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Elastohydrodynamic lubrication of faults 

Emily E. Brodsky • and Hiroo Kanamori 
Seismological Laboratory, California Institute of Technology, Pasadena, California, USA 

Abstract. The heat flow paradox provides evidence that a dynamic weakening 
mechanism may be important in understanding fault friction and rupture. We 
present here a specific model for dynamic velocity weakening that uses the mechanics 
of well-studied industrial bearings to explain fault zone processes. An elevated fluid 
pressure is generated in a thin film of viscous fluid that is sheared between nearly 
parallel surface. This lubrication pressure supports part of the load, therefore 
reducing the normal stress and associated friction across the gap. The pressure also 
elastically deforms the wall rock. The model is parameterized using the Sommerfeld 
number, which is a measure of the lubrication pressure normalized by the lithostatic 
load. For typical values of the material properties, slip distance and velocity, 
the Sommerfeld number suggests that lubrication is an important process. If the 
lubrication length scales as the slip distance in an earthquake, the frictional stress 
during dynamically lubricated large earthquakes is 30% less than the friction with 
only hydrostatic pore pressure. Elastohydrodynamic lubrication also predicts a 
decrease in high-frequency (> 1 Hz) radiation above a critical slip distance of a 
few meters. This prediction is well matched by the strong motion data from the 
1999 Taiwan earthquake. The observed 2 orders of magnitude variation in scaled 
radiated energy between small (Mw < 4) and large earthquakes (Mw > 6) is also 
predicted by the lubrication model. 

1. Introduction 

Lubricated bearings are used in industrial applica- 
tions to minimize the friction and wear between moving 
parts that carry heavy loads. Faults also appear to have 
low friction and relatively little wear when they slip 
with large normal stresses [Lachenbruch and Sass, 1980; 
Hubbert and Rubey, 1959]. Low fault friction is puz- 
zling to seismologists because it is not consistent with 
laboratory-based models of rock friction [Byeflee, 1970]. 
Proposed explanations for the apparent reduction in 
friction in the natural system include melting [Jeffreys, 
1942], acoustic fluidization [Melosh, 1979], fault open- 
ing [Brune et al., 1993; Ben-Zion and Andrews, 1998], 
and high pore pressure [Sibson, 1973]. The most com- 
mon explanation is the last one. Interstitial fluids par- 
tially support the load between the fault planes and 
therefore reduce frictional resistance. Models generally 
use either the static values of pore pressure for this pur- 
pose [Hubbert and Rubey, 1959; Byeflee, 1990] or the el- 
evated pressures due to frictional heating [Lachenbruch, 
1980]. Here we consider a previously undiscussed con- 
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tribution to the pore pressure during faulting based on 
strictly mechanical lubrication by a viscous fluid. 

We propose that faults operate in a way analogous 
to lubricated bearings. In a bearing the fluid pressure 
increases during motion [Reynolds, 1886]. As two un- 
even solid surfaces slide past each other, they strain the 
viscous fluid between them. The finite viscosity of the 
fluid resists the motion, and a high pressure gradient 
is formed. This pressure produces a normal stress that 
can help to support the load. Hydrodynamic lubrica- 
tion works in two ways to reduce the total frictional 
stress. (1) In the fraction of the bearing or fault area 
lubricated by a continuous film, the shear stress is the 
viscous stress which is significantly below the solid-solid 
friction for fluids such as water, slurry, or mafic melt. 
(2) More importantly, the mechanically increased pore 
pressure reduces the effective stress on the solid-solid 
interfaces and therefore dynamically reduces the fric- 
tional stress during an earthquake. 

In this study we develop a theory to quantitatively 
predict the observable effects of coseismic lubrication 
by a viscous fluid in a confined fault. We first review 
the fundamental physics and mathematical formulation 
of elastohydrodynamics. We then present the results 
from numerical experiments on model systems in order 
to build a general understanding of lubrication behav- 
ior. Scaling relationships are then explored to explain 
the numerical results, to qualitatively describe the fric- 
tional behavior, and to determine the dependency of 
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lubrication pressure on faulting parameters. We then 
estimate the values of the model parameters and quan- 
titatively assess the importance of lubrication for earth- 
quakes. The theory is applied to three specific observa- 
tions: heat flow, near-field strong motion spectra, and 
radiated energy. A single parameter set is then found 
that is able to provide self-consistent explanations for 
all three applications. At the end of the paper we dis- 
cuss some of the limitations of the simplified theory 
presented here and suggest future modifications. 

Throughout this work we envision a seismogenic fault 
as a bicontinuous system of solid matrix and fault fluid. 
The fault fluid flows around asperities in a nearly linear 
path as the area of the asperity contacts is much less 
than the total fault surface area (Figure 1). The flow is 
modeled as two-dimensional, and the deflection due to 
the asperities is neglected. We calculate the fluid pres- 
sure generated by this flow and consider its effect on 
reducing the load on the asperities. We do not consider 
interseismic processes here. Our model is only applica- 
ble to the behavior during a single slip event. 

The fault fluid is formulated as generally as possible 
since the physical process described refers to any vis- 
cous fluid sheared between two rough surfaces. We fa- 
vor identifying the fluid as a slurry of fine-grained fault 
gouge and aqueous fluid because geological evidence for 
such a material exists [e.g., Otsuki, 1999] and slurry 
viscosities are large enough to produce significant lu- 
brication pressures. Other candidate fault fluids include 
aqueous fluid and frictional melt. The general theory 
presented here applies equally well to any viscous fluid, 
although the numerical results would need to be recom- 
puted with the appropriate material properties. 

2. Lubrication Theory 

A quantitative understanding of hydrodynamic lubri- 
cation requires a brief review of the standard formula- 
tion of the motion of the fluid between two subparallel 
planes. The fluid motion is completely described by the 
full Navier-Stokes equation, 

Du 
= -Vp + r/V2u, (1) P Dt 

Figure 1. Map view of a fault surface. There is a bi- 
continuous system of solid matrix (rock) and fault fluid 
(slurry). The upper block (not shown) moves to the 
right relative to the lower block. The fluid is dragged 
around the asperities (shaded) in the nearly slip-parallel 
path direction shown by the arrow. Asperities comprise 
a small fraction of the fault surface but generate most 
of the friction. 

Figure 2. Characteristic dimensions H and L in a nar- 
row fault. L is the characteristic dimension of pressure 
changes, and H is the mean height of the gap. Fluid 
is in the shaded area. For a fluid-filled fault the mean 

gap height is the same as the average thickness of the 
slipping zone. U is the slip velocity of one side of the 

0 is the undisturbed fluid fault relative to the other, pp 
pressure and AH is the average asperity height. All 
cartoons in this paper are vertically exaggerated. 

where p is the density, u is the velocity vector, p is the 
pressure, and r/is the viscosity. An important simpli- 
fication of the Navier-Stokes equations can be made if 
the flow is through a thin gap, such as a fault zone. 
A thin gap is defined as one where the length L over 
which the fluid pressure changes significantly is much 
longer than the mean height H of the gap (Figure 2). 

The thin gap simplification of the equations of mo- 
tion is known as the lubrication approximation, and all 
terms in the Navier-Stokes equation of order H2/L 2 or 
smaller are neglected. The inertial term is also negligi- 
ble provided that the Reynolds number Re - pUH/o 
is much less than L/H, where U is the relative veloc- 
ity between the fault surfaces [$zeri, 1998, p.72]. For 
faults during rupture both conditions are met and the 
governing equations in two dimensions reduce to 

Op 02u 
Ox = v Oz 2 (2) 

Op 
=0, (3) Oz 

where u is the fluid velocity in the x direction and the 
adopted coordinate system defines x as parallel. to the 
fault slip vector and z as the normal to the fault plane 
(Figure 2). 

Pressure gradients across the gap are negligible under 
the above assumptions. The dynamics are dominated 
by the balance of the viscous stress and the dynamic 
pressure. 

The continuity equation for an incompressible fluid is 

Ou Ow 

0-• + •zz - 0 (4) 
where w is the velocity in the z direction. Combining 
(4) with the boundary conditions and the equations of 
motion (2) and (3) provides solutions for the velocity 
and pressure fields. 

We adopt a frame of reference that is stationary at 
the wall where z - 0 and assume no slip boundary 
conditions at the walls: 
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Figure 3. Lubrication under a tapered slider block. (a) A vertically exaggerated slider plate. 
(b) The pressure increase as calculated from (7) in arbitrary units. 

Atz=0, u=0, w--0 
At z = h, u = U,w = 0. (5) 

At the wall with z - h, where h is defined as the local 
slipping zone thickness, u - U where U is the relative 
velocity between the fault walls. The relative motion 
between the walls is assumed to be entirely in the plane 
of the fault. The slipping zone height includes both 
the initial distance between the walls and any elastic 
displacement that may be caused by the fluid pressur- 
ization. At both walls (z = 0 and z = h), w = 0 since 
there is no flow in the direction normal to the imper- 
meable walls. 

We integrate (2), impose the boundary conditions (5), 
and use the integrated form of the continuity equation 
(4) to derive the Reynolds equation, a standard result 
in lubrication theory [e.g., Hamrock, 1994]: 

•xx h• --6vU (6) 

A more convenient integrated form is 

0 _ 6vU/0 x h* - h p(x) - pp h3 ax, (7) 

where h* is the gap height at the point of maximum 
pressure, i.e., at x = x* where dp/dx]x=•. = 0. Given 
boundary conditions for p and the geometry of the fault 
specified by h(x), the Reynolds equation can be solved 
to find the pressure distribution p(x). The typical be- 
havior of lubricated systems can be illustrat,•d by con- 
sidering a tapered slider moving over a plane surface 
(Figure 3). 

The pressure in the far-field is the initial reservoir 
pressure pp0. It is convenient to reference all pressures 

0 equal to 0. The appropriate to this level and to set pp 
boundary conditions for pressure are that at x - 0 and 
x - L, the pressure p - pp0 _ 0. The pressure rises 
in the narrow region and therefore exerts a net force or 
"lift" separating the two blocks. 

3. Elastic Effects 

To this point we have assumed that the fault wall 
behaves as a rigid body. This is not true in many lubri- 
cation problems. The fluid pressure deforms the wall 
and in so doing adjusts the geometry to make lubri- 
cation more effective. This phenomenon explains how 
originally symmetric asperities like that pictured in Fig- 
ure 2 deform to generate a net pressure increase. The 
everyday experience that arbitrary rough surfaces slide 
more easily when lubricated than when dry is evidence 
of the efficacy of the elastic adjustment. 

The lubrication pressure is significant as long as the 
fault is slipping. Since the asperities are at most a few 
meters long, the time it takes the elastic waves to tra- 
verse the asperities (<< 10 -2 s) is likely much less than 
the duration of loading. Therefore a quasi-static solu- 
tion to the elastic equations is likely to be appropriate 
for modeling the effect of lubrication pressure on the 
fault geometry. Additional processes, such as asperity 
collisions, simultaneously generate elastodynamic de- 
formation (seismic waves) during rupture. Those dy- 
namic effects are beyond the scope of the present study 
and may be superposed on the elastostatic solution pre- 
sented here. 

The elastostatic solution is derived in Appendix A 
for the displacement in a halfspace from a finite sheet 
of pressurized fluid. The elastic displacement at point 
x is 
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(•(X)- 4(1--u2)f0 Lp(•) In a+v/(x-•)2+a2 d• •rE x-• • (8) 

where 2a is the width of the lubricated zone in the fault 

plane direction normal to slip, E is the Young's modu- 
lus of the rock, and v is the Poisson's ratio. We assume 

0 is in equilib- that the preearthquake pore pressure pp 
rium with the initial asperity shape and produces no 
elastic displacement. Equation (8) is the solution for 
the displacement due to a finite sheet of pressure p(x, y) 
with Op/Oy - 0, where y is the slip normal direction in 
the fault plane (Appendix A). The elastic deformation 
is driven by the pressure distribution from the equation 
(7) which implicitly assumes that there is no flow in 
the y direction. Flow in the y direction could occur in 
the physical system if there is leakage from the ends of 
the slipping zone. For a lubricated zone that is much 
wider than long (a >> L), the leakage is clearly negli- 
gible [Hamrock, 1994]. Leakage in the y direction may 
be a significant effect for narrower slipping zones. For 
now, we assume that the lubricated zone is equidimen- 
sional with a - L/2 in order to provide simple models 
of systems with a single asperity. This assumption will 
be modified to a condition that ensures a >> L when we 

consider rough surfaces rather than single asperities. 
Figure 4 shows the deformation of an asperity with 

the initial shape s(x) = hi [cos(27rx/L) + 1] + h0, where 

L=5m L=15m 

x 10 6 

0 

a b c 

4 
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x (m) 
5 0 10 20 30 
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Figure 4. (a) Elastic deformation of a cosine asperity 
with an initial minimum separation of I mm and L = 5 
m. The dashed line is the undeformed asperity shape 
s(x) and the solid line is the equilibrium shape h(x) = 
s(x) + 5(x) With the elastic deformation coupled to the 
lubrication fluid pressure. Other parameters are E = 
5 X 10 TM Pa, U = I m/s, and •/= 10 Pa s. (b) The same 
as Figure 4a with L = 15 m. (c) The same as Figure 4a 
with L - 30 m. (d) The change in pressure in the fluid 
due to lubrication effects with L = 5 m. The total 

change in gap height is plotted and includes the elastic 
displacement of both sides of the faults. (e) Same as 
Figure 4d with L - 15 m. (f) Same as Figure 4d with 
L-30 m. 

the constants hi and h0 are both 10 -3 m for this exam- 
ple. Details of the numerical method are given in Ap- 
pendix B. There are two features of the solution that are 
particularly important for the discussion that follows. 
(1) The asperity is deformed to an asymmetrical con- 
figuration, thus promoting lubrication and supporting a 
net load. (2) As the length L of the asperity increases, 
the displacement 5(x) increases in accordance with (8). 
Since the initial asperity height is the same in all three 
cases of Figure 4, the deformed asperity flattens with 
increasing values of L. 

4. Rough Surfaces 

The length of the lubricated zone L is defined as the 
length over which the pressure returns to its reservoir 
value. For a single asperity, such as shown in Figure 4, 
this is clearly the asperity length. Similarly, the asper- 
ity height AH is clearly defined for a single asperity 
(Figure 2). Real fault surfaces are observed to be self- 
similar and have asperities over a continuous range of 
lengths [Scholz, 1990; Power and Tullis, 1991]. There- 
fore it is necessary to derive the appropriate asperity 
length L and height AH for a rough lubricated surface. 

Power and Tullis [1991] and Brown and $cholz [1985] 
measured fault surfaces on scales from 10-5-40 m and 

found that the power spectrum followed power laws such 
as 

1 

G(f) oc f•, (9) 
where G(f) is the power spectral density, f is the spatial 
frequency and the value of the exponent c• is typically 
2 or 3. For instance, the Fourier spectral density for a 
surface with a finite length/2 and c• = 2 is 

Kœ 

O(f)- 2f' (10) 
where K is the spectral aspect ratio. The corresponding 
surface roughness function is 

g(x) - 2 O(f) cos (27rfx q- c)(f)) df, (11) 

where •b(f) is a random phase that varies with spatial 
frequency. 

We assume that the shape of the two rough sides of 
the fault is initially well matched before the earthquake 
due to interseismic healing. The gap height h(x) has 
a constant value h0 along strike. If the fault fluid is a 
slurry, the thickness of this initially uniform fluid layer 
is controlled by the fiuidization process as well as the 
fault surface geometry. The surface is "well matched" if 
the fluid layer is initially of uniform thickness on scales 
less than or equal to the final slip distance. As one 
side of the fault slips relative to the other, a mismatch 
between the fault sides develops and h(x) varies with x 
(Figure 5): 
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d 

d 

Figure 5. Roughness generated by slip on a self-similar 
surface. The rough surface is generated by the function 
g(x) in equation (11). (a) Well-matched surfaces with a 
uniform layer thickness h0 at the initiation of the earth- 
quake. (b) Surfaces after the top surface slips a distance 
d relative to the bottom one. (c) The gap height func- 
tion h(x) after slip. The characteristic wavelength is 
comparable to the scale bar of length d. Surface rough- 
ness is vertically exaggerated. 

n(x) - g(x + - g(x) + no. (12) 

If the initial roughness g(x) is self-similar as assumed 
here, the characteristic wavelength of h(x) scales ap- 
proximately as the displacement between the two fault 
surfaces. This occurs because displacing the surfaces 
as in (12) is equivalent to passing g(x) through a filter 
with the amplitude response of sin •rfd. Figure 5 shows 
how initially conformal, rough surfaces result in a high- 
frequency gap height function h(x) when one plane is 
slipped a distance d relative to the other plane. Larger 
asperities are isolated with increasing displacement. Vi- 
sual inspection suggests that d is the dominant asperity 
length and can be used as L. 

The gap function theoretically has relatively large 
components at long wavelengths up to œ because of the 
f-1 spectral density structure. For wavelength compo- 
nents where the spectral amplitude is much larger than 
the average gap height, at some points the two sur- 
faces may collide. At other places they may be distant. 
Lubrication is only important where the separation is 
small. Therefore, if the theoretical spectrum holds to 
all wavelengths, only patches of the fault are hydrody- 
namically lubricated. However, it is unlikely that large 
wavelength asperities can be maintained during slip on 
a thin fault in the presence of collisions and elastic de- 
formation. In any case, the elevated fluid pressure in lu- 
bricated patches reduces the average normal stress car- 
ried on contacting asperities across the fault. The scale 

of these lubricated regions is uncertain. The roughness 
data only extend to 40 m wavelengths, so it is difficult 
to extrapolate the behavior over any longer distance. 
If we use observational data on fault roughness from 
Power and Tullis [1991], at wavelengths >> 10 m as- 
perity heights are greater than the value of total gap 
height (initial uniform height plus elastic displacement) 
used in this paper. Therefore we will assume that the 
lubricated regions are tens of meters long. Many discon- 
tinuous patches are postulated to exist in the slipping 
fault. Within these lubricated patches the gap func- 
tion can be locally approximated by a sinusoidal wave 
with wavelength d and amplitude Kd. We use this sim- 
ple monochromatic model with L • d and AH • Kd to 

scale the lubrication pressure. It is likely that the result 
can apply generally to any self-similar fault surface that 
has a relatively uniform layer of fluid at the beginning 
of the earthquake. 

Figure 6 is a calculation of elastohydrodynamic lu- 
brication using a rough surface generated by (11). The 
gap height function is produced by slipping this sur- 
face a distance d relative to a well-matched surface as 

in (12). The increase in elastic displacement with in- 
creasing d reproduces the behavior shown in Figure 4 
for a single asperity with increasing L. The separation 
between the original and deformed surfaces increases 
with d. An additional complication in the rough sur- 
face calculations is that the initial asperity height also 
increases with increasing d. Larger asperities become 
prominent in the gap height function as the slip dis- 
tance increases since AH = Kd. Therefore the fiatten- 

d=0.5 rn 

0 5 10 

x 10 6 
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b c 

d=2m 

6 U ' 

4 l' •,.•:i 
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d e f 
x 10 6 

6 

0 

x 10 6 

6 ' 

0 5 10 0 •; 10 0 5 10 
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Figure 6. (a) Lubrication of a rough surface. The light 
curve is the undeformed asperity shape, and the heavy 
curve is the equilibrium shape. Parameters are as in 
Table I except d - 0.5 m and K - 10 -4. (b) The same 
as Figure 6a with d = I m. (c) The same as Figure 6a 
with d - 2 m. (d) The change in pressure in the fluid 
due to lubrication effects with d - 0.5 m. (e) Same as 
Figure 6d with d = I m. (f) Same as Figure 6d with 
d-2m. 
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ing is not apparent as in Figure 4. If d exceeds a critical 
value Lc, the gap is widened by an amount comparable 
to the largest asperity heights. The wider gap reduces 
the number of asperity collisions during sliding. It will 
be hypothesized that this process has observable effects 
in near-field strong motion records. 

5. Scaling and the Sommerfeld Number 

In the above discussion we have presented the ba- 
sic theory of elastohydrodynamic lubrication and some 
numerical results. Now we will explore the scaling rela- 
tionships between the lubrication pressure and the fault 
parameters. The scaling relationships both describe the 
qualitative behavior of the system and provide the basis 
for quantitative application of the theory. 

Equation (6) balances the dynamic pressure in the 
gap with the viscous stresses generated by the variations 
in gap height and implies that the excess pressure due 
to lubrication, PL -- O(p(x) --pop), scales as 

6rlULAH 
Pœ • H3 , (13) 

where H is the mean gap height and AH -- (.9(h- h*) 
is the mean variation in gap height caused by asperities 
(Figure 2). Capital letters are used here to denote char- 
acteristic scales, while variables are in lowercase letters. 
The lubrication pressure increases with viscosity. This 
dependence on viscosity is why oil is a better !.ubricant 
than water for most household uses [Pev•s•n, 1998, p. 
•]. 

For a fault with asperities that are intermittently in 
contact during rupture, the average asperity height AH 
may be of the same order as the average gap height 
H. The expression for the lubrication pressure would 
reduce to 

6rlUL 
PL• H2 (14) 

However, the assumption that the mean asperity height 
AH is of the same order as the initial gap height H0 
is not always valid for natural surfaces. As discussed 
above, AH = KL for a general class of self-similar 
rough surfaces. It follows from (13) that 

6rlUKL 2 
PL • H•. (15) 

For natural fault surfaces and large ruptures (earth- 
quake magnitude Mw > 6) the parameter K is of the 
same order as H/L. As will be discussed below, lubri- 
cation pressure is only significant for large earthquakes. 
Therefore (14) is often a convenient approximation for 
the lubrication pressure. 

The effectiveness of lubrication is evaluated by nor- 
malizing (15) by the pressure from the static load to 
form the dimensionless Sommerfeld number, 

PL 6rlUL2 K 
S- p = pz 3 , (16) 

where P is the lithostatic pressure for geological prob- 
lems [Sommerfeld, 1950]. This form of the Sommer- 
feld number is slightly modified from the original ref- 
erence because of the geometric difference between the 
axisymmetric journal bearing problem that Sommerfeld 
was considering and the natural, planar fault considered 
here. 

The average gap height H is equal to the sum of the 
initial average gap height H0 and the average elastic 
displacement D. According to Hooke's law, D is related 
to the lubrication pressure by 

D= LP•/E, (17) 

where E is Young's modulus. For small lubrication 
pressures the elastic displacement is negligible, and 

6rlUKL 2 1 
S- (H0)3 •' (18) 

The initial gap geometry drives the lubricating flow, and 
the asperities are uncleformed. This regime occurs when 
the lubrication pressure is much less than the pressure 
necessary to generate displacement of order H0, 

P5 << EHo/L. (19) 

We define a critical lubrication length Lc below which 
the elastic displacement D is insignificant, Lc is defined 
as the length at which D = Ho. Combining (15) and 
(17), 

(HOE) I/3 L• - 2H0 6•IUK ' (20) 
In the inelastic regime where L << Lc, the larger the 
value of L, the larger the lubrication pressure. 

For large L >> Lc, elastic displacement is significant. 
The initial gap height H0 is much less than D and the 
total gap height H is primarily determined by the elastic 
contribution, i.e., H • D. The roughness K is assumed 
constant, and therefore for L >> Lc, 

L P' 

Equation (21) indicates that S decreases with increasing 
L in the elastic regime. As the value of L increases, the 
elastic displacement widens the gap, and therefore the 
lubrication pressure gradually decreases. This decrease 
of lubrication pressure in the elastic regime is a gradual 
process (PL • L -1/4) since the decreasing lubrication 
pressure also reduces the strain, D/L. 

The Sommerfeld number measures the importance of 
lubrication in determining the frictional properties of 
a system. To show this, we compute the effective co- 
efficient of friction/• = •i/P where •i is the frictional 
stress z nd P is the lithostatic pressure. We use the clas- 
sical model of Hubbert and Rubey [1959] describing the 
effects of pore fluid pressure. The effective pressure P• 
on the solid contacts is the static load less the average 
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pore pressure Pp [Hubbert and Rubey, 1959], 

P• - P- Pv. (22) 

The average frictional stress rf on contacting asperities 
is 

ry = p•P•, (23) 

where/• is the solid coefficient of friction, a material 
property of the solid surface. The Hubbert and Rubey 
[1959] model, like nearly all frictional models, is based 
on the observation that contacting asperities account 
for the majority of the frictional stress even though they 
comprise only a small fraction of the fault plane area. 
This work adds the effect that during rupture the pore 
pressure is dynamically increased and Pp - ppO + p•. 

For small Sommerfeld numbers the lubrication pres- 
sure supports an insignificant fraction of the load. The 
two sides of the fault are in contact at asperities and 
conventional formulations of solid friction as propor- 
tional to the normal stress are appropriate. This limit- 
ing behavior is known as boundary layer friction. The 
frictional stress ry is determined by adhesive forces and 
can to some extent be predicted from the surface chem- 
istry [Petsson, 1998]. In the boundary layer friction 
regime, P• = P and/• = /•. To date, most frictional 
experiments for geophysical applications have been in 
this regime. 

For large Sommerfeld numbers the lubrication pres- 
sure completely supports the load and no normal stress 
is exerted on contacting asperities. The only frictional 
stress is the viscous resistance of the fluid and (23) is 
not relevant. The magnitude of the viscous stress in the 
fluid is rlOu/Oz. Equation (2), which is the lubrication 
equation of motion in the x direction, shows that the 
velocity gradient Ou/Oz scales as P•H/Lrl. Therefore 
the viscous stress scales as P•H/L. Since the viscous 
stress is the only frictional stress in the fully lubricated 
regime, 

I•: SH/L, (24) 
where the definition of the Sommerfeld number as $ - 

PL/P has been used to simplify the expression. 
Between the boundary layer and the hydrodynamic 

regimes is the "mixed regime." Friction is determined 
by a mixture of viscous resistance and solid asperity 
contacts (Figure 1). The effects are additive and the 
frictional stress is 

- + 

If we neglect the initial hydrostatic fluid pressure ppO 
for the purposes of this qualitative discussion of friction, 
then P• • P(1-$) and the effective frictional coefficient 
is 

/• =/•s(1 - S) + SH/L. (26) 

All three types of behavior are shown schematically 
in the classical Stribeck curve in Figure 7 [Spikes, 1997] 
and are summarized by 

Hydrodynamic 

Boundary [ Lubrication 
Lubrication 

I 

I 

s 

Figure 7. The Stribeck curve schematically shows the 
variation of the coefficient of friction/• with $. In the re- 
gion labeled "boundary lubrication," solid-solid friction 
predominates. Between the dashed lines is the mixed 
regime where solid-solid friction is reduced by the lu- 
brication pressure. In the "hydrodynamic lubrication" 
region, solid-solid friction is eliminated, and the friction 
is determined by the viscous stress. 

{ /•s S<<I /•- /•8(1- S) + SH/L S • 1 
SH/L S >> 1. 

(27) 

The Stribeck curve demonstrates both effects of lu- 

brication outlined in section 1. In the hydrodynamic 
regime the shear stress is low since solid-solid friction 
has been eliminated in favor of viscous effects. In the 

mixed regime the friction has been depressed since the 
lubrication pressure is high. 

6. Physical Constraints on Parameters 

We now estimate the values of the parameters in (16), 
(17), and (20) in order to quantify the lubrication effect 
during earthquakes. The value of viscosity depends on 
the fault fluid. A number of studies have shown that 

crustal fluids migrate to highly permeable fault zones 
[Davis and DeWlest, 1966], and there is reason to be- 
lieve that aqueous fluids are abundant at midcrustal lev- 
els due to metamorphic reactions [e.g., Rumble, 1994]. 
If the lubricant during an earthquake is H20, the vis- 
cosity is on the order of 10 -3 Pa s [Sengets and Wat- 
son, 1986]. Alternatively, solid-solid frictional stresses 
may melt the wall rock during the early stages of an 
earthquake as first suggested by Jeffreys [1942]. Such 
a melt would be a viable lubricating fluid with a vis- 
cosity of at least 10 Pa s [Spray, 1993]. In this case, 
thermal effects should be considered in addition to the 

strictly mechanical lubrication addressed here. We fa- 
vor a slurry formed from the mixture of fine-grained 
gouge with H20 as the lubricant for the reasons noted 
in section 1. There is evidence of slurries in fault zones 

and they are probably viscous enough to produce sig- 
nificant lubrication. Major and Pierson [1992] showed 
that at shear strain rates >5 s -1 and atmospheric pres- 
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Table 1. Typical Parameter Ranges 

Parameter Values 

r/ 10 Pas 

U 1 m/s 
K 10 -a 

L (Mo/M2)i/3 m a 
H0 10 -a m 
E 5 x 10 TM Pa 
P 1-2 x lO s Pa 

aM0 ø is the moment of a M•o = 6 earthquake (1.3 X10 TM 
N m) and is used to normalize the slip distance to be 1 m 
for such an event. 

sure, fine-grained slurries exceed their yield strengths 
and behave as Newtonian fluids with constant effective 

viscosities. Since the shear strain rates during rupture 
are on the order of 1000 s -1, we expect the fluid to be 
in this Newtonian regime even if some increase of yield 
strength occurs with confining pressure. The observa- 
tion of eddy structures in fault zone cataclasites gives 
further evidence that gouge fluidizes during rupture [ Ot- 
suki, 1999]. Slurries with mean grain diameters <63 •um 
had viscosities of 0.2 to 7.1 Pa s at atmospheric pres- 
sure in the experiments of Major and Pierson [1992]. 
We expect the viscosity to increase somewhat at depth 
and therefore estimate the slurry viscosity to be 10 Pa s. 
Major and Pierson [1992] also showed that slurry vis- 
cosity is extremely sensitive to solid volume fraction and 
can change by an order of magnitude if the solid vol- 
ume fraction changes from 45% to 50%. As a result our 
estimate of viscosity is necessarily approximate, and we 
acknowledge thai it may be inaccurate by a factor of 10 
or more. 

An average value for slip velocity for moderate earth- 
quakes is 1 m/s [Lay and Wallace, 1995]. This s•andard 
value is adopted for most of this study. A preliminary 
model incorporating variable velocity is also explored in 
this paper under the discussion of radiated energy data 
as a model application. This more complete treatment 
includes velocity variations consistent with the varia- 
tions in friction due to lubrication. 

The aspect ratio K is observed to be 10-4-10 -2 in the 
data of Power and Tullis [1991]. The profiles studied 
range from 10/•m to 40 m. In the absence of more pre- 
cise data we select K - 10 -3 as a representative value. 
Note that the f-2 spectrum used here is not used by 
the authors of Power and Tullis [1991] in their analy- 
sis, but it is consistent with the data for each profile 
presented in their paper. 

The lubrication length L is approximately equal to 
the slip distance d as discussed above. The slip dis- 
tance d scales as M0 •/3 where M0 is the seismic moment 
[Kanamori and Anderson, 1975]. We assume that the 
slip for a Mw - 6 earthquake is i m. This approach 
uses the final slip distance as L and therefore calculates 
the maximum value of the Sommerfeld number $ for a 

given magnitude earthquake. 
The average initial gap height H0 is assumed to be 

comparable to observed geological features that are in- 
ferred to have been generated during a single slip event. 
Such features include intravein septa, slickenslide sur- 
faces, and occasionally pseudotachylytes. All of these 
features often indicate sliding localized to regions on the 
scale of millimeters [Sibson, 1999]. Therefore we take 
H0 - lmm. 

The elastic modulus E is a material parameter of the 
rock and is 5 x 10 lø Pa for a typical granite [ Carmichael, 
1982]. Ambient pressure is estimated as the lithostatic 
value at the hypocenter. Typical values in the seismo- 
genic zone are 1-2x108 Pa. More precise estimates can 
be made for specific events by using the hypocentral 
location. 

The parameters listed above are summarized in Ta- 
ble I and result in values of the Sommerfeld number 

on the order of 0.1 for moderate earthquakes. These 
values indicate that the rupture process overlaps with 
the dynamic regime in which variations in lubrication 
pressure are significant. Values for a few representative 
events are listed in Table 2. 

Combining the above constraints and using the stan- 
dard relationship between seismic moment and magni- 
tude, 

log M0 = 1.5Mw + 9.1, (28) 

Table 2. Sommerfeld Numbers for Representative Earthquakes a 

Earthquake Date M•o U, d, p,b S 
m/s m 10 s Pa 

Reference c 

Landers June 28, 1992 7.2 I 7 1.9 0.1 1 
Northridge January 17, 1994 6.7 I 3.2 4.7 0.1 2 
Parkfield December 20, 1994 4.7 1.1 0.77 2.4 0.1 3 

•In order to provide consistent comparisons, Sommerfeld number is computed for the maximum ob- 
served velocity and slip. Parameters omitted from this table are taken to be the typical values in Table 1. 

bValues for P are based on hypocentral depths. 
CReferences: (1) Wald a•d Heaton [19941, (2) Wald et al. [19961, and (3) Fletcher a•d Spudich [19981. 
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where M0 has units of N m, we graph a relationship be- 
tween Sommerfeld number and magnitude (Figure 8). 
Lubrication pressure can reach 30% of the lithostatic 
pressure for large earthquakes with typical fault param- 
eters, but lubrication is negligible for small earthquakes. 

Parameters in Table I are approximate, and Figure 8 
shows the sensitivity of the results to errors in the esti- 
mates. The least constrained parameters, r/and H0, are 
varied. The results are very sensitive to the parar•eters 
chosen for small earthquakes and more robust for large 
earthquakes. Despite the variation, small earthquakes 
remain essentially unlubricated in all cases. The signif- 
icant lubrication pressures in moderate to large events 
are relatively insensitive to variations in parameters be- 
cause of the limiting effect of the elastic deformation. 
This result is consistent with the scaling argument in 
(21) where the Sommerfeld number is shown to be pro- 
portional to the 1/4 root of most parameters. 

7. Model Applications 

The paper to this point has presented a conceptual 
overview of hydrodynamic lubrication, a mathematical 
model, and the necessary quantification of parameters. 
We now use lubrication theory to explain the following 
three observations: low heat flow on the San Andreas, 
along-strike variations in strong motion spectra, and a 
difference in scaled radiated energy between large and 
small earthquakes. After discussing each application 
separately, we present an optimized parameter set that 
is consistent with all three applications. 
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Figure 8. Dependence of Sommerfeld number on mag- 
nitude M•,. The solid area is calculated with the typical 
parameters in Table 1. The upper and lower bounds are 
determined by the range in lithostatic pressure ?. The 
other two regions show the sensitivity of the results to 
varying parameters. Both are also calculated with the 
parameters of Table 1 except r/=100 Pa s in the stippled 
area and H0=5 mm in the cross-hatched area. 

Table 3. Frictional Stress a 

Case ppO, p/•, 
10 7 Pa 10 7 Pa 107 Pa 

a 0 0 10 
b 7 0 7 
c 7 3 5 

d 7 10 0.9 

a Minimum frictional stress on the fault rf computed from 
Byerlee's law (29) for different assumptions. The cases are 
case a, dry rock; case b, hydrostatic pore pressure only; case 
c, lubrication with typical parameters; and case d, lubrica- 
tion with r/=350 Pa s. 

7.1. Heat Flow 

Heat flow measurements across the San Andreas fault 

require that the frictional stress on the fault is less than 
l07 Pa at 7 km depth [Lachenbruch and $ass, 1980]. 
This strong constraint on the fault energetics is puzzling 
in light of laboratory data on rock friction. According to 
laboratory experiments the frictional stress •-/ between 
rock surfaces is determined by Byerlee's law 

V - - s(P- Ppø - (29) 

where the coefficient of friction /•s is between 0.6 and 
0.85 and the effective pressure is as defined in (22). At 
an average seismogenic depth of 7 km with hydrostatic 
fluid pressure (P - 1.9 x 108 Pa, pp0 _ 7 x 107 Pa), By- 
erlee's law requires the frictional stress to be at least 
7x107 Pa (Table 3). A dynamic increase in fluid 
pressure of 108 Pa, i.e., $ = 0.5 is required in order 
to solve the friction paradox. The parameters consid- 
ered in Table I allow a maximum lubrication pressure 
PL = 3 x 107 Pa. Dynamic lubrication in this situation 
reduces the friction by 30% relative to the hydrostatic 
value. This reduction is comparable to the reduction 
in friction from dry rock to the hydrostatic value and 
is therefore signficant. However, lubrication does not 
completely solve the friction paradox. Sufficient lubri- 
cation pressure can be achieved by lubrication using a 
higher viscosity slurry or melt with r/ - 350 Pa s. Al- 
ternatively, other mechanisms such as thermal pressur- 
ization in the confined fault zone might account for a 
portion of the dynamic fluid pressure increase [Sibson, 
1973; Lachenbruch, 1980; Mase and Smith, 1987]. 

The calculations show that hydrodynamic lubrication 
is only significant for large earthquakes. A dynamic lu- 
brication model for reducing frictional stress requires 
that the majority of slip on a fault occurs during the 
larger magnitude events. This is consistent with stan- 
dard scaling relationships for seismic energy with mag- 
nitude [Kanamori and Anderson, 1975]. Moreover, the 
heat flow constraint is only applicable to large earth- 
quakes [Lachenbruch and $ass, 1980]. 
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Figure 9. Velocity records from Chi-Chi, Taiwan Mw - 7.6 earthquake. (a) North component 
of velocity at stations within a few kilometers of the surface rupture. •Velocity is integrated from 
acceleration records provided courtesy of Taiwan Meteorological Institute with a correction for 
instrumental drift late in the record. The y axis shows latitude of the stations. (b) Station map 
and surface rupture. Fault plane dips to the east. 

7'.2. Strong Motion Spectra 

A unique set of strong motion records was recorded 
within a few kilometers of the surface rupture during 
the September 20, 1999, Mw - 7.6 Chi-Chi, Taiwan, 
earthquake (Figure 9). The earthquake is notable for 
its high particle velocities as well as the distinct lack of 
high-frequency energy in the areas with large velocities 
[Ma et al., 1999]. The northern records are dominated 
by a smooth, large-amplitude pulse in velocity, whereas 
the southern ones have higher frequency energy with 
lower velocities. This difference in frequency content 
along-strike was also manifested as greater damage in 
the south, despite the larger displacements in the north. 
The damage patterns and mapped fault offsets confirm 
that the variation in the records is a result of along- 
strike trends rather than local site responses or ampli- 
fied motion on the hanging wall. 

We hypothesize that the high frequency energy is gen- 
erated by contacting asperities (Figure 10). Collisions 
between asperities are accommodated by a combination 
of normal displacement and failure. Both processes ra- 
diate high frequency energy. Asperities that radiate en- 
ergy by these processes must be much smaller than the 
slip distance. The rate of asperity contact controls the 
minimum frequency, fc, of the displacement waves gen- 
erated by asperity collisions. Therefore, 

fc )) Fid. (30) 

Using the values in Table 4, we compute that for station 
TCU129, fc )• 0.8 Hz, and for TCU068, fc • 0.4 Hz. 

On the basis of these values we define "high-frequency 
energy" a.s waves with frequencies > 1 Hz. 

The lubrication model can explain the observed data 
if the lubrication length scale L in the northern sec- 

Figure 10. Vertically exaggerated cartoon illustrat- 
ing asperities breaking during rupture. (a) Uncleformed 
fault surface. As the point at the tip of the arrow slips 
to the right, it collides with the asperities on the lower 
surface above the dashed line. A schematic high-pass 
velocity trace for a station located at the arrow is shown 
at the top. (b) Deformed fault surface. There are fewer 
asperity contacts than in the uncleformed case as shown 
by the shading and the velocity trace. 
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Table 4. Taiwan Station Parameters a 

Station d, U, 
m m/s 

TCU068 9.6 3 
TCU052 8.7 2 
TCU067 1.2 1 
TCU065 1.6 1 
TCU075 1.3 1 
TCU076 1.3 0 
TCU129 1.0 0 
CHY028 1.3 0 

9 

7 

1 

5 
2 

87 

78 

94 

aObserved maximum horizontal slip and particle velocity. 
Stations are arranged north to south as in Figure 9. The 
first two stations show anomalous "pulse" behavior. 

tion of the fault was larger than the critical value Lc 
and therefore elastic displacement was significant. For 
a self-similar rough fault L is identical to the slip dis- 
tance d as shown in Figure 5. It is hypothesized tl•at 
at the northern stations d • Lc; therefore, the elas- 
tic deformation widened the fault and reduced aspe•ity 
contact. High frequency radiation was reduced. Else- 
where on the fault d is hypothesized to have been less 
than Lc throughout the earthquake. 

We verify the consistency of the hypothesis with the 
data by comparing the observed maximum slips (L) 
with the theoretical values of Lc from (20). Figure ll 
shows the results calculated with the standard lubrica- 

tion parameters in Table 1 combined with the velocities 
and slip distances in Table 4. The critical slip is be- 
tween 1 and 2 m at all of the stations. L is shown to 

exceed Lc only at the two northernmost stations, and 

therefore the results are consistent with the lubrication 

hyopthesis. The values of Lc presented here depend on 
the estimates of the parameters in Table 1. However, 
(20) shows that the results are relatively insensitive to 
errors in all the parameters except H0. The critical slip 
Lc is likely to be of the order of a few meters. Spec- 
tral analysis of the northern stations shows a falloff in 
frequency above •-l Hz as would be expected from the 
lubrication model (Figure 12). 

We predict that any large earthquake with slip dis- 
tances greater than a few meters will have a zone of 
the fault that is well lubricated with depleted high- 
frequency energy. This behavior has direct implica- 
tions for efforts to mitigate the effects of strong ground 
motion. Structures designed to withstand large earth- 
quakes must accommodate large amplitude long-period 
motion but do not need to accommodate as much high- 
frequency energy as would be predicted from scaling 
the spectrum of small events. Of course, such theo- 
retical predictions are preliminary and should be thor- 
oughly validated before being incorporated into any de- 
sign plans. 

7.3. Radiated Energy 

It has been observed in California that the ratio of ra- 

diated energy/•R to seismic moment -]l//0 is a function of 
magnitude (Figure 13) [Abercrombie, 1995; Kanamori 
and Heaton, 2000; Prejean and Ellsworth, 2001]. Large 
events (Mw • 6) have values of ER/Mo • 10 -4 while 
the small ones (Mw • 4) have values as low as 10 -6. 
This type of observation is extremely difficult, and the 
error increases for small events because of the model- 

dependent corrections for attenuation. Such corrections 
are necessary for accurate measurement of radiated en- 
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Figure 11. Comparison of observed maximum horizontal slip (L - d) at each station as tabu- 
lated in Table 4 (solid line) with the values of Lc computed using (20) (dashed line). 
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ergy and likely obscure the systematics for small earth- 
quakes. We therefore only attempt to interpret the 
overall trend. There is a constant, large value of ER/Mo 
for large events, and a transition occurs at Mw • 5 to 
smaller values of the ratio for small earthquakes. We 
attempt to fit only the observed change of ER/Mo by a 
factor of 100 from Mw=4 to Mw=6. 

The observations of scaled radiated energy have par- 
ticularly important implications for slip velocity and 
therefore frictional behavior. Both $ato and Hirasawa 

[1973] and Mort [1948] derived a relationship between 
rupture velocity Vr, driving stress Aa•, •d the ob- 
servable ratio ER/Mo, by calculating the kinetic energy 
during slip: 

= 2G ' 
where G is the shear modulus and • is the shear velocity 
in the country rock outside the fault zone. The average 
driving stress during an earthquake is related to the 
initial stress a0 and the frictional stress a y by 

A•a = •0 - •y (32) 

and the frictional stress is reduced by the lubrication 
pressure. Therefore the driving stress is 

A•a = •o - p,P + p,P•. (33) 

The lubrication pressure P• depends on the slip velocity 
U as shown in (15). The relative slip velocity is related 
to the driving stress in a propagating shear crack by 

U- A•df /G 2V•/f (34) - 

where E[] is the complete elliptic integral of the second 
kind [Husseini, 1977]. The derivation of (34) assumes 
that the driving stress is equal to the static stress drop. 
Here we assume that the equation is equally applicable 
for the instantaneous driving stress •d. A similar re- 
lationship is derived by Kanamori [1994] on the basis 
of kinematics. The details of (31) and (34) are model- 
dependent, but the basic functional relationships among 
•d, U, and E•/Mo are robustly determined by the kine- 
matics of slip. 

Combining (33), (34), and the definition of PL in (15), 
we solve for U. The model nonlinearly couples the driv- 
ing stress, slip velocity, and lubrication pressure. In 
Figure 14, solutions of $ and U as a function of M• are 
computed and then E•/Mo is derived using (31). The 
behavior of this model is best understood in terms of the 

critical slip distance Lc defined by (20). For the inelas- 
tic regime where L < Lc, as the slip distance increases, 
the lubrication pressure rises. For small magnitudes 
(M• < 4) the lubrication pressure is much less than 
lithostatic pressure (S ((1), and there is little effect 
on the total frictional stress. Therefore velocity and 
E•/Mo are nearly constant in this magnitude range. 
For earthquakes with M•>4 the lubrication pressure 
becomes a significant fraction of the lithostatic pres- 
sure and the frictional stress is reduced. Since the fric- 

tional resistance is less than in the unlubricated case, 
the driving stress is increased. The driving stress is 
coupled to U and E•/Mo in (31) and (34). Therefore 
U and ER/Mo also increase relative to their values for 
small events (M• • 4). 

For large-magnitude earthquakes (M• > 6) where 
L • Lc and elastic displacement is significant, the 
lubrication pressure decreases with increasing magni- 
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Figure 12. (a) Acceleration spectra for the Chi-Chi earthquake of the north component from a 
northern (TCU068) and southern (TCU129)near-fault station. (b) Displacement spectra derived 
from the acceleration records. 
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Figure 13. Observations of the ratio of locally measured radiated energy ER to M'o. Data 
are from the following sources: stars, Prejean and Ellsworth [2001]; pluses, Abercrombie [1995]; 
crosses, Kanamori and Heaton [2000]; triangles, $ingh and Ordaz [1994]; square, Venkataraman 
et al. [2000]; circle, K.-F. Ma et al., manuscript in preparation. (a) Data separated into two 
regimes. To the right of the dashed line, ER/Mo is approximately constant and to the left it 
gradually decreases. Scatter also increases for the small events as discussed in the text, (b) Data 
and a solid line indicating the modeled values of E•/Mo using (16) and (31)-(34). We only 
attempt to fit the change in E•/Mo by a factor of 100 for Mw=4 to Mw=6. Parameters are as 
in Table I and as follows: G = 2.0 x 101ø Pa, •s = 0.6, P = 10 s Pa, c•0 = •sP + 2 x 105 Pa, 
V•/• = 0.65, fi = 3300 m/s. 

tude. The lubrication pressure PL gradually decreases 
as L -1/4 for large events in accordance with (21). The 
decrease in lubrication pressure results in a small in- 
crease in frictional resistance and therefore a decrease 

in the available driving stress. As a result, the slopes 
of the velocity and radiated energy curves in Figure 14 
are slightly negative. At large magnitudes the model 
predicts a gradual decrease in radiated energy with in- 
creasing magnitude. This decrease is not observed, but 
the trend is much smaller than the scatter in the data. 

We noted above that the increase in scatter for small 

earthquakes may be due to the methods used to mea- 
sure radiated energy for small events. We speculate that 
there may also be real variability in E•/Mo for small 
events due to variations in parameters in the unlubri- 

cated regime. In the lubricated regime the system is in- 
sensitive to differences in the fault properties as shown 
in Figure 8 and (21). The scatter in ;E•/Mo data for 
large earthquakes is therefore small. 

The earlier calculation of Sommerfeld number ver- 

sus magnitude in Figure 8 appears to be superseded by 
Figure 14. However, Figure 14 contains more model- 
dependent assumptions embedded in (31)-(34). We 
have therefore chosen to present both forms of the re- 
lationship between Mw and Sommerfeld number $. 

7.4. Optimized Parameters 

Table 5 contains an optimized set of values for the 11 
parameters in the model that satisfies all three observa- 
tions discussed in this paper. The results for each ap- 
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Figure 14. Dynamic friction model results. Frictionally controlled (a) Sommerfeld number, (b) 
slip velocity and (c) radiated energy as a function of magnitude. Parameters are as in Figure 13. 
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Table 5. Optimized Parameters 

Parameter Values 

r/ 50 Pas 
U see (34) 
K 2 x 10 -a 

(to / toø) m 
Ho 2 x 10 -am 
E 5 x 10 TM Pa 
P I x 10 s Pa 
G 2.0 x 10 TM Pa 
• 0.6 
o-o 6.01 x10 ? Pa 

0.8 
• 3.3 km/s 

plication are summarized in Figure 15. The approach 
taken in this section is to find parameters that match 
all of the datasets reasonably well instead of assigning 
the typical values of Table 1 a priori. No formal opti- 
mization algorithm was used since the fit is nonunique. 
The values in Table 5 are merely one representative set 
that can match all three data sets. The major differ- 
ence between the optimized and typical parameter sets 
is that the viscosity is larger in the optimized set by a 
factor of 5. Since small changes of the particle concen- 
tration can change the slurry viscosity by an order of 
magnitude, we consider this adaptation reasonable. 

In this combined model, the slip velocity is coupled 
to the frictional stress using (33)-(34). The dynamic 
model results in higher values of $ for large events than 
were calculated in Figure 8 or Table 3. For the coupled 
model 7=50 Pa s rather than 7=350 Pa s is sufficient 
to explain the heat flow paradox. 

All three model applications demonstrate the most 
important prediction of elastohydrodynamic lubrication 
theory. Large earthquakes behave qualitatively differ- 
ently than small ones. Events with slip distances greater 
than •0.5 m have low dynamic friction, fewer asperity- 
asperity contacts, and a larger proportion of the energy 
radiated. 

8. Discussion 

Now that the magnitude of the hydrodynamic lubri- 
cation effect is calculated, it is appropriate to review 
the assumptions about the fluid dynamics that were 
incorporated into the model. It is assumed that the 
fluid forms a continuous layer of constant initial height 
in the gap between moving, subparallel surfaces. This 
fluid may be a slurry which forms during the initia- 
tion of the earthquake. The duration of the earthquake 
is assumed to be much longer than the time necessary 
for fluidization. In the lubricating layer a continuum 
approximation is assumed to be appropriate. The sedi- 
ment particles in the slurry are much smaller than the 
gap height. In the far-field where there is no slip, the 

pressure remains at the preearthquake level. The transi- 
tion from the slipping to nonslipping zone is not explic- 
itly modeled and is assumed to have only local effects. 
Additional complications could be added to the model 
and are likely to perturb the results presented here. The 
purpose of this study is to present a new concept in fault 
mechanics along with the minimum necessary quantifi- 
cation. Further refinements are clearly possible, but 
here we confine ourselves to only a brief evaluation of a 
few of the possible complicating factors. 

The most significant adaptation of the standard engi- 
neering theory presented in this paper is the formulation 
for a self-similar rough fault. Alternative derivations are 
possible. For instance, when the elastic deformation of 
the wall is significant, the average asperity height AH 
may scale as the elastic displacement D instead of the 
original asperity height KL. In this case (17) must be 
substituted into (13) to derive an alternative form for 
the Sommerfeld number. This alternative formulation 

gives nearly identical results for the parameters used 
here. The limiting effect of the elastic deformation still 
determines the maximum lubrication pressure for large 
events. For both formulations this lubrication pressure 
is reached when the slip distance is much greater than 
•0.5 m. 

In the lubricated fault, fluid flows into a narrow gap, 
and the pore pressure dynamically increases. The per- 
meability of the surrounding rock is su•ciently low that 
the fluid is effectively confined by the walls. This model 
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Figure 15. All three model applications with an opti- 
mally selected parameters set from Table 5. (a) Som- 
merfeld number as a function of girw used to match heat 
flow data. $ is calculated using (33)-(34). (b) Observed 
lubrication length at each station compared to the the- 
oretical critical value computed using the optimized pa- 
rameters and the observed maximum velocities in (20). 
(c) Predicted ER/Mo as a function of Mw and observed 
values. The calculated ER/Mo changes by a factor of 
300 from M•o4 to M•o6. 
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is clearly an idealized end-member. In the natural sys- 
tem some leakage occurs during faulting to reduce the 
lubrication pressure. Such reductions can be included 
numerically as they are in the porous bearing of Kaneko 
et al. [1999] or the thermal pressurization calculations 
of Lachenbruch [1980]. Note that the fluid pressures 
calculated for the typical parameters of Table 1 are at 
most 40% lithostatic and therefore insufficient to pro- 
duce hydrofractures as a means of releasing pressure. 
The optimized parameter set produces higher pressures 
and may result in hydrofracture. 

Common lubricants in engineering applications have 
pressure-dependent viscosities where the viscosity in- 
creases with pressure. This has the effect of increasing 
the lubrication pressure as there is a positive feedback 
in the process. Similar behavior might be expected for 
fault slurry, but silicate melt viscosity decreases with 
pressure [Kushiro, 1980]. Therefore any identification of 
the fault fluid as melt must carefully consider whether 
the pressure-dependent viscosity would eliminate the lu- 
brication effect. 

The two-dimensional fault model neglects flow per- 
pendicular to the slip direction. Such "side leakage" 
for a lubricated gap with equal length and width can 
reduce the fluid gap height by a factor of 2-3 for a con- 
stant load [Hamrock, 19949 p• 483]. It is not clear what 
the effect would be in the case of a fault where the fluid 

layer height is constant and the load varies. The rough 
faults that are modeled here are much wider than they 
are long (a >> L) and side leakage should be reduced. 

Contacting asperities set much more complex bound- 
ary conditions than are addressed here. A fully coupled 
solid-fluid model is required for a rigorous and complete 
study. The theoretical and numerical underpinnings of 
such models are at the forefront of current research in 

tribology [Spikes, 1997; Jiang et al., 1999]. A full model 
might also be able to address the correct scaling in a 
rough fault that is not well matched at the initiation 
of the earthquake. A self-similar fault that is not well 
matched cannot be analyzed by the scaling arguments 
used here. A full model with an accurate representation 
of a specific fault's geometry is needed. 

The normal velocity of the wall, V, is neglected in 
the form of the Reynolds equation used here. This ap- 
proximation is valid if V << UH/L [Leal, 1992]. The 
quasi-static model used for the elastic deformation also 
assumes that V is small; therefore the model is self- 
consistent. A fully dynamic calculation may show that 
the wall velocity is important in modifying the lubrica- 
tion pressure. 

In bearings, the lubricating fluid is seldom able to 
support negative dynamic pressures [Dowson and Hig- 
ginson, 1977]. A combination of cavitation and exsolu- 
tion of dissolved gases maintains the pressure at the ini- 
tial reservoir level in strongly diverging channels. Cav- 
itation is not expected to occur on a fault with a large 
confining pressure, but exsolution may be possible. If 
exsolution occurs and prevents negative dynamic pres- 

sures, then the net effect of hydrodynamic lubrication 
is much greater than calculated here. 

Another possible complication is the compressibility 
of the fluid. Since the lubrication pressure is at most of 
the order of the initial hydrostatic pressure, the effects 
of compressibility on the pressure distribution are ex- 
pected to be small [Szeri, 1998]. Dowson and Higginson 
[1977] showed for rectangular elastohydrodynamic con- 
junctions that fluid compressibility has no significant 
effect on the elastic deformation, although the pressure 
distribution is slightly different than in the incompress- 
ible case. Preliminary numerical experiments suggest 
that these results are also applicable to the rough fault 
studied here, but more work would be necessary to fully 
exclude the importance of compressibility. 

As the fluid is squeezed through the narrow gap, dis- 
sipative heating occurs that may increase the temper- 
ature of the system. At the same time, the thermal 
expansion would increase the fluid pressure if there is 
abundant aqueous fluid. This thermal pressurization 
only occurs in the presence of ample aqueous fluid, 
whereas mechanical lubrication can occur with predom- 
inantly gouge. We calculate that the temperature rise 
due to frictional heating with thermal pressurization is 
<60øC by using the simplified equations of Lachenbruch 
[1980] without percolation or pore dilatation. This 
moderate thermal effect could decrease lubrication by 
decreasing the viscosity. 

Additional complications could arise if the fluid is 
non-Newtonian and the viscosity depended upon the 
shear rate [Jacobson, 1991]. Inelastic effects such as 
wear of the wall rock and the generation of gouge may 
also be important. 

9. Conclusions 

We have shown in this paper that the mechanical 
effect of a viscous fluid lubricating a fault zone has im- 
plications for the rupture dynamics. Lubrication with 
typical parameters reduces the frictional stress during 
an earthquake by as much as 30% relative to the hydro- 
static value or 50% relative to the dry rock friction. 
The heat flow paradox is completely solved if either 
the fault fluid has a viscosity of 350 Pa s or the fric- 
tion is coupled to the dynamics with a fluid viscosity 
of only 50 Pa s. Dynamic widening of the fault re- 
duces the radiation of high-frequency (>l Hz) energy 
for earthquakes with large slips. The 2 orders of mag- 
nitude difference in the ratio of radiated energy to mo- 
ment between small and large earthquakes is interpreted 
to reflect the lubrication-controlled frictional properties. 
All of these applications utilize the variation in lubrica- 
tion behavior between small and large slip events. This 
change in behavior at the critical slip distance Lc is one 
of the most intriguing consequences of this theory and 
warrants further study. 

The hydrodynamic lubrication mechanism outlined 
here indicates that the static values of pore pressure are 



16,372 BRODSKY AND KANAMORI: LUBRICATION OF FAULTS 

not appropriate for studies of earthquake rupture. The 
lubrication effect is present in all fluid-filled faults and 
is independent of any assumptions about the thermal 
effects of fault friction. Pore pressure must be viewed 
as a dynamic quantity, and prerupture values should 
not be used for modeling coseismic friction. 

Appendix A' Elastic Solution 

Since H/L << I we make the standard assumption 
that the displacement on the rough surfaces from a pres- 
sure source is approximately the displacement of a half- 
space subject to vertical loading [e.g., Hamrock, 1994; 
Dowson and Higginson, 1977]. The solution for the dis- 
placement from a force of magnitude F applied at the 
origin normal to the free surface of an elastic halfspace 
[Timoshenko and Goodlet, 1970], 

r(1-. •) 
w(r) - •rEr ' (A1) 

where w(r) is the vertical displacement on the free sur- 
face at a distance r from the origin and E is Young's 
modulus. This is equivalent to a pressure source p(x, y) 
applied at a point, 

p(x, y)5•(x)5•(y) = F (A2) 

where 5•() denotes a Dirac delta function. 
The displacement from a finite line on the y axis with 

ends at y -- +a is the sum of the point source terms 
(Figure A1). If the pressure is constant in the y di- 
rection, i.e., Op/Oy = 0, the displacement at a point on 
the x axis that is a distance r from the origin is 

w(r) - 2/ya (1 - ,e)p(x) dy . (A3) =0 •Er 

If the finite line source is at x - •, the displacement 
w(x) in a Cartesian coordinate system is 

fya w(x) -- 25•(•) p(•)(1 - ye) 
=0 •rEx/(x - •)• + ye 

dy. (A4) 

y 

.V--a 

x--r 

Figure A1. Geometry for calculating displacement 
from an finite line source of pressure. In the geologi- 
cal case, the x-y plane is the fault plane. Slip is in the 
x direction. 

After performing the integration the displacement is ex- 
plicitly 

w(x) -- 2p(•)(1 - y2) 5d(•)In a + V/(X - •)2 + a 2 . 
•E x-• 

The displacement from a pressurized fault of length L 
is the integration of (A5) over every point x - •. The 
change in total gap height 5(x) combines contributions 
from both walls, 

5(x) - 4(1 - •2) •L a + V/(X - •)2 + a 2 •E p(•) in d•. x-• 

(^c) 
In the model described in the text, for single asperities 
we assume that the lubricated zone is equidimensional 
and therefore 2a - L. For rough surfaces we use a con- 
stant width a•= œ/2. Since œ >> d in the calculations, 
the lubricated zone for rough surfaces is much wider 
than the length in the x direction. Slip zones that are 
longer in the slip normal direction than the slip direc- 
tion are suggested by the seismological observation of 
Heaton [1990]. They are also consisten• with the two- 
dimensional Reynolds equation in (6). 

Appendix B' Numerical Method 

Incorporating elastic deformation into lubrication in 
a thin gap requires the simultaneous solution of the 
Reynolds equation (6) and the elastic displacement of 
the boundaries (8). The gap height h(x) is related to 
the initial gap height s(x) and the elastic displacement 

by 
h(x) = s(x) + 5(x). (B1) 

These equations are to be solved with the boundary 
conditions 

p(x --= O) - 0 

p(x = L) - 0. (B2) 

B1. Reynolds Equation 

In the absence of elastic deformation, the Reynolds 
equation is solved in its integrated form 

p(x) - 6r•U h• o (B3) 

We use the boundary conditions (B2) to solve for the 
integration constant h* in (B3). As discussed before, 

0 __ the pressures are referenced to the level where pp 
0. The boundary condition at x - L is p - 0, which 
implies that 

1 dx h*- fø• • (B4) • . 

In order to numerically solve for p we use a discretiza- 
tion of (B3) utilizing the trapezoidal rule [Abramowitz 
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and Stegun, 1965] 

i•i-_6•ui•.( hi-h* j----1 h• hj+l - h* ) 
where Ax _= xi+x -xi and jSi is the solution to the 
Reynolds equation for the pressure at x - i Ax. In the 
absence of elastic deformation, h(x) - s(x), where s(x) 
is the initial gap height function. 

B2. Elastic Displacement 

The elastic equation (8) is discretized as 

5i -- 4(1-v2)Ax' •rE 

•v=x PJ ln [ L/2+v/(L/2)2+(Xi+l/•-xj)(xi-1/•-xj) V(X i-]-1/2--3•j )(•i--1/2 --• j) 

where N is the number of grid points. The terms xi+•/2 
and xi-x/2 are introduced following Okamura [1983] to 
handle the singularity where xi - xj. 

Elastic displacement is combined with the Reynolds 
equation using an iteration scheme with damping. In- 
stead of using the full computed jf(x) from (B5), a por- 
tion of the calculated pressure is added at each step. 
The pressure distribution for step k + I is calculated 
based on the pressure at step k by 

pk+l k k i -- Pi ør a•(15i -- Pi ), (B7) 

where w is a damping factor between 0 and 1. For gaps 
with an initial average height of 0.1 mm, a• must be 
0.01 or less during the œrst two steps for convergence to 
be achieved in the majority of cases. After the initial 
few steps, the problem becomes more stable and the 
degree of damping can be reduced adaptively. For ran- 
domly generated rough surfaces, a•=0.01 is occasionally 
insufficient and the calculation does not converge. The 
hydrodynamic code and iteration scheme were verified 
with analytic and approximate solutions for a planar 
slider like that shown in Figure 3. 

The full scheme for computing iteration step k is as 
follows: 

1. An initial gap height s(x) is chosen and calculated 
as a function of x. 

2. The deformed gap height h(x) = s(x)or 5(x) is 
calculated. During the first iteration 5(x) is assumed to 
be 0 everywhere, so h(x) - s(x). 

3. The integrated, discretized Reynolds equation in 
(B5) is solved for jr(x) using the geometry given by h(x). 

4. The new pressure pk+l (x) is calculated using (B7). 
Initially, p(x) - 0; therefore pk+l(x) = vzfS(x) in the 
first iteration. 

5. The displacement 5(x) is calculated with (B6) us- 
ing the new pressure distribution pk+l (x). 

6. The convergence parameter Dif - - /p• 
is evaluated at a point l. In the computations, we arbi- 
trarily choose l such that l = N/4. 

7. The damping factor c• is adapted based on the 
value of Dif. If Dif ( 100, the value is increased by a 
factor of 10 and is further increased for each order of 

magnitude that Dif drops until a prescribed maximum 
value C•max is reached. In these computations C•max = 
0.1. 

8. If Dif • e, where e is a small number, return to 
step 2. The code used here has e- 10 -•. 
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