
UC Irvine
ICS Technical Reports

Title
Architectural tradeoffs in synthesis of pipelined controls

Permalink
https://escholarship.org/uc/item/2d85k9nc

Authors
Ramachandran, Loganath
Gajski, Daniel D.

Publication Date
1992-05-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2d85k9nc
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Architectural Tradeoffs in Synthesis ..----
of Pipelined Controls

.,---

Loganath Ramachandran
DanielD. Gajski =-

Technical Report #92-49
May 21, 1992

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

ramachan@ics.uci.edu

Abstract

/J-12_(/fl If£~
/_ -

6f t
l3
ho, 9 J--V'f
e__' ;;;._,

Many high level synthesis systems produce designs without any consideration for the underlying
architecture. In such systems, tradeoffs between area and delay can only be achieved by changing
the synthesis constraints (e.g., number of functional units). These systems do not exploit the wider
range of tradeoffs that can be achieved by modifying the underlying architecture. In this report we
derive a relationship between architectural constraints and scheduling algorithms, and demonstrate how
architectural styles impose certain restrictions on the scheduling process. In particular, we consider
different control pipelining architectures. We also propose a versatile scheduling algorithm that is
capable of synthesising designs for different control pipelining styles.

Contents

1 Introduction

2 Control Pipelined Architectures
2.1 Non-pipelined methodology

2.1.1 Status Pipelined Methodology
2.1.2 Control and Status Pipelined Methodology

3 Impact of Control Pipelining on Operation Scheduling
3.1 Sharing of Mutually Exclusive Operations

3.1.l Non pipelined Architectures ..
3.1.2 Status Pipelined Architectures

3.2 Condition Evaluation and Testing ...
3.2.l Non-pipelined Architectures ..
3.2.2 Status Pipelined Architectures
3.2.3 Control - Status Pipelined Architectures

4 Scheduling Algorithm

5 Experiments and Results
5.1 Our example
5.2 Timer Circuit
5.3 Clock Division Circuit
5.4 Rockwell Counter ..
5.5 Kim's Example ...
5.6 Summary of Results

6 Conclusions

7 Acknowledgements

8 References

List of Figures

1 Proposed High Level Synthesis Approach
2 FSMD model . . .
3 Control Pipelining
4 A Simple Example
5 Mutually Exclusive Operations
6 Condition Evaluation and Testing
7 Impact on Scheduling
8 Scheduling Results
9 Transistor Equations
10 Results - Simple Example
11 Results - Timer
12 Results - Clock Division .
13 Results - Rockwell Counter
14 Results - Kim's Example
15 Summary of Results

1

2
4
4
4

5
5
7
7
8
8
8
9

10

15
15
16
17
18
20
20

21

21

22

1
2
3
6
6
9

10
14
15
16
17
18
19
20
21

1 Introduction

High Level Synthesis consists of automatically synthesizing hardware from a given abstract high level
description. Some of the steps during the synthesis process include: allocation of sufficient number of
functional units, scheduling of operations into various control steps and binding the operations and
interconnects into the appropriate units.

There have been many research efforts in the areas of scheduling, allocation and binding, that have
resulted in powerful algorithms for these tasks [1, 5, 7, 8, 9, 10, 11]. Most of these systems accept
either unit constraints or performance constraints during synthesis. Some of the other algorithms [17],
minimize the register to register delays to satisfy the given clock constraint.

However the above algorithms do not consider the strong relationship that exists between· the
underlying architecture and synthesis methods. Consequently the results produced by the above high
level synthesis methods, may be good for some architecture styles, but may be unimplementable in
other architectures. As an example, the algorithm by Kim et. al. [9] minimizes the number of states in
the design by sharing operations from mutually exclusive branches. Although this algorithm reduces
the total number of states in the design, it may be impossible to implement this schedule unless we
have an architecture that provides for registers on all status signals. The main problem with such
above approaches is that the algorithms do not take into account any architectural considerations.

In this report, we derive a relationship between scheduling algorithms and architectural styles.
In particular, we concentrate on the various control pipelining strategies and show how scheduling
algorithms must perform differently for each control pipelining strategy. This implies that a scheduling
algorithm cannot ignore the architecture in which the design would get implemented. We propose a
scheduling algorithm, that is driven by the specified control pipelining scheme. We believe that
defining such relationships between the architecture and the synthesis algorithms would result in more
practical and useful designs.

With the proposed algorithm, it is possible to synthesize efficient designs for a given specific control
pipelined architecture. Since control pipelining architectures are mainly intended for performance vs
cost tradeoffs, the system automatically exploits the tradeoffs available at the architectural level. We
consider all the control pipelining approaches discussed in [16]. An overview of the proposed approach
for synthesis with architectural considerations is shown in Figure l(b).

Current High Level Synthesis Approaches

e.g. #control steps
#functional units

Behavioral

Synthesized
Structure

Proposed High Level Synthesis Approach

11~;~1111:! __ _
e.g., control pipelined

status pipelined

e.g. #control steps
#functional units

Behavioral

Synthesized
Structure

Figure 1: Proposed High Level Synthesis Approach

1

The rest of the report is organized as follows. In the next section we provide the details of the
three architectures that we will be using for the rest of the report. In section three, we discuss how
the architectural constraints impact the scheduling phase in high level synthesis. In section four, we
show a scheduling algorithm that can efficiently handle all the three architectural styles. Finally we
provide the results of our algorithm on a number of standard HLS benchmarks and show how the
results are influenced by the selected architectural style.

2 Control Pipelined Architectures

Typically many synthesis systems are targeted for a general CU-DP based architecture. This architec
ture can be abstractly modeled as a FSMD[4], which is a finite-state machine with a datapath. The
model consists of two important parts. The control part which can be modeled as a finite state machine
consisting of a state register and combinational logic to compute the next-state values and control
signals for the datapath. The datapath contains the functional units and storage units to perform the
required computations.

A sample FSMD is shown in Figure 2(a). The control unit is shown as a 3-state FSM. This control ·
unit communicates with the datapath using status and control signals. The control signals are set by
the control unit and used to control the operations of various components in the datapath. On the
other hand, the status signals are set by the datapath to indicate the status of various computations
it has performed.

Each state of this FSMD model can be further subdivided into three micro-actions. These mi
croactions are shown in Figure 2(b). Since each state of the sample state machine can be viewed as
three sequential microactions, we can assume that given a state Si, the machine actually performs three
microactions Si t t 1 , Si " and Si t t t • In Figure 2(c), we show all the microactions that are per-se _en r exec....up nex _s a e

formed in our sample FSMD. Since we have three states in our machine and each state consists of three
micro-actions, we have nine different microactions represented as s1a, s1b, sic, s2a, s2b, s2c, S3a, S3bands3c.

Micro-actions performed in each state

(A) Set control signals

(8) Perform datapath operations

(C) Compute next state

(b) Microactiona

(a) FSMD Model

(c) FSM wilh the microactiona

Figure 2: FSMD model

In each state, it is possible to execute these three micro-actions in a pipelined fashion. We refer to
this pipelining methodology as control pipelining since we are actually pipelining the micro-actions in
a state. We now consider three different control pipelining methodologies.

2

Control Unit Datapath

ll s a
1 s1 b

s1 c
s a

2 s2b
s2c

s3a
3 s3b

s3c

(a) NonPipelined - Model (b) Non Pipelined Architecture

Control Unit Datapath

u s a
s1 b
s c s a

2 s2b

3

4
s3c

(c) Status Pipelined - Model (d) Status Pipelined Architecture

Control Unit Datapath

ii
s~a .><

~ S2b
s2c s

5 s

6

(e) Control Status Pipelined - Model (f) Control Status Pipelined Architecture

Figure 3: Control Pipelining

3

2.1 Non-pipelined methodology

In this model, the three microactions in a state are performed serially. In Figure 3(a) we show the
execution of the three states in our FSMD. Since all the three microactions in a state are executed
sequentially, the min clock period for this architecture can be computed as:

M in_Clk_Feriod = tcontrol + tdatapath + tnxt..stJogic + tstate..:register + tinterconnect

where tcontrol is the delay in the next state logic, tdatapath is the execution delay of the components in
the datapath, tnxt..stJogic is the delay to compute the next state value, tstate_register is the hold time
of the state register and tinterconnect is the wire delays.

The architecture for the non-pipelined control architecture is shown in Figure 3(b) The total area
for implementing this architecture can be given by

Total._Area = A.control+ Adatapath + Anxt..sUogic + Astate..:register + A.interconnect

where (A.control) is the area of the control logic, (Anxt...aUogic) is the area of the next-state logic,
(Astate..:register) is the area of the state register and (Adatapath) is the datapath area.

2.1.1 Status Pipelined Methodology

In this model, the microactions are executed in a pipelined fashion. We can think of this model as
a two stage pipeline, where the first stage performs the first two microactions (Siset..cntrl and Sieo:ec_dp)

and the second stage performs the third microaction, (sineo:t_..taiJ· The performance characteristic for
this model is shown in Figure 3(c).

In order to achieve this pipelined performance, we now require a register on the status lines. Hence
this architecture is called the Status Pipelined Architecture. The length of the clock cycle decreases
because of the pipelining. The minimum clock period for this architecture can be given by:

Min_ClkYeriod = MAX(tgroup.J., tgroup-2)

tgroup_l = tcontrol + tdatapath + tstatus_register + tinterconnect

tgroup_2 = tnxt..stJogic + tstate_register + tinterconnect

The introduction of a status register on all status lines increases the area of the design substantially.
Thus the total area for this architectural style can be given by

Total._Area = A.control+ Adatapath + Anxt..stJogic + Astate_register +A.interconnect+

N um_status * Astatus..:register

2.1.2 Control and Status Pipelined Methodology

In this model, the number of pipeline stages is further increased. A.11 the three microactions are
executed in a pipelined fashion. We can think of this model as a three stage pipeline, where. each stage
performs one of the microactions, Si•et..cntrl, Sieo:ec...dp and Sine:&t-state. The performance characteristic for
this model is shown in Figure 3(e).

In order to achieve this pipelining performance, we have to now introduce a register on the status
and control lines, (Figure 3(f)). Hence this architecture is called the Control - Status Pipelined

4

Architecture. The existence of pipeline registers on all status and control signals further enhances the
performance characteristics of this architecture. The minimum clock period for this architecture can
be given by:

M in_Clk_Feriod = M AX(tgroup_i, tgroup-2' tgroup...3)

tgroup_l = tcontrol + tcontro/_reg + tinterconnect

tgroup_2 = tdatapath + tatatus_reg + tinterconnect

tgroup...3 = tnxt...stJogic + tatate_register + tinterconnect

The existence of registers on all status and control lines increases the area figures for this architec
ture. The total area for this architectural style can be given by

Total..Area = Acontrol + Adatapath + Anxt...stJogic + Astate_register + Ainterconnect+

N um_status * Astatus_register + N um_control * AcontroLregister

3 Impact of Control Pipelining on Operation Scheduling

When the designer imposes an architectural constraint on the design, (say by selecting one of the
above control pipelining schemes) high level synthesis algorithms must be capable of working with
this constraint. Since scheduling is one of the first and important phases during high level synthesis,
scheduling algorithms are directly impacted by this architectural constraint imposed by the designer.
In this section we discuss some of the architecture-related aspects that influences scheduling.

We will illustrate this impact on scheduling by using a simple example shown in Figure 4. This
example consists of eight operations spread over three branches of a case statement. When scheduling
this example, there are two important aspects that are directly related to the architectural constraint.
(i) sharing of mutually exclusive operations (operations d, g and i) in the same state and (ii) scheduling
the condition-evaluation operation and testing the results of condition-evaluation (operation b).

3.1 Sharing of Mutually Exclusive Operations

If the behavior description contains mutually exclusive branches (like the one shown in Figure 4) the
scheduling algorithm has to make an important choice when scheduling operations on these branches.
The mutually exclusive operations can either be (i) shared and hence scheduled into the same state,
or (ii) not-shared and hence scheduled into two different states.

In Figure 5(a), we show the results of a scheduling algorithm that shares mutually exclusive op
erations in the same state. In this figure, operations d, g get scheduled into the same state (state
2) because they will never get executed simultaneously during any single execution of the process.
Similarly, operations e and h also get scheduled into the same state (state 3). This sharing of mutually
exclusive operations obviously results in few states for implementing the design. For the rest of this
report we refer to schedulers that can share mutually exclusive operations as sharing-schedulers and
their schedules as sharing-schedules.

In Figure 5(b), we show the results of a scheduling algorithm that does not share mutually exclusive
operations. It schedules these operations separately into individual states. For example, it schedules
operations d and g into separate states (i.e., states 2 and 5 respectively). Schedulers that do not
share mutually exclusive operations are called non-sharing schedulers and their schedules are called

5

process()

begin

C <=B+1;

case A+ 1 is

when 0=>

A<=B+1;

B<=A+2;

C<=A+1;

when 1 =>

B<=A+ 1;

C<=B+2;

when 2=>

C<=B+2;

end case;

end process ;

d A=B+1

e B:A+2

C:A+1

C:B+1 a

T: A+1 b

B:A+1 -----g

C:B+2
.._--;,__ _ _.. h

C:B+2

Flowgraph

Figure 4: A Simple Example

C:B+1 a State o

T:A+1 b
State 1

A:B+1 9 B:A+1 State2

B :A+2 e C:B+2 State3

C:A+1 f State 4

Stateo

State 1

State2

State 3

State 4

A:B+1

B:A+2

C:A+1

C:B+1 a

T:A+1 b

d g B:A+1

e h C:B+2

f

States

State 6

Scheduling Constraint : 1 adder Scheduling Constraint : 1 adder

(a) Sharing Schedule (b) Non Sharing Schedule

Figure 5: Mutually Exclusive Operations

6

non-sharing schedules. The total number of states produced by a non-sharing scheduler is obviously
larger than the number of states produced by a sharing scheduler.

It is generally argued [1,3,5,9] that a sharing-schedule produced by a sharing-scheduler, is a 'su
perior' schedule because the total number of states are fewer. In fact many scheduling algorithms
[1,5,9] spend most of their effort, trying to share as many mutually exclusive operations as possible
into a single state. However, we show in the rest of this report that this is not necessarily useful. The
non-sharing schedule is better suited for some of the architectures, while the sharing-schedule is better
suited for other architectures.

3.1.1 Non pipelined Architectures

Let us now try to implement the 'superior' schedule, on a non-pipelined model (Figure 3(a)). As
shown in Figure 5(a), the value of Tis computed in state 1 in this schedule. This value of Tcannot be
stored anywhere since the architecture does not provide for a status register. However, the value of T
is required in states 2 and 3, to determine which of the two shared operations have to be performed.

Since the value of Twas not stored anywhere, it is impossible to determine what actions are to be
performed in states 2 and 3. Therefore, we can conclude that, it is not practical to share mutually
exclusive operations in architectures that do not have a status register.

A non-sharing schedule (Figure 5(b)), precludes this problem because the value of Tis required
only in state 1 to determine whether to transition to state 2 or state 5. Once this transition to one
of the two states takes place, the value of T is not required anymore. Therefore the lack of a status
register will not cause any problems for implementing a schedule created with a non-sharing scheduler.

Conclusion 1: For non-pipelined architectures, it is better to use a scheduler that does not share
mutually exclusive operations.

3.1.2 Status Pipelined Architectures

Let us try to implement the 'superior' schedule on an architecture with a status pipeline register
(shown in Figure 3(b) and Figure 3(c)). These architectures are more amenable for implementing the
sharing-schedule because the value of T can now be stored on the status registers and used whenever
desired. In our example, T can be stored into the status register in state 1 and used in states 2 and 3
to determine which of the two mutually exclusive operations need to be performed, in these states.

On the other hand, we face problems if we implement a non-sharing schedule on these architectures.
Refering back to our example, the condition-evaluation is scheduled in state 1 and stored in the status
register during the subsequent clock rising event. Thus the value of the status lines are not available
to the controller in state 1. The controller cannot decide whether the next state is 2 or state 5. This
problem can be solved by introducing a no-op (dummy) state after state 1. The status bits will be
available to the controller during this dummy state and the controller can transition to either state 2
or 5 based on the values in the status bits. However, this solution creates inefficiencies, by introducing
dummy states unnecessarily.

Conclusion 2: For architectures with a pipeline register at the status bits, it is more efficient to
use a sharing-scheduler.

7

3.2 Condition Evaluation and Testing

All operations in a given ex~IlJ,ple can be classified into two categories. (i) computation operations
and (ii) condition-evaluation operations. Condition evaluation operations are used to select a path
from a set of paths. In Figure 4, operation b evaluates the condition (I+ 1), whose result determines
which of the three branches have to be taken. Hence this operation is called the condition-evaluation
operation.

The results after condition-evaluation are eventually available on the status lines (which is either
pipelined or non-pipelined). The controller then tests the status lines to determine what future action
is to be taken. This is called condition-testing. The results of condition-testing are used differently,
based on the scheduler type. In Figure 5(a) the value on the status lines determines the action that
is performed in a given state, while in Figure 5(b) the value on the status lines determines the next
state.

There is a strong relationship between architecture specification and scheduling of condition
evaluation and condition-testing operations.

3.2.1 Non-pipelined Architectures

In non-pipelined architectures the status lines will get updated as soon as the condition- evaluation
operation is scheduled. Moreover, since the status lines are not pipelined, the status bits do not get
stored anywhere. Hence testing of the status conditions must occur immediately. In Figure 6(a) we
show this relationship between scheduling a condition-evaluation operation and the availability of the
status signals for testing.

Synthesis algorithms must take into account this relationship that exists because of the architectural
specification. We have showed earlier that a non-sharing scheduler is to be used for non-pipelined
architectures. Since these non-pipelined architectures lack a storage unit on the status lines, and the
result of a condition-evaluation is required to determine which branch is to be taken, the condition
evaluation operation must be scheduled as the last operation in the previous basic block.

Let us consider our example: the first basic block has two operations, a and b. Operation b is the
condition-evaluation operation. Hence, it has to be scheduled as the last operation in the first basic
block for this architecture. If operation b were scheduled earlier (say state 0), p-roper branching is
impossible.

From the above discussion we come to the next conclusion which is: Conclusion 3: For non
pipelined architectures, the condition-evaluation operation has to be the last scheduled operation in the
previous basic block

3.2.2 Status Pipelined Architectures

For status pipelined architectures, the status signals are available as soon as the condition-evaluation
operations are scheduled, but testing can only occur in the following state because of the register
on the status line. Thus there is a one control-step delay between scheduling a condition-evaluation
operation and the testing of the status signals. In Figure 6(b) we show this relationship between
scheduling a condition-evaluation operation and the availability of the status signals for testing.

When scheduling for this architecture, the condition-evaluation must be scheduled at least one
step before the value is required for testing. According to our Conclusion 1, we know that a sharing
scheduler will be used for status pipelined architectures, (Figure 5(a)). Hence the condition-evaluation
operation has to be scheduled accordingly. In our example, the earliest state in which we require to

8

test the conditions on the status signals is state 2. Thus the condition-evaluation operation will have
to be scheduled on or before state 1. Hence operation b can be either in state 0 or state 1.

Conclusion 4: For status-pipelined architectures, the condition-evaluation can be scheduled any
where in the basic block.

3.2.3 Control - Status Pipelined Architectures

For control-status pipelined architectures, the delay between scheduling the operation and the ability
to test its status is at least two control steps. i.e., if the condition-evaluation operation is scheduled
in state 1, the status bits can be tested only in state 3. This chronological relationships between the
scheduling of condition-evaluation operations, the updating of status signals and the testing of the.
status signals for this architectural types is shown in Figure 6(c).

Clock

Controler Schedules
Condition-Evaluation
Operation

Datapath Executes
.Operation

Status Signals
Available for Testing.

Controler Schedules

Condition-Evaluation

Operation

Datapath Executes
Operation

Status Signals

Available for Testing.

Controler Schedules

Condition-Evaluation
Operation

Datapath Executes
Operation

Status Signals

I Non Pipelined Architecture I

I Status-Pipelined Architecture

Control-Status-Pipelined Architecture

Available for Testing. 1-----------'

Figure 6: Condition Evaluation and Testing

When scheduling for this architecture, the condition-evaluation must be scheduled at least two steps
before the value is required to be tested. According to our conclusion 2, the sharing-scheduler will
be used for this architecture too. In our example, since the status bits will be tested in state 2 to
determine which of the operations are to be performed, the condition-evaluation has to be scheduled
in state 0.

9

Scheduler Type Condition Evaluation

NonPipelined Non Sharing
Scheduled in the n'th state of a

Architecture n-state basic block

Status Pipelined Sharing
Scheduled anywhere between

Architecture 1 to 'n' for a n-state basic block

Control Status Sharing
Scheduled anywhere between

Pipelined Arch. 1 to 'n -1' in the basic block

Figure 7: Impact on Scheduling

In some cases (especially when the basic block is very small, or because of dependencies in the basic
block), it may not be possible to have a state after the condition evaluation operation. In such cases it
is necessary to introduce a dummy operation to make the schedule compatible with the architecture.

Conclusion 5: In general, we can conclude that for control-status-pipelined architectures, the
condition-evaluation operation has to be scheduled on or before the penultimate step in the basic block.
No-op introduction may be necessary if the condition-evaluation operation has to be scheduled in the
last step of the basic block.

We have summarized all the above conclusions in Figure 7, which shows the impact of architectural
specifications on the scheduling algorithms.

4 Scheduling Algorithm

The architecture based scheduling algorithm can be now derived based on our conclusions thus far
(Figure 7). The input textual description for the behavior is first translated into a control dataflow
graph (CDFG). This CDFG consists of a set of control nodes C = ci, c2 , •. Cn. All nodes in C can be sep
arated into two categories (i) stmt_blk nodes and (ii) control split/join nodes. Let S = s_l, s-2, .. s_n be
the set of all stmt_blk nodes in C. Each node in S contains a datafl.ow graph which is an interconnected
of dataflow operations.

The overall scheduling algorithm for the CDFG (C) is shown in Algorithm 1. In this algorithm, the
architecture specification is obtained from the designer. Then the architecture_based_list_sched
uling function is invoked on each stmt_blk node in the CDFG. Depending on the selected architecture
type we either invoke a sharing scheduler or a nonsharing scheduler on the global CDFG.

The architecture_basedJ.isLscheduling algorithm is based on 'mobility' similar to the algorithms
published in [10]. Here the nodes are prioritized based on a factor called 'mobility' and are then
assigned to states based on this factor. However since the algorithm has to accommodate a wider
range of architectures, we have to incorporate our conclusions in Figure 7 during the scheduling
process.

The details of the function architecture_based_lisLscheduling are shown in Function l(a). This
function first computes the mobilities of all the nodes in the stmLblk and determines which of the
operation is a condition-evaluation operation. If a non_pipelined architectural style is required, the
function schedules the nodes using the sched ule_nodes function and then modifies the schedule to
ensure that the condition-evaluation operation is postponed to be the last state in the stmt_block. For

10

Algorithm 1: Scheduling_ with_architecturaLconstraints
begin

arch_type = get..architecturaL.speci:fication()

foreach s; E S
architecture_basedJisLscheduling(s;, arch_type);

end for

if arch_type = = non_pi pelined
in voke_nonsharing_sched uler(CF);

else
in voke_sharing_sched uler(CF);

end if

end

Function l(a) architecture_based_lisLscheduling (s;, arch_type)
begin

Let mobilitiesJ.ist be a set of mobility values for all operations
mobilities_list = calculate_nodesJnobility(s;);
cond_op = determine_cond_evaLop(si);

switch arch_type
case non_pipelined_arch:

last_state = schedule_nodes(s;, mobilities_list);
modify _schedule(cond_op, last_state);

case controLstatus_pipelined_arch:
decreaseJnobility _by _one(cond_op);
last_state = schedule_nodes(Si, mobilities_list);
add_no__opsjf_required(s;);

case status_pipelined_arch:
last_state = schedule_nodes(Si, mo bili ties_list);

end switch
end

11

a control-status-pipelined architecture, the mobility of the condition-evaluation operation is decreased
by one and then the scheduling is done. This forces the schedule_nodes function to try and schedule
the condition-evaluation operation at least one step before the last. If the scheduling algorithm was
not succesful in making the condition-evaluation to be one step before the last one, then an additional
no_op state is introduced as the last state in the stmt_blk. For a status-pipelined architecture a simple
mobility-based algorithm will suffice, since there are no special requirements.

The details of the nonsharing scheduler is given in Function l(b). In this algorithm the condition
vectors are computed using the function compute_condition_vectors, for each stmt_blk node in the
CDFG. Computing condition vectors is a two step process. In the first step, all the control variables in
the description are determined. (In VSS, all control variables are named as 'T' followed by a number.
Thus Tl, T2 ... are typical control variable names). The number of control variables in the CDFG
determines the size of the condition vector. In the second step the actual value of the condition vectors
are calculated for each stmt_blk. As an example if a stmt_blk will be executed under the conditions
Tl is 1, T2 is 0 and T3 is a 'dont_care' then the condition vector for that block is 10-. (where '-'
indicates a 'dont-care').

After computing the condition vectors, the controLqueue is initialized with the first stmt_blk of
the design. During each iteration the top node of this queue c is removed and scheduled using
the routine schedule_sequentially. The variable start_state keeps track of the starting value for
the current stmt_blk. After scheduling the stmt_blk state transitions are added to each successor
stmt_blk maintained in the SUCC queue. Finally the nodes in the SUCC queue are appended to the
controLqueue and the next iteration continues.

The sharing scheduler is quite similar to the nonsharing one and the details are shown in Function
1(c). Since all the nodes in the controLqueue have to share the states, the entire controLqueue is
passed to the schedule_sequentially routine. After scheduling all the blocks in the controLqueue
the maximum state value is returned. State transitions are added from the last_state of each element
in the controLqueue to the (max_state + 1). The controLqueue is then replaced with the elements in
the SUCC_ALL queue and the iterations continue.

The results of running the above scheduling algorithm on the example shown earlier in Figure 4 is
shown in the following figure, (Figure 8).

In this figure, the first row contains the results of architecture-based list scheduling on each of the
stmt-blks in the design. There are four stmt_blks in our simple example. The first stmt_blk contains
a condition-evaluation operation (operation b) which is scheduled according to the conclusions in
Figure 7. As shown in Figure 8, the condition-evaluation is scheduled as the penultimate operation in
control-status pipelined architecture, while it is the last operation in the other two architectures.

In the second row (Figure 8) we show the results of applying the corresponding global control
scheduling algorithm. Here the non-sharing scheduling is applied for the non-pipelined architecture
and the sharing scheduler is applied for the other two architectures. The sharing scheduler requires
only five states while the non-sharing scheduler requires eight states to complete the schedule.

In the third row of Figure 8, we show the final control unit and datapath achieved for all the three
architectures. While the datapath is very similar for the three cases the control unit varies widely
for all these three architectures. The non-pipelined architecture has extra transitions since there are
three possible next states from state sl, while the remaining two architectures have extra control lines
to control the status registers.

12

Function l(b) invoke_nonsharing_scheduler (C)
begin

foreach node s1, s2, .. . Sn

compute_condition_ vectors(si);
end for
controLqueue = first..statement_block;

while controLqueue is not empty
Let c = first_element(controLqueue);
Let {SUCC = succi, succ2 ... succn} be the successor stmt_blks of (c):
start..state = schedule_sequentially(start..state, c)

foreach element succi E SUGG where i = 1 ton
start..state = add..state_transition(start..state, start..state + i, cv(c), cv(succi))

end for
controLqueue = append_queues(controLqueue, SUCC);

end while
end

Function 1.l(c) invoke..sharing_scheduler (C)
begin

start..state = O;
foreach node s1, s2, .. :sn

compute_condition_vectors(Si);
end for
controLqueue = first..statement_block;
Let {SU CC.ALL = succi, succ2 ... succn} be the successor

stmt_blks of all the nodes in the control queuec):

end

max_end..state = schedule_sequentially(start..state, control..q_ueue)

foreach element Ciin controLqueue
add..state_transition(last..state(c;), max_end..state + 1, cv(c;))

end for
start..state = max_end..state

controLqueue = SUCC;

13

Non pipelined

~
~:

A·C+1 ~· ~i
B·A+2 ~h
C·A+1

archltecture_based_list_scheduling

•2

a3

•4

A·C+1

B·A+2

C·A+1

~·o
~·1

s•S~a7
•6

~
nan_aharlng scheduler

sO s1
00 s1 S2
01 s1 sS
10 s1 s7

s2 s3

s3 s4
s4 so

s5 s6
s6 so

10010001
10100000
10010000
10010000
10001100

01100010
10100001

10100010
01010001

s7 SO 01010001

final_ design

•2

a3

a4

Status Pipelined

~
~:

A-C+1 ~· ~i
B·A+2 ~n
C-A+1

architecture_baaed_liat_acheduling

~·o
~·1

A-C+1 8.2~.2
B·A+2 a3

C-A+1

1-----------1
SO s1 100100010 I
s1 S2 101000001 I

00 s2 s3 100101000
01 s2 s3 101000100
10 s2 sO 010100010

00 s3 s4 011000100
01 s3 sO 010100010

:)j, s4 so 101000010 I

,-'lJ'lJJF_-n~ -
I mu•1 m 2 l> iH I

final_ design

Figure 8: Scheduling Results

14

Control Status pipelined

E2J·
~·

A-C+1 ~ ~i
B·A+2 ~h
C-A+1

archltectLWe_baaed_liat_acheduling

•2

a3

•4

~·o
~·1

A-C+1 ~2~•2
B ·A+2 3

C·A+1

~
------------,
I - sO 61 101000001 I
: 61 s2 100100010

00 S2 s3 100101000
01 s2 63 101000100
10 s2 so 010100010

00 s3 s4 011000100
01 s3 SO 010100010

s4 sO 101000010

final_ design

5 Experiments and Results

We have incorporated our architecture based synthesis methodology into our VHDL Synthesis System
(VSS), [6,12] which is fully implemented in 'C' language running on a Spare Workstation. We have
tested this architecture based synthesis methodology on a wide range of examples.

In this section we use five different examples to show the relationship between architectural
specification and synthesis. These examples are (i) our simple example introduced earlier. This
example is small enough to provide an good understanding of possible architectural tradeoffs (ii) a
clock division circuit, (iii) a timer circuit (iv) a counter circuit with a specific counting sequence [13]
(v) An example taken from a recent conference publication[5).

The synthesis process was invoked for each of the three architecture types. After synthesizing the
datapath with the appropriate type of scheduling algorithm, the control part was synthesized using
MUSTANG [15] for state encoding and MIS[16] for logic optimization.

For these examples, we compute the actual area of the synthesized design based on the number of
transistors used. In order to compute the number of transistors for the design we use the following
table.

Component B/w #In Equation

ADD-SUB b 34 • (n-1) + 12

ALU b 35'b

MUX b i 4'i'b+4'b

REG b 24

INV 2

NANO i 2'i

NOR i 2'i

OR I 2'1+2

AND i 2'i + 2

MULT i 6'b'b + 14'(b-1) + 34'(b-1)(b-2)

Figure 9: Transistor Equations

5.1 Our example

We have already discussed the synthesis process for this example in the previous section. Let us now
show the synthesis results for all the architectures.

The list of components for the three architectures is shown in Figure 10. The first column shows
the name of all the components used in the design. The second column shows a bit-width and number
of inputs for each components. The last three columns actually indicate the number of components
of that particular type that were used in the final design. In this particular example, three one-bit
registers were used for the non-pipelined architecture, while only two of them were required for the
status-pipelined architecture.

The state based performance characteristics like the maximum number of states, the min/max/total
number of states for a single execution path is shown in the lower portion of the figure.

In this particular case, the datapath turned out to be the same in all the cases. The differences
in area were mainly contributed by pipeline registers. The total register-bits used to implement the
designs varies significantly for the architectures (6 for Non pipelined, 8 for StatusPipelined and 16

15

for Control-Status Pipelined). This difference is caused by the pipelining of control and status lines.
It is clear from Figure 10 that the area relationship is: Areanon_pipelined < Areastatus_pipelined <
Areacontrol-status-pipelined

This a wide range of area/ delay tradeoffs are possible by examining different architecture styles.
Also, in this particular example the schedule with the maximum number of states is the most useful
since the corresponding architecture produces the least area.

Component Non Pipelined Status Pipelined Con/St. Pipelined

Name bw/ln Architecture Architecture Architecture

ALU 2 1 1 1

MUX 3 1 1 1

MUX 2 1 1 1

REG 1 3 3 11

REG 2 0 1 1

REG 3 1 1 1

INV 1 11 8 10

NANO 2 7 13 5

NANO 3 5 6 6

NANO 4 1 2 1

AND 2 1 0 0

AND 3 0 0 0

AND 4 0 0 0

NOR 2 8 0 1

NOR 3 2 0 2

NOR 4 3 0 1

OR 2 2 5 3

OR 3 0 0 0

OR 4 0 0 0

TOTAL NUMBER OF 420 434 612
TRANSISTORS

p
Min States 3 3 3 E

R
F
0
R Max States 5 5 5
M
A
N
c Total States 8 5 5
E

Figure 10: Results - Simple Example

5.2 Timer Circuit

The timer circuit contains two cascaded counters. During a given interval the counters are decremented
continually, The counters can initially be loaded with two values n and m respectively. Since the

16

counters are cascaded the first counter decrements by n before the second counter decrements by 1
After both the counters reach 0 an output pulse is sent.

The synthesis results for all the three architectures is shown in the Figure 11. Here again the
important differences in the area is caused by the pipeline registers and the control logic. The state
register for the non-pipelined register is larger by one bit because of the larger number of states, but
this is compensated for, by the extra pipeline registers in the other architectures.

Component Non Pipelined Status Pipelined Con/St. Pipelined

Name bw/ln Architecture Architecture Architecture

ALU 16 1 1 1
ALU 16 1 1 1
MUX 16/2 3 3 3
MUX 813 1 1 1

MUX 16/3 1 1 1

MUX 16/5 1 1 1

MUX 112 4 4 4

REG 8 3 3 3

REG 16 2 2 2
REG 1 12 23 76

INV 1 33 37 47

NANO 2 26 15 29

NANO 3 16 11 19

NANO 4 5 7 8

AND 2 4 3 2

AND 3 0 0 0

AND 4 0 0 0

NOR 2 23 12 13

NOR 3 11 18 21

NOR 4 3 4 9

OR 2 1 2 6

OR 3 0 0 0

OR 4 0 0 0

Number of Trana 4624 4844 6328

p
Min States E 2 2 4

R
F
0

Max States 16 R 16 28
M
A
N
c Total States 26 16 28 E

Figure 11: Results - Timer

5.3 Clock Division Circuit

The clock division circuit is used to divide the input clock frequency fin by the ratio of N by M,
where N and M are the input ports to the circuit. The output frequency can be characterized by the
equation !out = (N /M) fin·

17

The synthesis results for all the three architectures is shown in the Figure 12. The tradeoffs and
conclusions are very similar to those for the timer circuit.

Component Non Pipelined Status Pipelined Cor11St Pipelined

Name bw/ln
Architecture Architecture Architecture

ALU 23 1 1 1
ALU 23 1 1 1
MUX 2312 7 7 7

MUX 2313 1 1 1

MUX 1/2 1 2 2

REG 23 4 4 4

REG 1 6 12 51

t- - - - - - - ..., ------- t- - - - - - - - --------1

INV 1 21 23 25

NAND 2 16 5 6

NANO 3 2 5 11

NANO 4 2 6 5

AND 2 0 0 1

AND 3 0 0 0

AND 4 0 0 0

NOR 2 6 14 14

NOR 3 3 6 9

NOR 4 2 2 5

OR 2 13 1 2

OR 3 0 0 0

OR 4 0 0 0

Total Number of
6499 6631 7645 Transistors

p
Min States E 8 11 17

R
F
0

12 R· Max States 12 18
M
A
N
c Total States 14 12 18 E

Figure 12: Results - Clock Division

5.4 Rockwell Counter

The Rockwell Counter is one of the industrial benchmarks that has been used to test the performance
of our synthesis system. The counter has a start count of 0 and a terminal count of 3327. During each
strobe the counter increases by 208. If the count is greater than the terminal count the counter will
start at the previous beginning of the count plus 26. If this counter initial value is greater than 207
then the initial value will be previous initial value plus 1. More details of the counter can be found in
[14,15].

The synthesis results for all the three architectures is shown in the Figure 13.

18

Component Non Pipelined Status Pipelined Con/St Pipelined

Name bw/ln
Architecture Architecture Architecture

ALU 12 1 1 1

ALU 12 1 1 1

MUX 1213 2 2 2

MUX 1214 1 1 1

REG 12 2 2 2

REG 1 4 B 31

1----- - - - ..., ------- -------
_______ _,

INV 1 13 18 21

NANO 2 6 3 B

NANO 3 3 2 4

NANO 4 0 3 7

AND 2 0 1 2

AND 3 0 0 0

AND 4 0 0 0

NOR 2 14 7 9

NOR 3 7 6 5

NOR 4 1 2 3

OR 2 3 1 4

OR 3 0 0 0

OR 4 0 0 0

Total Number of
2294 2374 3030 Transistors

p
Min States 3 3 4 E

R
F
0
R Max States 7 7 12
M
A
N
c Total States 12 7 12
E

Figure 13: Results - Rockwell Counter

19

5.5 Kim's Example

This is a random datafl.ow graph used in [5] to discuss a scheduling approach that tries to minimize
the states, by using various transformation techniques. The example consists of a couple ,,f branch
statements with long calculation chains of addition and multiplication.

The synthesis results for all the three architectures is shown in the Figure 14.

Component Non Pipelined Status Pipelined Con/St Pipelined

Name bw/ln Architecl!Jre Architecture Architecture

ALU 16 1 1 1
ALU 10 1 1 1

MULT 10 1 1 1
MUX 10/8 1 1 1
MUX 10/6 1 1 1

MUX 16/2 2 2 2
MUX 11/2 1 1 1

REG 11 12 12 12

REG 1 5 6 45
I- - - - ---- ------- 1---------1 -------

INV 1 30 31 31
NANO 2 18 19 19
NANO 3 10 7 8
NANO 4 8 3 5
AND 2 2 5 3
AND 3 0 0 0
AND 4 0 0 0
NOR 2 18 13 24
NOR 3 19 22 20
NOR 4 3 8 6
OR 2 12 4 11
OR 3 0 0 0
OR 4 0 0 0

Total Number of 9040 Transistors 9020 10024

p
Min States E 13 13 13

R
F
0
R Max States
M

15 15 17

A
N
c Total States
E

28 15 17

Figure 14: Results - Kim's Example

5.6 Summary of Results

In the following table we show the summary of the results. In this table, the first two columns shows
the design name and the selected architectural style. The third column shows the total number of
transistors that were used by VSS to implement the design. The next three columns show the total

20

number of states in the design, and the paths with min and max lengths.

Transistors TotalStal•• MinStatee MaxStatee

NonPipelined Arch. 420 8 3 5
· Simple Example Stab.ls Pipelined 434 5 3 5

Control Status Pipelined 612 5 3 5

NonPipelined Arch. 4624 26 2 16

Timer Stab.ls Pipelined 4844 16 2 16

Control Status Pipelined 6328 28 4 28

NonPipelined Arch. 6499 14 8 12

Clock Division Stab.JS Pipelined 6631 12 11 12

Control Status Pipelined 7645 18 17 18

NonPipelined Arch. 2294 12 3 7
Status Pipelined 2374 7 3 7

Counter Control Status Pipelined 3030 12 4 12

NonPipelined Arch. 9040 28 13 15

ICCAD example Status Pipelined 9020 15 13 15

Control Status Pipelined 10024 17 13 17

Figure 15: Summary of Results

6 Conclusions

The research presented in this paper clearly shows that architectural constraints play a very important
role in the synthesis process. We have defined a new methodology that would incorporate such
architectural constraints during the scheduling process. Based on the architectural constraint provided,
the resultant design varies in area and performance significantly. From our experiments with this
methodology we conclude the following:

• Synthesis tools should be :flexible enough to handle a wide range of architectures as required by
designers. Tools intended for a single architecture may not be useful for other architectures and
hence may not really be usable.

• Architectural constraints are more useful than typical synthesis constraints like number of func
tional units, because typically designs do not contain more than one functional unit per operation
type.

• Scheduling for the minimum number of states, does not necessarily produce a design of acceptable
quality. Schedules with the minimum number of states may not be implementable in many
architectures.

7 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant #91-DJ-146). We are
grateful for their support. We would also like to thank Viraphol Chaiyakul for his suggestions and
useful discussions during the course of this project.

21

8 References

[1] R. Camposano, "Path-Based Scheduling for Synthesis,'' IEEE Trans. CAD, Vol.10, no.1, pp.85-93,
Jan. 1991.

[2] R. Camposano and W. Rosenstiel, "Synthesizing Circuits from Behavioral Specifications," IEEE
Trans. CAD, vol.8, no.2, pp.171-180, Feb. 1989.

[3] R. Camposano and W. Wolf, High-Level VLSI Synthesis, Kluwer Academic Publishers, 1991.

[4] D.D.Gajski, N. Dutt, A. Wu, S. Lin, High-Level Synthesis, Kluwer Academic Publishers, 1991.

[5] T. Kim, J.W.S. Liu, and C.L. Liu, "A Scheduling Algorithm For Conditional Resource Sharing,"
Proc. ICCAD'91, pp.84-87, 1991.

[6] J.S. Lis and D.D. Gajski, "Synthesis from VHDL," Proc. IEEE Int. Conf on Computer Design'88,
pp.378-381, 1988.

[7] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the Behavioral Synthesis of ASIC's,"
IEEE Trans. CAD, vol.8, no.6, pp.661-679, Jun. 1989. .

[8] C.-J. Tseng, R.W. Wei, S.G. Rothweiler, M. Tong and A.K. Bose, "Bridge: A Versatile Behavioral
Synthesis System," Proc. 25th DAG., pp.415-420, 1988.

[9] K. Wakabayashi and T. Yoshimura, "A Resource Sharing Control Synthesis Method for Condi
tional Branches," Proc. ICCAD'89, pp. 62-65, 1989.

[10] B. Pangrle and D. D. Gajski, "State Synthesis and Connectivity Binding for Mircoarchitectural
Compilation." Proc. ICCAD'86.

[11] A.Parker, J. Pizzaro and M.Mlinar, "MAHA: A Program for Datapath Synthesis", Proc. DAC'86.

(12] J.S. Lis and D.D. Gajski, "Behavioral Synthesis from VHDL Using Structured Modeling," Tech
nical Report 91-05, University of California, Irvine.

[13] D.Gajski, J.Lis, N.VanderZanden and A.Wu, "Synthesis from VHDL: Rockwell-Counter Case
Study,'' Technical Report 90-09, University of California, Irvine.

[14] N. Dutt, "GENUS: A Generic Component Library for High Level Synthesis," Technical Report
88-22, University of California, Irvine.

[15] S.Devadas, H-k.Ma, A.R.Newton and A. Sangiovanni-Vincentelli "MUSTANG: State Assignment
of Finite State Machines Targeting Multi-Level Logic Implementations", IEEE Trans. CAD, Dec
'88.

[16] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang "MIS: A multiple level logic
optimization system", IEEE Trans. CAD, Nov '87.

(17] U. Prabhu and B.M. Pangrle, "Superpipelined Control and Data Path Synthesis" DAG Proceed
ings, June '92.

22

