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ABSTRACT 

By the use of a method recently proposed by Chew, the pion-nucleon 

coupling constant is determined from differential cross sections for neutron-

proton scattering. Data at 90 and 400 Mev were used. Details of the extrapo-

lation procedure are discussed and the statistical methods used in interpreting 

the results are explained. The resulting value of the coupling constant is 

between 0.06 and 0.07, depending on the range and energy of the data included 

in the analysis. The discrepancy between this value and the usually quoted 

0.08 should not be taken seriously, however, because several nonstatistical 

uncertainties could not be taken into account. The origin of these uncer-

tainties is discussed. 

* Work done under the auspices of the u.s. Atomic Energy Commission. 

t 
A preliminary account of this work was given in Bull. Am. Phys. Soc. L' 404 

( 1958). 
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DETERMINATION OF THE PION-NUCLEON COUPLING CONSTANT 

FROM N-P SCATTERING ANGUlAR DISTRIBUTION 

Peter Cziffra and Michael J. Moravcsik 

Lawrence Radiation Laboratory 
University of California 

Berkeley and Livermore, California 

March 30, 1959 

I. INTRODUCTION 

1 2 In a recent paper Chew ' suggested a method of determining the pion-

nucleon coupling constant from differential cross sections for nucleon-nucleon 

scattering. The method is based on the conjectured occurrence of poles in the 

nucleon-nucleon scattering amplitude at certain unphysical values of the 

scattering angle. If p
1 

and q
1 

are the initial four-momenta of the nucleons, 

and 

t :::: 

the final four-momenta, the momentum transfer is defined as 

and the crossed momentum transfer as 
2 

t :::: -(p - q ) • 2 1 We use 

a metric such that 2 2 2 
p == p - E , and our units are n == c = 1. There is then 

a pole at 2 
t = iJ. 

-
and another at 2 t = iJ. , where is the pion mass. In terms 

of the barycentric scattering angle e and the barycentric three-momentum p, 
2 

~ +(1 + iJ.2 ), and the second 
2p 

neutron-proton scattering one 

the first of these poles3 corresponds to cos e 
2 

to qos e = -(1 + IJ.2 ). If in the case of 
2p 

associates pl and p2 with the proton, and and ~ with the neutron, 

then in terms of Feynman diagrams the first pole gives the contribution of the 

exchange of a single neutral pion (forward scattering) whereas the second pole 

gives the contribution of the exchange of a single charged pion (charge-exchange 

scattering). In addition to the poles, one conjectures also the existence of 

branch points, corresponding to higher~order processes, when t or t becomes 

. 2 2 
(21J.) , (31J.) , etc. In terms of cos e these branch points occur at 
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cos 9 = ±(1 + ) ' ±(1 + ) ' ( 1) 

They are thus considerably farther from the ends of the physical region than are 

the poles. One may therefore hope that the poles will tend to dominate the 

physical region, especially near the ends. 1 The residues of the poles are known 

exactly and are proportional to g2, the pion-nucleon coupling constant. In fact 

the pole terms are formally identical with the two second-order one-pion exchange 

diagrams in perturbation theory. It must be pointed out, however, that we are 

not merely doing perturbation theory. In the first place the coupling constant 

and masses that are involved refer to actual physical particles and not to bare 

particles as would be the case in perturbation theory. Secondly, once the 

existence and position of the poles are accepted, their contribution to the 

scattering amplitude can be calculated without any reference whatever to 

perturbation theory, for instance by the method used by Goldberger, Nambu,.and 

4 Oehme. 

Chew's suggestion then entails determining the residue of a pole by 

multiplying the differential cross section by the pole term.'s denominator and 

extrapolating to the position of the pole. 

It might be worth pointing out that the basic idea underlying the present 

procedure has also been·used for other processes. The.pion-nucleon coupling 

constant has been determined in this way.by Taylor, Moravcsik, and Uretsky, 5 and 

the application to various reactions ·involving strange particles has been 

suggested by Taylor.6 In particular, evidence for a pseudoscalar K+ meson 

from photoproduction data on the basis of this procedure has been found by 

Moravcsik. 7 Finally the proposal by Chew and Low for measuring scattering 

amplitudes involving targets that do not exist in the laboratory is also akin, 
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8 in spirit, to the above procedure. It appears, therefore, that the idea of 

determining coupling constants or scattering amplitudes of one process by 

extrapolating the experimental differential cross sections of another process 

to the poles in the unphysical region is becoming a very powerful tool in 

elementary-particle physics. 

II. SUMMARY OF THE THEORETICAL BACKGROUND 

In this analysis we shall be concerned exclusively with the charge 

exchange pole of neutron-proton scattering. In case of proton-proton scattering 

the effects of the poles on the angular distribution appear to be masked by the 

Coulomb effect and by cancellations between the scalar amplitudes. In that 

2 case, therefore, a complete phase-shift analysis is required to obtain g • 

Indeed, such determination of the coupling constant has been one of the aims 

of the modified analysis of nucleon-nucleon scattering,9,lO and a quite accurate 

value of 2 11 g has actually been obtained for 310 Mev p-p scattering. In the 

case of n-p scattering, however, Coulomb effects are absent, and thus one can 

immediately see a rise toward each end of the physical region that may be taken 

as indicative of the presence of poles. We consider only the charge-exchange 

pole for two reasons. Firstly, there are no measurements available of n-p 

angular distribution in the forward direction, whereas a considerable amount of 

data has been taken in the backward directfon. Secondly, since the coupling 

constant for charged pions is times that for neutral pions, the 

charge-exchange pole will be four times as strong as the other one. 

An element in spin space of the p-n scattering amplitude may be 

written as 
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+ G I I r s , rs ' 
(2) 

where p is the magnitude of the barycentric three-momentum, m the nucleon 

mass, E2 = p2 + m2, and x0 = 1 + (JJ.2/2p2). Furthermore, g2 is the 

. 1 1' t t h that 2 (2m,h•) 2 'f2 ' p~on-nuc eon coup ~ng cons an sue g = ~~ and the expected 

2 value of f is around 0.08. The quantity G 1 1 represents everything in r s ,rs 

the scattering amplitude except the charge-exchange pole. It will thus remain 

finite at cos e = -x0 . The differential cross section is now given by 

o(e) = ~ Tr(Tt T) 

and may be written as 

a( e) (1 + cos e) 2 

2 (x
0 

+ cos e) 
+ 

A 
+ B 

' (x
0 

+ cos e) 
( 3) 

where A and B are unknown functions of cos e and E which, however, are 

known to be finite at cos e = -x0 o The analysis is made more difficult by the 

fact that the term in Eq. (3) in which we are interested vanishes at cos e = -1, 

so that it tends to be small just in that region from which one might hope to 

extract the most information. 

Multiplying Eq. (1) by 2 
X , where X _ XO + COS 6, 

y(x) 
2 _ (x

0 
+ cos e) o(e) 

= 
2 

+ Ax + Bx 

we obtain 

( 4) 
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To the values of y(x) calculated from Eq. (4), we make a least-squares fit by 

means of a polynomial of the form 

f(x) = 
n k 
!: ~X 

k=O 

From Eqs. (4) and (5), we see 

4 
ao = f(O) = g 

4E2 

or 

f 4 m 4 
ao = 4 2 m2) p (p + 

immediately that 

2 4 4 
(1 - x0 ) = 

g I± 
16 E2 p 4 

III o STATISTICAL REMARKS 

(5) 

( 6) 

( 7) 

In order to discuss the errors in our results, we list here some of the 

relevant formulae from the theory of least squareso For a derivation of these 

formulae, we refer the reader to the work of Hildebrand12 and Cziffra and 

Moravcsik. 13 

For each value of i = 1, 2, ••• , N let there be an abscissa xi and 

a corresponding ordinate yi' with an uncertainty £i in the ordinate. We wish 

to fit these values with a polynomial of order n, of the form 

n 
= I: 

k=O 
(8) 

To determine the ~9 s, we minimize with respect to the ~ 0 s the expression 
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k.2 
~ ~ ) ' 

which leads to the set of linear simultaneous equations 

n 
I: ~j aj = vk ' j=O 

where 

n k -2 
vk = I: y.x. ~i ; 

i=l ~ ~ ~j = 

Equation (10) may be formally solved as 

a. = 
J 

where the matrix G is the inverse of the matrix H. 

UCRL-8707 
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(10) 

(11) 

( 12) 

It can now be shown that the error in the coefficient ~ due to the 

uncertainty in the data is given by12,l3 

where 

= 
-1 (N - n - 1) 

N 
I: 

i=l 

(13) 

(14) 

For a given set of data as the degree of the polynomial is increased, 

2 
pn at first decreases monotonically ~til it reaches a plateau on which it 

will fluctuate mildly. The value of n for which p 
2 first reaches the 

n 

plateau was taken to be the degree of the polynomial giving the best fit. 13 

·J 
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IV. RESULTS 

The calculation was performed at two different energies, 400 Mev and 90 

14 The data were all taken from the review article of Hess. For each energy 

we made two sets of calculations, the first using the complete available range 

of the scattering angle, and the second using only a part of the range nearest 

to the pole. The results obtained are given in Figs. 1, 2, 3, and 4. The 

points marked "imaginary" indicate that a
0 

Ct•hich is proportional to was 

negative for these polynomials. In Table I we list~ for each of the four cases, 

the value of r2 as given by the best=fitting polynomial. 

In Fig. 5 the five polynomials obtained from the data at 90 Mev, with 

the limited range of scattering angle, are plotted. Shown also are most of the 

relevant experimental points. 

The uncertainties as given in Table I and the figures are misleadingly 

small. Only the errors in the experimental cross sections as given by the 

experimenters have been taken into account. Two important sources of errors 

have therefore been omitted, since there is no way known to the authors to take 
is the 

them into account. The firstAfairly substantial energy spread of the neutron 

beam in the scattering experiment. This affects the position of the pole, the 

values of the differential cross sections, and finally the relationship between 

and f 2 [See Eq. (7)]. The second source of error is the considerable 

uncertainty in the degree of the polynomial that should be chosen. The 

test mentioned in Section III is certainly not conclusive. No trustworthy 

test can exist when one is trying to represent an essentially infinite series 

by means of a polynomial. 

of Eq. (13), with the si 

The quoted errors were calculated merely by means 

14 being the uncertainties quoted by Hess. Despite 

these difficulties the results as given in Figures 1, 2, 3, and 4 are remarkably 

(p2) consistent. In practically all cases, once the goodness-of-fit parameter 
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dropped to a value indicating that a reasonably good fit has been achieved, 

the values of f 2 obtained from the different polynomials overlap. It appears 

that the method gives consistent results. 

It will be noticed that the errors in f 2 for the 400-Mev data are much 

smaller than those for the 90-Mev data. The distance of extrapolation from the 

end. of the physical region to the pole is f.J.
2/2p2, which is 0.052 at 400 Mev and 

0.23 at 90 Mev. We see, therefore, that the former requires a much shorter 

extrapolation and would thus be expected to give the more accurate result. 

Considering the inaccuracies inherent in the method, the values of the 

coupling constant obtained here are not too much at variance with the presently 

2 accepted values of f = 0.08. To be sure, our values appear to be somewhat 

lower than 0.08, and these lower values agree well with the equally lower values 

obtained from the modified analysis of p-p scattering at 310 Mev. 11 Nevertheless 

we feel that more evidence is needed before we can say with any assurance that 

the pion-nucleon coupling constant as obtained from nucleon-nucleon scattering 

is in disagreement with the value obtained from pion-nucleon scattering and 

pion photoproduction. 

It was mentioned in Section II that the coupling constant can also be 

obtained from the modified analysis of nucleon-nucleon scattering.9,lO,ll It 

might be illuminating to compare briefly these two methods. 

Apart from its preferable theoretical features, the practical advantage 

of the modified analysis is that it uses, in addition to the unitarity of the 

S matrix, all experimental data, including results of triple scattering and 

correlation experiments. Thus, if such data are available, greater accuracy 

can be obtained in the determination. Similarly, it is also easier to use the 

statistical criteria to decide which order polynomial to take for the extrapolation, 

.. 
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or, in the language of the modified analysis, how many angular momentum states 

to express in terms of phase shifts. Thus, for instance at 310 Mev where fairly 

extensive data are available, a reliable determination of the coupling constant 

has been obtained with an error of 15% or so. Also, as has been mentioned, 

certain difficulties would be encountered in the use of the present scheme in 

the case of p-p scattering on account of the Coulomb effect which, however, can 

be easily taken care of in the modified analysis. 

On the other hand, the modified analysis can be carried out only if 

sufficient number and kind of data are available. Thus, if only n-p scattering 

differential cross sections at 4oo Mev are used, it would be completely out of 

the question to attempt the modified analysis. It is in such cases that the 

present method is useful. In addition, the modified analysis becomes complicated 

if not impossible at those energies at which inelastic processes play an 

important role. In these cases the present method, with all its uncertainties 

and limitations, will in fact be the only useful one. It has the advantage that 

nothing has to be known about the phase shifts, and that the presence of 

inelastic processes have no effect on it. Furthermore, its computational 

difficulties are far less serious than those of the modified analysis. 
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TABLE I 

Determination of the pionanucleon coupling constant 2 f from the angular 

distribution of n=p scattering at 90 a.nd 4oo Mev by the use of the polynomials 

giving the best fit. 

La. bora tory 
energy {Mev) 

90 

90 

400 

400 

Number of 
experimental 
points on 

differential 
cross section 

24 

48 

12 

23 

Range of 
scattering 
angle (deg) 

180 to 129 

180 to 90 

180 to 12.7 

Degree of 
polynomial 

giving 
best fit 

3 

6 

5 

5 

0.062 

0.065 

o.o66 

0.059 

+{).016 

=0.022 

+{).019 

-0.027 

+{).009 

~0.011 

+{).007 

=0.007 



Fig. 1. 

Fig. 2. 

Fig. 3· 
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FIGURE CAPTIONS 

Values of the pion-nucleon coupling constant 2 f vs. degree of the 

polynomial (n) at 90 Mev using 24 experimental points, with scattering 

angles between The numb~rs above each point are the 

corresponding 

2 

129° and 180°. 

2 
p values. For n = 5, 2 

f = 0.36 
+0.11 
-0.16 with 

p = 1.52. 

Values of the pion-nucleon coupling constant 2 f vs. degree of the 

polynomial (n) at 90 Mev using 48 experimental points, with scattering 

0 8 0 angles between 5.1 and 1 0 • The numbers above each point are the 

corresponding 2 
p values. 

Values of the pion-nucleon coupling constant 2 f vs. degree of the 

polynomial (n) at 400 Mev using 12 experimental points, with scattering 

angles betwe~n-90° and 180°. The numbers above each point are the 

corresponding p2 values. 

Fig. 4. Values of the pion-nucleon coupling constant f 2 vs. degree of the 

polynomial (n) at 400 Mev using 23 experimental points, with scattering 

angles between 0 0 12.7 and 180 • The numbers above each point are the 

corresponding 2 
p values. 

Fig. 5. Plot of y(x) = (1 + ~2j2p2 + cos e)2 cr(e) vs. 2 2 
x = 1 + ~ /2p + cos e, 

for polynomials of degrees n = 1, 2, 3, 4, and 5, using the data at 90 

Mev with the limited range of the scattering angle. The experimental 

points are also shown except that some points near the end of the 

physical regio.n are omitted. The end of the physical region occurs at 

x = 0.229, and the asterisk indicates the residue corresponding to 
2 

f = o.o8. 

""<i 
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