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Abstract

The Role of Landscape Heterogeneity in Urban Runoff Generation, Modeling, and
Management

by

Anneliese Sytsma

Doctor of Philosophy in Landscape Architecture and Environmental Planning

and the Designated Emphasis in

Global Metropolitan Studies

University of California, Berkeley

Professor G. Mathias Kondolf, Chair

Urban areas – often characterized by their impervious surfaces – have a disproportionate
impact on the hydrologic regimes of associated river systems and their water quality. Over the
past century, enormous amounts of scientific research and funding has been allocated towards
the effective management of urban runoff. Despite these investments, however, it continues to
confound engineering solutions, causing pollution, flooding, and habitat destruction. These
challenges are compounded by the need to plan for non-stationarity in climate, shifts in
hydrologic regimes and land use, and inter-dependencies between ecological, hydrological,
and human systems. The first chapter of the dissertation provides relevant background on
the challenges associated with effectively managing the hydrologic impacts of urbanization.
These challenges arise from some of the assumptions that have driven management decisions
over the past century, namely: (1) that production of urban runoff is dominated by overland
flow across impervious surfaces; and (2) that overland flow in urban areas is controlled by the
total quantity of impervious surfaces, rather than their patterns with interspersed previous
areas, and characteristics of these pervious areas.

The second chapter of the dissertation explores the first of these assumptions, and asks:
What are the implications of different hydrologic processes for the production of urban
stormwater and its management? The assumption that runoff in urban areas is driven by
impervious surfaces has dominated our understanding and management of urban catchments
for decades. Through a literature review and theoretical framework, this chapter identifies
the range and drivers of hydrologic processes in urban settings, characterizes their associated
spatial and temporal scales, and shows how a mismatch in process and management scales
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can lead to unintended outcomes. It offers guidance for adaptation of the current ‘risk-based’
approach for managing urban runoff across the different runoff processes and scales.

The third chapter of the dissertation explores the second assumption, and asks: How does
landscape variability impact the spatial production of urban runoff? This chapter uses a
combination of hydrologic modeling, machine learning, and geospatial analysis to
determine the extent to which different landscape factors moderate runoff contribution
from impervious areas. Results show that impervious surface contribution to runoff (or,
‘hydrologic connectivity of impervious areas’, HCIA), is controlled by spatial variability of
pervious area characteristics and temporal variability in pervious area conditions and
rainfall. To enable such analysis in practice and for urban planning purposes, this chapter
presents a geospatial tool for estimation of HCIA at watershed scales.

The fourth chapter of the dissertation explores the implications of the second assumption
for the predictive accuracy of semi-distributed hydrologic models, and asks: How do land
cover characteristics and climate variability impact calibration and predictive accuracy of
semi-distributed runoff models? Semi-distributed models represent landscape
heterogeneity, such as pervious and impervious patterns, with unobservable effective
parameters. Through comparative ‘virtual experiments’, this chapter demonstrates that
the predictive accuracy of a widely used urban hydrological model (SWMM) can be
affected by calibrated parameter dependence on soil, storm, and landcover characteristics.
The inter-dependencies between the forcing parameters and calibration parameters can
result in significant prediction error when a calibrated model is applied to predict runoff
from novel climate and landcover conditions.

The research presented in this dissertation will help municipalities and flood managers
identify applicable policies, design standards, and planning mechanisms for urban runoff
management. It also points to a need for a better understanding of the process (or
processes) by which runoff is generated, the effects of human alteration and management
on these processes, and the sensitivity of such processes to ongoing changes in climate, land
use, and management.
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Chapter 1

Introduction

While urban areas occupy only about 2-3% of the world’s land surface (Liu et al., 2014),
they are home to half of the worlds population (United Nations, 2018) and have a
disproportionate impact on the hydrologic regimes of associated river systems and their
water quality. Replacing permeable areas with impervious surfaces, such as roads, parking
lots, and rooftops, reduces infiltration of rainwater through soil, and results in increased
runoff from urban areas (Leopold, 1968). These increased flows cause erosion of stream
beds and banks (Booth & Jackson, 1997; Gillies et al., 2003; Walsh et al., 2005). Pollutants
accumulate on these urban surfaces, and combine with runoff to flow directly (untreated)
into receiving lakes, bays, and streams as non-point-source pollution (Arnold & Gibbons,
1996a; Burns et al., 2010; Leopold, 1968; Simmons & Reynolds, 1982). Despite the
enormous amount of scientific research, regulation, and administration related to urban
runoff management over the past few decades, it continues to confound engineering
solutions, causing pollution, flooding, and habitat destruction (Karvonen, 2011; Patterson
et al., 2013).

These ongoing issues in urban runoff management are compounded by large uncertainty
in future climate and development conditions (Gober et al., 2010). Urban runoff
management is confronted with the need to plan for non-stationarity in climate, shifts in
hydrologic regimes and land use, and inter-dependencies between ecological, hydrological,
and human systems (Penny et al., 2020a; Martin et al., 2017; Milly et al., 2008; Wagener et
al., 2010). Such planning problems (i.e., those that hinge on major uncertainty and
inter-dependencies) are ‘inherently wicked’, having neither clear missions nor solutions
(Patterson et al., 2013). Wicked problems – characterized by an incomplete or
contradictory knowledge, a large number of stakeholders and opinions involved, a large
economic burden to solve it, and inability to intervene without impacting something else
(Rittel & Webber, 1973) – cannot be easily solved using rational, technological approaches
(Karvonen, 2011).

The wicked problem presented for urban runoff management is perpetuated, in part, by
the failure to recognize hydrological processes in urban areas as unique from each other and
derived from their physiographic and climatic contexts. While imperviousness of urban
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areas is indeed a major defining characteristic of urban areas, it is not the only
characteristic. Indeed, the extreme spatial variations in land cover in urban areas (e.g.,
grass, pavement, trees, gardens, and bare ground juxtaposed over short distances) can
complicate underlying hydrologic mechanisms, affecting the temporal interactions between
precipitation and catchment response (Robinson & Sivapalan, 1997). Urban water
infrastructure, which may, for example, promote rapid infiltration of stormwater, can also
result in scale-dependent changes in process importance, where flow is routed into the
subsurface (Miles & Band, 2015; Salvadore et al., 2015; Cristiano et al., 2017). The
assumption that imperviousness is the defining hydrological characteristic of urban
hydrologic process has led to a hydrologic classification of urban areas as ‘other’ and
inherently different from ‘natural’ catchments, and consequently, a rather limited
understanding of urban hydrologic processes (Fletcher et al., 2013).

To address the mounting environmental issues posed by urban runoff under an uncertain
future, urban runoff management must be based on an understanding of the process (or
processes) by which runoff is generated, the effects of human alteration and management on
these processes, and the sensitivity of such processes to ongoing changes in climate, land use,
and management. An approach to urban runoff management that considers these aspects
requires a close look at some of the assumptions that have driven management decisions over
the past century, namely: (1) that production of urban runoff is dominated by overland flow
across impervious surfaces; and (2) that overland flow in urban areas is controlled by the
total quantity of impervious surfaces, rather than their patterns with interspersed previous
areas, and characteristics of these pervious areas.

1.1 Background

Runoff mechanisms

Knowing which runoff process(es) predominate in a watershed is critical for the success of
hydrological management. Hydrologists have historically categorized three primary runoff
processes: infiltration excess overland flow (IEOF) (i.e., Hortonian overland flow (Horton,
1939)), saturation excess overland flow (SEOF) (i.e., Dunnian flow (Dunne & Black,
1970)), and shallow groundwater flow (SGWF) (Whipkey, 1965). At the catchment scale,
the extent to which one of these three runoff generation processes dominates is known to
depend on feedbacks between ‘static’ surface and subsurface properties (e.g., vegetation,
saturated hydraulic conductivity, depth to groundwater or bedrock Dunne & Leopold
(1978)) and ‘dynamic’ forcing (e.g., precipitation, climate). Consequently, each of these
runoff processes defines a unique hydrologic system, e.g., relevant flow paths, scales, and
boundaries, which form the basis of hydrologic analysis and planning. Misattributing
hydrological outcomes to particular runoff processes can cause a mismatch of management
actions to this system, undermining the success of management.

Because of the prevalence of impervious surfaces in urban areas, runoff production is often
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assumed to occur as IEOF, which occurs when the rainfall rate exceeds the rate at which the
land surface can infiltrate (Horton, 1939, 1933). This simple conceptual model has dominated
our understanding and management of urban runoff for decades (Schwartz & Smith, 2014),
defining management policies, planning approaches, and methods of evaluation (Stewart
et al., 2019). While this assumption – and the management approaches it has defined –
is broadly defensible in major cities or areas with dense urban development, the fact that
urban areas span a wide range of climates, topographies, and geologies, suggests a range of
possible runoff processes.

In SEOF and SGWF dominated regions, surface water flows and groundwater flows
can interact, resulting in complex processes that might challenge the effectiveness of urban
stormwater infrastructure (Schwartz & Smith, 2014). The question of whether our current
approach to urban runoff management, developed under the assumption of IEOF, still applies
in areas that exhibit SEOF and SGWF has not been adequately explored. Advancing our
understanding of urban hydrologic processes, including the spatial and temporal scales that
define them, may help municipalities and flood managers identify more appropriate and
effective policies, design standards, and planning mechanisms (Voter & Loheide, 2018; Miles
& Band, 2015).

Spatial metrics

In urban areas, replacement of natural soils and vegetation with impervious surfaces with
decreased permeability (such as roads, roofs, and driveways) has long been recognized as a
major cause of environmental degradation, stemming from changes to water balance factors,
e.g. decreased infiltration and increased runoff (Burns et al., 2010; Leopold, 1968; Simmons
& Reynolds, 1982). Consequently, two of the most common spatial metrics in urban areas are
related to impervious surface: total impervious surface, and directly connected impervious
surface.

Total impervious area (TIA) – the total area occupied by impervious surfaces – is often
used as an indicator of the degree of urbanization and consequent effects of urbanization on
hydrologic conditions. However, TIA does not distinguish between impervious areas that
are ‘directly connected’ to streams (being adjacent or connected via stormwater pipes) from
those that are distant and whose runoff flows over pervious surfaces (Boyd et al., 1993) and
thus is limited in its ability to predict runoff at local scales (McGrane, 2016; Crompton
et al., 2019; Fletcher et al., 2013; Lim, 2016; Y. Zhang & Shuster, 2014). The directly
connected impervious area (DCIA) metric was introduced to measure impervious areas that
are physically connected to the stormwater network or stream channel (e.g., Hwang et al.,
2017; Lee & Heaney, 2003a; Seo et al., 2013).

Despite their potential to describe heterogeneous landscapes, there are a number of
challenges to using landscape pattern metrics – such as TIA and DCIA – for predicting
runoff. Chief among these is the fact that landscape pattern metrics are static and are
therefore unable to capture dynamic changes in hydrologic pathways that can occur over
time or space (Bracken et al., 2013; Bracken & Croke, 2007; Lexartza-Artza & Wainwright,
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2009). More nuanced metrics are needed in urban areas that capture the impacts of
variable climates, slope gradients, soils conditions, and heterogeneous flow paths on
impervious surface connectivity.

Hydrologic models

Hydrologic models are used to predict changes to runoff and infiltration in response to
hydrologic forcing (e.g., changes in precipitation or climate patterns). Urban hydrologic
models often fall into one of two major categories: distributed or semi-distributed.

Distributed models, such as RHESSYS (Tague & Band, 2004) and ParFLOW.CLM
(Maxwell & Miller, 2005), simulate processes ‘everywhere’ in space. Many of the
distributed models are ‘process-based’, that is, they are based on governing equations of
physics such as the 2-D Saint Venant Equation to simulate overland flow routing. Such
models are typically computationally intensive and require a large number of input
parameters (Sun et al., 2014), making them impractical for many applications in urban
settings.

Semi-distributed models, such as SWMM, CANOE or MOUSE, aggregate
heterogeneous parameters (e.g., soil hydraulic conductivity, topography, land covers) to
coarser - e.g., subcatchment – scales and produce aggregated results at this scale
(Carpenter & Georgakakos, 2006a; Golden & Hoghooghi, 2018). Such models make
catchment-scale hydrologic predictions by simulating overland flow and water quality in
each subcatchment independently, and then linking subcatchments by a drainage network
to allow for conveyance of water and pollutants across the watershed.

Lumping hydrologic parameters increases model efficiency, but also necessitates
‘effective’ parameters representing emergent hydrological behavior (Petrucci & Bonhomme,
2014) rather than physical processes. Effective parameters are inherently impossible to
measure or estimate directly and must be calibrated to obtain a good fit between observed
and modeled hydrological data. Calibrating effective parameters generates a number of
well known problems, including a demand for accurate calibration and validation data
(Sorooshian & Gupta, 1995), selecting which parameters to calibrate and defining functions
that measure model performance (Khatami et al., 2019).

However, calibrating models for rapidly changing urban environments brings up further,
even more basic issues: the optimal parameter values may vary with forcing conditions
(e.g., rainfall, land cover). While there is a wide literature dealing with non-stationarity in
hydrologic predictions (e.g., Clarke, 2007; Klemeš, 1983; Koutsoyiannis, 2006), the ability
of existing models to cope with this non-stationarity is questionable (Wagener et al., 2010)
and is a largely unaddressed problem particularly for urban hydrological modeling (Fry
& Maxwell, 2018). If optimal calibration parameters are sensitive to changing conditions,
urban hydrological predictions for future climate and landcover conditions may be subject
to unquantified error.
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1.2 Problem statement

This dissertation aims to improve understanding of urban runoff processes by exploring how
spatial patterns of impervious and pervious surfaces influence urban runoff when subject to
varied rainfall and soil conditions, and to create frameworks which make such relationships
relevant to policy and planning (Figure 1.1). I focus my research on three primary questions:

1. What are the implications of different hydrologic processes for the production of urban
stormwater and its management?

2. How do local landscape patterns, land cover characteristics, and climate variability
impact the spatial production of urban runoff?

3. How do land cover characteristics and climate variability impact calibration and pre-
dictive accuracy of semi-distributed runoff models?

1.3 Overview of chapters

To answer the first question (Chapter 2), I conduct a literature review to characterize the
range of challenges posed by presence of SEOF and SGWF for management of urban runoff.
I discuss the range and drivers of potential hydrologic responses in urban settings and the
implications these runoff processes on urban runoff management approaches. Finally, I offer
a heuristic framework for adaptation of ‘risk-based’ approach for managing urban runoff
arising from SEOF and SGWF.

To answer the second question (Chapter 3), I use a combination of hydrologic modeling,
machine learning, and geospatial analysis to develop spatially-explicit estimates of
hydrologically connected impervious areas (HCIA) in ungauged urban catchments that
accounts for variability in hydrologic pathways that result from variability in soil types,
pervious and impervious areas, rainfall events and soil moisture conditions. I present a
method and geospatial tool for estimating hydrologically relevant landscape metrics across
varied soils and climate conditions.

To answer the third question (Chapter 4), I explore the implications of calibration
parameter sensitivity to changes in model forcing for urban hydrological prediction. I
demonstrate that sensitivity of calibration parameters to changes in model forcing can be
identified through the use of virtual model experiments, similar to previous studies that
explore hillslope controls on connectivity (Hopp & McDonnell, 2009), runoff from
heterogeneous land surfaces (Crompton et al., 2019), and climatic and landscape controls
on runoff partitioning (C. Li et al., 2014). These virtual experiments identify the limits of
calibration parameter applicability across distinct environmental and climatic conditions.

Finally, Chapter 5 concludes by summarizing the findings of these three chapters in
response to the three guiding questions, and discusses the importance of this research in the
context of rapidly changing urban environments.
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Figure 1.1. Conceptual overview urban hydrologic systems under change. Natural landscape and
climate factors control hydrologic processes, which are impacted by urbanization. Knowledge of
urban hydrologic processes should be used to define effective management approaches that moderate
the impacts of urbanization. At the same time, changes in urbanization interact with changes in
natural landscape and climate factors, which exert controls on the effectiveness of these management
approaches.
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Chapter 2

Managing urban sogginess:
implications of saturation excess and
shallow groundwater flow for
management of urban runoff

Abstract. Changes in runoff characteristics following urbanization are often attributed to
infiltration excess overland flow (IEOF) generated across impervious surfaces. The
assumption of IEOF in urban areas has dominated the understanding and management of
urban runoff for decades. It forms the basis of definitions of risk and the subsequent policy,
management, and infrastructure that intend to mitigate this risk. Yet even early hydrology
literature has recognized that urban runoff mechanisms are significantly more complex
than suggested by the simple conceptual model of IEOF. This complexity derives from the
presence of non IEOF hydrological responses, which may arise from either the remaining
pre-development hydrologic mechanisms, from human interventions in the landscape and
runoff management infrastructure, or from the interaction of the two. The resulting runoff
mechanism may vary from IEOF in terms of relevant processes, spatial scales, and
temporal scales, which can challenge the effectiveness of the current IEOF-based
management paradigm and the consequent management infrastructure it defines. In this
paper, we (i) describe how - and why - the current management paradigm is based on the
assumption of IEOF; (ii) compare the hydrologic processes, spatial scales, and temporal
scales of other runoff mechanisms to those of IEOF; and (iii) offer guidance for adaptation
of the ‘risk-based’ approach for managing urban runoff across these different runoff
generation mechanisms. We highlight the value of process-based approach (compared to
the current approach based on the assumption of IEOF) to guide effective management of
the wide range of hydrologic processes that can arise in urban areas.
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2.1 Introduction

Different watersheds exhibit distinct hydrologic regimes and respond differently to different
management approaches. The differences in runoff regimes are understood to arise from
differences in topography, soils, land cover, groundwater dynamics, climate and weather
(Dunne & Leopold, 1978; H.-Y. Li et al., 2014; Budyko, 1977; Buchanan et al., 2018). For
the purposes of surface hydrology, these differences are often interpreted through the lens of
the dominant runoff (or streamflow) generation mechanisms (Lyon et al., 2006; Saadi et al.,
2020; Tilahun et al., 2016; Buchanan et al., 2018; Dunne & Leopold, 1978; K. Beven, 2006a).

Runoff generation mechanisms are often classified into three major types: infiltration
excess overland flow (IEOF) (i.e., Hortonian overland flow sensu Horton (1939)), saturation
excess overland flow (SEOF) (i.e., Dunnian flow sensu Dunne & Black (1970)), and shallow
groundwater flow (SGWF) (in low-relief, high groundwater regions sensu Zimmer &
McGlynn (2017) cf. in steep, humid regions sensu Whipkey (1965)). The contribution of
these mechanisms to runoff in a specific watershed remains challenging to identify a priori
and can fluctuate seasonally and with the degree of storage in the basin. The role of these
mechanisms in producing runoff can change also over longer timescales – sometimes
referred to as a change in hydrologic regime – due to water abstraction (Kinal & Stoneman,
2012), land use or land cover change (Penny et al., 2020a), drainage infrastructure
(Foufoula-Georgiou et al., 1969a), or climate change (Milly et al., 2008).

The different runoff mechanisms are associated with distinct processes, which have
characteristic spatial and temporal scales. Here, the term scale refers to a characteristic
region in space or period in time at which a process occurs (Salvadore et al., 2015; Blöschl
& Sivapalan, 1995). For example, groundwater flow processes can occur over large spatial
scales (∼ 104m) and fluctuate on seasonal time scales, while IEOF processes can arise at
smaller scales corresponding to landcover permeability (∼ 101m) and fluctuate rapidly with
changes in rainfall.

A knowledge of the mechanisms and associated processes by which rainfall becomes
runoff is central to effective management of any landscape as it informs the potential types
and scales of hydrological challenges and appropriate methods for prediction (Leopold,
1968). Among other things, incomplete knowledge of hydrological processes and feedbacks
can lead to institutional or planning frameworks for management that are not aligned with
hydrological systems, and that can be detrimental to the ecological systems they support
(Borgström et al., 2006; Folke et al., 2007; Cumming et al., 2006). Mismatches in scale can
also arise through unexpected or long term change to underlying dynamics and processes
(Cumming et al., 2006; Scheffer & Carpenter, 2003), e.g., in the case of hydrological regime
shifts, which presents other major management challenges (Ehret et al., 2014).

Because it is difficult to identify the dominant runoff mechanism in a catchment a
priori, and therefore to predict such hydrologic regime shifts, planners, engineers, and
hydrologists are required to make generalizations and assumptions about runoff
mechanisms and processes. While often essential for practical reasons, these generalizations
can also result in misattribution of hydrological outcomes to particular runoff mechanism,
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resulting in inaccurate predictions and ineffective management (Lyon et al., 2006).
In urban areas, almost all prediction and management support tools embed the

assumption that runoff is generated via IEOF, influencing definitions of risk, policies,
management practices, and design guidelines (Stewart et al., 2019; Schwartz & Smith,
2014). Indisputably, urbanization is associated with increases in impervious surface area
which promotes local IEOF (Leopold, 1968). Yet the physiographic and climatic context of
urban areas is highly variable. A simple global analysis shows that approximately 40% of
major urban areas are situated over shallow bedrock or high groundwater (Figure 2.1),
conditions promoting SEOF or SGWF. Indeed, recent analyses of US catchments suggests
that for most of the US – including in urbanized catchments – evaporation-controlled soil
moisture, rather than extreme precipitation events, is a primary control on flooding
(Berghuijs et al., 2016), and that antecedent wetness is as important as impervious area in
explaining variations in runoff ratio (flow per unit rainfall) (Saadi et al., 2020). Of course,
while such coarse global scale analyses indicate that SEOF and SGWF runoff may occur in
urban areas, management of runoff must be implemented at much smaller scales (e.g., city,
catchment, or site-scales); runoff mechanisms at these scales may be more variable than
implied by global analyses. For example, analytical modeling indicates that a given urban
area may transition between producing IEOF and SEOF under different storm
characteristics (Stewart et al., 2019), while in several urban areas characterized by high
groundwater, the importance of IEOF versus SGWF varies with annual groundwater
hydrograph (C. J. Ocampo et al., 2013).

In such areas where multiple runoff generation mechanisms co-exist, their processes can
interact, generating complex variations in the volume and timing of runoff production that
can challenge the effectiveness of urban stormwater infrastructure (Schwartz & Smith, 2014;
Lim & Welty, 2017). Urban water infrastructure, which may, for example, promote rapid
infiltration of stormwater, can also result in scale-dependent changes in processes, where
IEOF is generated at small spatial scales (e.g., across impervious surfaces such as sidewalks
and driveways), but infiltration from stormwater infrastructure and permeable areas promote
subsurface flows at larger scales (e.g., to regional groundwater tables) (Miles & Band, 2015;
Salvadore et al., 2015; Cristiano et al., 2017).

Many conventional hydrologic models do not resolve multiple, interacting runoff
processes (Buchanan et al., 2018). Since the dominant runoff process can vary with
different forcing conditions (Stewart et al., 2019), the use of simplified process descriptions
can lead to large changes in the validity of model calibration between different forcing
conditions (Sytsma et al., 2021; K. Beven & Binley, 1992). Conversely, models tailored to a
specific runoff generation process - for example TOPMODEL-like SEOF models
(K. J. Beven & Kirkby, 1979), infiltration-driven IEOF models (Smith et al., 1995) or
water-table simulating SGWF process models (Fleckenstein et al., 2010), embed
process-specific conceptualizations, equations, and process parameters. Unsurprisingly,
therefore, incorrectly specifying the dominant runoff process inhibits the quality and utility
of predictions made by hydrologic models (Easton et al., 2007; Bhaskar et al., 2015), and in
policy or infrastructure responses. Similarly, failure to recognize a hydrologic regime shift
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Figure 2.1. Global map of shallow/perched groundwater aquifer (from Richts et al., 2011),
shallow bedrock (from Shangguan et al., 2017), and major urban centers (from ESRI, 2020)

can lead to large uncertainty and error in hydrological predictions that continue to rely on
past observations.

Thus, while IEOF is produced across impervious surfaces, many urban areas also exhibit
SEOF and SGWF processes that dominate or interact with IEOF. This variation in runoff
generation mechanism likely brings the validity of predictive and management approaches
dependent on IEOF into question. This twofold argument raises numerous questions for
management, namely:

1. How is the current runoff management paradigm based on IEOF? Why did it develop?

2. How do SEOF and SGWF processes, spatial scales, and temporal scales compare to
those of IEOF?

3. What are the implications of different spatial and temporal scales for urban runoff
management?

The answers to these questions will help municipalities and flood managers identify
applicable policies, design standards, and planning mechanisms for urban stormwater
(Voter & Loheide, 2018; Miles & Band, 2015). This synthesis focuses on hydrological
aspects of these questions (i.e., on the volume of runoff generated, its flow paths, velocity
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and timing) to (1) discuss the underlying reasons for the reliance of management on IEOF
(Section 2.2); (2) investigate how the hydrologic controls and spatio-temporal scales of
IEOF compare to other runoff mechanisms (Section 2.3); and (3) describe the implications
of these different spatial and temporal scales for runoff management (Section 2.4). We then
apply this assessment to offer guidance for adaptation of the current approach to urban
runoff management (Section 2.5). The closely related challenges of water quality in urban
runoff are not addressed directly but are referred to when the implications of different
runoff generation mechanisms for management of urban stormwater volume/timing are
particularly relevant for common water quality management practices.

2.2 How (and why) does the current runoff

management paradigm hinge on the assumption

of IEOF?

IEOF processes and scales

Proposed initially by Robert Horton in 1933, infiltration excess overland flow (IEOF) is
initiated when the rate of water inputs (typically precipitation) exceeds the infiltration
capacity of the soil (Horton, 1939, 1933) (Figure 2.2). The infiltration capacity represents a
maximum rate of vertical water flow into the soil, which is controlled by the unsaturated
water potential in the soil and depth of the wetting front (H. W. Green & Ampt, 1911),
and typically decreases as soils become wetter until it approaches the saturated hydraulic
conductivity (Philip, 1969). IEOF production is therefore strongly influenced by rainfall
characteristics and the land surface hydraulic properties. It is prevalent in locations
characterized by impermeable surfaces including urban areas (Leopold, 1968), areas with
exposed rocks and bedrock (montane regions), or areas exhibiting crusted or sealed bare
soil surfaces such as drylands and bare agricultural land (Assouline, 2004).

IEOF responds quickly to rainfall, often on the order of minutes; streamflow it generates
is ‘flashy’, with short lag times, and steep rising and recession limbs (Figure 2.2a). Often,
streams in IEOF dominated landscapes are ephemeral, with channels that lie above the
groundwater reservoir at all times, and which flow only in direct response to rainfall. Because
IEOF runoff is driven by rainfall intensity and soil infiltration capacity, relevant spatial scales
for IEOF are closely related to spatial scales over which these controls vary. While rainfall
can vary across small scales, it is often considered to be constant across a catchment. Thus,
the primary factor that defines spatial scales relevant for IEOF is the spatial variation in
soil infiltration capacity. In a catchment dominated by IEOF with uniform soils, Horton’s
mechanism implies time to ponding occurs at the same time everywhere and (for a storm
of sufficient duration) the entire catchment contributes to flow at the outlet (Figure 2.2d,e).
Catchment morphology under such conditions is therefore irrelevant, except in so far as it
affects routing of the runoff and the timing of the hydrograph (K. J. Beven et al., 1988).
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For a catchment with spatially variable soils, however, IEOF occurs at spatial scales that
correspond to the variability in soil infiltration capacity, sometimes referred to as partial
area IEOF (sensu Betson, 1964).

Figure 2.2. Conceptual schematic of infiltration excess overland flow temporal and spatial scales.
Under IEOF conditions, the stream often flows in direct response to rainfall (a). If rainfall intensity
is less than the infiltration capacity, however, all rainfall infiltrates and no overland flow is produced
(b). For a catchment of uniform soils (c), all areas contribute to overland flow simultaneously (d).
For a catchment with variable soils (e), partial area IEOF is produced only in areas where the
precipitation intensity exceeds the infiltration capacity (f).

IEOF was the first runoff generation mechanism of runoff to be discovered. It enabled
simple, process-driven approaches for hydrological predictions (K. Beven, 2004; K. J. Beven
et al., 1988) and – for at least a decade after its definition – was assumed (by Horton and
others) to be globally occurring (K. Beven, 2006a). Observations by Hursh & Brater (1941)
of stream flow without overland flow challenged the universality of IEOF, and indicated
that water of subsurface origin is often a major component of storm runoff. Mechanistic
experiments in the 1960s and 1970s revealed additional runoff generation mechanisms:
saturation excess overland flow (SEOF) (Dunne & Black, 1970), and shallow groundwater
flow (SGWF) (Whipkey, 1965). These processes, described in detail in Section 2.3, are
unlike IEOF in that they are controlled by the accumulation and flow of water in the
subsurface.

The story of how hydrology moved from a paradigmatic assumption of global IEOF
occurrence to the more complex picture of runoff generation mechanisms prevailing today is
well known (see, e.g., K. Beven, 2006a). Yet the legacy of that historical paradigm lingers
in some areas of practice. As we outline below, the assumption that runoff production arises
from IEOF - not without justification - underpins the history and contemporary practice of
urban runoff management.



13

Urban runoff management hinges on IEOF assumption

Despite a detailed, observation-derived insight into many hydrologic processes (K. Beven,
2004), Horton remains best known for proposing a simple model of IEOF production,
which he likely developed in support of engineering applications (K. Beven, 2004; Klemeš,
1986; Yevjevich, 1968). The conceptual model of IEOF dominated hydrologic research,
including urban hydrology and urban water management, for many years (K. Beven, 2004).
It informed the development of methods of prediction, design, management tools and
management approaches. Because urban water management has evolved from this
background, the presumption of IEOF is implicit in the management of urban runoff.

The operational paradigm for managing runoff in urban areas is to link runoff
characteristics to adverse outcomes (environmental or social); to specify a risk tolerance for
how often these adverse outcomes might occur; and to design infrastructure or
management regimes that satisfy the specified tolerance. IEOF influences this operational
paradigm in two important ways (Figure 2.3). First, the presumption that IEOF is the
most important driver of runoff responses leads to the widespread (indeed, near universal)
use of event-scale rainfall extreme value distributions to provide the basis for specifying
tolerance and risk within urban stormwater designs. Secondly, many of the methods used
to relate rainfall extreme value distributions to flow characteristics – and thus to
infrastructure design or management – are based on an underlying presumption of IEOF.

Figure 2.3. Operational paradigm for managing runoff in urban areas is dependent on the
assumption of IEOF
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Runoff characteristics and risk

The flow characteristics that often define urban runoff management are peak flows and runoff
volumes. Traditional urban water management focused on mitigating flood risk, typically
by sizing conveyances and drainage systems to accommodate flood flows associated with
specific risk levels (Burian et al., 1999). As the implications of urban runoff on ecological
systems have become better understood, protecting flow characteristics (e.g., flow durations,
volumes) relevant to these systems (sufficient to ensure that e.g., bankfull scouring floods
occur frequently enough to maintain channel health and function) have become a priority
for urban water management (Booth & Jackson, 1997; Poff et al., 1997).

Risk levels are determined using intensity - duration - frequency (IDF) curves based
on rainfall extreme value distributions, an approach to rainfall characterization that dates
back to 1899 (Burian et al., 1999). IDF curves cover a range of timescales that broadly
correspond to typical timescales of rainfall events (e.g., 72 hours, or three days, is a common
upper limit in IDF curve durations), and give estimates of rainfall average annual exceedance
probabilities and return intervals. Central to this approach is the assumption of homogeneity
(i.e., that all flood peaks are independent and drawn from the same probability distribution)
and stationarity (i.e., that the probability distribution of flood peaks does not change over
time) (Struthers & Sivapalan, 2007). In other words, the rainfall distribution is treated
as independent of the hydrological or physical state of the catchment. Joint probability
methods that account for heterogeneity (e.g., of event characteristics and variably saturated
area extent), or conditional probability methods that account for non-stationarity in event
characteristics (e.g., event characteristics conditional on time periods when soils are frozen,
or season) are not usually developed - likely for practical reasons. The result is that the
probabilistic drivers used for urban stormwater management are primarily based on event-
scale precipitation - consistent with an IEOF assumption, but, as we describe below in
Section 2.3, not necessarily consistent with SEOF or SGWF processes.

Hydrologic models

IDF curves and the design rainfall they produce are then applied in rainfall-runoff models to
produce estimates of flooding, which are assumed to have the same probability of occurrence
as the design rainfall. Rainfall-runoff routing and/or hydrological modeling forms a huge
body of work in the discipline of hydrology, which certainly encompasses modeling approaches
which are appropriate to SEOF and SWGF as well as IEOF. Here, however, we focus on the
tools most widely used and available to urban stormwater managers, which do continue to
be biased towards IEOF (Dunne & Leopold, 1978).

Traditional runoff routing tools such as the Rational Method, the unit hydrograph
method, and curve number methods are either explicitly or implicitly predicated on
assumptions of IEOF (Walter & Shaw, 2005; Bartlett et al., 2016; Schneiderman et al.,
2007). For example, the Rational Method (Kuichling, 1889) embeds the assumption that
runoff rate is proportional to rainfall rate, and as such implicitly assumes IEOF
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(McPherson, 1969)1. Fundamentally, the Rational Method and other traditional methods
share a common set of limitations in their inability to directly represent how interactions
between catchment state and rainfall properties control flow behavior: because these
models lack a description of the spatial variability of runoff within a watershed, they
consequently assume a homogeneous watershed with a spatially uniform runoff processes
(Bartlett et al., 2016). Given how central these interactions are to SEOF and SWGF, these
methods are most reasonable when considering IEOF. Nevertheless, these methods
continue to be applied to landscapes that do not exhibit IEOF, the consequences of which
have been identified in number of studies. For example, Bartlett et al. (2016) attributes the
poor performance of the curve number methods in rangeland and forested sites to the fact
that these sites are dominanted by subsurface flow rather than IEOF. Consequently, a
nontrivial body of scientific research has focused on modifying simple routing methods to
account for factors they omit, e.g., spatial variability of contributing areas (Bartlett et al.,
2016; Schneiderman et al., 2007; Steenhuis et al., 1995) and space or time-dependencies in
loss coefficients (Baiamonte, 2020; Froehlich, 2016).

Contemporary urban hydrologic models incorporate more complex rainfall-runoff routing
algorithms, yet many of them - e.g., SWMM (James et al., 2010a), CANOE (Boutaghane &
Ouerdachi, 2012), and MOUSE (Dhi, 2017) models - continue to base these algorithms on
IEOF. For example, the only land cover classification relevant to runoff production in SWMM
relates to presence of permeable or impermeable surfaces; the model assumes synchronous
production of runoff on all surfaces where rates of rainfall exceed infiltration, and water,
once infiltrated, is “lost” from the system and cannot further influence its runoff generation
behavior. Perhaps because measuring what happens to infiltrated water is difficult, its
potentially complex fate (e.g., re-emergence downslope or contribution to perched aquifers)
is usually ignored (Stewart et al., 2019) and it is commonly assumed to have simply recharged
the aquifer (Newcomer et al., 2014).

Many of these contemporary models are spatially ‘lumped’, aggregating inputs (i.e.,
pervious surfaces, soil moisture, topography) at subcatchment scales, and produce
aggregated results at the same scales (Carpenter & Georgakakos, 2006b). There are no
generally applicable rules to perform this aggregation; the resulting model structure is
usually a function of the modeler’s hydrological understanding of the area (Wagener, 2003).
In the case of urban areas, this is typically an understanding based on the assumption of
IEOF. These contemporary methods are distinct from the traditional lumped methods
described above in that, for a given catchment, rather than aggregating parameters across
the entire catchment, they aggregate parameters into smaller subcatchments within the
catchment. These scales of aggregation may be smaller than the traditional lumped
methods described above; still, this aggregation means that contemporary models simulate
spatially uniform runoff processes within the subcatchments. These models only address
the role of spatial variability of catchment properties and processes in so far that modelers

1Although Kuichling (1889) did recognize this limitation, calling for further research on the impacts of
antecedent soil moisture on the relationship between peak runoff rate, rainfall rate, and drainage area.
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chose a subcatchment scale in accordance with these properties. Even more challenging
issues arise when such models are used to estimate pollutant loads because they neglect to
account for potentially important pollutant contributions and transformations across
permeable areas, assuming that pollutant transport occurs solely as overland flow across
impermeable surfaces (Arnold & Gibbons, 1996b; Tuomela et al., 2019). Each of these
features embeds IEOF assumptions into the model.

While it is undoubtedly true that the expansion of impervious areas results in an
increase in the occurrence of IEOF, the reliance of urban hydrologic models on IEOF
assumptions places modelers at a distinct disadvantage in many real-world situations in
which more than one runoff generation mechanism operates, where surface and
groundwater interact in complex ways, and where calibration of parameters must
compensate for poor process representation in models (Sytsma et al., 2021). The
widespread and continual use of IOEF-based models in the face of these limitations likely
reflects the influence of model legacy and modeler preference (Addor & Melsen, 2019),
which may be perpetuated by IEOF-centric foci in urban hydrology planning/engineering
courses. From a practical perspective, too, such models are attractive: the dependence of
IEOF on surface properties (e.g., topography, infiltration capacity) means that IEOF-based
models have relatively simple data requirements that can be readily observed or measured.

Stormwater management controls

Unsurprisingly, given the traditional focus on IEOF in urban areas, conventional, or ‘first
generation’ stormwater management controls aim to to reduce peak flows and runoff
volumes. These stormwater controls are typically centralized, located within or proximal to
surface waterway, and rely on detention and release of runoff. Such detention-based
stormwater controls (e.g., stormwater ponds and retention basins) focus almost entirely on
surface flow, and as such align closely with IEOF assumptions (Burns et al., 2012; Hamel
et al., 2013; Jefferson et al., 2017). However, these types of stormwater controls are
increasingly considered to be problematic, sometimes exacerbating flood risks (Emerson et
al., 2005) and requiring large tracts of land, which make them challenging to implement in
high density urban areas (Karvonen, 2011).

These challenges inspired a new generation of stormwater infrastructure in the 1990s,
variously termed Water Sensitive Urban Design, Low Impact Development, or Green
Stormwater Infrastructure (henceforth referred to as Water Sensitive Urban Design, or
WSUD). In contrast to centralized stormwater controls, WSUD relies on engineered
nature-based solutions (such as green roofs, bioretention, infiltration basins and trenches,
and cisterns) to retain hydrologic functions at smaller, site scales (e.g., housing
development site) as a means of restoring hydrologic function at a watershed scale
(Karvonen, 2011; Poff et al., 1997; Fletcher et al., 2013; Roy et al., 2008; Jefferson et al.,
2017; Petrucci et al., 2013). Because they are sized to manage runoff from smaller areas,
WSUD require less area than centralized stormwater controls, making them better suited
for densely populated urban areas. WSUD often incorporate vegetation and aim to not
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only mitigate peak flows and flow velocities but to also provide water quality treatment
(Bell et al., 2016; Hamel et al., 2013; Jefferson et al., 2017). While WSUD often encourage
a range processes – e.g., infiltration, evapotranspiration, groundwater recharge, or storage –
the current planning, modeling, and policy emphasis is focused on infiltration (Clark &
Pitt, 2007).

Despite having objectives that are inclusive of a broad range of potential hydrologic
outcomes, WSUD design, planning, and modeling are engrained within a system predicated
on the assumption IEOF. Risk-based design standards are based on event time scales, apply
across municipal scales, and implemented at site scales; the models used to size and plan
WSUD are based on IEOF; and WSUD preference for infiltration assumes that infiltrated
water does not contribute to runoff response. Their effectiveness in meeting their objectives
and any given urban area is therefore contingent on the degree to which the urban area
is controlled by IEOF. While this assumption is widely defensible in many urban areas
(e.g., in dense cities with high impervious surface coverage), runoff processes other than
IEOF can occur in urban areas, particularly where underlying geology, topography, and
soil conditions promote subsurface flows. In these areas, application of WSUD and IEOF-
based management paradigm may be problematic. For example, conditions that promote
subsurface flows in Baltimore, Maryland (USA) and Perth, Western Australia (AU) have
raised concerns regarding the use of infiltration-centric stormwater management approaches
such as WSUD (Miles & Band, 2015; Lim, 2016; Bhaskar et al., 2015; Groffman et al., 2004;
C. Ocampo et al., 2017; Claydon et al., 2020).

Given the ongoing and impending investment in WSUD infrastructure globally
(Jefferson et al., 2017), there is an urgent need to critically assess their application, and the
current paradigm on which they depend, to areas with runoff processes that challenge the
assumptions of this paradigm. In the following sections, we describe first how the spatial
and temporal scales of SEOF and SGWF differ from IEOF (Section 2.3) and secondly what
these differences mean for effectiveness of the current IEOF management paradigm
(Section 2.4).

2.3 How do SEOF and SGWF processes and scales

compare to those of IEOF?

Unlike IEOF, both SEOF and SGWF runoff mechanisms depend on subsurface processes.
Controls on these subsurface processes generally act over larger spatial scales and longer
temporal scales than do the controls on surface processes relevant for IEOF (Figure 2.4).
Below, we compare the processes, controls, spatial scales, and temporal scales associated
with SEOF and SGWF to those of IEOF.
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Figure 2.4. Spatial and temporal scale variability of hydrological processes, adapted from (Blöschl
& Sivapalan, 1995; Salvadore et al., 2015; Cristiano et al., 2017).

SEOF processes and scales

For SEOF to occur, soil must become saturated in some locations before storm events can
produce a runoff response. These variably saturated areas, or ‘variable source areas’ (first
termed by Hewlett & Hibbert, Alden (1966)), can vary through space and time as a
function of soil moisture and topographic controls (Dunne & Leopold, 1978; Hewlett &
Hibbert, Alden, 1966). SEOF occurs as a combination of return flows from the subsurface
and precipitation on these saturated areas. This type of runoff often arises in humid,
forested, well-vegetated and hilly areas (Dunne & Leopold, 1978), particularly where
bedrock, restrictive layers, or shallow water tables result in limited available storage for
water in the subsurface.

One way to understand the controls on the space and timescales associated with SEOF is
therefore to consider the controls on soil saturation. In a simplified, one dimensional analysis,
Porporato et al. (2004) show that the probabilistic behavior of soil moisture depends on a
set of dimensionless ratios (Figure 2.5a): γ = wo/α, the ratio of the maximum available soil
water storage in a 1D soil column (wo [mm]) to the average storm depth α [mm]; and λ/η, the
ratio of the storm frequency λ [day−1] to the frequency with which the soil column is dried
by evapotranspiration occurring at potential (maximum) rates, η = wo/ETmax. Porporato
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et al. (2004) found that soils are skewed towards saturated conditions when γ ≤ λ
η
− 1.

Physically, these conditions arise when the frequency and depth rainfall relative to available
storage is enough that the rainfall tends to ‘refill’ the soils faster than evapotranspiration
can deplete them. Conversely, soils are skewed towards dry conditions where λ/η ≤ 1, i.e.,
when soils are refilled by rainfall more slowly than they are dried by evapotranspiration. Soil
moisture distributions are more uniform (and thus variable) for climate and soil conditions
intermediate to these values.

While simplified, this argument immediately highlights the potential complexity of
SEOF in terms of time and spatial scales. For climates and soils where λ/η ≤ 1, SEOF
would be unlike IEOF (Figure 2.5b). SEOF would likely be localized to areas such as
hillslope breaks, riparian zones or regions of shallow soil (Dunne & Black, 1970; Hewlett &
Hibbert, Alden, 1966; McDonnell, 2003; Bhaskar et al., 2015), with saturation in these
areas being dependent on process occurring across entire hillslopes. Overland flow would
occur infrequently, and would be significantly controlled by the coincidence of antecedent
wetness and storm characteristics. These conditions are more likely to result in runoff
processes with longer temporal scales and more variability spatial scales than IEOF.

Conversely, for very humid climates and thin/shallow soils γ ≤ λ
η
− 1 (soils are shallow,

rainfall is frequent and deep), SEOF would often resemble IEOF (Figure 2.5c). In extreme
cases, SEOF could be prevalent throughout a whole catchment, and its runoff behavior would
be largely dictated by storm characteristics. Under these conditions, the current management
regime based on IEOF would likely still apply. However, it is likely that attempts to urbanize
catchments with in conditions such as these (i.e., where soils are saturated most of the time)
would rely on methods to drain, fill, or otherwise alter the saturated areas to make the
catchment amenable for urban development (e.g., Claydon et al., 2020).

Adding to this complexity, variations in rainfall and evaporation rates can change over
time (between events and seasonally) and soil storage can change over space (between
locations within a given catchment) (Figure 2.6). These changes impact the wetness of a
catchment, leading to transitions between ‘wet’ and ‘dry’ conditions and consequently to
transitions in runoff response (Western et al., 1999; Penna et al., 2011). Temporally,
seasonal variation in rainfall depth and frequency can shift a SEOF landscape from ‘dry’ or
‘intermediate’ conditions to ‘wet’ conditions (see Figure 2.6c). Spatially, where the
saturation (and thus SEOF) occurs within the landscape also depends the lateral rate of
water flowing into an area relative to the lateral rate of water flowing out of the area (i.e.,
the topographic wetness index). An area with a high lateral inflow rate (such as lowland
areas and valleys) would, theoretically, shift the threshold for wetness to a lower λ/η value
(as shown in blue in Figure 2.6d). This lower threshold means that these areas are more
likely to become saturated compared to upland areas (with low lateral inflow rates). Even
when a landscape as a whole is considered ‘dry’, lowland areas at the bottom of hillslopes
could produce overland flow responses frequently (Figure 2.6e).
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Figure 2.5. Classification of soil water balance as a function of the two governing parameters,
γ (the ratio of the maximum available soil water storage to the average storm depth) and λ/η
(the ratio of the frequency of rainfall to the frequency with which the soil could be dried by
evapotranspiration) (a). Soils are skewed towards dry conditions where λ/η ≤ 1, leading slower
and localized SEOF (b). Soils are skewed towards wet conditions when γ ≤ λ

η − 1, leading to
IEOF-like SEOF conditions (c).

Figure 2.6. Conceptual schematic of saturation excess overland flow under ‘dry’ (a) and ‘wet’
(b) conditions. These different conditions can arise due to seasonal variations in climate, leading
to a shift in catchment state (c). Spatial variability in saturated areas requires modifications to the
Porporato framework to account for lateral inflow (d). Thus, for an area with high lateral inflow,
the threshold for ‘wet’ and ‘dry’ conditions would shift such that the area is likely to be in ‘wet’
conditions even when the landscape as a whole is considered ‘dry’ (e).
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This variability – in both time and space – lengthens the characteristic response
timescales of SEOF relative to IEOF both between storms, due to seasonal variations in
antecedent wetness (S. Godsey et al., 2004; Whiting & Godsey, 2016), and within storms,
due to the fragmented and changing nature of the variably saturated area (Dunne & Black,
1970; K. J. Beven et al., 1988; Day, 1983). The temporal scales and spatial scales of runoff
in SEOF dominated systems therefore tightly linked to each other, and depend on the
temporal and spatial scales of soil saturation: runoff is event-based and similar to IEOF
after soils are saturated (Lim, 2016; McMillan, 2020) but is more limited in volume and
extent of production under drier conditions.

SGWF processes and scales

SGWF occurs when the primary source of stormflow production in channels or receiving
bodies is the lateral movement of groundwater itself. This movement may be facilitated by
highly permeable soils, the presence of preferential or macropore flow pathways, or by the
rapid propagation of pressure signals from a rising water table to the riparian aquifer (Dunne
& Leopold, 1978; Whipkey, 1965; Hursh & Brater, 1941; Jencso & McGlynn, 2011). In this
research, we consider two types of SGWF - ‘fast’ SGWF, and ‘slow’ SGWF - which arise
under different conditions.

Fast SGWF

Fast SGWF is well known to be a dominant runoff generation mechanism in steep, humid
forested areas, where where water tables become perched on less transmissive layers. In these
conditions, soils remain very wet most of the time and relatively small rainfall inputs can
rapidly activate pressure, macropore, or riparian-aquifer driven runoff responses (McGlynn
et al., 2002; Harr, 1977; Montgomery D.R. & Dietrich W.E., 1988; R. C. Sidle et al., 2000;
Dunne, 1990; Tromp-Van Meerveld & McDonnell, 2006; Woods & Rowe, 1996; Graham et
al., 2010; Sklash & Farvolden, 1979; Sklash et al., 1986; Whipkey, 1965; Mosley, 1979). Fast
SGWF can also promote SEOF when groundwater saturates the soil column, meaning that
it is common for SEOF and fast SGWF to occur concurrently during wet periods.

Like SEOF, the controls on fast SGWF can be understood through controls on soil
saturation. For climates and soils where λ/η ≤ 1, SGWF may not produce substantial
runoff (Figure 2.7a). These conditions are more likely to result in runoff processes with
longer temporal scales and more variability spatial scales than IEOF. Conversely, for very
humid climates and thin/shallow soils γ ≤ λ

η
− 1, fast SGWF response to rainfall on steep

slopes could very rapidly produce streamflow on event timsecales (Whipkey, 1965; Mosley,
1979; Sklash et al., 1986; McGlynn et al., 2002; Harr, 1977) (Figure 2.7b). This can lead to
temporary conditions of rapid flow associated with connectivity of saturated zones (and
consequently in SEOF) in the hillslope–riparian– stream system (Woodward et al., 2016).
However, this type of rapid SGWF is unlikely to occur in urban areas, since urban
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development is usually built on shallow slopes (Miles & Band, 2015) (which typically do
not promote fast SGWF).

Slow SGWF

Compared to groundwater in humid areas, groundwater in mesic catchments may be
recharged more slowly by rainfall events (due to longer travel paths and greater
evapotranspiration rates in the unsaturated zone), and are less likely to produce a water
table rise that intersects with channels or the land surface to produce surface runoff via
SEOF. In such cases, and where the unsaturated zone has sufficient capacity to conduct
the infiltrated water to the stream channel, the flow path lies entirely below the ground
surface (Dunne, 1990). Slow SGWF of this sort can be a major contributor to runoff in
arid and mesic regions (Hardie et al., 2012), in areas of high permeability and low porosity
(e.g., in fractured bedrock landscapes Montgomery et al., 1997; Hahm et al., 2019; Rempe
& Dietrich, 2018; Graham et al., 2010), as well as in low relief landscapes with sedimentary
areas with deep soils and regional water tables (Zimmer & McGlynn, 2017; Devito et al.,
2005). While slow SGWF is an essential contributor to baseflow in many areas and can be
remarkably invariant over long periods of time (Hornberger et al., 2014), seasonal variation
of groundwater levels is often on the order of meters (Dunne & Leopold, 1978; Gribovszki
et al., 2010). These seasonal changes in groundwater levels drive variability in spatial and
temporal scales for slow SGWF landscapes.

The spatial extent of shallow groundwater aquifers can vary from local scales (e.g.,
hillslope, ∼ 101m), to regional scales (e.g., groundwater flow systems spanning ∼ 104m)
(Toth, 1963). Groundwater from regional flow systems may be discharged in regional low
points, e.g., streams or wetlands (Hornberger et al., 2014) (Figure 2.7c). In contrast, where
local or sub-regional systems exist local groundwater systems can develop and result in
groundwater discharge in local topographic lows (Figure 2.7d). Because peak groundwater
levels (maximum elevation of the phreatic surface crest) can lag the peak of the rainy
season, the greatest potential for peak runoff generation in slow SGWF environments arises
from the combination of a high water table with a large rainfall event. These conditions
can also give rise to SEOF where the water table is close to the ground surface (Dunne &
Black, 1970; Dunne, 1990; Dunne & Leopold, 1978) (e.g., footslopes and in valley bottoms).

Mismatch of process drivers, spatial and temporal scales

In short, due their dependence on subsurface processes and more specifically on whether or
not watersheds enter a particular hydrological state that favor their occurrence, SEOF and
SGWF (fast and slow) tend to be more heavily influenced by slow hydrological processes than
is IEOF. Similarly, because spatial patterns in saturation often emerge on hillslope scales,
while regional water tables can respond over scales of many square kilometers, SEOF and
SGWF also tend to have large characteristic length-scales relative to IEOF - particularly in
urban landscapes where surface soil properties are heterogeneous on length-scales of ≈ 101m.
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Figure 2.7. Conceptual schematic of two types of SGWF and controls on their spatial and
temporal scales. Scales of ‘fast’ SGWF is controlled by soil moisture, similar to SEOF: soils skewed
towards dry conditions (λ/η ≤ 1) may produce minimal or no SGWF (a), whereas soils skewed
towards wet conditions (when γ ≤ λ

η − 1) and lead to IEOF-like SGWF conditions (c). Sales of
‘slow’ SGWF depend on the water table. Under low water table conditions, regional groundwater
systems dominate, and flows remain below the surface (c). Under high water table conditions,
regional, local, and subregional systems interact and contribute to streamflow, and the high water
table can intersect with the ground surface, leading to local saturation (d).

The mismatch in spatial and temporal scales that can arise between SEOF and SGWF
to those of IEOF means that: (1) the process of urbanization in areas previously dominated
by SEOF and SGWF introduces opportunities for wide variation in space and time scales of
urban runoff production; and (2) there is a corresponding mismatch between the scales of
SEOF and SGWF and scales of the current management paradigm defined by IEOF.

2.4 What are the implications of different spatial and

temporal scales for urban runoff management?

The effectiveness of the IEOF-based management paradigm is compromised in areas whose
runoff processes occur at different spatial and temporal scales, and arise from subsurface
processes (Figure 2.8). In this section, we focus on the implications of current approach
to urban runoff management for (1) SEOF landscapes, and (2) slow SGWF landscapes.
We omit further discussion of fast SGWF landscapes because, as discussed above, these
landscapes generally less amenable for urbanization in the first place.

Mis-specification of flow characteristics and design storms

Under the current IEOF paradigm, design storms with a given probability of occurrence
(produced from event-scale rainfall extreme value distributions) are generally expected to
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Figure 2.8. Applicability of IEOF-based management approach to SEOF and SGWF settings.

produce floods of the same probability (Singh, 2013; Struthers & Sivapalan, 2007). The
assumption that a design rainfall probability matches that of the flooding it produces is
generally valid for IEOF processes, where the production of runoff depends directly on rainfall
timescales. However, is likely to be invalid for SEOF and SGWF processes, where runoff is
sensitive to temporal variability in catchment conditions.

For SEOF and SGWF landscapes, therefore, event-scale rainfall does not translate
directly to flood risk: the ‘worst case’ rain event does not necessarily correspond to the
‘worst case’ flood under SEOF and SGWF conditions. For example, the highest flood risk
for a catchment dominated by SGWF may occur when the groundwater level reaches the
land surface (see Figure 2.7b); in these cases, flooding itself may arise from groundwater
levels and be largely independent of event rainfall (Singh, 2013; Fürst et al., 2015; Rolls et
al., 2012). This type of flooding occurs long after storms have passed and persists for weeks
or months (Cobby et al., 2009). In SEOF catchments, agreement between the probability
of a design storm event and the resulting flood event depends on the soil saturation at the
onset of the storm: for example, under extremely ‘wet’ conditions (see Figure 2.6b), the
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‘worst case’ storm event may indeed produce a ‘worst case’ flood. If the same storm event
occurred when the catchment was in ‘dry’ conditions (e.g., early in the season) (see Figure
2.6a), however, the resulting flood could have a much higher exceedance probability (and
lower return period) than the rain event. Indeed, antecedent soil moisture can be more
important than rainfall in predicting modest flooding events (Case et al., 2021) and can
sustain and/or intensify impacts of extreme flood events, as in the case of e.g., the North
Atlantic Tropical Cyclone Erin, which dramatically intensified over west-central Oklahoma
due to soil saturation (Evans et al., 2011; Case et al., 2021).

Where flood risk is dependent on factors other than rainfall, therefore, the traditional
statistical methods for event-based rainfall analysis are unsuited, and could lead to
development of design storms with exceedance probabilities that do not align with the
flooding they produce. In many cases, the use of design storms based on event rainfall
would tend to overestimate corresponding floods peaks in SEOF catchments. For example,
Hill et al. (1998) demonstrated - for ten catchments in Australia - that use of design events
that did not account for initial losses resulted in overprediction of the 10% annual
exceedance probability flood (10-year return interval) by an average of 47% when compared
to analysis of recorded peak flows. In SGWF catchments, where peak groundwater levels
can lag peak rainfall events, design storms could either over- or under-estimate peak
flooding. This is particularly problematic since groundwater flooding is generally not
considered in flood maps or policies, and groundwater flood risk mapping has not been well
developed (Hughes et al., 2011).

In short, event-based approaches suffer from a fundamental limitation when applied to
SEOF and SGWF landscapes, namely that the initial conditions of the catchment – e.g.,
soil moisture, initial losses, and groundwater levels – must be specified exogenously. That
is, they must be derived from data and procedures separate from the event analysis. The
flood simulation process then needs to allow for the joint probability of initial states of the
catchment and rainfall conditions, whose distributions may be correlated or independent of
each other. Obtaining data on catchment initial conditions may be a significant problem
in areas where gauged data are scarce (Kuczera et al., 2006). In these cases, design events
from rainfall data must be specified such that they account for these processes. For example,
Maréchal et al. (2008) proposed a cumulative 25-day rainfall could be used to predict the
occurrence of groundwater flooding in karst systems, and in Western Australia, the 72-hour,
50% annual exceedance probability event (2-year return interval) is recommended for design
purposes in shallow groundwater sites (IEWEA, 2016). Where gauged data are available,
however, continuous hydrologic models can be used to characterize catchment conditions
through calibration, which can then applied to determine the flood that corresponds with a
given design rainfall.

Mismatch of model structure and hydrologic processes

The most common hydrologic models applied in urban areas are, however, also predicated
on the assumption of IEOF (see Section 2.2) and are therefore poorly suited to characterize
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important catchment conditions that are required for accurate estimation of SEOF and
SGWF runoff.

Because IEOF-based hydrologic models lack explicit methods for characterizing runoff
pathways across and between scales relevant to SEOF and SGWF – e.g., changes in soil
moisture, runoff generating areas (Easton et al., 2007), or individual storm runoff pathways
(Buchanan et al., 2012) – calibrating such models in SEOF and SGWF catchments depends
on tuning model parameters that do not represent relevant SEOF and SGWF processes.
Hydrologic predictions in SEOF and SGWF catchments based on a IEOF-based model are
therefore invariably subject to statistical bias and underestimation of uncertainty. In the
context of urban runoff management, such uncertainty can have major consequences for
infrastructure and flood risk estimates. Design of a culvert intended to convey large events
(e.g., 1 to 2% annual exceedance probability) could result catastrophic flooding and damage if
its design based on inaccurate runoff predictions. For more common design storms (e.g., 50%
annual exceedance probability, or 2-year return interval), it could lead to nuisance flooding
– which can also be costly (Moftakhari et al., 2017) – or to issues in ecological systems that
depend on a certain frequency, duration, and magnitude of these smaller flows.

The occurrence of SEOF and SGWF not only impacts predictions of peak flows,
volumes, and timing, but also the pathways of runoff throughout a catchment. These
pathways are important for pollutant mobilization and transport. In catchments
dominated by SGWF, pollutants from different sources (e.g., from impervious surfaces and
from permeable areas) accumulate in the groundwater, and are transported slowly to the
receiving water. In catchments dominated by SEOF, areas at high risk of transferring
pollutants occur where pollutant areas intersect with areas of high mobilization and
propensity for surface runoff generation (Thomas et al., 2016; Walter et al., 2000). In both
cases, pervious surfaces such as lawns may be important pollutant sources (Tuomela et al.,
2019) although many urban runoff models ignore their contribution (Pitt et al., 2005).

In summary, use of IEOF-based urban hydrologic models to predict runoff from SEOF
and SGWF landscapes presents multiple pathways for large errors. These errors stem from a
mismatch in processes, spatial, and temporal scales. Namely, because IEOF-based models do
not represent SEOF and SGWF processes (e.g., spatial variation in soil moisture dynamics,
interaction between subsurface and surface flows, groundwater fluctuation), use of these
models in SEOF and SGWF landscapes relies on calibration of IEOF model parameters
that may not be representative of these SEOF and SGWF processes. The resulting model
does not represent reality, and, while it may accurately replicate the events on which it was
calibrated, its application to future scenarios (or design rainfall) presents major risks when
its results are used to inform planning and design of infrastructure, such as WSUD.

Ineffective management controls

WSUD management approaches predicated on the assumption of IEOF present multiple
challenges in areas that exhibit SEOF or SGWF runoff. At best, the mismatches in processes
and spatial and temporal scales that result may lead to ineffective or inefficient management.
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At worst, these mismatches may lead to negative outcomes for infrastructure and ecological
systems.

The negative outcomes of infiltration based WSUD in shallow groundwater environments
can arise either from: (i) the impact of WSUD on shallow groundwater, or (ii) impacts of
shallow groundwater on WSUD. Increased infiltration from WSUD in shallow groundwater
areas can lead to groundwater mounding, which can slow down or inhibit infiltration to the
subsurface, decrease travel time to the groundwater, and subsequently increase the risk of
groundwater contamination. At a catchment scale, the spatial distribution of WSUD relative
to topographic low points can exacerbate groundwater mounding issues (Bhaskar, Beesley, et
al., 2016; Machusick et al., 2011; Endreny & Collins, 2009) and affect groundwater dynamics
(K. Zhang & Chui, 2020). These impacts extend beyond the footprint of an individual
WSUD facility: infiltrated stormwater has been identified as a potential source of aquifer
contamination (Clark & Pitt, 2007), basement and infrastructure flooding, and inflow to
wastewater networks leading to waste water treatment plants (Bhaskar, Beesley, et al., 2016).
This increases the potential for groundwater flooding, which, compared to fluvial flooding,
can leave areas inundated for many months, often results in substantially higher damages
(C. Green et al., 2006). For example, in Perth, Western Australia, increased groundwater
levels - in part due to increased infiltration from WSUD (C. Ocampo et al., 2017; Barron et
al., 2013) - have resulted in groundwater flooding and costly damage to public infrastructure
Bhaskar, Hogan, & Archfield (2016); Claydon et al. (2020).

At the same time, high groundwater can compromise the effectiveness of stormwater
approaches, e.g., by reducing the unsaturated zone available beneath infiltration-based
WSUD (C. Ocampo et al., 2017). This can reduce effectiveness of WSUD in treating
surface runoff, or result in increased peak flows and runoff volumes due to groundwater
seeping into underdrains during rain events (K. Zhang & Chui, 2019). Worse still, WSUD
in high groundwater areas can mobilize nutrients that have accumulated in the subsurface
(Gorski & Zimmer, 2020), e.g., build-up of excess applied nitrogen (Fovet et al., 2015;
Sebilo et al., 2013) – contributing substantial nitrogen loads to downstream water bodies
(Abbott et al., 2018; Dupas et al., 2019). For example, a recent study in Baltimore,
Maryland (US) - where SEOF runoff contributes significantly to streamflow (Lim, 2016) -
has shown sub-optimal performance of infiltration-based stormwater management
approaches in mitigating non-point source pollution (Miles & Band, 2015).

These issues are exacerbated by the current planning approach which emphasizes site-
scale implementation and IEOF-based models (Figure 2.9). In accordance with the IEOF
assumption, in which the relevant spatial scale corresponds to spatial variation in surface
properties, planning and design occurs at the scale of a development site and often disregards
scales outside those of a development footprint (e.g., topographic controls or groundwater
level controls on saturation). This site-scale focus has led to the preponderance of site-
scale performance studies, which similarly do not consider infiltration pathways off-site,
and, coincidentally, find that infiltration systems efficiently attenuate peak flows and runoff
volume at the site-scale (Davis, 2008; Dietz & Clausen, 2008; Hunt et al., 2006). Catchment
scale modeling studies have simulated that infiltration systems are able to reduce peak flows
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(Gagrani et al., 2014; Palla & Gnecco, 2015; Damodaram et al., 2010; Burns et al., 2015), and
as a consequence reduce the risk of flooding (Burns et al., 2015). However, as described above,
most of these models are also based on the assumption of IEOF; their prediction of runoff
reduction from infiltration-based WSUD is therefore a product of the model structure and
assumptions. These models are not suited for simulating the complex interactions between
surface and groundwater that are driven by or impact performance of WSUD, nor their
implications for pollutant transport.

Because infiltration-based WSUD are implemented at this scale without full
understanding of their limitations under field conditions or their context within the
catchment (Urbonas, 2000), their effectiveness at the catchment sale are highly uncertain.
Indeed, while there are fewer catchment-scale experimental studies of WSUD, those that
exist give mixed results regarding effectiveness of WSUD: some studies have found that
infiltration WSUD reduces runoff volumes and peak flows (e.g., Jackisch & Weiler, 2017),
while others have found that they have little to no impact at the catchment scale (e.g.,
Bell et al., 2016; W. Shuster & Rhea, 2013).

2.5 Discussion

Remedying these problems requires modifying the default approach to urban stormwater
management so that planning and design frameworks can be cognizant of and apply to a more
diverse range runoff generation mechanisms (Figure 2.10). This does not entail abandoning
existing stormwater management approaches or retreating from the commitments to Water
Sensitive Urban design. Rather it entails broadening these frameworks so that their many
advantages and advances, developed over 100 years of urban hydrology, can be brought to
bear on a wider range of catchments than at present.

Identify the dominant hydrologic processes

The first fundamental challenge is to ensure that urban runoff management efforts begin
by investigating the hydrological processes occurring in urbanized or urbanizing sites. This
would be well supported by more research level investigations addressing the diversity and
prevalence of different flow pathways in urban areas, through tracer studies (e.g., Jefferson et
al., 2015; Christian et al., 2011; Buttle et al., 1995; W. Sidle & Lee, 2006; Pellerin et al., 2008),
or through examination of solute concentrations and stream discharge (Gorski & Zimmer,
2020; Thompson et al., 2011; S. E. Godsey et al., 2009). While such investigations are
potentially time and resource intensive, they would yield insight into more readily-observable
indicators of runoff generation processes, which could be translated into site assessment
frameworks suitable for widespread initial evaluations. Identifying areas with uniform or
quasi-homogeneous hydrological response to precipitation (i.e., evaporation, infiltration, and
runoff processes) could be used to identify the relevant risks, modeling approaches, and
management for each unit. For example, in the context of sites likely to be impacted by
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Figure 2.9. Theoretical impacts of infiltration-based WSUD in high groundwater environments.
Hillslope-view of shallow groundwater in (a), with site-scale design of infiltration-based WSUD
in (b) - (d). In (b), the groundwater is far below the land surface and WSUD would be deemed
appropriate in site-scale analysis. Further down the hillslope, however, groundwater levels increase;
peak groundwater can be exacerbated by infiltration upslope (c). At the footslope, the groundwater
level is nearly at the surface, causing saturation from the subsurface during storm events (d).

shallow groundwater flow, Claydon et al. (2020) developed a risk assessment framework that
did not require detailed site investigation or modeling, but which offered guidance as to
the appropriate design and investigative approaches suitable to different levels of risk posed
by shallow groundwater. Similar risk assessment frameworks addressing hydrological risks
related to different runoff mechanisms would be valuable in guiding subsequent analysis,
modeling and management.

Adapt management to match dominant processes

The second challenge is then to match these hydrological process(es) to relevant management
approaches. Assuming that the broad stormwater management frameworks developed for
IEOF - namely assessment of risk of a specific flow level/velocity/volume occurring, and
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Figure 2.10. Adaptation of runoff management paradigm towards process-based management

designing to manage an acceptable level of risk - would be maintained in catchments with
other flow processes, several new management questions arise.

Adopt hazard-specific definitions of risk

First among these is the treatment of risk. Namely, is a flow-based outcome the right
hydrological metric to which management ‘risks’ should be linked? In cases where fluvial
flooding is the hazard to be mitigated (e.g., arising from IEOF and SEOF), likely the answer
is ‘yes’. However, in areas with shallow groundwater, management of the peak height of
water table (e.g., the elevation of the phreatic crest) may be more closely tied to flood
hazards than is flow in channels or pipes.

Further, as outlined in Section 2.3, the meteorological drivers of runoff generation through
mechanisms other than IEOF are generally not solely associated with event-scale rainfall,
and spatial drivers are not limited to local or even catchment scales: seasonal variation in
rainfall, within-hillslope variation of saturated areas, and regional groundwater gradients
can impact – and even drive – runoff generation. Risks may therefore vary depending on
conditions outside those of a development footprint, e.g., due to location at intersection of
groundwater mounds, or due to topographic controls on saturation risk. The models and
methods used to define risk therefore need to align with the processes that drive runoff
generation, and account for their variation over appropriate spatial and temporal scales.
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Apply process-specific hydrologic models

Secondly is the question of whether current urban hydrologic models can reliably and
accurately predict flood risk at the appropriate spatial and temporal scales. The
consistency of model integration at different spatio-temporal scales is a major challenge
(Wagener, 2003) and is not unique to urban areas. However, the ability to simulate SEOF,
SGWF, and IEOF processes together becomes particularly important in urban settings,
where extreme spatial variations in land cover (e.g., grass, pavement, trees, gardens, and
bare ground) increases the complexity of infiltration and saturation processes (Borgström
et al., 2006; Lim, 2016; Miles & Band, 2015; Valeo & Moin, 2000), and pipe networks and
infrastructure influence groundwater flows (Lerner, 1990). Such extreme variation in
surface and subsurface properties undoubtedly complicate underlying hydrologic
mechanisms, affecting the temporal interactions between precipitation time scales and
characteristic time scales of catchment response (Robinson & Sivapalan, 1997). This
variability presents major challenges for understanding which processes to simulate in
urban hydrologic models, and at what scales. At a minimum, models should reflect the
conceptual understanding of hydrological processes in the catchment, incorporate driving
and response variables across relevant spatial and temporal scales, and inform the design of
management infrastructure to mitigate risk. While some attempts have been made to
integrate these processes and scales into urban hydrologic models (e.g., urban variable
source area modeling censu Valeo & Moin, 2001; Miles & Band, 2015), these approaches
are rarely, if ever, applied in practice.

Plan and design process- and scale- appropriate management controls

The final question is whether the current planning and design of management controls
(namely, infiltration-based WSUD) are well-suited to mitigate this risk. Where risk is due
to impermeable surfaces, enhancing infiltration is desirable. Where risk is due to
subsurface saturation, enhancing infiltration is counterproductive, and reducing
recharge/enhancing evaporation/retaining or storing water may be preferable (e.g., Burns
et al., 2012). Some municipalities have adopted criteria that define where and when
infiltration based WSUD is feasible. For example, Western Washington (US) has adopted
region-wide criteria that limit infiltration WSUD facilities near drinking water wells, in
groundwater protection areas, and in areas of high groundwater or shallow bedrock
(Washington State Department of Ecology, 2019). However, such criteria still largely treat
a site as independent from its catchment scale context; this can lead to adverse impacts if
the factors controlling runoff response occur at larger spatial scales. For example,
infiltration WSUD may be feasible a site, but it could exacerbate groundwater flooding in
downslope areas if a shallow water table is present (e.g., as in Figure 2.9d).



32

Regional strategies, environmental justice, and hydrological
transitions

The recognition of runoff processes other than IEOF in urban landscapes brings up even
broader challenges about how to proactively manage these conditions on regional scales.
Desaturation of soils is difficult and may only be achievable via ‘hard’ engineering
approaches such as filling and draining landscapes - processes which are not only costly, but
are themselves often problematic. Hydrological regimes should feature in land suitability
assessments which inform where new urban land will be released for development. In the
same way that ‘Room for the river’ policies in the Netherlands (see e.g., Samuels et al.,
2006) and ‘Making space for water’ strategy in the United Kingdom (see e.g., Wilby et al.,
2008; Samuels et al., 2006) represent a shift in land use planning adaptation to fluvial flood
risk, providing ‘Room for the groundwater’ or ‘Room for soggy areas’ may be equally
important in areas where flooding is driven from the subsurface. Designating hydrologically
constrained land to non-urban land uses, e.g., through buyout programs, may be preferable
to the alternatives of dramatic and expensive engineering works, or forcing urban residents
to live with the problems caused by groundwater or other nuisance flooding.

There are important environmental justice elements to this problem. Low-income and
minority communities are disproportionately affected by extreme flood events every year, an
inequality that is predicted to grow worse as the frequency and magnitude of floods increase
(Walker & Burningham, 2011; D. Bullard et al., 2019). How a ‘Room for the groundwater’
policy would impact equity in flood prone regions – currently occupied by disadvantaged
communities – is unknown. The intersection of exposure to hydrologic risks, privilege, and
access to effective migitation of those risks has barely been explored beyond the case of
riverine flooding - yet the prevalence of hydrological constraints in the “mortgage belt” of
cities like Perth begs the question of environmental justice in this element of regional land
use planning.

Mitigation of this problem at site scales with WSUD can also lead to inequities. WSUD
are often advertised as ‘multi-benefit’ or ‘multifunctional’, providing social, cultural, and
health benefits (Lovell & Taylor, 2013; Spahr et al., 2020). For example, in addition to
application for urban runoff management, WSUD can also be part of efforts to reduce the
urban heat island effect (Norton et al., 2015; Makido et al., 2019; Oke, 1973), or part of smart
growth initiatives designed to reduce sprawl by making the central cores of urban regions
more attractive. Despite, or perhaps because of, their multiple benefits, such projects can
lead to ‘environmental gentrification’, by increasing property values and displacing residents
of low socio-economic status impacted by complex legacies of residential segregation and
discriminatory land-use decision-making. Over time, the loss of affordability can result
in segregated communities disproportionately burdened by exposure to cumulative health
hazards or unable to benefit from the restored environments (Checker, 2011; Bullard, 1994).

All of these challenges are compounded by an uncertain and changing future. On long
time scales, climate change and associated changes to rainfall and evapotranspiration
patterns can potentially push urban areas into new, novel hydrologic regimes (Zipper et al.,
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2018). On shorter timescales, however, urban water management interventions may also
shift underlying hydrologic processes. In extreme conditions – e.g., high storage in the
subsurface or very low storage in the subsurface – urban water management infrastructure
is unlikely to induce a change in hydrologic regime. In less extreme conditions, however, a
major challenge is presented by the potential for urban runoff management to lead to a
novel hydrologic regime.

Increasingly, researchers have been asking whether such regime shifts could be produced
by the widespread use of WSUD. While WSUD often aims to restoring predevelopment
hydrology, this rarely occurs. Instead, as proposed by Jefferson et al. (2017), and
subsequently supported empirically by multiple studies (e.g., Hopkins et al., 2020;
McPhillips et al., 2019), the implementation of WSUD can shift the hydrologic system onto
a new trajectory, which may not return it to the initial predevelopment state. For example,
the naturally flashy streams in Phoenix, Arizona became less flashy after urbanization due
to stormwater control measures that promote infiltration and slow flows (McPhillips et al.,
2019). The potential for WSUD to induce hydrologic regime shifts raises important
questions. Are WSUD shifting previously well-drained (IEOF) landscapes to ‘soggier’
conditions? What do these soggy conditions mean for our definitions of risk, our hydrologic
models, and our management approaches?

Predicting these regime shifts is the first step towards identifying cities at risk of these
shifts, and towards adapting management approaches to achieve a realistic, desired, future
state. Such an approach represents a departure from the current urban management
paradigm by recognizing that urbanization has shifted the natural hydrologic regime, and
that management approaches should aim to shift to a desired future state rather than back
to natural conditions.

2.6 Conclusions

The processes involved in urban runoff are not as simple as often assumed under the
infiltration excess overland flow (IEOF) paradigm. We have argued that the current
paradigms for managing urban stormwater, including the growing acceptance and use of
water sensitive urban design approaches is problematic in the many urban areas worldwide
where runoff generation mechanisms other than or in addition to IEOF prevail. We have
shown that these problems arise due to: (1) the mismatches in the spatial and temporal
scales of the most important drivers of IEOF production with the spatial and temporal
scales driving the behavior of other runoff generation mechanisms (saturation excess
overland flow and shallow groundwater flow); (2) the omission of relevant processes from
widely used urban runoff models; and (3) the potential for infiltration-based runoff
management approaches to generate or enhance the generation of runoff via subsurface
mechanisms.

Developing a process-based management approach therefore requires a better
understanding of the range of hydrological processes that prevail in urbanizing areas and
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adoption of models that are capable of predicting how these processes will interact and
respond to changes in climate, land use, and management approaches. However, the onus
for this does not just fall on the stormwater consultant, the stormwater permit manager, or
the practicing hydrologist. Rather, this calls for a more deliberate collaboration between
researchers, practitioners, and communities to better understand how water flows in urban
areas, what this means for risk, and what management of this risk looks like in ‘soggy’
urban areas under change.
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Chapter 3

A geospatial approach for estimating
hydrological connectivity of
impervious surfaces 1

Abstract. Recent studies have reported that connected impervious areas – those
impervious surfaces that contribute directly to runoff in a storm network or stream – are a
better indicator of hydrologic response, stream alteration, and water quality than total
impervious area. However, most methods for quantifying connected impervious areas
require major assumptions regarding the definition of ‘connection’, potentially
over-simplifying the role of variable climates, slope gradients, soils conditions, and
heterogeneous flow paths on impervious surface connectivity. This study presents a new
conceptual model and method for estimating hydrologically connected impervious areas
(HCIA) that explicitly considers the effect of landscape and storm variability. The model
separates impervious surfaces into two categories: directly or physically connected (Aphys)
and variably connected (Avar) (impervious that drains to pervious). Of these categories, we
investigated the sensitivity of Avar connectivity to varying soil conditions, slope gradients,
rainfall properties, and hillslope geometry using PySWMM (a python interface for
SWMM5). Simulations spanned a large parameter space with varying soil, slope, rainfall
properties and geometries (i.e., relationships between the impervious and downslope
pervious areas). PySWMM simulations were used to train and test a regression tree that
predicts infiltration and connectivity of runoff from Avar surfaces, which provides excellent
fidelity with PySWMM outcomes. To enable use of these methods in practice, we
developed an ArcGIS tool that (1) delineates subcatchments; (2) extracts the impervious
surface categories Aphys and Avar; (3) applies the regression tree algorithm to predict the
fraction of incident rainfall that produces runoff across Avar; and (4) summarizes the
resulting HCIA by subcatchment. Analysis of the regression feature importance shows

1This chapter was published in 2020 with the title “A geospatial approach for estimating hydrological
connectivity of impervious surfaces” in the Journal of Hydrology with co-authors: Bell, C., Eisenstein, W.,
Hogue, T., Kondolf, G. M.
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that, in general, Avar connectivity is highly sensitive to the soil type, rainfall depth, area
fraction, and antecedent soil moisture conditions of the downslope pervious area. We find
that temporally varying parameters (e.g., rainfall and antecedent soil moisture) control
Avar connectivity in areas with low permeability soils, while spatial flow path variability
(e.g., relative quantity of disconnecting pervious area) controls Avar connectivity in areas
with highly permeable soils. The methods developed in this study can be used to identify
impervious surface connectivity more accurately in urban watersheds, representing an
important step forward for incorporating spatial heterogeneity in stormwater modeling and
planning.

3.1 Introduction

Increased urbanization involves increased extent of impervious surfaces, such as roads,
parking lots, and rooftops. These surfaces prevent infiltration of rainwater and instead
shed water by surface runoff into streams, increasing storm runoff for a given rainfall
(Leopold, 1968), thereby increasing the erosive force of stormflows, which in turn causes
erosion of stream beds and banks (Booth & Jackson, 1997; Gillies et al., 2003; Walsh et al.,
2005). By eliminating infiltration and the filtering effect of rainwater flowing through soil,
pollutants accumulate on roads, parking lots, and rooftops, and polluted runoff from these
impervious surfaces flows directly (untreated) into receiving lakes, bays, and streams as
non-point-source pollution (Arnold & Gibbons, 1996a).

By virtue of its easy quantification via mapping from aerial imagery, total impervious
area (TIA) – the total area occupied by impervious surfaces – has long been used as an
indicator of the degree of urbanization and consequent effects of urbanization on hydrologic
conditions. However, TIA does not distinguish between impervious areas that are ‘directly
connected’ to streams (being adjacent or connected via stormwater pipes) from those that
are distant and whose runoff flows over pervious surfaces. If runoff from such an impervious
surface infiltrates prior to reaching the stream, it is effectively ‘disconnected’ as it does
not contribute directly to storm response in the stream; conversely, if its runoff does not
infiltrate, but rather saturates the downslope pervious area and produces runoff that reaches
the stream channel, it is termed ‘indirectly connected’ (Boyd et al., 1993). TIA lumps
‘directly connected’, ‘disconnected’, and ‘indirectly connected’ together and thus is limited
in its ability to predict runoff at local scales (McGrane, 2016; Crompton et al., 2019; Fletcher
et al., 2013; Lim, 2016; Y. Zhang & Shuster, 2014).

The metric directly connected impervious area (DCIA) was introduced to measure
impervious areas that are physically connected to the stormwater network or stream
channel, and can be mapped directly, though it may require information beyond that
available from aerial imagery, such as maps of storm drainage infrastructure (e.g., Hwang
et al., 2017; Lee & Heaney, 2003a; Seo et al., 2013). While the runoff from directly
connected surfaces may be straightforward to measure and model, runoff from indirectly
connected impervious areas is more complicated because it depends on how much runoff is
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infiltrated into pervious areas before reaching a stream, which depends on the flowpath
length and slope over pervious soils, and their infiltration rate. Infiltration rate is affected
by soil texture, surface roughness, vegetative cover, and soil moisture content (or
saturation), which is influenced by antecedent rainfall. Infiltration can also occur in
surfaces that we consider to be ‘impervious’, e.g., through cracks in asphalt or concrete. In
an attempt to account for the combined effect of these various factors, the metric effective
impervious area (EIA) was introduced by Miller (1978) (S. Epps Ph D. & Hathaway,
2018). While EIA and DCIA are sometimes used interchangeably, their methods of
estimation differ. Rather than being mapped directly from surface features EIA is typically
back-calculated from streamflow and rainfall (e.g., Boyd et al., 1993; Ebrahimian, Wilson,
& Gulliver, 2016; T. H. Epps & Hathaway, 2019; Han & Burian, 2009a; Roy & Shuster,
2009; Walsh et al., 2005), or determined through model calibration (e.g., McNamee, Porter
& Seeley, Inc. et al., 1994; Sutherland, 1995). EIA therefore implicitly accounts for
catchment characteristics affecting hydrologic response (e.g., soils, slope, surface roughness,
spatial patterns, and rainfall). Because EIA relies on stream flow and rainfall inputs, it is
limited to the scale and locations at which these data are available, which, despite
continuous efforts to accumulate hydrological data, is lacking in most catchments of the
world (Blöschl, 2005; Tegegne & Kim, 2018).

DCIA is mapped directly, so its quantification does not depend on stream flow or rainfall
data availability. Spatially explicit maps of impervious surface connection inherently assume
that ‘physical’ connectivity is indicative of ‘hydrological’ connectivity. These two types
of connectivity may differ (Bracken & Croke, 2007): physical connectivity refers to the
physical connection of points, lines, or polygons, while hydrologic connectivity refers to the
connectivity of water pathways across a landscape. Physical connectivity metrics – such as
DCIA and TIA – do not implicitly account for hydrologic processes or interactions, so they
may or may not correlate with actual hydrologic connectivity (Bracken et al., 2013; Bracken
& Croke, 2007; Lexartza-Artza & Wainwright, 2009). For example, impervious areas which
are physically and hydrologically disconnected under certain rainfall scenarios may become
hydrologically connected under more intense rainfall scenarios as downslope pervious patches
become saturated.

The shortcomings of EIA and DCIA, as reflected in the methods used to produce them,
present both a challenge and an opportunity to improve our understanding of controls on
the hydrologic contribution of impervious surfaces across heterogeneous flow paths. In this
study, we define a third metric, hydrologically connected impervious areas (HCIA), to refer
to spatially explicit (mapped) estimates of the proportion of impervious surfaces that are
hydrologically connected to the storm sewer system or stream network. Here, we use
‘impervious’ and ‘pervious’ as contrasting terms, but acknowledge that this is a
simplification of the continuum of conditions that exist. HCIA depends on both the
physical connectivity of impervious areas, explicitly quantified by DCIA, and the
hydro-geomorphic conditions, e.g., soil moisture conditions, soil types, rainfall rate,
geology, which are implicitly incorporated in the quantification of EIA.

Current methods for spatially explicit EIA estimation require rainfall and runoff datasets
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(e.g., Ebrahimian, Gulliver, & Wilson, 2016; S. Epps Ph D. & Hathaway, 2018), the use
of high resolution ecohydrological models (Easton et al., 2007; Miles & Band, 2015), or
geostatistical analyses (Ebrahimian, Gulliver, & Wilson, 2016; Lim, 2016). Consequently,
these efforts are often site-specific and extrapolation of their results to other watersheds is
limited. Thus, a generalizable approach for estimating hydrologically connected impervious
areas is needed. The incremental contribution of the present study is to (i) explicitly define
controls on impervious surface hydrologic connectivity, and (ii) to present a generalizable
model to predict and map hydrologically connected impervious areas, including indirectly
connected impervious areas.

In this study, we evaluated the controls on impervious surface runoff contribution by
varying spatial arrangements of impervious/ pervious areas, rainfall depth, soil types, and
antecedent soil moisture conditions. To facilitate dissemination into practice, we developed
a transferable ArcGIS tool that provides estimates of HCIA across urban watersheds, and
we present a case study of the ArcGIS tool applied to a residential sewershed.

3.2 Conceptual model of hydrologically connected

impervious areas

We define total impervious area within a catchment by two impervious surface categories:
rooftops (Aroof ) and ground-level impervious (Aground), so that TIA = Aroof + Aground
(Figure 3.1). The portion of roof Aroof and Aground that are both physically and
hydrologically connected to the storm drainage system are considered ‘physically
contributing impervious’: Aphys. Those portions of Aroof and Aground that are not
physically connected to the storm drainage network but rather produce runoff that flows as
‘runon’ to pervious areas are considered ‘variably contributing impervious’: Avar. The total
hydrologically connected impervious areas HCIA along the flow path shown in Figure 3.1
can thus be described as:

HCIA = φphysAphys + φvarAvar (3.1)

where φphys and φvar refer to the fraction of incident rainfall that contributes to runoff
response on physically connected surfaces Aphys and variably connected surfaces (Avar),
respectively. Aphys and Avar are further defined as:

Aphys = Aphys,roof + Aphys,ground (3.2)

Avar = Avar,roof + Avar,ground (3.3)

where Aphys,roof and Aphys,ground, refer to the physically connected roof and ground-level
impervious areas, and Avar,roof and Avar,ground refer to the variably connected roof and
ground-level impervious areas, respectively.
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Figure 3.1. Conceptual model of impervious surface categories: directly or physically connected
(Aphys) and variably connected (Avar) (impervious that drains to pervious). Aphys is comprised of
physically connected rooftop (Aphys,roof ) and ground-level impervious (Aphys,ground), while Avar is
comprised of variably connected rooftop (Avar,roof ) and ground-level impervious (Avar,ground). The
hydrological connectivity Aphys and Avar are given by φphys and φvar respectively. In this study,
we assume φphys = 1, so that all physically connected impervious areas are fully connected. φvar
depends on rainfall, runoff, and infiltration dynamics between Avar and the downslope pervious
area.

Determining Aphys and Avar

Remote sensing data can be used to classify types of impervious surfaces into rooftop
(Aroof ) and ground-level impervious areas (Aground). Ground-level impervious areas can be
further separated into Aphys,ground and Avar,ground using a combination of high-resolution
digital elevation models (DEM), flow paths, and drainage networks (Han and Burian,
2009). Remote sensing datasets alone cannot directly discern physically or variably
connected rooftop areas (Aphys,roof or Avar,roof ) (Han & Burian, 2009a; Redfern et al., 2016)
because buildings may pipe roof runoff directly to the storm drainage system.
Consequently, determining an accurate estimate of Aphys,roof and Avar,roof may require
site-specific and time-intensive surveys and field investigations (Han & Burian, 2009a; Roy
& Shuster, 2009). The few studies that have endeavored in such time-intensive surveys
often report rooftop connectivity values by land use class (e.g., Alley & Veenhuis, 1983; Lee
& Heaney, 2003a). These averages are sometimes applied to other study areas as an
estimate of rooftop connection (Han & Burian, 2009a). However, there are a range of local
variables – e.g., land use history, development codes, local retrofit programs, and
homeowner preference – that influence the connectivity of roof areas. Indeed, there is a
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wide range of rooftop connectivity values even within specific land use categories reported
in the literature (Ebrahimian, Gulliver, & Wilson, 2016), suggesting that land use is a poor
predictor of connectivity across different jurisdictions. Jurisdiction-specific rooftop
connectivity surveys, however, may provide a reasonable estimate for Aphys,roof or Avar,roof ,
particularly if these surveys are paired with review of development codes and development
history of the region.

Determining φphys and φvar

Estimating the hydrologic contribution of Aphys and Avar presents a separate challenge.
Because Aphys does not encounter pervious areas en route to the stormwater network, losses
along its flow path are likely to be limited to storage depression and initial abstractions. For
simplicity, we assume here that φphys) is some constant value 1. We note, however, that
previous research has shown significant variability in the fraction of rainfall that produces
runoff (Redfern et al., 2016), with values ranging from 0.09 on brick areas (Mansell & Rollet,
2006), to 0.16 on deteriorated asphalt concrete, to 0.74 on asphalt concrete in good condition
(Ramier et al., 2004). There are also cases in which φphys may be greater than 1. For example,
if a rain event exceeds the capacity of the downstream drainage system, overflow from Aphys
may be routed to Avar.

In contrast, Avar surfaces are routed to pervious areas, therefore their connectivity frac-
tions (φvar) are likely to be subject to time varying infiltration loss, and depend on factors
like downslope pervious areas, soil conditions, slope, and rainfall intensity (Crompton et al.,
2019; Pappas et al., 2008; Y. Zhang & Shuster, 2014; W. D. Shuster et al., 2008). The re-
mainder of this study focuses first on defining the factors that influence φvar, and second on
developing geospatial methods for extracting areas of these impervious surface connectivity
types (Aphys and Avar), applying respective connectivity fractions (φphys) and φvar), and es-
timating HCIA for ungauged catchments.

3.3 Methods

Overview

Our approach involves three main steps, shown schematically in Figure 3.2 and described
below. First, we utilized a Python interface for the Stormwater Management Model
(PySWMM) (McDonnell et al., 2020) to model factors that could influence φvar. We
simulated infiltration and runoff across a range of pervious area fractions, soil textures,
antecedent soil moisture conditions, slopes, and rainfall scenarios. Second, we developed a
generalized relationship for φvar as a function of these factors using a regression tree
algorithm. Third, we developed an ArcGIS tool that implements the proposed conceptual
framework to estimate HCIA by identifying the impervious surface categories Avar and
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Aphys and applying their respective connectivity fractions φvar and φphys). As a case study,
we tested this ArcGIS tool in the Berkeley Lake sewershed in Colorado, USA.

Figure 3.2. Schematic of methods. 60,000 PySWMM simulations of runoff and infiltration
across various geometry, soil texture, slope, antecedent soil moisture, and precipitation scenarios
are used to compute metrics IF and φvar (1−IFrunon). Regression tree analysis are used to develop
generalized relationship between φvar and geometry, soil texture, slope, antecedent soil moisture,
and precipitation scenarios. The regression tree is translated to ArcPython code, and coupled
with an ArcGIS tool that delineates subcatchments, extracts impervious surface categories Aphys
and Avar, applies connectivity fractions φphys (user defined, 1) and φvar (from regression tree),
and estimates subcatchment HCIA. The dashed line represents the process for which a user of the
ArcGIS tool would be subject.
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PySWMM modeling to evaluate controls on φvar

To determine the sensitivity of Avar connectivity to various landscape and storm parameters,
we considered only Avar surfaces at the ground level, temporarily ignoring effects of Aroof and
Aphys. We used PySWMM to simulate runoff and infiltration at the outlet of an idealized
catchment consisting of an impervious area (Avar) routed to a downslope pervious area
(Aperv). We conducted a total of 60,000 model simulations across two parameter sets: (1) 150
plausible rainfall, soil moisture, and soil texture scenarios; and (2) 400 geometric parameter
combinations (total area, width, pervious fraction, and slope).

Table 3.1. Summary of parameter ranges used for PySWMM modeling

Parameter Description Units Values

Soil texture See Table 3.2 – See Table 2
P 24-hr precipitation depth cm 0.5, 2.5, 5, 7.6, 10.2
ASM Antecedent soil moisture – SAT, FC, WP
S Slope % 1, 2, 3, 4
A Total subcatchment area hectare 0 - 1.0
φperv Pervious fraction m 0. - 1.0
L Flowpath length m 1 - 152
W Width of overland flowpath m A/L
Nimperv Manning’s n - impervious – 0.01 - 0.02
Nperv Manning’s n - pervious – 0.05 - 0.8
Dimperv Storage - impervious mm 1.27
Dperv Storage - pervious mm 2.54

The 150 rainfall, soil moisture, and soil texture scenarios (Table 3.1) represent factorial
combinations of ten pervious area soil textures, four slopes, five 24-hour rainfall depths, and
three antecedent soil moisture conditions (ASM). We used the SWMM Modified Green-
Ampt infiltration model to simulate infiltration in pervious areas. Green-Ampt infiltration
parameters (saturated hydraulic conductivity ks, suction head ψf , and porosity n) for the ten
different soil textures were taken from Rawls et al. (1983). Initial moisture deficit (IMD)
– the difference between initial soil moisture φi and saturated soil moisture φs – varied
according to the three ASM conditions and the soil porosity n: saturated soils (IMD = 0),
field capacity (IMD = n - φi,fc) , and wilting point (IMD = n - φi,wp) (Table 3.2). See
Appendix B for additional detail on the SWMM Modified Green-Ampt infiltration model.
We used the SCS Type II 24-hr synthetic storm distribution, which typifies high intensity
rainstorms and applies to the majority of the US by land area (Usda, 1986). The five rainfall
depths (P ) ranged from 5 mm to 102 mm (0.6 in. to 4 in.), encompassing 95 percent of daily
rainfall values across the US (Shrestha et al., 2013).

The 400 geometric parameter values represented combinations of total area A (equal to
Avar + Aperv), pervious fraction φperv (equal to Avar/A), catchment width W , and slope S
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(%). A, φperv, and W parameter values were generated from 100 random values, with A
ranging from 0 to 1 ha (0 to 10,000 square meters), φperv from 1 to 100 percent of the total
area, overland flow length L from 0 to 152 m (or 500 feet, the maximum likely overland
flow length, James et al. (2010a)) – and thus width W from 0 to A/L. Slope ranged from
1 to 4%. The limited slope range was selected because the majority of urban surfaces (e.g.,
roads, sidewalks, parking lots) have cross-slopes less than ∼ 4 % (e.g., City of Seattle, 2020;
Jefferson County, 2019), and because slope has been shown to have a limited effect on runoff
volumes (Crompton et al., 2019). Manning’s roughness values for impervious and pervious
areas, Nimperv and Nperv, as well as depression storage values, Dstore−imperv and Dstore−perv,
were held constant across simulations.

For each simulation, we calculated φvar as 1 − IFrunon, where IFrunon was defined as
the fraction of total Avar runoff that infiltrates in the downslope Aperv. It is important to
note that because the aim of this model was to simulate connectivity of impervious surfaces,
IFrunon does not represent the fraction of total inflow that infiltrates, but rather the fraction
of impervious runon that infiltrates (see Appendix C). The outcomes of the PySWMM
simulations were compiled in Python, and the sensitivity of φvar to the different rainfall,
soil moisture, soil texture scenarios and subcatchment characteristics were evaluated using
boxplots.

Table 3.2. Saturated hydraulic conductivity and initial soil conditions for ten soil texture
classes and three initial moisture scenarios. Values from Rawls et al. (1983).

Soil texture class (abbrv.) ks (mm/hr) Ψf (mm) n θi IMD
SAT FC WP SAT FC WP

Sand (S) 120.4 49.0 0.437 0.437 0.062 0.024 0 0.375 0.413
Loamy Sand (LS) 30 61.0 0.437 0.437 0.105 0.047 0 0.332 0.39
Sandy Loam (SL) 10.9 110.0 0.453 0.453 0.19 0.085 0 0.263 0.368
Silt Loam (SiL) 6.6 169.9 0.501 0.501 0.284 0.135 0 0.217 0.366
Loam (L) 3.3 88.9 0.463 0.463 0.232 0.116 0 0.231 0.347
Sandy Clay Loam (SCL) 1.5 220.0 0.398 0.398 0.244 0.136 0 0.154 0.262
Silty Clay Loam (SiCL) 1 270.0 0.471 0.471 0.342 0.21 0 0.129 0.261
Sandy Clay (SC) 0.6 240.0 0.43 0.43 0.321 0.221 0 0.109 0.209
Silty Clay (SiC) 0.5 290.1 0.479 0.479 0.371 0.251 0 0.108 0.228
Clay (C) 0.3 320.0 0.475 0.475 0.378 0.265 0 0.097 0.21
ks = saturated hydraulic conductivity; Ψf = suction head at wetting front; n = porosity; θi = initial soil
moisture; IMD = initial soil moisture deficit equal ton - θi; SAT = saturated, FC = field capacity, WP =
wilting point.

Regression Tree to Predict φvar

The large simulation space (60,000 simulations) presented an opportunity to relate the
predictor variables (P , ASM , soil texture, S, A, φperv, W ) to the hydrologic outcome of
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interest (φvar). However, as is the case with many hydrological variables (Iorgulescu &
Beven, 2004), the relationships between these predictor variables and φvar is nonlinear and
thus not well explained by global linear or polynomial regressions, in which a single
formula is expected to hold over the entire dataset. Supervised machine learning
algorithms, such as regression trees, are being increasingly applied to hydrological science
questions due to their ability to make predictions quickly and to distinguish sensitive
variables from non-sensitive variables (Iorgulescu & Beven, 2004; Tyralis et al., 2019).
Here, we used a regression tree – one such supervised machine learning algorithm – to
predict φvar from the predictor variables and to evaluate the relative importance of these
variables for predicting φvar. Regression trees can be used to estimate a response variable
from multiple input variables by building a set of decision rules on the predictor variables
(Breiman et al., 1984; Prasad et al., 2006; Tyralis et al., 2019). The decision rules apply
recursive partitioning to the variable space (Lawrence & Wright, 2001; Prasad et al., 2006),
subdividing the dataset into smaller, more manageable chunks of data over which
predictions can be made (Tyralis et al., 2019). The number of tree branches, leaf nodes,
and features considered when splitting a node are the tree ‘hyperparameters’, which are
tuned prior to training the regression tree. The following sections describe the process used
to develop the φvar regression tree.

Cross validation

To avoid overfitting in machine learning algorithms, such as regression trees, a model should
be validated using ‘new’ testing data on which it has not been trained. In cross validation,
the data is partitioned into n equal sized subsamples, or folds. For each of the n folds, n− 1
folds are used to train a model, and the remaining fold is used for model validation. This
process is repeated a total of n times, until each fold serves as the validation set. Thus, the
overall performance is evaluated on data that was not used to train the model, with each
observation contributing exactly once to validation (Reid et al., 2015). After partitioning the
PySWMM simulation outcomes into training and testing sets using a 70/30 split, we used
a 10-fold cross validation process on the training set to define the model hyperparameters,
select model features, and evaluate the performance of the final model. For each of the
10 folds, we computed the mean square error (MSE) between φvar as determined by the
regression and PySWMM:

MSE =
1

m

∑
(Yi − Y ′i )2 (3.4)

where Yi is the PySWMM prediction for φvar (taken as the ‘observed’ value), Y ′i is the
regression tree prediction for φvar (taken as the ‘predicted’ value), and m is the number of
predictions made within the fold. The overall cross-validated error (MSECV ) was computed
as the average MSE across the 10 folds.



45

Hyperparameter tuning

Regression tree hyperparameters control the regressor’s flexibility and adaptability to the
training data. Careful tuning of hyperparameters can improve generalizability of the model
and prevent overfitting of the data. We defined the hyperparameter grid composed of
hyperparameter ranges, then used a random search algorithm to sample 100 random values
from the hyperparameter grid. We performed 10-fold cross validation for each combination
of grid values, resulting in 1000 total fittings. We then selected the set of hyperparameters
that minimized MSECV and used these as the hyperparameters in the final model. Details
and results of the hyperparameter tuning process are included in AppendixC.

Feature importance and selection

We computed the regression tree feature importance with the Gini importance index to
evaluate the relative significance of model features (i.e., the independent variables) in
predicting φvar. The Gini importance index represents the mean decrease in node impurity
resulting from splitting, weighted by the probability of reaching a node (Tyralis et al.,
2019). The higher the feature importance, the more significant that feature is relative to
others for predicting response. The feature importance values were then used to choose a
parsimonious subset of the predictor variables (model features) that can predict the
outcome with accuracy comparable to the performance of the complete input set but with
greater computational efficiency.

Model performance

We assessed performance of the regression tree model (defined by tuned hyperparameters
and selected features) using 10-fold cross validation on the training dataset. To confirm that
the final regression tree performed consistently on data on which it was not trained, we also
evaluated the performance of the model on the held-out testing dataset. After estimating
model performance, we fit a regression tree with the entire dataset (60,000 simulations), and
then exported it into a format readable by ArcPython for implementation in the ArcGIS
tool.

Sub-tree feature importance

The feature importance metric described above provided insight into how connectivity varies
across different storms (given by rainfall) and landscape geometries (given by geometric
parameters) or conditions (given by soil type and antecedent soil moisture). Such an analysis
does not provide insight into the relative importance of these features within a given storm or
landscape – for example, which parameter(s) control hydrologic connectivity in a landscape
with a specific soil type, or for a particular storm. To develop a better understanding
of within-storm/landscape hydrologic controls, we additionally trained and tested separate
regression trees for specific subsets of the dataset (Table 3.3) – which we refer to as ‘sub-trees’
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– and evaluated feature importance across these sub-trees. These sub-trees were analyzed
to illustrate potential within-storm/landscape controls on connectivity and were not used in
any subsequent analysis or within the ArcGIS tool.

Table 3.3. Parameter subsets for evaluating within-storm/landscape sensitivity

Parameter Parameter subset # simulations % of all simulations

P 2.5 cm 12,000 20
10.2 cm 12,000 20

Soil texture Sand 6,000 10
Clay 6,000 10

φperv < 0.2 12,600 21
> 0.8 13,200 22

ASM Saturated 20,000 33
Field capacity 20,000 33
Wilting point 20,000 33

ArcGIS Tool

The HCIA ArcGIS tool consists of four main steps: (1) DEM processing and subcatchment
delineation; (2) extracting the impervious area connectivity types (Aphys and Avar); (3)
defining connectivity fractions (φphys and φvar); and (4) computing HCIA for each
subcatchment. Each step is summarized below, and the HCIA ArcGIS tool and its full
documentation are available for download on GitHub
(https://github.com/anneliesesytsma).

Step 1: DEM processing and delineating subcatchment

Inputs to this step are a high resolution (e.g., 1 m) digital elevation model (DEM) (raster);
stormwater inlets that represent the outlet of the subcatchment to be modeled (e.g., catch
basin or manhole) (points); and a stormwater network of pipes and ditches (polyline). In
this step, the DEM is processed to remove sinks, compute the flow direction and flow
accumulation rasters, and extract the stream network. The subcatchments draining to each
stormwater inlet are delineated using ArcHydro tools.

Step 2: Classifying impervious areas (Aphys, Avar)

Inputs to this step are the DEM and subcatchments (from Step 1), as well as impervious
surfaces separated into ground-level impervious and rooftops (shapefile). In this step, an
iterative process is used to classify Aphys and Avar for ground-surface impervious and
rooftop impervious areas. First, an initial guess of physically connected impervious Aphys

o

https://github.com/anneliesesytsma/hydro_imperv
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is made: physical connectivity of rooftops is based on user input data from e.g., land use
assumptions or field investigations, and physically connected ground-level impervious is
based on intersection with the stormwater inlet points. An initial guess of variably
connected impervious Aovar,roof and Avar,ground

o comprise the remaining Aroof and Aground
surfaces, respectively. Pervious area flow paths downstream of Avar,roof

o and Avar,ground
o

areas are quantified using cost distance allocation and cost path functions; impervious
areas with downslope flow paths over pervious areas are designated as Avar. This process
assumes that the building downspouts are located on the downslope-most edge of Avar,roof

o

areas. The remaining Avar,roof
o and Avar,ground

o areas with no downslope pervious flow
paths are then added to Aphys

o to give Aphys.

Step 3: Defining φphys and φvar

The next step in the HCIA ArcGIS tool applies connectivity fractions φphys) and φvar to
their respective areas within each subcatchment. The user supplies a constant value for
φphys, ranging from 0 to 1, and specifies the scenarios on which φvar is computed (P , ASM ,
and soil texture class). φphys is applied to all Aphys surfaces, including rooftops and ground-
level impervious Aphys areas. The regression tree algorithm is used to predict φvar for each
Avar as it depends on the user-selected scenario as well as on the geometric characteristics
of the Avar and Aperv surfaces.

Determining the relevant geometric characteristics for the regression tree algorithm
requires developing representative rectangular polygons from irregularly shaped Avar and
Aperv surfaces. The process used to represent Avar and Aperv as rectangles is shown in
Figure 3.3. First, a characteristic width (W ) is computed by dividing Avar by its maximum
overland flow path length, Lvar. Next, Aperv is computed by multiplying W by the distance
from the centroid of Avar to the nearest downslope Aphys, Lperv. Finally, φperv is computed
by dividing Aperv by the total area (Avar + Aperv).

Step 4: Computing HCIA

The final step in the HCIA ArcGIS tool involves computing the HCIA within each
subcatchment. Each Aphys are is multiplied by φphys, and each Avar area is multiplied by its
computed value of φvar. The sum of these products within each subcatchment comprises
the subcatchment HCIA (see Eqs. (1)–(3)). The percent HCIA within each subcatchment
is then calculated as the fraction of total impervious area comprised of HCIA (HCIA/TIA).

Case study

As a test case, we applied the HCIA ArcGIS tool to the Berkeley neighborhood, in northwest
Denver, Colorado (Figure 3.4). The study area is a 4.7 square kilometer sewershed in the
Berkeley neighborhood (hereon referred to as the ‘Berkeley sewershed’), and is primarily
comprised of single-family residential land use (54%), parks and recreation areas (18%)
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Figure 3.3. Conceptual schematic showing approach to developing representative rectangular
polygons for Avar and Aperv from complex shapes. In Panel A, Lvar represents the maximum
flowpath length across Avar, and Lperv presents the flowpath length from Avar centroid to the
nearest downstream Aphys surface. In Panel B, Avar, Lvar, and Lperv are used to compute W (as
Avar/Lvar), Aperv (as WxLperv) and φperv (as Aperv/[Avar +Aperv]).

and multifamily units (10%) (Panos, Hogue, Gilliom, & McCray, 2018). The majority of
buildings in the study area were constructed between the early 1900s and the 1980s (Catalog,
2020), though the neighborhood has been subject to intense infill development in recent years
(Cherry et al., 2019; Panos, Hogue, Gilliom, & McCray, 2018). Impervious surfaces comprise
53 percent of the total sewershed area (in 2014). The 2-year, 5-year, and 10-year 24-hour
SCS Type II storms for this area correspond to rainfall depths of 4.6, 5.9, and 7.1 cm,
respectively (Panos et al., 2020). No soil data are available for the area in the SSURGO
NRCS Soil Survey, but near-by area soil textures are classified as C-type clay and loam
(Panos, Hogue, Gilliom, & McCray, 2018). Overland flow and stormwater pipes through
the sewershed route stormwater runoff from the south (elevation ∼ 1670 m) to the north
(elevation ∼ 1630 m), ultimately discharging into Clear Creek (Figure 3.5).
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Figure 3.4. Distribution of rooftop and ground-level impervious (roads, other impervious), and
locations of two lakes (Berkeley Lake and Rocky Mountain Lake) in the Berkeley neighborhood
sewershed, County of Denver.

Input data

Shapefiles of stormwater inlet points (manholes and catch basins), the stormwater network,
and impervious surfaces were provided by the City and County of Denver Community
Planning and Development Department (CPD) as used in the modeling efforts performed
by Panos, Hogue, Gilliom, & McCray (2018). The impervious surface shapefile from CPD
distinguishes roofs, roads, and other impervious areas; these were summarized into roofs
Aroof and ground-level impervious Aground. A 1-m digital elevation model (DEM) of the
study area was downloaded from the U.S. Geological Survey (USGS) National Elevation
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Figure 3.5. Flow direction (blue arrows), stormwater pipes and inlets (in yellow) in the Berkeley
neighborhood sewershed.

Dataset (U.S. Geological Survey, 2017). Flow paths and subcatchments draining to inlet
points were delineated using the 1-m DEM.

Estimating Aphys and Avar

To develop an initial estimate of roof connectivity (Aphys,roof
o), we evaluated current and

historical development codes in the City of Denver for requirements pertaining to roof
drainage, gutters, and downspouts. The Denver Building Code (DBC) of 1881 required
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that “all buildings. . . shall be provided with proper metallic leaders to conduct water from
the roof [which] shall be connected with the sewer or street gutter” (§21, pp. 11) (Denver
Building Code, 1881), which was modified in 1898 to: “No water shall be discharged from
conductor pipe upon any sidewalk, but shall be conducted underneath the walk in iron or
tile pipes.” (§145, pp. 49) (Denver Building Code, 1898). Beginning in 1976, new
construction was not permitted to pipe roof discharge directly to the street or storm sewer
network, rather, external roof downspouts were to discharge to “concrete blocks at least 12
in. in width by 36 in. in length” except for roofs that drain to the interior of the building
(§3211, pp. 32–12) (Denver Building Code, 1976). Interior roof drains are not common in
residential development but are used for commercial and industrial development with flat
or internally sloped roofs. The 2018 International Plumbing Code, adopted by the City of
Denver per the 2019 Denver Building and Fire Code (Denver Building, 2019), requires roof
runoff from one- and two-family dwellings to discharge to flat areas, such as lawns, where
possible (§1101.2) (International Plumbing Code, 2018). Visual inspection using Google
Street Views and Google Maps confirmed that most houses in the neighborhood have
visible downspout extensions that route roof runoff to gardens or lawns, while most
commercial buildings with flat rooftops appear to use internal roof drainage (visible from
satellite imagery), and no downspouts are visible from the outside. Therefore, as an initial
estimate of roof connectivity, we assumed that all roof areas within commercial/industrial
land use are physically connected (Aphys,roof

o), and all roofs within all other land use
designations (primarily residential) are variably connected (Avar,roof

o). Ground-level
impervious surfaces that intersected with the drainage network were initially assumed to be
physically connected (Aphys,ground

o) all other ground-level impervious were designated as
(Avar,ground

o). Final estimates of Aphys,roof , Avar,roof , Aphys,ground and Avar,ground were then
determined per the ArcGIS tool methods described above.

φphys and φvar scenarios

For simplicity, we assumed that all Aphys surfaces are 100 percent connected (φphys = 1) but
note that other values for φphys could be applied in the HCIA ArcGIS tool. φvar estimation
requires user-input for the HCIA scenario (P , ASM , and soil texture class) (Step 3). Lacking
soil survey data in the catchment, we used the near-by area soil texture – predominantly
C-type clay and loam (Panos, Hogue, Gilliom, & McCray, 2018). To stay within the soil
parameters used to develop the regression tree, we assumed soil parameters that represent
typical silty-clay-loam soils with ks of 1 mm/ h (see Table 3.2). Since ASM and P are
temporally varying, we computed HCIA across (3) ASM conditions and (5) P scenarios,
for a total of 15 estimates of HCIA across the Berkeley sewershed. Total HCIA and percent
HCIA within each subcatchment were computed following methods outlined above (Step 4),
for each of the 15 ASM and P scenarios.



52

3.4 Results

Connectivity of impervious surfaces is sensitive to soil texture,
soil moisture, rainfall, and pervious area fraction

The sensitivity of φvar to soil texture, soil moisture, and rainfall scenarios (soil texture,
ASM , and P ), and geometric parameters (φperv, A, W , and S) is shown in Figure 3.6. Soil
texture, given by ks, is the most sensitive model parameter, with median φvar values ranging
from 0 to 0.98 (Figure 3.6A). Though not as sensitive as soil texture, ASM also affects φvar,
with saturated scenarios resulting in less infiltration (median φvar = 0.74) than soils at field
capacity or wilting point (Figure 3.6C). The five rainfall depths also resulted in a range of
median φvar from 0.34 to 0.84 (Figure 3.6E), with higher φvar resulting from higher rainfall
depths. Of the geometric parameters tested, φvar is highly sensitive to φperv (Figure 3.6B),
but insensitive to S, W , and A (Figure 3.6D, F, and G).

These plots also illustrate the complex interactions and non-linearity between these
parameters and φvar. For example, even for very low φperv values, φvar ranges from 0 to ∼ 1
(Figure 3.6B), suggesting a different parameter (or combination of parameters) controls
φvar in these cases. Additionally, while φvar generally decreases with increasingly
permeable soils, there are some cases in which φvar for high permeability soils (e.g., ks =
120.4 mm/h) exceeds that of lower permeability soils (e.g., ks = 0.3 mm/h) as indicated by
the outlier points on Figure 3.6A. This suggests that the effect of low ks on φvar may be
moderated or exacerbated by other sensitive parameters. For example, if ks = 0.3 mm/h,
φperv = 0.8, ASM = WP, and P = 1.5 cm, φvar could be relatively low despite the highly
impermeable soils.

Importance of storm/landscape features can vary between and
within landscapes

Of the four features selected for the final model (φperv, P , ASM , and soil texture represented
by ks), the most important feature is soil texture, followed by P , φperv, and ASM (Figure
3.7A). This suggests that across storm/landscape scenarios, φvar is primarily controlled by
soil texture. These results are consistent with the PySWMM sensitivity analysis, which
showed that φperv, soil texture, P , and ASM are sensitive parameters, while S, A, and
W are relatively insensitive. The final model, which incorporates the four most important
features and optimal hyperparameters, resulted in an MSECV of 0.003, and R2 of 0.97
(Figure 3.7B).

The importance of each of the final model features varies across the eight sub-trees (Figure
3.8), illustrating the effects of within-storm/landscape variability on the features that control
φvar. For example, for the sandy soil sub-tree (a regression tree trained only on simulations
with sandy soils [ks = 120.4 mm/h]), φperv, and to a lesser extent P , are the most important
features (Figure 3.8A) (note that soil texture or ks is not important in these scenarios as
it is no longer varying). However, as ks decreases (associated here with clay soil texture),
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Figure 3.6. Sensitivity of φvar to saturated soil texture and saturated hydraulic conductivity
ks (mm/h) (panel A), pervious fraction φperv (panel B), antecedent soil moisture conditions ASM
(SAT = saturated, FC = field capacity, WP = wilting point) (panel C), total area A (hectares)
(panel D), precipitation depth P (cm) (panel E), width W (m) (panel F), and slope S (%) (panel
G). The middle line in each box plot represents the median φvar. Soil textures: S = Sand, LS =
Loamy Sand, SL = Sandy Loam, SiL = Silt Loam, L = Loam, SCL = Sandy Clay Loam, SiCL =
Silty Clay Loam, SC = Sandy Clay, SiC = Silty Clay, C = Clay

the importance of φperv decreases and that of P increases (Figure 3.8A). While ks is clearly
the most important feature across all three antecedent soil moisture conditions, it is more
important for the case of saturated soils (ASM = saturated). It decreases in importance for
drier soils (ASM = wilting point), while the importance of other parameters (P and φperv)
increases (Figure 3.8D).

Application of HCIA ArcGIS tool to the Berkeley sewershed

Across the Berkeley sewershed subcatchments, we found that ground-level impervious
(Aground) comprised 63 percent and rooftop impervious (Aroof ) comprised 37 percent of the



54

Figure 3.7. Feature importance metrics (panel A) were used to select important features for
the final regression: ASM , P , φperv, and soil texture. The final regression tree predictions show
excellent agreement with PySWMM predictions of φvar (panel B). In panel B, dashed line represents
a 1:1 relationship.

total subcatchment impervious areas. A total of 87 percent of Aground and 48 percent of
Aroof were found to be physically connected; Aphys therefore comprised the majority (73
percent) of all impervious surfaces in the study area.

Figure 3.9 shows the spatial variability in contribution of Avar to HCIA across the
study area subcatchments for the three antecedent soil moisture conditions and five
precipitation depths. The contribution of Avar to HCIA generally increased with increasing
P and increasingly saturated soils. The standard deviation in Avar contribution to HCIA
across subcatchments also generally increased with P and soil saturation. This illustrates
the divergence between subcatchments comprised of Avar and those comprised mostly of
Aphys: while Avar contribution changed with P and ASM , Aphys contribution remained
constant. Interestingly, the Avar contribution to HCIA did not vary between field capacity
and wilting point soil conditions where P >= 2.5 cm, suggesting that for higher storm
depths and intensities, the difference between various initially non-saturated soil conditions
may be negligible.

3.5 Discussion

Controls on hydrologic connectivity

We found that the factors that exhibit the strongest control on Avar connectivity are rainfall
depth (P ), antecedent soil moisture (ASM), pervious area soil texture (represented by ks),
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Figure 3.8. Feature importance across four predictor sub-trees. Soil texture sub-trees (clay and
sand) illustrate a shift from precipitation (P ) to pervious fraction (φperv) dominated connectivity
with increasing permeability (panel A). φperv subtrees (< 0.2 and > 0.8) show increasing importance
of soil texture at low φperv (panel B). Note that φperv importance in panel B is non-zero because φperv
is ranges from 0-0.2 and 0.8-1 in the φperv sub-trees. P sub-trees (P = 2.5 cm, 10.2 cm) (panel
C) and antecedent soil moisture ASM sub-trees (saturated and wilting point) show increasing
importance of soil texture for high P value or increasing saturation.

and the amount of downslope pervious area relative to total area (given by φperv) (Figure
3.7A). Soil texture was the most important parameter across all simulations, however we
observed two key shifts in feature importance when different parameters, such as soil texture,
are held constant.

First, for impervious routed to highly permeable soils (i.e., where soil Ks > rainfall
intensity), φperv was the most important feature (as shown for sand in Figure 3.8A);
however, with increasingly impermeable soils, P became the most important feature. This
suggests that in urban areas with predominantly impermeable soils, P controls connectivity
of impervious areas more than φperv. These results are consistent with Crompton et al.
(2019), who find similar variability in importance of φperv: where ks is greater than rainfall
intensity, φperv closely predicts infiltration because the pervious areas infiltrate most of the
runoff that runs onto them. Secondly, the importance of soil texture decreased with
increasing φperv (Figure 3.8C) and decreasing soil saturation (Figure 3.8D), while it
increased with P (Figure 3.8B). These results make sense given our understanding of
infiltration processes. Before soils are saturated, infiltration occurs at a rate equal to the
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Figure 3.9. Maps showing spatial variability in contribution of Avar to HCIA for three antecedent
soil moisture conditions (in the rows) and five rainfall scenarios (in the columns) across the Berkeley
neighborhood sewershed. Darker hue indicates higher Avar contribution, lighter hue indicates
lower Avar contribution. Lakes are shown in black. Mean contribution of Avar to HCIA generally
increases with increasing P and increasingly saturated soils, as does its standard deviation across
subcatchments.

minimum of rainfall rate and infiltration capacity, where infiltration capacity is defined by
the infiltration model. After saturation, infiltration rate decreases to ks. It follows that
φvar would depend more strongly on ks for soils that begin at saturation, whereas φvar
would depend more strongly on P for soils that begin in unsaturated conditions.

Our results indicate that φvar is not sensitive to slope, total area, or width. It is
important, however, to consider the modeling framework in which this was determined.
First, the outcome of interest in this study, φvar, was defined by total runoff and
infiltration volumes (1 − IFrunon); other hydrological outcomes such as peak flow and
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runoff timing may be more sensitive to slope and width parameters. Secondly, changes in
slope, total area, and width were simulated in tandem with changes to soil types, pervious
fractions, and rainfall intensities, all of which proved to be highly sensitive parameters.
One can imagine alternative modeling frameworks in which the slope, total area, and width
would be sensitive; for example, if the pervious area width, and thus flow path length, were
varied independently from the impervious area width.

Role of Avar and φvar in the Berkeley sewershed

In the Berkeley sewershed, 27 percent of TIA was comprised of Avar, but the percent of HCIA
comprised of Avar varied depending on rainfall and soil saturation conditions. For low rainfall
and low soil saturation conditions, Avar contributed a small amount to overall HCIA (Figure
3.9, top left). Conversely, Avar comprised a larger proportion of HCIA for high rainfall and
saturated soil conditions (23 percent on average across the study area and in some cases up
to 100 percent of subcatchment HCIA) (Figure 3.9, bottom right). This suggests that even
in landscapes with low amounts of Avar relative to other impervious areas, and where soil
types are assumed to be constant, estimates of connected impervious area based only on
Aphys can significantly underestimate the impervious area that is hydrologically connected.

A second notable result from the Berkeley sewershed case study is that the Avar
contribution to HCIA varied across the precipitation and soil moisture conditions, and this
variability was not constant across increasing soil moisture conditions or precipitation
scenarios. Avar contribution to HCIA was low at low precipitation depths and increased
rapidly with increasing precipitation and initial soil moisture conditions. However, as
evidenced by the standard deviations in Figure 3.9, the variability in Avar contribution
became more constant above moderate rainfall depths (above ∼ 5 cm) and initial soil
saturation (field capacity); i.e., contribution of Avar reaches a maximum as HCIA
approaches TIA.

Implications for hydrologic modeling

The importance of Avar for HCIA depends not only on the specific parameters tested in
this study, but also on the goal of the study or planning effort. In areas with relatively
low soil permeability, such as the Berkeley sewershed, temporally variable parameters drive
connectivity. Here, the contribution of Avar to HCIA is significant for a wide range of rainfall
and antecedent soil moisture conditions, therefore, both modeling and planning efforts should
consider the effect of Avar on HCIA. However, in areas with higher soil permeability, these
temporally varying parameters are less influential relative to spatially varying parameters
(e.g., pervious areas downstream). In these cases, the contribution of Avar to HCIA across the
watershed as a whole is likely to be minimal (as φvar decreases with increasing permeability),
but the spatial variability in the contribution of Avar to HCIA across subcatchments may
be significant. Therefore, consideration of Avar in these cases depends on the scale of the
analysis. Avar may be less important for analyses concerned with watershed-scale runoff
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(in which the variation in Avar contribution might ‘average out’ across the watershed) but
could be important for those related to spatial variability in runoff or spatial distribution of
stormwater controls.

This study demonstrates the potential to use hydrologic modeling and machine learning
to quantify impervious surface connectivity for single-event models. However, additional
simulations are needed to cover the range of potential storm distributions and durations. The
HCIA ArcGIS tool is currently limited to the 24-hr SCS Type II rainfall distribution and five
rainfall depths, and preliminary comparisons indicate that different storm distributions and
durations have the potential to significantly alter the resulting connectivity of impervious
surfaces (see Appendix C). The approach applied in this study could be replicated to test the
sensitivity of φvar to different design storms and durations, and the resulting regression tree
could be applied in the HCIA ArcGIS tool. Such an approach would essentially downscale
single-event SWMM overland flow simulation to a quasi-distributed hydrologic model in the
form of an ArcGIS tool. This would have clear benefits for planners and practitioners hoping
to evaluate spatial distribution of overland flow at small subcatchment scales, for e.g., siting
distributed stormwater controls, a common goal of current hydrological modeling efforts in
urban settings.

While the concept of HCIA presented in this study could be potentially useful to
planners and practitioners interested in single-event storm behavior, it may not necessarily
be appropriate for use in continuous simulation models. By definition, HCIA is a
time-varying metric that, like EIA, is storm- and landscape- specific — dependent on storm
depth, duration, land cover patterns, soil texture, and antecedent soil moisture. A single,
static HCIA value will not necessarily represent the impervious source area in a continuous
simulation model. Therefore, rather than claiming that the HCIA metric presented in this
study provides a ‘better’ estimate of HCIA that can (or should) be incorporated into
continuous hydrologic models, we offer an approach and complementary geospatial tool for
practitioners to apply for event-based hydrologic analysis.

Limitations and applications of the HCIA ArcGIS tool

This research focused on the hydrologic connectivity of impervious surfaces routed to
downslope pervious areas and made several simplifying assumptions. Conceptually, the
HCIA framework and modeling performed in this study presumes that runoff is generated
as infiltration excess overland flow. While this is a common assumption in urban areas
(Dunne & Leopold, 1978; Horton, 1933), there is ample evidence that other runoff
mechanisms (e.g., shallow groundwater flow, saturation excess overland flow) can dominate
in some urban areas (Bhaskar & Welty, 2015; Easton et al., 2007; Miles & Band, 2015).
Practitioners and users of the HCIA ArcGIS Tool must be confident that the runoff in the
study catchment is generated via infiltration excess, rather than saturation excess or
groundwater flow. Further, the HCIA ArcGIS tool does not account for effects of
spatially-varying rainfall, which can have a significant effect on runoff (Chaubey et al.,
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1999; Singh, 1997). Thus, the methods presented here may be are more suitable for small
watersheds, over which spatial variations in storm patterns are minimal.

Secondly, as a consequence of the presumed runoff generation mechanism and rainfall
patterns, this approach assumes that any variation in connectivity is due solely to
heterogeneous flow paths and pervious area infiltration. It does not consider the impact of
depression storage or other non-infiltration losses. While this assumption may hold true
where impervious areas have been recently constructed and have minimal depression
storage, the accuracy of HCIA presented in this study could be further improved by
incorporating variability in infiltration across impervious surfaces due to weathering (e.g.,
potholes, cracks) and pavement type. This variability can be modeled indirectly in the
HCIA ArcGIS tool through user-specification of φphys, or the PySWMM modeling could be
revised to include variable depression storage. Unfortunately, high resolution datasets of
pavement condition and type are rare. A potentially more fruitful path forward for
determining the variability in HCIA resulting from non-infiltration losses would be to
utilize the proposed HCIA methods to constrain infiltration losses, allowing for calibration
of non-infiltration losses. The HCIA framework and results presented here could
conceivably be combined with prior research efforts to improve spatially explicit estimates
of HCIA by further constraining non-infiltration losses through recursive validation
(S. Epps Ph D. & Hathaway, 2018) with observed streamflow and runoff data (Ebrahimian,
Wilson, & Gulliver, 2016).

Thirdly, the HCIA ArcGIS tool requires a user to designate roofs as physically connected
or variably connected, thus limiting its application in areas where such data is not readily
available. We present one method for estimating the rooftop physical connectivity, via
development code review and Google maps analysis, but acknowledge that lacking detailed
site surveys, such an analysis presents only an estimate. While out of scope of the current
study, increased resolution of LiDAR and aerial imagery may give rise to datasets that could
be used for the purposes of improving estimates of roof surface connectivity and pavement
conditions.

Lastly, this study relies on theoretical modeling scenarios, rather than empirical or
observed data. Consequently, the results of this study are limited to the specific storm and
landscape conditions considered in the theoretical modeling scenarios. Further, because
these theoretical modeling scenarios are based on SWMM overland flow routing (non-
linear reservoir) and infiltration (Green-Ampt) models (see Appendix B), the results and
implications of this HCIA ArcGIS tool are valid provided the assumptions of these runoff
and infiltration schemes are met. For example, because non-linear reservoir routing does
not simulate surcharging or backflow, results of the HCIA ArcGIS tool may be invalid for
cases where storm drainage networks are undersized relative to their inflow, and
surcharging results in backflow onto Aphys and Avar areas. Such cases require dynamic
runoff routing and hydraulic considerations that are not included in this study. While the
runoff and infiltration schemes used here are clearly idealized, previous studies have
validated the non-linear flow routing methods for overland flow (Akram et al., 2014; Xiong
& Melching, 2005) and Green-Ampt infiltration approach (Bouwer, 1969-12, 1976; Childs &



60

Bybordi, 1969; Chu, 1978) under a range of conditions.
Despite these limitations, the HCIA ArcGIS tool has potential to improve siting and

performance of distributed stormwater controls by providing spatially explicit estimates of
hydrologically connected impervious area. The effectiveness of such distributed stormwater
controls depends on location within a watershed, and in particular, the location relative
to heterogeneous flow paths (Fry & Maxwell, 2017; Jarden et al., 2016b; Di Vittorio &
Ahiablame, 2015). For example, T. H. Epps & Hathaway (2019) show greater efficiency in
runoff reduction from distributed stormwater controls when placed strategically to target
HCIA compared to more random placement strategies.

3.6 Conclusion

Previous work has defined urban runoff heterogeneity with the metrics ‘DCIA’ and ‘EIA’,
however neither metric provides spatially explicit estimates of hydrologically connected
impervious areas. An inherent limitation of DCIA is that it represents connectivity as
binary and static (i.e., connected or not connected), an assumption which is at odds with
the dynamic nature of hydrologic process and connectivity. Changes in hydrologic
pathways and connectivity can occur over time (e.g., with changes to rainfall intensity),
and space (e.g., with changes in soil infiltration rate). EIA inherently accounts for these
changes to hydrologic pathways but requires hydrologic data which are not always available
for urban catchments.

We used a combination of hydrologic modeling in PySWMM, machine learning, and
geospatial analysis to develop spatially-explicit estimates of hydrologically connected
impervious areas (HCIA) in ungauged urban catchments that accounts for variability in
hydrologic pathways that result from variability in soil types, pervious and impervious
areas, rainfall events and soil moisture conditions. Study results shed light on variably
connected impervious surfaces (Avar), showing that for the storms and soils evaluated, soil
texture defined by saturated hydraulic conductivity (ks) is the most important feature
determining the degree of impervious surface hydrological connectivity. Temporal forcing
(represented by rainfall and antecedent soil moisture) control connectivity within
watersheds with low permeability soils, while spatial flow path variability (represented by
relative quantity of disconnecting pervious area) controls connectivity within watersheds
with highly permeable soils. These results suggest that, for catchments consisting of highly
impermeable soils, Avar contributes to HCIA such that HCIA approaches TIA, but for
catchments with highly permeable soils, Avar does not contribute significantly to HCIA,
and thus DCIA could be used as a suitable surrogate for HCIA. In between these two
extremes, however, lies a wide range of conditions that call for detailed and spatially
explicit estimates of Avar connectivity.
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Chapter 4

Assessment of SWMM parameter
transferability across novel changes in
climate and land cover conditions

Abstract. Urban runoff modeling is heavily reliant on semi-distributed models, where the
smallest spatial scales resolved are urban subcatchments. These models must confront the
representation of heterogeneity – e.g., in land cover and permeable area characteristics –
within the modeled subcatchments. One approach to address this problem is to use
‘effective’ model parameters that average across the small-scale heterogeneity. This
approach, although widespread in hydrology, generates known difficulties with model
calibration and parameter identifiability. These challenges are particularly pronounced
when the value of effective parameters is unstable across variations in model forcing. Here,
we demonstrate that calibrated effective parameters such as ‘width’ and ‘connected
impervious area’ in the widely used urban hydrological model SWMM, exhibit such
instability. Instead of representing the landform and morphology of a subcatchment
independently of soil, storm and land cover patterns, calibrated effective parameters
co-vary with these forcing parameters. This covariation can result in significant prediction
error when a calibrated SWMM model is applied to predict runoff following climate and
landcover changes – common applications for the SWMM model. These errors are large,
ranging between over-estimation of infiltrated runoff volumes up to > 60% and
under-estimation of as much as < −60%. These results point to a need for additional
research and investment to determine how to use urban hydrologic models capable of
robust predictions under variable future scenarios.
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4.1 Introduction

Background

Urban hydrological models are used to plan, design and manage the urban water cycle. A
wide array of urban hydrological models are available, from highly resolved and distributed
models such as InfoWorks ICM (Innovyze, 2014) and MIKE FLOOD, DHI (DHI, 2010), to
simple spreadsheet based approaches. Some of the most widely used tools in both urban
hydrology research and practice are semi-distributed hydrological models (Petrucci &
Bonhomme, 2014; Elliott & Trowsdale, 2007; Petrucci & Bonhomme, 2014; Elliott &
Trowsdale, 2007), including the SWMM (James et al., 2010a), CANOE (Boutaghane &
Ouerdachi, 2012), and MOUSE (Dhi, 2017) models, among others. Semi-distributed
models disaggregate urban basins into subcatchments and represent routing between these
subcatchments explicitly (Carpenter & Georgakakos, 2006a; Golden & Hoghooghi, 2018;
Petrucci & Bonhomme, 2014). In these models, processes occurring at scales smaller than
the subcatchment are not explicitly simulated; instead, the hydrological response of the
subcatchment is modeled and parameterized as a unit. The emergence of simplified,
self-organized hydrologic behavior at subcatchment scales (Sivapalan, 2003; Wood et al.,
1988; Klemeš, 1983) allows for simplifications to model structure and parameterization
compared to fully-distributed models (Brink & TenBroek, 1995); and such simplifications
are often required due to computational limitations.

Model simplification, however, also distances the subcatchment model structure and its
parameters from physically measurable quantities or processes (Petrucci & Bonhomme,
2014; Jakeman & Hornberger, 1993). Instead of explicitly representing conservation of
mass, momentum, and energy, the models represent ‘emergent’ phenomena that result from
parameterizing these processes. While some parameters in such models are
directly-measurable physical entities - e.g., total subcatchment area, impervious fraction, or
average slope - many parameters of such models are not; these ‘effective’ parameters are
estimated through calibration (Niel et al., 2003; Reed et al., 2004; Gupta et al., 1996).
Calibrating effective parameters generates a number of well known problems, including
those related to obtaining accurate calibration and validation data (Sorooshian & Gupta,
1995), selecting which parameters to calibrate, and defining functions that measure model
performance (Khatami et al., 2019). A pernicious problem arises when such performance
measures fail to meaningfully distinguish between multiple parameterization choices (i.e.,
the problem of equifinality; K. Beven, 2006b; H. H. G. Savenije, 2001; H. H. Savenije,
2009; Khatami et al., 2019). A broad range of approaches can be used to address these
problems, including sensitivity analysis (e.g., Saltelli et al., 2019) and uncertainty analysis
(e.g., Shin et al., 2013; Saltelli et al., 2019), with the Generalized Likelihood Uncertainty
Estimation methodology (GLUE, K. Beven & Binley, 1992, 2014) widely used for the
latter in hydrological modeling (e.g., Bell et al., 2017; C. A. Shields & Tague, 2012; Sun et
al., 2014; Vezzaro et al., 2012).

Calibrating models for rapidly changing urban environments brings up an even more basic
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issue: the optimal effective calibration parameter values may vary with forcing conditions
(e.g., rainfall, land cover). As the growing literature on catchment-scale hydrological regime
shifts highlights (e.g., Penny et al., 2020b; Foufoula-Georgiou et al., 1969b; Niel et al., 2003;
Schaefli, 2016), dominant hydrological processes can change in response to non-stationary
land cover or background climate conditions. Likewise, model sensitivity to different sources
of uncertainty can vary in response to changing land cover or climate conditions (C. Shields &
Tague, 2015; C. Z. Li et al., 2012). Increasingly, urban hydrological model predictions need to
be made under novel future conditions characterized by concurrent changes in urbanization
patterns, urban development practices, and climate conditions (Martin et al., 2017; Penny
et al., 2020b; Milly et al., 2008). If optimal calibration parameters are sensitive to changing
conditions, this may undermine the predictive power of urban hydrological models. While
calibration should ideally be performed using data that is representative of a wide range of
forcing conditions (Sorooshian & Gupta, 1995; Sorooshian et al., 1983), in practice it is often
not possible to fully span future states and dynamics of models with available calibration
data.

While there is a wide literature dealing with non-stationarity in hydrologic predictions
(e.g., Clarke, 2007; Klemeš, 1983; Koutsoyiannis, 2006; C. Z. Li et al., 2012), the ability of
existing models to cope with this non-stationarity remains questionable (Wagener et al.,
2010) and is largely unaddressed for urban hydrological modeling (Fry & Maxwell, 2018).
In this study we identify the transferability of urban semi-distributed hydrologic models
across distinct environmental and climatic conditions. We use the EPA Storm Water
Management Model (SWMM) – one of the most widely used urban stormwater models
since its development in the 1970’s (Niazi et al., 2017) – as a case study urban hydrological
model, and focus on its subcatchment runoff component.

Effective model parameters in SWMM

In SWMM, subcatchment geometry and topography are simplified and represented as planar
rectangles with area A, width W , and mean slope S (see Figure 4.1a and b). Surface
properties arising from differences in infiltration capacities among impervious roofs, road and
paved surfaces, and pervious soils, are also simplified. SWMM lumps all pervious surface
areas in the subcatchment together (Aperv), and treats the remainder of the subcatchment
area as impervious (Aimp). Users specify this partitioning of surface properties with a ‘percent
impervious’ parameter, here referred to in its fractional form as φimp = Aimp/A. Other
surface parameters, including Manning’s roughness n and the depression storage d, are also
specified separately for impervious and pervious areas. Users select one of three routing
options between these lumped surface area types: (i) runoff from impervious and pervious
areas is routed independently to the outlet (outlet routing); (ii) runoff from a fraction of
the pervious area is routed to the impervious area (impervious routing); or (iii) runoff from
some fraction of the impervious area is routed to the pervious area (pervious routing) (Huber,
2001). In the latter case, the fraction of impervious area that is directly routed to the outlet
is defined as φidc = Aidc/Aimp, where Aidc is the directly connected impervious area (Figure
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4.1c). Previous modeling studies have found that hydrologic response is highly sensitive to
φidc (Janke et al., 2011; Lee & Heaney, 2003b; Guo, 2008).

Of course, real urban subcatchments contain interleaved patterns of pervious and
impervious areas, such that individual flowpaths may traverse multiple
pervious/impervious surfaces en route to a storm drain or outlet. In SWMM, the effects of
this spatial complexity must be accounted for in the selection of the routing scheme and
choice of φidc. This implies that – although geospatial models (e.g., Sytsma et al., 2020;
S. Epps Ph D. & Hathaway, 2018; Han & Burian, 2009b) or rainfall-runoff relationships
(e.g., Ebrahimian, Gulliver, & Wilson, 2016; Boyd et al., 1993) can be used to infer φidc –
this parameter may in practice not be physically interpretable and must be estimated
through calibration.

Similar arguments apply to the geometric approximations employed in SWMM: given
the planar rectangular assumptions made in the runoff model, the subcatchment ‘width’
parameter is best understood to control the mean non-channelized flowpath length L̄, as
A = L̄W (Rossman & Huber, 2016). Numerous studies demonstrate that travel time, runoff
attenuation, and hydrograph properties are sensitive to the subcatchment width parameter
(Brink & TenBroek, 1995; C. Li et al., 2014; James et al., 2010a). While SWMM offers
users the option of calibrating W directly, it can be difficult to interpret whether calibrated
W values are ‘reasonable’. To facilitate interpretation of whether calibrated W values are
reasonable, the width parameter can be expressed as W = kwidthA (James et al., 2010a; Guo
& Urbonas, 2009), where kwidth = 1

L̄
. Because the maximum overland flowpath length (i.e.,

the length prior to channel formation) is finite and often in the range 0–150 m (James et
al., 2010a; Rossman & Huber, 2016), meaningful physical bounds can be placed on kwidth.
Here, we constrain kwidth to the range 0.01–0.1 m, corresponding to L̄ ranging from 10–100
m. Furthermore, since the flowpath length is often geormophically controlled by local soils
and landforms, it is potentially transferable across subcatchments of different areas (unlike
calibrated W values). Thus, throughout, we calibrate kwidth rather than W directly. Like
W , however, kwidth remains a generally unobservable parameter (Guo & Urbonas, 2009),
requiring calibration.

Consequently, at the subcatchment level, SWMM confronts practitioners with two highly
sensitive, effective parameters requiring calibration: φidc and kwidth. For a subcatchment with
a given area and slope, these parameters are expected to vary in response to the extent and
spatial distribution of pervious and impervious surfaces. They may also, however, vary
with storm and soil hydraulic properties (Fry & Maxwell, 2018). For example, where storm
intensity greatly exceeds the infiltration capacity of pervious soils, the subcatchment will
approximate the behavior of a uniformly impervious area. Furthermore, calibration of a
typical SWMM subcatchment model immediately raises the potential for equifinality and
compensating behavior between the effective parameters.

One way to investigate these calibration and parameterization problems is through the
use of virtual experiments (Weiler & McDonnell, 2004). Virtual experiments have been used
to identify hillslope controls on connectivity (Hopp & McDonnell, 2009), to simulate overland
runoff across heterogeneous surfaces (Crompton et al., 2019), and to determine climatic and
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landscape controls on runoff partitioning (C. Li et al., 2014). The advantage of designing
virtual experiments is that everything about the model is known and controllable (Weiler
& McDonnell, 2004). For example, the hillslope geometry can remain constant while soil
properties are changed, and vice versa. Virtual experiments are distinct from sensitivity
and uncertainty analysis because the goal of the experiments is not to assess the global
sensitivity of a model, nor identify optimal parameter values, but rather to evaluate controls
on hydrologic outcomes through systematic variation of inputs.

Figure 4.1. Conceptual schematic of a heterogeneous urban subcatchment (a), represented in
SWMM by a rectangular hillslope of width W and length L (b), and with overland flow routing
between impervious and pervious sub-areas (c). By default, SWMM routes impervious and pervious
area runoff directly to the outlet (as shown in panel b). Users can specify alternative routing, as
shown in panel (c), where some portion of impervious area (φidc) is routed directly to the outlet,
while the remaining impervious area (1-φidc) is routed to the pervious area, then to the outlet.

Study aims and approach

The goal of this work is to explore the implications of calibration parameter sensitivity to
changes in model forcing for urban hydrological prediction. This exploration is organized
around three research questions:

1. How sensitive are the calibrated parameters φidc and kwidth to varying environmental
conditions (given by storm intensity, impervious fractions, and saturated hydraulic
conductivity of pervious areas)?

2. Do parameters calibrated under one set of environmental conditions perform well in
predicting the same subcatchment’s hydrological responses to different environmental
conditions?

3. If not, what magnitude of errors can be expected when a calibrated SWMM model is
applied to different environmental conditions?
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We used virtual experiments to explore the dynamics of constant-intensity rainfall on
planar, bi-phasic (impervious and pervious) hillslopes with initially saturated soils and no
initial losses, i.e., no depression storage. Spatial patterns of impervious and pervious areas
were obtained by binarizing aerial imagery of urban areas. The binarization thresholds were
varied to produce a range of hillslope-scale impervious fractions, creating a set of realistic
and geometrically related land cover patterns. For each pattern, a number of storm and soil
conditions were simulated using the Saint Venant Equations (SVE). These simulations were
taken to represent ‘true’ runoff behavior. SWMM kwidth and φidc were then calibrated to the
SVE predictions resulting in ‘behavioral parameter sets’ for each pattern, storm, and soil
condition. We examined the stability of the behavioral parameter sets across pattern, storm,
and soil conditions by: (i) quantifying the overlap in behavioral parameter sets across these
conditions; and (ii) quantifying the error that can arise when behavioral parameter sets are
applied across these conditions. These methods are described in detail below.

4.2 Methods

Governing equations

‘True’ runoff behavior in the virtual experiments was obtained from the output of the two-
dimensional Saint-Venant Equations (SVE) for shallow sheet flow. The SVE combine the
fluid continuity and momentum equations, and are written (in one-dimension for brevity)
as:

∂h

∂t
= (p− f)− ∂(Uh)

∂x
(4.1)

∂U

∂t
+ U

∂U

∂x
+ g

∂h

∂x
+ g(Sf − S) +

U(p− f)

h
= 0 (4.2)

where h represents the depth of flow [L], U is the depth-averaged flow velocity [L/T], x is the
horizontal coordinate [L], t is the time [T], p the effective rainfall intensity (rainfall minus
interception) [L/T], f is the infiltration rate [L/T], S is the ground surface slope and Sf is
the friction slope (energy gradient) (both in [L/L]). To relate Sf to U , Manning’s Equation
for surface roughness was employed:

U =
1

n
h2/3S

1/2
f , (4.3)

where n is Manning’s roughness coefficient [T/L1/3]. The SVE model used in this study is
based on the finite volume approach presented in Bradford & Sanders (2002), and described
in detail in Crompton et al. (2019).

Solving the SVE requires specification of rainfall and infiltration boundary conditions
(p and f in Eqn. 4.1). Infiltration typically varies in time as initially dry soils saturate.
Modeling infiltration as time-varying (for example, using the Green Ampt equation
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H. W. Green & Ampt (1911)), however, introduces several extra degrees of freedom to any
model. To avoid adding these complexities to the study, we considered only the situation
where soils are initially saturated in both SWMM and SVE models. Under these
conditions, the infiltration capacity is a constant fc = ks. At each timestep, infiltration f is
thus given by the minimum of ks and the rainfall rate p.

In SWMM, runoff is computed using the ‘nonlinear reservoir routing’ model (Rossman
& Huber, 2016):

∂h

∂t
= (p− f)− 1

Ln
(h− d)5/3S1/2 (4.4)

where d is the maximum depression storage depth (a threshold depth required for runoff
to occur), and L is the length of the plane (and equal to A/W ). Eqn. 4.4 is based on the
lumped kinematic wave approximation to the SVE (Brutsaert, 2005). This approximation
assumes that the flow is uniform and the friction slope Sf is approximately equal to the
ground surface slope S (i.e., frictional resistance balances gravitational acceleration). For
planar, uniform flow with U described by Manning’s Equation, the continuity and lumped
kinematic wave equation combine into Eqn. 4.4 (Brutsaert, 2005).

The nonlinear reservoir routing equation is used to convert rainfall to runoff in SWMM.
The equation is applied separately to the lumped impervious or pervious areas of a
subcatchment (i.e, the three areas shown in Figure 4.1c). Runoff routed from the lumped
up-gradient areas is distributed uniformly over the down-gradient area, as if it were rainfall
(Huber, 2001; James et al., 2010a; Rossman & Huber, 2016). For example, in Figure 4.1c,
runoff from the upslope impervious area would be distributed uniformly across the
downslope pervious area.

Model set up

Our virtual experiment modeling approach for the SWMM and SVE is shown schematically
in Figure 4.2 and described below. All SWMM simulations were performed using PySWMM
(the python API for SWMM) (McDonnell et al., 2020), and all SVE simulations were also
performed in Python.

Urban image processing

We drew on real images of urban areas to generate realistic urban land cover patterns. We
extracted 18 urban land cover images from a LiDAR-derived, 1-m resolution impervious/
pervious surface raster for the Petaluma River watershed (California, US) (Mapping &
LiDAR Program, 2016). Each image covered a 100 m × 50 m area that was manually
chosen to be representative of residential block-scale development.

The 4-band raster was collapsed to a single band image using the Normalized Difference
Vegetation Index (NDVI) (Jensen, 2000). NDVI is widely used to classify urban areas as
vegetation (high NDVI), or impervious surface (low NDVI) at or around a specified NDVI
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Figure 4.2. Conceptual schematic of SWMM and SVE simulations and calibration. SVE sim-
ulations were conducted across all 9 rainfall (p) and soil (ks) conditions, for all urban land cover
patterns (for a total of 162 simulations). For the same land cover patterns and p and ks conditions,
analogous simulations in SWMM were performed by extracting φimp and varying sensitive SWMM
parameters (φidc and kwidth). Calibrated sets of φidc and kwidth were determined by comparing
the % Error in infiltration fraction, IF . Calibrated parameter sets were then used to define the
behavioral parameter space, Â.

threshold (Knight & Voth, 2010; Kaspersen et al., 2015; Zha et al., 2003; Jensen, 2000).
For each image, we tuned the NDVI threshold to produce five impervious and pervious area
binarizations that correspond to five φimp values (φimp = 0.1, 0.3, 0.5, 0.7, and 0.9). This
resulted in a set of 90 unique urban land cover patterns, comprised of 18 images and five
φimp values.
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SVE simulations

We adopted an idealized view of runoff generation, whereby overland flow is generated in
SWMM and SVE by constant-intensity rainfall on a planar, bi-phasic (impervious and
pervious) hillslope with initially saturated soils and no initial losses, i.e., no depression
storage.

We assumed that the impervious areas (as delineated in the binarized images) were
completely impervious (ks = 0), and that pervious areas were uniform with the same ks
everywhere. Simulations were run for the 9 combinations of three ks values (2, 5, and 8
cm/hr) and three p values. For each of the nine p and ks combinations, runoff and infiltration
were simulated for each of the 90 urban land cover patterns using the SVE. Table 4.1 outlines
the parameterization for all simulations.

The first-order control on runoff production on pervious soils is whether the rainfall rate
exceeds the infiltration capacity. This can be measured using the ratio p/ks, where runoff
production is associated with p/ks > 1. The higher p/ks, the greater the excess precipitation
and rate of runoff production. The range of p/ks values in the experiment was 0.25 to 4,
spanning a wide profile of different runoff production behaviors.

Table 4.1. Summary of parameters used for SVE and SWMM modeling

Parameter Description Values
Constants

nimp Manning’s n on impervious 0.01
nperv Manning’s n on pervious 0.1
dimp Depression storage on impervious

(mm)
0.0

dperv Depression storage on pervious
(mm)

0.0

So Surface slope (%) 1
A Area (m2) 5,000

Soil and storm conditions
p 30-min rainfall intensity (cm/hr) 2, 5, 8
ks Saturated hydraulic conductivity

(cm/hr)
2, 5, 8

p/ks Rainfall excess ratio 0.25, 0.4, 0.62, 1.0,
1.6, 2.5, 4

Urban land cover patterns
Image Urban images 18 images
φimp Impervious fraction 0.1, 0.3, 0.5, 0.7, 0.9
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SWMM sensitivity analysis

Before calibrating SWMM, we used Sobol’ sensitivity analysis to verify that SWMM runoff
and infiltration are sensitive to kwidth and φidc parameters (Sobol’, 1990). Sobol’ analysis is
a variance-based global sensitivity analysis that can be used to determine how much each
parameter contributes to the overall variance of the model output (the total-order index)
(Nossent et al., 2011). The higher a parameter’s contribution to overall variance, the more
sensitive it is.

We imposed some limitations on the sensitivity analysis. Specifically, we considered
only SWMM parameters that have direct impacts on overland flow (see Eqn. 4.4).
Secondly, we recognized the large literature that demonstrates SWMM’s high sensitivity to
the physically observable φimp parameter. While this sensitivity is helpful to modelers, it
can mask the model’s sensitivity to the calibrated parameters targeted in this study.
Therefore, we limited the sensitivity analysis to six effective SWMM subcatchment
parameters, i.e., those parameters that cannot be readily observed or estimated using
geospatial methods. These parameters are: the hillslope width factor kwidth, connected
impervious fraction φidc, roughness on pervious areas nperv and impervious areas nimp, and
depression storage on pervious areas dperv and impervious areas dimp.

We used the SALib Sobol python package (Herman & Usher, 2017) to generate random
parameters and conduct the Sobol’ analysis. We specified parameter ranges for the six
overland flow parameters in accordance with previously reported values (see Appendix D.1
for full documentation), with kwidth ranging from 0.01 to 0.1. These kwidth values correspond
to overland flowpath lengths of 10 to 100 m in a 5000 m2 subcatchment, equivalent in size
to the urban images described above). These parameter values were cross-sampled using
the Saltelli method, which generates N ∗ (2D + 2) samples (Saltelli, 2002; Saltelli et al.,
2010), where N is the number of samples to generate (here, 100) and D is the number of
parameters (here, 6). This resulted in 1,400 unique parameter sets. For each parameter
set, we systematically varied the rainfall intensity p, saturated hydraulic conductivity of
pervious areas ks, impervious fraction φimp, and slope (S), for a total of 189,000 SWMM runs
(simulated in Python). This approach allowed us to determine if the sensitive parameters
were consistent across these forcing criteria.

The sensitivity of each overland flow parameter was measured in terms of it’s contribu-
tion to overall variance in the storm-scale infiltration fraction IF . IF is a time and space
integrated measure of model predictions, defined as the fraction of incident rainfall that in-
filtrates in the subcatchment:

IF =
F

P
(4.5)

where F is the cumulative infiltration depth, and P is the rainfall depth.
Although we leave further discussion of the sensitivity analysis results to the Results

(Section 4.3), we note here that, as anticipated, kwidth and φidc emerged as the most sensitive
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of the effective model parameters, supporting our choice to focus calibration efforts on these
parameters.

SWMM parameter calibration and objective function

We calibrated SWMM to the SVE using a global random search calibration algorithm
(Sorooshian & Gupta, 1995). For each SVE simulation, 100 simulations were run in
SWMM with kwidth and φidc sampled from uniform distributions (Table 4.2), holding all
other parameters constant between the two models (p, ks, φimp, nimperv, nperv, So, and A).
This produced 81,000 SWMM simulations across the p, ks, and φimp conditions. While
global random search algorithms are rarely used in hydrologic modeling due to their
inefficiency (Sorooshian & Gupta, 1995), in this case they offer the advantage of simulating
a consistent suite of parameter sets for comparison across the p, ks, and φimp conditions.

Table 4.2. SWMM Calibration Parameters

Parameter Description (units) Valuesa

kwidth Hillslope width factor (m) U [0.01,0.1]
φidc Connected impervious fraction (–) U [0.01,0.1]
aU = Uniform distribution.

We used the infiltration fraction IF to compare the SWMM and SVE model
predictions, denoted as IFswmm and IFsve respectively. For each IFsve prediction, there
were 100 IFswmm predictions corresponding to the 100 unique parameter sets (kwidth, φidc).
SWMM performance was quantified using the percent error between IFswmm and IFsve,
PEIF (%):

PEIF =
IFsve − IFswmm

IFsve
× 100, (4.6)

which provides a simple measure of agreement between the models. PEIF is positive when
IFswmm < IFsve, indicating that SWMM underestimates infiltration depth while
overestimating runoff. SWMM was calibrated to minimize the absolute value of PEIF .
This allowed for the definition of a single threshold under which parameter sets (kwidth,
φidc) are ‘behavioral’, in the sense that they result in a model that adequately reproduces
the observed watershed behavior (e.g., sensu Worqlul et al., 2018; Yen et al., 2015).

Defining behavioral parameter space

We explored how the model performed for different calibration parameter sets as the ratio
p/ks and the impervious fraction φimp were varied. Based on this performance we mapped
the behavioral parameter space (i.e., the space defined by the behavioral parameter sets) as
these climatic/soil and land use conditions changed. This process had three steps:
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1. For each p/ks and φimp combination, we binned the parameters into 10 kwidth bins x
10 φidc bins, and computed the mean |PEIF | for each bin (e.g., Figure 4.3a and b).

2. For each p/ks and φimp combination, we then calculated the 5th, 15th, and 25th

percentile |PEIF | values. The 25th percentile corresponds to an average
|PEIF | < 10% when averaged across p/ks and φimp conditions (see Table S2 in
Supporting Information).

3. Finally, for each p/ks and φimp combination, we interpolated |PEIF | contours (Figure
4.3c) from (1), using average |PEIF | values for each percentile defined in (2).

We defined the ‘behavioral parameter space’ (Â) as the parameter combinations contained
by the 15th percentile |PEIF | contour (Figure 4.3d). This contour is associated with good
model performance (|PEIF | ≤ 7%) and was also the lowest threshold contour (of the three
tested) for which a behavioral parameter space existed for all p/ks and φimp combinations

(see Supporting Information Table S2). Â contains the behavioral parameter sets (k̂width,
φ̂idc), which vary for different combinations of p/ks and φimp.

We checked the sensitivity of the parameter space to the independent values of p and ks
(in contrast to their ratio p/ks). For three cases where p = ks but individual values of p
and ks varied: 2, 5, and 8 cm/hr, we found the resulting Âs were effectively identical (see
Supporting Information Figure S5) supporting the use of the ratio p/ks to define Â.

Figure 4.3. Conceptual schematic showing process for defining behavioral parameter space
Â for each p/ks and φimp scenario. Parameter sets (kwidth, φidc) are plotted in (a), with color
corresponding to PEIF . The parameter sets ranges were binned (10 bins each), and the mean
|PEIF | for the parameter sets within each of the resulting grid cells are plotted in (b). Contour
plots in (c) were obtained by interpolating the gridded |PEIF | plots, with thresholds corresponding
to the average 5th, 15th, and 25th percentiles of |PEIF | across p/ks and φimp combinations. The
behavioral parameter space Â in (d) was defined by the 15th percentile contour.
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Quantifying transferabilty of behavioral parameter spaces

A model has ‘transferable’ parameters if it performs adequately under non-stationary
conditions: i.e., under both the ‘initial’ conditions when the model is calibrated, as well as
the future conditions to which the model will be applied. Transferable parameters means
that the behavioral parameter spaces (and the behavioral parameter sets within them)
should be the same under initial and future conditions (KlemeŠ, 1986; Hartmann &
Bárdossy, 2005). This transferability (T ) can therefore be measured as the fractional

overlap of Â under initial (i) and future (f) conditions. That is, T = Âi∩Âf

Âi
, where Âi and

Âf are the initial and future condition parameter spaces, respectively, and Âi∩Âf is their
overlapping area (see Figure 4.4). As defined, T = 0 when no overlap exists between initial
and future behavioral parameter spaces, and T = 1 when the initial and future behavioral
parameter spaces are identical.

Figure 4.4. Conceptual schematic showing behavioral parameter spaces for initial conditions
Âi and future conditions Âf . The transferability of the behavioral parameter spaces T is defined

as T = Âi∩Âf

Âi
. It represents the agreement between calibrated ‘initial’ and ‘future’ behavioral

parameter spaces.

We computed T for each combination of p/ks and φimp, assuming that one combination
would representing ‘initial’ and another ‘future’ conditions. We plotted T against the
difference in each parameter between initial and future cases: ∆p/ks and ∆φimp:

∆p/ks = (p/ks)
f − (p/ks)

i (4.7)

∆φimp = φimp
f − φimpi (4.8)
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Implications for model error

Given the definition of behavioral parameter space (which correspond roughly to calibration
sets that result in less than 7% error in IF ), extreme values of T (i.e., 0 or 1) implies that
the magnitude of error that could arise from transferring behavioral parameter sets between
conditions is likely to be greater than 7% (for T = 0) or less than 7% (for T = 1). In
between these two extreme cases, however, T as defined does not quantify the magnitude of
error occurring if a behavioral initial parameter set is applied under future conditions. We
therefore calculated the error (in PEIF ) occurring for each potential p/ks and φimp initial-
to-future transition. Transitions were given by ∆p/ks and ∆φimp. We plotted the resulting
errors against the transition, i.e., ∆p/ks and ∆φimp.

While many different initial-to-future transitions are possible in theory, SWMM is often
used to predict changes to infiltration and runoff resulting from future development
(increased imperviousness) and/or climate change (increased rainfall intensity) (e.g.,
Panos et al., 2021; Panos, Hogue, Gilliom, & McCray, 2018). To explore the implications of
non-transferability for these typical applications of SWMM, we show the distributions of
errors that can arise when calibrated parameter sets from initial conditions φimp

i = 0.1 and
p/ks

i = 0.25 were subsequently used to make predictions under three different future
conditions (Figure 4.5): (1) land cover change, φimp

f = 0.9 (∆φimp = 0.8); (2) climate

change, p/ks
f = 4 (∆p/ks = 3.25); and (3) both land cover + climate change, φimp

f = 0.9

(∆φimp = 0.8) and p/ks
f = 4 (∆p/ks = 3.25).

Figure 4.5. Potential development and climate change conditions to illustrate the impacts of
calibration parameter instability on model error.
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4.3 Results

SWMM sensitivity analysis

Figure 4.6 shows the mean contribution of each effective parameter to output variance in IF .
The Sobol’ total-order indices for each effective parameter across S, p/ks and φimp conditions
are shown in Supporting Information S1. In general, the pervious area parameters (nperv,
dperv) are more sensitive than their impervious area counterparts (nperv, dperv). This is likely
due to two factors. Firstly, there is wider variability in these parameters – and therefore
a wider range of their typical values – across pervious areas than across impervious areas
(see Table D.1 in Appendix D.1). Secondly, variation in these parameters impact the rate
of flow across a surface, and the longer water spends on pervious areas the more infiltration
happens (thus directly impacting IF ). Detaining or slowing down runoff across a pervious
area, however, does not necessarily lead to less infiltration, because the impervious area may
or may not lead to a downslope pervious area over which the detained runoff could infiltrate.
This could explain, in part, the high sensitivity of φidc – a measure of how connected these
impervious areas are to downslope pervious areas.

Figure 4.6. Summary of Sobol’ sensitivity analysis results. Bar charts show SWMM parameter
(x-axis) mean contribution to output variance in IF (y-axis). Standard deviation bars for each
parameter indicate variability in contribution to variance across φimp, p/ks, and S combinations.

SWMM calibration and behavioral parameter space

Figure 4.7 shows the percent difference between SWMM and SVE predictions of IF as a
function of kwidth (x-axis) and φidc (y-axis), across φimp (columns) and p/ks (rows).
Behavioral parameter spaces, shown in grey and enclosed by dashed lines, vary as p/ks and
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φimp change (i.e., between subplots). In general, for low φimp and p/ks (lower left corner),
many parameter combinations produce behavioral results. This means parameters are not
highly identifiable (likely because most rainfall infiltrates under these conditions, largely
independently of the calibrated parameters). Conversely, for high φimp and p/ks (upper
right corner), the area of the behavioral parameter set is much smaller, leading to highly
identifiable of parameters.

Variation in the shapes of the behavioral parameter spaces are indicative of which
parameter exerts more control on SWMM outcomes for any given p/ks and φimp
combination. For example, the range of behavioral kwidth values is smaller (more
constrained) than the range of behavioral φidc values for low φimp and high p/ks (upper left
corner), while the opposite is true for low φimp and p/ks (lower left corner).

Figure 4.7. SWMM calibration results. PEIF errors are plotted as a function of kwidth (x-axis)
and φidc (y-axis) values, across varying φimp (columns) and p/ks (rows). Behavioral parameter
spaces Â are the areas enclosed by the dashed line.



77

Transferability of behavioral parameter space

Figure 4.8 is a heatmap showing the fraction of overlap between behavioral parameter spaces
for all potential combinations of p/ks and φimp. Darker colors indicate greater overlap (higher
T ).

Figure 4.8. Transferability T between behavioral parameter space for initial and final conditions,
plotted as a function of ∆φimp (x-axis) and ∆p/ks (y-axis). T values are averaged within each ∆φimp
and ∆p/ks bin. The inset shows smaller ∆φimp and ∆p/ks bins around ∆φimp = 0 and ∆p/ks =
0. Darker hues correspond to higher overlap between behavioral parameter spaces, and thus more
transferable initial behavioral parameter sets. Illustrative scenarios for which errors are quantified
are outlined in red (land cover change (LC), climate change (CC), land cover and climate change
(LC + CC)).

As defined, T must equal 1 if initial conditions are the same as the final conditions (i.e.,
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when ∆φimp and ∆p/ks equal 0). This cannot be seen directly in Figure 4.8 due to the
relatively coarse ∆φimp and ∆p/ks bins used. An inset is provided using a finer resolution
for this binning, which reveals the T = 1 for ∆φimp = ∆p/ks = 0 situation.

Under non-stationary conditions, T is greatest for negative ∆φimp and negative ∆p/ks
(see lower left corner of Figure 4.8). These results are consistent with Figure 4.7, as this
indicates a shift towards conditions with the largest Â areas. Similarly, shifts towards smaller
behavioral parameter spaces (e.g., towards high φimp and high p/ks in Figure 4.8) result in
low values of T .

Implications for model error

Figure 4.9 illustrates the range of errors that arise when behavioral parameter spaces are
transferred across environmental conditions. The panels of Figure 4.9 correspond to the
lower 95% CI error (a), mean error (b), and upper 95% CI error (c) as a function of ∆p/ks
(x-axis) and ∆φimp (y-axis). This figure shows that high magnitude of errors in IF can
result from initial-to-future transitions characterized by positive ∆φimp (i.e., where future
impervious is higher than initial impervious). This error can lead to over-estimation in IF
up to 60% (panel c) or under-estimation as low as -60% (panel c). However, initial-to-future
transitions characterized by negative ∆φimp and negative ∆p/ks lead to relatively low error
(as shown by the light grid cells in panels (a) and (c)).

Figure 4.9. Potential over-estimation (brown) and under-estimation (blue) in IF as a function
of transitions in p/ks and φimp. ∆p/ks and ∆φimp can be computed for any initial and future
condition, and can be applied to (a), (b) and (c) to determine the 95% CI range in PEIF .

Figure 4.10 illustrates the errors that could arise due to poorly transferable model
parameters for the three ‘typical’ SWMM transitions shown in Figure 4.8. Figure 4.10a
shows PEIF as a function of kwidth and φidc for the initial conditions. Figure 4.10b-d shows
the same PEIF plots but for future conditions. The initial (pale grey shapes) and future
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(striped shapes) behavioral parameter spaces are superimposed on each panel. Figure
4.10e-h shows corresponding distributions of PEIF associated with choosing a behavioral
parameter set based on the initial conditions in Figure 4.10a. When the behavioral
parameter space obtained for the initial conditions is reapplied to those initial conditions,
the PEIF values range from 0 to 6% - as expected given the definition of ‘behavioral’ used.
When the initial behavioral parameter space is applied to future conditions, however, PEIF
ranges from -60 % to 40%, with 95% PEIF CIs ranging from -28% to 36% (Figure 4.10f-h).
The distribution of error varies across the future scenarios, with the lowest mean error
being associated with the land cover change condition (2.1%) (Figure 4.10f) and highest
mean error associated with joint land cover and climate change (21%) (Figure 4.10h).

Figure 4.10. PEIF as a function of kwidth and φidc across initial and future conditions, overlayed
by the behavioral parameter spaces (a - d) (reproduced from Figure 4.7). Initial condition behavioral

parameter space Âi is shown in grey, while behavioral parameter space each future condition Âf
is shown with hatching. Distributions of PEIF errors associated with choosing a parameter set
within the Âi are shown for each future condition in (e - h), with 95% CIs on PEIF shown in black,
and mean PEIF shown in red.
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4.4 Discussion

Variability in behavioral parameter space across conditions

The study results clearly indicate that the performance of calibrated SWMM parameters
φidc and kwidth are sensitive to environmental conditions (defined by φimp and p/ks). This
emphasizes the ‘effective’ nature of the calibration parameters, demonstrating that they are
not physically-based properties of subcatchments, that would be invariant as climate, soil,
or land cover changed.

Effective model parameters often display sensitivity to climate drivers. For example,
calibrated hydrological model parameters are often sensitive to ‘wet’ vs. ‘dry’ conditions
(C. Z. Li et al., 2012; Gan et al., 1997; Gharari et al., 2013). However, the extent of this
sensitivity within the SWMM model has not been robustly assessed to date. Some of the
most common applications of SWMM aim to predict urban runoff production across changing
climates (e.g., Panos et al., 2021; Bai et al., 2018; Waters et al., 2003) or changing land
cover characteristics (e.g., Panos, Hogue, Gilliom, & McCray, 2018; Jang et al., 2007). The
validity of the model calibration as these conditions change is almost never assessed in these
studies (but see studies of transferability on: SWMM green roof parameters Johannessen et
al. (2019); distributed model parameters in urban areas Mittman et al. (2012); and lumped
model parameters in non-urban catchments C. Z. Li et al. (2012)). This is problematic,
because the error in IF demonstrated here due solely to non-transferability of parameters
across climate and land cover conditions are as large as ±60%.

These errors arise from the non-transferability of the calibrated parameters, which itself
reflects that the main controls on runoff change along with climate, soil, and land cover
properties. Under low p/ks conditions, the behavioral parameter space was more constrained
by φidc than kwidth (see Figure 4.7). Under these conditions, pervious areas do not produce
runoff, and runoff routed across pervious areas will infiltrate. Almost all subcatchment-level
runoff is thus generated on the directly connected impervious areas. Crompton et al. (2019)
also found that directly connected impervious area was an important predictor of runoff
under low rainfall intensities (i.e., low p/ks).

At high p/ks ratios, however, kwidth provides a stronger constraint on the behavioral
parameter space than φidc. This is consistent with previous findings that runoff is sensitive
to flowpath length under moderate to high rainfall intensities (Mayor et al., 2008).
Additionally, the behavioral parameter space areas are larger for low φimp than they are for
high φimp – likely reflecting that in subcatchments with large pervious areas, most rainfall
infiltrates regardless of how routing parameters kwidth and φidc are specified. Models
parameters obtained by calibration under low p/ks and low φimp conditions are thus
unlikely to be transferable to high p/ks and high φimp conditions, as illustrated in Figure
4.8, while transferability is more probable for change in the opposite direction (from high
to low p/ks and high to low φimp values).

The transferability of behavioral parameter space, however, does not always predict the
magnitude of resulting errors. Errors in IF are high under positive ∆φimp, but low for
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positive ∆p/ks (Figure 4.9) – even through transferability is low in both cases (Figure 4.8).
And even though positive ∆p/ks changes have less transferability of parameters than negative
∆p/ks, the resulting errors are smaller than for negative ∆p/ks (see Figure 4.9a, c).

For high φimp and low p/ks, the behavioral parameter space spans multiple,
non-contiguous regions of φidc and kwidth. The fractured nature of these behavioral
parameter spaces suggests that, for these conditions, spatial patterns other than φidc and
φimp have non-trival impacts on IFsve. In other words, under certain conditions, runoff and
infiltration from the SVE may be related to spatial patterns – other than those captured
by φidc and φimp – that are not accounted for in SWMM. Under other φimp and p/ks
conditions, however, the behavioral parameter spaces are continuous, implying that the
spatial metrics in SWMM (φimp and φidc) are likely also the most important spatial
patterns for IFsve.

Implications for planning and design

Urban hydrologic models must often predict the effects of development, for example the
expansion of impervious surfaces; of climate change, which could impact p/ks positively or
negatively; or of the installation of stormwater management controls (e.g., green
infrastructure) on runoff. For many such transitions, parameter transferability is low
(Figure 4.8) and the potential for over- and under-estimation is high (Figure 4.9). This
means that when models calibrated to existing conditions are applied to simulate runoff
under future conditions, the predictions may be subject to large uncertainty. For example,
as shown in the ‘land cover change’ panels of Figure 4.5, a model calibrated to
‘undeveloped’ (φimp = 0.1) and low p/ks (0.25) conditions can produce errors of -60 to +40
% when applied to developed conditions (φimp = 0.9). Furthermore, the errors due to
non-transferability of parameters generally increase with increasing changes to forcing
parameters (Figure 4.9). The reliability of predictions using historical model calibration
will therefore diminish over time in changing catchments (Thompson et al., 2013).

This is particularly problematic when designing infrastructure and regulating future
development to mitigate the impacts of climate or land cover change. Under-sized
stormwater infrastructure (resulting from under-estimates of runoff) can increase flood risk
and decrease water quality treatment performance (Brown & Hunt, 2011). Oversized
infrastructure can intrude on public open space, perform poorly and increase maintenance
burdens (Lapides et al., 2021; Blecken et al., 2008; Tu et al., 2020; Brown et al., 2015).
Where stormwater management policies and regulations are based on predictions from
runoff models (e.g., Panos, Hogue, Gilliom, & McCray, 2018), this uncertainty risks
ineffective or sub-optimal policies.

On a more positive note, we found relative stability and low errors associated with
decreasing impervious surface area (negative ∆φimp in Figure 4.8 and 4.9). This suggests
confidence can be attached to SWMM studies that address the effectiveness of reducing
φimp for mitigating storm runoff and water quality issues arising from existing development
(e.g., Avellaneda et al., 2017; Jarden et al., 2016a).
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Limitations of study approach

The applicability of this study to “real world” conditions depends on how well the SVE
model described in Section 4.2 represents runoff production in the modeled landscapes. The
SVE model omits real-world heterogeneity in depression storage, roughness, and topography,
as well as any urban drainage infrastructure. The SVE also neglects temporal variations in
rainfall and infiltration capacity or the effects of saturating a soil of finite depth (Grayson
& Blöschl, 2001; Minet et al., 2011). Omitting these processes from the SVE (and also
from SWMM), however, greatly simplifies the interpretation of the results. The virtual
experiments presented here are also limited to small hillslopes (100 m × 50 m) and time
scales (30 minute events). Thus, the results are most reliably applied to similarly small
spatial and temporal scales, and should not be applied to larger hillslopes and longer time
scales. It is likely that the spatial features which control hydrologic responses are scale
dependent – for example, larger scales may ‘average out’ some of the variability arising from
spatial pattern, and thus reduce variation in calibration values (K. J. Beven, 1989; Wood et
al., 1988).

Urban hydrologic predictions under change

Despite the uncertainty associated with non-transferability of model parameters, water
resource managers need hydrologic predictions to assist with future decision-making
(Thompson et al., 2013). Historical observations (e.g., of rainfall, runoff, and land cover)
are crucial for process representation in models, but different approaches are needed to
cope with changing behavior in hydrologic systems (Wagener et al., 2010).

Currently, non-stationarity in climate is primarily addressed by either: (i) calibrating and
validating models across a range of historical conditions that are analogous to expected future
hydroclimatic regimes (e.g., Vaze et al., 2010); or (ii) Calibrating models for discrete and
distinct time periods (e.g., ‘wet’ and ‘dry’ conditions) within which the hydrologic regime is
considered to be stationary (e.g., Gharari et al., 2013; C. Z. Li et al., 2012). Both approaches
have drawbacks - historical datasets may not contain periods that provide adequate analogues
for future states (Wagener et al., 2010; Westra et al., 2014), while re-calibration of models
across multiple time periods my simply be impossible for long-term forecasting.

No analogues to these methods are formalized for non-stationarity in land cover: the
literature contains minimal discussion of whether current approaches to calibration
adequately samples different land cover conditions, or whether calibration should be
adapted to address different land cover configurations separately (i.e., as disparate ‘land
cover regimes’). Indeed, unlike climatic drivers which are resolved on fine timescales in
hydrologic models, land cover is often not treated as a time varying model forcing at all.
Incorporating time series of impervious area into urban modeling - particularly when
calibrating and validating models - would be a useful first step to avoid confounding
non-stationarity in land cover with non-transferability of effective model parameters.
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An alternative to relying on historical calibration is to adopt data-assimilation modeling
approaches which can update model parameters in response to observations (Beck, 1987;
Hoke & Anthes, 1976; Merz et al., 2011). Data assimilation is valuable for improving short-
term predictions in response to non-stationarity or simply in response to more observational
data availability (e.g., model ‘learning’) (Milly et al., 2008; Fries & Kerkez, 2018; Hutton et
al., 2014) - an approach with strong synergies to ‘adaptive management’ philosophies (Dietze
et al., 2018). There are, however, some significant limitations to data assimilation. Firstly, it
is necessarily data-hungry, limiting its application to well observed systems. Secondly, while
data assimilation can respond to ‘near-term’ non-stationarity (i.e., occurring between initial
calibration and application of the model), it does not resolve the issues that ‘long-term’
non-stationarity poses for making predictions in a future state for which no observations are
available.

Where now for SWMM?

Should models like SWMM – i.e., those that depend on calibrating effective model parameters
– continue to be used? The fact that these parameters are not observable or transferable
suggests that the problem cannot be fixed simply by adding more observations to model
calibration and parameterization. Instead, the situation suggests there is a trade-off between:
(i) retaining the use of familiar tools like SWMM, and accepting the error and limitation on
model transferability associated with reliance on effective parameters; and (ii) requiring that
more physically-driven models should be used for urban stormwater predictions, potentially
reducing error at the expense of a more data-hungry and challenging modeling process.

At present, this trade-off is difficult to navigate in part because it is not clear to what
extent changes in calibration practice such as those outlined above could mitigate errors
associated with non-transferable parameters. Evaluating error due to non-transferable
parameters will require long-term datasets for urban runoff and flows, which continue to be
limited in their availability. Thus, evaluating the suitability of continuing to use tools like
SWMM will either be constrained to insights available from synthetic experiments like
those presented here, or will become contingent on the broader problem of monitoring
urban hydrology, developing suitable real-time monitoring and modeling techniques within
urban environments (Wong & Kerkez, 2016; Hutton et al., 2014; Wong & Kerkez, 2018;
Bartos et al., 2019), and the willingness of practitioners and regulators to move to more
adaptive management systems (Dietze et al., 2018).

4.5 Conclusion

Virtual experiments demonstrated that non-stationarity in climate and land use undermines
the performance of calibrated SWMM models. Parameters calibrated in one set of climate
and land use conditions were generally not the optimal calibrated parameters under different
conditions. Predicting across distinct conditions with calibrated models thus introduced
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variable ranges of model error. Urban hydrologic modeling and planning often requires that
modeling inform decisions about managing development, climate change, or installation of
green infrastructure. The virtual experiments suggest that such modeling scenarios risk
significant prediction error of ±60%.

With many urban prediction studies relying on semi-distributed models such as SWMM
to predict novel conditions in urban catchments, non-transferability of parameters is likely
to be a widespread problem. Resolving this problem is unlikely to be straightforward given
the nearly ubiquitous use of semi-distributed models for urban runoff predictions and the
barriers posed by data needs, training needs, and access to software (all of which currently
limit the adoption of fully distributed models). In the short term, useful measures could
include ensuring that practitioners and researchers are aware of the non-transferability
problem, developing improved benchmarks of the likely errors that result from
non-transference of parameters, and designing modeling studies to account for the problem
using different calibration, data assimilation, or study design techniques.
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Chapter 5

Conclusions

This dissertation aimed to improve understanding of urban runoff processes by exploring how
spatial patterns of impervious and pervious surfaces influence urban runoff when subject to
varied rainfall and soil conditions, and to create frameworks which make such relationships
relevant to policy and planning. The major contributions of this research are presented in
response to the guiding questions posed in Chapter 1.

What are the implications of different hydrologic processes for the production of urban
stormwater and its management?

The current approach to urban runoff management approaches hinges on the
assumption that runoff is generated via infiltration excess overland flow (IEOF). In
line with this assumption, the current paradigm for urban runoff management is
based on risk defined by event-scale rainfall, models that presume IEOF, and
management controls that prioritize infiltration. However, two other runoff
mechanisms – saturation excess overland flow (SEOF) and shallow groundwater flow
(SGWF) – can also arise in urban areas. Unlike IEOF, both SEOF and SGWF runoff
mechanisms depend on subsurface processes. Controls on these subsurface processes
generally act over larger spatial scales and longer temporal scales than do the
controls on surface processes relevant for IEOF: consequently, SGWF processes can
occur over large spatial scales and fluctuate on seasonal time scales, and SEOF scales
correspond to scales of soil saturation. We argue that (1) management approaches
based on IEOF may be ineffective in areas that are dominated by SEOF, SGWF, or
combinations of these runoff mechanisms; and (2) this inapplicability stems from a
mismatch in the characteristic spatial and temporal scales between SEOF/ SGWF
and the management approach defined by IEOF. This mismatch in spatial and
temporal scales risks poorly defined or inapplicable management standards,
hydrologic modeling approaches, and stormwater management controls.
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How do local landscape patterns, land cover characteristics, and climate variability impact
the spatial production of urban runoff?

Within IEOF landscapes, impervious areas are a major control on hydrologic
response, but this control is moderated by presence and variability of interspersed
pervious areas. Impervious surfaces can be separated into two categories: directly or
physically connected (Aphys) and variably connected (Avar) (impervious that drains
to pervious). Avar contribution to runoff (or, its ‘hydrologic connectivity’, defined as
φvar), is controlled by spatial variability of pervious area characteristics and temporal
variability in pervious area conditions and rainfall. Temporally varying parameters
(e.g., rainfall and antecedent soil moisture) control Avar connectivity in areas with
low permeability soils, while spatial flow path variability (e.g., relative quantity of
disconnecting pervious area) controls Avar connectivity in areas with highly
permeable soils.

How do land cover characteristics and climate variability impact calibration and predictive
accuracy of semi-distributed runoff models?

The shape of the two-dimensional behavioral parameter space (defined by two
calibrated model parameters) varies with land cover and climate conditions.
Inter-dependencies between calibration parameters and environmental conditions can
result in significant errors when the calibration parameters are used to predict
hydrologic impacts of changes to these environmental conditions (e.g., novel changes
in land cover and climate). These errors generally increase with increasing changes to
environmental conditions, suggesting that uncertainty and error arising from
predictions made by such models will grow over time as catchments change and the
model assumptions diverge from reality. These results point to a need for additional
research and investment in urban hydrologic models capable of robust predictions
under uncertain futures.

This dissertation presents a new direction for research on urban hydrology and
planning: one that seeks to (1) relate landscape heterogeneity within urban environments
to hydrologic response across physiographic and climatic contexts; and (2) account for
inter-dependencies between landscape heterogeneity, environmental conditions, and
hydrologic processes in urban hydrologic models; and (3) develop a range of tools and
approaches for adaptive urban runoff management in these contexts. Given the rate of
invention and technological advancements, these future research initiatives will have the
benefit of increased access to and existence of data resources. As we enter the ‘digital age’,
sensors, satellites, and real-time controls will produce unprecedented amounts of data at
finer scales than ever before. Machine learning algorithms may be used to relate catchment
response at every scale to high-resolution and distributed catchment characteristics. The
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methods and frameworks presented in this dissertation serve as a starting point for this
future research by providing a structure for analyzing increasingly data-rich methods (e.g.,
machine learning, distributed hydrologic modeling) with practical implementation (e.g.,
Arc GIS tools, semi-distributed models, management frameworks).
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Appendix A

Notation

Table A.1. Table of notation and abbreviation used in this manuscript

A Subcatchment Area [L2]

Âi Initial conditions parameter space area [L2]

Âf Final conditions parameter space area [L2]
Aimp Impervious area [L2]
Aperv Pervious area [L2]
Aidc Connected impervious area [L2]
α average storm depth [mm]
CC Climate cover change scenario
d Storage depth in reservoir [L]
dimperv Storage depth on impervious area [L]
dperv Storage depth on pervious area [L]
ETmax Maximum evapotranspiration rate [mm/d]
η Frequency with which a 1D soil column

is dried by evapotranspiration occurring
at potential (maximum) rates, wo/ETmax [day−1]

F Cumulative infiltration depth [L]
f Infiltration rate [L/T]
fc Infiltration capacity [L/T]
γ ratio of wo/α
h Flow depth [L]
IEOF Infiltration excess overland flow
IFsve Fraction of incident rainfall that infiltrates from SVE simulations [L3/L3]
IFswmm Fraction of incident rainfall that infiltrates from SWMM simulations [L3/L3]
ks Saturated hydraulic conductivity [L/T]
kwidth Subcatchment width factor [1/L]
L Subcatchment overland flowpath length [L]
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LC Land cover change scenario
λ storm frequency [day−1]
n Manning’s n [T/L1/3]
nimperv Manning’s n on impervious area [T/L1/3]
nperv Manning’s n on pervious area [T/L1/3]
p Rainfall intensity [L/T]
P Rainfall depth [L]
PEIF Percent error in infiltration fraction between the SVE and SWMM.
p/ks Ratio of rainfall to soil saturated hydraulic conductivity [L/T/L/T ]

p/ks
i Initial conditions p/ks value [L/T/L/T ]

p/ks
f Final conditions p/ks value [L/T/L/T ]

SEOF Saturation excess overland flow
SGWF Shallow groundwater flow
So Ground surface slope [L/L]
Sf Friction slope [L/L]
T Transferability of behavioral parameter space across environmental conditoins
t Time coordinate [T]
U Depth-averaged overland flow velocity [L/T]
W Subcatchment overland flowpath width [L]
WSUD Water Sensitive Urban Design
wo maximum available soil water storage in a 1D soil column [mm]
x Coordinate pointing downslope [L]
θs Saturated soil moisture content
θi Initial soil moisture content
ψf Matric pressure potential at wetting front [L]
φperv Pervious fraction [L2/L2]
φidc Connected impervious fraction [L2/L2]
φimp Impervious fraction [L2/L2]
φimp

i Initial conditions φimp value [L2/L2]

φimp
f Final conditions φimp value [L2/L2]
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Appendix B

SWMM Background

SWMM is a continuous or event-based rainfall-runoff simulation model developed by the
EPA that has been widely used for planning, design, and analysis related to urban drainage
systems and urban development (Panos, Hogue, Gilliom, & McCray, 2018; James et al.,
2010b; Rosa et al., 2015). The SWMM model components that are relevant to this
application include runoff generation mechanisms, overland flow routing, and infiltration,
which are described below.

B.1 Non-linear reservoir routing

Subcatchments in SWMM are represented as idealized rectangular storage reservoirs of area
A, width W , land surface slope S, pervious fraction φperv, and storage depth d. Runoff
occurs once the depth of water in the area h [L] exceeds the maximum depression storage
depth d [L]. The depth of water over the subcatchment, h, is computed continuously at each
time step by solving the continuity equation over the entire subcatchment:

∂h

∂t
= (p− f)− ∂(Uh)

∂x
(B.1)

where U is the depth averaged flow velocity [L/T] assuming the kinematic wave
approximation (Brutsaert, 2005), x is the distance from the head of the plane [L], t is the
time [T], p the effective rainfall intensity (rainfall minus abstractions) [L/T], f the
infiltration rate [L/T].

Manning’s Equation for surface roughness relates U to friction slope Sf . Assuming kine-
matic flow in which flow is uniform and the friction slope Sf is approximately equal to the
ground surface slope S (i.e. frictional resistance balances gravitational acceleration), Man-
ning’s equation is written as:

U =
1

n
h2/3S1/2, (B.2)

where n is Manning’s roughness coefficient [T/L1/3].
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In SWMM, runoff is computed using the ‘nonlinear reservoir routing’ model (Rossman
& Huber, 2016), which combines the continuity equation (B.1) and Manning’s equation for
kinematic flow (B.2):

∂h

∂t
= (p− f)− 1

Ln
(h− d)5/3S1/2 (B.3)

where d is the maximum depression storage depth, i.e., a threshold depth required for
runoff to occur, and L is the length of the plane (given by A/W ).

B.2 Subcatchment routing

Runoff generated on upslope impervious or pervious sub-areas of a catchment are routed to
the downslope area by modifying precipitation on the downslope sub-area. In other words,
the runon from upslope areas is distributed uniformly on the downslope sub-area (Huber,
2001). One could achieve the same results by routing runoff between impervious and pervious
subcatchments: when outflow from one subcatchment is routed to another subcatchment,
SWMM distributes it uniformly over the downstream subcatchment (Rossman, 2015; United
States Environmental Protection Agency, 2018). In this study, we modeled sub-areas as
separate subcatchments for ease of computation in PySWMM.

B.3 Infiltration

Infiltration losses in SWMM are described by one of three models: Green-Ampt (H. W. Green
& Ampt, 1911), Horton (Horton, 1933), or the SCS-Curve Number. While Horton and SCS-
CN are empirical approaches to infiltration, Green-Ampt is physically based solution to
infiltration, which assumes a ponded surface, uniform and deep soils, and a sharp wetting
front which separates initial moisture content θi in the subsurface from saturated surface
soils θs, taking the form:

f = ks(1 + ψf
θs − θi
F

) (B.4)

Where f is infiltration rate; ks is saturated hydraulic conductivity; ψf is the average
matric pressure at the wetting front; and F is cumulative infiltration volume. This model
is often preferred over other infiltration models because the parameters on which it depends
can be obtained from physically measured quantities (Rawls et al., 1983; Viessman & Lewis,
2011). Because Green-Ampt assumes a ponded surface, however, its application is limited
to cases in which the precipitation intensity exceeds ks. To cope with this restriction and
simulate infiltration when precipitation intensity is less than ks, SWMM adopts the Mein-
Larson formulation of the Green-Ampt model (Mein & Larson, 1973). The Mein-Larson
formation is an empirical soil moisture accounting scheme that considered two cases or
stages infiltration.
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• Stage 1: F < Fs. The first stage considers infiltration prior to saturation of the surface.
If i < ks, all rainfall infiltrates (f = i and F = I). If i > ks, SWMM predicts the
volume of rainfall that will infiltrate before the surface becomes saturated (Fs). At
each timestep for which i > ks, the value of Fs is calculated and compared with the
volume of rainfall that has already infiltrated for the event (F ).

• Stage 2: F > Fs: The second stage considers infiltration after saturation of the
surface. After this point infiltration follows the original Green-Ampt equation. Once
the underlying soils are saturated θs − θi = IMD = 0, rainfall infiltrates at a rate
equal to ks.

SWMM includes two versions of the Mein-Larson formulation, which differ only slightly.
In the original Mein-Larson SWMM formulation, the difference in soil moisture (θs − θi, or
IMD) is updated at each timestep for which i < ks, and this updated value is used in the
subsequent steps. However, updating the moisture deficit between the surface and
subsurface soil layers prior to surficial soil saturation (Stage 1) lacks physical justification
as the subsurface soils will not saturate until the surface is saturated (under the assumed
infiltration mechanism). Thus, the modified Mein-Larson SWMM formulation
(incorporated in SWMM3 and subsequent versions of SWMM) does not update the
difference in soil moisture in Stage 1 while i < ks (United States Environmental Protection
Agency, 2018; Rossman, 2015).
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Appendix C

HCIA Methods

C.1 PySWMM Model

We used PySWMM to simulate runoff and infiltration at the outlet of a catchment consisting
of impervious area (Avar) routed to a downslope pervious area (Aperv) (Figure A1).

Figure C.1. Impervious area (Avar) routed to pervious area (Aperv). The total catchment area,
A, is the sum of Avar and Aperv. The width, W , of the catchment is constant across Avar and
Aperv.

In the case of impervious surface connectivity, we are mainly interested in the fraction of
impervious runon that infiltrates downslope, rather than the fraction of total inflow to the
previous area that infiltrates. We define this fraction of impervious runon that infiltrates as
the “runon infiltration fraction”, or IFrunon. The default configuration of SWMM does not
provide estimates of the volume of runon that infiltrates, only of total infiltration. However,
we can estimate the volume of runon that infiltrates through simple mass balance. The total
infiltration volume Ftotal can be split into two separate volumes: the volume of infiltration
due to impervious runon Frunon and the volume of infiltration due to rainfall on pervious
Frainfall (Equation C.1).
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Ftotal = Frunon + Frainfall (C.1)

Rearranging Equation C.1 gives the volume of infiltration from runon Frunon (Equation
C.2).

Frunon = Ftotal − Frainfall (C.2)

To get the value Frunon for each simulation run, we simulated two catchments for each
simulation (Figure C.2): (1) impervious routed to pervious, giving a value of Ftotal (Figure
C.2A); and (2) pervious only, giving a value of Frainfall (Figure C.2B). Frunon is then equal
to the difference in infiltration volumes (Equation C.2).

Figure C.2. Mass balance diagrams showing the catchments simulated to estimate Frunon.
Infiltration resulting from pervious only (panel B) was subtracted from infiltration resulting from
impervious routed to pervious (panel A).

Finally, we computed the IFrunon for each simulation as:
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IFrunon =
Frunon
Vrunon

(C.3)

where Vrunon is the volume of impervious runon to the pervious area.

C.2 Regression tree hyperparameters

Regression tree hyperparameter ranges are summarized in Table C.1 and sensitivity to these
ranges are shown graphically in Figure C.3. The results of the hyperparameter tuning and
sensitivity analysis shows that the model’s MSE is insensitive to splitter method (Figure
C.3A), number of features to consider for each split (Figure C.3C), the minimum samples
split (Figure C.3E), the minimum samples at each leaf (Figure C.3F), and presort option
(Figure C.3H). In contrast, the MSE appears to be sensitive to maximum depth of the
tree, minimum impurity decrease, and maximum number of leaf nodes. The MSE decreases
significantly as the maximum depth of the tree increases, but at a depth ∼ 10, the MSE
maintains a value of around 0 (Figure C.3B). The MSE increases sharply at a minimum
impurity decrease of ∼ 2, suggesting that lower minimum impurity threshold is needed for
accurate predictions (Figure C.3D). The MSE decreases with increased leaf nodes. Thus, a
high value for maximum number of leaf nodes has potential overfit a model (Figure C.3G).

C.3 Alternate design storms

This study applied the SCS Type II storm distribution, with a 24-hr storm duration, across
five rainfall depths. However, both the storm distribution and duration have the potential
to effect impervious surface connectivity. SCS Type I and IA storms characteristic of Pacific
Coast Mediterranean climates have lower intensity rainfall than the SCS Type II storm
distribution used in this study. Shorter duration and higher intensity storms could result in
significant changes to infiltration.

To test sensitivity of φvar to different storm distributions and durations, we ran the
PySWMM simulations with two different design storms: (1) SCS Type 1, 24-hr storm
distribution and (2) SCS Type 2, 6-hr storm distribution. Figure C.4 shows the sensitivity
of φvar to these storm distributions and durations.

Of the distributions and durations tested, the SCS Type 2, 6-hr duration storm results
the highest median values for φvar, suggesting that in regions with shorter, more intense
rainfall, φvar may be greater than that predicted by the regression tree and HCIA ArcGIS
tool. In contrast, the SCS Type 1, 24-hr storm had consistently the lowest values for φvar,
which suggests that for the same landscape and soil conditions, regions with lower intensity
rainfall (e.g., Type 1, 1a) may have lower HCIA than regions with higher intensity rainfall
distributions (e.g., Type 2).
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Figure C.3. Sensitivity of regression tree hyperparameters across hyperparameter ranges. The
blue dashed line represents the MSE across the training data, and the red line represents the MSE
across the testing data.
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Hyper-
parameter

Description Default
value

Tested
range

Final
value

Splitter Strategy used to choose the split at
each node

Best Best,
Ran-
dom

Best

Max depth Maximum depth of tree None 1 to 20 13
Max
features

The number of features to consider
when looking for the best split.

None auto,
square
root

auto

Min im-
purity
decrease

Threshold for node impurity before
branch is split; tells the algorithm when
to stop splitting a branch. A higher
minimum impurity threshold leads to
lower information gain.

0 0 to 10 0

Min sam-
ples split

Minimum number of samples required
to split an internal node: Increasing
the values of min samples split risks
under-fitting the data. When we re-
quire 100% of the data samples for a
split, the MSE increases because the
model cannot learn enough about the
data.

2 2 to 10 5

Min sam-
ples leaf

Minimum number of samples required
to be at a leaf node. As min samples
leaf increases, more of the variability is
included at each leaf node. Allowing for
more samples at each leaf risks under-
fitting the data.

1 1 to 10 1

Max leaf
nodes

Maximum number of levels in tree. None 10 to
110

110

Presort Whether to presort the data to speed
up the finding of best splits in fitting.

False True,
False

True

Table C.1. Regression tree hyper-parameters and range of random search ranges
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Figure C.4. Box plots showing sensitivity of φvar to different storm distributions and durations.
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Appendix D

SVE – SWMM Calibration:
Additional Results

D.1 SWMM sensitivity analysis

To explore the sensitivity of SWMM outcomes to changes in overland flow inputs, we
undertook a Sobol’ sensitivity analysis across a range of soil/storm scenarios. Sobol’
sensitivity analysis The higher a parameter’s contribution to overall variance, the more
sensitive it is. The sum of the total-order indices can be indicative of parameter
interactions: for linear models, the parameters do not interact and the sum of the total
order indices is equal to 1, and for non-linear models, the sum of all of the total order
indices is greater than 1 due to interactions between variables.

Using saltelli sampling methods, we generated 1,400 unique parameter sets defined by
total area A, width factor kwidth, connected impervious fraction φidc, manning’s roughness
values nimperv and nperv, as well as depression storage dimperv and dperv values. We set a
lower bound on kwidth of 0.01, and upper bound at 0.1. For a subcatchment area of 5,000m2,
this range in kwidth corresponds to a width of 50 to 500 m and overland flowpath length
of 100 to 10 m, respectively. These effective parameters were simulated across three soil
saturated hydraulic conductivities ks, three rainfall intensities p, three surface slopes S, and
five impervious fractions φimp, resulting in a total of 189,000 model runs. Value ranges for
these parameters are summarized in Table D.1.

Full results of the Sobol’ sensitivity analysis across all φimp, p/ks, and S scenarios are
shown in Figure D.1. As expected given the non-linear reservoir model on which SWMM is
based, the sum of total-order indices is greater than 1, indicating that parameter interactions
exist. Overall, the most sensitive parameters are kwidth (dark blue) and φidc (orange), but
this varies across the p/ks and φimp scenarios. For p/ks < 1, φidc is the most sensitive across
all φimp scenarios. For p/ks > 1, kwidth is the most sensitive parameter by a narrower margin,
as other parameters (such as nperv) also contribute substantially to variance. These results
motivate further inquiry into the two most sensitive effective parameters – φidc and kwidth –
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across varying p/ks and φimp scenarios.

Table D.1. Summary of sensitivity parameter ranges used for sensitivity analysis

Parameter Description Value Range
nimperv Manning’s n for impervious 0.01 - 0.015 a

nperv Manning’s n for pervious 0.0 - 0.8 b

dimperv Depression storage on impervious (mm) 0 - 3 c

dperv Depression storage on pervious (mm) 2 - 6 d

kwidth Width factor (1/L) (m) 0.01 - 0.1
φidc Connected impervious fraction 0 - 1
A Area (m2) 5,000
φimp Impervious fraction 0.1, 0.3, 0.5, 0.7, 0.9
ks Saturated hydraulic conductivity (cm/hr) 2, 5, 8
p 30-min precipitation intensity (cm/hr) 2, 5, 8
S Surface slope (%) 1, 5, 10
a 0.01-0.015 James et al. (2010b)
b 0.02-0.8 James et al. (2010b)
c 0.3 - 2.54 mm James et al. (2010b)
d 2.54 - 5.1 mm James et al. (2010b)

D.2 Behavioral parameter threshold sensitivity

To enable comparison between φimp and p/ks scenarios, it is important to choose a single
behavioral parameter threshold that can be applied to each scenario. We defined the
behavioral parameter threshold that was applied to each scenario in three steps.

1. We binned kwidth and φidc into a 10 x 10 grid and computed the mean |PEIF | within
each bin. The resulting plots are shown in Figure D.2, with color corresponding to
|PEIF |.

2. We computed the 5th, 15th, and 25th percentile |PEIF | for each scenario. These values
are tabulated in Table D.2. Average |PEIF | values for each percentile are all less than
10%.

3. We created contour plots from (1), using average |PEIF | values for each percentile
defined in (2). The results of this are shown in Figure D.4.

The mean 15th percentile threshold was the lowest threshold for which the behavioral
parameter space area was greater than 0 for each φimp, p/ks scenario. Therefore, we chose a
behavioral parameter threshold that corresponds to the mean 15th percentile gridded error
(|PEIF |) across the φimp and p/ks scenarios, corresponding to a mean |PEIF | = 6.5%.



101

Figure D.1. Results of Sobol’ sensitivity analysis. Horizontal bar charts show SWMM parameter
contribution to the output variance (total-order index) (x-axis) across φimp, p/ks, and S scenarios,
with color corresponding to the six effective parameters. The dashed line at a total variance of 1 is
the Sobol’ threshold for linear and non-linear models.
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Figure D.2. Gridded mean errors |PEIF | across φimp (columns) and p/ks (rows)
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Figure D.3. Contours corresponding to 0 − 5th percentile (|PEIF | < 3.5), 5 − 15th percentile
(3.5 < |PEIF | < 6.5), 15− 25th percentile (6.5 < |PEIF | < 9), and > 15th percentile (|PEIF | > 9).
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Figure D.4. Behavioral parameter spaces for p/ks = 1 scenarios: p = ks = 2 cm/hr (top row),
p = ks = 5 cm/hr (middle row), p = ks = 8 cm/hr (bottom row). The variability in behavioral
parameter space is minimal across the p/ks = 1 scenarios for a given φimp.
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Table D.2. 5th, 15th, and 25th percentile |PEIF | for each scenario. |PEIF | averaged across
scenarios is shown in the last column.

Percentile p/ks φimp Average
0.1 0.3 0.5 0.7 0.9

5th 0.25 0.4 1.2 2.8 5.8 7.1
0.40 0.4 1.6 3.7 5.1 7.9
0.62 0.3 2.6 3.4 3.8 5.2
1.00 1.3 2.8 3.3 3.5 5.5 3.5
1.60 1.9 2.0 2.9 3.1 6.8
2.50 1.8 2.7 3.3 3.3 6.6
4.00 2.5 2.3 3.1 3.6 8.4

15th 0.25 1.2 2.9 4.8 9.3 8.3
0.40 1.2 2.6 5.7 7.4 11.0
0.62 1.0 3.7 5.2 4.4 10.7
1.00 2.5 4.6 6.0 8.2 13.9 6.5
1.60 3.1 3.7 5.1 7.7 13.4
2.50 5.6 5.2 6.3 8.2 15.2
4.00 3.6 6.4 6.3 8.3 15.9

25th 0.25 2.3 6.0 7.6 10.5 9.2
0.40 2.3 5.4 8.4 8.7 12.8
0.62 2.2 4.7 5.9 5.7 13.7
1.00 3.1 6.3 8.4 11.5 17.3 9.0
1.60 5.2 6.1 7.3 10.7 16.2
2.50 6.9 8.0 9.8 14.0 20.8
4.00 7.4 8.6 9.6 12.9 20.9
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Klemeš, V. (1986). Dilettantism in hydrology: Transition or destiny? Water Resources
Research, 22 (9s), 177s-188s. Retrieved from https://agupubs.onlinelibrary.wiley

.com/doi/abs/10.1029/WR022i09Sp0177S doi: 10.1029/WR022i09Sp0177S

Knight, J., & Voth, M. (2010). Mapping impervious cover using multi-temporal modis ndvi
data. Ieee journal of selected topics in applied earth observations and remote sensing , 4 (2),
303–309.

Koutsoyiannis, D. (2006). Nonstationarity versus scaling in hydrology. Journal of Hydrology ,
324 (1-4), 239–254. doi: 10.1016/j.jhydrol.2005.09.022

Kuczera, G., Lambert, M., Heneker, T., Jennings, S., Frost, A., & Coombes, P. (2006). Joint
probability and design storms at the crossroads. Australasian Journal of Water Resources ,
10 (1), 63–79. doi: 10.1080/13241583.2006.11465282

Kuichling, E. (1889). The relation between the rainfall and the discharge of sewers in
populous districts. Transactions of the American Society of Civil Engineers , 20 (1), 1–56.
Retrieved from http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0254503

Lapides, D., Sytsma, A., & Thompson, S. (2021). Implications of distinct methodological
interpretations and runoff coefficient usage for rational method predictions. In review at
Journal of American Water Resources Association.

https://ebookcentral.proquest.com/lib/berkeley-ebooks/detail.action?docID=3339323
https://ebookcentral.proquest.com/lib/berkeley-ebooks/detail.action?docID=3339323
http://linkinghub.elsevier.com/retrieve/pii/0022169483902081
http://linkinghub.elsevier.com/retrieve/pii/0022169483902081
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR022i09Sp0177S
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR022i09Sp0177S
http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0254503


123

Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using classification
and regression tree (CART) analysis. Photogrammetric Engineering , 6.

Lee, J. G., & Heaney, J. P. (2003a). Estimation of urban imperviousness and its
impacts on storm water systems. Journal of Water Resources Planning and Man-
agement , 129 (5), 419–426. Retrieved from https://ascelibrary.org/doi/abs/10

.1061/%28ASCE%290733-9496%282003%29129%3A5%28419%29 doi: 10.1061/(asce)0733
-9496(2003)129:5(419)

Lee, J. G., & Heaney, J. P. (2003b). Estimation of urban imperviousness and its
impacts on storm water systems. Journal of Water Resources Planning and Man-
agement , 129 (5), 419–426. Retrieved from https://ascelibrary.org/doi/abs/

10.1061/{%}28ASCE{%}290733-9496{%}282003{%}29129{%}3A5{%}28419{%}29http://

ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:5(419) doi:
10.1061/(asce)0733-9496(2003)129:5(419)

Leopold, L. B. (1968, December). Hydrology for urban land planning - a guidebook on the
hydrologic effects of urban land use (Vol. 554; Circular). Washington: US Department
of the Interior. Retrieved from http://enviro.lclark.edu/resources/Tryon/Water/

Hydrology.pdf

Lerner, D. N. (1990). Groundwater recharge in urban areas. Atmospheric Environment.
Part B. Urban Atmosphere, 24 (1), 29–33.

Lexartza-Artza, I., & Wainwright, J. (2009). Hydrological connectivity: Linking concepts
with practical implications. Catena, 79 (2), 146–152. Retrieved 2019-03-27, from https://

linkinghub.elsevier.com/retrieve/pii/S0341816209001453 doi: 10.1016/j.catena
.2009.07.001

Li, C., Wang, W., Xiong, J., & Chen, P. (2014). Sensitivity analysis for urban drainage
modeling using mutual information. Entropy , 16 (11), 5738–5752. Retrieved 2019-07-09,
from http://www.mdpi.com/1099-4300/16/11/5738 doi: 10.3390/e16115738

Li, C. Z., Zhang, L., Wang, H., Zhang, Y. Q., Yu, F. L., & Yan, D. H. (2012). The
transferability of hydrological models under nonstationary climatic conditions. Hydrology
and Earth System Sciences , 16 (4), 1239–1254. doi: 10.5194/hess-16-1239-2012

Li, H.-Y., Sivapalan, M., Tian, F., & Harman, C. (2014). Functional approach to ex-
ploring climatic and landscape controls of runoff generation: 1. behavioral constraints on
runoff volume. Water Resources Research, 50 (12), 9300–9322. Retrieved 2020-04-20, from
http://doi.wiley.com/10.1002/2014WR016307 doi: 10.1002/2014wr016307

Lim, T. C. (2016). Predictors of urban variable source area: a cross-sectional analysis
of urbanized catchments in the united states: Predictors of urban variable source area.
Hydrological Processes , 30 (25), 4799–4814. Retrieved 2018-11-05, from http://doi.wiley

.com/10.1002/hyp.10943 doi: 10.1002/hyp.10943

https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9496%282003%29129%3A5%28419%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9496%282003%29129%3A5%28419%29
https://ascelibrary.org/doi/abs/10.1061/{%}28ASCE{%}290733-9496{%}282003{%}29129{%}3A5{%}28419{%}29http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:5(419)
https://ascelibrary.org/doi/abs/10.1061/{%}28ASCE{%}290733-9496{%}282003{%}29129{%}3A5{%}28419{%}29http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:5(419)
https://ascelibrary.org/doi/abs/10.1061/{%}28ASCE{%}290733-9496{%}282003{%}29129{%}3A5{%}28419{%}29http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:5(419)
http://enviro.lclark.edu/resources/Tryon/Water/Hydrology.pdf
http://enviro.lclark.edu/resources/Tryon/Water/Hydrology.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0341816209001453
https://linkinghub.elsevier.com/retrieve/pii/S0341816209001453
http://www.mdpi.com/1099-4300/16/11/5738
http://doi.wiley.com/10.1002/2014WR016307
http://doi.wiley.com/10.1002/hyp.10943
http://doi.wiley.com/10.1002/hyp.10943


124

Lim, T. C., & Welty, C. (2017). Effects of spatial configuration of imperviousness and
green infrastructure networks on hydrologic response in a residential sewershed. Water
Resources Research, 53 (9), 8084–8104. doi: 10.1002/2017wr020631

Liu, Z., He, C., Zhou, Y., & Wu, J. (2014). How much of the world’s land has been
urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology ,
29 (5), 763–771. doi: 10.1007/s10980-014-0034-y

Lovell, S. T., & Taylor, J. R. (2013, October). Supplying urban ecosystem services through
multifunctional green infrastructure in the United States. Landscape Ecology , 28 (8), 1447–
1463. Retrieved from http://link.springer.com/10.1007/s10980-013-9912-y doi:
10.1007/s10980-013-9912-y

Lyon, S. W., McHale, M. R., Walter, M. T., & Steenhuis, T. S. (2006). The impact of runoff
generation mechanisms on the location of critical source areas 1. JAWRA Journal of the
American Water Resources Association, 42 (3), 793–804.

Machusick, M., Welker, A., & Traver, R. (2011, March). Groundwater mounding at a storm-
water infiltration bmp. Journal of Irrigation and Drainage Engineering , 137 (3), 154–160.
Retrieved from https://ascelibrary.org/doi/abs/10.1061/{%}28ASCE{%}29IR.1943

-4774.0000184 doi: 10.1061/(asce)ir.1943-4774.0000184

Makido, Y., Hellman, D., & Shandas, V. (2019, May). Nature-Based Designs to Mitigate
Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmo-
sphere, 10 (5), 282. Retrieved from https://www.mdpi.com/2073-4433/10/5/282 doi:
10.3390/atmos10050282

Mansell, M., & Rollet, F. (2006). Water balance and the behaviour of different paving sur-
faces. Water and Environment Journal , 20 (1), 7–10. Retrieved 2020-01-03, from https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-6593.2005.00015.x doi: 10
.1111/j.1747-6593.2005.00015.x

Mapping, S. V., & LiDAR Program, U. o. M., NASA Grant NNX13AP69G. (2016). Sonoma
vegetation mapping and lidar products. Retrieved from "http://sonomavegmap.org/data

-downloads/"
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