 

Embryonic week 7.25 and younger samples 

Whole limbs were washed with wash buffer consisting of DMEM/F12, 10% fetal bovine serum 

(FBS), 1% Penicillin-Streptomycin (P/S) and 0.1% Amphotericin. Tissues were then mechanically 

chopped into small pieces at room temperature (RT) in digestion buffer consisting of wash buffer 

supplemented with 2 mg/ml of Collagenase IV and 1 mg/ml of Dispase II. Chopped tissues were 

further incubated in digestion buffer on a shaker at 37°C for 10-20 minutes with intermittent 

trituration. Digestion was stopped by adding surplus amount of Dropseq buffer consisting of 

phosphate-buffered saline (PBS) supplemented with 0.01% bovine serum albumin (BSA). 

Digested tissues were filtered twice through 40 μm cell strainers, spun down and resuspended in 

small volumes of Drop-seq buffer. Cell number was counted and resuspended cells were kept on 

ice until subjected to the Drop-seq flow procedures. 

 

Embryonic week 7.75 and fetal week 9 samples 



 

 

 

 161 

Whole limbs excluding feet were washed with wash buffer and then mechanically chopped into 

small pieces at RT in digestion buffer consisting of wash buffer supplemented with 2 mg/ml of 

Collagenase II and 1 mg/ml of Dispase II. Chopped tissues were further incubated in digestion 

buffer on a shaker at 37°C for 20-25 minutes with intermittent trituration. Digestion was stopped 

by adding surplus amount of Drop-seq buffer. Digested tissues were filtered twice through 40 

μm cell strainers, spun down and resuspended in small volumes of Drop-seq buffer. Cell number 

was counted and resuspended cells were kept on ice until subjected to the Drop-seq flow 

procedures. 

 

Fetal week 12-18 samples 

Skeletal muscles from whole limbs were separated from bones and skin. Muscles were washed 

with wash buffer and then mechanically chopped into small pieces at RT in digestion buffer 

consisting of wash buffer supplemented with 2 mg/ml of Collagenase II, 1 mg/ml of Dispase II and 

50 μg/ml of DNase I. Chopped tissues were further incubated in digestion buffer on a shaker at 

37°C for 20-25 minutes with intermittent trituration. Digestion was stopped by adding surplus 

amount of fluorescence-activated cell sorting (FACS) buffer consisting of PBS supplemented with 

1% FBS and 1% P/S. Digested tissues were filtered through 100 μm cell strainers and spun down. 

Cell pellets were resuspended in FACS buffer, filtered through 70 μm cell strainers, spun down 

and resuspended again in small volumes of FACS buffer. Cells were then incubated on ice with 

antibodies against CD31, CD45 and CD235a. Stained cells were sorted on BD FACSAria sorters 

to collect the DAPI-/CD31-/CD45-/CD235a- fraction (live and depletion of the endothelial and 

hematopoietic lineages). Sorted cells were washed with Dropseq buffer, spun down and 

resuspended in small volumes of Drop-seq buffer. Cell number was counted and resuspended 

cells were kept on ice until subjected to the Drop-seq flow procedures. 

 

Postnatal juvenile and adult samples 
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Skeletal muscles from autopsy or surgical procedures were washed with wash buffer and then 

mechanically chopped into small pieces at RT in primary digestion buffer consisting of wash buffer 

supplemented with 2 mg/ml of Collagenase II. Chopped tissues were further incubated in primary 

digestion buffer on a shaker at 37°C for 10-20 minutes with intermittent trituration. Primary 

digestion was stopped by adding surplus amount of wash buffer and tissues spun down. Next, 

supernatant was removed and tissues were resuspended in secondary digestion buffer consisting 

of wash buffer supplemented with 7 mg/ml of Collagenase D, 1.5 mg/ml of Dispase II and 50 

μg/ml of DNase I. Tissues were further digested on a shaker at 37°C for 15-20 minutes with 

intermittent trituration. Secondary digestion was stopped by adding surplus amount of FACS 

buffer. Digested tissues were filtered through 100 μm cell strainers and spun down. Cell pellets 

were resuspended in FACS buffer, filtered through 70 μm cell strainers, spun down and 

resuspended again in small volumes of FACS buffer. Cells were then incubated on ice with 

antibodies against CD31, CD45 and CD235a. Stained cells were sorted on BD FACSAria sorters 

to collect the DAPI-/CD31-/CD45-/CD235a- fraction (live and depletion of the endothelial and 

hematopoietic lineages). Sorted cells were washed with Drop-seq buffer, spun down and 

resuspended in small volumes of Drop-seq buffer. Cell number was counted and resuspended 

cells were kept on ice until subjected to the Drop-seq flow procedures. 

 

Human pluripotent stem cell-derived samples 

At the end of directed differentiation, cells were dissociated by 2 mg/ml of Collagenase IV for 

about 5 min, followed by TrypLE Express for another 5-7 minutes. Dissociation was stopped by 

adding surplus amount of FACS buffer and dissociated cells were filtered sequentially through 

100 and 70 μm cell strainers. Cells were spun down and resuspended in small volumes of FACS 

buffer. For some samples, cells were incubated on ice with antibodies against ERBB3, NGFR and 

HNK1. Cells were sorted on BD FACSAria sorters to collect the total live (DAPI-), DAPI-

/ERBB3+/NGFR+/HNK1- or DAPI-/GFP+ fractions. Sorted cells were washed with Drop-seq 
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buffer, spun down and resuspended in small volumes of Drop-seq buffer. Cell number was 

counted and resuspended cells were kept on ice until subjected to the Drop-seq flow procedures. 

 

Cell capture and library construction for single cell RNA-sequencing 

Prepared single cell solutions were subjected to single cell capture and droplet formation following 

instructions in the online Drop-seq protocol v.3.1 (http://mccarrolllab.org/download/905/) and 

those published in the original Drop-seq paper (Macosko et al., 2015). In brief, cells at 150,000 

cells/ml, barcoded beads at 175,000 beads/ml and droplet generation oil were co-flowed at a rate 

of 4, 4, and 15 ml/hour, respectively, in a PDMS microfluidics chip to generate oil droplets 

containing beads and lysed cells. Post flow, droplets were breakdown and reverse transcription 

performed. Complementary DNA was PCR amplified, magnetically cleaned up and subjected to 

tagmentation and sequencing library construction. Prepared libraries were cleaned up and 

sequenced via Illumina HiSeq2500, HiSeq4000 or NovaSeq. 

 

Human PSC maintenance 

The parental H9 cells and engineered PAX7-GFP reporter cells were maintained on 

Matrigelcoated tissue culture plates in mTeSR1 medium. Cells were fed with fresh medium every 

day and passaged with 0.5 mM of EDTA every 4-6 days. 

 

Human PSC skeletal myogenic directed differentiation 

HX protocol 

Differentiation was performed following procedures published by Xi, et al. (Xi et al., 2017) with 

minor modifications. Briefly, on day -1 hPSC colonies were dissociated into single cells with 

TrypLE Express and seeded on Matrigel-coated tissue culture plates at 12,500-25,000 cells/cm2 

in mTeSR1 medium containing 10 μM of Y-27632. Differentiation was initiated the next day (day 
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0) when medium was switched to DMEM/F12 medium containing 1% ITS-G, 0.5% P/S and 3 μM 

of CHIR99021 (CHIR) for 2 days. On day 2, cells were switched to DMEM/F12 medium containing 

1% ITS-G, 0.5% P/S, 200 nM of LDN193189 (LDN) and 10 μM of SB431542 (SB) for another 2 

days. On day 4, LDN and SB from the previous medium were replaced with 10 μM of CHIR and 

20 ng/ml of FGF2 for 2 days. On day 6, medium was switched to DMEM medium containing 0.5% 

P/S, 15% KSR (Knockout Serum Replacement), 10 ng/ml of HGF and 2 ng/ml of IGF1 until the 

end of differentiation. Cells were fed with fresh medium every day until day 6 and every other day 

thereafter. 

 

JC protocol 

Differentiation was performed following procedures published by Chal, et al. (Chal et al., 2015; 

Chal et al., 2016). Briefly, on day -1 hPSC colonies were dissociated into single cells with TrypLE 

Express and seeded on Matrigel-coated tissue culture plates at 15,000 cells/cm2 in mTeSR1 

medium containing 10 μM of Y-27632. Differentiation was initiated on day 0 by switching to a 

medium containing DMEM/F12, 1% ITS-G, 1% nonessential amino acids (NEAA) and 0.5% P/S 

supplemented with 3 μM of CHIR and 0.5 μM of LDN. On day 3, 20 ng/ml of FGF2 was added to 

the differentiation medium for an additional 3 days. On day 6, medium was changed to a medium 

containing DMEM/F12, 15% KSR, 1% NEAA, 0.5% P/S and 0.1 mM of 2-mercaptoethanol 

supplemented with 10 ng/ml of HGF, 2 ng/ml of IGF1, 20 ng/ml of FGF2 and 0.5 μM of LDN for 2 

days. On day 8, medium was changed to DMEM/F12 containing 15% KSR, 1% NEAA, 0.5% P/S 

and 0.1 mM of 2-mercaptoethanol supplemented with 2 ng/ml of IGF1. On day 12 until the end of 

differentiation, 10 ng/ml of HGF was added to the previous medium. Cells were fed with fresh 

medium every day until day 12 and every other day thereafter. 

 

MS protocol 



 

 

 

 165 

Differentiation was performed following procedures published by Shelton, et al. (Shelton et al., 

2014) with minor modifications (Hicks et al., 2018). Briefly, on day -1 hPSC colonies were 

dissociated into single cells with TrypLE Express and seeded on Matrigel-coated tissue culture 

plates at 37,500 cells/cm2 in mTeSR1 medium containing 10 μM of Y-27632. On the next day 

(day 0), differentiation was initiated by switching to the E6 medium containing 0.5% P/S 

supplemented with 10 μM of CHIR for 2 days. On day 2, cells were switched to E6 medium 

containing 0.5% P/S for 10 days. On day 12, medium was changed to StemPro-34 medium 

supplemented with 0.5% P/S, 2 mM of L-glutamine, 0.45 mM of 1-thioglycerol, 11 μg/ml of human 

transferrin and 5 ng/ml of FGF2 for 6 to 8 days. On around day 20, medium was switched to E6 

medium containing 0.5% P/S for about 10-15 days with the medium during the last 5-7 days of 

this period supplemented with 10 ng/ml of IGF1. From around day 30-35, medium was changed 

to DMEM/F12 containing 1.2% N2 supplement, 1% ITS-G, 0.5% P/S and 10 ng/ml of IGF1 for 

about 5 days. From then on cells were cultured in the same medium supplemented with 3 μM of 

SB until the end of differentiation. Cells were fed with fresh medium every day. 

 

PAX7-GFP reporter cell construction 

Candidate guide RNAs (gRNAs) targeting the 3’ untranslated region (UTR) of PAX7 transcript 

variant 3, which is conserved across species, were designed using the online tool at 

crispr.mit.edu. The targeting region was limited to the last 1600 bp of the 3’ UTR to exclude the 

potential human miR206/miR1-1/miR1-2 binding sites predicted by miRbase 

(http://www.mirbase.org/), as the mouse counterparts of these miRNAs have been shown to 

regulate Pax7 expression (Chen et al., 2010). Next, each of the candidate gRNAs in both the 

regular 20 bp form and short 17 bp form (which has been reported to increase specificity by (Fu 

et al., 2014)) was cloned into a gRNA cloning vector (Addgene, #41824; (Mali et al., 2013)) using 

the Gibson Assembly Cloning Kit following manufacturer’s instructions. The final gRNA used was 

selected based on the highest cleavage efficiencies in hPSCs when a hCas9 plasmid (Addgene, 
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#41815; (Mali et al., 2013)) was co-expressed. The PAX7 targeting homology arms were then 

PCR amplified from the H9 cell genomic DNA based on the gRNA targeting region selected. For 

homologous recombination (HR) vector, the Oct4-IRES-eGFP-PGK-Neo plasmid (Addgene, 

#48681; (Yang et al., 2013)) was used and the Oct4 targeting homology arms were replaced by 

the ones targeting PAX7 using the Gibson Assembly Cloning Kit following manufacturer’s 

instructions. Plasmids encoding gRNA, hCas9 and the HR construct (2 μg each) were 

nucleofected together into 800,000 H9 cells following the Lonza Amaxa 4D guideline with program 

CA-137. Four days post nucleofection, neomycin/G418 selection at 50 μg/ml was applied for 5 

days and then increased to 100 μg/ml afterwards. Individual resistant clones were expanded and 

genotyped to confirm correct insertion of the reporter cassette. One of the confirmed clones was 

incubated with recombinant TAT-Cre protein (a gift from Dr. William Pastor, McGill University) to 

remove the PGK-neomycin cassette between the LoxP sites. Single cell clones were selected, 

expanded and confirmed by genotyping and they regained sensitivity to neomycin/G418. Two of 

the final clones, #13 and #22 were used for downstream functional validation and clone #22 were 

used for directed differentiation for scRNA-seq experiments. Both clones were confirmed to 

express the pluripotency markers (NANOG, OCT4 and SOX2) by immunofluorescence staining. 

They were also examined and showed normal karyotypes. 

 

PAX7-GFP reporter validation 

Method of dCas9-VPR 

Four gRNAs targeted to the PAX7 promoter region (Murmann et al., 2000) were designed using 

crispr.mit.edu. Each gRNA was cloned individually into the gRNA cloning vector (Addgene, 

#41824) similarly to previously described (Mali et al., 2013). In brief, 50 ng AflII-digested empty 

gRNA plasmid was mixed with 3.8 ng of the forward and reverse oligos and combined using the 

NEBuilder HiFi DNA Assembly Master Mix according to the manufacturer’s instructions. To 

activate endogenous PAX7 locus, plasmids encoding for all 4 gRNAs along with one for dCas9- 
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VPR (Addgene, #63798; (Chavez et al., 2015)) were co-transfected using ViaFect according to 

manufacturer’s instructions. To limit nucleofection-related toxicity and increase transfection 

efficiency, H9 cells were dissociated into single cells with TrypLE Express and seeded on 

Matrigel-coated tissue culture plates at 25,000 cells/cm2 in mTeSR1 medium containing 10 μM 

of Y-27632. The next day medium was changed to DMEM/F12 medium containing 1% ITS-G, 

0.5% P/S and 3 μM of CHIR for 2 days. One day before transfection, cells were dissociated into 

single cells and seeded on Matrigel-coated tissue culture plates at 75,000 cells/cm2 in DMEM 

medium supplemented with 20% FBS, 1% chicken embryo extract and 20 ng/ml of FGF2. One 

day after, cells were co-transfected in the same medium with 0.5 μg of each plasmids. Cells were 

grown for 3 more days with medium changing every day to express the vectors and activate the 

PAX7-GFP reporter cassette. Cells were then harvested and purified by FACS. Cells co-

transfected with dCas9-VPR plasmid and the empty gRNA vector were used as controls. The 

GFP+ and GFP- cell fractions were collected and subjected to downstream analysis. 

 

Method of directed differentiation 

PAX7-GFP reporter cells were subjected to directed differentiation by the HX protocol as 

described above. Cells were harvested and purified by FACS. The H9 parental cells were 

differentiated alongside the reporter cells and used as controls. The GFP+ and GFP- cell fractions 

were collected and subjected to downstream analysis. 

 

FACS cell sorting 

Single cell solutions were filtered through 40 μm cell strainers and incubated with 1 μg/ml of DAPI 

as a live/dead cell indicator. When cell surface labelling was needed, cells were first blocked by 

Human TruStain FcX at RT for 5-10 minutes, followed by fluorophore-conjugated primary 

antibodies on ice for 20-30 minutes. For antigens requiring 2-step antibody staining, cells were 

stained on ice for 20-30 minutes with unconjugated primary antibodies followed by fluorophore-
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conjugated secondary antibodies on ice for another 20-30 minutes. Stained cells were washed 

with FACS buffer and processed as described above. Cells were sorted by BD FACSAria sorters 

with FACSDiva software. Standard gating strategies were applied to exclude the debris, doublets 

and dead cells. Marker specific gating was set up using fluorescenceminus-one stained controls. 

The parental H9 cells were used for GFP gating. Sorted cells were collected into buffers 

containing 10% FBS and kept cold until downstream processing. FACS plots were generated 

using FlowJo. 

 

Immunofluorescence 

Cells were fixed with 4% PFA for 10 minutes, followed by permeabilization with 0.3% Triton X-

100 in PBS at RT for 10 minutes at RT. Samples were then blocked with 3% BSA, 10% goat 

serum and 0.3% Triton X-100 in PBS for 60 minutes at RT. Primary antibodies were applied for 

overnight at 4°C and fluorophore-conjugated secondary antibodies for 60 minutes at RT. Nuclei 

were counter stained with DAPI at 1 μg/ml. Images were captured using a Zeiss Axio Observer.Z1 

microscope equipped with an AxioCamMR3 camera. Image processing and quantification were 

performed using Fiji/ImageJ (Schindelin et al., 2012) or Zeiss ZEN 3.1 (blue edition). 

 

Cytospin 

Sorted cells were spun down onto Superfrost Plus microscope slides using Shandon Double 

Cytofunnel in a Shandon Cytocentrifuge. Attached cells were processed for immunofluorescence 

(IF) staining and imaging as described above. Immunohistochemistry with tyramide signal 

amplification Human embryos and tissues were fixed with 4% PFA for one day at 4°C, washed 

and embedded in paraffin. To reduce tissue autofluorescence for samples of fetal week 9 and 

older, they were subjected to a dehydration-bleaching-rehydration process before embedding as 

described by The Collection of Immunolabeled Transparent Human Embryos and Fetuses project 

(https://transparent-human-embryo.com/?page_id=649) (Belle et al., 2014). Tissue blocks were 



 

 

 

 169 

then sectioned at a 4 μm interval onto Superfrost Plus microscope slides. For 

immunohistochemistry (IHC) staining, sections were deparaffinized with Xylene and rehydrated 

through EtOH/water gradient. Antigen retrieval was performed with a pressure cooker using 10 

mM of sodium citrate buffer, followed by blocking with 3% BSA, 10% goat serum and 0.1% Tween 

20 in PBS for 60 minutes at RT. Primary antibodies were applied for overnight at 4°C and HRP-

conjugated secondary antibodies were applied for 45-60 minutes at RT. Tyramide signal 

amplification (TSA) was performed using the TSA Plus Fluorescence kits per the manufacturer’s 

instructions to amplify the fluorescent signals. Slides were mounted with DAPI nuclei 

counterstaining and proceeded to image capture and analysis as described above. Images 

showing whole limbs of early embryonic development were captured in a mosaic mode and 

stitched together using the Zeiss software. 

 

RNAscope with Immunohistochemistry 

Human tissues were processed similar to regular IHC procedures as described above, except 

that fixation was performed at RT instead of 4°C and the bleaching step was omitted according 

to manufacturer’s recommendations. Sections were hybridized with cataloged or custom 

designed RNAscope probes and signal developed per manufacturer’s instructions using the 

RNAscope Multiplex Fluorescent Reagent Kit v2, with in-house protease treatment optimization 

(Protease Plus 15 minutes). Probe-hybridized sections were further subjected to IHC staining of 

PAX7 with TSA and imaged as described above. Quantification of RNAscope signals and PAX7 

cells was performed using Zeiss ZEN 2.6 Pro (blue edition) software. RNAscope negative probes 

were applied on sections from different individual samples to set the threshold for positive signal 

counting. 

 

Quantitative real time-PCR 
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Cells were harvested and RNA extracted using RNeasy Plus Mini or Micro Kit. Complementary 

DNA was synthesized using iScript Reverse Transcription Supermix and quantitative real time- 

PCR (qRT-PCR) was performed using SsoAdvanced Universal SYBR Green Supermix with 

technical triplicates on a Bio-Rad CFX384 Touch Real-Time PCR Detection System or a Thermo 

Fisher Scientific QuantStudio 6 Pro Real-Time PCR System. All primer pairs were selected from 

PrimerBank (Spandidos et al., 2010) or designed using Primer-BLAST (Ye et al., 2012) and tested 

in-house to ensure an amplification efficiency between 90-110%. Primer sequences for BGLAP, 

CKM, DCN, eGFP, IBSP, MYH8, OGN and RPL13A are listed in Methods S1. Other primer pairs 

are the same as previously reported (Xi et al., 2017). 

 

In vitro myotube fusion assay 

Sorted cells were resuspended in Lonza SkGM2 medium supplemented with 20 ng/ml of FGF2 

and plated onto Matrigel-coated culture wells. Cells were cultured for 5-7 days until they reached 

>70-80% confluency. Then, medium was switched to DMEM/F12 medium containing 1% ITS-G, 

0.5% P/S and 1% N2 supplement to induce fusion for 4-6 days. Medium was refreshed every 

other day during the culture, and cells at the end of fusion were subjected to IF staining and 

imaging as described above. 

 

In vitro myogenic and osteogenic bipotential differentiation assays 

Sorted cells were plated onto Matrigel-coated culture wells and expanded for 4-6 days in 

expansion medium (DMEM/F12 medium containing 20% FBS, 1% GlutaMAX, 1% NEAA, 1mM 

sodium pyruvate, 0.5% P/S and 20 ng/ml of FGF2). Cells were then split and cultured for another 

2-3 days in expansion medium until they reached >70-80% confluency. For myogenic 

differentiation, medium was switched to fusion medium for 4-6 days as described above and cells 

were subjected to IF staining or harvested for qRT-PCR at the end of the fusion period. For 

osteogenic differentiation, medium was switched to Thermo Fisher Scientific StemPro 
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Osteogenesis Differentiation medium for 2-3 weeks. At the end of the osteogenic period, cells 

were subjected to Alizarin Red S staining as previously reported (Xi et al., 2017) or harvested for 

qRT-PCR analysis. Medium was refreshed every other day during expansion and differentiation. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Processing, read alignment and digital gene expression matrix generation 

The raw sequencing reads were processed using the Drop-seq_tools-1.13 pipeline from the 

McCaroll lab (https://github.com/broadinstitute/Drop-seq/releases/tag/v1.13), following the 

general guidelines from the Drop-seq Alignment Cookbook v1.2 

(https://github.com/broadinstitute/Dropseq/files/2425535/DropseqAlignmentCookbookv1.2Jan20

16.pdf) (Macosko et al., 2015). Briefly, reads were indexed and filtered by read quality. 

Sequencing adapter and polyA sequences were trimmed, and reads were further filtered to retain 

those of a length of at least 30 nucleotides. Processed reads were aligned to the human reference 

genome (hg19) using Bowtie2 (v2.2.9 with the ‘--very-sensitive’ mode) (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) (Langmead and Salzberg, 2012). Aligned reads were 

tagged to gene exons using Bedtools Intersect (v2.26.0) (https://github.com/arq5x/bedtools2) 

(Quinlan and Hall, 2010). Knee plots of cell-to-read fraction were generated to estimate the 

number of cell barcodes representing true cells. Digital gene expression matrices (DGEs) were 

then generated by counting gene transcripts for the number of cell barcodes selected based on 

the infliction points in the knee plots. To correct for any bead synthesis errors/read errors leading 

to false barcodes, transcript barcodes (unique molecular identifiers; UMIs) or cell barcodes were 

merged when they were within 1 Hamming or 2 Levenshtein distances, respectively. Barcodes 

containing < 2500 reads were excluded from the DGEs. 

 

Computational analysis using Seurat 
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Data filtration, normalization and scaling Downstream computational analyses of scRNA-seq data 

were mainly performed using the R package Seurat v2.3.3 

(https://github.com/satijalab/seurat/releases/tag/v2.3.3) (Butler et al., 2018) by largely following 

the standard guidelines from the Satija lab (https://satijalab.org/seurat/). Seurat objects were 

generated with DGEs constructed as described above. Violin plots of number of expressed genes 

and unique transcripts (nGene and nUMI, respectively) of each cell were generated and outliers 

with too high or too low nGene and nUMI were removed to exclude potential cell 

doublets/aggregates or low quality cells/cell debris, respectively. As sequencing depth and cell 

type compositions vary across different samples, this filtration step was performed on a sample-

to-sample basis. In general, prenatal and hPSC derived samples were filtered with a minimum 

nGene of 500-1000. We consistently observed lower number of genes expressed from postnatal 

juvenile and adult samples, although in general they have the lowest unique read fraction levels 

(suggesting higher sequencing coverage) among all samples. Therefore, we set the nGene 

threshold of these samples to 250-400. After the cell filtration step, expression counts of each cell 

were normalized with the default Seurat setting using “NormalizeData”. To mitigate the cell cycle 

effects on potentially grouping different cell types based on their cell cycle states, we assigned 

“S.Score” and “G2M.Score” on each cell with the average normalized expression levels of core 

cell cycle genes using “CellCycleScoring” following the Seurat instructions (Tirosh et al., 2016). 

To reduce the effects of dissociation-related stress on gene expression analysis, we obtained the 

core stress genes identified from scRNA-seq studies on both mouse skeletal muscle and acinar 

(van den Brink et al., 2017), and assigned each cell a “Stress” score using the core stress gene 

list through the Seurat “AddModuleScore” function. Briefly, this function first assigned each of the 

genes to be analyzed into different bins based on the genes’ average expression across single 

cells. It then calculated a residual for each analyzed gene in each cell by subtracting the average 

expression of the control gene set from the expression level of the gene being analyzed, where 

the control genes were randomly selected from the bin that the analyzed gene was assigned to. 
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This process was then reiterated through all the genes in the provided list, and the resulted 

aggregated expression was assigned as the score of the property the provided gene list 

represents. After this step, data scaling was performed using “ScaleData”, with “S.Score”, 

“G2M.Score” and “Stress” passed onto the “vars.to.regress” argument. At the same time, “nMUI” 

was also included in regression to control for the effects of cell size and/or sequencing depth. 

 

Muscle.Score and Dev.Score 

To readily detect skeletal muscle cells at various developmental or differentiation states, we 

assigned each cell a “Muscle.Score” using the above described “AddModuleScore” function using 

a list of conserved muscle cell genes (PAX3, PAX7, PITX2, MYF5, MYF6, MYOD1, MYOG, NEB 

and MYH3). To quantify the developmental status of myogenic progenitor and stem cells, we first 

used “AddModuleScore” to assign each cell a postnatal score (“Pst.Score”) using genes that were 

found to be upregulated in stage 5 SCs compared to stage 1 and 2 embryonic SMPCs (Figure 4-

4). Similarly, we assigned each cell an embryonic score (“Emb.Score”) using genes upregulated 

in stage 1 and 2 SMPCs compared to stage 5 SCs. Finally, we calculated each cell’s myogenic 

developmental score (“Dev.Score”) by subtracting its “Emb.Score” from “Pst.Score”. Thus, a cell 

with a developmental “age” close to postnatal SCs would have a higher value of “Dev.Score”, and 

that similar to embryonic SMPCs a lower value. 

 

Dimensional reduction and clustering 

First, the most highly variable genes within each Seurat object were calculated and selected using 

“FindVariableGenes” (1500-2500 genes). Principle components (PCs) were calculated using the 

selected top variable genes by “RunPCA”, and the PCs were plotted using “PCElbowPlot”. 

Significant PCs were selected based on the elbow plot and used to further reduce data 

dimensionality using the T-distributed stochastic neighbor embedding (tSNE) method by 

“RunTSNE”. Cell clustering was performed by a shared nearest neighbor (SNN) modularity 



 

 

 

 174 

optimization based clustering algorithm using the Seurat function “FindClusters” with 

“reduction.type” set to “pca”. Identification of clusters/cell types were aided by known cell type 

specific markers as well as the distribution of cells on the tSNE space. 

 

Differential gene expression analysis 

Differentially expressed genes (DEGs) between one cell cluster versus all remaining cells or 

between individual clusters were identified by “FindAllMarkers” or “FindMarkers”, respectively. 

For both functions, “test.use” was set to “negbinom” to fit for the sparse data type generated from 

scRNA-seq, and “return.thresh” (p values) less than 0.01 (finding cluster markers) or 0.05 

(comparing two clusters). We passed the same parameters as we did when scaling the data 

(“S.Score”, “G2M.Score”, “Stress” and “nUMI”) to the “latent.var” argument to regress out the 

effects of cell cycle, dissociation-related stress as well as cell size/sequencing depth on the 

identification of DEGs. In addition, DEGs must also meet the following default criteria in Seurat: 

1) average expression difference exceeding 1.28-fold between the comparing group of cells 

(“logfc.threshold = 0.25”), and 2) detected in a minimum of 10% of cells in either of the comparing 

populations (“min.pct = 0.1”). 

 

Trajectory analysis 

For trajectory analysis, we reduced the dimensionality of the data by diffusion map (DM) 

(Haghverdi et al., 2015) using the top variable genes of the objects via the Seurat “RunDiffusion” 

function. For in vivo SMPC and SC only analysis, we further clustered the cells using 

“FindClusters” with “reduction.type = “dm” (using the first 2 DM dimensions) into distinct 

developmental stages. For analysis combining in vivo SMPCs and SCs as well as hPSCSMPCs, 

“RunDiffusion” was performed using the top variable genes from the in vivo only dataset as a 

reference gene set. The developmental stage labels of the in vivo cells and the sample identities 

of the hPSC-derived cells were transferred and maintained from the original objects. 
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Analysis using Monocle3 

Analysis in the Monocle3 R package (Cao et al., 2019) was performed according to Trapnell lab 

guidelines (https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/). Gene expression data 

and cell metadata including cell type labels were carried over from the Seurat object. Parameters 

to regress were set similarly to analysis in Seurat by passing “nUMI”, “S.Score” “G2M.Score” and 

“Stress” to the “residual_model_formula_str” argument in the “preprocess_cds” function. 

Significant PCs were calculated and selected to further reduce the data dimensionality using 

uniform manifold approximation and projection (UMAP). Cells were plotted onto the UMAP space 

for visualization of their distribution and cell type identities. 

 

Gene ontology enrichment analysis 

Gene ontology (GO) enrichment was performed using Metascape 

(http://metascape.org/gp/index.html#/main/step1) (Zhou et al., 2019) against GO terms belonging 

to “Biological Processes”. Enriched GO terms with similar properties were further assigned to a 

common group, and the top 20 groups were retrieved. Select representative GO terms (members) 

from the consolidated groups were plotted against their negative Log10-transformed p values (no 

more than one member was selected from each group). 

 

Gene set enrichment analysis 

The gene set enrichment analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp) 

(Subramanian et al., 2005) was performed with the “GSEAPreranked” mode against the 

“Canonical Pathways” (c2.cp.v6.1) gene sets database. The “enrichment statistic” was set to 

“classic” and enriched gene sets containing more than 500 or less than 10 genes were excluded 

from the final enriched gene sets. The “normalization mode” was set to “meandiv” and 

permutations were performed 1000 times. 
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Co-regulated gene network analysis 

To build the co-regulated gene network, the dataset containing all stages of in vivo SMPCs and 

SCs and in vitro hPSC-SMPCs derived using the HX protocol (Figure 4-7A), was used to compute 

a Pearson gene-to-gene correlation matrix and determine groups/networks including genes with 

correlation values greater than 0.125. Similar networks were condensed by segregation of cells 

into ample numbers of small cell clusters (roughly 50 cells per cluster), from which the expression 

of the primary networks was calculated and compared to each other again via a Pearson network-

to-network correlation matrix, followed by merging similar networks with expression correlation of 

0.7 or higher to generate the final networks. The expression level of a given gene group/network 

was calculated by averaging the normalized expression values of all genes in the group in a given 

cell. We manually inspected the gene groups to exclude those that were driven by an extremely 

high expression level of a few genes in random rare cells. To retrieve TFs from the gene groups, 

we intersected our identified genes with those annotated as transcription factors/regulators by the 

Animal Transcription Factor Database (bioinfo.life.hust.edu.cn/AnimalTFDB/). To mitigate the 

effects of tissue/cell dissociation-induced stress signatures, we compiled a common stress gene 

list (411 genes) from published literature. Genes included in this list were chosen based on the 

following criteria: 1) included in the stress regression gene list as described above, or 2) 

significantly changed in the same direction (both induced or reduced) in response to dissociation-

related stress as reported by van Velthoven et al and Machado et al (Machado et al., 2017; van 

Velthoven et al., 2017). Mouse genes were converted to their homologs in human and those mice 

only genes were removed from the final list. These common stress genes were intersected with 

the gene groups and TF sub-lists to exclude them from the final gene/TF lists for downstream 

analysis. 

For gene group heatmaps, the average expression of selected groups was calculated for 

each developmental or directed differentiation stage/sample using the Seurat 
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“AverageExpression” function. Only groups containing 50 or more genes were plotted. For GO 

analysis, all genes contained in a given group were used as input to Metascape for enrichment 

analysis against “GO Biological Processes”. 

 

Hierarchical clustering 

Average gene expression levels of single cells belonging to the same groups were calculated 

using the Seurat “AverageExpression” function. Spearman correlation coefficients were 

calculated between the averaged group of cells and visualized using the R package pheatmap. 

Hierarchical clustering was performed via the same package with default settings.  

 

Gene list intersection and Venn diagram generation 

Individual gene lists were supplied as input to the R package eulerr. All possible intersections of 

input gene lists were calculated and visualized in Venn diagram format with region areas 

proportional to the number of events in the regions. 
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4.2 A Molecular Atlas of Proximal Airway Identifies Subsets of Known Airway Cell Types 

Revealing Details of the Unique Molecular Pathogenesis of Cystic Fibrosis 

 

Introduction. 

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts in excess of 70,000 people 

globally. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte 

transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene. CF-related lung disease is by far the most significant 

determinant of morbidity and mortality. In this study we report results from a multi-institute 

consortium in which single cell transcriptomics were applied to define disease-related changes to 

the proximal airway of CF donors (n=19) undergoing transplantation for end-stage lung disease 

compared to the proximal airway of previously healthy lung donors (n=19). We found that all major 

airway epithelial cell types were conserved between control and CF donors. Disease-dependent 

differences were observed, including an overabundance of epithelial cells transitioning to 

specialized ciliated and secretory cell subtypes coupled with an unexpected decrease in cycling 

basal cells. This study developed a molecular atlas of the proximal airway epithelium that will 

provide insights for the development of new targeted therapies for CF airway disease.  

 
  



 

 

 

 185 

Results.  

Transcriptional analysis of single cells from control and CF airways 

There is a great deal of interest in defining human bronchial epithelial (hBE) cell subtypes in Cystic 

Fibrosis (CF) airways as a means to develop gene therapeutic strategies to effect long-term 

correction of CFTR function. To address this knowledge gap we sought to produce single cell 

reference atlases of proximal airway epithelium isolated from lung tissue from donors with no 

evidence of chronic lung disease (CO, considered control for these experiments; n=19) compared 

to explant tissue from patients undergoing transplantation for end-stage CF lung disease (CF, 

n=19). Isolation of single cells from proximal airways was performed at three different institutions 

(Fig 4-8a), using similar but distinct methodologies (Fig 4-8b & Materials and Methods). After 

initial quality control and filtering, datasets from the three institutions were integrated for 

subsequent analyses. Data were visualized through UMAP dimensional reduction. The 

distribution of cells from each institution on UMAP projections showed homogeneous data 

integration (Supp Fig S4-8a,b). While all datasets integrated well, expression of some genes, 

particularly those associated with metabolic state, did show differential expression according to 

institution (Supp Fig S4-8c-f). Accordingly, data that were reproducibly observed across datasets 

from each of the three institutions were highlighted in this study.  

UMAP projections of data comparing cells from CO versus CF samples revealed a high 

degree of overlap (Fig 4-8c). Using the cell type gene signatures from Plasschaert et al1, we were 

able to identify all major human airway epithelial cell types including basal, secretory and ciliated, 

in addition to rare cell types including ionocytes, neuroendocrine (NE) and FOXN4+ cell 

populations (Supp Fig S4-8g,h). We then performed differentially expressed gene (DEG) analysis 

between clusters to discern cell subtypes with unique molecular characteristics. Among the three 

major cell types we were able to resolve 3 ciliated, 5 secretory, and 5 basal cell subtypes (Fig 4-

8c). These subtypes of each major airway epithelial cell type were found in similar proportions 



 

 

 

 186 

between CO versus CF samples and institutions (Fig 4-8d, Supp Fig S4-8i). We considered the 

functions conferred by differential genes to distinguish each cell subtype.  

Basal cells were subdivided into five clusters (Basal1-5) (Fig 4-8e). The Basal1 cluster is 

characterized by high expression of canonical basal cell markers including tumor protein P63 

(TP63) and the cytokeratins 5 and 15 (KRT5 and KRT15) (Fig 4-8e)1. Cells of the Basal2 cluster 

show enrichment for transcripts such as DNA Topoisomerase II Alpha (TOP2A) and the Marker 

of Proliferation Ki-67 (MKI67) and have a transcriptomic signature indicative of proliferating basal 

cells (Fig 4-8e). The Basal3 cluster is enriched for transcripts of the serpin family, members of 

which are known to regulate protein folding associated with secretory cell maturation and may 

represent basal cells transitioning to a secretory phenotype2. The Basal4 cluster is characterized 

by the highest expression of the AP-1 family members JUN and FOS, and Basal5 uniquely 

expressed b-catenin (CTNNB1). 

Secretory cells were partitioned into five specific subsets (Secretory1-5) that share 

defining gene signatures in CO and CF datasets (Fig 4-8e). The Secretory1 cluster includes cells 

characterized by high expression of Secretoglobin Family Member 1A1 (SCGB1A1) and various 

members of the Serpin family. Serpins regulate protein folding associated with maturation of 

secretory proteins2 and define cells undergoing maturation into secretory cell type with similarities 

to club cells of bronchiolar airways3. The Secretory2 cluster is composed of cells sharing 

expression of mucins MUC5B and MUC5AC, anterior gradient 2 (AGR2) and SAM-pointed 

domain–containing Ets-like factor (SPDEF), suggesting they are goblet cells4. Cells in the 

Secretory3 cluster lack expression of known canonical secretory cell markers and can be 

distinguished from other secretory cluster subsets by their expression of Dynein Axonemal Heavy 

Chain proteins (DNAHs), Ankyrin Repeat Domain proteins (ANKRDs), and the mucins MUC16 

and MUC4, suggesting that the Secretory3 cluster acts as progenitor cell for ciliated cell 

differentiation. The Secretory4 cluster is defined by expression of MUC5B and Trefoil Factor 

family domain peptides (TFF1 and TFF3) and represents a subtype of mucous-like cells that is 
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distinct from goblet cells5. The Secretory5 cluster contains a serous-like signature5, including 

expression of Lysozyme (LYZ), Proline-Rich Proteins (PRBs, and PRRs), and Lactoferrin (LTF), 

and may represent glandular cell types of submucosal glands (SMGs) or their surface airway 

epithelial counterparts. 

Ciliated cells were subdivided in to three clusters (Ciliated1-3) (Fig 4-8e), all sharing 

expression of the lineage marker / master regulator of ciliogenesis, Forkhead box protein J1 

(FOXJ1)6. The Ciliated1 cluster contains the highest expression of markers of cilia pre-assembly7, 

including Sperm Associated Antigen 1 (SPAG1), Leucin Rich Repeat Containing 6 (LRRC6) and 

Dynein Axonemal Assembly Factor 1 (DNAAF1), whereas cells within the Ciliated2 cluster show 

the highest expression of markers of mature ciliated cells including TUBA1A and TUBB4B. The 

Ciliated3 cluster is characterized by the expression of Serum Amyloid A proteins (SAA1 and 

SAA2), reflective of a pro-inflammatory state8, suggesting that this subset of ciliated cells is either 

responding to or regulating immune responses.  

In light of the cellular heterogeneity observed among freshly isolated airway epithelial cells 

we sought to determine the extent to which this was recapitulated in commonly used culture 

models, most notably the primary human bronchial epithelial (hBE) cell air liquid interface (ALI) 

culture system. We performed single cell RNA sequencing on well differentiated ALI cultures9 

generated from hBE cells matched to a subset of CO and CF donors used for analysis of freshly 

isolated cells. Previously identified cell types10 observed in fresh isolates (basal, secretory, 

ciliated, FOXN4+, ionocyte, and NE) were also observed in ALI cultures (Supp Fig S4-8j), for both 

CO and CF-derived samples (Supp Fig S4-8k). Based on gene expression differences in ALI 

cultures, we were able to further define subtypes of basal (ALI Basal1-4), secretory (ALI Secretory 

1-4), and ciliated cells (ALI Ciliated 1) (Fig 4-8f). ALI Basal1, 2, and 4 showed overlapping marker 

gene expression with Basal1 (Canonical), Basal3 (Serpin-enriched), and Basal2 (proliferating) 

cells from freshly isolated tissue, respectively (compare Fig 4-8e and 4-8g). ALI Basal3 identified 

cells with high KRT14 expression that lacked a counterpart basal cell cluster in the fresh tissue 
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data sets (Fig 4-8e, g). ALI secretory and ciliated cell clusters lacked markers observed in the 

respective subtypes of the freshly isolated tissue (Fig 4-8e, g). The comparison of gene 

expression profiles between cells from ALI cultures and fresh tissue confirm that while the major 

cell types are present in ALI cultures, significant differences are observed in subtype states (Fig 

4-8h, i, j). We conclude that ALI cultures recapitulate major hBE cell types observed among freshly 

isolated airway epithelial cells, as a regenerative model, but the cultures do not fully recapitulate 

the heterogeneity of cell subtypes observed in native airways at steady state. 

Despite differences across the donors, isolation techniques, and sequencing methods, we 

found all cell subtypes in fresh airway tissue were recapitulated in each CO and CF patient (Fig 

4-8k, Supp Fig S4-8k). Interestingly, we observed an average proportionate depletion in CF 

samples of 46.8% less cells in the proliferative Basal2 subtype and of 26% in the club cell-like 

Secretory1 subtype compared to CO, while a 44.6% increase in the proportion of cells in the 

inflammatory Ciliated3 subtype was observed (Fig 4-8k). These changes were observed in all 

three institutions, showing that the rigorous subtyping of human bronchial epithelium allows the 

identification of reproducible differences in cell states between CF and CO airways.  

We next used our molecular atlas to examine cystic fibrosis transmembrane regulator 

(CFTR) expression in different cell types in CO and CF airways. Recent studies have proposed 

ionocytes as specialized cells with high CFTR expression that may represent primary tractable 

targets for restoration of CFTR expression in CF10,11. We found that CFTR is expressed in a wide 

selection of cells, with overall higher expression in CF compared to CO (Fig 4-8l). While more 

than 30% of all ionocytes expressed CFTR in both CO and CF samples, the majority of CFTR-

expressing cells were secretory cells, followed by basal cells, with ionocytes constituting a minor 

fraction (Fig 4-8m, n). Analysis of the proportional expression of CFTR among secretory and basal 

cells showed that secretory cells and not ionocytes are the major producer of CFTR in both CO 

and CF tissue (Supp Fig S4-8l). Secretory2 (goblet-like) cells and Basal3 (serpin-expressing) cells 

were the major contributors to CFTR expression among the identified cell subtypes (Fig 4-8n, 
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Supp Fig S4-8l). The comparison of CFTR expression between CO and CF samples showed cell 

type- specific differences, with increases of expression in CF samples in the ionocyte, Secretory1 

(Club-like), Secretory2 (Goblet-like), Basal1 (Canonical), and Basal3 (serpinexpressing) cell 

subtypes (Fig 4-8o). Overall, our analysis, while confirming the specialized role of ionocytes for 

CFTR expression, establishes that secretory cells are the main cells that express CFTR and that 

secretory and basal cells together contribute the vast majority to CFTR expression in the proximal 

airway epithelium. Therefore, both secretory and basal cells should be considered as plausible 

candidates for therapeutic restoration of CFTR expression in CF in addition to ionocytes. 

 

Secretory cells show a secretory signature with increased antimicrobial activity in CF donors 

The secretory cells of the proximal airway epithelium play an important role in host defense by 

producing serous and mucous secretions that trap and clear microbial organisms. People with CF 

develop dehydrated mucus and problems with mucus clearance which result in chronic bacterial 

infections. We explored the gene expression differences of secretory cell subtypes between CO 

and CF samples to define transcriptional differences that may be associated with these issues. 

In order to find differences in each secretory cell subtype, we applied DEG analysis to 

identify the most specifically expressed genes in a given secretory subtype in CO or CF donors, 

and selected gene expression changes that were cross validated between all three datasets (Fig 

4-9a). In the Secretory1 (Club-like) subtype, CF samples showed downregulation of members of 

the S100 gene family12, which are important for tissue repair, differentiation and inflammation, 

suggesting possible repair defects in CF donors. In the Secretory2 (Goblet-like) subtype, we found 

that immune response genes such as BPIFA1 and BPIFB113 were upregulated in CF samples. 

The Secretory3 (DNAHs enriched) subtype shows CF-specific increased expression of specific 

dyneins (DNAH5,11,12, DNAAF1), transcripts that are usually associated with cilium assembly14. 

In the Secretory4 (mucous-like) subtype, Angiogenin (ANG) and TFF1, two molecules with a role 

in antimicrobial defense15,16, were upregulated in CF compared to CO samples. Secretory5 
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(serous-like) subtype showed fewer differences between CO and CF compared to other subtypes 

(Fig 4-9a). 

To better understand the alterations to co-regulated sets of genes in CO compared to CF 

samples, we additionally applied an unbiased gene expression network discovery method that 

employs correlation between transcript levels to group genes to define co-expression networks 

that are most prominently expressed in secretory cells. We focused on seven of these networks 

(Net S1-S7) with statistical significance for differences in CO versus CF samples across each 

institution’s data (Fig 4-9b, Supp Fig S4-9). Secretory networks 1-6 (Net S1-S6) are more highly 

expressed in CF vs CO secretory cells, in particular S2-S4, whereas S7 was lower in secretory 

cells from CF samples (Fig 4-9c, Supp Fig S4-9). Gene ontology analysis revealed an 

antimicrobial signature17 for S1 and S4, S2 was related to ER stress18 and S3 linked to metabolic 

processes (Fig 4-9b). The antimicrobial gene program S1 was most highly expressed in the 

Secretory4 and Secretory5 subgroups and expression of S4 was high specifically within the 

Secretory4 cluster (Fig 4-9c,d). This indicated that the Secretory5 (serous-like) and Secretory4 

(mucous-like) cells in CF lungs have a highly specialized response in a particular subtype of cells 

and increased levels of antimicrobial activity in response to disease. Elevated ER-stress seen 

with S2 was more pronounced among Secretory4 and Secretory2 (goblet-like) cells (Fig 4-9c,d). 

S3 described a metabolic difference between Secretory2 (goblet-like) and Secretory1 (club-like) 

cells from CF versus CO samples (Fig 4-9c,d), indicating the surface airway epithelial secretory 

cells may be more exhausted. S5, marked by developmental ontology and containing the Wnt 

signaling gene FRZB, and S6, which contained Notch gene HEY1, were also elevated in CF 

samples (Supp Fig S4-9). Only one secretory network, S7, had a notable upregulation in CO 

compared to CF samples and marked a small group of cells expressing members of the KLK 

family, reported to be expressed in epithelial cells of the lung19, and implicated in regulation of 

airway inflammatory response (Fig S4-9c,d). 
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Overall, gene expression and network differences identified between CO and CF secretory 

cell subtypes demonstrate overactive mucosal secretion, humoral immunity, antimicrobial activity 

and stress-related organelle maintenance, suggesting an increase in secretory function in the CF 

airway epithelium. 

 

An expanded ciliated cell gene expression program reveals aberrant ciliogenesis and altered 

cellular lineages in CF airways 

Multi-ciliated cells provide the necessary mechanical force for the directional clearance of 

contaminants trapped in the mucus layer for optimal airway homeostasis and host defense. 

Although CF-related defects in electrolyte transport across the epithelial lining and associated 

dehydration of airway surface liquid impair ciliary function and muco-ciliary transport, we know 

little about how ciliated cells respond to this perturbation. To comprehensively assess CF-related 

changes in ciliated cells, we compared their single cell transcriptomes between CO and CF patient 

samples. Ciliated cell gene expression is driven by a complex multi-ciliated cell specific gene 

expression network that turns on downstream of cell fate acquisition to generate the hundreds of 

structural and regulatory components of cilia20. In general, the temporal expression of specific 

ciliary genes reflects their role in sequential stages of ciliogenesis, and many transcripts are first 

strongly induced, then are eventually downregulated to a maintenance expression level21. 

Differential gene analysis revealed genes that were specific to either CO or CF cells in each of 

the ciliated subtypes, again reproducible between datasets from all three institutions (Fig 4-10a). 

The Ciliated1 subtype (cells undergoing ciliogenesis) showed higher expression for ciliogenesis 

transcripts such as Dynein Axonemal Heavy Chain 5 (DNAH5), Spectrin Repeat Containing 

Nuclear Envelope Protein 1 and 2 (SYNE1 and SYNE2) in CF compared to CO tissue, suggesting 

an attempt to boost cilium biogenesis in lungs from CF donors. Cells of the Ciliated2 (mature 

ciliated) subtype, showed higher expression of Anterior Gradient 3 (AGR3) and LRRC6 in CF 

samples, genes that play a role in ciliary beat frequency and motility22,23. CF cells of the Ciliated3 
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(cells involved in immune defense) subtype showed higher expression of Major Histocompatibility 

Complex, Class II, DP Alpha 1 and DR Beta 1 (HLA-DPA1 and HLA-DRB1), genes that play an 

important role in the immune system in antigen presenting cells. 

Through gene expression network discovery, we also defined ten expression networks 

that are highly expressed in ciliated cells (Fig 4-10b, Supp Fig S4-10). Despite each network 

having distinct genes, many networks showed enrichment of ontology terms related to 

ciliogenesis and cilium movement (Net C1-C4, C8; Fig 4-10b, Supp Fig S4-10). Network C3 was 

associated with respiratory electron transport, C7 related to cellular repair and networks C3, C5, 

and C6 contained genes with immune functions (Supp Fig S4-10). The smaller networks C9 and 

C10 had no ontology but also contained immune and ciliary genes (Supp Fig S4-10). Interestingly, 

the Ciliated3 subtype consistently showed an increase in expression of all of these networks in 

CF compared to CO cells and often displayed the largest gene expression difference between 

these samples (Fig 4-10c,d; Supp Fig S4-10). We also found that the microtubule and 

ciliogenesis-related networks C1-C4 and C8 had higher expression among nonciliated cells in CF 

compared to CO tissues (Fig 4-10b, c). 

Given this specific and unexpected upregulation of various cilium-related genes in non-

ciliated cells in CF samples, we wondered if particular cell subtypes were affected. To address 

this question, we interrogated a manually curated list based on published observations, containing 

a total of 10 categories and 491 genes, representing different phases of ciliogenesis (Fig 4-10e, 

Supp Fig S4-10). We then compared the proportion of cells from each hBE cell subtype that 

expressed a given ciliogenesis signature above a specific cutoff between CO and CF samples. 

For the Ciliated1 and Ciliated2 subtypes, we found that more cells expressed centriole assembly 

and centriole-to cilium conversion gene signatures in CF than in CO samples suggesting a defect 

in ciliogenesis kinetics. All 10 ciliogenesis signatures were expressed by a higher proportion of 

CF cells in the “immune defense” Ciliated3 cell subtype, suggesting aberrant regulation of 

ciliogenesis in this subtype of ciliated cells in CF airways.  
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Among non-ciliated subtypes, Basal4, Basal5 and Secretory3 clusters had higher 

expression of nearly all categories of ciliogenesis signature genes in CF compared to CO 

samples, indicating a potential commitment toward the ciliated lineage in these CF non-ciliated 

cells (Fig 4-10e). Interestingly, FOXN4+ cells, previously reported to represent transitional 

FOXJ1+ cells undergoing multiciliogenesis10, were also found to express ciliogenesis signature 

genes at a higher level in CF compared to CO samples. Taken together, these data suggest that 

CF airways include an overabundance of cells transitioning to the ciliated cell phenotype 

compared to CO airways. We speculate that this may result in generation of more structurally and 

functionally aberrant ciliated cells and more immune defensive Ciliated3 cells in CF tissues. 

Furthermore, the epithelial lining of CF airways exhibits a more plastic and stressed phenotype 

consistent with known airway defects resulting from electrolyte and ASL imbalances in the CF 

airway.  

 

CF basal cells show depletion of metabolic stability and proliferation 

Basal cells are considered to be the primary stem cells of the proximal airways that are 

capable of proliferation, long-term self-renewal, and differentiation to yield specialized luminal cell 

types24,25. Analysis of differentially expressed genes between basal cells of CO and CF samples 

revealed reproducible subtype-specific differences (Fig 4-10a). The CF Basal2 (Proliferating) cell 

subtype showed a general reduction of transcripts involved in cell division, whereas the CF Basal3 

(Serpin-expressing) subtype showed lower expression of keratinization associated genes26,27 

including Cystatin A (CSTA) and Heat Shock Protein Family B (Small) Member 1 (HSPB1). The 

CF Basal4 (activated) subtype displayed increased expression of Fos and FosB Proto-Oncogene, 

AP-1 Transcription Factor Subunit (FOS, and FOSB), whereas the AP-1 complex companion 

transcription factors Jun and JunB (JUN and JUNB) were unchanged. 

Using the gene network analysis approach, we defined 10 gene expression networks that 

were differentially regulated between CO and CF samples and were prominent in basal cells. 
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Eight networks (Net B1-B4, B7-B10) were higher in CO samples and two networks (B5 and B6) 

were higher in CF samples (Fig 4-10b, Supp Fig S4-12). The CF-enhanced B5 and B6 networks 

are related to surfactant metabolism and immune function, and, interestingly, were expressed in 

the smallest proportion of basal cells, specifically in the Basal5 subtype for B5 and the Basal4 

subtype for B6 (Fig 4-10b, Supp Fig S4-12). Many networks showing down-regulation in CF 

compared to CO samples demonstrated gene ontologies related to metabolic processes and 

oxidative stress, cell division, epithelial cornification, immune functions, and response to 

wounding (Fig 4-10c, Supp Fig S4-12). Networks B1, B2 and B8 were more highly expressed in 

CO compared to CF samples (Fig 4-10c,d) and may signify patient specific wound healing related 

to intubation. Several other molecular pathways were also downregulated in the basal cells of CF 

samples compared to CO, including those related to response to oxidative stress, and ATP 

synthesis (Net B2, B4, B10, Fig 4-10c,d). Strikingly, networks B3 and B7 revealed widespread 

downregulation of genes related to cell cycle in CF samples across all basal subtypes but most 

notably among cells of the Basal2 (proliferating) cluster (Fig 4-10b,c,d), which may be related to 

the fact that the number of Basal2 cells is lower in CF than CO samples. 

Our finding of reduced proliferative capacity among basal cells of CF compared to CO 

airways has important implications for the ability of endogenous stem/progenitor cells to maintain 

the specialized epithelial lining of CF airways. To confirm the depletion of dividing basal cells in 

intact CF mucosa that are inferred from single cell RNA-Seq data, we analyzed 

immunofluorescent co-staining for a proliferative marker (PCNA) and the basal marker, KRT5, in 

the same proximal airway samples used for transcriptomic analysis. We found that the PCNA-

proliferative index of KRT5-immunoreactive cells in CF proximal airways was significantly reduced 

compared to comparable airway regions of CO tissue (Fig 4-10e,f, Supp Fig S4-13). Furthermore, 

analysis of cell-cycle transitional state signatures in transcriptomes of the proliferative Basal2 cell 

cluster confirmed a general reduction in all phases of the cell cycle among CF samples compared 

to their CO counterparts (Fig 4g). Taken together, the reduction in proliferation of the basal cells 
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of the surface hBE cells has important implications for airway repair in CF and cellular gene 

targeting of long-lived stem/progenitor cells in CF. 
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Discussion.  

Taken together, we report both novel identification of proximal airway epithelial basal, secretory, 

and ciliated molecular subtypes and insights about the transcriptional differences at the single cell 

level between airways from CF and control subjects. Histological reports have described basal 

cell hyperplasia in the CF airways28,29, but this was not corroborated in our study. We attribute this 

discrepancy to the increased sampling power and sample access associated with our study, in 

which we observed similar proportions of basal cells in airways of CO and CF lung, but find a 

notable decrease in the dividing basal subtype in CF airways. Interestingly, it is the secretory cell 

subtype associated with mucosal immunity that is most highly upregulated in CF. Also, we report 

that secretory cells account for the largest fraction of CFTR transcript expression among all cell 

populations in both control and CF samples. In addition, the ciliated cells were found to have an 

increased number of transitioning precursors in the lungs of CF donors compared to controls 

suggesting that they may have more plasticity than their counterparts from CO donors. Lastly, 

upon examining the hBE cell ALI model system, we found that the diversity of cell subtypes in ALI 

cultures is different to that found in fresh tissue, presumably due to the effect of a uniform culture 

microenvironment.  

By leveraging the analysis of 38 patient samples across a 3-institution consortium and 

assessing gene expression patterns that are common between datasets, we have generated 

molecular atlases of control and CF proximal airway epithelium. This molecular atlas was used to 

examine CF-lung disease dependent changes in the transcriptional phenotype of lung epithelial 

cells but can also be utilized as a hypothesis generating tool for other airway conditions. Our data 

suggest that specific subtypes of the main airway cell types have potential to play a role in CF 

lung disease, although in vitro and in vivo validation is still needed to assess the functional 

potential of these cell subtypes in health and disease. These studies provide valuable, novel 

insights into the molecular pathogenesis of CF lung disease and have potential to impact 

development of new therapies to ameliorate CF-related airway dysfunction. 
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Figure legends.  

 
Figure 4-8. Single cell transcriptome atlas of the epithelium lining proximal airways of control 

donors and donors with end-stage CF lung disease. (a) Locations of cell procurement for single-

cell RNA sequencing. (b) Methodology used for cell isolation by each institution. (c) Dimensional 

reduction of data generated from freshly isolated control and CF airway epithelium, visualized by 

UMAP, with cells colored by subtypes as shown in key. (d) Distribution of cell subtypes by 

institution. (e) Scaled expression of the top differentially expressed genes that inform specific cell 

subtypes, for k-groups of control and CF cells further separated by subtype, visualized by 

heatmap. (f) Dimensional reduction of data generated from air liquid interface cultures (ALI) 

derived from samples shown above. Cells are colored by ALI-specific subtypes, shown in key at 

right. (g) Heatmap of the scaled expression of the same fresh tissue subtype genes from (e), but 

shown for groups of ALI- control and CF cells split by subtype. (h-j) Comparison of subtype-

specific gene expression among fresh tissue subtypes and cultured cells. (k) Distribution of the 

average proportion of cell subtypes per sample, comparing CO and CF cells (l-o) CFTR 

expression in subtype groups, key at right. (l) CFTR expression across all subtypes, shown on 

the UMAP projection and as a boxplot of CO/CF versus expression level (m) Proportion of CFTR 

expressing cells per each subtype. (n) Proportion of CFTR+ cells per cell subtype. (o) Boxplots 

showing the distribution of CFTR expression in all subtypes, for CFTR+ cells only, divided by CO 

and CF status. P values shown at right indicate the significance of distribution differences between 

CO and CF per subtype, bolded if p value < 0.05. 

 

Figure 4-9. Expansion of secretory function, including mucus secretion and antimicrobial activity, 

in cystic fibrosis secretory cells. (a) Dot plot indicating the expression level and frequency of 

differentially expressed genes from each secretory subtype, across all subtypes in CO and CF 

cells. Genes are expressed higher in either CO or CF, as indicated by label at top. (b) For gene 

networks preferentially located in secretory cells, shown is a gene ontology heatmap of the top 3 
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associated terms for each network with the term enrichment –log(p-value) colored as displayed 

in key. Networks with no associated ontology terms are blank (Net S6/S7). (c) For each cell, the 

average mean expression of the genes in a given network is shown, visualized on a UMAP. Cells 

are split by Secretory or non-Secretory, and CO or CF classification (d) Bar plots showing the 

average expression of all genes in individual secretory networks per secretory subtype, in CO or 

CF cells. 

 

Figure 4-10. Cilia related gene expression is vastly expanded outside of the main cilia subgroups 

in CF. (a) Dot plot indicating the expression level and frequency of differentially expressed genes 

in each ciliated subtype, for CO or CF cells. (b) For gene networks preferentially expressed in 

ciliated cells, shown is a gene ontology heatmap of the top 3 associated terms for each network 

with the term enrichment –log(p-value) colored as displayed in key. (c) For each cell, the average 

mean expression of the genes in a given network is shown, visualized on a UMAP. Cells are split 

by Ciliated or non-Ciliated, and CO or CF classification (d) Bar plots showing the average 

expression of all genes in individual ciliated networks per ciliated subtype group, in CO or CF 

cells. (e) For distinct categories of genes related to cilia biogenesis, the expansion of cilia gene 

expression is shown by a heatmap indicating the proportional percent change in amount of cells 

in each subtype expressing each category above a threshold, towards CF(+%) versus CO(-%) 

cells. The percent change number between CF and CO samples is given in each heatmap cell 

and colored as indicated in key at right. 

 

Figure 4-11. Depletion of metabolic stability, basal epithelial function, and cellular division is 

widespread in CF lung basal cells. (a) Dot plot indicating the expression level and frequency of 

differentially expressed genes in each basal subtype, for CO or CF. (b) For gene networks highly 

expressed in basal cells, shown is a gene ontology heatmap of the top 3 associated terms for 
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each network with the term enrichment –log(p-value) colored as displayed in key. (c) For each 

cell, the average mean expression of the genes in a given network is shown, visualized on a 

UMAP. Cells are split by Basal or non-Basal, and CO or CF classification (d) Bar plots showing 

the average expression of all genes in individual basal networks per basal subtype group, in CO 

or CF cells. (e) Immunostaining for KRT5 (green) and PCNA (red) in sections from CF and CO 

lung tissue. Nuclei are stained with DAPI. Arrow indicate points of interest, while insets show 

magnification of the basal cell layer. (f) Quantification of KRT5+ PCNA+ basal cells in CO and 

CF. (g) Expression distributions of cell cycle genes in CO and CF cells, in the proliferating Basal2 

subtype. 

 

Figure S4-8. The distribution of cells from each institution on UMAP projections showed 

homogeneous data integration. (a) Visualization of the distribution of cells from the three 

institutions in the integrated embedding, showed by institution and (b) by samples of origin, 

visualized by UMAP. (c-f) Network distributions with differences between institutions, visualized 

by UMAP. (g) Major cell types identified using previously described markers, visualized by UMAP. 

(h) Ionocyte and NE cell clusters analyzed independently of other cell types, visualized by UMAP. 

(i) CO and CF sample contribution to cell populations and subclusters, visualized by a stacked 

column chart. (j) Signatures of major cell types in ALI cells, created using previously published 

ALI gene lists, shown by violin plots. (k) Distribution of major cell type proportions in freshly 

isolated and ALI datasets. (l) Proportion of CFTR expressing cells, key at right, visualized by a 

stacked column chart. 

 

Figure S4-9. Expression differences between secretory gene networks S5 and S6. (a) For each 

cell, the average mean expression of the genes in a given network is shown, visualized on a 

UMAP. Cells are split by Secretory or non-Secretory, and CO or CF classification (b) Bar plots 
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showing the average expression of all genes in individual secretory networks per secretory 

subtype group, in CO or CF cells. 

 

Figure S4-10. Expression differences between ciliated gene networks C5-C10.  (a) For each cell, 

the average mean expression of the genes in a given network is shown, visualized on a UMAP. 

Cells are split by Ciliated or non-Ciliated, and CO or CF classification (b) Bar plots showing the 

average expression of all genes in individual ciliated networks per ciliated subtype group, in CO 

or CF cells. 

 

Figure S4-11. Expression distribution change of distinct gene categories stratified by CO and CF 

subtypes. (a-j) For distinct categories of genes related to cilia biogenesis, the expansion of cilia 

gene expression is shown by violin plots and UMAP, indicating the changes in CO and CF for 

each cell subtype. 

 

Figure S4-12. Signature gene expression visualized on UMAP for selected Basal gene networks. 

(a) For each cell, the average mean expression of the genes in a given network is shown, 

visualized on a UMAP. Cells are split by Basal or non-Basal, and CO or CF classification (b) Bar 

plots showing the average expression of all genes in individual basal networks per basal subtype 

group, in CO or CF cells. 

  

Figure S4-13. PCNA-proliferative index of KRT5-immunoreactive cells in CF proximal airways 

was significantly reduced compared to comparable airway regions of CO tissue. (a) 

Representative IF images of airways showing KRT5 (green) and PCNA (cyan), all nuclei are 

counterstained with DAPI (blue) in the merged image. (b) Representative examples of watershed 

segmentation for isolated KRT5 and PCNA staining. (c) Representative images indicating 

counting of KRT5 (green) and PCNA (cyan) expressing cells in the segmented images. Red and 
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yellow boxes highlight areas that provide 4x zoomed images. (d) Segmentation data assumes a 

normal distribution. Each data point represents a possible cell and its corresponding area. Red 

line represents the mean area of the data and black line represents two standard deviations above 

the mean area. Representative tiles scan regions taken at 20x magnification for non-CF (e) and 

CF (f) subjects stained for KRT5 (green), PCNA (cyan) and nuclei are counterstained with DAPI 

(blue). Dimensions of the airways are indicated by the white lines. 

 

Figure S4-14. Utilization of FACS for isolating epithelial cells. Representative FACS for isolation 

of epithelial cells to use in scRNAseq with 10X Genomics. Cell debris were excluded on the basis 

of FSC-A versus SSC-A, then doublets were removed using Trigger Pulse Width versus FSC-A 

(Influx). Dead cells were identified and excluded on the basis of staining with DAPI. Negative 

gating for CD45, CD31, and CD235a, combined with positive gating for EPCAM (CD326) were 

used to identify epithelial cells. 
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Figures  

 
Figure 4-8 – Single cell transcriptome atlas of the epithelium lining proximal airways of control 
donors and donors with end-stage CF lung disease. 
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Figure 4-9 – Expansion of secretory function, including mucus secretion and antimicrobial activity, 
in cystic fibrosis secretory cells 
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Figure 4-10 – Cilia related gene expression is vastly expanded outside of the main cilia 
subgroups in CF 
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Figure 4-11 – Depletion of metabolic stability, basal epithelial function, and cellular division is 
widespread in CF lung basal cells 
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Figure S4-8 – The distribution of cells from each institution on UMAP projections showed 
homogeneous data integration 
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Figure S4-9 – Expression differences between secretory gene networks S5 and S6  
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Figure S4-10 – Expression differences between gene ciliated networks C5-C10  
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Figure S4-11 – Expression distribution change of distinct gene categories stratified by CO and 
CF subtypes 
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Figure S4-12 – Signature gene expression visualized on UMAP for selected Basal gene 
networks 
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Figure S4-13 – PCNA-proliferative index of KRT5-immunoreactive cells in CF proximal airways 
was significantly reduced compared to comparable airway regions of CO tissue 
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Figure S4-14 – Utilization of FACS for isolating epithelial cells 
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Method Details 

Study population 

Human lung tissue was obtained at the Cedars-Sinai Medical Center (CSMC) and at the 

University of North Carolina at Chapel Hill (UNC) Cystic Fibrosis Center Tissue Procurement and 

Cell Culture Core. Cystic fibrosis tissue was obtained from donors undergoing transplantation, 

while human lungs unsuitable for transplantation were obtained from Carolina Donor Services 

(Durham, NC), the National Disease Research Interchange (Philadelphia, PA), or the International 

Institute for Advancement of Medicine (Edison, NJ). Human lung tissues were procured under 

protocols #98-1015 and #03-1396 approved by the CSMC IRB and the UNC Biomedical IRB, 

respectively. Informed consent was obtained from lung donors or authorized representatives. 

 

Human lung tissue at the Cystic Fibrosis Foundation (CFF) site, was obtained from the 

National Disease Research Interchange (NDRI), or from University of Texas Southwestern 

(UTSW) under IRB protocol approved by the CFF and WCG-Copernicus Group wIRB (Study# 

1172286). Informed consent was obtained and maintained by NDRI. CF explant tissue at the 

University of California Los Angeles (UCLA) site was obtained from donors 

undergoing lung transplantation with end stage CF at UCLA, University of Southern California 

(USC), University of Iowa or UNC in compliance with each institutions IRB. All samples from UCLA 

were deidentified under protocol IRB#16-000742. Control de-identified lung specimens were 

obtained from lung transplant donors obtained from UCLA, USC or University of Iowa. 

 

Data availability 

All transcriptome data were deposited in GEO: Accession number pending. 

 

Histology 
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Proximal airway from control donors and CF explant tissues were fixed in formalin for 24 hours, 

embedded in paraffin and sectioned at 10 μm thickness. Sections were deparaffinized at 60℃ 

followed by washes in Xylene (VWR 89370-088) and rehydrated through a gradient of decreasing 

ethanol concentration (Fisher Scientific BP28184). Heat-induced epitope retrieval was performed 

using a steamer (Hamilton-Beach 37530) in antigen retrieval solution (Vector Laboratories H-

3301). Slides were blocked with 5% normal donkey serum and normal goat serum in IF buffer (1x 

PBS/1% BSA/0.3% Triton™ X-100) for 1 hour at room temperature, and incubated with primary 

antibodies, PCNA (Cell Signaling, 13110), and KRT5 (Biolegend, 905901) overnight at 4℃. After 

washes in 1xTBS sections were incubated with secondary antibody for 1 hour at room 

temperature followed by incubation in DAPI (ThermoFIsher D1306). Sections were mounted in 

Fluomount G (SouthernBiotech 0100-01) and imaged at 20x magnification using a Leica DMi8. 

Tile scans covering the entire section were created using Leica’s LAS X software (Leica 

Microsystems, Germany). Tile scans were cleaned using Photoshop (Adobe Inc., San Jose, CA) 

by creating a masking layer to select for KRT5 expressing cells and from this KRT5 mask, PCNA 

expressing cells were isolated (Supp Fig. S4-13). These images were then converted to 8-bit and 

analyzed on FiJi (Image J with plugins)(Schindelin et al. 2012) by setting appropriate thresholds, 

creating a binary mask, and performing a watershed segmentation (Supp Fig. S4-13). Segmented 

images were then measured, and counts obtained using a minimum area of 100 pixels and a 

maximum area of two standard deviations above the mean area of pixels (Supp Fig. S4-13). The 

basal cell proliferative index was obtained by dividing the number of isolated PCNA-

immunoreactive nuclei by the total number of KRT5-immunoreactive cells. Representative tile 

scan images are shown in Supp Fig. 6 for CO and CF subjects, respectively. All data were 

compared using an unpaired student’s t-test; results were considered significant when p<0.05. 

 

Cell isolation 
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Tissue at the CSMC site was processed to generate single cell suspensions of isolated epithelial 

cells as described previously30, with the following modifications. Tissue was enzymatically 

digested with Liberase followed by gentle scraping of epithelial cells off the basement membrane. 

Remaining tissue was then finely minced and washed with rocking in Ham’s F12 (Corning) at 4C 

for 5 minutes, followed by centrifugation at 4C for 5 minutes at 600g. Minced cleaned tissue was 

then incubated in DMEM/F12 (Thermo Fisher Scientific) containing 1X Liberase (Sigma-Aldrich), 

incubated at 37C with rocking for 45 minutes. Dissociated cells recovered by scraping or by tissue 

mincing were then combined and epithelial cells enriched in a two-step process involving 1). 

Magnetic bead (MicroBeads, Miltenyi Biotec) depletion of erythrocytes, leukocytes and 

endothelial cells using antibodies to CD235a (MACS, CD235a 130-050-501), CD45 (MACS, 

CD45 130-045-801, Miltenyi Biotec), CD31 (MACS, CD31 130-091-935, Miltenyi Biotec). FACS 

enrichment of epithelial cells based upon negative surface staining for CD235a (HI264, 349106), 

CD45 (2D1,368522), and CD31 (WM59,303124) (Biolegend) and positive staining for CD326 

(CO17-1A, 369820) (Biolegend). Stained cells were washed in HBSS containing 2% FBS, 

resuspended and placed on ice for fluorescence-activated cell sorting (FACS) using a BD Influx 

cell sorter (Becton Dickinson) (Supp Fig S4-14). Viability was determined by staining cell 

preparations with either 7AAD (Biolegend), Propidium Iodide (Biolegend) or DAPI (ThermoFisher 

Scientific), 15 minutes prior to cell sorting.  

Tissue at the CFF site was processed as previously described9. Briefly, large airways (8 

mm in diameter and larger) were rinsed with PBS and soft tissue and lung parenchyma was 

dissected away, exposing intrapulmonary airways. Isolated airways were cut into ~2-3 cm 

segments and along their longitudinal axis to expose the airway lumen. Post dissection, tissue 

was collected and washed in ice cold PBS supplemented with 65mg diothreitol (DTT) and 1.25 

mg of Deoxyribonuclease I (DNase). Tissue was then washed with cold basal BronchiaLife Airway 

media (LifeLine Cell Technology, catalog # LL-0023), prior to digestion for 6-24hr in 0.25% 

Protease XIV (Sigma) supplemented with ACT-V [Amphotericin B (Sigma, catalog# A2942), 
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Antibiotic-Antimycotic (Gibco, catalog#15240-062) Ceftazidime HCL (Sigma, catalog# C3809), 

Tobramycin (Sigma, catalog# T4014), and Vancomycin (Sigma, catalog# V8138)]. After digestion 

the luminal side of bronchial tissue was scrapped using a convex scalpel and rinsed to remove 

airway epithelial cells. Isolated airway epithelial cells were then either: 1) Treated with Accumax 

(Sigma, catalog# A7089) to yield a single cell suspension and processed for single cell 

transcriptional analysis, or 2) Plated and grown on collagen coated flasks in BronchiaLife Media 

+ ACT-V until clearance of bacterial / fungal infections. Standard culture techniques followed, 

using complete BronchiaLife media. 

Tissue at the UCLA site was processed as previously described (Hegab et al., 2012a; 

Hegab et al., 2014; Hegab et al., 2012b; Paul et al., 2014, Aros et al., 2020). Tissue from the 

bronchi and carina were dissected, cleaned, and incubated in 16U/mL Dispase for 1 hour at room 

temperature. Tissues were then incubated in 0.5mg/mL DNase for another hour at room 

temperature. The airway epithelium was then stripped and incubated in Accumax (Sigma, 

catalog# A7089) for 1 hour with shaking at 37°C, cells were filtered, centrifuged at 800g for 5 mins 

and the cell pellet was resuspended in media to a single cell suspension before being used 

immediately for Dropseq. For submucosal gland microdissection, the remaining tissue after 

airway epithelial stripping was left in Liberase at 4C overnight (diluted fresh 1:40 with PBS from 

2.5mg/ml stock) and submucosal glands recovered by microdissection. Isolated submucosal 

glands were digested in trypsin for 30 mins to yield a single cell suspension. An equal volume of 

media was added to neutralize the Trypsin and filtered through 40um filter to generate a 

suspension of single cells. Cells were centrifuged at 800g for 5 mins, the cell pellet was 

suspended in media and then immediately processed for Dropseq. 

 

Generation of air liquid interface cultures 

Human bronchial epithelial cells (hBE) were cultured as previously described9. Briefly, after initial 

airway expansion in BronchiaLife (LifeLine Cell Technology, catalog # LL-0023) on BioCoat 
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collagen coated t-75 flasks (Corning, catalog# 356487), cells were lifted by Versene (Gibco, 

catalog# 15040-066) followed by Accutase (Sigma, catalog# SCR005) incubations, and plated to 

transwell filter membranes (Corning, catalog# 3470). hBE seeding density of transwell filters was 

5.0*105/cm2 in BronchiaLife media for 24hrs, followed by media change to the Vertex ALI9 media 

formulation. Cultures remained submerged for first 96hrs, prior to removal of apical chamber and 

initiated the ALI time course. hBE ALI cultures were maintained for 28 days, with 48hrs media 

changes. On day 28, hBE ALI samples were collected by a thorough PBS wash followed by 

incubation in AccuMax (Sigma, catalog# A7089) for 1-2hrs followed by microscopic evaluation 

until a single cell suspension was identified. After a wash with cold PBS, cells were passed 

through a 40mm filter and counted prior to single cell capture and RNA sequencing. 

 

Single cell library generation and sequencing 

Single cells at the CSMC and CFF sites were captured using a 10X Chromium device (10X 

Genomics) and libraries prepared according to the Single Cell 3’ v2 or v3 Reagent Kits User Guide 

(10X Genomics, https://www.10xgenomics.com/products/single-cell/). Cellular suspensions were 

loaded on a Chromium Controller instrument (10X Genomics) to generate single-cell Gel Bead-

In-EMulsions (GEMs). Reverse transcription (RT) was performed in a Veriti 96-well thermal cycler 

(ThermoFisher). After RT, GEMs were harvested, and the cDNA underwent size selection with 

SPRIselect Reagent Kit (Beckman Coulter). Indexed sequencing libraries were constructed using 

the Chromium Single-Cell 3’ Library Kit (10X Genomics) for enzymatic fragmentation, end-repair, 

A-tailing, adapter ligation, ligation cleanup, sample index PCR, and PCR cleanup. Libraries QC 

was performed by the Agilent Technologies Bioanalyzer 2100 using the High Sensitivity DNA kit 

(Agilent Technologies, catalog# 5067-4626) and quantitated using the Universal Library 

Quantification Kit (Kapa Biosystems, catalog# KK4824. Sequencing libraries were loaded on a 

NextSeq 500 (Illumina) for the CFF site and a NovaSeq 6000 (Illumina) for the CSMC site. 
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At UCLA, cells were resuspended in 0.01% BSA in 1xPBS at approximately 150 cells/ul. 

Cells were coflowed with barcoded beads (Chemgenes) in a Flowjem microfluidics device (PDMS 

Drop-seq) and isolated for reverse transcription as described according to the Drop-Seq 

protocol31. Libraries were constructed with KAPA polymerase and Nextera XT preparation kit as 

previously described and paired-end sequenced on a HiSeq 4000 (Illumina). 

 

Data analysis 

For the CSMC and CFF sites, Cell Ranger software (10X Genomics) was used for mapping and 

barcode filtering. Briefly, the raw reads were aligned to the transcriptome using STAR32, using a 

hg38 transcriptome reference from GENCODE 25 annotation. Expression counts for each gene 

in all samples were collapsed and normalized to unique molecular identifier (UMI) counts, yielding 

a large digital expression matrix with cell barcodes as rows and gene identities as columns. 

At UCLA, raw sequencing data were filtered by read quality, adapter- and polyA-trimmed, 

and reads satisfying a length threshold of 30 nucleotides were aligned to the human genome 

using Bowtie2. Aligned reads were tagged to gene exons using Bedtools Intersect (v2.26.0). DGE 

matrices were then generated by counting gene transcripts for all cells within each sample using 

custom Python scripts. Cell barcodes were merged within 1 Hamming distance. 

Data analysis was performed with Seurat 3.033 with some variation that will be described. 

For all data, quality control and filtering were performed to remove cells with low number of 

expressed genes (threshold n>=200) and elevated expression of apoptotic transcripts (threshold 

mitochondrial genes < 15%). Only genes detected in at least 3 cells were included. Each dataset 

was run with SoupX analysis package to remove contaminant ‘ambient’ RNA derived from lysed 

cells during isolation and capture (Young MD et al., https://doi.org/10.1101/303727 ). Correction 

was performed on the basis of genes with a strong bimodal distribution and for which the ‘ambient’ 

RNA expression was overlapping with a gene signature of a known cell type. The ‘adjustCounts’ 

function of SoupX was used to generate corrected count matrices. To minimize doublet 
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contamination for each dataset quantile thresholding was performed to identify high UMI using a 

fit model generated using the multiplet’s rate to recovered cells proportion, as indicated by 10X 

Genomics (https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-

number-of-cells-that-canbe-profiled-). The raw expression matrix was processed with 

SCTransform wrapper in Seurat. Mitochondrial and ribosomal mapping percentages were 

regressed to remove them as source of variation. Each dataset was first processed separately 

with Principal Component Analysis (PCA) using the 5000 most variable genes as input, followed 

by clustering with Leiden algorithm34 using the first 30 independent components and a resolution 

of 0.5 for clustering. Two-dimensional visualization was obtained with Uniform Manifold 

Approximation and Projection (UMAP)35. Identified AT2 (SFTP+), immune (CD45+), and 

endothelial (PECAM1+) contaminating clusters were removed by subsetting the Seurat object, 

using the ‘subset’ function, before proceeding to data integration. After removal of contaminating 

cells, the raw expression matrix was processed with SCTransform. Log1p logarithmically 

transformed data were obtained for each dataset and scaled as Pearson residuals. Pearson 

residual data were then used to integrate datasets following Seurat workflow, using the 

PrepSCTIntegration function. Integrated datasets were used for downstream analysis. Datasets 

were processed with PCA using the 5000 most variable genes as input, followed by clustering 

with Leiden algorithm using the first 30 independent components and a resolution of 3 for fine 

clustering. Two-dimensional visualization was obtained with UMAP. To identify differentially 

expressed genes between clusters, Modelbased Analysis of Single-cell Transcriptomics (MAST)36 

was used within Seurat’s FindMarkers function. For this analysis the p-value adjustment was 

performed using Bonferroni correction based on the total number of genes. To identify major cell 

types in our normal integrated datasets, previously published lung epithelial cell type specific gene 

lists10 were used to create cell type-specific gene signatures using a strategy previously 

described37. All analyzed features were binned based on averaged expression and the control 

features were randomly selected from each bin. Clusters identified with the Leiden algorithm were 
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assigned to major cell types on the basis of rounds of scoring and refinement. Each refinement 

was produced using transcripts differentially expressed within the best identified clusters from the 

previous scoring. Within each major cell type, Leiden clustering and differential gene expression 

were used to infer sub-clustering. Gene lists used as cell type- and cluster-specific signatures are 

shown in supplementary table. Violin plots show expression distribution and contain a boxplot 

showing median, interquartile range, and lower and upper adjacent values. 

For all genes, institution-based CO to CF ratios were calculated across all cells with 

thresholds set at 25% increase/decrease for being classified as reproducibly changing. Gene 

expression network discovery was implemented by computing a Pearson gene-to-gene 

correlation matrix and identified genes with correlation values greater than 0.20. Genes were then 

grouped into subnetworks based on their pairwise connections and then collapsed into larger 

networks based on correlation of subnetwork gene expression into a final set. Expression 

threshold differences of networks was determined by applying a cutoff to all cell’s average 

expression of a network, set at 30% of the third max cell’s expression level, for CO and CF cells 

separately to determine percentile of each cell in each subtype cluster, and then subtracting them 

to report the difference in those percentiles. Gene ontology enrichments were determined using 

the Metascape tool38. 
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