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The Effect of Dipole Model Misspecification on
the Bias and Variance of Evoked Potential
Amplitude and Amplitude Ratio Estimates

Valerie A. Cardenas

Abstract

In dipole modeling, the generators of evoked potentials (EPs) are modeled as
dipoles inside a misspecified model of the head. Most research studies EP changes as
a function of stimulus characteristics, disease states, or other differences between data

sets. The Dipole Components Model (DCM) is a dipole modeling algorithm that can
be applied to multiple data sets gathered under different experimental conditions,
and can be used to estimate effects on the amplitude of the equivalent generators
(amplitude estimates).

The DCM was applied to auditory evoked P50 EPs for comparison of the

reliability (measured by the intraclass correlation coefficient) of P50 suppression es
timated using dipole modeling vs. peak-picking. The DCM fit P50 using a homo
geneous sphere head model, a decaying sinusoid magnitude function, and a single
dipole. Conditioning and testing amplitude parameters were fit, and P50 suppression
was measured by dividing the testing amplitude by the conditioning amplitude (am
plitude ratio). The DCM improved amplitude ratio but not amplitude reliability over
peak-picking, an apparent paradox. It was proposed that the estimation of amplitude
and amplitude ratios might be differentially affected in a noisy, misspecified dipole
model.

Using the theory of linear least squares fitting, it was shown that dipole
model misspecification led to biased amplitudes and unbiased amplitude ratios for

three generator cases: (1) single dipole, (2) equal amplitude multiple dipoles, and (3)
multiple dipoles with equal amplitude ratios across data sets. The variance of ampli

tudes and amplitude ratios could not be shown theoretically, so P50 was simulated by
generating potentials due to dipoles in a boundary element skull model and adding
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EEG noise. Modeling of the simulated P50 using a homogeneous sphere showed that
model misspecification and noise led to more variation in amplitude estimates than
derived amplitude ratios.

It was proposed that improved amplitude estimation might be achieved by
discarding the model. A model-free amplitude estimation method using singular
value decomposition (SVD) was developed and tested using simulated and real P50
data. The SVD method estimated reliable amplitudes and ratios when the data were

generated by one of the three cases above.

44 º
OO/
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Chapter 1

Introduction

The study of brain electrical activity is a non-invasive method for investi

8ating brain function. Evoked potentials (EPs) denote brain electrical activity that is
elicited or evoked by an external stimulus, and event-related potentials (ERPs) denote
brain electrical activity that occurs in response to an internally generated stimulus.
In this dissertation, my use of “evoked potentials” includes event-related potentials,
also.

Dipole modeling is an EP analysis technique which promises to advance
knowledge of brain function. In dipole modeling, a method based on electric field
theory, the neural generators of evoked potentials are modeled as current dipoles
inside the head, with the equivalent dipole generators being those which gives rise
"scalp potentials most like the measured potentials. Dipole modeling estimates the
location, orientation, and time-varying activity of the equivalent dipole generators of
°voked potentials.

Most dipole modeling research has focussed on fitting one or more dipoles to
* single evoked potential average [1, 2, 3, 4, 5, 6, 7, 8, 9), with the resulting location
P**meters being of most interest. Most clinical and research applications of evoked
Pºtentials, however, are designed to study changes in the EP as a function of stimu
lus characteristics, drug states, disease states, or other between subject differences or
within subject experimental manipulations. In analysis of variance or general linear
*dels nomenclature, these between subject or within subject differences are called

º
º



covariate effects. In other words, a covariate is a predictor variable for the experimen
tal manipulations (predicting the response to a conditioning stimulus vs. the response
to a testing stimulus, for example), and the covariate effect is a measure of the brain
response to experimental manipulations (i.e., the covariate effect is the magnitude
of the difference between the conditioning and testing responses). Dipole modeling
methods used in the papers cited above do not provide a means for analyzing multiple
data sets and estimating such covariate effects.

In 1990, Turetsky, Raz, and Fein [10] proposed the Dipole Components
Model (DCM) as an advance in the conceptual framework of dipole modeling. In the
DCM, dipole sources for multiple data sets are fit concurrently with the constraint

that the same dipoles (i.e., same locations and orientations) generated the data for
all the data sets, and the dipoles are allowed to have differing time-varying activity
for each data set. The DCM can be applied to multiple data sets gathered under dif
ferent experimental conditions or from different subjects, and can be used to estimate
covariate effects on the amplitude and latency of EPs.

Although the analysis method of dipole modeling is over 20 years old, the
most popular dipole modeling algorithm (BESA—Brain Electrical Source Analysis,
NeuroScan, Inc) is crude, using simplified physical head models and a nonparametric
time-varying dipole magnitude function. These simplifications result in a tractable,
but misspecified, problem. Previous research has shown that misspecification of the
physical head model results in biased location and orientation parameter estimates

(i.e., by biased estimates, I refer to estimates with systematic errors that cannot be
“averaged” out) [11, 12, 13, 14, 15]. There has been little exploration of the effect of
dipole modeling misspecification on the equivalent generator amplitude and amplitude
ratios.

This dissertation investigates the effect of dipole model misspecification on
the bias and variance of amplitude and derived amplitude ratio estimates for evoked

potentials, when the Dipole Components Model is used to estimate covariate effects
on EP amplitude. The estimation of covariate effects on EP amplitude using the
DCM is described in detail in Section 1.3.4.

The experiment that led to my interest in the effects of model misspecifica

tº



tion on estimation of covariate effects on amplitude and the derived amplitude ratios
is described in Chapter 2. In that chapter, I compared the reliability of the audi
tory evoked P50 conditioning-testing (C-T) ratio (an amplitude ratio) as measured
by peak-picking versus dipole modeling.

The auditory P50 evoked potential is recorded in response to click stimula

tion. P50 has received great attention in the psychiatric community in recent years
due to the phenomenon of P50 suppression. P50 suppression occurs when P50 is
recorded in a paired click (or conditioning-testing) paradigm. In normals, the ampli
tude of the P50 response to the second (testing) click is reduced relative to the first
(conditioning) click, when the clicks are separated by less than one second [16, 17, 18].
This suppression does not usually occur in schizophrenics or in about half of their
first-degree relative [19, 20, 21, 22], and has been proposed as a potential genetic
marker of the predisposition or vulnerability to schizophrenia.

P50 suppression is typically measured by the conditioning-testing (C-T)
ratio, which is defined as the amplitude of the testing click response divided by the
amplitude of the conditioning click response. Unfortunately, the excitement over
these findings and the interest of the psychiatric research community in applying
the P50 methodology to the study of schizophrenia has been tempered by the low
test-retest reliability (as evidenced by a small intraclass correlation coefficient) of
the C-T ratio as measured by peak-picking [23, 24]. A small intraclass correlation
coefficient (ICC) indicates that the variability of the C-T ratio within a subject is
large in comparison to the variability of the C-T ratio between subjects. With
peak-picking, noise makes independent contributions to the conditioning and testing
amplitude estimates, with more than cumulative effects on the C-T ratio. Because

the Dipole Components Model uses multiple channels of information and because the

DCM can simultaneously fit the conditioning and testing responses (thus “pooling”
the effect of noise during the responses), I suspected that the DCM might lead to a
more reliable C-T ratio.

Dipole modeling was applied to the auditory evoked P50 response as col
lected in a conditioning-testing paradigm, and amplitude parameters were fit to the
conditioning and testing responses. Dipole modeling significantly improved the re



liability (as measured by the ICC) of the C-T ratio as compared to peak-picking,
implying that even a misspecified dipole model provided an advantage over peak
picking. Paradoxically, dipole modeling did not lead to an increase in the reliability
of the conditioning and testing response amplitude estimates over peak-picking, only
improving the reliability of the C-T ratio. These results led me to ask two questions:
(1) The DCM resulted in more reliable C-T ratios, but were these ratio measures
unbiased? and (2) Will DCM amplitude ratios always be more reliable than ampli
tude measurements (i.e., what is the variance of the estimates of covariate effects on
amplitude as compared to the derived amplitude ratios?).

In order to answer question (1), I turned to the theory of linear least squares
fitting as presented in Chapter 3. Chapter 3 shows that in two special cases, of which
the P50 data analyzed in Chapter 2 is one, misspecification of the dipole model
results in biased estimation of the covariate effects on amplitude, although the derived
amplitude ratios are unbiased.

The proofs in Chapter 3 assumed noise-free evoked potentials, and therefore
could not determine the variance of the covariate effects on amplitude estimated by

dipole modeling or of the derived ratio estimates. Chapter 3, Section 3.2.5 exam
ines the variance of covariate effects on amplitude assuming evoked potentials with
Gaussian noise (a simplification), and shows that the variance of covariate effects on
amplitude estimated by dipole modeling is not easily determined analytically, even
when simplifying assumptions are made. Section 3.2.5 shows that simulations are
necessary to determine the variance of the estimated covariate effects on amplitude,
and to answer question (2).

Chapter 4 describes the simulations that were used to investigate the effect
of dipole model misspecification on the variance of the estimators of covariate effects
on amplitude, and the derived amplitude ratios. In summary, the results of Chapter 4
show that the variance of the derived amplitude ratios is smaller than the variance of
the estimators of covariate effects on amplitude. The variances of the derived ratios
and the estimators of covariate effects on amplitude were compared to their means,

and the decreased ratio variance was evidenced by the increased coefficient of variation
(COV) of the amplitude ratios, where the COV is defined as £/SD. Increased



COV's result in increased reliability of derived amplitude ratios as compared to the
estimators of covariate effects on amplitude. The results of Chapter 4 also showed
that the concurrent presence of model misspecification and EEG noise did not lead
to biased derived amplitude ratio estimates.

The results of Chapter 4 showed that the derived amplitude ratios were ac
curately and reliably estimated in the presence of model misspecification and noise,
and the results of Chapter 3 show that this is because the effect of model misspecifi
cation “cancels” for a ratio measure. This led me to question whether a model was
truly necessary for ratio estimation. In Chapter 5 I propose a method for estimation
of evoked potential amplitudes and amplitude ratios that uses multiple channels of

data but does not use the dipole model. When this method is applied to the simu
lated data used in Chapter 4, it results in increased amplitude COV's as compared
to dipole modeling, and the ratio COVs are comparable to those obtained by dipole
modeling. In addition, when this “model-free” method is applied to the real P50

data used in Chapter 2, it results in an improvement in reliability (as measured by
the ICC) comparable to the improvement gained using dipole modeling. The model
free method is much faster and easier to use than dipole modeling, and may be very
useful for analyzing data such as P50 where ratios are of most importance.

Chapter 6 discusses the results of this dissertation, and suggests future re
search.

The remainder of this chapter will introduce the reader to evoked poten

tials and the analysis of evoked potentials using dipole modeling. This chapter will
also introduce notation used throughout the dissertation, as well as review the intr
aclass correlation coefficient, the statistic used to evaluate the variance of covariate
estimates.

Notation: Bold-faced letters indicate vectors, bold-faced script letters indi
cate matrices, and normal-faced italic letters indicate scalars. Unit vectors (vectors
of length 1) are indicated by a .



1.1 Evoked Potentials

The electrical activity of the brain can be recorded non-invasively from the

scalp. Evoked potentials (EPs) are measurements of the surface electrical activity of
the brain in response to a stimulus. A single stimulus response has a small amplitude
at the scalp and is obscured by other physiological activity, such as the electroen
cephalogram (EEG) or electromyogram (EMG). Therefore, responses are elicited re
peatedly and averaged in order to enhance the time-synchronized evoked potential.
Generally, the term evoked potential refers to the averaged response.

EPs can be classified according to stimulus type, time of occurrence, and
subject task. EPs in response to auditory, visual, and somatosensory stimulation are
routinely recorded, and give information about the specific sensory system stimulated.
EPs can be recorded at short and long latencies post-stimulus. Subcortical EPs are
generated by the afferent sensory pathway to the primary sensory cortex. Subcortical

EPs typically have latencies of less than 10–20 ms and amplitudes of less than 1 p.V at
the scalp. The auditory brainstem response (25) and the somatosensory P13 [26, 27]
are examples of subcortical EPs. Short latency cortical EPs are generated by primary
sensory cortex, and have latencies ranging from 10-100 ms and amplitudes of up to 10
pi V or more. The somatosensory N20 is a classic example of a short latency cortical EP
|28, 29). Subcortical and short-latency cortical EPs are considered to be “hard-wired,”
and the physical characteristics of the stimulus determine the response. As such, no
subject participation or awareness is required, and many subcortical and short-latency
EPs can be recorded while a subject is sleeping. These short-latency EPs are often
referred to as exogenous potentials (30). Longer latency cortical EPs reflect processing
by higher order cortical areas (i.e., not primary or perhaps even secondary cortex),
and typically have latencies of over 100 ms and are usually larger in amplitude than
the short latency cortical EPs. Some long-latency cortical EPs, of which the P300 and
readiness potential are examples, require the subject to perform a task or at the very
least stay awake and alert. These EPs seem to reflect cognitive processing, because
the EP can still be recorded even when the physical characteristics of the stimulus
change (i.e., a P300 can be recorded in response to either an unexpected stimulus or



the absence of an expected stimulus; therefore the P300 response must be cognitive,
not sensory). These long-latency EPs are often referred to as endogenous EPs (30).

EPs are typically characterized by describing the latency, polarity, and am
plitude of peaks in individual channels of data, a process known as peak picking.
These peaks are usually the primary measures of the EP components. Many re
searchers have collected EPs to visual, auditory, and somatosensory stimulation from
subjects with no sensory deficits. These data were used to determine normative val
ues for the peak characteristics of each type of EP. These normative values have been
used to establish guidelines for the clinical use of EPs [31, 32].

Short latency exogenous EPs are clinically useful for testing conduction
along afferent pathways. A short latency EP with an abnormal peak latency may
signal a lesion in the afferent pathway [31]. EPs are also used to monitor activity of
the brain or afferent structures during surgery [33]. Some longer latency endogenous
EPs seem to reflect the activity of complex cognitive or psychological processes, and
are used to study psychiatric populations [19, 34, 30]. In these clinical applications,
peak characterization (or peak picking) is the most frequent method of analysis.

Many of the clinically useful applications of EPs depend on the stability
and reliability of the EP over time. EP amplitudes as measured by peak picking are
less reliable than are EP latency measures; therefore EP latencies are more often used
clinically. Nevertheless, in some research work, amplitude changes have been observed
in the absence of latency changes [35, 36, 18, 37]. A reliable method of amplitude
measurement is required before these observations can be employed clinically, and
peak picking is not satisfactory.

Peak picking is limited because it cannot describe the pattern of brain acti
vation that resulted in the presence of an EP. An EP component (i.e., "peak”) may
reflect the summation of electrical activity from two or more brain regions. Peak pick
ing cannot separate these overlapping contributions and instead identifies one peak.
In such a case, the latency of this peak may not represent the peak latency of brain
activation. Figure 1.1 describes such a case. Plot (a) shows the overlapping activity
(in time) of two widely separated simulated neural generators. Plot (b) shows the
signal that would be generated by these overlapping contributions at the vertex elec



trode, if no noise were present. The shape is irregular, and may lead one to suspect
multiple generators. However, plot (c) shows the same signal when noise is added,
and plot (d) shows a filtered version of the data from plot (c). Only a single peak is
evident in plot (d), and this demonstrates one way that peak picking can be "fooled.”

Peak picking is limited because it cannot describe the brain changes that
cause an abnormal EP. Peak picking is also limited because it describes the latency
and amplitude of EP peaks (i.e., peak picking characterizes a single time point in
the wave), and these peak measurements are sensitive to such things as noise (i.e.,
EEG and EMG noise), filter settings, errors in electrode placement, and electrode
impedance. These limitations have led investigators to use additional techniques to
describe the EP, such as principal components analysis, topographic mapping, and
dipole modeling. Several of these techniques attempt to locate the neural generators
of the EP.

1.2 Neural Generators of Evoked Potentials

Investigators agree that short latency EP components are generated by
structures along the afferent pathway, and educated “guesses” about the location
and orientation of the equivalent generators of short latency EPs can be made. How
ever, the neural generators of long latency EP components cannot be related to the
anatomy of afferent pathways, and the location and orientation of long latency com
ponents are therefore more difficult to determine. In addition, anatomy can only
suggest neural generator location and orientation, and the behavior of the genera
tor over time (i.e., intensity of response) cannot be characterized without additional
information. Knowledge of the location, orientation, and time-varying magnitude of
EP generators would allow more precise diagnosis of functional brain abnormalities,
and potentially might lead to a better understanding of how psychological processes
are related to brain structures.

The techniques employed by researchers to attempt to locate the sources of
EPs include intracranial recording of EPs [38, 39, 40, 41, 29, 42], characterization of
EP changes due to lesions [43, 44, 45, 46,47], topographic mapping of EPs [48, 49, 50],
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Figure 1.1: How overlapping generators can fool peak picking
Plot (a) shows the time-varying activation of two generators widely separated in
space, but overlapping in time. Plot (b) shows the summation of the two generators
as it would appear at the vertex. Plot (c) is a noisy version of the data in plot (b).
Plot (d) is a filtered version of the data in plot (c). Only a single peak is evident in
plot (d), which would fool peak picking.

-
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and volume conduction models based on electric field theory (8, 9, 1, 51, 7, 10, 52].
Intracranial recordings are obtained from surgically implanted electrodes. Only sub
jects with severe neurological disorders are surgically implanted, and the electrode
positions are determined by clinical considerations, not research considerations. Le

sion studies are limited because of the difficulty in determining the extent of the lesion,
interpreting the effect of the lesion on the EP, and because in humans one cannot
choose the lesion site. It is also difficult to duplicate results, since lesions differ from
patient to patient. Difficulties associated with topographic mapping include determi
nation of which EP components to examine, correlating the map with the assumed
underlying sources, and selection of an appropriate reference electrode. Volume con

duction models make simplifying assumptions about head shape and conductivity,
and the solutions are not unique. In summary, no method is ideal.

Because this dissertation investigates the effect of dipole model misspecifi
cation on the bias and variance of covariate estimates, I will not consider intracranial

recordings, lesion studies, or topographic mapping further. The next section intro
duces the dipole model.

1.3 Dipole Modeling

The analysis of evoked potentials by dipole modeling is based on electric
field theory. In this method, the neural generators of evoked potentials are modeled
as current dipoles. There are several conditions under which a compound action
potential can be well modeled by a dipole, such as when it is initiated, when it
traverses a narrow region of the volume conductor, when it reaches the end of an axon,
when it traverses a short axon, when it traverses a curved axon, and when it traverses a

boundary between adjacent regions of differing media conductivity [53, 54, 55, 56]. In
addition, synchronous activity of cortical pyramidal cells, which are oriented toward
the cortical surface, causes intraneuronal current flow parallel to the neurons. This
results in different cortical layers acting as sources and sinks, and thus generates a
current dipole [57, 58, 59 or quadrupole (60) oriented perpendicular to the cortical
layers. The effect of any arrangement of sources and sinks (or cortical source) in the
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far-field can be well-approximated by a dipole (61]. The following sections present the
equation which describes the surface voltage due to a dipole inside a homogeneous
sphere and methods for solving the inverse problem.

1.3.1 Describing Equation

Several simplifying assumptions have been made in order to write the fol
lowing analytical expression for the surface voltage due to a neural generator in the
head. These are:

1 The head is a sphere filled with a medium of homogeneous conductivity.

2 The neural generator is a point current dipole.

3 The location of the generator is fixed over its time of activation.

4 The radius of the head is 1 unit (the computed potentials can be easily
scaled if the radius does not equal 1).

5 The conductivity of the head is 1 unit (the computed potentials can be
easily scaled if the conductivity does not equal 1).

A current dipole in a sphere, as well as the coordinate system to be used

in this dissertation, is illustrated in Figure 1.2. The signal at scalp electrode k,
(k = 1,..., n), at time t due to single dipole is [62, 52]:

where:

Vºt = fºl(6)&1 + f2(6)&2 + f2(6)éra

fea(6) = f;(6) — f**i)4(9) k = 1,..., n; d = 1, 2, 3
— -2a

fº(0) = =#4 + * + mkabk-º'd
Ç Fº k = 1,..., n + 1; d = 1, 2, 3

(91, 02, 9,)"69

& (&, 2 &2, &a)"

(1.1)

(1.2)

(1.3)
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775 - (mel, nº mº)"
pk = | nº – 6 ||2 (1.4)

6. – myand a “-le (1.5)
pk

bk = me • 6 (1.6)

Çs = p + p - bºp, (1.7)

where 6 is a vector representing the dipole location in Cartesian coordinates. The
vector of dipole magnitudes in Cartesian coordinates at time t is 8.. I use the notation
8, instead of £(t) because evoked potentials are discrete time-series, not continuous
time-series. The electrode location k in Cartesian coordinates is me, d indexes the
three coordinate directions, and mari is the location of the reference electrode. In the
coordinate system used in this dissertation, the x axis runs between the nasion and

inion (nasion is positive), the y axis runs between the left and right auditory meatus
(left is positive), and the z axis runs between the positive vertex and the intersection
of the x and y axis. This is a right handed coordinate system.

Alternatively, when the generator is assumed to be fixed in location and
orientation, Equation 1.1 can be expressed in spherical coordinates, where b1 is the
co-latitude and p2 is the longitude. The signal at electrode k at time t is then:

Vºl = f(6, ©)p, (1.8)

where

fi (6, q}) = fºl(6).sindicos(p2 + f2(6)sindising 2 + f2(6)cos(bi (1.9)
k = 1,...,n

-

and where

V&# + š, + &
| & ||2

pt
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Figure 1.2: Coordinate System used.
y
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i.e., the following relationships hold

&l - pºsindicos(52

&2 - pºsing 1sin ºz (1.10)
&3 - pºcosºl

As noted previously, it is trivial to scale the potentials when assumptions 4
and 5 are violated, and all other assumptions still hold. This is accomplished in
the following manner. Let R be the true radius and M be the true conductivity.
According to [62], the scaled potentials S are then

1
* = MF; V,

Linear superposition holds in a volume conductor, therefore when more than
one dipole is present in the sphere, the voltage measured at the surface is equivalent
to the algebraic sum of the individual contributions. Therefore, if Vºt is generated by
l dipoles, the signal at electrode k becomes

l

Vºi = XL fºi■ 0, b)pit
j=1

where fri(6;, q};) is the weighting function at electrode k due to dipole i, and pit is
the dipole magnitude function for dipole i at time t.

Previous investigators have used more realistic (and thus more complicated)
models for the head than the homogeneous sphere model. The head is clearly very
different from a homogeneous sphere, and the use of this simple head model introduces
model misspecification. Since this dissertation is concerned with investigating the
errors in the estimates of covariate effects when model misspecification is present,
and also because the simple head model is computationally advantageous, I will be
using the homogeneous sphere dipole model in my data analysis and simulations.

Solutions to the homogeneous sphere dipole model can be found using either
a time domain approach [1, 63] or a frequency domain approach [52, 64, 65]. In
addition, the problem can be solved by estimating all parameters using nonlinear
optimization techniques, or by “splitting” the problem into nonlinear and linear parts,
and solving each part using appropriate numerical methods. In this dissertation, I
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will only be solving the intracranial dipole model in the time domain, and will focus
my review on time domain solutions.

Most dipole modeling of evoked potentials in the time domain has focussed

on fitting one or more dipoles to a single evoked potential average, and do not esti
mate covariate effects. The estimation of covariate effects (i.e., the size of an effect on
the amplitude or latency of an EP due to experimental manipulations) is essential for
EP research. The Dipole Components Model (DCM) is an extension of dipole mod
eling in the time domain to include estimation of covariate effects on EP amplitude
and latency, and the DCM will be reviewed. Some discussion of frequency domain
solutions will be included, because of the ease of estimating covariate effects on EP
amplitude and latency in the frequency domain.

It is important to understand how the problem is solved when “split” into
linear and nonlinear parts, so I will describe linear and nonlinear solutions in great
detail.

1.3.2 Linear Solutions

In the dipole model, the scalp recorded potentials are a function of the
equivalent dipole generator location, orientation, and magnitude over time (see Equa
tions 1.1–1.9). In Equation 1.8, the equivalent dipole generator location and orien
tation are fixed, and the scalp recorded potentials are a nonlinear function of dipole
location and orientation (the weighting function fº(0, b) is a nonlinear function of
dipole location and orientation), and a linear function of the dipole magnitudes pe. In
Equation 1.1, only the dipole location is fixed, and the scalp recorded potentials are
a nonlinear function of dipole location (the weighting function fºd(0) is a nonlinear
function of the dipole location), and a linear function of the dipole magnitudes in the
three Cartesian coordinate directions, &la.

If the locations and/or orientations of the neural generators are fixed and ei
ther known or have been previously estimated, then the electrode weighting functions

fº(6, 4) can be easily computed by Equations 1.1–1.9. This situation can arise on the
rare occasion when the locations and orientations of the generators are known from
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anatomy. This situation occurs more frequently when the dipole model is “split”
into linear and nonlinear parts, i.e. when a linear method is used to estimate the
linear parameters after a nonlinear optimization routine is used to estimate the other

parameters (usually location and orientation, but sometimes time varying magnitude
parameters also).

If the locations and orientations of the dipole generators are fixed, then
Equation 1.8 must be solved for the dipole locations, orientations, and dipole mag
nitudes over time. Assuming that the dipole location and orientation are known or
have been estimated using a nonlinear optimization routine, the electrode weighting
functions fº(6, ©) can be computed by Equations 1.1- 1.9. In this case, only the
dipole moments over time, pi, must be solved for each generator, and this is a linear
problem. The voltage at a number of electrodes due to several sources can be written
as a matrix problem, as follows.

fil fix . . . fil V11 V12 . . . Vi.
p11 P12 ' ' ' plu

for f32 . . . fai V21 V22 . . . V2,
p21 D22 ' ' ' p2

fal fa2 . . . fai
- * *

º
– V31 V32 . . . V3,

- - - - pl1 pl? ' ' ' pl
- -ful fn2

- - -
ful ºu Val Vº2

- - -
Vau

where u is the number of time points, n is the number of electrodes, and l is the
number of dipole sources. The notation is as follows: Vºt is the recorded voltage at

electrode k at time point t, fe; is the electrode weighting function fº,(6;, ■ p;) for dipole
j, and pit is the dipole magnitude for dipole j at time point t. In this example, there
are 3 location and 2 orientation parameters for each dipole, and u dipole moment

parameters for each dipole (5 + u■ x l parameters total, 5 × l parameters known or
estimated using a nonlinear method, and u × l parameters estimated linearly).

The problem can still be written in matrix notation if the locations of the
generators are fixed but the orientations are allowed to vary. A fixed location, varying
orientation generator can be used to model a sequentially activated section of cortex.
The centroid of the cortical section is the location of the dipole, and the dipole
orientation varies as the cortex is activated. The fixed location, varying orientation
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dipole is a simplification of the true physiology, as the centroid of the activated cortical
section would shift and would not be concurrent with the centroid of the entire cortical

section.

For a fixed location and variable orientation dipole, Equation 1.1 must be
solved. Assuming that the locations of the generators are known or have been esti
mated using a nonlinear optimization routine, the weighting functions fºd;(6) can be
computed by Equations 1.2-1.7. In this case, the dipole magnitude in each coordi
nate direction can be estimated linearly (this is sometimes referred to as solving for a
“triplet” dipole). When dipole orientations are allowed to vary over time, the voltage
at a number of electrodes due to several sources can be written as follows.

( &n
- - -

&n )
{121

- - -
&21

{131
- - -

Šual

fill fi21 fial
- - -

fill fi2l fial $112
- - -

Šuiz V11
- - -

Via

fail fazi fºal fill fi2l fia §122
- - -

&22
-

V21
- - -

V2.
; : : ; : : £ia. ... tº l l ; “. .

fn11 fn2. fnal Jail fn2 fnal
- -

: Val
- - -

Vau

{11.
- - -

Šull

{12 & 2.

\ {13 & 3 )

where fed; is the electrode weighting function fed;(0) for dipole j, and &d, is the
dipole moment at time point t in coordinate direction d for dipole j. In this example,
there are three location parameters for each dipole (which are known or estimated
using a nonlinear optimization routine), and 3 × u linearly estimated dipole moment
parameters for each dipole (3 + 3 × u) x l parameters total).

In the previous two examples, it was assumed that the dipole locations
and/or orientations were known or had been estimated by a nonlinear optimization
routine. The dipole moments were then solved at each time point. This leads to a large
number of estimated parameters. In order to reduce the total number of parameters
estimated, the time-varying dipole magnitude function can be parameterized.

s
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The Dipole Components Model (DCM) of Turetsky [10] fixes the location
and orientation of each dipole, and parameterizes the time-varying dipole moment
function as a decaying sinusoid. Nonlinear optimization is used to estimate the loca

tion, orientation, and decaying sinusoid parameters for the equivalent dipole genera
tor. The decaying sinusoid dipole magnitude function is described by:

p =sin(*(-)-º (1.11)
and the equation for Vet is

l

Va =XXojpt fº(9;, bº) (1.12)
j=1

where X is the wavelength, T is onset latency, 3 is the decay of the decaying sinusoid,
and o is the intensity or amplitude of the dipole. If the dipole location, orientation,

and magnitude function shape (described by A, T, and 3) are known or have been
estimated, then fº,(9;, b) and p, can be easily computed. The linear problem of
estimating the magnitude of the decaying sinusoid can be written in matrix notation,
as follows,

■ filp11 fi2p21
- - -

filpli \ ■ V11 \

fn1.pii fn2p21
- - -

faipu Val

filp12 fi2p22
- - -

filpi, V12

- - - -

■ º
-ozfn1p.2 fºop-2 fºlpiz

- - VA2

Ol

filpin fizp2, filpli Val

\ fn1pi. fn2p2.
- - -

faipu ) \ Vau )

where fºg, pit, and Vºt are the same as described previously, and o, is the magnitude
of the dipole moment function for dipole j. This leads to 3 location, 2 orientation, and

*
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3 dipole magnitude “shape” parameters for each dipole (estimated using a nonlinear
optimization method), and 1 linearly estimated dipole magnitude parameter for each
dipole (9 × 1 parameters total).

The three matrix problems defined above are all matrix equations of the
form Ar = b. Note that in the first two problems shown, a■ and b are actually
matrices, but the problem can be treated as Aa = b with multiple right hand sides
(i.e., the first column of b is the first right hand side, and is used to solve for the
first column of r, the second column of b is the second right hand side and is used
to solve for the second column of r, and so on). Such problems can be easily solved
using standard linear algebra techniques, such as performing an LU decomposition
of A and using backsubstitution to solve for each right hand side. Many “canned”
routines are available to solve this problem [66, 67, 68, 69].

1.3.3 Nonlinear Solutions

In setting up the problems above, I assumed that the dipole locations and/or
orientations were known or had been previously estimated, and that parameters re

lated to the dipole magnitude over time could then be solved using linear methods.
In the third linear problem described above, I assumed that the parameters of the de

caying sinusoid had been previously estimated using a nonlinear optimization routine,
and the magnitude of the decaying sinusoid could be estimated using linear methods.

In practice, nonlinear optimization techniques are used to estimate some or
all of the parameters of the dipole model, because the locations and orientations of

the equivalent dipole generators are rarely known. Nonlinear optimization techniques
are used alone or with linear estimation techniques. When used alone, all parameters

of the dipole model (locations, orientations, and dipole magnitudes) are estimated
using nonlinear optimization. Frequently, however, within an iteration, the non
linear optimization algorithm is used to estimate the locations and/or orientations,
and the remaining dipole magnitude parameters are estimated linearly (e.g., &ld of
Equation 1.1, p. of Equation 1.8, or of when the dipole magnitude is parameterized)
[63, 70].
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Iterative nonlinear optimization routines attempt to minimize an objective

function of several parameters (often a sum of squared errors) by adjusting those pa
rameters. At each iteration, the optimization algorithm perturbs the current parame
ters in a deterministic (as in the Newton methods or nonlinear simplex) or stochastic
(as in simulated annealing or genetic algorithms) manner, and recomputes the objec
tive function. The value of the objective function determines whether the perturbed
parameters are accepted or rejected. The process continues until a minimum of the
objective function is reached (hopefully the lowest or global minimum).

The dipole model estimation problem is complex, resulting from a large
number of parameters and their nonlinear relationships (see Equations 1.1–1.7). The
resulting multivariate estimation surface often has both large numbers of local minima
and a very shallow sloping surface near the global minimum. Such estimation prob
lems overwhelm the capabilities of the most popular nonlinear estimation procedures,
the Newton-type methods, leading to convergence at local minima.

The Newton-type methods were the original methods used for dipole mod
eling (8, 1, 51]. Because of the above problems, the nonlinear simplex method (some
times called the polytope method to distinguish it from the better-known linear pro
gramming simplex method) has become the method commonly used in equivalent
dipole source modeling [71, 12, 10, 72]. The nonlinear simplex is a derivative-free
method that often works well on nonlinear estimation surfaces, and adapts better
than Newton methods to moving through and out of long valleys.

The application of the dipole model to auditory P50 data, described in Chap
ter 2, used the nonlinear simplex method to estimate the dipole parameters. Although
simplex was known to converge to local minima for multiple dipole problems, most
researchers were of the opinion that local minima were not a problem for single dipole
problems such as in Chapter 2. Since that work was accomplished, it has been shown
that the simplex method can converge to local minima even for simple single dipole
estimation problems [73]. In order to reduce and possibly eliminate the frequency of
convergence to local minima, for the simulation experiments described in Chapter 4,
I have used simulated annealing. Simulated annealing has been recently shown to
be superior to the simplex method for avoiding convergence to local minima when
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estimating dipole parameters [73]. Because this dissertation uses both the simplex
method and simulated annealing for estimation of dipole parameters, both methods
will be reviewed.

Simplex

The simplex method works along the following lines: Suppose there are n
parameters to be estimated. First, a simplex is formed. A simplex is a geometric figure
with n + 1 vertices in n-dimensional space (e.g., a triangle in the plane). Each vertex
of the simplex has n coordinates, corresponding to estimates of the n parameters.
The scaled residual sum of squares (SRSS, the sum of squared differences between
observed and predicted values, scaled by the sum of the squared observed values) is
computed for the parameter estimates at each vertex. The simplex’s primary action is
to move away from the worst vertex (i.e., the one with the largest SRSS) by replacing
that vertex with its reflection through the centroid of the remaining vertices. If it
cannot find a better point through reflection, the simplex will then contract along a
single dimension away from the worst vertex. If a contraction away from the worst
vertex does not yield a better point, the simplex will perform a contraction in multiple
dimensions around the lowest (best) point. These steps give the simplex an amoeba
like motion that helps it to move rapidly when good reflection moves are available,
and to contract in on itself to slither through long valleys. Simplex will only take
“downhill” steps (i.e., steps that reduce the value of the SRSS at that vertex). Because
simplex can only take downhill steps, it is sensitive to starting values.

In implementing the simplex method, starting and step values (used to con
struct the initial simplex) must be chosen and a convergence criterion defined. For
convergence, the fractional difference between the highest and lowest SRSS at the
vertices (the difference of the highest and lowest SRSS divided by the sum of the
highest and lowest SRSS) must be less than a preset value (66). Note that this con
vergence criterion does not guarantee that the simplex is at a minimum in parameter
space (i.e., the simplex can shrink to a small enough size to satisfy the convergence
criteria but not be at a minimum—this can occur if the multivariate estimation sur
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face is shallow). Although not implemented in the application in Chapter 2, in more
recent work [73] a second convergence criterion was added. If the first convergence
criterion is met, then it is required that the vertex with the lowest SRSS is truly at
a minimum in the parameter space. This is accomplished in a round-robin fashion.
Each parameter is perturbed by a small amount while holding the other parameters
constant and the SRSS is calculated and compared to the proposed minimum. If
the proposed minimum is the smallest, the solution is conditionally accepted. After
convergence is reached, the simplex is restarted at the current solution (with a new,
large simplex) in order to verify that a better solution cannot be found (74, 66). When
the restarted simplex reconverges to the same parameter values the simplex solution
is accepted.

Simulated Annealing

Simulated annealing [75] is a stochastic simulation method for global opti
mization that has been shown theoretically [76], in large-scale simulation studies [77],
and in applications [75, 78] to have superior properties in finding the global minimum
on complex nonlinear multivariate estimation surfaces with many local minima as
compared to other nonlinear optimization methods. Simulated annealing proceeds
towards its solution by randomly generating candidate steps from a probability dis
tribution (usually either Gaussian or Cauchy; the Cauchy distribution is simply a t
distribution with 1 degree of freedom). A downhill step (i.e., a step to a location
with a smaller SRSS) is always accepted. Uphill steps are sometimes accepted, with
a probability inversely proportional to the size of the increase in the SRSS. As the
estimation process proceeds, the probability of accepting uphill steps is systematically
decreased.

Despite its simplicity, this method is extremely powerful. By sometimes
allowing uphill steps, the process can move away from local minima. Although sim
ulated annealing initially samples from the entire parameter space, it progressively
homes in on the global minimum by decreasing the probability of taking an uphill
step. This makes simulated annealing feasible for complex problems in contrast to
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exhaustive direct search methods. The procedure by which the probability of up

hill steps is decreased is called the cooling schedule. Simulated annealing literally
attempts to imitate the process whereby substances cool to their most stable states
according to the Boltzmann probability distribution. Geman and Geman [76] proved
that if the cooling schedule is sufficiently slow, simulated annealing will converge to
the global minimum.

When substances cool naturally to their ground states, temperature de
creases slowly, and energy usually decreases with temperature. However, energy may
occasionally increase while temperature decreases. The relationship between energy
and temperature level is:

Prob(E)^ exp(-E/kT) (1.13)

where E is the energy, T is the temperature, and k is Boltzmann's constant. Equa
tion 1.13 is known as the Boltzmann distribution, and illustrates that at low temper

ature there is still a small probability of the system being in a high energy state.
Metropolis (79) simulated changes in a thermodynamic system using the

relationship:

Prob(AE) • exp(-AE/kT)

Simulated annealing applies this idea to parameter estimation via minimization of a
function of the parameters. The objective function is the analog of E in Equation 1.13.
In the dipole modeling problem, the objective function is the scaled residual sum of

squares, and the annealing equation takes the form:

ProMASRSS) = | when ASRSS < 0 (1.14)
exp(-ASRSS/kT) otherwise

Parameter estimates are generated sequentially and their SRSS is com
puted. The difference in SRSS between the current and next candidate set of pa
rameter estimates is set to ASRSS; k is fixed at 1, and T is started at some value (in
the simulations in Chapter 4, I used 0.2) and slowly decreased to 0 as the chain moves

*
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along. Then, by Equation 1.14, the new set of parameter estimates is accepted when
ever the SRSS decreases; when the SRSS increases, the new or current parameter

estimates are accepted with a probability inversely dependent upon the magnitude of
the increase in energy, as described by line 2 of Equation 1.14.

Simulated annealing requires starting parameter values, procedures for gen
erating candidate parameter values, a convergence criterion and a cooling schedule.
Simulated annealing initially searches the entire parameter space (because the initial
value of the temperature T is chosen to be large), and as a result the choice of start
ing values is usually of little consequence (a major advantage of the method). Step
size and direction are more difficult problems. In the implementation of simulated
annealing used in Chapter 4, the approach used is to move round-robin through the
parameters, fixing all but one and perturbing that one by a value taken from a Cauchy
probability distribution centered at the current estimate. The Chapter 4 implemen
tation uses a separate probability distribution for each parameter, and adaptively
adjusts standard deviations to maintain an equal number of generated uphill and
downhill steps.

Theoretically, for guaranteed convergence to the global minimum, simulated
annealing requires a logarithmic decline of temperature that is too slow for use in
real applications [76]. Probably the most frequently used annealing schedule runs
for a predetermined number of iterations at a given temperature before reducing the
temperature by some fixed factor. However, even this faster schedule may require a
very long time to convergence. A considerably faster annealing schedule is used in
Chapter 4, where after each single round-robin parameter update, the temperature is
lowered by a fixed factor. The parameter chain is said to have converged when the
SRSS changes by less than some preset value over a specified number of consecutive
round-robin cycles. Although the accelerated cooling schedule and the possible viola
tion of smoothness conditions fail to ensure convergence by theory, a reasonably slow
cooling schedule almost always converges to the global minimum [77]. Similar to the
simplex method, it is important to verify that simulated annealing could not find a
better solution by restarting the procedure (with the original, high temperature T)
from the current parameter estimates.

º
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1.3.4 Estimation of Covariate Effects

In evoked potential experiments, researchers present stimuli to human sub
jects and record the brain electrical response at one or more scalp electrodes. Such
experiments are usually designed to study changes in the brain response to the stim
ulus as a function of stimulus characteristics, drug states, and other covariates. Re
searchers typically estimate covariate effects by identifying peaks in plots over time
of the averaged potentials, then determining the amplitudes (height of the peak re
sponses) and latencies (lags from the presentation of the stimulus to the peak re
sponses) of the peaks, and applying traditional statistical methods such as analysis
of variance to these derived measurements.

Another commonly used method of estimating covariate effects involves prin
cipal components analysis [80, 81] of the waveforms. However, when principal compo
nents analysis is applied to simulated data sets with multiple underlying components
overlapping in time, it produces factors that do not always accurately reflect the true
covariate effects of the underlying components (82,83].

The spatio-temporal dipole model of Scherg (63] does not include the esti
mation of covariate effects for subject and experimental conditions. He fits dipoles
to each evoked potential average, constraining the dipole locations (and sometimes
orientations) to be fixed over time, then solves for the dipole magnitudes over time.
This is the same problem I detailed under Section 1.3.2.

Turetsky, Raz, and Fein [10] suggested estimating covariate effects within the
context of a time domain dipole model of multichannel evoked potential data. They
assumed that the evoked potential averages from several subjects or from several con
ditions were generated by the same equivalent electrical dipole sources in the brain
across all subjects or experimental conditions (i.e., the dipole sources had the same
locations, orientations, and time-varying “shapes” across subjects or conditions). It
is reasonable to assume that the evoked potential averages from several conditions
recorded from the same subject are generated by the same sources. This assumption
is probably violated across subjects, and a more reasonable model would allow for
some small variability in dipole locations across subjects. The time-varying dipole

-
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magnitude function was approximated by a decaying sinusoid (see Equation 1.11),
and parameters were included to represent covariate effects on the delay to onset
and the amplitude of this function. Raz, Cardenas, and Fletcher [65] proposed es
timating covariate effects within the context of a frequency domain dipole model of
multichannel evoked potential data. They also assumed that the averages from sev
eral subjects or conditions were generated by the same equivalent electrical dipoles
across all subjects or conditions. The dipole magnitude function was approximated
in the frequency domain by Fourier coefficients, and included parameters estimating
the covariate effects on amplitude and latency. I will review both covariate estimation
models in this section.

Time Domain Estimation of Covariate Effects

Letting s index subjects, I can write an expression for the scalp recorded

voltage at time t due to a single dipole in the time domain as follows:

V: = f(9, ºp)p; (1.15)

where V; is an n x 1 vector of voltages recorded at n measurement locations at time
t from subject s, f(6, q}) is an n x 1 vector valued function defined by Equation 1.9
for k = 1,..., n, and p; is defined as

p; = dºpt

-
d'asin■ :(l – T – T’)]erp(–3(t – T – T’)) (1.16)

In Equation 1.16, o is the magnitude of the “common” dipole (the dipole shared
by all subjects), d” is a subject specific amplitude weight (representing the subject
covariate effect on amplitude) and T* is a subject specific latency jitter (representing
the subject covariate effect on latency). To ensure uniqueness, the subject weights
d” are scaled to have a product of 1, and the latency shifts tº are adjusted to have a
mean of 0 for each dipole. Alternatively, I can scale p, such that | p ||<= 1 (where
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| p ||<= marp, Vt) and place no constraints on the d”. For the case of using a
decaying sinusoid for pi, this is easily accomplished by setting o to 1.

Differences in the scalp recorded voltages across experimental conditions can
be modeled in a similar fashion. Letting e index experimental conditions, I can write:

V" = f(9, q})p;" (1.17)

where V* is an n x 1 vector of voltages recorded at n measurement locations at time
t from subjects during experimental condition e, and p■ " is defined as

p” = d'dºp,

-
dºosiné ( – T – tº — tº)]erp(–3(t – T — tº — tº)) (1.18)

In Equation 1.18, dº represents the experimental condition covariate effect
on amplitude and tº represents the experimental condition covariate effect on latency.
As before, the experimental condition weights dº are scaled to have a product of 1,
and the latency shift tº are adjusted to have a mean of 0 for each equivalent dipole.

When the covariate dipole model described in Equation 1.15 is fit over v sub
jects, nine common parameters are estimated (three location [6], two orientation [4],
and four time-varying moment function parameters [o, X, T, 3]), v amplitude param
eters are estimated, and v latency parameters are estimated. This is a total of 9 + 2w
parameters per dipole. A nonlinear optimization procedure could be used to estimate
all parameters, or the amplitude parameters could be estimated linearly and all other
parameters estimated nonlinearly. The dipole model described in Equation 1.17 can
be solved in a similar fashion.

For the case of estimating the auditory P50 conditioning-testing ratio, the
model described in Equation 1.15 is used, only that dº are estimated instead of d”.
There are v = 2 experimental conditions. Let d" be the covariate effect on the testing
amplitude, and let dº be the covariate effect on the conditioning amplitude. After
dipole modeling is completed, the C-T ratio is simply,

-
º
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d"o.

dºo.
d”
dº

C-T ratio =

It is worthwhile to note that Equations 1.15 and 1.17 can both be extended

to multiple dipoles by simply summing over all dipoles. Letting l be the number of
dipoles, I can write

l

V: = XD f(9;, b)p;
j=1

where f(9;, b) is the weighting vector for dipole j at location 0; and orientation by,
and p; is the time-varying magnitude function for dipole j, subjects, condition e,
and time t.

Frequency Domain Estimation of Covariate Effects

For simplicity, I will first describe the model in the time domain and then
derive the frequency domain representation. The evoked potential stimulus is assumed
to be presented in m trials indexed by i, and V;(t) is an n x 1 vector of recorded
electrical potentials at time t. There are assumed to be u time points, and l dipoles
generating V;(t). In the time domain, the model has the form

l

V;(t) = XD exp(d; z)f;(6;, b)p;(t + rj z) + e.(t) (1.19)
j=1

i = 1,..., m

t = 1,..., u

where py(t) is the time-varying dipole moment of dipole j at time t, d; and T; are
parameter vectors representing the covariate effects on the amplitude and latency of
the response of generator j, z, is a vector of covariates, and e, (t) is a mean zero noise
process. It is assumed that ei(t) is a stationary, mixing, random process, and that
e;(t) is independent of ei, (t) for i # i'.

*
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In the case of fitting the dipole model to the auditory P50 collected in a
conditioning-testing paradigm, the trials are grouped according to the values of the
covariate, and there are only a few distinct values of zi. The responses to the first
click can be grouped (for analysis purposes) into the first mi trials, and the responses
to the second click can be grouped into the next m1 trials. Therefore, z, can be
defined as follows:

1/2 for i = 1,...,

Z;
- / Or 2 n1 (1.20)– 1/2 for i = m1 + 1, ..., m

The model is made identifiable by constraining X;z; = 0. This means that
the product of the amplitude effects is one, and the sum of the latency effects is zero.

The time domain model described in Equation 1.19 can now be transformed

to the frequency domain. Let Vir, Pr;, and Eºr be the discrete Fourier transforms
at frequency Yr = 27.4/u of V:(t), p}(t), and e, (t). Then the frequency domain
representation of the model has the approximate form:

l

Viºr = XC exp(d; z. + in-r; z)f;(0, q,)Pr; + Eir (1.21)
j=1

i = 1,..., m

J = 1,..., w

where w 3 u/2 is the number of Fourier frequencies that are included in the analysis.
The value of w is chosen using prior knowledge of the smoothness of the evoked
potential.

Equation 1.21 shows that the latency parameters tº are separated from
the Fourier coefficients P3, ..., P.; in the frequency domain model, while in the
time domain model described in Equation 1.19 the parameter t, is included in the
argument of the magnitude functions p,(:). This greatly facilitates estimation of the
latency parameters.

For the case of estimating the auditory P50 conditioning-testing ratio, z;
are defined as in Equation 1.20, and I let l = 1 in Equation 1.21 (i.e., fitting a single
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dipole to the P50). Because there is only an experimental condition covariate (i.e.,
I do not need a covariate to describe changes between subjects because I am fitting
on a single subject), the parameter vectors d and r become scalars d and T, and z;
becomes a scalar zi. A nonlinear optimization algorithm is then used to fit the dipole
parameters. There are three location parameters (6), two orientation parameters (q)),
one parameter describing the covariate effects on amplitude, one parameter describing
the covariate effects on latency, and w Fourier frequency (P3, ..., P.;) parameters to
estimate (7+ w total parameters).

Once dipole modeling is completed, the C-T ratio is simply

e(*="1+”)*(Yi H-... + \,,)
e(*=1,…”)*(Yi -- ... + \,,)

e-"*(Yi +...+ \,,)

C-T ratio =

= e−0.5d — eo.5d

- e-0.54–0.5d

= e−" (1.22)

As shown in Equation 1.22, if the amplitude d is correctly estimated, that
is equivalent to correctly estimating the C-T ratio.

1.4 Intraclass Correlation Coefficient

All evoked potential analyses methods (peak-picking amplitude and latency
measurement, principal components analysis, topographic mapping, dipole modeling)
involve measurement error, in large part due to the noise still remaining in the aver
aged evoked potential. Measurement error complicates subsequent statistical analyses
and interpretation, and therefore it is necessary to quantify the consistency of a given
measurement by determining its reliability, rer, defined as the correlation between
two equivalent measures of the same variable. The square root of rer may be inter

preted as the correlation between the value of the variable as measured and its true
value, allowing one to assess the efficacy of a particular measurement method [84].

2< *
l --~~~~ **
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Reliability of a given measurement is often measured by intraclass correlation

coefficients (ICCs). Since different forms of the ICC produce different reliability
results when applied to the same set of data, it is important to understand the
sources of noise in each measurement in order to choose the appropriate ICC. For
a more complete discussion of ICCs, see [85]. The statistical model I have used in
Chapter 2 to determine the reliability of the dipole modeling estimates of covariate
effects follows.

I wish to determine the reliability of auditory evoked P50 suppression over
several replications, in either several subjects or in one subject over different clinical

states or conditions. Thus there are m classes (representing subjects or conditions)
and n P50 measurements (C-T ratios) per class. Let zij denote the ith rating (i =
1,..., n) on the jth class (j = 1,..., m). The following model for rij is then assumed:

acij = |l + b; + tl)ij (1.23)

where p is the overall population mean (of the C-T ratio, in this example), by is
the difference from p of the jth class's true mean (i.e., the true P50 suppression of
the subject during cocaine withdrawal or the jth subject's true P50 suppression),
and wig is the error term, which encompasses the inseparable effects of measurement
error and variability within a class. The component by is assumed to be normally
distributed with mean 0 and variance of... The component wif is also assumed to be
normally distributed with mean 0 and variance a ... Both components are assumed
to be independent of all other components in the model. The population ICC is then
p = a +/(o; + or ) and the quantities of and a can be estimated from quantities
computed in a one-way ANOVA, as shown in Table 1.1.

The sample ICC (r) estimates the population ICC (p) and is computed as
follows:

__MSB – MSW
T MSB + (n − 1)MSW

A large value of r indicates that the variability between class measurements is

r (1.24)

greater than the variability within subjects, i.e. that repeated measurements within



Table 1.1: Analysis of variance for a reliability model

Source of variation Degrees of Sum of Mean square Mean square F
freedom squares estimates

Between classes m – 1 SSB MSB = # no; + dº.
MSB

- a - - W MSW
Within classes m(n − 1) SSW MSW = #, oi.

SSB = XX*1 m (£; – E.)” SSW = XX, XX I (r., - E.)”

Ti. = }= # it. = * }=1 ;

a given class show stability. It is clear from Equation 1.24 that r approaches 1
as reliability increases. The population intraclass coefficient, p, ranges from 0 to 1
[86], but the estimator r described above might be negative if p is small and the
measurements ari■ are noisy.

In this dissertation, I am interested in the test Ho ; p < poversus H1 : p > po.
This test is performed as described by Donner and Eliasziw (87). Accept Hi : p > po
if F - CF, wiva, where F is the value shown in Table 1.1 and Fowl,V2 is the tabular
value of the F distribution with v1, v2 degrees of freedom at the o per cent level of
significance. The between classes degrees of freedom and the within classes degrees
of freedom correspond to v1, v2, respectively. The constant C is defined by:

C = 1 +
1 — po

1.5 Summary

This introductory chapter has introduced evoked potentials, dipole mod

eling, linear estimation, nonlinear estimation, the estimation of covariate effects on
evoked potential amplitude and latency, and the intraclass correlation coefficient.
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Most of these topics are integrated in the next chapter, where I describe an applica
tion of dipole modeling of auditory P50 evoked potentials.
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Chapter 2

The Reliability of Auditory P50

Suppression as Measured by the

Conditioning-Testing Ratio is

Improved by Dipole Modeling

2.1 Introduction

The phenomenon of P50 suppression has received increasing attention from
psychiatric researchers in recent years. In normal subjects, suppression of the auditory
P50 evoked response to the second of two paired clicks occurs when the interstimulus
interval is less than 1 sec (88, 89, 16, 17]. The first (conditioning) click is thought
to activate an inhibitory mechanism, causing a reduced response to a test click pre
sented while the inhibitory mechanism is active. The degree of suppression of the test
response is typically measured by the ratio of P50 amplitude to the testing versus
conditioning click, called the C-T ratio. In normal subjects, at an interclick interval
of 500 ms, the C-T ratio is usually less than 0.5 [18, 90). Under the same conditions
in schizophrenics, the response amplitude to the test stimulus is comparable or only
slightly suppressed as compared to the conditioning stimulus, resulting in C-T ratios
close to 1.0 [90). This reduced or absent P50 suppression has been hypothesized by

--- sº-tº"
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Freedman and colleagues to reflect a preattentive, or neuronal impairment of auditory
sensory gating [20, 91].

The clinical utility of the auditory P50 suppression measure is under ques

tion because of its low test-retest reliability. Kathmann and Engel [24] measured
P50 suppression twice in 9 normals and 6 schizophrenics. They found very unstable
C-T ratios, with reliabilities of 0.11 in the normals and -0.22 in the schizophrenics.

Similarly, Boutros and colleagues [23] found a C-T ratio reliability of 0.14 across six
replications in 10 normal subjects. The low reliability of the C-T ratio severely lim

its its utility as a tool for characterizing sensory gating in individual subjects, and
precludes longitudinal studies examining the association between sensory gating and
clinical variables.

The reliability of a measure such as P50 suppression is a function of: (a) the
consistency within individuals over time of the “true” underlying phenomena, which

the measure is supposed to capture, and (b) the contributions of measurement error
(i.e., noise), which result in the measured phenomena differing from the “true” phe
nomena. Analysis of how P50 is measured provides insight into possible contributions
of measurement error to its unreliability. In all studies to date, P50 amplitudes to
the conditioning and testing stimuli are estimated independently via picking peaks
on the vertex recordings, either as simple amplitudes, or as amplitude differences
between a vertex peak and the prior (i.e., N40) vertex trough. The estimated P50
amplitude to each response is a function of the true P50 response and the noise in the

average evoked potential (EP) at the time point(s) at which it was measured. The
noise arises from the amplifiers, from the background electroencephalogram (EEG)
and from muscle activity (the electromyogram (EMG). With the conditioning and
testing stimuli separated by 500 ms, the noise in the average EPs at the times of
the P50 responses to the conditioning and testing stimuli are for the most part in
dependent. Given the independent noise of the two measurements, taking their ratio
augments the effect of the noise on the ratio. The distribution of the C-T ratio and

simulations of the effect of computing the ratio on the signal-to-noise ratio is shown
below in Section 2.2. The noise augmentation results in a reduced signal-to-noise
ratio (SNR) of the C-T ratio as compared to the SNR of each of the conditioning and
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testing stimuli. This analysis suggests two possibilities for increasing the reliability
of the C-T ratio measurement. The first is to increase the SNR of the measured

P50 response to each of the conditioning and testing stimuli. The second is to de
velop a measurement paradigm wherein the noise from the conditioning and testing
P50 response measurements do not make independent (and therefore augmenting)
contributions to the noise of the C-T ratio.

The Dipole Components Model (DCM) [10] may meet both goals for in
creasing the reliability of the C-T ratio. The DCM assumes that the conditioning
and testing P50 responses arise from the same underlying brain process (assumed
to be a point dipole source), and simultaneously fits a single dipole source to both
responses. The amplitude of the dipole source is allowed to vary across condition
ing and testing responses, with the ratio of the corresponding amplitude parameters
yielding the C-T ratio. In such modeling, the noise at the two responses is pooled
and makes only an averaged contribution to the C-T ratio. Furthermore, the dipole

parameters are estimated using topographic data from multiple electrodes and mul
tiple time points. To the degree that topographic information helps define the P50
dipole source, there is the potential for the P50 dipole magnitude to be measured
with higher SNR than P50 amplitude measured from a single electrode. However, it
is important to note that the DCM procedure is crude and simple. As examples, it
models the head as a homogeneous sphere, the P50 sources as single point dipoles,
and the dipole magnitude response as a decaying sinusoid. Given this acknowledged
model misspecification, there is the real possibility that dipole modeling of P50 in
a conditioning-testing paradigm might be very poor, adding unwanted noise to the
measurements and resulting in even lower C-T ratio reliabilities than those derived
from simple peak picking on vertex recordings. The goal of this research was to de
termine whether use of the DCM increases the reliability of the P50 suppression C-T
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2.2 Theory

This section will demonstrate that, given independence of the C and T
measurements, the signal to noise ratio (SNR) of the C-T ratio is generally diminished
in comparison to the SNR of either the C or T response. This will be demonstrated
by: (1) an analytical examination of the density function of the ratio of independent,
normally distributed, random variables; and (2) simulation of the distribution of the
C-T ratio (the C and T responses are assumed to be independent with square root
distribution).

2.2.1 Analytic

Geary (92) showed that if X1 and X2 are independent, normally distributed
random variables with mean 0 and variance 1, their ratio follows the Cauchy distri
bution. For those unfamiliar with the Cauchy distribution, it is just the t distribution
with 1 degree of freedom. As practitioners will know well from testing hypotheses
and/or calculating confidence intervals from small samples, the lower the degrees of
freedom of the t, the more heavy-tailed it is, that is, the lower its SNR. Marsaglia
[93] considered independent normal variates with no restriction on their means and
variances, and showed that if f is the density of X1/X2 and g is the Cauchy density,
then for a > 0,

f(z) > cig(c)(1 + c2) (2.1)

where c1 > 0 and c2 > 0 are constants. Therefore, the second moment of X1/X2,
E*(X1/X2), is infinite, because

E*(x/x) = ■ . A■ G)d.
+co

> 2 d
-

| a. *f(z)da:
+co

> *a■ a:)d
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and the last integral is infinite because the second moment of the Cauchy distribution
is symmetric and infinite (94].

Because the variance of a random variable equals its second moment minus
the square of its mean, X1/X2 has infinite variance. Simply put, the quotient of
two independent normals will be at least as heavy-tailed as the Cauchy distribution,
and this in turn means that the population SNR of the ratio of independent normals

approaches zero in the limit, and the sample SNR is small in comparison to the SNR
of either component of the ratio.

2.2.2 Simulation

The analytic discussion above assumed X1 and X2 to be independently nor
mally distributed variates. The C and T amplitudes are not normally distributed as
they cannot be negative, and a normal distribution with the means and variances
observed for the C and T responses of this chapter (see Section 2.4) would include
negative amplitudes. Work be Sand (95] indicates that auditory brainstem response
amplitudes, which are smaller than the P50, but also are bounded by zero amplitude,
are well represented as square-root normal variates (i.e., their square roots are nor
mally distributed). Because the analytic proofs in Section 2.2.1 do not necessarily
hold for square-root normal variates, the simulation study was carried out assuming
that the P50 responses are square-root normal variates, as follows:

1 Means and SD were computed for the conditioning and testing response
amplitudes from the peak picking data used in this study. Therefore, the
results from these simulations are directly applicable to this chapter.

2 Fifty samples of size 1000 each were drawn from a square-root normal
distribution with (untransformed) mean 4.13 and SD 2.29 (group C).

3 Fifty samples of size 1000 each were drawn from a square-root normal

distribution with (untransformed) mean 2.03 and SD 1.28 (group T).

4 The signal-to-noise ratio of the quotient of corresponding samples from
Group C and Group T were computed (50 computations).
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The results of these simulations are as follows:

mean SNR of the quotient = 0.29

median SNR of the quotient = 0.27

range of SNRs of the quotient = (0.03,0.76)

Because the SNR of the C group is 1.80 (mean divided by the SD, also known as the
coefficient of variation) and the SNR of the T group is 1.58, all simulated SNRs of
the quotient of the measurement were diminished compared to the SNR of either the
C group or the T group.

2.3 Methods

2.3.1. Overview

The goal was to determine the effects of dipole component modeling (DCM)
on the reliability of the P50 suppression C-T ratio. The data collected and analyzed

by Jerger et al. [96] were used. C-T ratio reliabilities were obtained by computing in
traclass correlation coefficients (ICCs) (85], and the ICCs were compared as described
by Donner and Eliasziw (87). The methods used here were discussed in Section 1.4.

2.3.2. Subjects

Twelve subjects, six women and six men, with no history of drug or alcohol
abuse or a family history of neurologic or psychiatric disorder, were studied. Subjects

were between 23 and 29 years of age, were free of medication at the time of the study,
gave informed consent, and were paid for their participation.

2.3.3 Recording Methods

Subjects were relaxed, awake, and seated upright in a quiet room during
the recording sessions. Recordings were made using 14 tin EEG electrodes in an
electrode cap (Electro-Cap International, Eaton, OH) and referenced to a tin electrode
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clipped to the left ear. The electrode locations corresponded to the International 10
20 System, and included Fz, Cz, Pz, Oz, Fp1, Fp2, F7, F8, T3, T4, C3, C4, T5, and
T6. These electrode locations are shown in Figure 2.1. Vertical eye movements were
monitored using gold electrodes above and below the right eye, and horizontal eye
movements were monitored using electrodes placed at the lateral canthi. Impedances
for cap electrodes were lowered using electrode gel (Electro-Cap International), and
Grass EC2 Electrode Cream was used for the reference and electrooculogram (EOG)
leads. Two kinds of electrode pastes were used because the Electro-Cap gel was too

thin for use in the cup electrodes or ear clip, and the Grass cream was too thick for
use in the electrocap. Although the differences in ion concentration in the two pastes
can cause a very slowly varying potential difference, this electrical artifact should be
filtered out by our analog filtering. All impedances were below 5000 ohms and signals
were amplified 50,000 times by a Grass Model 12 Neurodata Acquisition System
with analog filters at 0.1 and 1000 Hz. ERPSYSTEM Software (Neurobehavioral
Laboratory Software, San Rafael, CA) was used to control stimulus presentation and
data acquisition through an Analog Devices RTI 800-815/F laboratory interface card
on a 20 MHz Intel 80386-based personal computer. Data were sampled at 2000 Hz
and averaged for 250 ms beginning 50 ms prior to each click, for a total of 500 ms
of data for each pair of clicks. Trials, consisting of pairs of clicks, were rejected if
activity exceeded -E 70 p.V on either eye-movement channel. Note that given the 2000
Hz sampling rate, the low-pass filter cutoff used in this study is less than ideal, and
subsequent studies have utilized a 300 Hz low-pass filter cutoff.

2.3.4 Auditory Stimulation

Binaural clicks were produced by square pulses of 0.05 ms duration, which
were generated by the Analog-Devices D/A converter, then passed though a Hewlett
Packard 350D Attenuator, amplified by a Pioneer SX-2300 stereo receiver/amplifier,
and delivered to the subject over Realistic NOVA ’20 headphones (Tandy Corporation,
Houston, TX). In the original experiment [96], a selective attention paradigm using
four combinations of clicks at two different intensities was designed. The experiment
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Figure 2.1: Electrode locations used for P50 study.

was conducted with the subject required to perform a task requiring attention to
either the first or second click, as conveyed by the experimental instructions. Each
of these two tasks was repeated on three different occasions on non-consecutive days

by each subject. Jerger and colleagues [96] showed that the P50 was unaffected by
the task, so for the purpose of this analysis (the Jerger data was analyzed in this
chapter), all six runs (2 tasks x 3 replications) are considered replications. As in [96],
only data from the high-intensity paired clicks (which had by far the largest number
of trials) is examined. The high-intensity clicks were just over 76 dB above subject
threshold, were separated by 500 ms, with the intertrial interval varying between 7
and 8 sec. Between 110 and 120 artifact-free trials were recorded during each run.

2.3.5 EP Waveform Analysis-Peak Picking

The average EPs were digitally bandpass filtered between 10 and 50 Hz
(half amplitude cutoff frequencies). Because the dominant frequency constituents of
the middle latency response range from 30 to 50 Hz (97) and the dominant frequency

-- * ~ *
t-ºf"
*** --> -

[..… **
_-sºtº"

- ---is--
22- - - ****
l --- *** * *
... -- .*****

*

-----sºº'."
t-ceº-º-º-

r
tº a sºa ***

l rºs
*-*-* = **

_* ---aº -C - * "



42

1.1 ■ −1–H–H–1

0.9 H.

0.7 H

§ 0.5 H.

0.3 H

0.1 H

I —l a I

-10.0 10.0 30.0 50.0 700 90.0
Frequency in Hz

Figure 2.2: Frequency response of the 10-50 Hz digital bandpass filter.

constituents of the auditory N100/P200 are below 10 Hz, the digital filtering removed
the majority of the auditory N100, P200, and 60 Hz noise, and allowed us to analyze

the remaining P50 response (see [96] for a description of the filter construction).
Figure 2.3.5 shows the frequency response of the digital bandpass filter.

P50 amplitude at the vertex electrode was measured relative to the preceding
peak of negative polarity. The peak-picking algorithm of ERPSYSTEM was used
to choose the peaks, and the peaks chosen were then verified with the help of an
experienced rater (Christie Biggins). The peaks were chosen as the most positive
(or negative) voltage value within a specific time range after the stimulus. The time
window for the negativity preceding P50 was 30-50 ms, and the window for P50
was 40-80 ms. In no case did the algorithm choose a P50 that preceded the N40.
In cases where the auditory P30 overlapped the P50 such that no clear N40 could
be identified, the P50 amplitude was measured to the prestimulus baseline for the
conditioning and testing stimuli within that pair. The C-T ratio was computed by
dividing the amplitude of the testing response by the amplitude of the conditioning
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2.3.6 EP Waveform Analysis-Dipole Modeling

A simple dipole model was simultaneously fit to both the conditioning and
testing responses for each replication of each subject (i.e., 72 dipole localizations were
performed, 12 subjects × 6 replications). The head was assumed to be a sphere of
homogeneous conductivity (i.e., the differing conductivities of the skull, scalp, and
brain were not considered). The P50 generator was assumed to be a single, point
dipole with fixed location and orientation throughout its time of activation. The
dipole activity over time was modeled as a decaying sinusoid with a fixed latency
of onset in response to both clicks and with two (1 replication × 2 clicks) click
specific amplitude parameters [10]. We did not let latency differ in response to the
conditioning and testing clicks, as previous analysis of these data (using peak picking)
indicated no such latency differences [96]. The dipole model for the scalp recorded
potential at electrode k at time t was:

V. = dºpt fº(0, b) for e = 1, 2 (2.2)

where 2

pt = asinº (t – T)]erp■ —3(t – T)] (2.3)
and where dº is the amplitude parameter for experimental condition e, and fº(0, b)
is the weighting function as defined in Equations 1.1–1.9.

The nonlinear simplex method (see Section 1.3.3 and [74, 66) was used to
estimate the dipole location, orientation, and decaying sinusoid parameters. This
optimization algorithm is sensitive to starting values of the parameters, and when it
is unsuccessful, either does not converge, or converges to a local minima rather than
the absolute minima or best solution. This is a limitation of the simplex method, and
although convergence was monitored, no attempt was made to verify that simplex
converged to the global minimum in this experiment.

The DCM was applied to data within a time window to contain both the
ascending and descending aspects of the P50 peak at the vertex. The starting point
for the window over subjects ranged from 35-46 ms, and the window width ranged
between 27-45 ms. In general, the vertex P50 within the window resembled one
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half period of a sinusoid. The starting parameter for the wavelength of the decaying
sinusoid function was set to twice the window width and the starting delay parameter
was set to the zero crossing of the vertex potential relative to the onset of the window.

The starting parameters were set to 0.0002 for sinusoidal decay, 3 (arbitrary units) for
overall dipole amplitude, and 1 for each click-specific amplitude parameter (indicating
no difference in P50 amplitude for the two clicks). The starting dipole location was
the center of the head, and the starting dipole orientation was toward the nasion.

In addition to fitting a dipole to each replication separately, the DCM was
used to fit a dipole over all six replications of each subject simultaneously (i.e., 12
dipole localizations were performed). As with the previous model, click-specific am
plitude parameters were fit to describe the P50 amplitude differences (i.e., 12 click
specific amplitude parameters were fit, 6 replications x 2 clicks). This model has
the advantage of constraining the dipole location to be the same within a subject
across replications. The dipole model is the same as in Equation 2.2, except that

e = 1,..., 12.

2.3.7 EP Waveform Analysis-Decaying Sinusoid Modeling

As discussed in the introduction, if dipole modeling improved the C-T ratio

reliability, the improvement may be due to a combination of: (1) pooling the noise
from the conditioning and testing responses, (2) increasing the SNR for the condi
tioning and testing amplitude measures via modeling of the topographic response as
an intracranial dipole source, and (3) chance. In order to determine the effect caused
by pooling of noise and simultaneously fitting both P50 responses, we fit a model that
pooled the noise while estimating the amplitude on the vertex channel alone, with
out using multiple channels or intracranial dipole constraints. To accomplish this, a
decaying sinusoid was fit to the averaged and filtered EP data for the vertex elec
trode. A time window around the P50 peak was chosen as described above, and the

conditioning and testing responses were fit simultaneously using the same nonlinear
simplex algorithm as for the DCM. A decaying sinusoid with separate conditioning
and testing amplitude parameters was fit for each run of each subject (72 analyses),
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and also to all six runs for each subject. The windows and time function starting
parameters were chosen as for the DCM above, and did not need to be adjusted for
any of the analyses. As in the DCM analysis, the C-T ratio was computed by dividing
the amplitude parameter for the testing response by the amplitude parameter for the
conditioning response.

2.4 Results

The topography for the conditioning and testing responses to the auditory

click is shown in Figure 2.3. One P50 average for one subject is shown. Clear separa
tion of the P50 and P30 peaks can be seen in the vertex, C3, and C4 recordings. The
remaining electrode sites show that the amplitude of the P50 is decreased at the sur
rounding electrodes, and a reversal of potential is seen at the lateral electrodes. This
topographical distribution of potential is consistent with a dipole model of the P50
generator. All but one subject showed comparable potential topography. Figure 2.4
shows the conditioning and testing responses to the auditory click of a representative

average of this subject. On the vertex recordings displayed on the left of Figure 2.4,
P50 can be identified according to the peak picking rules; however, the remaining
electrodes do not show a potential topography consistent with a P50 dipole.

Peak Picking: As noted above, according to our scoring rules, a P50 at the

vertex electrode could be identified for all recordings. For three subjects the negativity
preceding P50 was obscured by P30 on one or more of the six replications. For these
data, P50 amplitude could only be measured relative to the prestimulus baseline. The
C-T ratios derived from peak picking ranged from 0.01 to 1.66, with a mean of 0.53

and SD of 0.32. The ICC computed across all 6 replications was r = 0.27. If the

subject displayed in Figure 2.4 is deleted from the computations, the ICC becomes
0.37.

Dipole Components Modeling: DCM was first independently applied to 6
replications for each subject. Although the simplex procedure always yielded an esti
mated dipole, this dipole did not always model what was apparently the P50 response
at the vertex. An example of where the dipole modeling worked well is presented in

*~... - - -****
***** *
|----~~~~

-
__*.**

*--------
… --> *
* * * *** * *

* .*****

sº

-----------
yº-ºººº

f
==s******

º -

**-* = **
º ***

he- .* º *

gº ->
* ----º
ºrsº

*

rººvº



46

time in meec

—conditioning response
—testing response

Figure 2.3: P50 Response to the Conditioning-Testing Paradigm
The topography of the P50 response for a representative subject is displayed for both
the conditioning and testing stimuli. The responses measured at the vertex (Cz)
(on which peak picking is usually performed) is shown at the top left. The testing
response has similar topography to that of the conditioning response and is suppressed
at most electrode sites. All but one subject had a similar P50 topography. Markers
are displyed at 50 ms poststimulus.
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-|-
o 50 100

time in meec

—conditioning response
—testing response

Figure 2.4: P50 Response to the Conditioning-Testing Paradigm: Excluded Subject
The topography of the P50 responses is displayed for the one subject whose topog
raphy was dissimilar from that of the remaining subjects. Although P50 can be
identified at Cz according to our peak picking rules (see graph at left), the topogra
phy shown at the right does not follow a typical P50 distribution, and dipole modeling
was unsuccessful for this subject. Markers are at 50 ms poststimulus.
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Figure 2.5. Note that the topography of the P50 response is modeled well by a single
dipole; for contrast, compare the topography in Figure 2.4. For two subjects, there
was significant activity in the analysis window at the F7 and F8 electrode sites such

that the simplex algorithm primarily fit the activity at those electrode sites rather
than at Cz. For these subjects, the F7 and F8 electrode sites were removed and the
DCM was applied to the data from the remaining 12 electrode sites, which resulted
in good fitting of the vertex P50. To determine whether the activity at F7 and F8
affected all the dipole fits, we redid them all with F7 and F8 removed. For three ad
ditional subjects, there was relatively poor fitting at Cz and surrounding electrodes
because the simplex algorithm was drawn toward fitting earlier, but temporally over
lapping higher amplitude activity at lateral electrode sites. Adjusting the analysis
window to de-emphasize this earlier lateral activity resulted in much improved dipole
fits at Cz. For one subject, the one displayed in Figure 2.4, nothing we did enabled us
to model the activity at the vertex—this subject was removed from the dipole analysis.
The C-T ratios were computed from the DCM results of 11 subjects by dividing the
click 2 amplitude parameter by the click 1 amplitude parameter.

Using all 14 electrodes in the DCM, the proportion of variance accounted
for by DCM ranged from 29% to 86% (mean + SD, 58% + 12%), yielding C-T ratios
that ranged from 0.00 to 1.59 (0.44 + 0.30). The ICC was 0.57, significantly larger
than that obtained from peak picking of all 12 subjects (p < 0.009, comparing ICCs
of 0.57 and 0.27). The difference between the ICC obtained from dipole modeling
and the ICC obtained from peak picking of the 11 subjects for which DCM was
satisfactory nearly reached significance (p < 0.06, comparing ICCs of 0.57 and 0.37).
Eliminating F7 and F8 from the analysis, DCM accounted for between 36% and 89%
of the variance (64% + 12%), yielding C-T ratios that ranged from 0.00 to 1.94
(0.46 + 0.36). This yielded an ICC of 0.63. This ICC was significantly greater than
that obtained by peak picking for either 12 or 11 subjects (p < 0.002 and p < 0.02,
respectively).

When DCM was applied simultaneously to all six runs for each subject, the
resulting C-T ratios and ICCs were almost identical to those obtained when each run
was fit separately.
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Figure 2.5: Dipole Modeling of P50 Response
The measured and fitted P50 responses to the conditioning and testing clicks for
the same subject shown in Figure 2.3 are shown here. The best fitting dipole well
describes the amplitude at Cz and across the head for both the conditioning and
testing response.
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Modeling of Vertex Data Using a Decaying Sinusoid: When a decaying
sinusoid was fit to each run separately, resulting C-T ratios ranged from 0.02 to
1.04 (0.30 + 0.20), with an ICC of 0.31. When all 6 replications for each subject were
fit simultaneously, the results were almost identical.

2.5 Discussion

The auditory P50 response recorded using a conditioning-testing paradigm
was modeled using a relatively simple dipole components model. This modeling re
sulted in a substantial and statistically significant increase in the reliability of the
derived C-T ratio measure of P50 suppression in comparison to the C-T ratio mea
sured by peak picking on vertex recordings. This result is potentially very important.
It provides promise that P50 suppression can be measured with high enough reliabil
ity to be useful for characterizing sensory gating in individual subjects and for use
in longitudinal studies examining the association between sensory gating and clinical
variables.

It is important to emphasize that the results reported are not general for
all dipole modeling algorithms, but are specific to the Dipole Components Model.
Other dipole modeling procedures [1, 98) are not appropriate for this study, as they
model each evoked potential separately and do not pool noise estimates across mul
tiple event-related potential (ERP) recordings. Moreover, the application of other
dipole modeling procedures to this data set is not straightforward. In the case of the
instantaneous state dipole modeling approach [1], in which a dipole is fit to a single
time point, the first question that must be answered is to which time point should
the dipole be fitted? The simple answer is to use peak picking to choose the P50
peaks for both responses (this latency determination involves two sources of noise, as
previously discussed), then to fit a dipole to each response (two more independent
measurements, leading to two additional sources of noise). Scherg's approach (63)
does not simplify matters either. Because BESA (Brain Electrical Source Analysis,
Neuro-Scan, Inc) cannot fit a single dipole to the conditioning and testing responses
simultaneously, the conditioning and testing responses would be modeled separately
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(two sources of noise). In addition, as BESA does not use a parametric form for
the dipole magnitude function, the dipole magnitude cannot be described by a sin
gle parameter, and the dipole magnitude function for the two responses may differ
greatly. The C-T ratio is computed by dividing the testing response amplitude by
the conditioning response amplitude, so in order to use Scherg's dipole magnitude, a
single point of the magnitude function must be chosen to represent the P50 generator
magnitude. How will this point be chosen? Again, the simple answer is to peak
pick on the dipole magnitude function. Because the magnitude functions for the two
responses are likely to be different, they must be peak picked separately, introducing
two more sources of noise. In summary, although dipole modeling approaches other
than the DCM are promising and their use of topographic information may lead to
improved amplitude estimates, they do not address the issue of independent noise

measurement and are therefore not appropriate for the C-T ratio reliability problem.
The range of C-T ratios obtained in this study using peak picking is wide,

consistent with other studies (23,90]. The range of C-T ratios obtained using dipole
modeling was also wide, but the increased ICC indicates that the variability of C-T
ratios within subjects has decreased relative to the variability of C-T ratios between

subjects, and the wide range of dipole modeling C-T ratios is explained by differ
ences between subjects. Dipole modeling provides a more stable C-T ratio within
individuals.

Standard peak picking measures P50 amplitude relative to the preceding
N40 component or other surrounding activity, and thus reflects variability and noise
of both the P50 and the other activity. In contrast, DCM, as applied in this work,

only models the P50 component. To determine whether this was a significant fac
tor in the results reported here, the peak picking was redone versus a prestimulus
baseline. The results were not appreciably affected. Note, however, that even this
peak measurement method does not get away from the problem of confounding P50
activity with other (i.e., prestimulus) activity. Such is the reality of referential EEG
recordings.

These results also provide some data on the best montage to use for dipole
modeling of the P50 response. It is well known that EMG artifact from the temporalis,
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frontalis, and posterior cervical muscles can contaminate middle latency auditory re

sponses [99]. Although EMG artifact is relatively small at the vertex, recordings from
electrodes that overlie the offending muscles are more susceptible to EMG artifact. In
particular, this study observed that eliminating the F7 and F8 recordings increased
the goodness of fit and the reliability of the dipole modeling.

Any model improvements could be tested using the methodology (i.e., test
ing model improvements by comparing the ICC between analyses using different mod
els) of this chapter. It is important to note that although consistency is a cornerstone
of usefulness, it does not prove validity. Of course, sometimes consistency can re

sult from a methodological artifact. Such is not the case in the paradigm presented
here where the consistency measure we used, the intraclass correlation coefficient,
compares within and between subject variance of the C-T ratio. These two sources

of variability could not have affected the DCM results differentially due to artifact
because within and between subject variation was treated identically, with each rep

etition of P50 data analyzed independently.
The C-T ratio reliabilities computed from click-specific amplitude parame

ters obtained when all six runs were simultaneously included in the DCM were com
parable to those obtained when the DCM was fit to each run separately. This result

was surprising, since fitting over more replications would hypothetically increase the
effective SNR, especially for estimation of dipole location and orientation, resulting
in a more accurate modeling of the data. One possible explanation for this result may
be that the electrode caps were not placed in exactly the same manner across days,
introducing noise into the DCM.

These findings raise the possibility that P50 suppression can now be uti
lized to study individual subjects. Several studies have shown that the P50 C-T

ratio is affected by diseases and drugs. For example, the C-T ratio is increased in
schizophrenics compared to nonpsychotic controls (90, 100, 20, 91], in cocaine addicts
compared to both normal controls and chronic alcoholics [101], and with normaliza
tion of schizophrenic P50 with nicotine administration [102, 103]. In all these studies,
however, P50 suppression was examined only via group comparisons. If dipole mod
eling increases the reliability of the C-T ratio in these clinical populations as we have
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shown that it does in normals, it will then be possible to relate the C-T ratio to
clinical state variables. This would increase the power of studies of the effects of
neuroleptics (or nicotine) on schizophrenic subjects and would make possible the ex
amination of the possible modulating effects of clinical status variables. In studies
of cocaine addicts, it would also facilitate longitudinal studies of the effect of various
lengths of abstinence on P50 suppression. Before this promise can be realized, it is
necessary to determine the reliability of P50 suppression in the appropriate clinical
populations. It is possible that the underlying “true” P50 suppression phenomenon
is less (or more) stable in such clinical populations than it is in normals. This is an
empirical question and can only be resolved by analyzing replicate data in such pop
ulations using the DCM. This step is necessary to advance the understanding of the
potential and limitation of the P50 suppression measure in those clinical populations.

It has yet to be explained how dipole modeling improved the reliability
of the C-T ratio. As mentioned above, fitting across several runs did not lead to
further improvements in C-T ratio reliability. The control experiment, during which
a decaying sinusoid was fit to two responses simultaneously using a single channel only,
did not lead to improved C-T ratio reliability, either. This seems to suggest that the
dipole model and the use of multiple channels of data led to the improvement in C-T
ratio reliability. If this is true, then the reliability of the conditioning and testing
amplitudes should also be increased over the peak picking measures.

The reliabilities of the conditioning and testing peak amplitudes as measured
by peak picking on 12 subjects were r = 0.84 and r = 0.50, respectively. The
reliabilities of the conditioning and testing peak amplitudes as measured by dipole
modeling were r = 0.52 and r = 0.69, respectively. These differences in reliability
between peak picking and dipole modeling for both the conditioning and testing
amplitudes were not significant, which implies that the dipole model and the use of
multiple channels led to no improvement.

The observation that dipole modeling improved ratio reliability but not am
plitude reliability despite using simplified head and time-varying magnitude functions
leads to another hypothesis. Could it be that the misspecification of the dipole model
(e.g., use of a homogeneous sphere head model, use of a decaying sinusoid magnitude
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function, modeling a single generator) affects the estimation and variability of ampli
tude parameters, but has little effect of the ratios (i.e., does model misspecification
cancel in a derived ratio measure?).

This paradox, that dipole modeling leads to improved C-T ratio reliability
but not to improved conditioning and testing amplitudes, bears further investigation.
The hypothesis that model misspecification cancels in a derived ratio measure must
also be investigated. These questions will be addressed in Chapter 3.

In summary, this study shows that the reliability of P50 suppression can be

made substantially greater than previously reported. Furthermore, this demonstrates
that the Dipole Components Model can lead to increased reliability of evoked potential
amplitude ratios. These findings have potentially very important implications both
for further P50 studies in clinical populations and for future applications of Dipole
Component Modeling.



55

Chapter 3

Theoretical considerations

3.1 Introduction

The previous chapter showed that dipole modeling led to more reliable esti
mation of amplitude ratios than did peak picking, but failed to lead to more reliable
amplitude measurements. Research by Raz, Cardenas, and Fletcher helped to shed
light on this apparent paradox.

Raz, Cardenas, and Fletcher (65) extended the frequency domain dipole
model to include estimation of covariate effects, as described in Section 1.3.4. Recall

that in the frequency domain model, the time-varying dipole magnitude is estimated
by Fourier coefficients. They tested the efficacy of the model by simulating evoked
potential data designed to resemble auditory P50 as recorded in a conditioning-testing
paradigm. In this paradigm, the EP in response to the second of paired clicks is
reduced in amplitude relative to the response to the first click. The simulated noise
was averaged spontaneous EEG and the SNR was varied to construct data sets with

low and high SNRs. Simulated data were generated using two head models: (1) a
spherical model of homogeneous conductivity, and (2) a realistic skull shape model
of homogeneous conductivity. Data were generated using either one dipole or two
bilateral, synchronously active dipoles. The estimation procedure always assumed a
single dipole generator in a spherical head.

The results demonstrated that the estimators of the covariate effects on
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amplitude (which are essentially ratio estimates for the frequency domain model, as
shown in Section 1.3.4, Equation 1.22) and latency performed well even when the
method, which assumed a spherical head, was applied to simulated data generated
from a realistic head shape. Additionally, the estimators performed well even when
the data were generated by two dipoles but were fit with a single dipole. As expected,
the location and orientation estimators were essentially unbiased when applied to data
generated in the spherical model, and biased when applied to data generated in the
realistic head shape model.

These results led me to suspect that the errors (i.e., bias) in the estimates of
the covariate effect on amplitude (estimated using dipole modeling) caused by model
misspecification “canceled” when a ratio was computed. These suspicions led to me
to confirm the empirical results theoretically, as described in this chapter.

I also hypothesized that model misspecification led to more variable am
plitude estimates as compared to ratios, which in turn would lead to less reliable

amplitude estimates (as measured by the ICC) as compared to ratios. I will examine
this hypothesis later in this chapter.

I am interested in determining errors due to model misspecification when
dipole modeling (via minimization of a least squares criterion, such as the scaled
residual sum of squares, defined in Section 1.3.3) is used to estimate covariate effects
on amplitude and the derived amplitude ratio. I shall treat the parameters represent
ing the covariate effects on amplitude (hereafter called “amplitude parameters”, for
simplicity) as linear variables in the problem, and dipole location, orientation, and
time-varying dipole magnitude function are treated as nonlinear variables (this “split
ting” of the problem into linear and nonlinear parts was discussed in Sections 1.3.2
and 1.3.3). I will assume that some nonlinear optimization procedure has been used
to estimate all variables except the amplitude parameters. The problem can then
be expressed in matrix notation as an inconsistent set of linear equations and the

amplitude parameters can be easily estimated. Using this method, I will show that
although the amplitude parameters are estimated with error in the presence of model
misspecification (i.e., the amplitude parameters are biased), derived amplitude ra
tios (i.e., the ratio of the estimated amplitude parameters) are unbiased under some
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types of model misspecification (e.g., head model and time-varying magnitude func
tion misspecification) for three special cases. These cases are the single dipole case,
the case of multiple dipoles when all dipoles have the same magnitude, and the case
of multiple dipoles when all dipoles are changing in the same way across replications
(i.e., all amplitude ratios are equal). In addition, when all amplitudes are equal,
misspecification of the number of dipoles will not affect amplitude ratio estimation.

Examples of evoked potentials generated by a single component include wave
I of the auditory brainstem response and somatosensory N20. Physiologically, multi
ple dipoles with equal amplitude ratios could occur in response to auditory stimula
tion. The auditory system is bilateral rostral to the superior olive, and in the case of

unilateral stimulation, the two hemispheres are probably not activated equally (i.e.,
the generators will not have the same amplitude). However, any adaptation (e.g.,
such as the “gating” of the testing auditory P50 response) would probably occur
equally in both hemispheres. In the case of bilateral stimulation, equal amplitude
and equal amplitude ratios are likely.

Notation: I use bold-faced letters to indicate vectors, bold-faced script letters

to indicate matrices, and use normal-faced italic letters to indicate scalars. Unit

vectors (vectors of length 1) are indicated by a .

3.2 Proofs

3.2.1 Single time point, single dipole

Proposition 3.1 For the case of fitting a single dipole to a single time point with
head model misspecification, the amplitude parameter estimates are biased, and the
ratio of amplitude parameter estimates is unbiased.

Proof 3.1

Let

V}, + n x 1 vector of given surface potentials (generated by correct model,
no noise) at a single time point

*... = + -
* -- * *

--- --* * *
a ** ****

...-----, *
* --~ *-
***, ****

*

***** * * *

sº. .*****
--------
º-º-º-º-º-

º

*********

º

*-* ****
* = .

■ * *

** * *
º ***

_º
g---º-º-
cº-º-º-

*
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} = n x 1 vector of fitted surface potentials at a single time point
where n is the number of measurement locations. Then let

V. c"qug(6, 6,)
} = d"p,f(0■ , bf)

where g(0, b,) is an n x 1 vector valued function which relates the given dipole
location 6, and orientation b, to the given noise-free potentials at the n measure
ment locations on the surface. If the surface is a sphere of homogeneous conduc

tivity, then the function g(0, b,) is the same as Equation 1.9, i.e. g(0, b,) =
(gi (99, b,), 92(9, b,), .. ... g. (9, b,))". The scalar cº represents the true covariate
effect on amplitude and q, represents the common amplitude at time t of the dipole

generator. The vector f(0■ , by) is an n x 1 vector valued function which relates the
fitted dipole location 0; and orientation by to the fitted potentials V},.. I assume
that 6; and by have already been estimated by a nonlinear optimization procedure,
and that f(6 f, p■ ) has been computed. Furthermore, because of head model mis
specification, g(0, b,) # f(0■ , by) in general. The estimated covariate effect on
amplitude (i.e., the “amplitude parameter”) is a scalar and is represented by d", and
p, represents the common amplitude time t of the fitted generator. I am considering
the case of noise-free potentials.

For convenience, I can write:

g(6a, b,) = 9m

f(0■ , by) = fºn

where g is the unit vector and gin is the length of g(0, b,), and f is the unit vector
and fin is the length of f(0■ , b/). Therefore,

V. - c"qiging

V}, + d"pf,f

Assuming I have measured V, and have some estimate of p, f.f. I am

interested in finding d" which minimizes the least squares error between V., and V}.

* …" * * * * * *
** *

*** -> º
*****

rº- ****
*******
**-, _º
*** * * -- **

**, ****
------>
ºtº-º-º-º-

r
***** **-
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I thus have a set of inconsistent equations of the form aa = b, where a is pff, r
is d", and b is cºqigºng. From Strang [104] I know that the least squares solution of
aa: = b in one unknown is:

a"b
a: = —

a■ a (3.1)

Using this result to solve for d", and recalling that for vectors at b = a . b
(dot product), that a b is a scalar, and that f. f = 1 (i.e., the dot product of a unit
vector with itself is 1), I can show

f
d” – (p■ .f)"eading epidi■ mººf. § c"pig■ .gº.f. §

(p,f,f)"p, finf p; f. f. f pff.

and d” # cº unless gn = fºn, q = pe, and g = f. Equation 3.2 shows that least

(3.2)

squares fitting with an incorrect model (g #f and/or g, #f,) will lead to errors
in the estimated amplitude parameter d". In terms of dipole modeling of evoked

potentials, g # f when the shape of the volume conduction model used in fitting is
not the same as for the given data (for example, if the given data were generated by
a head and a sphere model was used for fitting). Even when the shape of the volume
conduction model used in fitting is the same as for given data, if the conductivities
of the volume conduction model used in fitting is not the same as for the true data,
gm # frn. If the nonlinear optimization method did not solve the nonlinear least
squares problem appropriately (i.e., converged to a local minimum), then even when
no model misspecification is present, g # f and gm # fin.

Now let us consider amplitude ratio estimates. Let V, be a second set of
given potentials and V}, be the fitted set of potentials at a single time point, described
as follows:

vº,
-

cºqiging
v},

-
d"p fif

The length or amplitude of the data vectors are described by the norm, and
b
g

|V} | VV; V Veetiºs & Weeniº, e. (3.3)
|V} ||2 VV, V, Vcºcºq■ qìg g Vcºcºq■ q■ , cb

the ratio of the norms of the vectors V, and V', can be computed as follows:
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and the ratio of the norms of the vectors V}, and V}, can also be computed:

|V}. L. VV VA Vºdºff f_Vºf dº (3.4)|V} |. VV, V, Vºff Vºf dº
-

I can also show that d", the least squares solution to air = b where a is
p.■ .f, r is d", and b is cºqigºng, is

* - (p■ fºung – “pºi■ ºgºf. § – ºpt■ ºf §
F a - a - -

3.5
(p,f,f)"p, finf p? f. f. f pff. (3.5)

and then,
-

d" ca ºft cº (3.6)d;
-

cb t tfm. infg
-

cº
-

p #
Equation 3.6 shows that ratios derived from the amplitude parameter esti

mates are preserved, even when fitting with an incorrect model, as long as the same
model (f, p, and f) is used to fit both data sets, and both data sets are generated
by the same gm and g.

It is worthwhile to note that amplitude ratios are preserved no matter what
fm and f are, as long as the same frn and f are used to fit both data sets. This
means that the difference between the physical head model used for fitting and the
true head does not affect the amplitude ratios. Inspection of equations 3.2 and 3.5
clearly shows that the difference between d" and cº or d" and c' becomes larger as the
difference between gin and fin or g and f becomes larger. But the amplitude ratio
is preserved regardless of the differences between gin and fm or g and f. This also
shows that when fitting the amplitude parameters linearly, failure of the nonlinear
optimization method to converge to the global minimum (the global minimum is the
best estimate of 6; and by, which are subsequently used to compute fº, and f) will

not affect the amplitude ratios, since the values of fin and fare not important and
cancel in the computation of d"/d".

When the amplitude parameters are not estimated linearly, fin and f are
not guaranteed to cancel unless the global minimum is reached by the nonlinear op
timization routine (i.e., the least squares fit is truly the best least squares fit). In

sa-ºº-ºº:

- set
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other words, when a nonlinear optimization routine is used to estimate the ampli

tude parameters, d" will not equal the right side of Equation 3.2 (the solution found
using linear estimation), and d” will not equal the right side of Equation 3.5 (the
solution found using linear estimation) unless the global minimum is reached. The
effects of head model misspecification only cancel when d" and d” are the same as in
Equations 3.2 and 3.5.

Although the previous work assumed fitting at a single time point, I can
extend it to multiple time points, as follows.

3.2.2 Multiple time points, single dipole

Proposition 3.2 For the case of fitting a single dipole to multiple time points with
head model misspecification and time-varying dipole magnitude function misspecifi
cation, the amplitude parameter estimates are biased, but the derived ratio of the
amplitude parameter estimates is unbiased.

Proof 3.2

Let

V; = n x u matrix of “true” potentials
V} = n x u matrix of fitted potentials
V = n x u matrix of unscaled fitted potentials

where n is number of measurement locations and u is number of time points, and let

t = 0, ..., u. I denote the following:

V. = column tof matrix V,

} = column tof matrix V;
V. = column tof matrix V.

where

V. = c^q.(x)g(0, b,)
V. = p(b)f(0■ , by)
V}, + dºv.

- *** *
**-* ==
ºs- *. ****
at-º- ºr -º

sº .*****
******
neº-º-º-º-º-º-

rºses---

*—-----
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and where q(x) is the true time-varying dipole magnitude, which describes the shape
of the dipole activity over time t as a function of the parameter vector x. The fitted
time-varying dipole magnitude is p(wh) is a function of the fitted parameter vector ºb,
and in general, q, (x) # p(wh) because of model misspecification (both misspecification
of the head model and time-varying dipole magnitude function). For example, the
dipole components model [10] used in Chapter 2 used a decaying sinusoid for p(wh),
such that bi = 0, b2 = A, who = T, and b4 = 3. It is unlikely that the true dipole
magnitude function q(x) is a decaying sinusoid .

For simplicity, let

q(x) = qi

p. (ºb) = pt

(3.7)

I can then write:

V. = c qigºng

V. -
pff

}. = d"Vot

Let V, V, and V} be nu x 1 vectors, where

jo jo Vo
Va Va Va

-
g1

-
ol d — , Jal olv; = | " v. = | " v) = +

V;, V. V.

As before, assuming I have been given V; and have some estimate of V., I
am interested in finding d" which minimizes the least squares error between V; and
V}. I again have a set of inconsistent equations of the form air = b, where a is V,
r is d", and b is V. Using equation 3.1, I find:

- -
aa"b = cºpogo■ .gif g + cºpia, fºg.f. g +...+ cºp.a.■ .g...f.g



63

=
c"fag".f

-
g (i. w)

t=0

at a = p.■ ., 4-p; f. 4. . . . 4 p.f.

= f; (i. r)
d” –

a" a f; (XC-opf)
a"b -

c"f.gº.f
-

g (XX-0 pºqi) (3.8)

and therefore d” # cº unless p = q. Vt, f-g = 1 (implying that f = g), and gn = fin.
Equation 3.8 shows that least squares fitting with an incorrect time-varying amplitude
function (i.e., when p # q), even if the correct head model is used, leads to an error
in the amplitude parameter estimate d".

Now I will consider the derived amplitude ratio estimate. Let v; be a second

set of given potentials measured over time and V. and V} be the unscaled fitted and
fitted potentials to v, described as follows:

Vo Vo

v, - ". . v.- ".
V. V.

where

V% = c^qigºng
V.

-
pff

The ratio of the norms of the vectors v; to v; and v; to v; can be

computed as follows:

|V} |. VV; V:
|V} |. VV, V,

Vercºnfig; F cºcºq■ q■ , H . . . -- cºcºq}g.

Vcºcºq■ q; + cºcºqíg; +
Vc"c"g., XX_oqí
Vc"c"g; XX_oqí

. . . -- cºcºq■ g.
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-
c"gm V XX-0 qí
cºgn WXX-0 at
ca

ch

|V} || – VV-V.
|V} |. VV}. V}

Vdºd-p■ f; + d■ d-p■ f; +…+ dºdº■ ;
Vºdºp■ f; + dºdºp■ i■ ; +…+ dººf;

d"d"f. XX op?

Vd"d"f. XD op;

-

d" frn *-0 p?
d"fn V t-0 p?
d”

= I,

I can also show that d", the least squares solution to at = b where a is V.,
r is d", and b is v; is

a – º■ mºn■ & Ci-opiº)
f; (XC-opf)

c"fngmfg XD. opta;
da

-
fº, XX-op?

-
ca

db
-

cºfingmfg XX-0 pt qt ch
f■ , 2-0 p;

Then,

(3.9)

Equation 3.9 shows that the amplitude ratio is correctly estimated, even
when fitting with an incorrect head model and/or an incorrect time-varying dipole
magnitude function, as long as the same model (fm and f ) and same amplitude
waveshape (pi) is used to fit both data sets, and both data sets are generated by the
same gm, g, and qi. The assumption that both data sets are generated by the same
gm, g and q is reasonable for subcortical and short-latency cortical EPs, because they
are “hard-wired” responses, as discussed in Chapter 1.

* -º- -

º
** -º ---

sº-ºº-ººs

-º-, *
*-*-*-
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as tº a “s
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I have shown so far that amplitude ratios are estimated without bias in the

face of head model misspecification and misspecification of the time-varying dipole
magnitude function. I am also interested in the effect of misspecification of the number
of dipoles used in fitting, particularly the case when two generators are mistakenly
fit by a single dipole.

3.2.3 Misspecification of number of dipoles

I will assume that the two generators have the same amplitude, but I will not

assume that the two generators are synchronous (i.e., the generators can have different
“waveshapes”). This is a reasonable assumption when looking at early generators
(subcortical and short latency cortical) of potentials evoked by bilateral stimulation,
such as the auditory P50 evoked response. The bilateral generators should then have
similar amplitudes (but perhaps different waveshapes), that should change similarly
in response to different stimulation intensities or rates.

Proposition 3.3 For the case of fitting a misspecified number of dipoles to multiple
time points with head model and time-varying dipole magnitude function misspec
ification, the amplitude parameter estimates are biased, but the ratio of amplitude

parameter estimates is unbiased, assuming that all true generators have the same

amplitude (within a data set) and amplitude ratio (computed across data sets).

Proof 3.3

Let

V = n x u matrix of given potentials
V} = n x u matrix of fitted potentials
V. = n x u matrix of unscaled fitted potentials

where n is number of measurement locations and u is number of time points. Then
let

V. - c"■ qu(x1)gi (991, b,1) + q21(x2)g2(9,2, b,2)]
}. - d"p,(wh)f(0■ , by)
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where cº, d", pi, and f(0■ , p■ ) are defined as previously. The time-varying magnitude
of “true” generator 1 at time t is q1, and is a function of x1, and q2 is the time
varying magnitude of “true” generator 2 as a function of x2 at time t. Note that
for synchronous generators, q1 = q2r. I do not not require equality of q1 and q2t,

however, and the two generators can have different waveforms. Let g(0,1, b,1) be
an n x 1 vector valued function that relates the true dipole location and orientation

* *** - - -

(9,1 and b,1) of the first generator to the given noise-free potentials, and g2(6.2, 4,2) º --* -aº -
is an n x 1 vector valued function that relates the true dipole location and orientation --~~~

***, *
(6,2 and b,2) of the second generator to the given noise-free potentials. tº

- - - -
**, ****

Using notation similar to that in the previous proofs, let *.*-->
*...****

V. = c(qigºnigi + q2tgm2g2) tº
w g

V. - pt frnf *******

V}, - d"V.” *
t-sº-sº

I can also then define the nu x 1 vectors V, V, and V} as before: ** ..

Vo V. V. tº,
Va Va Va gº-ºº:

0 — g1 al ol d — , Id ol
V; = : V; -

-
V} = d

-

V;, V. V.

I use equation 3.1 to solve for d", and find

a"b = c (podiofagnigi ºf + poqoof...gººg, f) + · · · +
c"(puqiu fingmigi • f + Puq2ufmgm282

-
f)

= c fin (-5.
-

tãº) + (-º
-

tiºn)
t=0

tu.

Ta" a = f; XCp;
t=0

d” = a"b -

t=0

c" frn (ºn. §1 f}}_o pºi) + (grºß,
-
f}}_o pº)

a■ a f. XX=0 p? (3.10)

Equation 3.10 shows that d" # cº and that least squares fitting will lead to
errors in amplitude parameter estimates.
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Now I will consider amplitude ratio estimates. Let v; be a second set of

given potentials and V. and v; be the unscaled fitted and fitted potentials to v.
Let

where

Vo Vo Vo
b b b

Vb - V, Vb
-

V., Vº - dº V.,
9 - o -

f -

V'. V. V.

V.
F

e'(qigniš + qigº.g.)
V. = p finf

V},
- d"V.”

The ratio of the norms of the vectors V; to v; and V} and v; can be easily
computed:

|V} ||2
|V} |.

|V} |.
|V} |.

Vee (ºff-2010 aggº-oº-ºº-oº.)
Vcºe (gº XX-0 qi + 29m ign2gig, XX-0 qigot + 93.2 XX-0 q■ )

cº Vº *-0 qi + 29migm2.Éiš2 XX-0 qiq2 + 93.2 XXLo q■

cºyº XX-0 qi + 29mignagig, XX-04142 + 93.2 XX-0 q■

VV; V}
yv} : vºy
Vdºdºpä■ ; + d■ d-p■ f; +...+ dºdºp;f;
Vºdºp■ f; + dºdºp■ i■ ; +...+ dºdºp;f;

dºdºf. XX=0 p?

d" frn V *-0 p?

d"fn V t-o p?

ºr ºt."
- -**=

**** * *

* ,--->
- ****
**-* --

**** **-

--- - - - -

* * *
.*

-

º º

--, -º-º-º:
usº->
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d”
dº

I can also show that d” is

- a"b - c"fn (né f>{-opiºi) + (ºg.
-
f}}_o pº)

a■ a f: XX-opf (3.11)

Then I compute d"/d” aS

c" frn (gmi g ‘f XD., prais)+(gm2g2 f XX-0 piazi)
d”

-

f■ , XX. p?
d" cº■ m■ (angif X -opiºi)+(gººg, fx -opiºs)]

f■ , XX:-op?
ca

Equation 3.12 shows that amplitude ratios are estimated without bias when
the number of dipoles is misspecified and the same f, fin, and p, are used to fit both
sets of given potentials. It is important to note that the two given dipole generators
do not need to be bilaterally symmetric, and the two dipoles do not need to have the

same time-varying dipole magnitude (i.e., qit does not have to equal q2), although
they must be scaled the same way (i.e., both dipoles must be scaled by c' and c').
When all true generators have the same amplitude, it is only important to use the

same model (f, fin, and p) when fitting the two sets of data for unbiased ratio
estimation.

The preceding work seems to suggest that amplitude ratios are always pre
served during dipole modeling, and may cause one to conclude that dipole modeling
can correctly estimate amplitude ratios for multiple dipole problems despite model
misspecification. Unfortunately, amplitude ratios are preserved only in the special
cases such as in Sections 3.2.1-3.2.3 (i.e., single dipole active, or two dipoles with the
same scaling). Dipole modeling is not a “magic” method for accurately estimating
generator amplitude ratios. In the next section I will show that, in general, nei
ther amplitude parameter estimates nor amplitude ratio estimates will be unbiased
in the face of model misspecification, and will also show another special case in which
amplitude ratios are unbiased.
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3.2.4 Multiple dipoles

Proposition 3.4 For the case of fitting multiple dipoles to multiple time points with
head model and time-varying dipole magnitude function misspecification, both ampli
tude parameter and amplitude ratio estimates are biased, unless all dipoles have the
same amplitude ratio (computed across data sets).

Proof 3.4

For an inconsistent set of equations of the form Ax = b, the least squares solution is
[104]:

x = (A"A)'A'b (3.13)

and for the case of dipole modeling

x = vector of dipole amplitudes

b = vector of given potentials

A = map from dipole amplitude to potentials at the

measurement locations

(A"A)'A* = map from potentials to dipoles amplitudes

where A e R", x e R', and be £". As previously defined, n is the number of
measurement locations, u is the number of time points, and I now define l to be the
number of dipoles.

Using the notation developed in previous proofs, I can define A, x, and b.
Let

V. = y, 4 V, + ... + v.
V} = V}, + V}, + ... + V%

where V; and V} are n x u matrices of given and fitted potentials. Letting j index
dipoles and t index time points, I can write (V j and t),

V. = cq;1(x,)g;(0,1, b,)
} = dpi (ºb;)f(9,1, bf,)

- - - - -

*...***
- *****

* ---,---"
*** --
* , see”
**- * -

*, ****
**** *-*
ºx-ºs

º
tº assº, ºr

sº
-: *****

* *-* ,
sº

* - -
-

***
--~~
*-nº

Fººtº-º: *
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or, in the shorthand notation used previously,

V.,. - c, qigºnjg;
V.,. = pyt.fm.jf.
V}.

- d;V.,

And now

Vºo V.o Vºlo

A = |Yºu
-

V., . . . . . . V.

d; Vºo + V.0 + . . . 4-Vºlo

X = º b = V, i + V.1 + · · · + V.

d; V}, + V., + ... + V,

The map from potentials to dipole amplitudes, (A*A)7'A' is an l x nu
matrix, and I will denote the rows of this matrix by y}, where y; are nu × 1 vectors,
as shown:

y{
T

-
y(AA-A = |*

:
yf

Using Equation 3.13, I can find that dº is just y■ b, d; is y; b, and so on for
all d, as shown:

ta ºu tº

d; = gmicig, y XD qi + gnac:g, y; XXq2 +...+ gmic■ g y, XXqu (3.14)
t=0 t=0 t=0

It can be easily shown that for a second set of data, that differs from the
first data set by only the dipole amplitudes of each generator, that

d;
-

gmie■ , y; XD q1t + gmaðg. y; XD q2t + ... + gmic■ y; XC Qlt
t=0 t=0 t=0

º, -sº *

******

* * * * *

*-*----
**. *****
sº a ºn

*...****
--º-º-º:

-º-º-º-

******

a
-- * *-ºs

* -º-º:
**

sº a
-

--~~~
------

*
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Equation 3.14 shows that in general the amplitude parameters are biased

when estimated using dipole modeling via least squares fitting because d', # cº, and
instead d, is some combination of all the true dipole amplitudes. This is clear by
simply rewriting Equation 3.14 as

d; = ciri + cjz2 +...+ cr; +...+ cºrt (3.15)

where r = gmig, y; XD: o qit. From Equation 3.15, it is obvious that dº # cº in
general.

The question that remains is whether or not the amplitude ratio for each
individual dipole is preserved. The amplitude ratio of the individual “true” dipoles
is simply the ratio of the norms of each dipole contribution to the potential map, the

V. The amplitude ratio of the individual fitted dipoles is the ratio of the norms of
V}. These are easily shown to be:

J

|V}, ■ |2 c.
|V}, ■ |2 T c.
| V%. |2

-

d;
|V} | T dº

For simplicity, I will again assume that ai = graig; y; XD. o qit. I can then
show

* gmiciši : Yi X-04it # 9m2&#x : y ≤-oº! t ... + gneig, y, X-odu
d; gmic■ gi 'y, XX-0 qi + gnºc■ g, ‘y, XX-0 qi +...+ gmic■ g y, XX-odu

cía. 1 + cja:2 + ... + c ri
c■ r, + cºr? + ... + c■ al

(q –34), 4 (3–34), 4...+(3–34):
cía. 1 + c■ rz +...+ cfari

+ (3.16)c;c;
Equation 3.16 shows that, in general, d;/d equals c;/c, plus a remainder

term. For simplicity, I can rewrite Equation 3.16 as
dº cº 2
+ = + + + 3.17
d; c; + 2d ( )

where zn and za are defined as follows:

2, - (c. c; })+ a — ºf b a ºf bn – 1 - J. Cl 1 + (c. #c.)+2 +...+ (c. #c;)."
C; c; c;

b b b2d = C, a 1 + Cºac2 + ... + Carl

*** -->
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From Equation 3.17 it is obvious that d;/d; will equal c/c, only when the
remainder term 2n/2.4 is equal to zero. One case where this will occur is when all
terms of zn equal 0, i.e. when

J. b
-

(c.
-

#6) = 0
J

cº
d — J b

J
al al9. “i
b - b

C. c;

This shows that one special multiple dipole case where estimated amplitude
ratios will be unbiased is when all dipoles have the same amplitude ratio, as defined
below:

al al al

‘i – “3 – ... – ‘i.
b T ,b T T ...,b

C1 C3 Ci

I have established that estimated amplitude ratios are unbiased despite head
model (g; # f; and gin; # fin;) and time-varying dipole magnitude function misspec
ification (q; # pit) using dipole modeling and least squares fitting in three special
cases. These cases are the single dipole case, the case of multiple dipoles with equal
amplitude, and the case of multiple dipoles when all dipoles amplitudes are changing
the same way (equal amplitude ratios for all dipoles across data sets). In addition,
when all dipoles have the same amplitude parameters (i.e., all dipoles are scaled by
c" and c'), misspecification of the number of dipoles will not lead to biased amplitude
ratio estimation.
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3.2.5 Reliability

The above results are encouraging, and prove that dipole modeling gives
valid results under the special circumstances detailed previously. However, they do
not explain the findings of Cardenas, Gerson, and Fein [105], who found that ampli
tude ratios estimated using dipole modeling were more reliable than the estimated
amplitudes, because the proofs in Sections 3.2.1-3.2.4 all assumed the absence of
noise. Therefore, the results of Sections 3.2.1-3.2.4 showed only the effect of model
misspecification on the bias of amplitude and amplitude ratio estimates, and did not
address the variance of amplitude and amplitude ratio estimates. In order to try to

explain the findings of Cardenas, Gerson, and Fein [105], I must first look at the
definition of reliability.

The reliability of a measure, denoted by r, is
2

r =
###. (3.18)

2where a . e is the variance within a class and oft. is the variance between classes. For
2
tancthe case of dipole modeling, oº, is the variance of repeated measures (amplitude or

amplitude ratio estimates) on the same subject. For the case of dipole modeling,
of is the variance of the measure (amplitude or amplitude ratio) across subjects.
Equation 3.18 shows that r approaches a perfect value of 1 as a approaches 0.

2Therefore, r increases as o. a decreases.
The results of Cardenas, Gerson, and Fein [105] suggest that for the auditory

P50 evoked potential, the within class variance of dipole modeling amplitude ratios is
smaller than the within class variance of the amplitude parameters estimated using
dipole modeling. If I can show that the amplitude ratios have a smaller of... than
amplitude parameters in general, then I can explain why dipole modeling improved
the reliability of the C-T ratio over peak picking, but did not improve the reliability
of either the C or T amplitudes over peak picking [105].

In order to examine this question, I must add noise to the model for the

given potentials. For simplicity, I will consider the case of one dipole at a single time
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point t. Let

V. = c^qigºng + e,

where e, is an n x 1 vector of noise due to EEG and EMG artifact. For simplicity,
I will assume that eak - N(0, aft) V k, where k indexes electrodes, and that eak is
independent of eak, which means that the noise between electrodes is uncorrelated.
This assumption may be valid for widely spaced electrode locations, but is clearly
violated for electrodes which are closely spaced. For example, muscle artifact will
contaminate all nearby electrodes, resulting in correlated EMG noise between the
affected electrodes. Because EMG is not volume conducted, electrodes relatively far
from the muscle will not be affected. The noise on the affected electrodes will thus

be nearly independent of the noise on the unaffected electrodes.

The presence of noise on V, will affect the nonlinear fit of the dipole location
and orientation, i.e., the noise will lead to a rougher and more complex multivariate
estimation surface with more local minima. The noise may even “shift” the global

minimum. Therefore, the f(0■ , p■ ) found by fitting on noise-free potentials is gener
ally not the same as f(6', 4') found by fitting on noisy potentials. I will model the
difference between the two fits as noise, i.e. f(0■ , by) – f'(6', d';) = ef, and then I
can write:

}; -
d"(f,f + ef)

where ef is an n x 1 vector For simplicity, I will assume that efk v N(0, off) V k, where
k indexes electrodes, and that eak is independent of efk, which means that the noise
present on the given potentials is not correlated with the difference between the noise
free and noisy fits. This assumption is clearly violated, because the noise present on
the given potentials results in the noisy fit, and so the noise free and noisy fits cannot
be uncorrelated. For simplicity, I will also assume that efk is independent of efy,
which means that the noise between electrodes is uncorrelated. This assumption is
probably also violated because efk is not truly independent of eak, and because eak is
not truly independent of eak■ , as discussed above. I use equation 3.1 to solve for d",
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the amplitude parameter:

d” – c"pº■ ing...f
-

g + c"qigºng ef + p.■ .f ea + ea ef (3 19)
pff. -- 2p; fin f : e■ + ef ef

Equation 3.19 shows that d" is a function of several random variables. I can
rewrite Equation 3.19 as follows, using Ys to denote random variables, and X's to
denote the other variables.

q, Xi + X,Y > X3% + 3
X4 + X5 YA + Y;

(3.20)

where X, is cºpiq.f.g...f. g., X, is cºqign, Xa is p■ , X, is pff, and X5 is 2p■ .f,
and where Y is g : ef, Y2 is f.e., Y3 is ea ef, YA is f.e■ , and Y, is ef ef.

The distributions of the Ys can be determined, some using simple probability
theorems. Recall that a linear combination of independent normally distributed ran

dom variables is itself normally distributed as N(XDE asps, XC, aftoº) [106]. Therefore,
I can write the following:

-Y1 = g : ea = g1ef1 + gze■ z + · · · + gnefn

Y■ N(u XDgs, of XDgè)
i-k i-k

Y1 - N(0, aff)

because XX gº is 1 since g is a unit vector. I can similarly determine the distributions
of Y2 and Y4, and they are

Y, - N(0, 0.
Y4 - N(0, of)

The random variable Y3 is more complicated, because it is the sum of random
variable products. I know from probability theory the mean and variance of the
product of two random variables, but not the distribution. Let

W1 ~ N(ul, of) W2 ~ N(u2, a3)
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Then, if Z = W1W2, the mean and variance are defined as

E(Z) = p.1/12

Var(Z) = 0; of + uío. 4 p.30%

I also know from simple probability theory that a linear combination of

random variables has a mean XD, asps and variance XD, a■ o■ . Therefore, I know the
mean and variance of X3, as shown:

Y3 = e, ef = etief1 + etxe fº -- - - - -- enefn

Let ZE = etke ■ k, then Zk has mean 0 and variance a■ o■ . Y3 is then XDR as Zº where
ak = 1 for all k. Thus I know that

E(Y) = 0 Var(Y) = afa■

The distribution function of X3 has been shown by Khlobystov and Zadiraka

[107]. The distribution function of the random variable m(n) = XX_1 etke ■ º, is given
by:

—lil

#(1 + (sgn r)(1– #m X wº-(+)) n = 2m

Fn(n) = 1 ac (3.21)}[1+(sgn r)#(K,(#) x L.-(+)-
+L(#) x K-1(#)} n = 2m -- 1

where P0(w) = 1, P1(w) = w 4-2, pm (w) = (w --2m) p.m_1(w) – wºm_1(w), Km (w)
and Ln(w) are the Macdonald and Struve functions, respectively [108].

The random variable Y, is also complicated, because it is the sum of squared
normal variables. I have

Y5 = ef e■ = eff, 4 ej, + . . . 4 ej,

–
X eff,
k=1

= XXu'■ 4 of Uk)
k=1
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and since of k = of and pufº = | f V k

Y. – no?X (#4 U.)"
Ti of

where pi f is the mean of ef and Us are independent samples from a standard normal
distribution. From [109] I know that the distribution of XD. 1(a f/of + Us)” is the
non-central X” distribution with n degrees of freedom and non-centrality parameter
XD. 1 p f/of. Since I had previously defined up = 0, the non-centrality parameter is 0,
and the non-central X” distribution becomes the central X” distribution. Therefore,
Y; is distributed as no ■ y”(n).

The preceding discussion shows that the distribution of d cannot easily be
found analytically, because d is a function of random variables with different dis
tributions. If I further simplify the problem and assume that Y1-Ys are normally
distributed, both the numerator and denominator of equation 3.20 become normally
distributed random variables. Previous research (92, 93, 105] has shown that the
variance of the ratio of independent normally distributed random variables is infinite,
and d would thus have a large variance and small signal to noise ratio.

Let us now turn to the discussion of amplitude ratios. If I let a second set
of noisy data be described as

v. = c^diging + e.

where I assume that this data were generated by the same dipole, c' is the amplitude
of the dipole, and e. is the EEG and EMG artifact present on the data. The fit is
modeled as

V% = d”(f,p.f + eº)
The amplitude ratio is then

d" cºpigi■ m.9m f : 3 + cºdiging ef # Pi■ m f : ea + ea ef
d” cºpiq, f,g,f . g + cºqigºng e} + p.fºf e! -- e, e}

(3.22)

Equation 3.22 shows that the amplitude ratio is a function of several random
variables. I can rewrite equation 3.22 as follows, using Ys to denote random variables,
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and X's to denote the other variables.

d" XI + X2Y + X3)2 + Y3
d" X} + X;Y." -- X&Y.; + Yº

One can easily show that Y." and Y are normally distributed, and that the
distribution of Y; is described by Equation 3.21. If for simplicity I assume that Y.
is normally distributed, then d"/d" becomes a ratio of normally distributed random
variables. As previously mentioned, such a ratio has infinite variance.

I have shown that the variances of amplitude parameters and amplitude

ratios estimated by dipole modeling are not easily determined, even when simplifying
assumptions (such as the distributions of the noise vectors) are made. In addition, real
EEG and EMG artifacts are not normally distributed with 0 mean and same variance
across measurement channels (see above discussion), and the noise components ea and
ef are not independent, but are at least weakly correlated with each other. Therefore,
the mean, variance, and distributions of dipole modeling amplitudes and amplitude
ratios are even more complicated than I have presented.

In chapter 2, it was shown that the ratio of independent normal variates
had infinite variance. The violation of independence in the present chapter may in
fact lead to a decrease in the variance of the ratio measurement. For example, I can
define a random variable Y as the ratio of the random variable X with itself, i.e.

Y = X/X = 1 for any sample X. In this case, the variance of the random variable
Y is 0, because X is perfectly correlated with itself. Therefore, if a random variable
is the ratio of two correlated random variables, the variance of the ratio may not be
infinite.

Because of the difficulty in solving this problem analytically, and because of
the difficulty in estimating the correlation between the noise vectors, I have designed
a simulation study in order to determine the relative variances of absolute amplitudes
and amplitude ratios estimated using dipole modeling. I can then empirically eval
uate whether amplitude ratios are more reliable than amplitude parameters, when
estimated using dipole modeling.

I will estimate the variance for the absolute amplitude and amplitude ratio
under several types of model misspecification in the presence of noise. I will addi
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tionally determine the effect of dipole location and orientation on the variances by
looking at several dipoles and dipole pairs. The simulations and results are described
in the following chapter.
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Chapter 4

Simulations

4.1 Introduction

Chapter 2 showed that dipole modeling led to increased reliability of the au
ditory P50 conditioning-testing ratio (an amplitude ratio) over peak picking, but did
not lead to increased reliability of the estimated conditioning and testing amplitudes.
In chapter 2 it was shown that the process of fitting several data sets and “pooling”
the noise across data sets did not account for the increase in reliability, as originally
proposed. The use of multiple channels of data did not appear to cause the increase
in reliability either, as the reliabilities of the amplitudes did not increase as the ratio
reliabilities did. At the end of chapter 2 I proposed that misspecification of the dipole
model may affect the variability of amplitudes more than ratios.

Chapter 3 investigated the effect of model misspecification on the amplitude
and ratio estimates, and showed that in several cases, model misspecification led to
biased amplitudes but unbiased ratios. Chapter 3 also showed that the variability of
amplitudes and ratios was difficult to determine analytically, leaving only simulations
as a means to test the hypothesis that model misspecification leads to increased
variability of amplitudes as compared to ratios.

I am interested in determining errors due to model misspecification when
dipole modeling (via minimization of a least squares criterion, such as the scaled
residual sum of squares, defined in Section 1.3.3) is used to estimate covariate effects
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on amplitude and the derived amplitude ratio. I shall treat the parameters represent
ing the covariate effects on amplitude (hereafter called “amplitude parameters”, for
simplicity) as linear variables in the problem, and dipole location, orientation, and
time-varying dipole magnitude function are treated as nonlinear variables (this “split
ting” of the problem into linear and nonlinear parts was discussed in Sections 1.3.2
and 1.3.3).

This chapter describes the simulations used to test the following hypotheses:

1 The coefficient of variation (COV-defined as the mean divided by the
standard deviation) of amplitude ratios estimated using dipole modeling
is higher than COV's of estimated amplitude parameters in the presence of

model misspecification (head model misspecification, time-varying mag
nitude function misspecification, and misspecification of the number of

dipoles) and averaged EEG noise.

2 The COV of dipole modeling amplitude parameter estimates will increase
as the signal to noise ratio of the data increases (i.e., the amount of EEG
noise present decreases).

3 The COV of amplitude parameters estimated using dipole modeling will
increase as the “true” dipole generator becomes more eccentric, because
the homogeneous sphere head model better approximates the head for
eccentric dipoles (i.e., head model misspecification decreases for eccentric
dipoles).

Three types of model misspecification were simulated during estimation of
the variances; head model misspecification, time-varying amplitude function misspec
ification, and misspecification of the number of dipoles. I generated data in the 3-shell
skull shape model using an averaged and filtered P50 evoked potential as a template
for the time-varying amplitude function. Real averaged EEG “noise” was added to
these simulated data to generate several simulated averages for each dipole configu
ration. Dipole modeling of these data sets using a homogeneous sphere model and
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decaying sinusoid amplitude function misspecified both the head model and ampli
tude function. One or two dipoles were fit to data generated by two synchronous
dipoles in order to simulate misspecification of the number of dipoles. The means,

standard deviations, and coefficients of variation (COV) of the dipole amplitudes and
amplitude ratios were computed.

Because of my interest in using the results of this chapter to understand
chapter 2, I simulated the proposed generators of the auditory P50 evoked response.
The generators of the auditory P50 have been widely debated in the literature (21,
110, 111, 112,49, 113], and there is conflicting evidence suggesting bilateral generators
in (a) the central nuclei of the thalamus, (b) hippocampus, or (c) auditory cortex.
Therefore, I simulated dipoles in each of these locations, and investigated them singly
and in synchronously active bilateral pairs.

4.2 Methods

Simulated evoked potentials were generated at 30 scalp electrodes, using a
3-shell skull shape model. The dipole locations and orientations used are listed in
Table 4.1. These locations and orientations were estimated using the coordinates
from a stereotaxic atlas of the human brain [114] and scaling to a head radius of
1. The electrode locations I used are listed in Table 4.2. These electrode locations

correspond to those currently used to collect and analyze auditory P50 in George

Fein's laboratory. These locations were chosen assuming a spherical head model, but
the real skull shape used to generate the data does not have the same symmetry
as a sphere. Because of the irregularities in the skull shape model, the electrode
locations were not in these exact coordinates. The adjusted locations (relative to a
spherical model) are listed in Tables 4.3. Figure 4.1 shows these electrode locations
superimposed on the x-y plane. Although the generator dipole locations listed in
Table 4.1 are exactly symmetric with respect to the center of the skull shape, because
of the asymmetry of the head, the corresponding equivalent dipoles in a sphere will
not be exactly symmetric.

The electrode weight function for the realistic skull model was generated
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Table 4.1: Simulated Neural Generators

Dipole | Neural Generator Location Orientation
# 61 62 03 || @1 62

1 left nucleus centralis medialis -0.04 0.13 0.07 | 20 45

2 right nucleus centralis medialis -0.04 -0.13 0.07 || 20 –45
3 left hippocampus -0.28 0.30 -0.02 || 30 –45
4 right hippocampus –0.28 -0.30 -0.02 || 30 45
5 left auditory cortex 0.21 0.71 0.04 || 30 –90
6 right auditory cortex 0.21 -0.71 0.04 || 30 90

The locations are scaled by the head radius (and are thus unitless), where the direction
of 61 is through the nasion, 92 is through the left ear, and 63 is through the vertex.
The orientations are given in degrees where b1 is colatitude and Ö2 is longitude.

Table 4.2: Electrode Locations

| Label tli t!” | Label tli t!” |
Fz 36.00 0.00 | FCz 18.00 0.00
Cz 0.00 0.00 || PZ 36.00 180.00

Fp1 72.00 18.00 Fp2 72.00 -18.00
F3 49.44 40.70 | F4 49.44 –40.70
F5 60.72 49.00 || F6 60.72 -49.00
F7 72.00 54.00 | F8 72.00 -54.00
C1 18.00 90.00 | C2 18.00 -90.00
C3 36.00 90.00 C4 36.00 -90.00
T3 72.00 90.00 T4 72.00 -90.00
T5 72.00 126.00 T6 72.00 -126.00
P3 49.44 139.30 | P4 49.44 -139.30
P5 60.72 131.00 | P6 60.72 – 131.00
FC3 40.00 61.00 | FC4 40.00 -61.00
CP3 40.00 119.00 CP4 40.00 -119.00
O1 72.00 162.00 || O2 72.00 –162.00

Electrode locations given in spherical coordinates, where all electrodes have a radius
of 1.0 (scaled to the head radius), and b1 and b2 are colatitude and longitude.
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Table 4.3: Electrode Locations: locations adjusted for skull shape

| Label tli t!” | Label tli t!” |
Fz 39.44 4.42 | FCz 20.75 8.16
Cz 3.09 97.02 || PZ 34.60 -174.37

Fp1 72.82 18.11 | Fp2 72.81 -18.93
F3 51.62 41.77 | F4 51.64 -42.16
F5 61.15 47.79 || F6 61.13 -48.47
F7 71.67 53.48 || F8 71.63 -54.68
C1 16.38 91.23 C2 16.83 -91.10
C3 36.70 91.11 || C4 36.88 -91.19
T3 72.58 90.96 || T4 72.69 -91.12
T5 75.88 126.77 T6 75.90 – 124.93
P3 49.25 137.16 || P4 49.40 -138.86
P5 63.97 132.32 | P6 64.01 -130.79
FC3 39.36 59.37 | FC4 39.44 -59.79
CP3 41.05 118.82 | CP4 40.69 -121.34
O1 70.99 162.02 O2 71.16 -164.17

Electrode locations given in spherical coordinates, where all electrodes have a radius
of 1.0 (scaled to the head radius), and ill and whº are colatitude and longitude.
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Figure 4.1: Planar projection of the electrode locations for simulations

using a boundary element model (115) based on a Computed Tomography (CT) scan
of an adult human skull. The 3-shell skull shape model consisted of three concentric
skulls. The radii and conductivities of the skull were the same as those used by Ary

et al. [11]. The inner radii of the shells were determined in the following manner. A
sphere was fit to all the nodes of the outer skull shape model, and the radius of this

sphere was scaled to 1. In order to construct the skull shells, the skull shape model
was scaled down such that the best-fitting spheres to the nodes had radii (inner to
outer) of 0.8, 0.85, and 0.92. The conductivities of the shells were 1.0, 0.0125, and 1.0,
respectively. A dipole source was simulated using a point dipole. The scalp potentials
were computed at the locations listed in Table 4.3.

Several data sets were generated using these simulated dipoles. The data sets
and the dipoles generating them are shown in Table 4.4. Each data set consisted of
a pair of evoked potentials, corresponding to the conditioning and testing responses
of the auditory P50 collected in a paired click paradigm. Two amplitude ratios
were simulated for each data set, corresponding to normal P50 suppression (i.e.,
amplitude ratios between .25 and .50) and abnormal P50 suppression (i.e., amplitude
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Table 4.4: Data Sets Simulated

Data Set # Generator # used | Description
1 1 left nucleus centralis medialis

2 3 left hippocampus
3 5 left auditory cortex
4 1 and 2 bilateral thalamus

5 3 and 4 bilateral hippocampus
6 5 and 6 bilateral auditory cortex

ratios between .75 and 1.0). The simulated magnitude function was an averaged and
digitally filtered P50 evoked potential recorded from Cz-left ear from a representative
subject.

Real EEG noise from an auditory P50 evoked potential recording was added
to each simulated data set. The EEG noise was collected at 30 scalp electrodes from

subjects while they were listening to paired clicks at 60 dB SL. Noise was collected
at a 2000 Hz sampling rate for 256 ms (512 data points), beginning 500 ms after the
second click. Approximately 120 single trials (the same number of single trials in a
typical P50 average) were collected from each of 2 normal hearing subjects. The noise
trials were multiplied by an amplitude factor to create data with the desired signal
to noise ratio (SNR). We used two values of the SNR: low (0.1) and high (0.5). The
estimated SNR was defined as follows. Let &#, 63, and 6% be unbiased estimators of
the noise, signal, and total power.

&# = 1/(u■ m – 1)|XXXIV.(t)– V(t):

* = (Vox vº-º/m)
&# = 1/(mu) XXXV (t)

j

where V(t) = (1/m)2, V;(t), m is the number of single trials, u is the number of time
points, and V;(t) is the measured voltage at a single electrode for trial j at time t.
The estimator of the SNR is then
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2-2 2-2 2-2
a Or Orº, - OrSNR = } = ***** (4.1)

O'N O'N

The derivation of the SNR estimator and its asymptotic distribution are

described in [116). Examination of Equation 4.1 shows that this SNR estimate is
based on the signal at a single electrode. The SNRs I used, 0.1 and 0.5, were defined
at the vertex electrode (Cz). Therefore, electrodes that had higher maximal amplitude
than Cz would have higher SNR, and electrodes with lower amplitude than Cz would
have lower SNR.

A simulated data set was generated by first randomly choosing a sample of
200 simulated noise trials, and randomly choosing a set of 64 successive time points
(32 ms, the approximate duration of P50 and the length of the P50 evoked potential
used as a waveform template in the simulations) from each sampled trial. The sample
of 200 noise trials was randomly chosen with replacement from the 120 single trials
in each noise data set. Although the number of single trials in my noise data sets
is small, this should not pose a problem. When sampling with replacement from
a finite population of noise trials, two different random samples (of size 200) are
independent (conditional on that finite population), just as are two random samples
from an infinite population.

The scalp representation of the dipoles were then computed from the simu

lated amplitude waveform (recall that the simulated amplitude waveform was an aver
aged and filtered P50 evoked potential recorded from Cz-left ear) with the weighting
functions generated in a skull shape model. The weighting functions were scaled by
the conditioning amplitude parameter so that each simulated conditioning response
had maximal amplitude of 4 p.V at the vertex electrode. The scalings, or “true” val
ues for the conditioning amplitude parameters, were 28.35, 36.17, 51.70, 14.18, 18.09,
and 25.85 for Data Sets 1, 2, 3, 4, 5, and 6 (see Table 4.4), respectively. The “true”
values for the testing amplitude parameters are simply the conditioning amplitude
parameter multiplied by the C-T ratio. The noise trials were then added to the sim
ulated data and averaged. Since the SNRs defined above are essentially single trial
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Table 4.5: Combinations of SNR and C-T ratio for the Data Sets Simulated

Normal C-T ratio || Schizophrenic C-T ratio
Low SNR Data Sets 1-6 Data Sets 1-6

High SNR Data Sets 1-6 Data Sets 1-6

SNRs, the resulting SNRs after averaging are approximately,

low SNR = 0.1 V200 = 1.41

high SNR = 0.5V200 = 7.07

Figure 4.2 shows sample simulated data for the conditioning response at the
high SNR. Data sets 1, 2, and 3 are superimposed (corresponding to generators 1, 3,
and 5), and each plot represents data at a different electrode. Figure 4.3 shows data
sets 4, 5, and 6 superimposed (corresponding to generators 1 and 2, 3 and 4, and
5 and 6 synchronously active). Figure 4.4 shows data generated by dipole 5 at the
vertex electrode. The top plot shows the conditioning and testing responses at the
high SNR, and the bottom plot shows the conditioning and testing responses at the
low SNR.

Table 4.5 shows the combinations of SNR and C-T ratio simulated. There

are four combinations of SNR and C-T ratio for each Data Set (each Data Set contains
the conditioning and testing responses due to a specific generator or pair of generators,
as detailed in Table 4.4). The SNR/C-T combinations are: low SNR, low C-T ratio;
low SNR, high C-T ratio; high SNR, low C-T ratio; high SNR, high C-T ratio.
Twenty simulated averages at each SNR/C-T ratio combination were created for
each generator or generator pair and noise subject (i.e., 160 simulated EP averages
for each generator or generator pair; 20 replications × 4 SNR/C-T ratio combinations
x 2 noise subjects). There were 960 simulated auditory P50 conditioning-testing
averages created (20 replications × 4 SNR/C-T ratio combinations x 6 P50 generator
configurations x 2 noise subjects).

The dipole components model was then applied to each simulated average,
using a decaying sinusoid time-varying magnitude function. The conditioning and
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Figure 4.2: Simulated data sets for generators 1, 3, and 5
The conditioning (C) response for a simulated average generated by dipole 1 is shown
by the dotted line, the C response generated by dipole 3 is shown by the solid line,
and the C response generated by dipole 5 is shown by the dashed line. Each plot
represents the signal as seen at a different electrode, and the plots are arranged to
approximate the position of the corresponding electrode. All simulated averages are
at the high SNR and are scaled so that the amplitude at the vertex is approximately
4 p.V.

-- - - -

º º

ºw

* * :-

---,
****
-****

º

º



90

Hippocampal — v/T v/T
Cortical — — — —

Figure 4.3: Simulated data sets for generators 1 & 2, 3 & 4, and 5 & 6
The conditioning (C) response for a simulated average generated by synchronously
active dipoles 1 and 2 is shown by the dotted line, the C response generated by
dipoles 3 and 4 is shown by the solid line, and the C response generated by dipoles
5 and 6 is shown by the dashed line. Each plot represents the signal as seen at a
different electrode, and the plots are arranged to approximate the position of the
Corresponding electrode. All simulated averages are at the high SNR and are scaled
so that the amplitude at the vertex is approximately 4 p.V.
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Figure 4.4: Conditioning and testing responses at high and low SNR
The top plot shows the conditioning and testing responses at the vertex for a sim
ulated average generated by dipole 5 at the high SNR. The bottom plot shows the
conditioning and testing responses at the vertex for a simulated average generated by
dipole 5 at the low SNR. The conditioning response is shown by the j line, and
the testing response is shown by the dotted line. The two simulated averages shown
in this figure were created from the same noise subject's data.
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testing responses in each simulated average were fit simultaneously, and the responses
were constrained to have the same generator location, orientation, and decaying si
nusoid. The generators were allowed to vary in amplitude between the conditioning
and testing responses (i.e., conditioning and testing amplitude parameters were fit).

The simulated averages corresponding to Data Sets 1-3 were fit with a single
dipole. The simulated averages corresponding to Data Sets 4-6 were fit with a single
dipole (misspecification of number of dipoles) and with two dipoles constrained to be
bilateral and somewhat symmetric. For the single dipole case, the fitted dipole model
WaS

V = q f(6, 4)
where

* = easin■ :(-r)|exp-60–1)
and where f(6, q}) is defined for a homogeneous sphere head model as in Equation 1.9,
e indexes the conditioning and testing experimental conditions, and I constrained
o = 1 so that the model was identifiable. For the two dipole case, the fitted dipole
model was

V = qi,f(61, q}1) + qi,f(62, p2)
where

. .2

q = gasinº – T;)]eap■ —3;(t – Tj)]

The bilateral and somewhat symmetric constraint required one dipole to

be in the left hemisphere, and the other to be in the right hemisphere. This was
accomplished by adding a penalty term to the scaled residual sum of squares (SRSS,
defined in Section 1.3.3) during the fitting of the nonlinear parameters. The term
was 0 when the generators were exactly bilaterally symmetric (in the sphere), and
increased exponentially as the dipoles deviated from perfect symmetry. The two
dipoles were also required to have similar colatitude and nearly opposite longitude,
which was accomplished by adding a second penalty term. The term was 0 when
the orientations of the generators perfectly satisfied the constraint, and increased
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exponentially as the dipole orientations violated that constraint. The dipoles were also
required to have similar time-varying moment functions. This constraint was achieved
by adding a third penalty term to the SRSS. This term was 0 when the decaying
sinusoid parameters (X and T, see Equation 1.11), were the same for both dipoles,
and increased as the decaying sinusoid parameters diverged from each other. The
penalties were defined as follows. Let dist be the physical “distance” in centimeters
(assuming a 10 cm radius sphere) between the two dipoles after negating 632 of one
of the dipoles (this is done to enforce the left-right hemisphere constraint), let or be
the difference between the orientations, and let taif f be the difference between the

time-varying moment functions. Letting bik be the dipole orientation for dipole j,
where k indexes colatitude or longitude, I can define &a for dipole j as follows (similar
to Equation 1.10).

&;1 = sind;1cos(bj2

&;2 = sinº;18ind;2

§3 = cosº;1

I then define dist, or, and tdiff to be:

dist F.
10V(0.

-
921)? + (912 + 922)? + (013

-

923)?

OT = 10V(ºn – $21)* + (§12 + $22)” -- (£13 – $23)”

tdiff = (A1
-

A2) + (TI
-

T2)

where 0;a is the location parameter in direction d for dipole j. The bilaterally sym
metric penalty dpen, the orientation penalty orpen, and the time function penalty
tpen are defined as:

edist — 1

dpen - 107(TTT) (4.2)
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e°" – 1

orpen = 100000017(e”-T) (4.3)

etdiff – 1
t - — -

pen 1000 (4.4)

The sizes of the penalties added to the SRSS versus the size of dist, or,
and tdiff are shown in Figure 4.5. These constraints are necessary when modeling
data generated by somewhat symmetric dipoles whose orientations are such that the

resulting topographical map is very similar to a single dipole map (see Figure 4.3). In
preliminary studies when fitting two dipoles to such a map, when noise was present
on the data, one dipole was fit centrally and explained most of the variance in the
data. The other dipole location varied, but its contribution to the fit was to explain

mostly noise. These penalty functions were developed so that in such a case, the two
dipoles made more equal contributions to the fit and explained primarily signal, not
noise. These penalty functions worked well in constraining solutions (i.e., the loca
tions, orientation, and time-varying magnitude parameters were correctly estimated)
when tested on simulated data where the dipoles were both perfectly symmetric and
somewhat symmetric.

Dipole modeling was used to estimate the amplitude parameters for each of
twenty replications (constructed using a single subject's noise data) of each generator
or generator pair set at each SNR for both normal and abnormal (schizophrenic)
suppression. C-T ratio estimates were computed by dividing the testing amplitude
parameter estimate by the conditioning amplitude parameter estimate (C-T ratio
= c”/c"). This process was repeated using the the second noise subject's data, in
order to ensure that my results were not an anomaly of one subject's noise, but

were consistent across noise data sets. In order to reduce and possibly eliminate the
frequency of convergence to local minima, simulated annealing was used to estimate
the nonlinear parameters (location, orientation, and decaying sinusoid) [73].

For each SNR, true C-T ratio, noise subject, and dipole model (one or two
dipoles fit) combination, the means (£), standard deviations (SD), and coefficients
of variation (COV) were computed for the conditioning amplitude estimates, the
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Figure 4.5: Penalty functions for the bilateral constraint
The top plot shows the penalty added to the SRSS as the variable dist increases. The
middle plot shows the penalty as the variable or increases. The bottom plot shows
the penalty as the variable taiff increases. When dist = 1, the dipoles are 1 cm
(assuming a 10 cm head) from perfect symmetry. When or = 1.7, colatitude and
longitude are both 7.5° off from perfect symmetry. When taif f = 4, the decaying
sinusoid parameters are 4 time points off from being the same.



96

testing amplitude estimates, and the C-T ratio estimates. The COV represents the
magnitude of the SD as compared to the mean, and relatively larger COV's indicate
relatively smaller variances as compared to the mean. For these simulations, the
COV was computed because the variances of the amplitude parameters could not
be directly compared to the variances of the derived amplitude ratios, due to the

differences in the means (recall that I was interested in the relative variances because
of the effect of variances on the intraclass correlation coefficient). For example, the
mean conditioning amplitude parameter for Data Set 1 (thalamic dipole generator)
was approximately 25, and the mean “normal” derived ratio was 0.25. In this example,
the variance of the ratio is almost guaranteed to be smaller than the variance of the
conditioning amplitude, and a direct comparison is meaningless. The COV scales the
variances to their means, so that meaningful comparisons can be made. The COV
was used to test the hypotheses stated at the beginning of the chapter.

Because the COV is a ratio of summary statistics, it is unlikely to be nor

mally distributed. In fact, if the amplitude and amplitude ratio estimates were nor
mally distributed, then the COV/Vn (where n is the number of samples) follows the
t distribution with n – 1 degrees of freedom [106]. Simple t-tests and analysis of
variance assume a normal distribution, however, so these statistical methods cannot

be used for hypothesis testing of COVs.
I used a randomization technique for hypothesis testing that does not require

knowledge of the distribution of the COV. Let COVa be a vector of COV's for
group a, and let COV, be a vector of COV's for group b. The hypotheses are
H. : COVa – COV = 0 and H1 : COVa – COV, - 0, i.e. the null hypothesis

states that there is no difference in the COVs between groups, and the alternative
hypothesis states that the COV's for group a are larger than the COVs for group b.

The hypotheses are tested as follows. Let
N

6, = #5 (cow, – COV.) (4.5)
i-1

where 6, is the mean observed difference between the group a and b COVs, COV, is
the ith COV for group a, COV, is the ith COV for group b, and N is the number of
observations in each group. Let COVr, and COVr, be random permutations of the
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original COV, and COV, where an element of COV, could be in either COV, or
COVr, (i.e., the groups are not preserved in the random permutation). Then let

1 JN

6, = N Xcow. – COV.,...) (4.6)
where 6, is the mean difference between the randomly permuted COV vectors, COV.,
is the ith element of COV, COV., is the ith element of COV, , , and N is the length
of the randomly permuted vectors.

If there is truly a difference between groups, then COV,i – COV, should
be positive for most i, and the sum in Equation 4.5 should be positive, resulting in
a large positive 6... If there is not a difference between groups, then COV,i – COV,
will take positive and negative values for different i, and the sum in Equation 4.5 will
be close to zero. Because the randomly permuted vectors COVr, and COVr, do
not preserve the groups, 6, should always be close to zero. Therefore, if no difference
exists between groups, 6., will be greater than 6, for some random permutations, and
6, will be less than 6, for other random permutations. If there is a difference between
groups, 6., will be greater than 6, for most random permutations.

A p-value for this test is obtained by constructing many (I used 1000) random
permutations of the original COV,i and COVºi, and comparing 6., to 6,.. If 6., is greater
than 6, for 995 of the permutations, then the p-value is 0.005 and the alternative

hypothesis (H1 : COVa – COV, S 0) is accepted. If 6., is greater than 6, for only
600 of the random permutations, then the p-value is 0.400 and the null hypothesis is

accepted. In Section 4.3 (Results), p < 0.001 indicates that 6, was greater than 6, for
all 1000 of the permutations, i.e. there was less than 1 chance in 1000 that 6, 3 6,..

I studied the effect of SNR, C-T ratio, dipole eccentricity, and number of
dipoles included in the fitting model. When testing the hypothesis that COV's com
puted from high SNR simulated averages were larger than COV's computed from low
SNR simulated averages, the high SNR COVs were grouped into COV, and the
low SNR COVs were grouped into COV. When the effect of C-T ratio was tested,
all COV's estimated from simulated averages with “schizophrenic” suppression were
grouped into COVa and all COV's estimated from simulated averages with normal
suppression were grouped into COV. When the effect of dipole eccentricity was
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tested, all COV's estimated from simulated averages generated by the cortical dipoles
were grouped into COVa and all COV's estimated from simulated averages gener
ated by the thalamic dipoles were grouped into COV, (similar comparisons were
made between cortical and hippocampal generators, and hippocampal and thalamic
generators). When the effect of number of dipoles was tested, all COV's estimated
using a single dipole model to fit simulated averages generated by two dipoles were
grouped into COVa and all COV's estimated using a two dipole model to fit averages
generated by two dipoles were grouped into COV.

For the results reported in Section 4.3, if p < 0.05 I accepted the alternative
hypothesis (i.e., there was a difference in COV's between groups). When many hy
pothesis tests are done, an adjustment of the significance level is suggested, in order
to reduce the possibility of making a Type I error (i.e., rejecting the null hypothesis
when it is true) [117]. I made no attempt to adjust the significance level in this
dissertation. Because I did not adjust the significance level, and because my simula
tions only used noise data from two subjects, these simulations should be considered
pilot work. Future simulations utilizing more noise subjects can then test whether
the results reported in Section 4.3 are replicable.

4.3 Results

The dipole modeling results are presented in the tables below. Each table
lists the SNR (recall that the SNR was measured at the vertex electrode, Cz), the
simulated conditioning-testing ratio (CTR), the mean of the conditioning amplitude
estimates (£e), the standard deviation of the conditioning amplitude estimates (S.D.),
the coefficient of variation of the conditioning amplitude estimates (COV.), and the
mean, SD, and COV for the testing response amplitude and the amplitude ratio
estimates (£, SD., COV., T., S.D., and COV.).

The results of the single generator data sets are shown in Tables 4.6-4.8.
The results for the two generator data sets are shown in Tables 4.9-4.14. Tables 4.9-
4.11 show the results when only a single dipole was fit to the two dipole data sets.
Tables 4.12-4.14 show the results when two dipoles were fit to the two dipole data
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Table 4.6: Data Set 1, Generator 1

EEG Noise Subject 1
snr | ctr, F. SD. COV. isD, COV|| 3, SD, COV.
1.4 || 0.25 | 24.13 2.62 9.19 || 6.06 0.72 8.45 || 0.25 0.02 14.14

1.00 27.05 6.05 4.47 || 27.18 6.41 4.24 | 1.00 0.03 32.00
7.1 || 0.25 || 26.03 16.33 1.59 || 6.49 3.95 1.64 || 0.25 0.01 33.45

1.00 25.05 6.47 3.87 || 25.03 6.48 3.86 | 1.00 0.01 90.72

EEG Noise Subject 2
snr. Ctr | Tc SD. COV a’t SD, COV, | ir, SD, COV,
1.4 || 0.45 24.86 1.87 13.28 24.86 0.88 12.58 || 0.44 0.02 29.22

0.85 25.30 2.46 10.31 21.56 2.32 9.28 0.85 0.03 33.13
7.1 || 0.45 || 24.10 1.13 21.26 || 10.85 0.59 18.44 || 0.45 0.01 44.60

0.85 || 23.98 1.19 20.19 20.43 1.04 19.73 || 0.85 0.01 95.94

sets. For the two dipole data sets, the results are shown for the first dipole, which
corresponds to the fitted dipole which was in the left hemisphere, and the second

dipole, which corresponds to the dipole fitted to the right hemisphere.
An examination of the results reveals several trends. As expected, there was

no significant difference between the ratio COVs (COV.) estimated using the first
and second noise subject's data (p = 0.581). This shows that the results are not an
anomaly of a single subject’s noise, but are a replicable phenomenon.

The ratio COV (COV.) was significantly greater than either the conditioning
COV (COV.) or the testing COV (COV) (p < 0.001 and p < 0.001, respectively).
As the tables show, in nearly all cases the COV of the ratio was more than twice

the COV of the conditioning or testing amplitudes. The only exceptions to this rule
were Data Set 4 (bilateral thalamic dipoles) modeled by two dipoles (especially the
low SNR simulations), and the low SNR, normal suppression runs for Data Set 6
(bilateral auditory cortex dipoles) modeled by two dipoles.

For Data Sets 4-6 (data sets generated by two dipoles), the COV, estimated
using a single dipole model were significantly greater than the COV, estimated using
a two dipole model (p < 0.001). This shows that when two generators were modeled
by a single dipole (see Tables 4.9-4.11), the ratios were estimated accurately and

…*"*.--
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Table 4.7: Data Set 2, Generator 3

EEG Noise Subject 1
snr Ctr | Tc SD., COV. | act SD, COV, | £, SD, COV.
1.4 || 0.25 | 58.18 57.14 1.02 || 15.22 18.89 0.81 0.25 0.03 9.55

1.00 || 43.98 6.65 6.62 43.83 7.04 6.22 | 1.00 0.03 39.78
7.1 || 0.25 | 59.55 51.27 1.16 || 14.68 12.02 1.22 || 0.25 0.01 32.00

1.00 || 54.77 29.82 1.84 55.13 30.57 1.80 | 1.00 0.01 77.83

EEG Noise Subject 2
snr | ctr | E. SD. COV. £, SD, COV, £, SD, COV.
1.4 || 0.45 || 46.16 5.34 8.64 20.61 2.69 7.65 0.45 0.02 18.75

0.85 44.59 4.56 9.78 || 38.07 3.93 9.69 || 0.85 0.02 47.74
7.1 || 0.45 || 44.55 1.97 22.66 || 19.95 0.92 22.11 || 0.45 0.01 48.09

0.85 || 44.46 1.85 24.05 || 37.91 1.74 21.81 0.85 0.01 97.47

Table 4.8: Data Set 3, Generator 5

EEG Noise Subject 1
snr. Ctr | £c SD., COV. | £t SD, COV, | £, SD, COV.
1.4 || 0.25 || 43.35 12.13 3.57 | 10.78 2.80 3.85 || 0.25 0.02 15.53

1.00 || 42.09 6.33 6.65 42.13 6.11 6.90 | 1.00 0.03 38.49
7.1 || 0.25 || 44.24 10.18 4.35 | 11.22 2.88 3.90 || 0.25 0.01 26.39

1.00 || 43.00 5.91 7.28 43.09 5.94 7.25 | 1.00 0.01 122.68

EEG Noise Subject 2
SIAI | Ctr | Tc SD., COV. | a t SD, COV, | £, SD, COV.
1.4 || 0.45 || 41.77 4.28 9.77 | 19.00 2.04 9.29 || 0.46 0.03 16.55

0.85 | 40.65 4.93 8.25 || 34.60 3.98 8.69 || 0.85 0.02 36.84
7.1 || 0.45 || 42.52 2.64 16.09 || 19.12 1.24 15.44 || 0.45 0.01 46.91

0.85 || 42.86 2.46 17.40 || 36.40 2.11 17.26 0.85 0.01 83.59

º
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Table 4.9: Data Set 4, Generators 1 and 2 modeled by a single dipole

EEG Noise Subject 1
SInt | Ctr | Tc SD. COV. I act SD, COV, | ar, SD, COV.
1.4 || 0.25 || 24.45 2.97 8.23 6.19 0.98 6.31 || 0.25 0.02 13.70

1.00 || 24.88 2.06 12.07 || 24.77 1.99 12.42 | 1.00 0.02 41.59 - - -

7.1 || 0.25 22.82 7.82 2.92 || 5.65 1.95 2.90 0.25 0.01 30.56 º

1.00 || 24.66 0.97 25.31 24.59 0.94 26.07 | 1.00 0.01 100.91 -
EEG Noise Subject 2 ºws

snr | Ctr £, SD., COV. | act SD, COV, | ar, SD, COV. ~
1.4 || 0.45 || 25.78 4.51 5.72 | 11.63 2.04 5.70 || 0.45 0.02 23.57 **

0.85 26.22 4.26 6.15 22.08 3.58 6.16 || 0.84 0.03 29.11 ~. F
7.1 || 0.45 || 24.66 1.49 16.59 || 11.11 0.54 20.58 || 0.45 0.01 32.56 -:

-

0.85 || 24.87 1.24 20.13 || 21.08 0.99 21.29 || 0.85 0.01 57.85 *-
*-

..
*

º -

5

Table 4.10: Data Set 5, Generators 3 and 4 modeled by a single dipole º

EEG Noise Subject 1
snr. ctrºl Tc SD. COV Tº SD, COV £, SD, COV.
1.4 || 0.25 | 73.18 15.62 4.69 | 18.44 4.28 4.31 || 0.25 0.01 18.81

1.00 || 76.20 11.70 6.51 || 76.34 11.47 6.66 | 1.00 0.02 45.70
7.1 || 0.25 || 75.92 6.36 11.93 || 18.96 1.79 10.58 | 1.00 0.02 41.59

1.00 || 74.04 4.67 15.86 || 73.85 4.53 16.30 | 1.00 0.01 108.89

EEG Noise Subject 2 -
snr ctr I Tc SD. COV Tº SD, COV £, SD, COV. *-

1.4 || 0.45 || 82.70 16.16 5.12 || 37.21 7.38 5.04 || 0.45 0.02 24.71 ;
0.85 || 78.43 14.80 5.30 | 66.43 12.13 5.47 || 0.85 0.03 31.78 * .

7.1 || 0.45 | 73.41 6.41 11.45 || 32.61 2.70 12.07 || 0.44 0.01 41.36
0.85 | 73.32 7.39 9.92 || 62.18 6.19 10.05 || 0.85 0.01 68.49 º
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Table 4.11: Data Set 6, Generators 5 and 6 modeled by a single dipole

EEG Noise Subject 1
SI) T | Ctr | Tc SD., COV. | Tº SD, COV, | £, SD, COV.
1.4 || 0.25 | 182.59 23.43 7.79 || 45.66 7.18 6.36 || 0.25 0.02 11.43

1.00 || 174.63 29.20 5.98 || 175.12 29.17 6.00 | 1.00 0.02 50.94
7.1 || 0.25 | 186.54 26.33 7.09 || 45.60 6.65 6.86 0.24 0.01 33.32

1.00 || 190.31 13.06 14.58 || 189.78 13.19 14.38 | 1.00 0.01 102.08

EEG Noise Subject 2
snr. cºr E. F. SD COV. E. F. SD, COV. T. F. SD, COV.
1.4 || 0.45 || 176.27 21.22 8.31 || 81.22 11.04 7.36 || 0.46 0.03 18.39

0.85 | 183.30 19.58 9.36 | 159.07 19.57 8.13 || 0.87 0.03 29.98
7.1 || 0.45 || 192.43 7.73 24.91 || 86.73 3.49 24.85 || 0.45 0.01 46.48

0.85 | 190.10 11.05 17.20 | 161.30 9.84 16.39 0.85 0.01 82.29

reliably, with high ratio COV's for all cases. In summary, when the true generators
are suspected to be very close (such as bilateral thalamic generators), the data are
noisy, and the dipole model is misspecified, better ratio estimates are obtained when
a single dipole is modeled (compare Table 4.9 to Table 4.12).

The COVs (COV., COV., and COVA) estimated at high SNR (recall that
the SNR was computed at the vertex electrode, Cz) are significantly greater than the
COV's estimated at low SNR (p < 0.001, p < 0.001, and p < 0.001, respectively).
These results are not surprising. As the noise decreases the fits are less affected and
the parameter estimates are more stable.

The COVs (COV., COV., and COV.) estimated from the conditioning and
testing responses for the “schizophrenic-like” P50 suppression (i.e., C-T ratios of
0.85 and 1.00) were significantly greater than the COV's estimated from the normal
suppression (i.e., C-T ratios of 0.25 and 0.45) simulated data sets (p < 0.001, p =
0.031, and p = 0.014, respectively). In retrospect, this is not surprising. Since the
conditioning and testing responses in the “schizophrenic-like” data sets are both large
compared to the added EEG noise, these data sets have a larger effective SNR. The
increased SNR, as discussed above, leads to increased COVs.

The ratio COV's (COV.) estimated from data generated at eccentric dipole

--
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Table 4.12: Data Set 4, Generators 1 and 2 modeled by two dipoles

EEG Noise Subject 1, Left Hemisphere Dipole
snr Ctr | Tc SD., COV. | act SD, COV, | £, SD, COV.
1.4 || 0.25 | 13.78 3.11 4.44 || 3.00 1.78 1.69 || 0.23 0.14 1.61

1.00 || 13.61 2.67 5.10 || 14.08 2.81 5.02 | 1.07 0.28 3.84
7.1 || 0.25 | 13.87 2.66 5.22 || 3.08 0.82 3.79 || 0.23 0.06 3.64

1.00 | 12.23 0.61 20.04 || 11.98 0.76 15.79 || 0.98 0.07 14.58

EEG Noise Subject 2, Left Hemisphere Dipole
Snr | Ctr Tc SD., COV. act SD, COV, £, SD, COV.
1.4 || 0.45 | 12.89 3.18 4.05 || 7.02 2.97 2.37 || 0.58 0.31 1.88

0.85 | 12.04 2.44 4.94 || 10.97 3.27 3.35 | 0.93 0.28 3.36
7.1 || 0.45 | 12.95 1.99 6.49 || 5.97 1.58 3.79 || 0.46 0.10 4.69

0.85 || 13.05 2.40 5.45 || 11.16 3.87 2.88 || 0.82 0.24 3.48

EEG Noise Subject 1, Right Hemisphere Dipole
Snt | Ctr | acc SD., COV. | act SD, COV, | £, SD, COV.
1.4 || 0.25 | 9.26 1.84 5.03 || 2.72 1.32 2.06 || 0.31 0.14 2.11

1.00 || 9.69 1.98 4.90 9.37 2.24 4.18 0.98 0.18 5.30
7.1 || 0.25 | 9.63 3.07 3.14 || 2.64 0.63 4.18 0.44 0.78 0.55

1.00 | 10.33 0.84 12.23 || 10.51 1.03 10.18 | 1.02 0.08 13.28

EEG Noise Subject 2, Right Hemisphere Dipole
Snr ctr acc SD., COV. act SD, COV, E, SD, COV.
1.4 || 0.45 || 13.16 14.08 0.93 || 4.71 4.63 1.02 || 0.40 0.22 1.83

0.85 | 11.76 2.82 4.17 | 9.23 3.82 2.42 || 0.83 0.36 2.27
7.1 || 0.45 || 10.12 1.92 5.27 || 4.43 1.55 2.87 || 0.44 0.13 3.39

0.85 || 10.03 2.63 3.82 | 8.63 4.19 2.06 || 0.83 0.23 3.67

.

5.>
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Table 4.13: Data Set 5, Generators 3 and 4 modeled by two dipoles

EEG Noise Subject 1, Left Hemisphere Dipole
snr. Ctr | Tc SD., COV. | act SD, COV, | ar, SD, COV.
1.4 || 0.25 | 24.77 17.54 1.41 || 6.27 4.19 1.50 || 0.26 0.06 4.60

1.00 || 21.84 2.42 9.01 || 22.17 3.79 5.85 | 1.01 0.10 10.32
7.1 || 0.25 || 22.81 1.79 12.76 || 5.73 0.47 12.28 0.25 0.01 24.94

1.00 22.58 1.08 20.89 22.48 1.01 22.15 | 1.00 0.01 90.69

EEG Noise Subject 2, Left Hemisphere Dipole
Snr | Ctr Tc SD., COV. £, SD, COV, £, SD, COV,
1.4 || 0.45 || 33.62 24.41 1.38 | 12.90 4.09 3.15 || 0.44 0.09 4.69

0.85 25.97 16.57 1.57 | 20.54 9.66 2.13 || -0.53 5.93 -0.09
7.1 || 0.45 24.17 4.11 5.88 || 10.77 1.78 6.04 || 0.45 0.01 43.08

0.85 || 23.37 2.28 10.27 | 19.81 1.86 10.65 || 0.85 0.01 70.14

EEG Noise Subject 1, Right Hemisphere Dipole
snr. Ctr | Tc SD., COV. | act SD, COV, | ãº, SD, COV.
1.4 || 0.25 | 19.54 18.76 1.04 || 4.84 4.51 1.04 || 0.25 0.06 3.98

1.00 || 17.37 3.16 5.50 17.32 2.99 5.80 | 1.00 0.07 14.00
7.1 0.25 | 20.10 2.33 8.61 || 4.98 0.64 7.79 || 0.25 0.01 21.87

1.00 20.19 1.31 15.46 20.19 1.22 16.51 | 1.00 0.01 97.95

EEG Noise Subject 2, Right Hemisphere Dipole
Snr | Ctr Tc SD., COV. £t SD, COV, £, SD, COV.
1.4 || 0.45 || 21.41 13.71 1.56 | 12.70 10.30 1.23 0.26 0.89 0.29

0.85 || 23.02 17.57 1.31 || 18.74 11.66 1.61 | 2.65 8.21 0.32
7.1 || 0.45 22.76 4.60 4.95 || 10.08 2.07 4.87 || 0.44 0.02 28.38

0.85 22.06 2.64 8.36 | 18.71 2.28 8.22 || 0.85 0.01 65.52
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Table 4.14: Data Set 6, Generators 5 and 6 modeled by two dipoles

EEG Noise Subject 1, Left Hemisphere Dipole
Snr | Ctr | Tc SD. COV. E. F. SD, COV, £, SD, COV,
1.4

7.1

0.25
1.00
0.25
1.00

21.56
20.85
21.04
21.47

2.45
2.56
1.75
1.29

8.78
8.13
12.06
16.70

5.58
20.88
5.18

21.42

0.99
2.49
0.51
1.18

5.62 || 0.26
8.37 | 1.00
10.19 || 0.25
18.17 | 1.00

0.04
0.03
0.01
0.02

7.15
31.98
16.60
61.34

EEG Noise Subject 2, Left Hemisphere Dipole
SIlr Ctr Tc SD., COV. £, SD, COV, £, SD, COV,
1.4

7.1

0.45
0.85
0.45
0.85

20.53
21.33
20.87
20.98

2.34 8.77
3.05 6.99
1.90 10.97
1.59 13.19

9.29 0.86
18.47 2.31
9.42 0.75
17.83 1.23

10.86 0.45
7.98 || 0.87

12.60 0.45
14.51 || 0.85

0.03
0.04
0.02
0.02

13.68

20.88

22.70
39.42

EEG Noise Subject 1, Right Hemisphere Dipole
snr Ctr | Tc SD. COV. F, SD, COV +, SD, COV,
1.4

7.1

0.25
1.00
0.25
1.00

18.74
18.99
20.16
19.98

2.27 8.26
1.78 10.64
1.53 13.20
1.38 14.43

4.51 0.80
19.05 1.80
4.89 0.48
19.92 1.45

5.67 0.24
10.59 | 1.00
10.12 || 0.24
13.72 | 1.00

0.03
0.03
0.02
0.02

7.71
38.25

14.90
51.53

EEG Noise Subject 2, Right Hemisphere Dipole
SIlr Ctr acc SD., COV. ac, SD, COV, ºr SD, COV,
1.4

7.1

0.45
0.85
0.45
0.85

19.93
20.51
19.83
19.23

7.30
7.35

13.15

15.79

2.73
2.79
1.51
1.22

1.68 5.52
17.72 2.75
8.94 9.68
16.29 0.92

0.47 0.47
6.44 || 0.86
13.24 || 0.45
17.65 0.85

0.05
0.05
0.02
0.02

9.20
18.15

21.46
46.62

:
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locations were greater than the COV, estimated from data generated at centric dipole
locations. The COV, estimated from data generated by the auditory cortical dipoles
(Data Sets 3 and 6) were greater than the COV, estimated from data generated by
the thalamic dipoles (Data Sets 1 and 4) (p = 0.039). The COV, estimated from data
generated by the hippocampal dipoles (Data Sets 2 and 5) were greater than the COV,
estimated from the thalamic data (p = 0.035). There was no significant difference
between the COV, estimated from data generated by the cortical and hippocampal
dipoles (p = 0.544). These results may be occurring for two reasons, described below.

Firstly, at eccentric dipole locations, the spherical head model is not a bad
approximation to the true head [12]. Therefore, when Data Sets 2, 3, 5, and 6 are
fit, the spherical model is less misspecified than when Data Sets 1 and 4 are fit using
a spherical model. This may mean that the less misspecified model (because the
data were generated with eccentric dipoles) has more stable amplitude estimates.
Hypothesis testing of the conditioning and testing amplitude COVs, however, reveals

that the eccentricity of the generators cannot fully explain the ratio COV results. The
amplitude COV's (COV. and COV.) estimated from data generated by the auditory
cortical dipoles (Data Sets 3 and 6) were greater than the COV. and COV, estimated
from the thalamic dipoles (Data Sets 1 and 4, p = 0.075 and p = 0.051, respectively),
although significance was not reached. The amplitude COV's (COV. and COV)
estimated from data generated by the hippocampal dipoles (Data Sets 2 and 5) were
not greater than the COV. and COV, estimated from the thalamic data (p = 0.668
and p = 0.465, respectively). The amplitude COV's (COV. and COV.) estimated
from data generated by the auditory cortical dipoles were greater than the COV. and
COV, estimated from the hippocampal dipoles (p = 0.027 and p = 0.056).

The amplitude COV results complicate the interpretation of the ratio COV
results, when eccentricity is varied. It appears that the decrease in model misspec
ification associated with eccentricity cannot fully account for the results. A second
idea is that these results were obtained because eccentric dipoles are associated with
increased SNR. Although all Data Sets were constructed to have the desired SNR and
amplitude (4 p.V) at the vertex (Cz) electrode, the amplitudes and SNR at the re
maining electrodes varied for each generator configuration. Figures 4.2 and 4.3 show
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that although all Data Sets were similar at the vertex electrode, they differed greatly

at the lateral electrodes. Note that the cortically generated potentials had very large
amplitude at the lateral electrodes in comparison to the thalamic and hippocampal
potentials. The larger amplitude and resulting higher SNR at the lateral electrodes
may contribute to the higher COV's for the averages generated by eccentric dipoles.
Further research is necessary in order to determine the separate effects of decreasing
model misspecification and increasing SNR on the amplitude and amplitude ratio
estimates.

An unexpected finding was that the COV's for the conditioning and testing
amplitudes for the two dipole data sets when two dipoles were fit are of the same

magnitude as the COV's for the ratios (see Tables 4.12-4.14). The ratios are also
slightly more biased than for the single dipole fits. There may be two reasons why
this occurs. Firstly, it may be that when two dipoles are modeled the ratios cannot

be reliably estimated for each dipole due to noise, model misspecification, or both.
Secondly, it may be that the penalty functions used to enforce the bilateral constraint
for two dipoles resulted in less variability in the estimated dipole parameters (location,
orientation, and waveshape), in turn resulting in less variability in the estimated
conditioning and testing amplitude parameters, and derived C-T ratio.

4.4 Discussion

The results of these simulations show that amplitude parameters estimated
using dipole modeling are more variable than derived amplitude ratios in the face
of certain types of model misspecification and EEG noise. These simulations also
show that the derived amplitude ratios are accurately and reliably estimated. The

fact that the amplitude parameter estimates became less variable as (1) the SNR was
increased, (2) the C-T ratio was increased (i.e., increasing the effective SNR), and (3)
the generators became more eccentric (i.e., less head model misspecification and/or
increased SNR) suggests that the presence of model misspecification and noise lead
to unreliable dipole modeling amplitude estimates.

These results imply that: (1) The P50 C-T ratio reliability results of Chap

-
º
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ter 2 will not be improved by improvements to the head model, although the absolute
amplitude reliabilities may be improved, and (2) The P50 C-T ratio reliability may
be improved by increasing the SNR of the original data (e.g., by monitoring subject
arousal to eliminate drowsy responses, by eye-movement correcting the data, etc.).
The proofs of Chapter 3 and these simulation results only apply to three special cases,

however; when a single dipole is active, when dipoles are active with the same am
plitude, or when multiple dipoles all have the same amplitude ratio. This thesis does
not address the extent to which improvements to the head model will be necessary

to address most multiple dipole modeling questions.
The results from data sets generated by two dipoles and fitted using two

dipoles were particularly interesting. In these cases, the amplitude ratios were more
variable than the absolute amplitudes when estimated from the low SNR data. For
Data Set 4 (bilateral thalamic dipoles), the same was also true for the high SNR
data. The generators of Data Set 4 were very closely spaced and centric, and the
misspecified, noisy model simply did not perform well. Although the two dipole
model performed better on Data Sets 5 and 6 (hippocampal and auditory cortex
dipoles) than on Data Set 1, the single dipole model had higher COV's for all three of
these data sets. In summary, in a misspecified model there is no advantage to using
multiple dipoles if the ratio is the measurement of interest, and if the problem is one
of the special cases noted above.

Data Sets 4-6 were generated by synchronously active bilateral dipoles. The
proofs in Chapter 3 did not require synchrony of the multiple dipoles for unbiased
ratio estimation. Although I did not simulate averages generated by multiple asyn
chronous dipoles (with the same amplitude parameters and/or amplitude ratio), the
results of dipole modeling should be similar to the results from Data Sets 4-6. I would

expect that when the dipoles had the same amplitude parameters (as described in
Chapter 3, Section 3.2.3), fitting with a single dipole would result in higher ratio
COVs than would fitting with two dipoles (same results as in Tables 4.9-4.11 as com
pared to Tables 4.12-4.14). I would further expect that when the dipoles had different
amplitude parameters but the same amplitude ratios (as described in Chapter 3, Sec
tion 3.2.4), fitting with the correct number of dipoles would result in amplitude and

:
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ratio COV's of about the same magnitude (same results as in Tables 4.12-4.14).
As noted in Section 4.2, the number of single trials in my noise data sets

was small. As previously discussed, however, simulated averages generated from the
noise data sets should still be independent of each other. The likely effect of these
small noise data sets is to reduce the variability in the estimated dipole parameters

(location, orientation, decaying sinusoid, and amplitudes). In other words, a larger
noise data set would have generated simulated averages that were more variable across
replications, leading to more variable estimated parameters. This means that the
small conditioning and testing COVs were obtained despite using a small noise data
set, and the use of a larger noise data set would have resulted in even smaller COVs.

There are two hypotheses as to why the amplitude ratios are less variable
than the absolute amplitudes. One hypothesis was discussed at the end of Chapter 3.
The interdependence of some of the random variables in a noisy dipole modeling ratio
measurement (i.e., the numerator and denominator of the ratio are not independent
of each other) may lead to a ratio with less variance than either the numerator or
the denominator. The other hypothesis is that the global minimum in a misspecified
dipole model is shallow (i.e., the global minimum is not “surrounded” by high, steep
walls in the parameter surface) or surrounded by a “rough” surface (i.e., the parameter
estimation surface is bumpy and many local minima are present), and the presence of
noise on the data is likely to “shift” the global minimum. When the global minimum
shifts, so do the estimated parameters (assuming that the nonlinear optimization
routine finds the global minimum). As shown in Chapter 3, however, for special
cases the amplitude ratio is correctly estimated for any dipole location, orientation,

and time-varying magnitude function. Therefore (for the special cases studied), a
shift in the global minimum will not affect the derived ratio, but only the estimated
amplitudes.

Figures 4.6–4.8 show that the dipole parameter estimates varied due to the
noise added to the simulated data. These figures show the parameter error norms
over the 20 replications for each generator or generator pair, C-T ratio, and SNR. The
parameters error norms were computed by taking the normalized difference between
noisy and noise-free fits and computing the norm. Since I used simulated annealing to

s
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estimate the dipole parameters, the variation in dipole fits was probably not because
the nonlinear optimization algorithm converged to various local minima, but because
the noise “shifted” the global minimum.

The error norms were computed as follows. Let x be the parameter vector
(dipole location, orientation, decaying sinusoid parameters X, T, and 3) fit with a
misspecified model on noise-free data. Let x' be the parameters vector fit with a
misspecified model on noisy data. Let A be the normalized difference vector, where

A = (r; – c')/r;. The error norms plotted in the figures are |A|2 /k where k is the
number of parameters (8 for single dipole problems, 16 for two dipole problems). The
error norm is then 0.0 when the noisy and noise-free fits are the same, and increases
as they differ. On the plots, each circle represents the error norm for one of the
dipole fits. The x axis is labeled by which EEG Noise Subject was used to create the

simulated data (Noise Subject 1 or Noise Subject 2) and by what C-T ratio and SNR
were simulated (nl=normal suppression, low SNR; nh=normal suppression, high SNR;
sl=schizophrenic suppression, low SNR; sh=schizophrenic suppression, high SNR).

The variation in parameters shown in the figures corresponds very well with
the COV's observed for the amplitudes. In general, the parameters were less variable
at high SNR as compared to low SNR, were less variable for schizophrenic vs. normal
suppression, and were less variable for eccentric vs. centric dipoles.

The parameter error norms show that noise in a misspecified model leads
to variable dipole location, orientation, and time-varying moment function estimates,
which lead in turn to variable amplitude estimates. Although I cannot rule out the
possibility that the C-T ratios were less variable because of the interdependence of the
conditioning and testing amplitude parameters, the parameter error norms support
the hypothesis that the amplitude parameter estimates are more variable because
the presence of EEG noise shifts the global minimum of a misspecified dipole model.
Additional research is needed to evaluate the separate effects of interdependence and
EEG noise.

This chapter has demonstrated that dipole modeling can be used to reliably
and accurately estimate amplitude ratios for a certain set of problems. Unfortunately,

as a rule, ratios are not used clinically or in a research setting (notable exceptions to
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Figure 4.6: Parameter error norms for Data Sets 1-3
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The error norms for Data Set 1 are shown in the top plot, the error norms for Data
Set 2 are shown in the middle plot, and the error norms for Data Set 3 are shown in
the bottom plot. The error norm is 0 when the noise free and noisy fits are the same.
The key is n=normal suppression, s—schizophrenic suppression, h-high SNR, l-low
SNR.
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Figure 4.7: Parameter error norms for Data Sets 4-6, modeled by one dipole
The error norms for Data Set 4 are shown in the top plot, the error norms for Data
Set 5 are shown in the middle plot, and the error norms for Data Set 6 are shown
in the bottom plot. The error norm is 0 when the noise free and noisy fits are the
same. The key is n=normal suppression, s—schizophrenic suppression, h-high SNR,
l=low SNR. The error norm for one replication for Data Set 4, Noise Subject 1, nh,
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Figure 4.8: Parameter error norms for Data Sets 4-6, modeled by two dipoles
The error norms for Data Set 4 are shown in the top plot, the error norms for Data
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Set 5 are shown in the middle plot, and the error norms for Data Set 6 are shown in \"
the bottom plot. The error norm is 0 when the noise free and noisy fits are the same. .
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this rule are the auditory P50 C-T ratio and the auditory brainstem response am
plitude ratio of waves V-I). Reliable amplitude parameter estimates, however, would
benefit both clinicians and researchers investigating a wide variety of EPs. To this
end, I will discuss some possible ways to decrease the variability of amplitude param
eter estimates.

The COV comparisons (between SNRs, C-T ratios, and generator eccen
tricity) clearly showed that the amplitude parameter estimates became less variable
as the SNR was increased (recall that higher C-T ratios and eccentric generators also
increased the effective SNR of the simulated averages). Though obvious, it is impor
tant to remember that no analysis method can substitute for a good signal to noise
ratio.

The variation in the parameter error norms (see Figures 4.6–4.8) support the
hypothesis that the global minimum in the misspecified dipole model is shallow or
surrounded by a rough surface, such that the presence of noise “shifts” the global min
imum. If this is the case, there are two ways in which more stable amplitude estimates
could be achieved. The first is to improve the model and remove the misspecification.
This approach would hopefully lead to a “steeper” global minimum which would be
less affected by noise. This approach is very complicated and computationally inten
sive. The second approach is to eliminate the model, and this approach is motivated
by the following idea. If the global minimum of the posed mathematical problem is
“shifting” because of the presence of noise, and the nonlinear optimization algorithm
finds the “shifted” global minimum (a likely occurrence, using simulated annealing),
then the solution contains errors. In this chapter, the global minimum contains dipole
location, orientation, and waveshape information, which is then used to compute the
amplitude parameters (i.e., errors in the global minimum lead to errors in the ampli
tude parameters, but not to errors in the amplitude ratios, as discussed in Chapter 3).
If the noisy, error-prone global minimum is the problem, then perhaps it should not be
located, and the amplitude parameters should be estimated using some other method.
In this chapter, eliminating the search for the global minimum means eliminating the
estimation of the dipole location, orientation, and parametric waveshape—in other
words, eliminating the model. The variable parameter error norms are evidence that
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the global minimum is indeed shifting with the noise, so a multi-channel, model free
amplitude estimation method should be considered.

The parameter error norms shed light on another observation. The COVs of
the amplitudes in the two dipole problems were surprisingly good as compared to the
COV's of the ratios. This may be due to the bilateral constraint used in fitting the two
dipole problems. The bilateral constraint limited the solution space, and probably
led to less variable dipole orientation, location, and waveshape estimates, which in
turn led to less variable amplitude estimates. This can be seen in Figure 4.8. The
parameter error norms for the two dipole problems are not as variable as the error
norms for the one dipole problems, which were essentially unconstrained (they were
constrained to stay inside the sphere). This result raises the possibility that adding
location, orientation, or time-varying magnitude (i.e., waveshape) constraints could
stabilize amplitude estimates.

This discussion has proposed three ways of stabilizing the absolute amplitude
measurements: (1) reduce the misspecification in the dipole model, (2) implement
constraints in the present crude model, and (3) implement a “model free” estimation
method. The first method is computationally expensive and difficult to implement.
The second requires prior knowledge about location, orientation, and time-varying
magnitude function, which may not be available. The third method is attractive

because of its simplicity, and is addressed in Chapter 5.

:t
:



º

º



116

Chapter 5

Using Singular Value

Decomposition for Amplitude and

Amplitude Ratio Estimation

The results of Chapter 3 suggest that the ratios are accurately estimated
because the effect of model misspecification “cancels” for ratios. The results of Chap
ter 4 show that amplitude ratios are accurately and reliably estimated in the presence
of model misspecification and EEG noise, but amplitude parameters are not. These

results led me to question whether the dipole model was necessary for improved am
plitude and amplitude ratio estimation.

In this chapter I propose a “model-free” method for estimation of the covari

ate effects on amplitudes. This model-free method uses multiple channels of data but
does not use the dipole model. This method is not completely model free, in the sense

that I enforce a constraint that all channels of data must have a common “shape”
(i.e., all channels have the same time varying magnitude, scaled by some amount
across channels). I also enforce the constraint that each data set must have the same
topographical distribution (scaled by some amount between data sets), although this
topographical distribution does not have to fit the dipole model. These constraints
are appropriate for the special cases in which amplitude ratios were estimated with
out bias, as discussed in Chapter 3. In review, these are the case of a single dipole
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active, multiple dipoles with the same amplitude, and multiple dipoles with the same

amplitude ratio (estimated across data sets).
The model-free method involves twice performing singular value decompo

sition (SVD) [104]—first on the original data sets, and second to the information from
the first decomposition. This chapter will briefly review singular value decomposition,
describe the SVD method, present the results when the SVD method is applied to
simulated and real data, and discuss the relationship between this SVD method and
principal components analysis.

Notation: I use bold-faced letters to indicate vectors, bold-faced script letters
to indicate matrices, and use normal-faced italic letters to indicate scalars.

5.1 Singular Value Decomposition

The singular value decomposition (SVD) is a matrix factorization that has
been used for image processing, determining the effective rank of a matrix, polar
decomposition, and least squares problems [104]. Singular value decomposition will
factor an m x n rectangular matrix H as

'H = MWy" (5.1)

where

S
W = n > n)

W - S 77) = n,

W = |S 0 7m 3 n.

l■ is an m × m orthogonal matrix, JW is an n x n orthogonal matrix, and S is a
min(m, n) × min(m, n) matrix of diagonal elements, svi, sv2, ..., svnin (m,n) ordered
such that

Sv1 > sv2 > ... 2 $Umin(m,n) > 0

The first min(m, n) columns of 14 are the left-hand singular vectors of H, the
diagonal elements of S are the singular values of H, and the first min(m, n) columns
of JV are the right hand singular vectors of H.
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5.2 The SVD Method

Let H be a matrix composed of two data sets over a two time windows. Let
n denote the number of electrodes or data channels, and let u denote the number

of time points. The matrix H will then be of dimension u × 2n, where the first n

columns consist of data from the first data set, and the remaining n columns consist
of data from the second data set. The matrix H can be written as:

Hi■ ... Hin Hi(n+1) ... Hi■ ºn)

1H = th
- - -

th. hº º
-

hº
Hui

- - -
Hun Hu(n+1)

- - -
Hu(2n)

When SVD is applied to 7t, I get three matrices, and they are (assuming
that 2n 3 u):

Un Uº ... U.

!M = tº tº
- - -

".
-

Uul U.2
- - -

Uuu

F- sv1 0 . . . 0
*

0 swz 0 0

W = 0 0 SU)n

0 0 0

| 0 0 ... 0

Y11
- - -

Yal Y(n+1).
- - -

Y(2n).

yT - Y12
- - -

Y.2 Y(n+1)2
- - -

Y(2n)2

Yí(2n . . . Yn(2n) Y(n+1)(2n) . . . Y(2n)(2n)
I can think of 14 as the map from time points to some intermediate space,

and y” as the map from that intermediate space into channels. When only a single
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dipole is active or when two or more dipoles are simultaneously active with similar

timecourses (e.g., when P50 is evoked by bilateral auditory stimulation), all electrode
channels should have the same “shape” over time, and any differences in the shape
across channels would be attributed to noise. In such a case, only the first singular
value, svn, will be significantly different from 0, and I can set the remaining singular

values to 0 and still achieve a very good approximation to the true data set H. Only
sv1, the first right singular vector U.1, and the first left singular vector Y.1 contribute
to the 'H' (the approximation to H), as shown:

U11sv1 Y11 U11sv1 Y21 ... U11svi Y(2n)1

'H' = U21swi Y11 U11svi Y21 ... U21svi Y(2n)1

U.1sv1 Y11 U.18vi Y21 ... Uuisvi Y(2n).

As can be seen from H', the first right singular vector U.1 is the common
shape across all channels, and the first left singular vector Y.1 contains the electrode
weightings.

Because I want to enforce a common topographical distribution, I must
apply SVD a second time. To do so, I first arrange the first left singular vector Y.1
weighted by swi into an m × 2 matrix which I denote 8, as shown,

Y11 Y(n+1)1
Y21 Y

8 = Sv1 -

º

Yºi Y(2n)1
SVD is used to factor the matrix 8 into three matrices, as shown,

- / / /
11 12 * * * * * 1m

A”
-

#1 X42
- - -

X4,

XA, X.2 ... Xºn

W’ =
-

sv 0
0 svº
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f f
11 Yiy" =
■ º Yº

I can think of A" as the map from electrodes to some intermediate space, and
y" is the map from the intermediate space to data sets or replications. When a single
dipole is active or two dipoles are active simultaneously with similar timecourses, only

the first singular value sv will be significantly different from 0. The first right singular
vector X', is the “common” topographical distribution across data sets, and the first
left singular vector Y', contains the amplitude parameter estimates for the two data
sets. The singular value sv is the common amplitude. I can write an approximation
8" as,

X{1sv{Y′, X′1sv{Y}i

8’ = X%isv{Y′, X′,1sv{Y}.

X.1.svíY′, X′,1sv{Y},
and by substituting all values, I can obtain the approximation to the original H, as
shown,

/ f f f f / f f r / / fU11 X; i svº 11 - - -
U11 X.1.svíYi U11X;18vº, Yº■ i

- - -
U11 X.1.sv{Y}i

f / V/ / / V// / / V// / a v/

7+"
-

U21 X;18vº, Yi
- - -

U21X.18vº, Yi U21 X;18vº, Yi
- - -

U21 X.1.sv'■ Yi

f / f f / / f f / f f fU.1X;18vº, Yi ... Uul X.1.svíYi Uul X;1svíY}, ... Uul X.1.svíYi

An examination of 74" shows that U.1 is the common shape across all chan

nels and data sets, X'i is the common topographical distribution across data sets,
Y', are the amplitude parameters which describe the covariate effects on amplitude
across data sets, and sv} is the common amplitude.

The advantage of the SVD method is that it is much faster and easier to use
than dipole modeling because nonlinear optimization is not required. The constraints
of common timecourse and common topographical distribution can also be easily
enforced. The disadvantage is that it may fail for multiple dipoles overlapping in
activation, and that covariate effects on latency cannot be estimated (unlike dipole

l
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modeling, see Section 1.3.4 for details on estimation of the covariate effects on latency
using dipole modeling).

In the next two sections I applied the SVD method to the simulated data
from Chapter 4 and to the real auditory P50 data from Chapter 2, in order to test
the following hypotheses:

1 The COV's of amplitude ratios estimated using the SVD method are not

significantly different from the COV's of amplitude ratios estimated using
dipole modeling.

2 The COV's of the estimates obtained using the SVD method will increase
as the SNR and the C-T ratio increases, consistent with the dipole mod
eling results.

3 When the SVD method is applied to the real P50 data used in Chapter 2,

an improvement in C-T ratio reliability over peak-picking will be achieved,
comparable to the improvement achieved using dipole modeling.

5.3 Application to Simulated Data

The SVD method was applied to all data sets created in Chapter 4. To

review, I generated data in a 3-shell skull shape model using an averaged and filtered
P50 evoked potential as a template for the time-varying amplitude function. Real
EEG “noise” was added to these simulated data to generate several simulated aver
ages for each dipole configuration. I constructed data sets generated by single dipoles
located in the central nuclei of the thalamus, the hippocampus, and the auditory cor

tex. I also constructed data sets generated by synchronously active bilateral thalamic,
hippocampal, and auditory cortical dipoles. The locations and orientations used are

shown in Table 4.1 and the data sets generated are shown in Table 4.4. Each simu
lated EP consisted of a pair of evoked potentials, corresponding to the conditioning
and testing responses of the auditory P50 collected in a paired click paradigm. Two
amplitude ratios were simulated for each generator or generator pair, corresponding to
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normal P50 suppression (i.e., amplitude ratios between 0.25 and 0.50) and abnormal
P50 suppression (i.e., amplitude ratios between 0.75 and 1.00). Real EEG noise was
added to create simulated averages at high and low signal to noise ratios (SNRs). The
data were generated at 30 electrode sites, as shown in Table 4.3. Twenty simulated
averages for each generator or generator pair, C-T ratio, and SNR were created using
a single subject's noise data. A second set of twenty replications of each generator or

generator pair, C-T ratio, and SNR were created using a second subject's noise data,
in order to ensure that any results were not an anomaly of the first subject's noise
data.

The SVD method was applied to the conditioning and testing responses for
each replication. Since 30 electrode locations were simulated, the first 30 columns of 74
corresponded to the conditioning average, and the last 30 columns of 74 corresponded
to the testing average. The SVD method was then applied to 74 (i.e., SVD was used
twice). For each replication, sv■ . Y', was the conditioning amplitude estimate, sv■ . Yº
was the testing amplitude estimate, and Y.1/Yºi was the C-T ratio estimate.

The results of the SVD method are shown in Tables 5.1-5.6. These tables

are arranged similarly to the tables in Chapter 4. Each table lists the SNR, the
simulated conditioning-testing ratio (CTR), the mean of the conditioning amplitude
estimate (E.), the standard deviation of the conditioning amplitude estimate (SD.),
the coefficient of variation of the conditioning amplitude estimate (COV.), and the
mean, SD, and COV for the testing response amplitude and the amplitude ratio
estimates (T, SD., COV, ºr, SD., and COV.).

The estimates obtained using the SVD method were compared to the esti
mates obtained using dipole modeling (compare Tables 4.6-4.11 to Tables 5.1-5.6).
Because the SVD method cannot separate the activity of two synchronous generators,
the first left singular vector is effectively the “best fit” of a single generator to the data
contained in H, even when the data were generated by two dipoles. This is similar
to fitting a single dipole model to the data generated by two dipoles. Therefore, it
is appropriate to compare the results of the SVD method to the results of the single
dipole model. As described in Chapter 4, the randomization technique was used for
hypothesis testing.

\
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Table 5.1: Data Set 1, Generator 1 analyzed by the SVD Method

EEG Noise Subject 1
snr Ctr | £c SD. COV £, SD, COV. E. F. SD, COV,
1.4

7.1

0.25
1.00
0.25
1.00

53.69
53.60
53.54
53.52

0.87
0.89
0.46
0.46

61.73
60.06
116.71
116.38

13.47 0.90 15.00
53.55 0.96 55.70
13.46 0.37 35.96
53.48 0.29 138.00

0.25
0.99
0.25
1.00

0.02
0.03
0.01
0.01

14.13

38.58

36.19
84.03

EEG Noise Subject 2
snr. Ctr | Tc SD. COV. £, SD, COV, | ºr SD, COV,
1.4

7.1

0.45
0.85
0.45
0.85

53.95
53.89
55.55
53.54

0.90
0.89
0.48
0.48

60.22
60.25
112.40
112.15

23.93 0.79 30.37
45.87 1.02 45.18
24.11 0.47 51.32
45.61 0.39 116.01

0.44
0.85
0.45
0.85

0.01
0.03
0.01
0.01

29.80
33.91

45.21
94.76

Table 5.2: Data Set 2, Generator 3 analyzed by the SVD Method

EEG Noise Subject 1
snr | ctr | P. SD. COV at SD, COV | #, SD, COV.
1.4

7.1

0.25
1.00
0.25
1.00

62.28
62.18
62.03
62.02

0.94
0.95
0.53
0.53

65.94

65.54

116.89
116.49

15.26 1.18 12.90
61.84 1.08 57.05
15.48 0.38 40.22
62.07 0.31 198.30

0.25
0.99
0.25
1.00

0.02
0.02
0.01
0.01

12.76
44.47
42.40
104.02

EEG Noise Subject 2
snr. Ctr | Te SD. COV £, SD, COV, £, SD, COV.
1.4

7.1

0.45
0.85
0.45
0.85

62.42
62.36
61.85
61.84

0.96
0.97
0.36
0.37

64.90
64.02
170.35
168.32

27.84 1.40 19.93
53.21 0.95 55.93
27.70 0.52 52.87
52.71 0.38 137.13

0.45
0.85
0.45
0.85

0.02
0.02
0.01
0.01

19.42

48.12
49.32
101.14

*
*
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Table 5.3: Data Set 3, Generator 5 analyzed by the SVD Method

EEG Noise Subject 1
snr. ctr ace S.D. COV. T SD, COV, | ac, SD, COV. . . .
1.4 || 0.25 || 90.13 1.76 51.27 22.60 1.32 17.13 || 0.25 0.02 15.78

1.00 90.03 1.78 50.56 || 90.16 1.22 73.78 || 1.00 0.03 39.78
7.1 || 0.25 | 89.95 0.44 205.46 || 22.68 0.62 36.744 || 0.25 0.01 34.69

1.00 | 89.93 0.44 206.26 90.10 0.55 162.78 || 1.00 0.01 133.69

EEG Noise Subject 2
snr. ctr are SD- COV £t SD, COV, | £, SD, COV.
1.4 || 0.45 | 89.94 1.95 46.15 | 40.03 2.04 20.06 || 0.46 0.03 17.33

0.85 | 89.88 1.96 45.95 || 76.57 1.58 48.58 0.85 0.02 38.29
7.1 || 0.45 || 90.18 0.78 116.26 | 40.55 0.76 53.55 || 0.45 0.01 46.50

0.85 90.17 0.78 116.08 || 76.57 0.56 136.05 || 0.85 0.01 86.30

Table 5.4: Data Set 4, Generators 1 and 2 analyzed by the SVD Method *

EEG Noise Subject 1
snr |ctr £c SD. COV £t SD, COV, | £, SD, COV.
1.4 || 0.25 || 46.97 0.92 50.90 | 11.84 0.95 12.50 || 0.25 0.02 13.67

1.0 || 46.90 0.92 50.93 || 46.73 0.90 51.92 | 1.00 0.02 41.17
7.1 || 0.25 || 46.92 0.32 145.13 | 11.62 0.34 33.92 || 0.25 0.01 30.47

1.00 || 46.90 0.32 147.85 || 46.76 0.41 114.35 | 1.00 0.01 100.46

EEG Noise Subject 2 º
snr. Ect■ || 3. SD. COV. E. F. SD, COV. E. E. SD, COV. -

1.4 || 0.45 || 46.87 0.87 53.96 || 21.14 0.81 26.03 || 0.45 0.02 23.47
-

1.
0.85 || 46.80 0.88 53.02 || 39.44 1.15 34.22 || 0.84 0.03 28.47

7.1 || 0.45 || 46.86 0.63 74.58 || 21.14 0.45 46.53 0.45 0.01 32.85
0.85 || 46.85 0.63 74.82 || 39.71 0.48 83.15 || 0.85 0.01 59.02 ~,
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Table 5.5: Data Set 5, Generators 3 and 4 analyzed by the SVD Method

EEG Noise Subject 1
SIlr | ctr | Tc SD. COV. | act SD, COV, | £, SD, COV.
1.4 || 0.25 | 58.08 1.06 54.77 || 14.58 0.81 18.11 || 0.25 0.01 18.81

1.00 || 57.99 1.07 54.08 || 58.18 0.71 82.00 | 1.00 0.02 47.11
7.1 || 0.25 | 57.86 0.43 133.74 || 14.44 0.52 27.62 || 0.25 0.01 26.80

1.00 || 57.85 0.43 133.68 || 57.71 0.33 174.72 | 1.00 0.01 115.66

EEG Noise Subject 2
snr |ctr__i. SD. COV. I = SD, COV. Tº SD, COV.
1.4 0.45 58.17 0.77 75.93 26.18 0.85 30.93 || 0.45 0.02 26.30

0.85 || 58.09 0.76 76.29 || 49.28 1.20 41.19 || 0.85 0.03 33.56
7.1 || 0.45 || 58.03 0.56 103.66 || 25.79 0.47 54.34 || 0.44 0.01 43.13

0.85 58.02 0.56 103.83 || 49.21 0.48 102.78 || 0.85 0.01 71.07

Table 5.6: Data Set 6, Generators 5 and 6 analyzed by the SVD Method

EEG Noise Subject 1
Snt | Ctr | are S.D., COV. £, SD, COV, | £, SD, COV.
1.4 || 0.25 || 79.00 1.18 67.11 || 19.70 1.47 13.36 || 0.25 0.02 12.86

1.00 || 78.89 1.19 66.13 || 79.05 1.25 63.22 | 1.00 0.02 54.96
7.1 || 0.25 || 79.42 0.41 195.50 | 19.43 0.53 36.49 || 0.24 0.01 37.97

1.00 || 79.40 0.40 197.36 || 79.20 0.63 126.51 | 1.00 0.01 133.75

EEG Noise Subject 2
snr. ctr | F. SD. COV. #, SD, COV, #, SD, COV.
1.4 0.45 || 79.09 1.19 66.38 || 36.40 1.73 21.03 || 0.46 0.02 20.77

0.85 || 79.00 1.20 65.95 | 68.34 2.05 33.28 || 0.87 0.03 31.58
7.1 || 0.45 79.47 0.58 136.88 || 35.91 0.61 58.96 || 0.45 0.01 54.50

0.85 || 79.46 0.58 136.17 | 67.46 0.65 103.61 || 0.85 0.01 102.08
*
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As expected, there was no significant difference between the ratio COV's
(COV.) estimated using the first and second noise subject's data (p = 0.671). This
shows that the results are not an anomaly of a single subject's noise, but are a
replicable phenomenon.

The COVs for the amplitudes (COV. and COV.) estimated using the SVD
method were significantly greater than the amplitude COV's estimated using dipole
modeling (p < 0.001 and p < 0.001, respectively). There was no significant differ
ence between the ratio COVs (COV.) estimated using the SVD method and dipole
modeling (p = 0.304). The tables show that the COV's for the conditioning and
testing responses are much improved over dipole modeling. The COV's for the ratio
estimates are usually on the order of the COV of the testing amplitudes. The COVs
for the ratios are generally a little larger than the dipole modeling ratio COVs, and
is reflected in the trendy p-value (p = 0.304, as reported above).

Hypothesis testing reveals that the COV's for the conditioning amplitude
(COV.) is significantly larger than the COVs for the ratio (COV.) (p < 0.001), and
the COV's for the testing amplitude are generally a little larger than the COV's for
the ratios, as reflected in the trendy (p = 0.052) p-value. These results (i.e., the
estimated amplitude ratios are more variable than the estimated amplitude parame
ters) would be expected theoretically if the numerator and denominator of the ratio
(i.e., the testing and conditioning amplitude estimates, respectively) were indepen
dent. The high ratio COV's estimated using the SVD method are therefore not due
to the interdependence of the conditioning and testing amplitude estimates. Further
research is necessary in order to evaluate the effect of multiple data channels and

multiple time points on the variability of amplitude ratios estimated using the SVD
method.

The COVs (COV., COV., and COV) significantly increased as the SNR
was increased (p < 0.001, p < 0.001, and p < 0.001, respectively). The COVs for
the testing amplitudes and the ratios (COV, and COV.) significantly increased as
the C-T ratio increased (p < 0.001 and p < 0.001, respectively), but the COV's for
the conditioning amplitudes (COV.) were unaffected by increases in the C-T ratio
(p = 0.531). In retrospect, the C-T ratio results make sense. When the data sets
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were constructed, the different C-T ratios were achieved by altering the amplitude
of the testing response while leaving the conditioning response amplitude constant.
An examination of Tables 5.1-5.6 shows that are is very stable within each data set

(i.e., within each table) as the C-T ratio is varied, and therefore no difference in
COV. estimated at different C-T ratios should be expected. It is important to realize
that this was not the case for dipole modeling. When dipole modeling was used,
estimation of data sets with different C-T ratios affected both the conditioning and
testing amplitude estimates.

There were no significant differences between the ratio COV's (COV.) esti
mated from data sets generated by centric vs. eccentric dipoles. The COV, estimated
using data generated by cortical dipoles (Data Sets 3 and 6) were not greater than the
COV, estimated using data generated by hippocampal (Data Sets 2 and 5) or thalamic
(Data Sets 1 and 4) dipoles (p = 0.419 and p = 0.198, respectively). In addition, the
COV, estimated using data generated by hippocampal dipoles were not greater than
the COV, estimated using data generated by thalamic dipoles (p = 0.257). These
results indicate that the SVD method works as well on centric generators as it does

on eccentric generators.
The simulated data were generated by either a single dipole or synchronously

active bilateral dipoles. For these data sets, the first singular value obtained from
the SVD is much larger than the second singular value. The average ratio of the first
and second singular values (svi/sv2) from the first application of SVD (i.e., the SVD
application that constrains all electrodes to have the same “shape” over time) was
12.75 for all high SNR data sets, and 5.71 for all low SNR data sets. The average ratio
of the first and second singular values (svi/sv}) from the second application of SVD
(i.e., the SVD application that constrains all data sets to have the same topography
over the scalp) was 31.37 for all high SNR data sets, and 19.11 for all low SNR data
sets. The results show that (1) EEG noise affects the ability of SVD to find what is
“common” between all columns (compare 12.75 to 5.71 and 31.37 to 19.11), and (2)
EEG noise has a greater effect on the estimation of the common “shape” over time
than on the estimation of the common “topography” over the scalp (compare 31.37
to 12.75 and 19.11 to 5.71).
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I can conclude that the SVD is better than dipole modeling in terms of
reliably estimating absolute amplitudes, and as good as dipole modeling in terms of
reliably estimating amplitude ratios, when the data are generated by a single dipole
or by two synchronously active dipoles. In the next section I applied the SVD method
to the P50 data analyzed in Chapter 2.

5.4 Application to Real P50 Data

I applied the SVD method to the real P50 data analyzed in Chapter 2. In
summary, the data from Chapter 2 consisted of 6 replications of P50 collected in a

conditioning-testing paradigm for 12 normal hearing subjects. Data were collected
from 14 scalp electrodes (see Figure 2.1). Similar to that chapter, I first bandpass
filtered the averaged P50 data, then selected a time window within the average in
order to analyze only the section of the average response where P50 was prominent.
Because Chapter 2 had shown that subject 17 did not have a valid P50 response (and
was not included in the dipole modeling reliability computation), subject 17 was not
included in the SVD analysis, either. Chapter 2 had also shown that electrodes F7
and F8 were noisy and affected the dipole fit, and so were discarded from the dipole
modeling analysis. Because of this, F7 and F8 were not included in the SVD analysis
either.

When 12 electrode channels were included in the SVD analysis, the reliability

of the C-T ratio estimated using the SVD method (as measured by the ICC on 11
subjects) was r = 0.45. As reported in Chapter 2, the reliability of the C-T ratio
estimated using peak-picking on 11 subjects was r = 0.37. The average ratio of
the first and second singular values (svi/sv2) over all 66 data sets (11 subjects x
6 replications per subject) was 1.76. This singular value ratio is much lower than
those obtained when the simulated data were analyzed, and its low value indicated

that more than one singular value (and therefore more than one right- and left-hand
singular vector) must be retained in order to approximate the original H. This very
low singular value ratio led me to suspect that time-locked activity overlapping P50
was present at some channels, which was problematic since the SVD method cannot
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separate the P50 from other time-locked activity.

There are three types of electrical activity present in an evoked potential
average: (1) electrical activity generated by the brain in response to the stimulus
that is of interest to the experimenter (“signal”), (2) electrical activity generated by
various sources (brain, muscle, amplifiers, etc.) that is not related to the stimulus
(“noise”), (3) electrical activity generated by the brain in response to the stimulus
that is not of interest to the experimenter (“unwanted signal”). The effect of noise can
usually be reduced by better experimental methods (use of a fixation point to reduce
eye movements, requiring the subject to keep their eyes open in order to reduce the
presence of spontaneous alpha waves, etc.) and/or by averaging many single trials.
Unwanted signal is more difficult, because it is time-locked to the stimulus and will
not average out. If the unwanted signal is composed of different frequencies that the
signal, filtering can reduce the effect of unwanted signal (i.e., bandpass digital filtering
used in Chapter 2 reduced the contribution of N100 on the P50). The presence of
unwanted signal in an EP average leads to poor performance of the SVD method, so
I used prior knowledge of auditory P50 in order to eliminate channels with unwanted
signal.

The channels which would most likely exhibit time-locked activity overlap
ping P50 were Fpl and Fp2 (due to possible eye-movement contamination, [118),
and T3 and T4 (possible overlapping presence of Tp41, best recorded at T3 and T4,
[119). By eliminating the Fpl, Fp2, T3, and T4 electrodes, I was able to reliably
estimate the C-T ratios using the SVD method. The ICC of the C-T ratio estimated
using the SVD method on 8 electrode channels over 11 subjects was r = 0.66, as
compared to r = 0.63 for the C-T ratio estimated using dipole modeling. Recall that
the ICC of the C-T ratio estimated using peak picking (on 11 subjects) was r = 0.37.

The average ratio of the first and second singular values (svi/sv2) over all
66 data sets using only 8 electrodes was 2.76. This is still lower than that obtained
when the low SNR simulated data were analyzed (compare 2.76 to 5.71). In addition
(borrowing a concept from principal components analysis), when using 8 electrodes,
the quantity svi/XC:"svá was 0.78 (for principal components, this gives the proportion
of variance explained by the first principal component—the SVD method has no such
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statistical framework, but it is still a useful measure of the “strength” of the first

singular vectors). When the SVD method was applied to the high and low SNR
simulated data, the same quantity was 0.99 and 0.95, respectively. Although the
increase in the ICC argues that the discrepancies in these quantities (0.99 or 0.95
vs. 0.78) between the real and simulated data is due to a lower SNR for the real
data, further research is necessary in order to rule out the presence of time-locked
overlapping activity in P50 recorded at these electrodes.

5.5 Discussion

The simulation results show that the SVD method reliably estimates am

plitudes and amplitude ratios (i.e., high COVs). In addition, the SVD method ac
curately estimates amplitude ratios (nearly zero bias). The SVD method is superior
to dipole modeling in terms of reliable estimation of amplitude, and is comparable to
dipole modeling for reliable estimation of amplitude ratios. Because the SVD method
is simpler and faster than dipole modeling, there is no reason to use dipole modeling
when amplitudes and ratios are the only parameters of interest, and when the data
are generated by a single dipole or multiple synchronous dipoles.

The SVD method is closely related to principal components analysis (PCA).
Principal components analysis decomposes a square, positive-definite, symmetric ma
trix A into QAQ", where Q is an orthogonal square matrix with the same dimension
as A', and A is a diagonal square matrix with the same dimension as A'. The matrix
Q is the matrix of eigenvectors of A' (where the eigenvectors Q1, Q2, ..., Q2n are the
columns of Q), and associated with each eigenvector is the eigenvalue X*, where A,
are the elements along the diagonal of A, arranged in decreasing order.

Principal components can be applied to a variety of square, positive definite
symmetric matrices constructed from original EP data. As an example, consider the
matrix of cross-correlations between the data waveforms. Given an original data ma
trix H, with u rows (corresponding to u time points) and 2n columns (corresponding
to two data sets recorded on n electrodes), let Hsi correspond to the element in the
kth row and ith column of H. Each element in the cross-correlation matrix is defined
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as follows:
1 tºR; = XD Hº Hº; (5.2)
tl ºf

where Rij is the cross-correlation between the ith and jth electrodes, computed over
time. The matrix of cross-correlations Tº can be easily computed as

1
Tº = +1 ("H (5.3)

QL

For positive definite matrices the SVD matrix factorization is identical to
QAQ", so SVD can be applied to matrix R. The columns of Q are the principal
component loadings, and describe how the columns of 74 (i.e., the original channels of
data) are linearly combined to create the principal component scores. The principal
component scores are given by HQ. The first column of HQ corresponds to the
principal component scores for the first principal component loading vector, and the
value of A*/XXili A■ gives the proportion of variation explained by the ith principal
component.

If only a single dipole generated the data, or if the data were generated by
multiple dipoles simultaneously active with the same time-varying magnitude func
tion, then only the first eigenvalue would be significant in the PCA analysis. The
first column of HQ would be analogous to the first left-hand singular vector (when
the SVD method is applied to 74), and the first eigenvector (Q1) would be analogous
to the first right-hand singular vector. The first eigenvector (Q1) is of length 2n, and
can be arranged into an n x 2 matrix 8, where the first column of 8 is composed
of the first n elements of Q1, and the second column of 8 is composed of the sec
ond n elements of Q1. The matrix of cross-correlations of 8 can be computed and
factored into Q'A'Q". The first principal component loading vector of 8 (i.e., Q.)
should contain the estimates of the covariate effects on amplitude analogous to those
found using the SVD method, and the first diagonal element of A'should contain a
common amplitude estimate for the original data. The diagonal elements of A' will
not generally be the same as those of W’ from the SVD method, but this is a scaling
issue.

As described, PCA can be used to estimate amplitudes and amplitude ra
tios. Because PCA is only for square, positive definite symmetric matrices, the com

-
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putation of the matrix of cross-correlations (or some other pre-processing step for
constructing a square, positive definite, symmetric matrix) is required in order to
estimate the amplitudes and amplitude ratios using PCA. The SVD method can be

used on the original, usually non-square matrices. This is a computational advantage.
The SVD method is also simple and more intuitive (it is a simple decomposition of
the original data matrix into its principal directions).

The SVD method is limited to certain types of problems, however. In this
chapter, the SVD method was tested on single dipole simulated data, and on two
dipole data where the two dipoles had the same amplitude, time-varying magnitude
function, and amplitude ratio. It is not clear how the SVD method will perform on
multiple dipole data sets where the dipoles do not share amplitudes, time-varying
magnitude functions, or amplitude ratios. Because of the relationship between the
SVD method and PCA, it is likely that the SVD method will be inappropriate for the
same types of data sets on which PCA failed (i.e., multiple asynchronous generators
overlapping in time). Until the SVD method is tested on such data sets, the SVD
method can only be applied to a small number of evoked potentials. At this time

the SVD method will be useful in studying short-latency exogenous evoked potentials
where prior knowledge of anatomy ensures that the constraints are met.

For multiple dipole problems, it is likely that more than one singular value
will be greater than zero. It is not clear how the SVD method would work if more
than one singular value were retained. This is an avenue for further research.

The SVD amplitude ratios were slightly biased at the low SNR. When the
SVD method is applied to real data, it will be important to use data collection and
processing methods that will increase the SNR. For instance, it will be important to
eye-movement correct data and monitor pre-stimulus EEG in order to reject relatively
noisy trials.

The application of the SVD method to real auditory P50 showed that the in
clusion of channels at which other time-locked activity was present severely degraded
the performance of the method. The SVD method does not use a model for the

common “shape” of the evoked potential (across electrodes) or for the common to
pographical distribution (over replications). The Dipole Components Model (DCM)
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models both the shape and the topographical distribution. Because of this, the DCM
can “separate” the signal from other electrical activity in the average. If the electrical
activity (noise or unwanted signal) does not fit the model (over time or over space),
the DCM can “weight” (i.e., discount the contributions of) the affected electrodes
appropriately. The SVD method cannot separate signal from other electrical activity
(especially not electrical activity correlated between electrode channels). Although
better data collection and processing methods can help to decrease noise or to exclude
noisy channels of data, it is a more difficult task to exclude electrodes because of the

presence other time-locked activity. Reduction of both random noise and unwanted

signal are required for successful application of the SVD method.
It may be possible to exclude channels that exhibit other time-locked activity

if a template of the desired signal can be obtained (perhaps a very clean average of
several thousand single trials). The template and each channel of data can be cross
correlated. A small value of the cross-correlation would indicate that the template
and the data channel are not similar, other activity is present at that channel, and
that that channel should be excluded. A large value of the cross-correlation indicates
that the template and the data channel are a good match, and that channel should be
included in the analysis. This method could be used to exclude partially overlapping
time-locked activity. This method, however, would fail if the time-locked activity

were completely overlapped and of the same shape (i.e. changing in the same way
over time) as the signal of interest. In such a case, dipole modeling should still do
better than the SVD method, because dipole modeling can enforce the topographical
constraint, which can help to separate such overlapping activity from the signal of
interest.

Using prior knowledge of the auditory P50, I was able to exclude channels
that degraded performance of the SVD method. I excluded channels that previous
investigators had shown to be artifacted (with eye movement or muscle activity), and
channels that I knew were recommended for recording the earlier and overlapping
Tp41 potential. I also knew that there was likely to be other brain activity at the

same latency of auditory P50, simply because of the latency of the response. The
primary auditory cortical response has not been recorded at the scalp, but probably
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occurs within 15 ms of an auditory stimulus [40, 39]. By the latency of the auditory
P50 (approximately 50 ms after the stimulus), many areas of the brain are likely
to be responding in some way to the stimulus. Prior knowledge will not always be
available, however, which limits the application of the SVD method.

As stated earler, the SVD method is only guaranteed to work if the data
are generated by a single dipole or simultaneously active dipoles with the same time
varying activity. It is difficult to determine which evoked potentials fit into this
special class. It may be possible to use dipole modeling on a subset of data in order
to determine if a single dipole model fits the data well. If a single dipole model works,
then it is likely that the SVD method can be used to analyze the rest of the data.

Prior knowledge of the distribution of the evoked potential should be used to
decide what montage should be used to collect data if the SVD method is to be used.
Unlike dipole modeling, where electrodes are placed all over the head (in an attempt
to sample the topographical distribution), the SVD method will work best when only
those electrodes with high SNR are included. For the SVD method, it makes more
sense to cluster the electrodes where the potential of interest is best measured. Dipole
modeling might also be useful for determining the best data collection montage when
the SVD method will be used to analyze the data. Dipole modeling of the data can
show where the electric field should be large. Electrodes can be clustered in this area,
and large SNR recordings should be obtained.

The SVD method should be tested on other data sets, but this chapter

shows that the SVD method is superior to dipole modeling for amplitude and ratio
estimation, and can be used to reliably estimate the auditory P50 conditioning-testing
ratio.
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Chapter 6

Summary and Conclusions

This dissertation has shown several things: (1) dipole modeling can be used
to increase the reliability of the auditory P50 conditioning-testing ratio over peak
picking, (2) dipole modeling cannot presently be used to reliably estimate absolute
amplitudes, (3) dipole model misspecification will not bias amplitude ratio measure
ments when a single dipole is active or when multiple dipoles are active with the
same amplitude or amplitude ratio, (4) in the presence of model misspecification and
noise, dipole modeling amplitude ratios are much less variable than absolute ampli
tudes (implying that amplitude ratios are more reliable than absolute amplitudes),
and (5) the SVD method is superior to dipole modeling when only a single generator
or synchronously active multiple generators are active, no other time-locked activity
is present in the EP average, and amplitude and ratios are the only parameters of
interest.

Chapter 2 showed that dipole modeling could be used to increase the re
liability of the auditory P50 C-T ratio over peak picking. A control experiment in
Chapter 2 indicated that the increase in reliability could not be attributed to the
pooling of noise across multiple data sets. But because Chapter 2 also showed that
dipole modeling led to unreliable conditioning and testing amplitude measurements,
the increase in reliability apparently could not be attributed to the use of multiple
channels of data. I proposed that the presence of model misspecification and noise
influenced the reliability results.
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Chapter 3 used the theory of least squares fitting to show that in certain
cases, amplitude ratios estimated using the Dipole Components Model (DCM) were
unbiased even when the dipole model was misspecified. The model misspecifications

considered were head model, time-varying magnitude function, and number of dipoles.
The cases in which these misspecifications had no effect on the ratios were: (1) single
dipole active (no effect of head model or time-varying moment function misspecifi
cation on ratio estimation), (2) multiple dipoles active when all amplitudes are the
same (no effect of head model, time-varying magnitude function, or number of dipoles
misspecification on ratio estimation), and (3) multiple dipoles active when all ampli
tude ratios are the same across data sets (no effect of head model or time-varying
magnitude function misspecification on ratio estimation).

Chapter 4 added noise to simulated data and investigated the performance

of dipole modeling when both model misspecification and noise were present. The
results of this chapter showed that amplitude ratios were more reliable amplitudes

when estimated using dipole modeling. This chapter also showed that when noise
was present in a misspecified model, the nonlinearly estimated dipole parameters

were variable, possibly indicating that the global minimum “shifted” in the presence
of noise. This observation suggested that the use of a noisy misspecified model was
introducing variability into the estimated amplitudes, and led to the proposal of a
SVD method for estimating amplitudes and ratios.

Chapter 5 proposed a model-free method using singular value decomposition
(SVD) for estimating amplitudes and ratios, and tested the SVD method on the
simulated data from Chapter 4. The SVD method performed well on the simulated
data, and estimated reliable amplitudes and accurate and reliable ratios. The SVD
method used multiple channels and no model, and the increase in reliability for the
amplitudes over dipole modeling indicated that the noisy misspecified dipole model
was introducing variability into the absolute amplitudes. When the SVD method
was applied to the real auditory P50 data of Chapter 2, the reliability of the C-T

ratios estimating using 12 channels of data was not increased over the peak-picking
C-T ratio reliability. By using prior knowledge of the brain electrical activity at 50
ms and knowledge of the artifacts typically present in a P50 recording, I was able to
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exclude electrodes that degraded the estimation of the covariate effects on amplitude.
When only 8 channels of data were used to estimate the C-T ratio using the SVD
method, an increase in reliability comparable to that of dipole modeling was achieved.

These results are impressive, but are only valid for restricted cases. As
noted above, these results have so far only been shown for three special cases. Dipole
modeling ratios will certainly be biased in most multiple dipole models, and the
reliability of these ratio estimates has not yet been studied. It is unclear at this time
if dipole modeling will lead to reliability increases for multiple dipole models. The
SVD method has not been tested on most multiple dipole problems either, and at
this time should only be applied to a limited number of evoked potentials.

Because of the limitations of both a misspecified dipole model and the SVD
method in addressing multiple dipole problems, neither method can adequately deal
with auditory C-T ratio estimation when P50 is overlapped with the preceding P30.
At the present time, the only solution for dealing with P30/P50 overlap is to reduce
the model misspecification in the dipole model (i.e., improved head shape model,
improved time-varying magnitude functions, etc.).

All results in this dissertation are limited to estimation of covariate effects on

amplitude. Estimation of covariate effects on latency is a more complicated problem,

because latency parameters do not enter the estimation problem as a multiplicative

variable. Latency parameters cannot be estimated using singular value decompo
sition, and enter into the dipole model as a nonlinear parameter. There are many

evoked potential experiments in which latency changes are expected between subjects
or experimental conditions, so reliable and accurate estimation of covariate effects on
latency is important. Perhaps the SVD method can be part of a two-step process for
estimating covariate effects on amplitude and latency. Some technique could be used

to estimate latency effects and to subsequently “align” the data sets before SVD is
used to estimate the the amplitude effects. This is an area for further research.

Another limitation of both the dipole model and the SVD method is the
constraint that the time-varying magnitude function and the topography between
channels must be exactly the same between data sets. This rigid constraint is some
what unrealistic, especially if the data sets were collected from different subjects.
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It would be more realistic if slight differences in the topography and time function
were allowed, and the relaxation of these constraints may also lead to improved es
timation. Such slight differences can be easily implemented using dipole modeling.
Penalty functions were developed in Chapter 4 in order to enforce the bilateral con
straint. Similar penalty functions can be developed in order to allow small variation in
dipole location, orientation, and time-varying function between data sets. No penalty
would be added if the dipole parameters were the same between data sets, a small
penalty would be added for small differences in the parameters. The penalty would
increase exponentially as the differences in location, orientation, and time function

increased. Variation in the waveshape and topography across data sets is not allowed
using the SVD method.

Because of the limitations of the SVD method, there may only be a few
evoked potentials for which SVD can be used for unbiased ratio estimation. However,
because ratio measurements are not common in most EP work, the SVD method

may be more useful as a multiple channel, multiple time point amplitude estimation
method. It is well known that peak-picking amplitude estimates are unreliable, largely
because single time points at single channels are very sensitive to noise. The SVD
method may be a way of measuring the amplitude over multiple channels and time
points, and may be a way of reducing the effect of noise on amplitude measurements.
The resultant amplitude would have no physical meaning, but would only be a number
for comparison relative to other SVD-derived amplitudes.

Dipole modeling requires a large number of electrodes (it is generally ac
cepted that at a minimum one channel of data is necessary for each nonlinear pa
rameter estimated). The SVD method, on the other hand, has no such limitation.
Theoretically, the SVD method can be used to measure amplitudes for two data sets
using a single channel of data (the 'H' matrix would be of dimension u x 2, where u
is the number of time points). This makes the SVD method attractive to clinicians,
who typically do not have the time or equipment for measuring 16 or 32 channels of
data. The SVD method could be a quick clinical test for measuring amplitudes on
small (in terms of electrodes) data sets.

In summary, this dissertation has led to improved understanding of how
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model misspecification and noise affect the bias and variance of dipole modeling esti
mates. In addition, this dissertation proposes a new SVD method which promises to
simplify and improve the analysis of short-latency, exogenous evoked potentials.
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