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ABSTRACT

A methodology for reliability assessment of structural systems subjected to seismic risk is
developéd. Based on modern concepts of structural reliability theory, structural safety against
* earthquakes is described through a performance function of a set of ground motion variables.
A multi-variate risk analysis is then performed to compute the failure probability. The method
can be applied to any type of structural system for which a performance function can be formu-
lated. A specific application to linear structures using the response spectrum of ground motion
is developed where the performance function is shown to be of quadratic form in terms of
response spectral ordinates. This application is illustrated through a numerical example for a
two-degree-of-freedom linear structure with multiple failure modes. The example is also used
to examine the accuracy of a conventional method that uses marginal probabilities to approxi-

mate a joint distribution.
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INTRODUCTION

Probabilistic methods for seismic risk assessment of engineering facilities have become of
increasing interest and demand in recent years. Following Cornell’s original work in 1968 (4),
several analytical methods for the assessment of seismic risk have been developed (e.g. 2,8,11).
These methods for the most part are concerned with the risk associated with a single ground
motion intensity variable (usually the peak ground acceleration), i.e. the probability that at a
given site the intensity variable will exceed a specified threshold during a given interval of time.
Results from such studies are often used for safety analysis of structural systems and for
developing seismic design criteria for such systems. The implicit assumption in such applica-
tions is that a single ground motion intensity descriptor, such as the peak ground acceleration,
is sufficient to describe the performance or safety of the structural system. Although this
assumption may be appropriate for a preliminary analysis or design, it clearly is a very crude

approximation for most structural systems.

Motivated by the response spectrum method of dynamic analysis (3,12), more recently,
the concept of a risk-consistent response spectrum has been proposed as a method that provides
a better description of structural safety (1,7,11). Such spectra are developed by using the peak
response of a linear, single-degree-of-freedom oscillator as the measure of ground motion
intensity and by performing a series of independent risk analyses at selected frequencies and
damping ratios of the oscillator. A risk-consistent spectrum is then obtained by plotting the
peak responses of the oscillator corresponding to a selected probability of exceedance. It is
implicitly assumed in this approach that a structure designed on the basis of a risk-consistent
response spectrum has a failure probability equal to the exceedance probability of the spectrum.
However, since the risk analyses for the response spectrum ordinates at various frequencies are
performed independently, they represent marginal risks and, therefore, do not inciude the

effect of dependence (or lack of dependence) between the ordinates. The implication is that in
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using such a spectrum for dynamic analysis one may be combining modal responses which do
not necessarily correspond to the same earthquake. To see this more clearly observe that the
peak responses of two oscillators with different characteristics and subjected to a set of earth-
quake motions may in general occur during different earthquakes. For example, the peak
response of a high-frequency oscillator may occur during a moderate but nearby earthquake,
whereas that for a low-frequency oscillator may occur during a large but distant earthquake. If
the oscillators represent modes of a structure, clearly it would not be appropriate to combine
the peak responses which correspond to different earthquakes. Thus, a structure designed
based on a risk-consistent response spectrum may have a failure probability different from the

exceedance probability associated with the spectrum.

Presented in this paper is a new methodology for reliability assessment of structural sys-
tems subjected to seismic risk. The method combines the modern concepts of structural relia-
bility and the existing techniques of seismic risk analysis into a unified theory which, at least
conceptually, can be applied to all classes of structural systems. A specific application of the
theory to the class of linear structures is discussed and illustrated through an example. The
example is also used to examine the accuracy of the risk-consistent response spectrum
approach. A discussion on the generality of the method and its conceptual application to non-

linear structures concludes the paper.

DEVELOPMENT OF THE THEORY

Following modern concepts of structural reliability (10), let the performance of a struc-
ture subjected to earthquake induced ground motions be described through a performance fine-
tion

g(Y Yy ..., Y) (D
where Y, are random variables describing the ground motion at the site of the structure result-
ing from a random earthquake in the seismic region surrounding the site. Let the function e()

be defined such that for any specific ground motion described by y=1{v,yy....»,}. £(y) <0
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implies failure and g(y) > 0 implies survival of the structure relative to safety (i.e., mainte-
nance of structural integrity) and/or serviceability (i.e. maintenance of structural operability).
In general, the function g(.) may include other random variables that describe the resistances
of the structure or environmental effects other than the ground motion (i.e., other loads). For
the sake of clarity, however, such variables are excluded from consideration at this time, but

will be included later in this development.

The variables Y, represent any set of descriptors of ground motion which are collectively
capable of determining, through the function g(.), the failure or survival of a given structure.
Possible examples are ground motion parameters such as the peak acceleration, velocity, dis-
placement, and the duration of motion, or the set of response spectral amplitudes correspond-
ing to the modal frequencies and dampings of the structure. (The latter represent peak
responises of linear, single-degree-of-freedom oscillators having the modal frequencies and
dampings of the structure and subjected to the same ground motion.) Other examples are the
Modified Mercalli intensity measure or energy-related ground motion intensity descriptors, such
as root-mean-squares of the ground acceleration or velocity. In fact, any combination of the
above ground motion descriptors is a viable set for Y.. The number of variables, », that are
included in the performance function depends on the complexity of the structure and on the
degree of sophistication or accuracy desired. Generally, a larger number of variables would
allow a more realistic description of structural performance and, hence, would lead to a more

accurate estimation of seismic risk.

As in structural reliability theory (10), a geometric interpretation of the preceding formu-
lation is possible. Consider the s-dimensional space of variables .¥,. For a specific structure,
i.e. a given performance function, this space is divided into two regions; a safe region, where
g() is positive, and an wunsafe region, where g() is negative. The boundary between the two
regions is the failure surface given by

g(y;,yz,...,y,,) = (} (2)

Figure 1 illustrates this concept for a two-dimensional case. For a random earthquake in the
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seismic region, the ground motion at the site with variables Y, registers in the n-dimensional
space as an hyper-point. If the point is inside the safe region the structure survives; otherwise
it fails. The seismic risk problem, thus, becomes the problem of determining the probability
that during the given life of a structure an earthquake will occur with the corresponding ground
motion registering a point outside the safe region. Evaluation of this probability clearly requires

a multi-variate risk analysis incorporating the joint distribution of Y.

Information or data for direct evaluation of the joint distribution of Y, for arbitrary sites
are invariably non-existent. What may in general be available is information on the probable
magnitudes and potential locations of future earthquakes in the seismic region. Therefore, it is
necessary to transform such information into information on Y.. Let each Y, be described
through an attenuation law of the form

Y, = fi(M,R) (3)
where M denotes the random magnitude of the earthquake, R denotes its random distance
from the site, and £;(.) denotes a deterministic function. Such laws are formulated on empiri-
cal or semi-empirical basis through regression analysis of recorded motions from past earth-
quakes (see, for example, Refs. 1,9,11). In formulating such laws, it is usually possible to
include mean effects of regional and local geologic characteristics. However, variabilities in
such effects or in the complex nature of the source mechanism usually can not be included. As
a result, such regression studies invariably show large scatter of data around the mean curves.
To include the effect of such variabilities, the attenuation law in Eq. 3 is augmented by a ran-
dom correction factor, Z,, yielding

Y, = Zfi(MR) (4)

where the distribution of Z, is obtained from the residuals of regression analysis (9,11).

Substituting Eq. 4 in Eq. 1, one obtains for the performance function

g(Y), Ye . V) =glZ fiMR), Zy/(MR),.., Z,f (M R)]
= G(MR Z) (5)

where Z=12,,Z,, . .., Z,}. The function G(M,R,Z) is now the performance function given



-5

in terms of the earthquake variables M, R, and Z. In the space of these variables, the failure
surface is given by

Glmrz) =0 6)
and the safe and unsafe regions are where G'(1)> 0 and G () €0, respectively. An earthquake
in the seismic region registers as a hyper-point in this space. Again, if the point is inside the

safe region the structure survives, otherwise it fails.

Using the performance function in terms of earthquake variables, the probability of failure
for a random earthquake is
PIG(M,R,Z) <0] (7
Observe that computation of this probability now requires the joint distribution of M, R, and Z.
In addition, of prime interest is the probability of failure to earthquakes occurring during a
given lifetime 0,z This will be denoted by
PIG(MR,Z) <0 in {0,1}] (8)
where M, R, and Z are now sequences of random variables associated with random occurrences
of earthquakes in time. To compute this probability, a model for the occurrence of earthquakes
in time and the interrelationship between the corresponding sets of variables is required. For
this purpose, the Fault-Rupture model of Der Kiureghian and Ang (8) with improvements by
Der Kiureghian (5) will be used in this paper. The basic assumptions and idealizations in this
model are:
1. The seismic environment in the region of the site is described through a set of faults
(sources) modeled as straight-line segments situated in horizontal planes. The locations
or orientations of faults in these planes are either well known or are random with uniform

distribution over area sources. The depths to horizontal planes are assumed to be known.

2. An earthquake in the seismic region originates as an intermittent series of ruptures ran-
domly occurring along a given fault or in an area source. The total rupture length, /, is

given as a function of the earthquake magnitude

[ = [{m) (9)
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The rupture may occur anywhere along the given fault or in the area source with uniform
likelihood.

3. The ground motion at a site is most influenced by the closest segment of rupture to the
site. Thus, the distance R in attenuation laws is taken as the shortest distance from the

site to the rupture.

4. Occurrences of earthquakes in time and space are statistically independent events. The
occurrences in time constitute Poisson events with v; denoting the mean occurrence rate

in source jand v = ZV‘/ denoting the mean occurrence rate in the entire region.
J

5. Magnitudes of earthquakes at successive occurrences are statistically independent and

identically distributed variables with the probability density function fj,(m).

6. Variables Z, at successive occurrences are statistically independent and identically distri-

buted with the joint probability density function f;(z).

7 Variables Z, are independent of M and R. (Note, however, that M and R are dependent,
since R being the shortest distance to the rupture is a function of the rupture length and

hence of magnitude.)

From the assumption of independence between the successive occurrences of R, M, and
Z (assumptions 4, 5, and 6 above, respectively), and from the Poisson model for earthquake
occurrences in time, it follows that the occurrences of events {G (MR, Z) <0} in time consti-
tute a censored Poisson process with the mean occurrence rate equal to vP[G(M.R, Z) < 0],
where PIG(M,R,Z) < 0], it is recalled, is the probability of failure to a random earthquake.

From this, the lifetime probability of failure is obtained as

PIGIM.R Z) <0in {0,1}] = 1—exp] — viP[G(M.R, Z) < 0]

=~ viP[G(M.R,Z) <0] (10)

where the approximation is valid for small failure probabilities. The corresponding mean return

period for failure events is

7= 1 an

 wPIG(M.RZ)<0]
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Observe that the preceding two quantities are both given in terms of the probability of failure to
a random earthquake. To compute this probability, the total probability theorem is used to con-

dition on all possible sources of occurrence, i.e.

PIGIMR,Z)<0 ZP[G(MR Z) <O0|EIPIE] (12)
where £; is the event that the earthquake occurs in source j. It should be clear from the

assumption 4 above that

V .
PlE] = - (13)
X 1%
Thus, it is necessary to compute the conditional probability of failure to a random earthquake in

source j. This probability can be obtained by further conditioning on M and Z and using the

total probability theorem to give

PIGIMRZ) <O0|E] = ffP [GIM,R,2) <O|E;,m 2l f7(@) fa(m)dzdm

2 0

= ffP[G(m,R, 2) <O|E)f2 (@) foy(m)dzdm (14)

mg L

where the probability term in the integrand is the conditional probability of failure to an earth-
quake of magnitude m randomly occurring in source j with Z =z. In the above equation, m
denotes the lower-bound magnitude of engineering interest and m; denotes the upper-bound
magnitude in source j. The integration on z is in general n-fold. However, since at each
occurrence the variabilities in the source mechanism and the propagation paths are the same for
all ¥, it would be reasonable in most instances to assume that Z, are functionally dependent.
Then, the vector Z can be replaced by a single variable Z, thus reducing the a-fold integral into
a single integral.

To compuie the conditional probability in the right hand side of Eq. 14, the concept of a
Jailure distance is introduced. Observe that for fixed m and 2z the performance function,
G (m R, z) is in general a monotonically increasing function of R. This is because a farther
earthquake with same m and z would invariably be less damaging. It follows, then, that for

given m and z there could at most be one distance for which the performance function is zero.
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This distance, denoted by r,, is the failure distance and is obtained by solving for rin Eq. 6. 1t
is useful to introduce the notation
rp=G(mz) (15)
where G (.) denotes the solution of G(.,r) =0 for r. Note that r, is a function of m and z, in
addition to being dependent on the particular form of the performance function. Clearly, an
earthquake with parameters m, z, and r, is situated on the failure surface of the structure. For
an earthquake with given m and z, the structure will survive if R is greater than ry, and it will
fail if R is less than or equal to r,. Thus,
PIG(mR,z) <O|E) = PIR < r/|E] (16)
This leads to the idea of a failure circle in the horizontal plane of earthquake sources underneath
the site; see Fig. 2. Inside the circle is the unsafe region, i.e. a rupture in this region will result
in structural failure, and outside is the safe region, i.e. a rupture in this region will not cause
failure. Thus, the problem of computing the failure probability reduces to a problem of
geometry; i.e., what is the probability that a line segment of known length randomly placed
along a straight line or in an area will intersect the region bounded by a circle? Solutions of this
problem for several idealized cases are given in Ref. 8. For the purpose of completeness, these
results with some improvements are summarized in Appendix I. With the probability in Eq. 16
determined, Eq. 14 is evaluated using numerical integration. The result is then substituted in
Eq. 12 and summed over all sources yielding the probability of failure to a random earthquake.
The lifetime failure probability and the corresponding return period are then obtained as in Egs.

10 and 11, respectively.

It should be pointed out that for given m and z Eq. 6 may not have an acceptable root for
r. In that case, the performance function is always either positive or negative, in which case the

probability in Eq. 16 becomes zero or one, respectively.

As was indicated before, The performance function in Egs. 1 and 5 may include other
random variables reflecting the random resistances of the structure or other loads. Let X

denote the vector of such variables with fy(x) describing the corresponding joint probability
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density function. For X constant in time, the probability of failure to a random earthquake is

obtained, using the total probability theorem, as

PIG(MR.Z,X) <0 = [PIGIMR.Z,%) <0l/x(x)dx (1"
X

whereas the lifetime probability of failure is obtained as

PIGWMR,Z,X) <0 in (0,11 =1~ fexp|—»tPIG (MR, Z, %) <01 pfx(x)dx
X

=~ viP[G(MR,Z,X) <0] (1%)
where P[G(M.R,Z,x) <0] is the conditional probability of failure to a random earthquake

assuming X =x, and is obtained as before using the conditional failure distance

rp=G(mz,x) (19)

Note that the approximation in Eq. 18 is only valid for small failure probabilities.

APPLICATION TO LINEAR STRUCTURES

Application of the above procedure to any structural system involves three distinct steps:
(a) selection of a set of ground motion descriptors that adequately characterize the structural
performance; (b) formulation of the performance function with due consideration to safety and
serviceability requirements; and (c) determination and idealization of regional seismicity, mag-
nitude distribution, rupture length relation, and attenuation laws for any particular region of
interest. These steps indeed involve the entire field of earthquake engineering. As an examn-

ple, an application to linear structures is subsequently developed.

It is well known that any peak response (e.g. displacement, acceleration, or force at a
point) of a linear, multi-degree-of-freedom structure subjected to an earthquake-induced
ground motion can approximately be obtained as a combination of its modal responses in terms
of the response spectrum of ground motion (3,6,12). Using a recently developed formulation
(6), a peak response quantity, R ., can be expressed as

0o 12
Rm:n = [ZEW/\V/'/)I/S/S/‘ (20)

j=1 =1

where 1 denotes the number of dynamic modes, ¥, is the effective participation factor for
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mode /, p; is the correlation coefficient between modal responses and is approximately given by

NS [<w,»+w,,>2(;,-+<:,> + (w0} C~L)
= 4w—0,) + (0,40 )2 +L)?

p/j (21)

where , and {, are the natural frequency and damping coefficient, respectively, of mode /, and
S, is the response spectrum ordinate associated with mode i/, representing the peak response of
a linear, single-degree-of-freedom oscillator of frequency w, and damping ¢, subjected to the
given ground motion. The effective participation factor for each particular response quantity is
a function of the modal properties and masses of the structure. For example, for the displace-
ment associated with the k-th degree of freedom ¥, =T ¢, and for the force in a spring con-
necting the k-th and ~th degrees of of freedom V. =T (¢~ ki, where T'; is the conven-
tional participation factor for mode i (3), ¢ is the A-th element of the i-th modal vector, and
k, is the spring constant. It is observed in Eq. 20 that whereas ¥, and p; are functions of the
structure properties, the spectral ordinates S; are only affected by the ground motion. This sug-
gests selecting the ordinates of the response spectrum at the modal frequencies and dampings

of the structure as the descriptor variables, Y, of ground motion.

To formulate the performance function, let R denote the resistance of the structure in a
critical response mode. Assuming that failure occurs when Rg < Ry, the performance func-
tion can be expressed as

2RSSy .. .. S) =R — 339 ¥,p,S.S, (22)

j=1j=1

The corresponding failure surface is, then, expressed as

re = 22V Wp,ss =0 (23)

j=1j=1

which is a quadratic hyper-surface in the n-dimensional space of s;.

Attenuation laws relating the ordinates of a response spectrum to the earthquake magni-
tude and distance have been obtained from regression analysis of recorded ground motions by,
among others, McGuire (11) and Trifunac (13). Lognormal distributions for Z, are usually

found to be appropriate. Although no cross-correlation studies between spectral ordinates have
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been conducted, it is expected that a multi-lognormal distribution for Z be a good approxima-
tion. In practice, it should be reasonable enough to assume functional dependence between Z,
and use a single variable instead of a vector. For this purpose it is reasonable to let
b .
Z,' = a/‘le 122,3,...,’7 (24)
where a, and b, are constants determined from the known values of the mean and the variance
of Z,. With this assumption, Z, z and fz(z) in Egs. 5-19 of the preceding section can be

replaced by Z,, zand f7 (z), respectively.

MULTIPLE FAILURE MODES

A structural system may in general have a multitude of failure modes. For example, a
building may be considered as failed when each floor displacement or story shear exceeds a
prescribed threshold. Associated with each failure mode there is a performance function and a
corresponding failure surface (of quadratic form for a linear structure) which separates the safe
and unsafe regions. Clearly, the intersection of the safe regions of all failure modes is the safe
region for the structure. The corresponding boundary represents the failure surface of the
structure. To compute the failure probability in this case, it is only necessary to replace Eq. 19

by

rp = max G,(m,z,x) (25)

where C-?,v(.) corresponds to the performance function for the /-th failure mode.

EXAMPLE

Consider the two-degree-of-freedom structure with rigid floors shown in Fig. 3. Suppose
from safety and serviceability considerations the following are identified as possible failure
modes of the structure: (a) displacement in excess of 2.5 in. (0.0635 m) at each floor level; (b)
acceleration in excess of 0.6 ¢ at the first floor and 1.0 g at the second floor levels; and (c)
shear force in excess of 140 kip. (623 kN) in each story. Following the procedure described in

the preceding section, the failure surface in each of these failure modes can be expressed as
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¢ — Wis? —2p, W Wysys;— Wisi =0 (26)
where rq is the corresponding threshold or resistance and ¥, are the modal effective participa-
tion factors. These quantities are listed in Table 1 for the assumed properties of the structure
as described above and as shown in Fig.3. Since the correlation coefficient, pyy, is always
between —1 and 1, it can easily be shown that the failure surface represented by Eqg. 26 is an
ellipse in the two-dimensional space of s, and s,. By generalization, failure surfaces for an »-
degree-of-freedom structure are expected to be hyper-ellipsoids in the n-dimensional space of
Si.....5,. (It has not been possible to verify this for a general case, but it is expected to be true
for most structures.) Some interesting properties of these ellipsoids can be studied from the
two-dimensional case under consideration. It can be shown in the two-dimensional case that

the principal axes of the ellipse for each failure mode make an angle
=%tan"[4pn\lfﬂ'{f2/(‘lf,2~\1'§)] relative to the coordinate axes s; and s;. When the correla-

tion coefficient, p,,, is small, as it happens when the natural frequencies of the strucutre are
well spaced (6), the angle # is small (provided ¥, ¥,) and the principal axes of the ellipse
nearly coincide with the coordinate axes. In that case, the minor axis of the ellipse, which
corresponds to the nearest points on the failure surface and therefore is a critical axis, lies along
the coordinate axis which is associated with the larger effective participation factor. Similarly,
for an n-dimensional case, the principal axes of hyper-ellipsoids will nearly coincide with the
coordinate axes when the natural frequencies of the structure are well spaced. In that case, the

minor axis wiil correspond to the coordinate with the largest effective participation factor.

Fig. 4 illustrates six ellipses corresponding to the six failure modes of the example struc-
ture. These have been plotted using Eq. 26 and the values of rq and W, in Table 1. The princi-
pal axes of each ellipse are indicated in this figure by attached short line segments. In the
second to fourth quadrants, the ellipses are shown by dashed lines to indicate that no failures
through these quadrants are possible since S by definition are positive (6). It is observed in
this figure that the principal axes of failure ellipses for the second story shear and the second

floor acceleration are at 45 degrees and the minor and major axes are almost equal. This is
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because the corresponding effective participation factors of the two (dynamic) modes happen to
be identical for these responses (see Table 1). For all other failure modes the principal axes are
nearly coincident with the coordinate axes because of the small correlation coefficient
(p1;=0.012). It is also interesting to note that for displacement and base shear failures the
minor axes are along s,, reflecting the significant contribution of the fundamental mode to
these responses, whereas for the first floor acceleration the minor axis is along s, reflecting the
significance of the second (dynamic) mode to this response. The combined safe region of the
structure is indicated in Fig. 4 as the shaded area. Observe that the critical failure modes that

bound this region are the shear force in story 1 and the acceleration in floor 1.

The structure is assumed to be located in a seismic region as described in Fig. 5. The
mean occurrence rates on the two faults are assumed to be v;=1 and v,=2 per year, respec-
tively, and the corresponding upper-bound magnitudes are assumed to be m, =70 and m,=8.5
on the Richter scale. The lower-bound magnitude is assumed to be my=4.0. As is common in
seismic risk analysis (4,8), the probability density function of the earthquake magnitude is

specified in the form

Bexpl—B(m — my)]

1 —expl—B(m;—mg)] @7)

Sulm) =
where B is the regional seismicity parameter. For the present example, 8= 1.5 is assumed. For
attenuation laws, the regression results of McGuire (11) were used to obtain
$,=0.46exp(0.82M)(R+25) 71" and S,= 1.01exp(0.51M) (R+25) 174 where M is in Richter
scale, R is in kilometers, and S, and S, are in inches. Since these laws were developed using R
as the focal distance, for consistency the rupture length / was set to zero in this example. Also,
for simplicity, the random correction factors for the two attenuation laws were assumed to be
identical, i.e. Z,=2Z,=Z7 was assumed. Using results in Ref. 11, a normal distribution for InZ

with the mean equal to zero and the standard deviation equal to 0.54 was assumed.

Fig. 6 summarizes the results of seismic risk analysis for the individual failure modes of
the structure and for various ranges of the respective resistance or threshold, ro. Results for

both random attenuation (i.e., including Z) and deterministic atienuation (i.e., excluding Z) are
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shown to demonstrate the significance of attenuation uncertainty. For the specific values of r
in Table 1, the failure probability in each individual failure mode as well as the probability of
failure due to the combination of failure modes (i.e., the probability of being outside the
shaded area in Fig. 4, computed using the failure distance in Eq. 25) are shown in Table 2.
Observe that, for deterministic attenuation, the probability of failure due to the combination of
failure modes is the same as the probability of failure in the first story shear. This is because
for deterministic attenuation the largest value that S, can assume is 0.26 in. (corresponding to a
magnitude 7 earthquake on fault 1) which is smaller than the value at which the first floor
acceleration becomes a critical failure mode, see Fig. 4. For random attenuation, both the first
story shear and the first floor acceleration contribute to the failure event and, as a result, the
probability of failure due to the combination of failure modes is greater than that for each indi-

vidual failure mode (see Table 2).

The preceding results provide a means for examining the accuracy of the risk-consistent
response spectrum approach. To generate such spectra, risk estimates for the spectrum ordi-
nates §, and S, are computed using conventional seismic risk analysis. These are shown in Fig.
7. Note that these probabilities represent marginal values. At selected risk levels, values of S|
and S, are used to compute the responses of the structure using Eq. 20. The results are shown
in Fig. 6 at the corresponding risk levels as open and closed circles for deterministic and ran-
dom attenuation, respectively. It is remarkable that the risk-consistent spectrum method,
which entirely neglects the statistical dependence (or lack of dependence) between S, and S,
so closely approximates the exact risk estimates. (A similar observation was made by McGuire
(11) through a different approach using a large number of simulation studies for specific two-
degree-of-freedom systems.) The accuracy of the risk-consistent spectrum approach may be
attributed to a high degree of statistical dependence between response spectrum ordinates of
ground motion and/or to an insignificant contribution from two or more earthquakes to the
total risk for each response quantity. It may also have resulted in this example from the

assumption of linear dependence between Z, and 7, Clearly, additional investigation is
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needed to examine the accuracy of the risk-consistent response spectrum technique for different
types of structures and for different seismicity settings. Such investigation is beyond the pricipal

objective of this paper and will not be pursued here.

DISCUSSION AND CONCLUSIONS

An important aspect of the proposed method for seismic risk analysis of structural systems
is its generality. The method need not be restricted to any class of structures (e.g. linear) or to
any specific reliability criterion (i.e. safety or serviceability). In each case one only needs to
select an appropriate set of ground motion descriptor variables, Y, and formulate the perfor-
mance function based on knowledge on structural behavior and on the reliability criterion of
interest. This may not be simple for certain structural systems, such as nonlinear structures,
for which the behavior under seismic loading is not easily described by a finite set of variables.
However, even in such cases, crude formulations of the performance function, incorporating
only the most critical elements, are possible which will lead to meaningful estimates of the
seismic risk. For example, for safety analysis of ductile reinforced concrete structures, whose
failures during earthquakes are usually due to low-cycle fatigue, a simple performance function
in terms of the peak ground velocity or acceleration and the duration of motion may be
appropriate. Clearly, as research in understanding the seismic behavior of structural systems
continues, more refined performance functions can be formulated leading to more realistic esti-

mates of seismic risk.

It should also be realized that the proposed method is not limited to the particular seismic
risk model utilized in this paper. More realistic assumptions with regard to, for example, gen-
eration of earthquakes, their occurrences in time and space, and the interdependence between
earthquake variables at successive occurrences can be implemented at the potential expense of
increased computations.

With regard to the application to linear structures, the proposed method is quite straight

forward and efficient. [t is particularly useful when the structure has multiple failure modes.
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One disadvantage of the method that can be pointed out is that it requires the properties of the
structure, i.e. mode shapes, frequencies, etc., for computation of the seismic risk. Thus, it is
more of an analysis tool than design. The risk-consistent response spectrum technique, on the
other hand, is appropriate as a design tool since for any selected risk level the spectrum can be
generated independently of the structural properties and then used to check the corresponding
responses of any selected design structure. One should, however, keep in mind that this
method disregards the statistical dependence between the spectral ordinates and as such it is
only an approximate technique. Note also that this method does not provide any means for

including the effect of multiple failure modes.
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APPENDIX I.- EVALUATION OF EQUATION 16 FOR IDEALIZED SOURCE MODELS

The following results are based on source models developed in Ref. 8. The assumptions
here, however, are somewhat less restrictive and the models provide more flexibility in idealiz-
ing a seismic region. Four source models are included: (a) well known fault; (b) area with pre-

ferred fault orientation; (c) area with unknown faults; and (d) uniform seismicity region.

Well Knewn Fault-- Consider a straight-line fault of length L situated at depth # and
horizontal distance d from the site; see Fig. 8. Suppose that a rupture of length /is randomly
placed along the fault. Assuming that the rupture has equal likelihood of being anywhere along
the fault without extending beyond the known ends of the fault, the probability that it will

intersect the region bounded by the failure circle is

Case i - fault extending on both sides of site, Fig. 8(a):

0, if 7, <~Vhi+d
2g+1
YR if g<a—1

PIR < rflE] = J+a (28)
1: if b—1<yg

Case ii - fault extending on one side of site, Fig. 8(b):
0- if r,<~h+d*+a?
— if g<b~1

PIR < r|E] =14 h (29)

I if b—1<y

where a and b are as shown in Fig. 8 and g =~/rf—h’—d? It is noted that these solutions
include an improvement over those in Ref. 8 which were based on the assumption that the
center of rupture could occur anywhere along the fault, thus permitting half the rupture length

to extend beyond the known ends of the fault.

Area with Known Fault Orientation - Consider a seismically active area A4 situated at
depth /i underneath the site; sce Fig. 9(a). Suppose the exact locations of faults in this area are

not known, but for geological reasons it is believed that ruptures may occur along a preferred
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orientation, say parallel to axis o—o in Fig. 9(a). The probability that the rupture will intersect
the failure circle can be evaluated from the preceding results by considering a set of imaginary
faults parallel to axis o—o, as shown in Fig. 9(b). Assuming that the rupture may occur any-
where in the area with uniform likelihood, the mean occurrence rate of earthquakes on each
imaginary fault is obtained as a fraction of the total occurrence rate (in area A4) proportional to

the "tributary" area of the fault as described in Fig. 9(b).

Area with Unknown Faults - Consider a seismically active area A situated at depth A
underneath the site; see Fig. 10(a). Suppose the locations as well as orientations of faults in
this area are unknown. Consider a small elemental area, A4, at a horizontal distance d from
the site. Assume that an earthquake in AA originates as a rupture extending on both sides
along a random orientation such that the ends of the rupture are randomly placed on a circle of
radius //2; see Fig. 10(a). The probability that the rupture will intersect the region bounded by
the failure circle is clearly a function of the relative positilons of the two circles. Assuming a

uniform distribution over 0 to 2# for the random orientation of rupture, one obtains (8)

@

it r,<h oor Jri—h+1/2<d
it = A< d<Arp =12
it SR < d <SR T G0
if d<~/r—h

where y = cos ™ [(h?+d*+1*/4—r})/dl] and o =sin"'(x/r}—h*d). Since the solution is indepen-

PIR < r/|Ej] =

Jlr AR

[a—

5

dent of the angular position of A4 relative to the site, A4 may be assumed in the form of an
annular area. Thus, a seismic area of general shape can be decomposed into elemental areas in
the form shown in Fig. 10(b). Assuming uniform seismicily in area A4, the mean occurrence
rate for each elemental source is obtained as a fraction of the total mean occurrence rate in pro-
portion to its "tributary” area, see Fig. 10(b).

Uniform Seismicity Region - In some cases it is reasonable to assume that the entire
seismic region surrounding the site has uniform seismicity. Consider a circular region of radius

d at depth h underneath the site, see Fig. 11. Assuming uniform seismicity, the probability that
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the rupture will intersect the region bounded by the failure circle is

0: N if 7, < h
2. LA
prr Tt if Jri—h+1/2<d
o 14+ =[pVi—p2—cos7ipl; I Vri—h"<d<~ri=h™+1/2
w

if d<~/ri—h’

where p=-~/r}—h*/d. The above result was obtained in Ref. 8 based on the assumption that

1

the rupture occurs along a preferred orientation. However, it can easily be shown that the same
result also applies if the rupture is assumed to have a random orientation with a uniform distri-

bution over 0 to 2.
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APPENDIX III.- NOTATION

The following symbols are used in this paper:

A

a,b,d h,q
a/"bi

E;
Jfi(M.R)
Su(m)
Sf2(2)
Sx(x)
g()
G(Q)
G(Q)

ki

/

L

m,M

source area;
distance terms;

constants;

the event that an earthquake occurs on source J

a function of A and R;

probability density function of M;

joint probability density function of Z;

joint probability density function of X;

performance function in terms of ground motion variables;
performance function in terms of earthquake variables;
solution of G(.,r) =0 for r;

spring constant;

rupture length;

fault length;

deterministic and random values of earthquake magnitude;
lower-bound magnitude;

upper-bound magnitude for source J ;

number of ground motion variables included in g(.);
probability constant;

probability;

deterministic and random values of earthquake distance;
deterministic and random values of structure resistance or threshold;
failure distance;

maximum response;

deterministic and random values of spectral ordinate for mode i/ ;
time;

mean return period for failure event;

deterministic and random vectors of structure variables;
deterministic and random vectors of ground motion variables;
elements of y and Y

deterministic and random vectors of attenuation correction factors;
elements of z and Z;

angles for computation of probability;

seismicity parameter;

elemental source area;

damping coefficient for mode 7 ;

angle between principal axes of ellipse and coordinate axes;
mean occurrence rate of earthquakes in entire seismic region;
mean occurrence rate of earthquakes in source j ;

correlation coefficient between responses in modes Jand j ;
effective participation factor for mode i ; and

natural circular frequency for mode /.
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Table 1. Effective Participation Factors and
Resistances of Example Structure

Resistance or Effect. Part. Factors
Failure Mode € 0
Threshold, rg ¥, ¥,
Displacement, in.
Floor 1 2.5 0.724 0.276
Floor 2 2.5 1.171 ~0.171
Acceleration, g.
Floor 1 0.6 0.296 0.775
Floor 2 1.0 0.479 —0.479
Shear Force, kip.
Story 1 140 72.3 27.6
Story 2 140 447 —44.7

Note: 1 in. = 0.0254 m; 1 kip. = 4.45 kN.

Table 2. Estimated Probabilities for Example Structure

Probability of Failure in 1 Year

Failure Mode

Determ. Attenuation

Random Attenuation

Displacement
Floor 1
Floor 2

Acceleration
Floor 1
Floor 2

Shear Force
Story 1
Story 2

All Modes

0.0
0.466x1073

0.826x1073
0.569x107°

0.900%x1073
0.0

0.900x107?

0.091x1072
0.482x1077

0.709x 107
0.526x107°

0.649%x107?
0.134x1072

0.749x 1072
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FLOOR MASS: m=0.24 ks®/in (42050 kg)

STORY STIFFNESS : k=100 k/in (17520 KN/m)
NATURAL FREQUENCIES: w,=12.51, w,=32.90 rad/s
MODAL DAMPING COEFFS.: ¢,=f, =0.05

MODAL CROSS-CORRELATION COEFF.: £ =g =0.012

m
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k STORY i
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FIG. 3.- Example Structure
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FIG. 4.- Failure Surfaces for Example Structure
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