Lawrence Berkeley National Laboratory

Recent Work

Title

CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS

Permalink

https://escholarship.org/uc/item/2d72z97s

Authors

Templeton, D.H. Dauben, Carol H.

Publication Date 1953-02-03

<u>eScholarship.org</u>

UCRL-2101

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

RADIATION LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA Radiation Laboratory

Cover Sheet Do not remove INDEX NO. UCR L - 2101This document contains <u>16</u> pages This is copy <u>63</u> of <u>88</u> series A

DECEASSIFIED Issued to Information Division

Classification

Each person who receives this document must sign the cover sheet in the space below.

Route to	Noted by	Date	Route to .	Noted by	Date
CHEMISTRY DI	VISION	~			
AW					
			- v	ац бара,	
		·			
				,	
					, . ,

UNIVERSITY OF CALIFORNIA

CONFIDENTIA

Radiation Laboratory

Contract No. W-7405-eng-48

DECLASSIFIED

Classification cancelled by authority of the Office of Declassification 5-72-5-3 Date

hemistry-Transuranic Elements

UCRL-2101

CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS

D. H. Templeton and Carol H. Dauben

February 3, 1953

RESTRICTED DATA This document contains restricted data as defined in the Atomic Energy Act of 1946 Its transmittal or disclosure of its contents in any manner to an unautor ized person is prohibited.

Berkeley, California

-2- UCRL-2101 Chemistry-Transuranic Elements

Standard Distribution: Series A	Copy Nos.
Argonne National Laboratory	1-8
Army Chemical Center	9
Atomic Energy Commission, Washington	10-11
Brookhaven National Laboratory	12-14
California Research and Development Company	15-16
Carbide and Carbon Chemicals Company (K-25 Plant)	17-18
Carbide and Carbon Chemicals Company (IRADS Finney)	19-24
Carbide and Carbon Chemicals Company (V-12 Plant)	25
	26
Chicago Patent Group Dow Chemical Company (Rocky Flats)	27
	28-30
duPont Company	31
General Electric Company (ANPP)	32-35
General Electric Company, Richland	36
Hanford Operations Office	37-38
Idaho Operations Office	39
Iowa State College	40-43
Knolls Atomic Power Laboratory	44-45
Los Alamos Scientific Laboratory	46
Massachusetts Institute of Technology (Kaufmann for Benedict)	47-49
Mound Laboratory	50
National Lead Company of Ohio	51
Naval Research Laboratory	52-53
New York Operations Office	54-55
North American Aviation, Inc.	56
Patent Branch, Washington	57
RAND Corporation	58
Savannah River Operations Office, Augusta	59
Savannah River Operations Office, Wilmington	60
U. S. Naval Radiological Defense Laboratory	61
UCLA Medical Research Laboratory (Warren)	62-65
University of California Radiation Laboratory	66-67
University of Rochester	68-69
Vitro Corporation of America	00-09 70-71
Westinghouse Electric Corporation	72-73
Wright Air Development Center	74-88
Technical Information Service, Oak Ridge	(4-00

CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS¹

CONED

D. H. Templeton and Carol H. Dauben Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

February 3, 1953

ABSTRACT

The crystal structures of several compounds of americium, element

DECLASSIFIED

UCRL-2101

95, have been determined by the X-ray powder diffraction method.

 AmF_3 is hexagonal (LaF₃ type) with

 $a = 4.067 \pm 0.001 \text{ Å}$

 $c = 7.225 \pm 0.002$ Å

and

for the pseudocell which explains the powder data.
$$AmO_2$$
 is cubic

(CaF₂ type) with

$$a = 5.383 \pm 0.001 \text{ Å}$$

AmOCl is tetragonal (PbFCl type) with

$$\underline{a} = 4.00 \pm 0.01 \text{ Å},$$

 $\mathbf{c} = 6.78 \pm 0.01 \text{ Å}.$

The metal parameter is 0.18 ± 0.01 . Am_2O_3 is cubic when prepared at 600° C. and hexagonal when prepared at 800° C. For the cubic form $(Mn_2O_3$ type)

$$L = 11.03 - 0.01$$
Å.

The metal parameter is -0.030 ± 0.002 . For the hexagonal form (La₂O₃ type)

$$\underline{a} = 3.817 \pm 0.005 \text{ Å},$$

$$\underline{c} = 5.971 \pm 0.010 \text{ Å}.$$

¹This research was performed under the auspices of the AEC.

CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS

D. H. Templeton and Carol H. Dauben Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

February 3, 1953

In cooperation with Professor B. B. Cunningham and his students, we have been observing the x-ray diffraction patterns of various compounds of americium, element 95. The isolation of americium produced by the beta decay of Pu^{241} has been described by Cunningham.²

(2) B. B. Cunningham, National Nuclear Energy Series, Plutonium
Project Record, Vol. 14B, "The Transuranium Elements: Research
Papers, "Paper No. 19.2, McGraw-Hill Book Co., Inc., New York,
N. Y., 1949.

Prior to 1948 the purification was usually terminated when the impurities (chiefly lanthanum) were reduced to one or two percent. Since that time there have been available americium stocks of much higher purity. ^{3, 4} In this paper we report our results concerning the

(3) H. R. Lohr and B. B. Cunningham, J. Am. Chem. Soc. <u>73</u>, 2025-28 (1951).

(4) L. Eyring, H. R. Lohr, and B. B. Cunningham, J. Am. Chem. Soc. 74, 1186-90 (1952).

crystal structures of AmF_3 , AmO_2 , AmOCl, and two forms of Am_2O_3 .

Americium Trifluoride

Americium trifluoride was prepared by Dr. L. Eyring as described elsewhere.⁵ Sample A (Table I) was pink in color,

(5) E. G. Westrum and L. Eyring, J. Am. Chem. Soc. <u>73</u>, 3396-98 (1951).

like that described by Fried.⁶ Sample B was a subsequent preparation

(6) S. Fried, J. Am. Chem. Soc. 73, 416-18 (1951).

which was grey or lavender in color. Its diffraction pattern was almost identical with that of Sample A. Sample C was prepared by Dr. J. C. Wallmann from the very pure americium nitrate solution used by Howland and Calvin for their magnetic investigation.⁷

(7) J. J. Howland and M. Calvin, J. Chem. Phys. <u>18</u>, 239-43 (1950).

Some of this americium was precipitated as the hydroxide and heated with oxygen to 525° C. It was then heated in hydrogen fluoride to 715° C. The product was pink but after a week, part of it had turned yellow. Sample C consisted of some of this yellow material.

With each of the three samples an excellent powder diffraction pattern was obtained corresponding to the LaF₃-type structure.⁸

(8) I. Oftedal, Z. physik. Chem. <u>B</u> <u>5</u>, 272-91 (1929); <u>B</u> <u>13</u>, 190-200 (1931).

The unit cell dimensions listed in Table I refer to the hexagonal pseudo-cell containing two americium atoms. This cell accounts for all the diffraction lines observed in the powder patterns. Faint reflections in single crystal patterns^{8, 9} require an a axis which is

(9) We have observed these weak reflections for a single crystal of pure synthetic CeF_3 , showing that the effect in tysonite⁸ is not due to ordering between the cerium and lanthanum atoms.

 $\sqrt{3}$ times as large as those listed in Table I. Zachariasen^{10, 11} first

- (10) W. H. Zachariasen, Phys. Rev. 73, 1104-5 (1948).
- (11) W. H. Zachariasen, Acta Cryst. 2, 388-90 (1949).

observed this structure for americium trifluoride and has reported two sets of cell dimensions based on samples of uncertain purity. His results (corrected from kX units) are included in the table. Our three samples disagree by only slightly more than the estimated limits of error. Since the material prepared by Wallmann is likely to be of the highest purity, we adopt as our best values $\underline{a} = 4.067$ Å and $\underline{c} = 7.225$ Å for the pseudo-cell. For the larger cell, $\underline{a} = 7.044$ Å. The change from Zachariasen's values is not sufficient to affect his ionic radius for Am^{+3} , 0.99 Å.¹² We attach no structural significance to the color

(12) W. H. Zachariasen, American Crystallographic Association, Abstracts of Meeting, Pennsylvania State College, April 10-12, 1950.

changes but attribute them to surface effects of some kind.

Table I

	<u>an an a</u>	
Sample	<u>a</u> (Å)	<u>c</u> (Å)
A ^a	4.069 $\frac{+}{-}$ 0.001	7.229 ±_0.002
B ^a	4.069 ± 0.001	7.229 ± 0.002
C ^a	4.067 ± 0.001	7.225 ± 0.002
Zachariasen ^{10, b}	4.078 [±] 0.002	7. 239 ± 0.004
Zachariasen ^{11, b}	4.081 ± 0.002	7.245 + 0.004

Unit Cell Dimensions for Americium Trifluoride

a Based on Cu K a, $\lambda = 1.5418$ Å.

b Corrected from kX units.

Americium Dioxide

The black americium dioxide was shown by Zachariasen to have the fluorite type structure. ^{10, 11} For samples of uncertain purity, the edge of the cubic unit cell was found to be 5.372 ± 0.005 kX and 5.377 ± 0.003 kX. We have examined by x-ray diffraction several americium dioxide samples, three of which were especially well crystallized and gave excellent powder patterns. Sample A (Table II) was prepared by Dr. L. B. Asprey by ignition of the nitrate in air. The americium stock which was used may have contained a few percent lanthanum. Sample B was prepared by Eyring from a much purer americium stock by heating the oxalate in air. ⁴ .Some of this material subsequently was heated in a small quartz bomb to 500° C. with oxygen at 90 atm. pressure; the product is designated as sample C.

The values observed for the unit cell dimension are compared in Table II. The results for samples B and C show that the high pressure oxidation produces no significant change in the composition of this phase. Using the purer americium stock, Asprey and Cunningham¹³ measured the amount of oxygen absorbed by americium

(13) L. B. Asprey and B. B. Cunningham, to be published.

sesquioxide when heated in oxygen. The result corresponds to AmO_x for the formula of the dioxide, with x = 1.98 + 0.02, if Am_2O_3 is the correct composition of the sesquioxide. Thus the "black dioxide" has very nearly the ideal composition, rather than an intermediate composition like the so-called Pr_6O_{11} .

The deviation of sample A from samples B and C, though small, is outside the experimental precision. The difference corresponds to an oxygen defect in sample A of 0.01 O per Am, estimated from the data of McCullough¹⁴ for rare earth oxide systems. This defect could

(14) J. D. McCullough, J. Am. Chem. Soc. 72, 1386-1390 (1950).

be the result of an impurity of about 4 atomic percent of a trivalent rare earth element (probably lanthanum) in sample A.

Table II

Unit Cell Dimension of Americium Dioxide

and the second	الأباري المراجب المراجب وتنفر فتعقب فللمتصاد فتنته المتحم فكتفيص والمراجب والمراجب والمتعاد
Sample	<u>a</u> (Å)
A	5.387 $\pm 0.001^{a}$
В	5.383 ± 0.001
С	5.383 ± 0.001
Zachariasen ¹⁰	5.383 ± 0.005 ^{ab}
Zachariasen ¹¹	5.388 $\frac{+}{-}$ 0.003 ^{ab}
	· · · · ·

^aPurity uncertain

^bCorrected from kX units.

Americium Oxychloride

Americium oxychloride was prepared by Dr. L. B. Asprey by accidental contamination in an experiment designed to yield the sesquioxide by hydrogen reduction of the dioxide. It was identified by its powder diffraction pattern which corresponded to the PbFCl type structure, ¹⁵ with the tetragonal unit cell dimensions

(15) W. Nieuwenkamp and J. M. Bijvoet, Z. Krist. <u>81</u>, 469-474 (1931).

<u>a</u> = 4.00 \pm 0.01 Å, <u>c</u> = 6.78 \pm 0.01 Å. A second sample was prepared by C. W. Koch by heating Am_2O_3 at 500° C. in a mixture of HCl and H₂O vapor. The pattern again corresponded to the unit cell dimensions listed above.

The atoms are located in the following special positions of space group $D_{4h}^7 - P4/\underline{nmm}$:

- 2 Am in (c) : 0, 1/2, u; 1/2, 0, \overline{u} 2 Cl in (c) : 0, 1/2, v; 1/2, 0, \overline{v}
- 2 O in (a): 0, 0, 0; 1/2, 1/2, 0

Comparison of observed with calculated intensities showed that $u = 0.18 \pm 0.01$. The intensities are not very sensitive to the value of v. We choose v = 0.65 so that the Cl--O and Cl--Cl distances are in the ratio of the sums of the ionic radii. In Table III are listed observed and calculated intensities. No corrections for temperature or absorption have been made. In this structure each americium ion has four oxygen neighbors at 2.34 Å, four chlorine neighbors at 3.05 Å, and one chlorine at 3.18 Å.

Zachariasen¹¹ gives u = 0.18 and v = 0.64 for the isostructural compound PuOC1.

hk l	sin ² o		intensity	
	obs.	calc.	obs.	calc.
001	a	0.0129	≁a	17
101 002	0.0501	0.0501 0.0516	vs+	55 {48 7
110	0.0746	0.0743	S	30
111 102	0.0891	0.0872 0.0887	vs	$37 \begin{cases} 3 \\ 34 \end{cases}$
003	0.1163	0.1162	vw ,	4
112	0.1268	0.1259	m -	13
200	0.1493	0.1486	m	14
103		0.1538		1
201	0.1609	0.1615	vw	3
113	0.1913	0.1905	m -	11
211	0.1996	0.1987	m+	16
004	· · · ·	0.2068		0.2
212	0.2380	0.2374	, m+	15
104	0.2438	0.2437	w	10

Powder Diffraction Data for AmOCl

^aNot on film.

Americium Sesquioxide

Americium sesquioxide was prepared by Eyring⁴ by heating the black dioxide in 1/3 atmosphere of hydrogen at about 600° C. for half an hour. The product was a reddish brown (persimmon) color. It was first identified by its x-ray diffraction pattern, which corresponded to the cubic Mn_2O_3 type¹⁶ structure, with the cell

(16) L. Pauling and M. D. Shappell, Z. Krist. 75, 128-42 (1930).

constant equal to 11.03 \pm 0.01 Å. Subsequent experiments by Asprey and Cunningham¹³ confirmed its composition.

Another americium oxide was prepared by Carniglia¹⁷ by the

(17) S. Carniglia, unpublished work.

ignition of the oxalate at 850° C, followed by reduction with 1/6 atmosphere of hydrogen at about 800° C. The resulting pale tan material was identified as Am_2O_3 by its diffraction pattern which corresponded to the hexagonal La_2O_3 type structure.¹⁸

(18) L. Pauling, Z. Krist. <u>69</u>, 415-21 (1929).

The dimensions of the unit cell are:

 $\underline{a} = 3.817 \pm 0.005 \text{ Å}$ $\mathbf{c} = 5.971 \pm 0.010 \text{ Å}$

A few weak lines are attributed to some unidentified impurity.

For the mineral bixbyite, $(Fe, Mn)_2O_3$, which is isostructural with the cubic Am_2O_3 , Pauling and Shappell¹⁶ give the atomic

positions as:

Space group T_{h}^{7} - Ia3

32 metal atoms in (0, 0, 0; 1/2, 1/2, 1/2) +

8b: (1/4, 1/4, 1/4; 1/4, 3/4, 3/4; 9)

24d: \pm (u, 0, 1/4; \Im ; \overline{u} , 1/2, 1/4; \Im) with u = -0.030 \pm 0.005 48 oxygen atoms in (0, 0, 0; 1/2, 1/2, 1/2) +

48e: \pm (x, y, z; \mathfrak{I} ; x, \overline{y} , 1/2 - z; \mathfrak{I} ; 1/2 - x, y, \overline{z} ; \mathfrak{I} ;

 \bar{x} , 1/2 - y, z; \mathfrak{D})

with x = 0.385 + 0.005

y = 0.145 + 0.005

$$z = 0.380 \pm 0.005$$

The observed intensities of the cubic Am_2O_3 pattern, when compared with those calculated for various values of the parameter u, fix that parameter as -0.030 \pm 0.002, in exact agreement with the result for bixbyite. This agreement is an excellent confirmation of the previous work, since the calculations for the americium compound are little influenced by the positions chosen for oxygen. The lines most useful in the determination of the parameter were those with $h^2 + h^2 + l^2$ equal to 38, 46, 48, 62, and 64. In Table IV are listed the observed intensities for the cubic Am_2O_3 and those calculated for the parameter values listed above for bixbyite. No correction was made for temperature or absorption. It should be noted that in general (hkl) and (lkh) have different structure factors. In this structure, each americium atom is surrounded by six oxygen atoms at a distance of 2, 36 Å.

No intensity calculations have been carried out for the hexagonal Am_2O_3 , but the similarity of the observed intensities

Table IV

$h^2 + k^2 + l^2$	I. obs.	I calc
12	VS	167
14	vw	6
16	S -	79
18	w	9
20		1
22	vw	4
24		1
26	m -	12
30	vw	. 3
32	S	. 62
34	vw	4
36	÷	1
38	w	8
40		. 2
42	vw	6
44	S	58
46	m -	.9
48	m	13
50	vw	3
52		2
54	vw	5
56	vw-	2
58	— — (0
62	VW	5
64	W	8
66	w	7
68	vw	3
70	vw	4
72	n an	2

Powder Diffraction Data for Cubic Am_2O_3

with those for La_2O_3 indicate that the atomic coordinates are very similar in the two substances. If the atomic parameters given by Pauling and Shappell¹⁶ for La_2O_3 are correct for Am_2O_3 , then each Am atom has three oxygen neighbors at 2.35, one at 2.36 and three at 2.59 Å.

These two structures are commonplace among the sesquioxides of the rare earth elements. $^{19-21}$ Ac₂O₃ has the hexagonal structure. 11

(19) V. M. Goldschmidt, F. Ulrich, T. Barth, and G. Lunde, "Strukturbericht," Vol. I, pp 261-62.

(20) K. Löhberg, Z. Physik. Chem., <u>B28</u>, 402-7 (1935).

(21) H. Bommer, Z. anorg. u. allgem. Chem., 241, 273-80 (1939).

Several studies have been made of the temperature dependence of these structures. ^{19, 21-23} Rapid equilibrium conditions do not

(22) A. Iandelli, Gazz. chim. ital. 77, 312-18 (1947).

(23) M. Foex, Compt. rend. 224, 1717-19 (1947).

prevail, but the data indicate that the hexagonal form is stable at higher temperatures than the cubic form, and that the transition temperature from cubic to hexagonal increases with decreasing cationic radius. Thus, for Nd_2O_3 , the cubic form was produced below 775° and the hexagonal form above 850°.²² Our results with Am_2O_3 are analogous: the cubic form resulted at 600° and the hexagonal form at 800°. This agreement is in accord with the fact that the radii of Am^{+3} and Nd^{+3} are about the same.¹² Since the hexagonal form is unknown for oxides of rare earths smaller

in radius than neodymium, Am_2O_3 is probably near the limit of stability of the hexagonal form. The oxides of elements 96 and above, which have smaller cationic radii, are more likely to occur in the cubic form.

ACKNOWLEDGMENTS

We are indebted to Professor Cunningham and to the several persons who prepared the americium compounds. Most of the X-ray photographs were taken by Mrs. Lee Jackson and Mrs. Helena Ruben.

