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The Effect of Dipole Model Misspecification on
the Bias and Variance of Evoked Potential
Amplitude and Amplitude Ratio Estimates

Valerie A. Cardenas

Abstract

In dipole modeling, the generators of evoked potentials (EPs) are modeled as
dipoles inside a misspecified model of the head. Most research studies EP changes as
a function of stimulus characteristics, disease states, or other differences between data
sets. The Dipole Components Model (DCM) is a dipole modeling algorithm that can
be applied to multiple data sets gathered under different experimental conditions,
and can be used to estimate effects on the amplitude of the equivalent generators
(amplitude estimates).

The DCM was applied to auditory evoked P50 EPs for comparison of the
reliability (measured by the intraclass correlation coefficient) of P50 suppression es-
timated using dipole modeling vs. peak-picking. The DCM fit P50 using a homo-
geneous sphere head model, a decaying sinusoid magnitude function, and a single
dipole. Conditioning and testing amplitude parameters were fit, and P50 suppression
was measured by dividing the testing amplitude by the conditioning amplitude (am-
plitude ratio). The DCM improved amplitude ratio but not amplitude reliability over
peak-picking, an apparent paradox. It was proposed that the estimation of amplitude
and amplitude ratios might be differentially affected in a noisy, misspecified dipole
model.

Using the theory of linear least squares fitting, it was shown that dipole
model misspecification led to biased amplitudes and unbiased amplitude ratios for
three generator cases: (1) single dipole, (2) equal amplitude multiple dipoles, and (3)
multiple dipoles with equal amplitude ratios across data sets. The variance of ampli-
tudes and amplitude ratios could not be shown theoretically, so P50 was simulated by

generating potentials due to dipoles in a boundary element skull model and adding
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EEG noise. Modeling of the simulated P50 using a homogeneous sphere showed that
model misspecification and noise led to more variation in amplitude estimates than
derived amplitude ratios.

It was proposed that improved amplitude estimation might be achieved by
discarding the model. A model-free amplitude estimation method using singular
value decomposition (SVD) was developed and tested using simulated and real P50
data. The SVD method estimated reliable amplitudes and ratios when the data were

generated by one of the three cases above.
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Notation: Bold-faced letters indicate vectors, bold-faced script letters indicate matri-
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are indicated by a”.

SNR
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C

T

C-T ratio

CTR
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Cov
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EMG
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Dipole Components Model
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conditioning-testing ratio

estimated mean of z, defined as & YN,
standard deviation
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penalty added to the SRSS when dipole locations deviate from perfect

bilateral symmetry

penalty added to the SRSS when dipole orientations deviate from per-

fect bilateral symmetry

penalty added to the SRSS when dipole time-varying magnitudes devi-

ate from perfect synchrony

for all

Lz norm of vector x, defined as /TN x?

L, norm of vector x, defined as max |z;| V ¢
The real numbers.

The k-tuples of real numbers.

number of electrodes, indexed by k
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s or e, respectively
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fxa;(0;), the homogeneous sphere weight for electrode k due to dipole

J at location 6;

dipole moment for dipole ; at time ¢ in Cartesian coordinate direction
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dipole magnitude for dipole j at time ¢
amplitude of a decaying sinusoid

amplitude parameter scaling the decaying sinusoid (or other magnitude

function) for data set a

wavelength or period of a decaying sinusoid
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dipole magnitude for data set a at time ¢, defined as d®p,
decay parameter of a decaying sinusoid

vector of covariates

Fourier frequency 27 F /u

discrete Fourier transform at Fourier frequency v for V;(¢), the n x 1

vector of voltages recorded at time t for single trial 2

discrete Fourier transform at Fourier frequency v+ for p;(t), the mag-

nitude at time ¢ for dipole j

discrete Fourier transform at Fourier frequency v for e;(¢), the n x 1

vector of noise at time ¢ on single trial
the number of Fourier frequencies included in the analysis
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n x 1 vector of given voltages (i.e., recorded voltages at n electrodes)
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the fitted generator at location @ and orientation ¢,
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singular value
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Chapter 1

Introduction

The study of brain electrical activity is a non-invasive method for investi-
gating brain function. Evoked potentials (EPs) denote brain electrical activity that is
elicited or evoked by an external stimulus, and event-related potentials (ERPs) denote
brain electrical activity that occurs in response to an internally generated stimulus.
In this dissertation, my use of “evoked potentials” includes event-related potentials,
also.

Dipole modeling is an EP analysis technique which promises to advance
knOWIedge of brain function. In dipole modeling, a method based on electric field
theory, the neural generators of evoked potentials are modeled as current dipoles
inside the head, with the equivalent dipole generators being those which gives rise
to scalp potentials most like the measured potentials. Dipole modeling estimates the
loca,t,i(,n, orientation, and time-varying activity of the equivalent dipole generators of
evoked potentials.

Most dipole modeling research has focussed on fitting one or more dipoles to
a single evoked potential average (1, 2, 3, 4, 5, 6, 7, 8, 9], with the resulting location
Parameters being of most interest. Most clinical and research applications of evoked
Potentials, however, are designed to study changes in the EP as a function of stimu-
lus characteristics, drug states, disease states, or other between subject differences or
Within subject experimental manipulations. In analysis of variance or general linear

Models nomenclature, these between subject or within subject differences are called
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covariate effects. In other words, a covariate is a predictor variable for the experimen-
tal manipulations (predicting the response to a conditioning stimulus vs. the response
to a testing stimulus, for example), and the covariate effect is a measure of the brain
response to experimental manipulations (i.e., the covariate effect is the magnitude
of the difference between the conditioning and testing responses). Dipole modeling
methods used in the papers cited above do not provide a means for analyzing multiple
data sets and estimating such covariate effects.

In 1990, Turetsky, Raz, and Fein [10] proposed the Dipole Components
Model (DCM) as an advance in the conceptual framework of dipole modeling. In the
DCM, dipole sources for multiple data sets are fit concurrently with the constraint
that the same dipoles (i.e., same locations and orientations) generated the data for
all the data sets, and the dipoles are allowed to have differing time-varying activity
for each data set. The DCM can be applied to multiple data sets gathered under dif-
ferent experimental conditions or from different subjects, and can be used to estimate
covariate effects on the amplitude and latency of EPs.

Although the analysis method of dipole modeling is over 20 years old, the
most popular dipole modeling algorithm (BESA-Brain Electrical Source Analysis,
NeuroScan, Inc) is crude, using simplified physical head models and a nonparametric
time-varying dipole magnitude function. These simplifications result in a tractable,
but misspecified, problem. Previous research has shown that misspecification of the
physical head model results in biased location and orientation parameter estimates
(i.e., by biased estimates, I refer to estimates with systematic errors that cannot be
“averaged” out) [11, 12, 13, 14, 15]. There has been little exploration of the effect of
dipole modeling misspecification on the equivalent generator amplitude and amplitude
ratios.

This dissertation investigates the effect of dipole model misspecification on
the bias and variance of amplitude and derived amplitude ratio estimates for evoked
potentials, when the Dipole Components Model is used to estimate covariate effects
on EP amplitude. The estimation of covariate effects on EP amplitude using the
DCM is described in detail in Section 1.3.4.

The experiment that led to my interest in the effects of model misspecifica-



tion on estimation of covariate effects on amplitude and the derived amplitude ratios
is described in Chapter 2. In that chapter, I compared the reliability of the audi-
tory evoked P50 conditioning-testing (C-T) ratio (an amplitude ratio) as measured
by peak-picking versus dipole modeling.

The auditory P50 evoked potential is recorded in response to click stimula-
tion. P50 has received great attention in the psychiatric community in recent years
due to the phenomenon of P50 suppression. P50 suppression occurs when P50 is
recorded in a paired click (or conditioning-testing) paradigm. In normals, the ampli-
tude of the P50 response to the second (testing) click is reduced relative to the first
(conditioning) click, when the clicks are separated by less than one second [16, 17, 18].
This suppression does not usually occur in schizophrenics or in about half of their
first-degree relative [19, 20, 21, 22], and has been proposed as a potential genetic
marker of the predisposition or vulnerability to schizophrenia.

P50 suppression is typically measured by the conditioning-testing (C-T)
ratio, which is defined as the amplitude of the testing click response divided by the
amplitude of the conditioning click response. Unfortunately, the excitement over
these findings and the interest of the psychiatric research community in applying
the P50 methodology to the study of schizophrenia has been tempered by the low
test-retest reliability (as evidenced by a small intraclass correlation coefficient) of
the C-T ratio as measured by peak-picking [23, 24]. A small intraclass correlation
coeflicient (ICC) indicates that the variability of the C-T ratio within a subject is
large in comparison to the variability of the C-T ratio between subjects. = With
peak-picking, noise makes independent contributions to the conditioning and testing
amplitude estimates, with more than cumulative effects on the C-T ratio. Because
the Dipole Components Model uses multiple channels of information and because the
DCM can simultaneously fit the conditioning and testing responses (thus “pooling”
the effect of noise during the responses), I suspected that the DCM might lead to a
more reliable C-T ratio.

Dipole modeling was applied to the auditory evoked P50 response as col-
lected in a conditioning-testing paradigm, and amplitude parameters were fit to the

conditioning and testing responses. Dipole modeling significantly improved the re-



liability (as measured by the ICC) of the C-T ratio as compared to peak-picking,
implying that even a misspecified dipole model provided an advantage over peak-
picking. Paradoxically, dipole modeling did not lead to an increase in the reliability
of the conditioning and testing response amplitude estimates over peak-picking, only
improving the reliability of the C-T ratio. These results led me to ask two questions:
(1) The DCM resulted in more reliable C-T ratios, but were these ratio measures
unbiased? and (2) Will DCM amplitude ratios always be more reliable than ampli-
tude measurements (i.e., what is the variance of the estimates of covariate effects on
amplitude as compared to the derived amplitude ratios?).

In order to answer question (1), I turned to the theory of linear least squares
fitting as presented in Chapter 3. Chapter 3 shows that in two special cases, of which
the P50 data analyzed in Chapter 2 is one, misspecification of the dipole model
results in biased estimation of the covariate effects on amplitude, although the derived
amplitude ratios are unbiased.

The proofs in Chapter 3 assumed noise-free evoked potentials, and therefore
could not determine the variance of the covariate effects on amplitude estimated by
dipole modeling or of the derived ratio estimates. Chapter 3, Section 3.2.5 exam-
ines the variance of covariate effects on amplitude assuming evoked potentials with
Gaussian noise (a simplification), and shows that the variance of covariate effects on
amplitude estimated by dipole modeling is not easily determined analytically, even
when simplifying assumptions are made. Section 3.2.5 shows that simulations are
necessary to determine the variance of the estimated covariate effects on amplitude,
and to answer question (2).

Chapter 4 describes the simulations that were used to investigate the effect
of dipole model misspecification on the variance of the estimators of covariate effects
on amplitude, and the derived amplitude ratios. In summary, the results of Chapter 4
show that the variance of the derived amplitude ratios is smaller than the variance of
the estimators of covariate effects on amplitude. The variances of the derived ratios
and the estimators of covariate effects on amplitude were compared to their means,
and the decreased ratio variance was evidenced by the increased coefficient of variation

(COV) of the amplitude ratios, where the COV is defined as z/SD. Increased



COVs result in increased reliability of derived amplitude ratios as compared to the
estimators of covariate effects on amplitude. The results of Chapter 4 also showed
that the concurrent presence of model misspecification and EEG noise did not lead
to biased derived amplitude ratio estimates.

The results of Chapter 4 showed that the derived amplitude ratios were ac-
curately and reliably estimated in the presence of model misspecification and noise,
and the results of Chapter 3 show that this is because the effect of model misspecifi-
cation “cancels” for a ratio measure. This led me to question whether a model was
truly necessary for ratio estimation. In Chapter 5 I propose a method for estimation
of evoked potential amplitudes and amplitude ratios that uses multiple channels of
data but does not use the dipole model. When this method is applied to the simu-
lated data used in Chapter 4, it results in increased amplitude COV's as compared
to dipole modeling, and the ratio COV's are comparable to those obtained by dipole
modeling. In addition, when this “model-free” method is applied to the real P50
data used in Chapter 2, it results in an improvement in reliability (as measured by
the ICC) comparable to the improvement gained using dipole modeling. The model-
free method is much faster and easier to use than dipole modeling, and may be very
useful for analyzing data such as P50 where ratios are of most importance.

Chapter 6 discusses the results of this dissertation, and suggests future re-
search.

The remainder of this chapter will introduce the reader to evoked poten-
tials and the analysis of evoked potentials using dipole modeling. This chapter will
also introduce notation used throughout the dissertation, as well as review the intr-
aclass correlation coefficient, the statistic used to evaluate the variance of covariate
estimates.

Notation: Bold-faced letters indicate vectors, bold-faced script letters indi-
cate matrices, and normal-faced italic letters indicate scalars. Unit vectors (vectors

of length 1) are indicated by a".



1.1 Evoked Potentials

The electrical activity of the brain can be recorded non-invasively from the
scalp. Evoked potentials (EPs) are measurements of the surface electrical activity of
the brain in response to a stimulus. A single stimulus response has a small amplitude
at the scalp and is obscured by other physiological activity, such as the electroen-
cephalogram (EEG) or electromyogram (EMG). Therefore, responses are elicited re-
peatedly and averaged in order to enhance the time-synchronized evoked potential.
Generally, the term evoked potential refers to the averaged response.

EPs can be classified according to stimulus type, time of occurrence, and
subject task. EPs in response to auditory, visual, and somatosensory stimulation are
routinely recorded, and give information about the specific sensory system stimulated.
EPs can be recorded at short and long latencies post-stimulus. Subcortical EPs are
generated by the afferent sensory pathway to the primary sensory cortex. Subcortical
EPs typically have latencies of less than 10-20 ms and amplitudes of less than 1 pV at
the scalp. The auditory brainstem response [25] and the somatosensory P13 26, 27]
are examples of subcortical EPs. Short latency cortical EPs are generated by primary
sensory cortex, and have latencies ranging from 10-100 ms and amplitudes of up to 10
#V or more. The somatosensory N20 is a classic example of a short latency cortical EP
[28, 29]. Subcortical and short-latency cortical EPs are considered to be “hard-wired,”
and the physical characteristics of the stimulus determine the response. As such, no
subject participation or awareness is required, and many subcortical and short-latency
EPs can be recorded while a subject is sleeping. These short-latency EPs are often
referred to as exogenous potentials [30]. Longer latency cortical EPs reflect processing
by higher order cortical areas (i.e., not primary or perhaps even secondary cortex),
and typically have latencies of over 100 ms and are usually larger in amplitude than
the short latency cortical EPs. Some long-latency cortical EPs, of which the P300 and
readiness potential are examples, require the subject to perform a task or at the very
least stay awake and alert. These EPs seem to reflect cognitive processing, because
the EP can still be recorded even when the physical characteristics of the stimulus

change (i.e., a P300 can be recorded in response to either an unexpected stimulus or
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the absence of an expected stimulus; therefore the P300 response must be cognitive,
not sensory). These long-latency EPs are often referred to as endogenous EPs [30].

EPs are typically characterized by describing the latency, polarity, and am-
plitude of peaks in individual channels of data, a process known as peak picking.
These peaks are usually the primary measures of the EP components. Many re-
searchers have collected EPs to visual, auditory, and somatosensory stimulation from
subjects with no sensory deficits. These data were used to determine normative val-
ues for the peak characteristics of each type of EP. These normative values have been
used to establish guidelines for the clinical use of EPs [31, 32].

Short latency exogenous EPs are clinically useful for testing conduction
along afferent pathways. A short latency EP with an abnormal peak latency may
signal a lesion in the afferent pathway [31]. EPs are also used to monitor activity of
the brain or afferent structures during surgery [33]. Some longer latency endogenous
EPs seem to reflect the activity of complex cognitive or psychological processes, and
are used to study psychiatric populations [19, 34, 30]. In these clinical applications,
peak characterization (or peak picking) is the most frequent method of analysis.

Many of the clinically useful applications of EPs depend on the stability
and reliability of the EP over time. EP amplitudes as measured by peak picking are
less reliable than are EP latency measures; therefore EP latencies are more often used
clinically. Nevertheless, in some research work, amplitude changes have been observed
in the absence of latency changes [35, 36, 18, 37]. A reliable method of amplitude
measurement is required before these observations can be employed clinically, and
peak picking is not satisfactory.

Peak picking is limited because it cannot describe the pattern of brain acti-
vation that resulted in the presence of an EP. An EP component (i.e., ”peak”) may
reflect the summation of electrical activity from two or more brain regions. Peak pick-
ing cannot separate these overlapping contributions and instead identifies one peak.
In such a case, the latency of this peak may not represent the peak latency of brain
activation. Figure 1.1 describes such a case. Plot (a) shows the overlapping activity
(in time) of two widely separated simulated neural generators. Plot (b) shows the

signal that would be generated by these overlapping contributions at the vertex elec-
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trode, if no noise were present. The shape is irregular, and may lead one to suspect
multiple generators. However, plot (c) shows the same signal when noise is added,
and plot (d) shows a filtered version of the data from plot (c). Only a single peak is
evident in plot (d), and this demonstrates one way that peak picking can be "fooled.”

Peak picking is limited because it cannot describe the brain changes that
cause an abnormal EP. Peak picking is also limited because it describes the latency
and amplitude of EP peaks (i.e., peak picking characterizes a single time point in
the wave), and these peak measurements are sensitive to such things as noise (i.e.,
EEG and EMG noise), filter settings, errors in electrode placement, and electrode
impedance. These limitations have led investigators to use additional techniques to
describe the EP, such as principal components analysis, topographic mapping, and
dipole modeling. Several of these techniques attempt to locate the neural generators
of the EP.

1.2 Neural Generators of Evoked Potentials

Investigators agree that short latency EP components are generated by
structures along the afferent pathway, and educated “guesses” about the location
and orientation of the equivalent generators of short latency EPs can be made. How-
ever, the neural generators of long latency EP components cannot be related to the
anatomy of afferent pathways, and the location and orientation of long latency com-
ponents are therefore more difficult to determine. In addition, anatomy can only
suggest neural generator location and orientation, and the behavior of the genera-
tor over time (i.e., intensity of response) cannot be characterized without additional
information. Knowledge of the location, orientation, and time-varying magnitude of
EP generators would allow more precise diagnosis of functional brain abnormalities,
and potentially might lead to a better understanding of how psychological processes
are related to brain structures.

The techniques employed by researchers to attempt to locate the sources of
EPs include intracranial recording of EPs [38, 39, 40, 41, 29, 42], characterization of
EP changes due to lesions [43, 44, 45, 46, 47], topographic mapping of EPs [48, 49, 50],
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Figure 1.1: How overlapping generators can fool peak picking
Plot (a) shows the time-varying activation of two generators widely separated in
space, but overlapping in time. Plot (b) shows the summation of the two generators
as it would appear at the vertex. Plot (c) is a noisy version of the data in plot (b).
Plot (d) is a filtered version of the data in plot (c). Only a single peak is evident in

plot (d), which would fool peak picking.
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and volume conduction models based on electric field theory [8, 9, 1, 51, 7, 10, 52].
Intracranial recordings are obtained from surgically implanted electrodes. Only sub-
jects with severe neurological disorders are surgically implanted, and the electrode
positions are determined by clinical considerations, not research considerations. Le-
sion studies are limited because of the difficulty in determining the extent of the lesion,
interpreting the effect of the lesion on the EP, and because in humans one cannot
choose the lesion site. It is also difficult to duplicate results, since lesions differ from
patient to patient. Difficulties associated with topographic mapping include determi-
nation of which EP components to examine, correlating the map with the assumed
underlying sources, and selection of an appropriate reference electrode. Volume con-
duction models make simplifying assumptions about head shape and conductivity,
and the solutions are not unique. In summary, no method is ideal.

Because this dissertation investigates the effect of dipole model misspecifi-
cation on the bias and variance of covariate estimates, I will not consider intracranial
recordings, lesion studies, or topographic mapping further. The next section intro-

duces the dipole model.

1.3 Dipole Modeling

The analysis of evoked potentials by dipole modeling is based on electric
field theory. In this method, the neural generators of evoked potentials are modeled
as current dipoles. There are several conditions under which a compound action
potential can be well modeled by a dipole, such as when it is initiated, when it
traverses a narrow region of the volume conductor, when it reaches the end of an axon,
when it traverses a short axon, when it traverses a curved axon, and when it traverses a
boundary between adjacent regions of differing media conductivity [53, 54, 55, 56]. In
addition, synchronous activity of cortical pyramidal cells, which are oriented toward
the cortical surface, causes intraneuronal current flow parallel to the neurons. This
results in different cortical layers acting as sources and sinks, and thus generates a
current dipole [57, 58, 59] or quadrupole [60] oriented perpendicular to the cortical

layers. The effect of any arrangement of sources and sinks (or cortical source) in the
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far-field can be well-approximated by a dipole [61]. The following sections present the
equation which describes the surface voltage due to a dipole inside a homogeneous

sphere and methods for solving the inverse problem.

1.3.1 Describing Equation

Several simplifying assumptions have been made in order to write the fol-

lowing analytical expression for the surface voltage due to a neural generator in the

head. These are:
1 The head is a sphere filled with a medium of homogeneous conductivity.

2 The neural generator is a point current dipole.
3 The location of the generator is fixed over its time of activation.

4 The radius of the head is 1 unit (the computed potentials can be easily

scaled if the radius does not equal 1).

5 The conductivity of the head is 1 unit (the computed potentials can be

easily scaled if the conductivity does not equal 1).

A current dipole in a sphere, as well as the coordinate system to be used
in this dissertation, is illustrated in Figure 1.2. The signal at scalp electrode &,

(k=1,...,n), at time ¢ due to single dipole is [62, 52]:

Vie = fi1(0)6er + fu2(0)Eez + fr3(0)ées (1.1)

where:
fea(8) = f24(0) = f2,41)a(8) k=1,...,n; d=1,2,3 (1.2)
f,gd(o)=-—,j;;u+ﬂ;g+ﬂuﬁ:ﬁd k=1,...,n+1; d=1,2,3 (1.3)

0 = (6:,65,6,)"
ft = (gtlyfﬂafﬁ)T

e
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0 = (k1 Tk2, Mhs)”

e = |lm—0|: (1.4)
04 — Nka
apg = —2
kd o (1.5)
bk = nk . 0 (1 6)
G = pi+ Pk — bipx (1.7)

where 0 is a vector representing the dipole location in Cartesian coordinates. The
vector of dipole magnitudes in Cartesian coordinates at time ¢ is §,. I use the notation
&, instead of £(t) because evoked potentials are discrete time-series, not continuous
time-series. The electrode location k in Cartesian coordinates is 9, d indexes the
three coordinate directions, and 0, ,, is the location of the reference electrode. In the
coordinate system used in this dissertation, the x axis runs between the nasion and
inion (nasion is positive), the y axis runs between the left and right auditory meatus
(left is positive), and the z axis runs between the positive vertex and the intersection
of the x and y axis. This is a right handed coordinate system.

Alternatively, when the generator is assumed to be fixed in location and
orientation, Equation 1.1 can be expressed in spherical coordinates, where ¢, is the

co-latitude and ¢, is the longitude. The signal at electrode k at time ¢ is then:

Vie = fx(6,0)p: (1.8)
where
fk(0,0) = fr1(0)sindicosds + fia(0)sind1sing; + fia(0)cosd, (1.9)
k=1,...,n .
and where

e = V€t21 + &+

= &2
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Figure 1.2: Coordinate system used.
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i.e., the following relationships hold

€n = pising cosd,
€ = pising sing; (1.10)
€3 = picosdy

As noted previously, it is trivial to scale the potentials when assumptions 4
and 5 are violated, and all other assumptions still hold. This is accomplished in
the following manner. Let R be the true radius and M be the true conductivity.
According to [62], the scaled potentials S are then
__ L

MR?

Linear superposition holds in a volume conductor, therefore when more than

St Vi

one dipole is present in the sphere, the voltage measured at the surface is equivalent
to the algebraic sum of the individual contributions. Therefore, if Vj, is generated by

l dipoles, the signal at electrode k£ becomes
1
Vie = Z fri(6s, @;)pis
=1

where fii(0;, ;) is the weighting function at electrode k due to dipole ¢, and p;; is
the dipole magnitude function for dipole 7 at time t.

Previous investigators have used more realistic (and thus more complicated)
models for the head than the homogeneous sphere model. The head is clearly very
different from a homogeneous sphere, and the use of this simple head model introduces
model misspecification. Since this dissertation is concerned with investigating the
errors in the estimates of covariate effects when model misspecification is present,
and also because the simple head model is computationally advantageous, I will be
using the homogeneous sphere dipole model in my data analysis and simulations.

Solutions to the homogeneous sphere dipole model can be found using either
a time domain approach [1, 63] or a frequency domain approach [52, 64, 65]. In
addition, the problem can be solved by estimating all parameters using nonlinear
optimization techniques, or by “splitting” the problem into nonlinear and linear parts,

and solving each part using appropriate numerical methods. In this dissertation, I
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will only be solving the intracranial dipole model in the time domain, and will focus
my review on time domain solutions.

Most dipole modeling of evoked potentials in the time domain has focussed
on fitting one or more dipoles to a single evoked potential average, and do not esti-
mate covariate effects. The estimation of covariate effects (i.e., the size of an effect on
the amplitude or latency of an EP due to experimental manipulations) is essential for
EP research. The Dipole Components Model (DCM) is an extension of dipole mod-
eling in the time domain to include estimation of covariate effects on EP amplitude
and latency, and the DCM will be reviewed. Some discussion of frequency domain
solutions will be included, because of the ease of estimating covariate effects on EP
amplitude and latency in the frequency domain.

It is important to understand how the problem is solved when “split” into
linear and nonlinear parts, so I will describe linear and nonlinear solutions in great

detail.

1.3.2 Linear Solutions

In the dipole model, the scalp recorded potentials are a function of the
equivalent dipole generator location, orientation, and magnitude over time (see Equa-
tions 1.1-1.9). In Equation 1.8, the equivalent dipole generator location and orien-
tation are fixed, and the scalp recorded potentials are a nonlinear function of dipole
location and orientation (the weighting function fi(0,¢) is a nonlinear function of
dipole location and orientation), and a linear function of the dipole magnitudes p;. In
Equation 1.1, only the dipole location is fixed, and the scalp recorded potentials are
a nonlinear function of dipole location (the weighting function fiq4(@) is a nonlinear
function of the dipole location), and a linear function of the dipole magnitudes in the
three Cartesian coordinate directions, £4.

If the locations and/or orientations of the neural generators are fixed and ei-
ther known or have been previously estimated, then the electrode weighting functions
fi(0, @) can be easily computed by Equations 1.1-1.9. This situation can arise on the

rare occasion when the locations and orientations of the generators are known from
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anatomy. This situation occurs more frequently when the dipole model is “split”
into linear and nonlinear parts, i.e. when a linear method is used to estimate the
linear parameters after a nonlinear optimization routine is used to estimate the other
parameters (usually location and orientation, but sometimes time varying magnitude
parameters also).

If the locations and orientations of the dipole generators are fixed, then
Equation 1.8 must be solved for the dipole locations, orientations, and dipole mag-
nitudes over time. Assuming that the dipole location and orientation are known or
have been estimated using a nonlinear optimization routine, the electrode weighting
functions fi(0,¢) can be computed by Equations 1.1- 1.9. In this case, only the
dipole moments over time, p;, must be solved for each generator, and this is a linear
problem. The voltage at a number of electrodes due to several sources can be written

as a matrix problem, as follows.

( fu fe fu ) o p » (Vi Viz - Vi \
11 P12 " Pl
fa fa - fu p " Var Vo -0 Vo
p o o u
far fa2 o+ fa ?l ?2 ) . = Vai Vay -0 Vay
. . S pPn pi2 Pl ' . '
\ fnl f'n2 fnl } ! ? \ ‘/nl V'n.2 Vnu )

where u is the number of time points, n is the number of electrodes, and [ is the
number of dipole sources. The notation is as follows: Vj; is the recorded voltage at
electrode k at time point ¢, fj; is the electrode weighting function f;;(8;, ¢;) for dipole
J, and pj: is the dipole magnitude for dipole j at time point ¢. In this example, there
are 3 location and 2 orientation parameters for each dipole, and u dipole moment
parameters for each dipole ([5 + u] x [ parameters total, 5 x ! parameters known or
estimated using a nonlinear method, and u x ! parameters estimated linearly).

The problem can still be written in matrix notation if the locations of the
generators are fixed but the orientations are allowed to vary. A fixed location, varying
orientation generator can be used to model a sequentially activated section of cortex.
The centroid of the cortical section is the location of the dipole, and the dipole

orientation varies as the cortex is activated. The fixed location, varying orientation
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dipole is a simplification of the true physiology, as the centroid of the activated cortical
section would shift and would not be concurrent with the centroid of the entire cortical
section.

For a fixed location and variable orientation dipole, Equation 1.1 must be
solved. Assuming that the locations of the generators are known or have been esti-
mated using a nonlinear optimization routine, the weighting functions fiq;(8) can be
computed by Equations 1.2-1.7. In this case, the dipole magnitude in each coordi-
nate direction can be estimated linearly (this is sometimes referred to as solving for a
“triplet” dipole). When dipole orientations are allowed to vary over time, the voltage

at a number of electrodes due to several sources can be written as follows.

( glll €ull \

6121 €u21

6131 tcc £u31
fin fin fim o0 fiu fim fia €z - a2 Vit -+ Vi
fan fonn fam o0 fiu fia fia €122 -+ Cun _ Var -0 Vau
S T bz o G | | P e
far fann fam o0 fau fra fam T Vii o Vi

6111 g‘ull

6121 €u2l

\ &3t -0 Cun )

where fi4; is the electrode weighting function fi4;(@) for dipole j, and &4 is the
dipole moment at time point ¢ in coordinate direction d for dipole 5. In this example,
there are three location parameters for each dipole (which are known or estimated
using a nonlinear optimization routine), and 3 x u linearly estimated dipole moment
parameters for each dipole ([3 + 3 x u] x [ parameters total).

In the previous two examples, it was assumed that the dipole locations
and/or orientations were known or had been estimated by a nonlinear optimization
routine. The dipole moments were then solved at each time point. This leads to a large
number of estimated parameters. In order to reduce the total number of parameters

estimated, the time-varying dipole magnitude function can be parameterized.
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The Dipole Components Model (DCM) of Turetsky [10] fixes the location
and orientation of each dipole, and parameterizes the time-varying dipole moment
function as a decaying sinusoid. Nonlinear optimization is used to estimate the loca-
tion, orientation, and decaying sinusoid parameters for the equivalent dipole genera-

tor. The decaying sinusoid dipole magnitude function is described by:

Pt = sin[277r(t - T)]e'ﬁ(“’) (1.11)
and the equation for Vi, is
!
Vie = 3 a;pje fii Ok, bi;) (1.12)
i=1

where A is the wavelength, 7 is onset latency, 3 is the decay of the decaying sinusoid,
and a is the intensity or amplitude of the dipole. If the dipole location, orientation,
and magnitude function shape (described by A, 7, and B) are known or have been
estimated, then fi;(0;,¢;) and p, can be easily computed. The linear problem of

estimating the magnitude of the decaying sinusoid can be written in matrix notation,

as follows,

( fnPu f12P21 fllPu \‘ ( Vi \
fapin fa2p2r - fupn Va1
fupiz  fizpa2 oo+ fupe Vi2

. . . . ay .
Q3
frapiz fr2p2z - fupie . = Vaz
ap
fupie  fizP2w - fupn Va
\ fnlplu fn2p2u fanlu ) K Vnu }

where fy;, pjt, and Vj, are the same as described previously, and a; is the magnitude

of the dipole moment function for dipole j. This leads to 3 location, 2 orientation, and
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3 dipole magnitude “shape” parameters for each dipole (estimated using a nonlinear
optimization method), and 1 linearly estimated dipole magnitude parameter for each
dipole (9 x I parameters total).

The three matrix problems defined above are all matrix equations of the
form Az = b. Note that in the first two problems shown, z and b are actually
matrices, but the problem can be treated as Az = b with multiple right hand sides
(i.e., the first column of b is the first right hand side, and is used to solve for the
first column of z, the second column of b is the second right hand side and is used
to solve for the second column of z, and so on). Such problems can be easily solved
using standard linear algebra techniques, such as performing an LU decomposition
of A and using backsubstitution to solve for each right hand side. Many “canned”

routines are available to solve this problem [66, 67, 68, 69].

1.3.3 Nonlinear Solutions

In setting up the problems above, I assumed that the dipole locations and/or
orientations were known or had been previously estimated, and that parameters re-
lated to the dipole magnitude over time could then be solved using linear methods.
In the third linear problem described above, I assumed that the parameters of the de-
caying sinusoid had been previously estimated using a nonlinear optimization routine,
and the magnitude of the decaying sinusoid could be estimated using linear methods.

In practice, nonlinear optimization techniques are used to estimate some or
all of the parameters of the dipole model, because the locations and orientations of
the equivalent dipole generators are rarely known. Nonlinear optimization techniques
are used alone or with linear estimation techniques. When used alone, all parameters
of the dipole model (locations, orientations, and dipole magnitudes) are estimated
using nonlinear optimization. Frequently, however, within an iteration, the non-
linear optimization algorithm is used to estimate the locations and/or orientations,
and the remaining dipole magnitude parameters are estimated linearly (e.g., &:a of
Equation 1.1, p; of Equation 1.8, or a; when the dipole magnitude is parameterized)

(63, 70).
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Iterative nonlinear optimization routines attempt to minimize an objective
function of several parameters (often a sum of squared errors) by adjusting those pa-
rameters. At each iteration, the optimization algorithm perturbs the current parame-
ters in a deterministic (as in the Newton methods or nonlinear simplex) or stochastic
(as in simulated annealing or genetic algorithms) manner, and recomputes the objec-
tive function. The value of the objective function determines whether the perturbed
parameters are accepted or rejected. The process continues until a minimum of the
objective function is reached (hopefully the lowest or global minimum).

The dipole model estimation problem is complex, resulting from a large
number of parameters and their nonlinear relationships (see Equations 1.1-1.7). The
resulting multivariate estimation surface often has both large numbers of local minima
and a very shallow sloping surface near the global minimum. Such estimation prob-
lems overwhelm the capabilities of the most popular nonlinear estimation procedures,
the Newton-type methods, leading to convergence at local minima.

The Newton-type methods were the original methods used for dipole mod-
eling [8, 1, 51]. Because of the above problems, the nonlinear simplex method (some-
times called the polytope method to distinguish it from the better-known linear pro-
gramming simplex method) has become the method commonly used in equivalent
dipole source modeling [71, 12, 10, 72]. The nonlinear simplex is a derivative-free
method that often works well on nonlinear estimation surfaces, and adapts better
than Newton methods to moving through and out of long valleys.

The application of the dipole model to auditory P50 data, described in Chap-
ter 2, used the nonlinear simplex method to estimate the dipole parameters. Although
simplex was known to converge to local minima for multiple dipole problems, most
researchers were of the opinion that local minima were not a problem for single dipole
problems such as in Chapter 2. Since that work was accomplished, it has been shown
that the simplex method can converge to local minima even for simple single dipole
estimation problems [73]. In order to reduce and possibly eliminate the frequency of
convergence to local minima, for the simulation experiments described in Chapter 4,
I have used simulated annealing. Simulated annealing has been recently shown to

be superior to the simplex method for avoiding convergence to local minima when
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estimating dipole parameters [73]. Because this dissertation uses both the simplex
method and simulated annealing for estimation of dipole parameters, both methods

will be reviewed.

Simplex

The simplex method works along the following lines: Suppose there are n
parameters to be estimated. First, a simplex is formed. A simplex is a geometric figure
with n 4+ 1 vertices in n-dimensional space (e.g., a triangle in the plane). Each vertex
of the simplex has n coordinates, corresponding to estimates of the n parameters.
The scaled residual sum of squares (SRSS, the sum of squared differences between
observed and predicted values, scaled by the sum of the squared observed values) is
computed for the parameter estimates at each vertex. The simplex’s primary action is
to move away from the worst vertex (i.e., the one with the largest SRSS) by replacing
that vertex with its reflection through the centroid of the remaining vertices. If it
cannot find a better point through reflection, the simplex will then contract along a
single dimension away from the worst vertex. If a contraction away from the worst
vertex does not yield a better point, the simplex will perform a contraction in multiple
dimensions around the lowest (best) point. These steps give the simplex an amoeba-
like motion that helps it to move rapidly when good reflection moves are available,
and to contract in on itself to slither through long valleys. Simplex will only take
“downhill” steps (i.e., steps that reduce the value of the SRSS at that vertex). Because
simplex can only take downhill steps, it is sensitive to starting values.

In implementing the simplex method, starting and step values (used to con-
struct the initial simplex) must be chosen and a convergence criterion defined. For
convergence, the fractional difference between the highest and lowest SRSS at the
vertices (the difference of the highest and lowest SRSS divided by the sum of the
highest and lowest SRSS) must be less than a preset value [66]. Note that this con-
vergence criterion does not guarantee that the simplex is at a minimum in parameter
space (i.e., the simplex can shrink to a small enough size to satisfy the convergence

criteria but not be at a minimum-this can occur if the multivariate estimation sur-
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face is shallow). Although not implemented in the application in Chapter 2, in more
recent work [73] a second convergence criterion was added. If the first convergence
criterion is met, then it is required that the vertex with the lowest SRSS is truly at
a minimum in the parameter space. This is accomplished in a round-robin fashion.
Each parameter is perturbed by a small amount while holding the other parameters
constant and the SRSS is calculated and compared to the proposed minimum. If
the proposed minimum is the smallest, the solution is conditionally accepted. After
convergence is reached, the simplex is restarted at the current solution (with a new,
large simplex) in order to verify that a better solution cannot be found [74, 66]. When

the restarted simplex reconverges to the same parameter values the simplex solution

is accepted.

Simulated Annealing

Simulated annealing [75] is a stochastic simulation method for global opti-
mization that has been shown theoretically [76], in large-scale simulation studies [77],
and in applications [75, 78] to have superior properties in finding the global minimum
on complex nonlinear multivariate estimation surfaces with many local minima as
compared to other nonlinear optimization methods. Simulated annealing proceeds
towards its solution by randomly generating candidate steps from a probability dis-
tribution (usually either Gaussian or Cauchy; the Cauchy distribution is simply a ¢
distribution with 1 degree of freedom). A downhill step (i.e., a step to a location
with a smaller SRSS) is always accepted. Uphill steps are sometimes accepted, with
a probability inversely proportional to the size of the increase in the SRSS. As the
estimation process proceeds, the probability of accepting uphill steps is systematically
decreased.

Despite its simplicity, this method is extremely powerful. By sometimes
allowing uphill steps, the process can move away from local minima. Although sim-
ulated annealing initially samples from the entire parameter space, it progressively
homes in on the global minimum by decreasing the probability of taking an uphill

step. This makes simulated annealing feasible for complex problems in contrast to
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exhaustive direct search methods. The procedure by which the probability of up-
hill steps is decreased is called the cooling schedule. Simulated annealing literally
attempts to imitate the process whereby substances cool to their most stable states
according to the Boltzmann probability distribution. Geman and Geman [76] proved
that if the cooling schedule is sufficiently slow, simulated annealing will converge to
the global minimum.

When substances cool naturally to their ground states, temperature de-
creases slowly, and energy usually decreases with temperature. However, energy may
occasionally increase while temperature decreases. The relationship between energy

and temperature level is:

Prob(E) ~ exp(—E/kT) (1.13)

where FE is the energy, T is the temperature, and k is Boltzmann’s constant. Equa-

tion 1.13 is known as the Boltzmann distribution, and illustrates that at low temper-

ature there is still a small probability of the system being in a high energy state.
Metropolis [79] simulated changes in a thermodynamic system using the

relationship:
Prob(AE) ~ exp(—AE/kT)

Simulated annealing applies this idea to parameter estimation via minimization of a
function of the parameters. The objective function is the analog of E in Equation 1.13.
In the dipole modeling problem, the objective function is the scaled residual sum of

squares, and the annealing equation takes the form:

Prob(ASRSS) = { when ASRSS <0 (1.14)
exp(—ASRSS/kT) otherwise

Parameter estimates are generated sequentially and their SRSS is com-
puted. The difference in SRSS between the current and next candidate set of pa-
rameter estimates is set to ASRSS; k is fixed at 1, and T is started at some value (in

the simulations in Chapter 4, I used 0.2) and slowly decreased to 0 as the chain moves
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along. Then, by Equation 1.14, the new set of parameter estimates is accepted when-
ever the SRSS decreases; when the SRSS increases, the new or current parameter
estimates are accepted with a probability inversely dependent upon the magnitude of
the increase in energy, as described by line 2 of Equation 1.14.

Simulated annealing requires starting parameter values, procedures for gen-
erating candidate parameter values, a convergence criterion and a cooling schedule.
Simulated annealing initially searches the entire parameter space (because the initial
value of the temperature T is chosen to be large), and as a result the choice of start-
ing values is usually of little consequence (a major advantage of the method). Step
size and direction are more difficult problems. In the implementation of simulated
annealing used in Chapter 4, the approach used is to move round-robin through the
parameters, fixing all but one and perturbing that one by a value taken from a Cauchy
probability distribution centered at the current estimate. The Chapter 4 implemen-
tation uses a separate probability distribution for each parameter, and adaptively
adjusts standard deviations to maintain an equal number of generated uphill and
downbhill steps.

Theoretically, for guaranteed convergence to the global minimum, simulated
annealing requires a logarithmic decline of temperature that is too slow for use in
real applications [76]. Probably the most frequently used annealing schedule runs
for a predetermined number of iterations at a given temperature before reducing the
temperature by some fixed factor. However, even this faster schedule may require a
very long time to convergence. A considerably faster annealing schedule is used in
Chapter 4, where after each single round-robin parameter update, the temperature is
lowered by a fixed factor. The parameter chain is said to have converged when the
SRSS changes by less than some preset value over a specified number of consecutive
round-robin cycles. Although the accelerated cooling schedule and the possible viola-
tion of smoothness conditions fail to ensure convergence by theory, a reasonably slow
cooling schedule almost always converges to the global minimum [77]. Similar to the
simplex method, it is important to verify that simulated annealing could not find a
better solution by restarting the procedure (with the original, high temperature T')

from the current parameter estimates.
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1.3.4 Estimation of Covariate Effects

In evoked potential experiments, researchers present stimuli to human sub-
jects and record the brain electrical response at one or more scalp electrodes. Such
experiments are usually designed to study changes in the brain response to the stim-
ulus as a function of stimulus characteristics, drug states, and other covariates. Re-
searchers typically estimate covariate effects by identifying peaks in plots over time
of the averaged potentials, then determining the amplitudes (height of the peak re-
sponses) and latencies (lags from the presentation of the stimulus to the peak re-
sponses) of the peaks, and applying traditional statistical methods such as analysis
of variance to these derived measurements.

Another commonly used method of estimating covariate effects involves prin-
cipal components analysis [80, 81] of the waveforms. However, when principal compo-
nents analysis is applied to simulated data sets with multiple underlying components
overlapping in time, it produces factors that do not always accurately reflect the true
covariate effects of the underlying components [82, 83].

The spatio-temporal dipole model of Scherg [63] does not include the esti-
mation of covariate effects for subject and experimental conditions. He fits dipoles
to each evoked potential average, constraining the dipole locations (and sometimes
orientations) to be fixed over time, then solves for the dipole magnitudes over time.
This is the same problem I detailed under Section 1.3.2.

Turetsky, Raz, and Fein [10] suggested estimating covariate effects within the
context of a time domain dipole model of multichannel evoked potential data. They
assumed that the evoked potential averages from several subjects or from several con-
ditions were generated by the same equivalent electrical dipole sources in the brain
across all subjects or experimental conditions (i.e., the dipole sources had the same
locations, orientations, and time-varying “shapes” across subjects or conditions). It
is reasonable to assume that the evoked potential averages from several conditions
recorded from the same subject are generated by the same sources. This assumption
is probably violated across subjects, and a more reasonable model would allow for

some small variability in dipole locations across subjects. The time-varying dipole

{7 srzm Dam
£y
L. PN TR
A_.;."g.“‘.‘.‘

> - ai

PPy o3

[ 2t oh

Y v =



26

magnitude function was approximated by a decaying sinusoid (see Equation 1.11),
and parameters were included to represent covariate effects on the delay to onset
and the amplitude of this function. Raz, Cardenas, and Fletcher [65] proposed es-
timating covariate effects within the context of a frequency domain dipole model of
multichannel evoked potential data. They also assumed that the averages from sev-
eral subjects or conditions were generated by the same equivalent electrical dipoles
across all subjects or conditions. The dipole magnitude function was approximated
in the frequency domain by Fourier coeflicients, and included parameters estimating
the covariate effects on amplitude and latency. I will review both covariate estimation

models in this section.

Time Domain Estimation of Covariate Effects

Letting s index subjects, I can write an expression for the scalp recorded

voltage at time ¢ due to a single dipole in the time domain as follows:

Vi =1(0,4)p; (1.15)

where V7 is an n x 1 vector of voltages recorded at n measurement locations at time
t from subject s, f(0,¢) is an n x 1 vector valued function defined by Equation 1.9

for k=1,...,n, and p{ is defined as

pe = d'p
= d’asin[%r(t — 1 —71%)]exp(—B(t — 7 — 7)) (1.16)

In Equation 1.16, « is the magnitude of the “common” dipole (the dipole shared
by all subjects), d* is a subject specific amplitude weight (representing the subject
covariate effect on amplitude) and 7* is a subject specific latency jitter (representing
the subject covariate effect on latency). To ensure uniqueness, the subject weights
d® are scaled to have a product of 1, and the latency shifts 7* are adjusted to have a

mean of 0 for each dipole. Alternatively, I can scale p; such that || p ||co= 1 (where
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|| P llo= maz|p| V t) and place no constraints on the d*. For the case of using a
decaying sinusoid for p;, this is easily accomplished by setting o« to 1.
Differences in the scalp recorded voltages across experimental conditions can

be modeled in a similar fashion. Letting e index experimental conditions, I can write:

Vi =1(8,9)p° (1.17)

where V¢ is an n x 1 vector of voltages recorded at n measurement locations at time

t from subject s during experimental condition e, and p{° is defined as

p° = &'d°p
= d"d"asin[zyw(t —7—7°—1%]exp(-B(t— 17 —1° = 7)) (1.18)

In Equation 1.18, d° represents the experimental condition covariate effect
on amplitude and 7° represents the experimental condition covariate effect on latency.
As before, the experimental condition weights d® are scaled to have a product of 1,
and the latency shift 7¢ are adjusted to have a mean of 0 for each equivalent dipole.

When the covariate dipole model described in Equation 1.15 is fit over v sub-
jects, nine common parameters are estimated (three location [8], two orientation [¢],
and four time-varying moment function parameters [a, A, 7, §]), v amplitude param-
eters are estimated, and v latency parameters are estimated. This is a total of 9 + 2v
parameters per dipole. A nonlinear optimization procedure could be used to estimate
all parameters, or the amplitude parameters could be estimated linearly and all other
parameters estimated nonlinearly. The dipole model described in Equation 1.17 can
be solved in a similar fashion.

For the case of estimating the auditory P50 conditioning-testing ratio, the
model described in Equation 1.15 is used, only that d° are estimated instead of d°.
There are v = 2 experimental conditions. Let d* be the covariate effect on the testing
amplitude, and let d® be the covariate effect on the conditioning amplitude. After

dipole modeling is completed, the C-T ratio is simply,

e
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d*a
dba
da
&b

C-T ratio =

It is worthwhile to note that Equations 1.15 and 1.17 can both be extended
to multiple dipoles by simply summing over all dipoles. Letting ! be the number of
dipoles, I can write

1
Vie =2 1i(6;,¢,)p}

Jj=1
where f;(8;, ¢,) is the weighting vector for dipole j at location 8; and orientation ¢,
and pj; is the time-varying magnitude function for dipole j, subject s, condition e,

and time ¢.

Frequency Domain Estimation of Covariate Effects

For simplicity, I will first describe the model in the time domain and then
derive the frequency domain representation. The evoked potential stimulus is assumed
to be presented in m trials indexed by i, and V,(t) is an n x 1 vector of recorded
electrical potentials at time ¢. There are assumed to be u time points, and ! dipoles

generating V;(t). In the time domain, the model has the form

l

Vi(t) = Y exp(d]z)f;(0;,¢,)pi(t + 7] 2:) + ei(t) (1.19)
=1
t = 1,...,m
t = 1,...,u

where p;(t) is the time-varying dipole moment of dipole j at time ¢, d; and 7; are
parameter vectors representing the covariate effects on the amplitude and latency of
the response of generator j, z; is a vector of covariates, and e;(t) is a mean zero noise
process. It is assumed that e;(t) is a stationary, mixing, random process, and that

e;(t) is independent of e;(t) for ¢ # 7'
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In the case of fitting the dipole model to the auditory P50 collected in a
conditioning-testing paradigm, the trials are grouped according to the values of the
covariate, and there are only a few distinct values of z;. The responses to the first
click can be grouped (for analysis purposes) into the first m, trials, and the responses
to the second click can be grouped into the next m, trials. Therefore, z; can be

defined as follows:

_{ 1/2 fori=1,...,m (1.20)

-1/2 fori=m;+1,...,m
The model is made identifiable by constraining ¥;z; = 0. This means that
the product of the amplitude effects is one, and the sum of the latency effects is zero.
The time domain model described in Equation 1.19 can now be transformed
to the frequency domain. Let V,r, Pr;, and E;r be the discrete Fourier transforms
at frequency yr = 27F/u of V,(t), p;(t), and e;(t). Then the frequency domain

representation of the model has the approximate form:

l
Vir = Y exp(d]z + 177 2:)f;(8;,8;) Pr; + Eir (1.21)
i=1
t = 1,...,m
F = 1,...,w

where w < u/2 is the number of Fourier frequencies that are included in the analysis.
The value of w is chosen using prior knowledge of the smoothness of the evoked
potential.

Equation 1.21 shows that the latency parameters 7; are separated from
the Fourier coefficients Pyj,...,P,; in the frequency domain model, while in the
time domain model described in Equation 1.19 the parameter 7; is included in the
argument of the magnitude functions p;(-). This greatly facilitates estimation of the
latency parameters.

For the case of estimating the auditory P50 conditioning-testing ratio, z;

are defined as in Equation 1.20, and I'let =1 in Equation 1.21 (i.e., fitting a single
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dipole to the P50). Because there is only an experimental condition covariate (i.e.,
I do not need a covariate to describe changes between subjects because I am fitting
on a single subject), the parameter vectors d and 7 become scalars d and 7, and z;
becomes a scalar z;. A nonlinear optimization algorithm is then used to fit the dipole
parameters. There are three location parameters (), two orientation parameters (¢),
one parameter describing the covariate effects on amplitude, one parameter describing
the covariate effects on latency, and w Fourier frequency (Pyj, ..., P,;) parameters to
estimate (7 + w total parameters).

Once dipole modeling is completed, the C-T ratio is simply

eli=mttmld(n) 4 4y)
e(z‘=‘-""'"1)d(71 + ...+ 70)

e %%y + ..+ )

%5y 4+ ...+ Yw)

C-T ratio =

— 054 _ 0.5d
— e—O.Sd—O.Sd
= ¢ (1.22)

As shown in Equation 1.22, if the amplitude d is correctly estimated, that

is equivalent to correctly estimating the C-T ratio.

1.4 Intraclass Correlation Coefficient

All evoked potential analyses methods (peak-picking amplitude and latency
measurement, principal components analysis, topographic mapping, dipole modeling)
involve measurement error, in large part due to the noise still remaining in the aver-
aged evoked potential. Measurement error complicates subsequent statistical analyses
and interpretation, and therefore it is necessary to quantify the consistency of a given
measurement by determining its reliability, r,,, defined as the correlation between
two equivalent measures of the same variable. The square root of r,, may be inter-
preted as the correlation between the value of the variable as measured and its true

value, allowing one to assess the efficacy of a particular measurement method [84].
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Reliability of a given measurement is often measured by intraclass correlation
coefficients (ICCs). Since different forms of the ICC produce different reliability
results when applied to the same set of data, it is important to understand the
sources of noise in each measurement in order to choose the appropriate ICC. For
a more complete discussion of ICCs, see [85]. The statistical model I have used in
Chapter 2 to determine the reliability of the dipole modeling estimates of covariate
effects follows.

I wish to determine the reliability of auditory evoked P50 suppression over
several replications, in either several subjects or in one subject over different clinical
states or conditions. Thus there are m classes (representing subjects or conditions)
and n P50 measurements (C-T ratios) per class. Let z;; denote the ith rating (: =

1,...,n) on the jth class (j = 1,...,m). The following model for z;; is then assumed:

Ti; = U + bj + w;; (123)

where p is the overall population mean (of the C-T ratio, in this example), b; is
the difference from g of the jth class’s true mean (i.e., the true P50 suppression of
the subject during cocaine withdrawal or the jth subject’s true P50 suppression),
and w;; is the error term, which encompasses the inseparable effects of measurement
error and variability within a class. The component b; is assumed to be normally
distributed with mean 0 and variance oZ,. The component w;; is also assumed to be
normally distributed with mean 0 and variance o2_. Both components are assumed
to be independent of all other components in the model. The population ICC is then
p = o2 /(o2 + o2,) and the quantities o2, and o2 _ can be estimated from quantities
computed in a one-way ANOVA, as shown in Table 1.1.

The sample ICC (r) estimates the population ICC (p) and is computed as

follows:

_ MSB-MSW
" MSB+(n—-1)MSW
A large value of r indicates that the variability between class measurements is

, (1.24)

greater than the variability within subjects, i.e. that repeated measurements within



Table 1.1: Analysis of variance for a reliability model

Source of variation Degrees of Sum of  Mean square =~ Mean square  F

freedom  squares estimates
Between classes m—1 SSB MSB =338 no + o2,
MSB
I w MsW
Within classes m(n—1) SSW MSW = ms(f:_l) o2,
SSB =3 n(%i—1.) SSW =¥ Tia (235 — 2:)?
x; = ?.__1 x—,:l‘ z, = :';l ?:1 i%

a given class show stability. It is clear from Equation 1.24 that r approaches 1
as reliability increases. The population intraclass coefficient, p, ranges from 0 to 1
[86], but the estimator r described above might be negative if p is small and the
measurements z;; are noisy.

In this dissertation, I am interested in the test Hy : p < po versus Hy : p > po.
This test is performed as described by Donner and Eliasziw [87]. Accept Hy : p > po
if F > CFy,1,2, where F is the value shown in Table 1.1 and Fi;,1,.2 is the tabular
value of the F' distribution with v1,v2 degrees of freedom at the a per cent level of
significance. The between classes degrees of freedom and the within classes degrees

of freedom correspond to v1,v2, respectively. The constant C is defined by:

npo

C=1+
l—po

1.5 Summary

This introductory chapter has introduced evoked potentials, dipole mod-
eling, linear estimation, nonlinear estimation, the estimation of covariate effects on

evoked potential amplitude and latency, and the intraclass correlation coefficient.
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Most of these topics are integrated in the next chapter, where I describe an applica-

tion of dipole modeling of auditory P50 evoked potentials.
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Chapter 2

The Reliability of Auditory P50
Suppression as Measured by the

Conditioning-Testing Ratio is

Improved by Dipole Modeling

2.1 Introduction

The phenomenon of P50 suppression has received increasing attention from
psychiatric researchers in recent years. In normal subjects, suppression of the auditory
P50 evoked response to the second of two paired clicks occurs when the interstimulus
interval is less than 1 sec [88, 89, 16, 17]. The first (conditioning) click is thought
to activate an inhibitory mechanism, causing a reduced response to a test click pre-
sented while the inhibitory mechanism is active. The degree of suppression of the test
response is typically measured by the ratio of P50 amplitude to the testing versus
conditioning click, called the C-T ratio. In normal subjects, at an interclick interval
of 500 ms, the C-T ratio is usually less than 0.5 [18, 90]. Under the same conditions
in schizophrenics, the response amplitude to the test stimulus is comparable or only
slightly suppressed as compared to the conditioning stimulus, resulting in C-T ratios

close to 1.0 [90]. This reduced or absent P50 suppression has been hypothesized by
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Freedman and colleagues to reflect a preattentive, or neuronal impairment of auditory
sensory gating [20, 91].

The clinical utility of the auditory P50 suppression measure is under ques-
tion because of its low test-retest reliability. Kathmann and Engel [24] measured
P50 suppression twice in 9 normals and 6 schizophrenics. They found very unstable
C-T ratios, with reliabilities of 0.11 in the normals and -0.22 in the schizophrenics.
Similarly, Boutros and colleagues [23] found a C-T ratio reliability of 0.14 across six
replications in 10 normal subjects. The low reliability of the C-T ratio severely lim-
its its utility as a tool for characterizing sensory gating in individual subjects, and
precludes longitudinal studies examining the association between sensory gating and
clinical variables.

The reliability of a measure such as P50 suppression is a function of: (a) the
consistency within individuals over time of the “true” underlying phenomena, which
the measure is supposed to capture, and (b) the contributions of measurement error
(i.e., noise), which result in the measured phenomena differing from the “true” phe-
nomena. Analysis of how P50 is measured provides insight into possible contributions
of measurement error to its unreliability. In all studies to date, P50 amplitudes to
the conditioning and testing stimuli are estimated independently via picking peaks
on the vertex recordings, either as simple amplitudes, or as amplitude differences
between a vertex peak and the prior (i.e., N40) vertex trough. The estimated P50
amplitude to each response is a function of the true P50 response and the noise in the
average evoked potential (EP) at the time point(s) at which it was measured. The
noise arises from the amplifiers, from the background electroencephalogram (EEG)
and from muscle activity (the electromyogram [EMG]). With the conditioning and
testing stimuli separated by 500 ms, the noise in the average EPs at the times of
the P50 responses to the conditioning and testing stimuli are for the most part in-
dependent. Given the independent noise of the two measurements, taking their ratio
augments the effect of the noise on the ratio. The distribution of the C-T ratio and
simulations of the effect of computing the ratio on the signal-to-noise ratio is shown
below in Section 2.2. The noise augmentation results in a reduced signal-to-noise

ratio (SNR) of the C-T ratio as compared to the SNR of each of the conditioning and
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testing stimuli. This analysis suggests two possibilities for increasing the reliability
of the C-T ratio measurement. The first is to increase the SNR of the measured
P50 response to each of the conditioning and testing stimuli. The second is to de-
velop a measurement paradigm wherein the noise from the conditioning and testing
P50 response measurements do not make independent (and therefore augmenting)
contributions to the noise of the C-T ratio.

The Dipole Components Model (DCM) [10] may meet both goals for in-
creasing the reliability of the C-T ratio. The DCM assumes that the conditioning
and testing P50 responses arise from the same underlying brain process (assumed
to be a point dipole source), and simultaneously fits a single dipole source to both
responses. The amplitude of the dipole source is allowed to vary across condition-
ing and testing responses, with the ratio of the corresponding amplitude parameters
yielding the C-T ratio. In such modeling, the noise at the two responses is pooled
and makes only an averaged contribution to the C-T ratio. Furthermore, the dipole
parameters are estimated using topographic data from multiple electrodes and mul-
tiple time points. To the degree that topographic information helps define the P50
dipole source, there is the potential for the P50 dipole magnitude to be measured
with higher SNR than P50 amplitude measured from a single electrode. However, it
is important to note that the DCM procedure is crude and simple. As examples, it
models the head as a homogeneous sphere, the P50 sources as single point dipoles,
and the dipole magnitude response as a decaying sinusoid. Given this acknowledged
model misspecification, there is the real possibility that dipole modeling of P50 in
a conditioning-testing paradigm might be very poor, adding unwanted noise to the
measurements and resulting in even lower C-T ratio reliabilities than those derived
from simple peak picking on vertex recordings. The goal of this research was to de-
termine whether use of the DCM increases the reliability of the P50 suppression C-T

ratio.
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2.2 Theory

This section will demonstrate that, given independence of the C and T
measurements, the signal to noise ratio (SNR) of the C-T ratio is generally diminished
in comparison to the SNR of either the C or T response. This will be demonstrated
by: (1) an analytical examination of the density function of the ratio of independent,
normally distributed, random variables; and (2) simulation of the distribution of the
C-T ratio (the C and T responses are assumed to be independent with square root

distribution).

2.2.1 Analytic

Geary [92] showed that if X; and X, are independent, normally distributed
random variables with mean 0 and variance 1, their ratio follows the Cauchy distri-
bution. For those unfamiliar with the Cauchy distribution, it is just the ¢ distribution
with 1 degree of freedom. As practitioners will know well from testing hypotheses
and/or calculating confidence intervals from small samples, the lower the degrees of
freedom of the t, the more heavy-tailed it is, that is, the lower its SNR. Marsaglia
[93] considered independent normal variates with no restriction on their means and
variances, and showed that if f is the density of X;/X, and g is the Cauchy density,
then for z > 0,

f(z) 2 eig(z)(1 + ) (2.1)

where ¢; > 0 and c; > 0 are constants. Therefore, the second moment of X;/X,,

E?*(X1/X>), is infinite, because

ENX:/X)) = /+ooa:2f(:v)da:
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and the last integral is infinite because the second moment of the Cauchy distribution
is symmetric and infinite [94].

Because the variance of a random variable equals its second moment minus
the square of its mean, X;/X; has infinite variance. Simply put, the quotient of
two independent normals will be at least as heavy-tailed as the Cauchy distribution,
and this in turn means that the population SNR of the ratio of independent normals
approaches zero in the limit, and the sample SNR is small in comparison to the SNR

of either component of the ratio.

2.2.2 Simulation

The analytic discussion above assumed X; and X; to be independently nor-
mally distributed variates. The C and T amplitudes are not normally distributed as
they cannot be negative, and a normal distribution with the means and variances
observed for the C and T responses of this chapter (see Section 2.4) would include
negative amplitudes. Work be Sand [95] indicates that auditory brainstem response
amplitudes, which are smaller than the P50, but also are bounded by zero amplitude,
are well represented as square-root normal variates (i.e., their square roots are nor-
mally distributed). Because the analytic proofs in Section 2.2.1 do not necessarily
hold for square-root normal variates, the simulation study was carried out assuming

that the P50 responses are square-root normal variates, as follows:

1 Means and SD were computed for the conditioning and testing response
amplitudes from the peak picking data used in this study. Therefore, the

results from these simulations are directly applicable to this chapter.

2 Fifty samples of size 1000 each were drawn from a square-root normal

distribution with (untransformed) mean 4.13 and SD 2.29 (group C).

3 Fifty samples of size 1000 each were drawn from a square-root normal

distribution with (untransformed) mean 2.03 and SD 1.28 (group T).

4 The signal-to-noise ratio of the quotient of corresponding samples from

Group C and Group T were computed (50 computations).
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The results of these simulations are as follows:

mean SNR of the quotient = 0.29
median SNR of the quotient = 0.27
range of SNRs of the quotient = (0.03,0.76)

Because the SNR of the C group is 1.80 (mean divided by the SD, also known as the
coefficient of variation) and the SNR of the T group is 1.58, all simulated SNRs of
the quotient of the measurement were diminished compared to the SNR of either the

C group or the T group.

2.3 Methods

2.3.1 Overview

The goal was to determine the effects of dipole component modeling (DCM)
on the reliability of the P50 suppression C-T ratio. The data collected and analyzed
by Jerger et al. [96] were used. C-T ratio reliabilities were obtained by computing in-
traclass correlation coefficients (ICCs) [85], and the ICCs were compared as described

by Donner and Eliasziw [87]. The methods used here were discussed in Section 1.4.

2.3.2 Subjects

Twelve subjects, six women and six men, with no history of drug or alcohol
abuse or a family history of neurologic or psychiatric disorder, were studied. Subjects
were between 23 and 29 years of age, were free of medication at the time of the study,

gave informed consent, and were paid for their participation.

2.3.3 Recording Methods

Subjects were relaxed, awake, and seated upright in a quiet room during
the recording sessions. Recordings were made using 14 tin EEG electrodes in an

electrode cap (Electro-Cap International, Eaton, OH) and referenced to a tin electrode
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clipped to the left ear. The electrode locations corresponded to the International 10-
20 System, and included Fz, Cz, Pz, Oz, Fpl, Fp2, F7, F8, T3, T4, C3, C4, T5, and
T6. These electrode locations are shown in Figure 2.1. Vertical eye movements were
monitored using gold electrodes above and below the right eye, and horizontal eye
movements were monitored using electrodes placed at the lateral canthi. Impedances
for cap electrodes were lowered using electrode gel (Electro-Cap International), and
Grass EC2 Electrode Cream was used for the reference and electrooculogram (EOG)
leads. Two kinds of electrode pastes were used because the Electro-Cap gel was too
thin for use in the cup electrodes or ear clip, and the Grass cream was too thick for
use in the electrocap. Although the differences in ion concentration in the two pastes
can cause a very slowly varying potential difference, this electrical artifact should be
filtered out by our analog filtering. All impedances were below 5000 ohms and signals
were amplified 50,000 times by a Grass Model 12 Neurodata Acquisition System
with analog filters at 0.1 and 1000 Hz. ERPSYSTEM Software (Neurobehavioral
Laboratory Software, San Rafael, CA) was used to control stimulus presentation and
data acquisition through an Analog Devices RTI 800-815/F laboratory interface card
on a 20 MHz Intel 80386-based personal computer. Data were sampled at 2000 Hz
and averaged for 250 ms beginning 50 ms prior to each click, for a total of 500 ms
of data for each pair of clicks. Trials, consisting of pairs of clicks, were rejected if
activity exceeded + 70 uV on either eye-movement channel. Note that given the 2000
Hz sampling rate, the low-pass filter cutoff used in this study is less than ideal, and

subsequent studies have utilized a 300 Hz low-pass filter cutoff.

2.3.4 Auditory Stimulation

Binaural clicks were produced by square pulses of 0.05 ms duration, which
were generated by the Analog-Devices D/A converter, then passed though a Hewlett-
Packard 350D Attenuator, amplified by a Pioneer SX-2300 stereo receiver/amplifier,
and delivered to the subject over Realistic NOVA 20 headphones (Tandy Corporation,
Houston, TX). In the original experiment [96], a selective attention paradigm using

four combinations of clicks at two different intensities was designed. The experiment
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Figure 2.1: Electrode locations used for P50 study.

was conducted with the subject required to perform a task requiring attention to
either the first or second click, as conveyed by the experimental instructions. Each
of these two tasks was repeated on three different occasions on non-consecutive days
by each subject. Jerger and colleagues [96] showed that the P50 was unaffected by
the task, so for the purpose of this analysis (the Jerger data was analyzed in this
chapter), all six runs (2 tasks x 3 replications) are considered replications. As in [96],
only data from the high-intensity paired clicks (which had by far the largest number
of trials) is examined. The high-intensity clicks were just over 76 dB above subject
threshold, were separated by 500 ms, with the intertrial interval varying between 7

and 8 sec. Between 110 and 120 artifact-free trials were recorded during each run.

2.3.5 EP Waveform Analysis-Peak Picking

The average EPs were digitally bandpass filtered between 10 and 50 Hz
(half amplitude cutoff frequencies). Because the dominant frequency constituents of

the middle latency response range from 30 to 50 Hz [97] and the dominant frequency
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Figure 2.2: Frequency response of the 10-50 Hz digital bandpass filter.

constituents of the auditory N100/P200 are below 10 Hz, the digital filtering removed
the majority of the auditory N100, P200, and 60 Hz noise, and allowed us to analyze
the remaining P50 response (see [96] for a description of the filter construction).
Figure 2.3.5 shows the frequency response of the digital bandpass filter.

P50 amplitude at the vertex electrode was measured relative to the preceding
peak of negative polarity. The peak-picking algorithm of ERPSYSTEM was used
to choose the peaks, and the peaks chosen were then verified with the help of an
experienced rater (Christie Biggins). The peaks were chosen as the most positive
(or negative) voltage value within a specific time range after the stimulus. The time
window for the negativity preceding P50 was 30-50 ms, and the window for P50
was 40-80 ms. In no case did the algorithm choose a P50 that preceded the N40.
In cases where the auditory P30 overlapped the P50 such that no clear N40 could
be identified, the P50 amplitude was measured to the prestimulus baseline for the
conditioning and testing stimuli within that pair. The C-T ratio was computed by
dividing the amplitude of the testing response by the amplitude of the conditioning

response.
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2.3.6 EP Waveform Analysis-Dipole Modeling

A simple dipole model was simultaneously fit to both the conditioning and
testing responses for each replication of each subject (i.e., 72 dipole localizations were
performed, 12 subjects x 6 replications). The head was assumed to be a sphere of
homogeneous conductivity (i.e., the differing conductivities of the skull, scalp, and
brain were not considered). The P50 generator was assumed to be a single, point
dipole with fixed location and orientation throughout its time of activation. The
dipole activity over time was modeled as a decaying sinusoid with a fixed latency
of onset in response to both clicks and with two (1 replication x 2 clicks) click-
specific amplitude parameters [10]. We did not let latency differ in response to the
conditioning and testing clicks, as previous analysis of these data (using peak picking)
indicated no such latency differences [96]. The dipole model for the scalp recorded

potential at electrode k at time ¢ was:

Vi, = dpefu(0, ) for e = 1,2 (2.2)

where
P = asin[-z-;(t — 7)]exp[-B(t — 7)] (2.3)

and where d° is the amplitude parameter for experimental condition e, and fx(0, @)
is the weighting function as defined in Equations 1.1-1.9.

The nonlinear simplex method (see Section 1.3.3 and [74, 66]) was used to
estimate the dipole location, orientation, and decaying sinusoid parameters. This
optimization algorithm is sensitive to starting values of the parameters, and when it
is unsuccessful, either does not converge, or converges to a local minima rather than
the absolute minima or best solution. This is a limitation of the simplex method, and
although convergence was monitored, no attempt was made to verify that simplex
converged to the global minimum in this experiment.

The DCM was applied to data within a time window to contain both the
ascending and descending aspects of the P50 peak at the vertex. The starting point
for the window over subjects ranged from 35-46 ms, and the window width ranged

between 27-45 ms. In general, the vertex P50 within the window resembled one
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half period of a sinusoid. The starting parameter for the wavelength of the decaying
sinusoid function was set to twice the window width and the starting delay parameter
was set to the zero crossing of the vertex potential relative to the onset of the window.
The starting parameters were set to 0.0002 for sinusoidal decay, 3 (arbitrary units) for
overall dipole amplitude, and 1 for each click-specific amplitude parameter (indicating
no difference in P50 amplitude for the two clicks). The starting dipole location was
the center of the head, and the starting dipole orientation was toward the nasion.
In addition to fitting a dipole to each replication separately, the DCM was
used to fit a dipole over all six replications of each subject simultaneously (i.e., 12
dipole localizations were performed). As with the previous model, click-specific am-
plitude parameters were fit to describe the P50 amplitude differences (i.e., 12 click-
specific amplitude parameters were fit, 6 replications x 2 clicks). This model has
the advantage of constraining the dipole location to be the same within a subject
across replications. The dipole model is the same as in Equation 2.2, except that

e=1,...,12.

2.3.7 EP Waveform Analysis-Decaying Sinusoid Modeling

As discussed in the introduction, if dipole modeling improved the C-T ratio
reliability, the improvement may be due to a combination of: (1) pooling the noise
from the conditioning and testing responses, (2) increasing the SNR for the condi-
tioning and testing amplitude measures via modeling of the topographic response as
an intracranial dipole source, and (3) chance. In order to determine the effect caused
by pooling of noise and simultaneously fitting both P50 responses, we fit a model that
pooled the noise while estimating the amplitude on the vertex channel alone, with-
out using multiple channels or intracranial dipole constraints. To accomplish this, a
decaying sinusoid was fit to the averaged and filtered EP data for the vertex elec-
trode. A time window around the P50 peak was chosen as described above, and the
conditioning and testing responses were fit simultaneously using the same nonlinear
simplex algorithm as for the DCM. A decaying sinusoid with separate conditioning

and testing amplitude parameters was fit for each run of each subject (72 analyses),
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and also to all six runs for each subject. The windows and time function starting
parameters were chosen as for the DCM above, and did not need to be adjusted for
any of the analyses. Asin the DCM analysis, the C-T ratio was computed by dividing
the amplitude parameter for the testing response by the amplitude parameter for the

conditioning response.

2.4 Results

The topography for the conditioning and testing responses to the auditory
click is shown in Figure 2.3. One P50 average for one subject is shown. Clear separa-
tion of the P50 and P30 peaks can be seen in the vertex, C3, and C4 recordings. The
remaining electrode sites show that the amplitude of the P50 is decreased at the sur-
rounding electrodes, and a reversal of potential is seen at the lateral electrodes. This
topographical distribution of potential is consistent with a dipole model of the P50
generator. All but one subject showed comparable potential topography. Figure 2.4
shows the conditioning and testing responses to the auditory click of a representative
average of this subject. On the vertex recordings displayed on the left of Figure 2.4,
P50 can be identified according to the peak picking rules; however, the remaining
electrodes do not show a potential topography consistent with a P50 dipole.

Peak Picking: As noted above, according to our scoring rules, a P50 at the
vertex electrode could be identified for all recordings. For three subjects the negativity
preceding P50 was obscured by P30 on one or more of the six replications. For these
data, P50 amplitude could only be measured relative to the prestimulus baseline. The
C-T ratios derived from peak picking ranged from 0.01 to 1.66, with a mean of 0.53
and SD of 0.32. The ICC computed across all 6 replications was r = 0.27. If the
subject displayed in Figure 2.4 is deleted from the computations, the ICC becomes
0.37.

Dipole Components Modeling: DCM was first independently applied to 6
replications for each subject. Although the simplex procedure always yielded an esti-
mated dipole, this dipole did not always model what was apparently the P50 response

at the vertex. An example of where the dipole modeling worked well is presented in
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Figure 2.3: P50 Response to the Conditioning-Testing Paradigm
The topography of the P50 response for a representative subject is displayed for both
the conditioning and testing stimuli. The responses measured at the vertex (Cz)
(on which peak picking is usually performed) is shown at the top left. The testing
response has similar topography to that of the conditioning response and is suppressed
at most electrode sites. All but one subject had a similar P50 topography. Markers
are displyed at 50 ms poststimulus.
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Figure 2.4: P50 Response to the Conditioning-Testing Paradigm: Excluded Subject
The topography of the P50 responses is displayed for the one subject whose topog-
raphy was dissimilar from that of the remaining subjects. Although P50 can be
identified at Cz according to our peak picking rules (see graph at left), the topogra-
phy shown at the right does not follow a typical P50 distribution, and dipole modeling
was unsuccessful for this subject. Markers are at 50 ms poststimulus.
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Figure 2.5. Note that the topography of the P50 response is modeled well by a single
dipole; for contrast, compare the topography in Figure 2.4. For two subjects, there
was significant activity in the analysis window at the F7 and F8 electrode sites such
that the simplex algorithm primarily fit the activity at those electrode sites rather
than at Cz. For these subjects, the F7 and F8 electrode sites were removed and the
DCM was applied to the data from the remaining 12 electrode sites, which resulted
in good fitting of the vertex P50. To determine whether the activity at F7 and F8
affected all the dipole fits, we redid them all with F7 and F8 removed. For three ad-
ditional subjects, there was relatively poor fitting at Cz and surrounding electrodes
because the simplex algorithm was drawn toward fitting earlier, but temporally over-
lapping higher amplitude activity at lateral electrode sites. Adjusting the analysis
window to de-emphasize this earlier lateral activity resulted in much improved dipole
fits at Cz. For one subject, the one displayed in Figure 2.4, nothing we did enabled us
to model the activity at the vertex—this subject was removed from the dipole analysis.
The C-T ratios were computed from the DCM results of 11 subjects by dividing the
click 2 amplitude parameter by the click 1 amplitude parameter.

Using all 14 electrodes in the DCM, the proportion of variance accounted
for by DCM ranged from 29% to 86% (mean + SD, 58% =+ 12%), yielding C-T ratios
that ranged from 0.00 to 1.59 (0.44 £ 0.30). The ICC was 0.57, significantly larger
than that obtained from peak picking of all 12 subjects (p < 0.009, comparing ICCs
of 0.57 and 0.27). The difference between the ICC obtained from dipole modeling
and the ICC obtained from peak picking of the 11 subjects for which DCM was
satisfactory nearly reached significance (p < 0.06, comparing ICCs of 0.57 and 0.37).
Eliminating F7 and F8 from the analysis, DCM accounted for between 36% and 89%
of the variance (64% + 12%), yielding C-T ratios that ranged from 0.00 to 1.94
(0.46 £+ 0.36). This yielded an ICC of 0.63. This ICC was significantly greater than
that obtained by peak picking for either 12 or 11 subjects (p < 0.002 and p < 0.02,
respectively).

When DCM was applied simultaneously to all six runs for each subject, the
resulting C-T ratios and ICCs were almost identical to those obtained when each run

was fit separately.
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Figure 2.5: Dipole Modeling of P50 Response
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The measured and fitted P50 responses to the conditioning and testing clicks for
the same subject shown in Figure 2.3 are shown here. The best fitting dipole well
describes the amplitude at Cz and across the head for both the conditioning and
testing response.
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Modeling of Vertex Data Using a Decaying Sinusoid: When a decaying
sinusoid was fit to each run separately, resulting C-T ratios ranged from 0.02 to

1.04 (0.30 £ 0.20), with an ICC of 0.31. When all 6 replications for each subject were

fit simultaneously, the results were almost identical.

2.5 Discussion

The auditory P50 response recorded using a conditioning-testing paradigm
was modeled using a relatively simple dipole components model. This modeling re-
sulted in a substantial and statistically significant increase in the reliability of the
derived C-T ratio measure of P50 suppression in comparison to the C-T ratio mea-
sured by peak picking on vertex recordings. This result is potentially very important.
It provides promise that P50 suppression can be measured with high enough reliabil-
ity to be useful for characterizing sensory gating in individual subjects and for use
in longitudinal studies examining the association between sensory gating and clinical
variables.

It is important to emphasize that the results reported are not general for
all dipole modeling algorithms, but are specific to the Dipole Components Model.
Other dipole modeling procedures [1, 98] are not appropriate for this study, as they
model each evoked potential separately and do not pool noise estimates across mul-
tiple event-related potential (ERP) recordings. Moreover, the application of other
dipole modeling procedures to this data set is not straightforward. In the case of the
instantaneous state dipole modeling approach [1], in which a dipole is fit to a single
time point, the first question that must be answered is to which time point should
the dipole be fitted? The simple answer is to use peak picking to choose the P50
peaks for both responses (this latency determination involves two sources of noise, as
previously discussed), then to fit a dipole to each response (two more independent
measurements, leading to two additional sources of noise). Scherg’s approach [63]
does not simplify matters either. Because BESA (Brain Electrical Source Analysis,
Neuro-Scan, Inc) cannot fit a single dipole to the conditioning and testing responses

simultaneously, the conditioning and testing responses would be modeled separately
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(two sources of noise). In addition, as BESA does not use a parametric form for
the dipole magnitude function, the dipole magnitude cannot be described by a sin-
gle parameter, and the dipole magnitude function for the two responses may differ
greatly. The C-T ratio is computed by dividing the testing response amplitude by
the conditioning response amplitude, so in order to use Scherg’s dipole magnitude, a
single point of the magnitude function must be chosen to represent the P50 generator
magnitude. How will this point be chosen? Again, the simple answer is to peak
pick on the dipole magnitude function. Because the magnitude functions for the two
responses are likely to be different, they must be peak picked separately, introducing
two more sources of noise. In summary, although dipole modeling approaches other
than the DCM are promising and their use of topographic information may lead to
improved amplitude estimates, they do not address the issue of independent noise
measurement and are therefore not appropriate for the C-T ratio reliability problem.

The range of C-T ratios obtained in this study using peak picking is wide,
consistent with other studies [23, 90]. The range of C-T ratios obtained using dipole
modeling was also wide, but the increased ICC indicates that the variability of C-T
ratios within subjects has decreased relative to the variability of C-T ratios between
subjects, and the wide range of dipole modeling C-T ratios is explained by differ-
ences between subjects. Dipole modeling provides a more stable C-T ratio within
individuals.

Standard peak picking measures P50 amplitude relative to the preceding
N40 component or other surrounding activity, and thus reflects variability and noise
of both the P50 and the other activity. In contrast, DCM, as applied in this work,
only models the P50 component. To determine whether this was a significant fac-
tor in the results reported here, the peak picking was redone versus a prestimulus
baseline. The results were not appreciably affected. Note, however, that even this
peak measurement method does not get away from the problem of confounding P50
activity with other (i.e., prestimulus) activity. Such is the reality of referential EEG
recordings.

These results also provide some data on the best montage to use for dipole

modeling of the P50 response. It is well known that EMG artifact from the temporalis,
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frontalis, and posterior cervical muscles can contaminate middle latency auditory re-
sponses [99]. Although EMG artifact is relatively small at the vertex, recordings from
electrodes that overlie the offending muscles are more susceptible to EMG artifact. In
particular, this study observed that eliminating the F7 and F8 recordings increased
the goodness of fit and the reliability of the dipole modeling.

Any model improvements could be tested using the methodology (i.e., test-
ing model improvements by comparing the ICC between analyses using different mod-
els) of this chapter. It is important to note that although consistency is a cornerstone
of usefulness, it does not prove validity. Of course, sometimes consistency can re-
sult from a methodological artifact. Such is not the case in the paradigm presented
here where the consistency measure we used, the intraclass correlation coefficient,
compares within and between subject variance of the C-T ratio. These two sources
of variability could not have affected the DCM results differentially due to artifact
because within and between subject variation was treated identically, with each rep-
etition of P50 data analyzed independently.

The C-T ratio reliabilities computed from click-specific amplitude parame-
ters obtained when all six runs were simultaneously included in the DCM were com-
parable to those obtained when the DCM was fit to each run separately. This result
was surprising, since fitting over more replications would hypothetically increase the
effective SNR, especially for estimation of dipole location and orientation, resulting
in a more accurate modeling of the data. One possible explanation for this result may
be that the electrode caps were not placed in exactly the same manner across days,
introducing noise into the DCM.

These findings raise the possibility that P50 suppression can now be uti-
lized to study individual subjects. Several studies have shown that the P50 C-T
ratio is affected by diseases and drugs. For example, the C-T ratio is increased in
schizophrenics compared to nonpsychotic controls [90, 100, 20, 91], in cocaine addicts
compared to both normal controls and chronic alcoholics [101], and with normaliza-
tion of schizophrenic P50 with nicotine administration [102, 103]. In all these studies,
however, P50 suppression was examined only via group comparisons. If dipole mod-

eling increases the reliability of the C-T ratio in these clinical populations as we have
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shown that it does in normals, it will then be possible to relate the C-T ratio to
clinical state variables. This would increase the power of studies of the effects of
neuroleptics (or nicotine) on schizophrenic subjects and would make possible the ex-
amination of the possible modulating effects of clinical status variables. In studies
of cocaine addicts, it would also facilitate longitudinal studies of the effect of various
lengths of abstinence on P50 suppression. Before this promise can be realized, it is
necessary to determine the reliability of P50 suppression in the appropriate clinical
populations. It is possible that the underlying “true” P50 suppression phenomenon
is less (or more) stable in such clinical populations than it is in normals. This is an
empirical question and can only be resolved by analyzing replicate data in such pop-
ulations using the DCM. This step is necessary to advance the understanding of the
potential and limitation of the P50 suppression measure in those clinical populations.

It has yet to be explained how dipole modeling improved the reliability
of the C-T ratio. As mentioned above, fitting across several runs did not lead to
further improvements in C-T ratio reliability. The control experiment, during which
a decaying sinusoid was fit to two responses simultaneously using a single channel only,
did not lead to improved C-T ratio reliability, either. This seems to suggest that the
dipole model and the use of multiple channels of data led to the improvement in C-T
ratio reliability. If this is true, then the reliability of the conditioning and testing
amplitudes should also be increased over the peak picking measures.

The reliabilities of the conditioning and testing peak amplitudes as measured
by peak picking on 12 subjects were r = 0.84 and r = 0.50, respectively. The
reliabilities of the conditioning and testing peak amplitudes as measured by dipole
modeling were r = 0.52 and r = 0.69, respectively. These differences in reliability
between peak picking and dipole modeling for both the conditioning and testing
amplitudes were not significant, which implies that the dipole model and the use of
multiple channels led to no improvement.

The observation that dipole modeling improved ratio reliability but not am-
plitude reliability despite using simplified head and time-varying magnitude functions
leads to another hypothesis. Could it be that the misspecification of the dipole model

(e.g., use of a homogeneous sphere head model, use of a decaying sinusoid magnitude
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function, modeling a single generator) affects the estimation and variability of ampli-
tude parameters, but has little effect of the ratios (i.e., does model misspecification
cancel in a derived ratio measure?).

This paradox, that dipole modeling leads to improved C-T ratio reliability
but not to improved conditioning and testing amplitudes, bears further investigation.
The hypothesis that model misspecification cancels in a derived ratio measure must
also be investigated. These questions will be addressed in Chapter 3.

In summary, this study shows that the reliability of P50 suppression can be
made substantially greater than previously reported. Furthermore, this demonstrates
that the Dipole Components Model can lead to increased reliability of evoked potential
amplitude ratios. These findings have potentially very important implications both
for further P50 studies in clinical populations and for future applications of Dipole

Component Modeling.
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Chapter 3

w3, et

[ [ ] [ ::
Theoretical considerations R
3.1 Introduction e

The previous chapter showed that dipole modeling led to more reliable esti-
mation of amplitude ratios than did peak picking, but failed to lead to more reliable AR
amplitude measurements. Research by Raz, Cardenas, and Fletcher helped to shed P
light on this apparent paradox. el
Raz, Cardenas, and Fletcher [65] extended the frequency domain dipole T

model to include estimation of covariate effects, as described in Section 1.3.4. Recall
that in the frequency domain model, the time-varying dipole magnitude is estimated
by Fourier coefficients. They tested the efficacy of the model by simulating evoked
potential data designed to resemble auditory P50 as recorded in a conditioning-testing
paradigm. In this paradigm, the EP in response to the second of paired clicks is
reduced in amplitude relative to the response to the first click. The simulated noise
was averaged spontaneous EEG and the SNR was varied to construct data sets with
low and high SNRs. Simulated data were generated using two head models: (1) a
spherical model of homogeneous conductivity, and (2) a realistic skull shape model
of homogeneous conductivity. Data were generated using either one dipole or two
bilateral, synchronously active dipoles. The estimation procedure always assumed a
single dipole generator in a spherical head.

The results demonstrated that the estimators of the covariate effects on
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amplitude (which are essentially ratio estimates for the frequency domain model, as
shown in Section 1.3.4, Equation 1.22) and latency performed well even when the
method, which assumed a spherical head, was applied to simulated data generated
from a realistic head shape. Additionally, the estimators performed well even when
the data were generated by two dipoles but were fit with a single dipole. As expected,
the location and orientation estimators were essentially unbiased when applied to data
generated in the spherical model, and biased when applied to data generated in the
realistic head shape model.

These results led me to suspect that the errors (i.e., bias) in the estimates of
the covariate effect on amplitude (estimated using dipole modeling) caused by model
misspecification “canceled” when a ratio was computed. These suspicions led to me
to confirm the empirical results theoretically, as described in this chapter.

I also hypothesized that model misspecification led to more variable am-
plitude estimates as compared to ratios, which in turn would lead to less reliable
amplitude estimates (as measured by the ICC) as compared to ratios. I will examine
this hypothesis later in this chapter.

I am interested in determining errors due to model misspecification when
dipole modeling (via minimization of a least squares criterion, such as the scaled
residual sum of squares, defined in Section 1.3.3) is used to estimate covariate effects
on amplitude and the derived amplitude ratio. I shall treat the parameters represent-
ing the covariate effects on amplitude (hereafter called “amplitude parameters”, for
simplicity) as linear variables in the problem, and dipole location, orientation, and
time-varying dipole magnitude function are treated as nonlinear variables (this “split-
ting” of the problem into linear and nonlinear parts was discussed in Sections 1.3.2
and 1.3.3). I will assume that some nonlinear optimization procedure has been used
to estimate all variables except the amplitude parameters. The problem can then
be expressed in matrix notation as an inconsistent set of linear equations and the
amplitude parameters can be easily estimated. Using this method, I will show that
although the amplitude parameters are estimated with error in the presence of model
misspecification (i.e., the amplitude parameters are biased), derived amplitude ra-

tios (i.e., the ratio of the estimated amplitude parameters) are unbiased under some
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types of model misspecification (e.g., head model and time-varying magnitude func-
tion misspecification) for three special cases. These cases are the single dipole case,
the case of multiple dipoles when all dipoles have the same magnitude, and the case
of multiple dipoles when all dipoles are changing in the same way across replications
(i.e., all amplitude ratios are equal). In addition, when all amplitudes are equal,
misspecification of the number of dipoles will not affect amplitude ratio estimation.

Examples of evoked potentials generated by a single component include wave

I of the auditory brainstem response and somatosensory N20. Physiologically, multi- .;uuu_
ple dipoles with equal amplitude ratios could occur in response to auditory stimula- -:‘.l.,
tion. The auditory system is bilateral rostral to the superior olive, and in the case of .;“:T
unilateral stimulation, the two hemispheres are probably not activated equally (i.e., *'_::‘
the generators will not have the same amplitude). However, any adaptation (e.g., Ee
such as the “gating” of the testing auditory P50 response) would probably occur neT
equally in both hemispheres. In the case of bilateral stimulation, equal amplitude .
and equal amplitude ratios are likely. J IR
Notation: I use bold-faced letters to indicate vectors, bold-faced script letters P
to indicate matrices, and use normal-faced italic letters to indicate scalars. Unit e

vectors (vectors of length 1) are indicated by a”.

3.2 Proofs

3.2.1 Single time point, single dipole

Proposition 3.1 For the case of fitting a single dipole to a single time point with
head model misspecification, the amplitude parameter estimates are biased, and the

ratio of amplitude parameter estimates is unbiased.
Proof 3.1

Let

V3, = n x 1 vector of given surface potentials (generated by correct model,

no noise) at a single time point



58

V4 =n x 1 vector of fitted surface potentials at a single time point

where n is the number of measurement locations. Then let

V;t caqtg(oya ¢g)
Vi = d&°pf(6s,¢)

where g(8,,4,) is an n x 1 vector valued function which relates the given dipole
location 8, and orientation ¢, to the given noise-free potentials at the n measure-
ment locations on the surface. If the surface is a sphere of homogeneous conduc-
tivity, then the function g(@,,¢,) is the same as Equation 1.9, i.e. g(8,,¢,) =
(91(64,90,),9:(04,9,), ... ,g,,(Og,d)y))T. The scalar ¢® represents the true covariate

effect on amplitude and ¢; represents the common amplitude at time ¢ of the dipole:

generator. The vector f(64,¢,) is an n x 1 vector valued function which relates the
fitted dipole location @5 and orientation ¢, to the fitted potentials V¢,. I assume
that 8; and ¢, have already been estimated by a nonlinear optimization procedure,
and that f(64,¢;) has been computed. Furthermore, because of head model mis-
specification, g(8,,¢,) # f(6;,¢;) in general. The estimated covariate effect on
amplitude (i.e., the “amplitude parameter”) is a scalar and is represented by d*, and
p: represents the common amplitude time ¢ of the fitted generator. I am considering
the case of noise-free potentials.

For convenience, I can write:

g(oga¢g) = 9m
f(6s,¢;) = fm

> 0>

where g is the unit vector and gy, is the length of g(8,,¢,), and f is the unit vector
and f,, is the length of f(6,¢,). Therefore,

Vi = cqgmg

V4 = d*pifmf

Assuming I have measured V, and have some estimate of p; fmf, 1 am

interested in finding d* which minimizes the least squares error between V§, and V§,.
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I thus have a set of inconsistent equations of the form az = b, where a is p; fuf, =
is d*, and b is ¢®*q;gmg. From Strang [104] I know that the least squares solution of

az = b in one unknown is:
aTb

T =
aTa

(3.1)
Using this result to solve for d®, and recalling that for vectors aTb = a-b
(dot product), that a- b is a scalar, and that f - f = 1 (i.e., the dot product of a unit

vector with itself is 1), I can show

&= (Pefmf)T Cqgmi _ P frmgmf - & Pig S - &

 (pefu) RSk pfif-t AR
and d* # c¢® unless g, = fim, ¢ = pt, and g = f. Equation 3.2 shows that least

(3.2)

squares fitting with an incorrect model (§ # f and/or g # fn) will lead to errors
in the estimated amplitude parameter d°. In terms of dipole modeling of evoked
potentials, § # f when the shape of the volume conduction model used in fitting is
not the same as for the given data (for example, if the given data were generated by
a head and a sphere model was used for fitting). Even when the shape of the volume
conduction model used in fitting is the same as for given data, if the conductivities
of the volume conduction model used in fitting is not the same as for the true data,
gm # fm. If the nonlinear optimization method did not solve the nonlinear least
squares problem appropriately (i.e., converged to a local minimum), then even when
no model misspecification is present, g # f and gm # fm-

Now let us consider amplitude ratio estimates. Let V:, be a second set of
given potentials and Vf’“ be the fitted set of potentials at a single time point, described

as follows:
Vi = dagms
Vs’t = dbptfm?

The length or amplitude of the data vectors are described by the norm, and

the ratio of the norms of the vectors V3, and Vg, can be computed as follows:

IVell: Ve Ve (Jooddg g Joodd o
IVeells (/W3- VB \[odelerg & \[cbgtgz, <
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and the ratio of the norms of the vectors V4, and V¥, can also be computed:

| Viila _ yVie Vi Jdipaf £ yedntsn @ o
IVEle V- VS JaappzEf Jddps @ '

I can also show that @, the least squares solution to ar = b where a is

pefmf, z is d*, and b is c’qigmg, is

(Pefinf) Tt gigm _ Epegifmgmf - & _ PGt frngmf - B
(ptfmf)Tptfmf P?f,%f : p?f?%l

(3.5)

and then,
go  Cpafmomfg tfm; mf: 8
T Tl = 3 (36)
Pif3

Equation 3.6 shows that ratios derived from the amplitude parameter esti-
mates are preserved, even when fitting with an incorrect model, as long as the same
model (fm, pt, and f ) is used to fit both data sets, and both data sets are generated
by the same g,, and g.

It is worthwhile to note that amplitude ratios are preserved no matter what
fm and f are, as long as the same f,, and f are used to fit both data sets. This
means that the difference between the physical head model used for fitting and the
true head does not affect the amplitude ratios. Inspection of equations 3.2 and 3.5
clearly shows that the difference between d* and c* or d® and c¢® becomes larger as the
difference between g, and f, or § and f becomes larger. But the amplitude ratio
is preserved regardless of the differences between g,, and f,, or g and f. This also
shows that when fitting the amplitude parameters linearly, failure of the nonlinear
optimization method to converge to the global minimum (the global minimum is the
best estimate of 87 and ¢, which are subsequently used to compute f, and f ) will
not affect the amplitude ratios, since the values of f,, and f are not important and
cancel in the computation of d°/d".

When the amplitude parameters are not estimated linearly, f,, and f are
not guaranteed to cancel unless the global minimum is reached by the nonlinear op-

timization routine (i.e., the least squares fit is truly the best least squares fit). In
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other words, when a nonlinear optimization routine is used to estimate the ampli-
tude parameters, d* will not equal the right side of Equation 3.2 (the solution found
using linear estimation), and d® will not equal the right side of Equation 3.5 (the
solution found using linear estimation) unless the global minimum is reached. The
effects of head model misspecification only cancel when d* and d® are the same as in
Equations 3.2 and 3.5.

Although the previous work assumed fitting at a single time point, I can

extend it to multiple time points, as follows.

3.2.2 Multiple time points, single dipole

Proposition 3.2 For the case of fitting a single dipole to multiple time points with
head model misspecification and time-varying dipole magnitude function misspecifi-
cation, the amplitude parameter estimates are biased, but the derived ratio of the

amplitude parameter estimates is unbiased.
Proof 3.2

Let
V; = n x u matrix of “true” potentials
V§ = n X u matrix of fitted potentials
V¢ = n x u matrix of unscaled fitted potentials
where n is number of measurement locations and u is number of time points, and let

t=0,...,u. I denote the following:

Vg = column ¢ of matrix V;
Vi, = column t of matrix V§
V3, = column t of matrix V;

where

Ve = Ca(x)g(0,,9,)
Ve = p(¥)f(65,4))
o = d°V,
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and where ¢;(x) is the true time-varying dipole magnitude, which describes the shape

of the dipole activity over time ¢ as a function of the parameter vector x. The fitted

time-varying dipole magnitude is p;(%) is a function of the fitted parameter vector ¢,

and in general, ¢:(x) # p:(¥) because of model misspecification (both misspecification

of the head model and time-varying dipole magnitude function). For example, the

dipole components model [10] used in Chapter 2 used a decaying sinusoid for p,(%),
such that ¢, = a, ¥ = A, ¥3 = 7, and ¥4 = B. It is unlikely that the true dipole

magnitude function ¢:(x) is a decaying sinusoid .

For simplicity, let

3:(x) qt
p(¥) = p

I can then write:

Vo c*qigm§
V:t = ptfmf
o = d*V,

Let V7, V7, and V§ be nu x 1 vectors, where

Voo Voo
a Val a Vgl a a
ves| 0| ves| | ve=d
L V;“ d L vg“ J

v
Va

a
L vou

(3.7)

As before, assuming I have been given V} and have some estimate of V3, I

am interested in finding d* which minimizes the least squares error between V¢ and
g g

V5. I again have a set of inconsistent equations of the form az = b, where a is V2,

z is d*, and b is V. Using equation 3.1, I find:

a’b = Capoqofmgmf g+ caplqlfmgmf g4+ capuqufmgm? g

A sl
L Rt
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- e
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= cafmgm? ¥ (Zptqt)

t=0
aTa = /24 pif2 f oot pis?
u
_p (Ep?)
t=0

aTb ¢ frmgnf - §(Tiopeq)
& = — mJm t=0 Tt 3.8
T JA(oerd) (38)

and therefore d* # c* unless p; = q; Vt, f - § = 1 (implying that f = &), and gm = fim.

Equation 3.8 shows that least squares fitting with an incorrect time-varying amplitude
function (i.e., when p; # ¢;), even if the correct head model is used, leads to an error
in the amplitude parameter estimate d°.

Now I will consider the derived amplitude ratio estimate. Let V_f; be a second
set of given potentials measured over time and V and V} be the unscaled fitted and

fitted potentials to V_z, described as follows:

Vi, Vi Voo

b b b

Vb — ‘,.gl Vb — .v.'ol V? — db \,.ol
Vi Ve, Ve

where

Vi, = Sqgng
Vzt = ptfmf

The ratio of the norms of the vectors V2 to Vz and V% to Vf’, can be

computed as follows:

Vil _ Vi Ve

AN, 7
Vercrqdad + ctergigl + - + c*c*g2 gk,
Vetada2, + chebgig? + -+ + cbbglg?,
\/C"Cagyzn Yo 4l
Vg2 Tio ¢?

R S ]

Soe e

e
-t

LRk 184

- 2w - 0

[ENR JRe
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Vil _ V7~ V7
LI
Vil VeV

VA dpafE + dedep 3 + - + dodeplf}

VAR 2 + ddpifL + - + g f2

Vdede f2 v, p?
Vdd 2 o i
da fm ;‘=0 p?
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I can also show that d®, the least squares solution to az = b where a is V?,

zisd, and bis V} is

&= & frmgmf - & (Tt Prge)

c® fmgmf-8(T ot peas
da —_ /’2" Z::Op?

T ek () &
fyzn(z;o Pfy

Then,

a

(9}

(3.9)

Equation 3.9 shows that the amplitude ratio is correctly estimated, even

when fitting with an incorrect head model and/or an incorrect time-varying dipole

magnitude function, as long as the same model (f, and f ) and same amplitude

waveshape (p;) is used to fit both data sets, and both data sets are generated by the

same gm,, g, and ¢;. The assumption that both data sets are generated by the same

gm, § and ¢; is reasonable for subcortical and short-latency cortical EPs, because they

are “hard-wired” responses, as discussed in Chapter 1.
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I have shown so far that amplitude ratios are estimated without bias in the
face of head model misspecification and misspecification of the time-varying dipole
magnitude function. I am also interested in the effect of misspecification of the number
of dipoles used in fitting, particularly the case when two generators are mistakenly

fit by a single dipole.

3.2.3 Misspecification of number of dipoles

I will assume that the two generators have the same amplitude, but I will not
assume that the two generators are synchronous (i.e., the generators can have different
“waveshapes”). This is a reasonable assumption when looking at early generators
(subcortical and short latency cortical) of potentials evoked by bilateral stimulation,
such as the auditory P50 evoked response. The bilateral generators should then have
similar amplitudes (but perhaps different waveshapes), that should change similarly

in response to different stimulation intensities or rates.

Proposition 3.3 For the case of fitting a misspecified number of dipoles to multiple
time points with head model and time-varying dipole magnitude function misspec-
ification, the amplitude parameter estimates are biased, but the ratio of amplitude
parameter estimates is unbiased, assuming that all true generators have the same

amplitude (within a data set) and amplitude ratio (computed across data sets).
Proof 3.3

Let
V; = n X u matrix of given potentials
V} = n X u matrix of fitted potentials
V¢ = n x u matrix of unscaled fitted potentials
where n is number of measurement locations and u is number of time points. Then

let

Vi = lau(x1)81(00,9,1) + q2:(x2)82(042, D,2)]
o = d'p(P)f(6,90/)
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where c*, d°, p;, and £(0, ¢ ) are defined as previously. The time-varying magnitude
of “true” generator 1 at time ¢ is ¢;; and is a function of ), and ¢z is the time-
varying magnitude of “true” generator 2 as a function of x, at time t. Note that
for synchronous generators, ¢;: = ¢2:. I do not not require equality of ¢;; and g,
however, and the two generators can have different waveforms. Let g;(841,¢,,) be
an n X 1 vector valued function that relates the true dipole location and orientation
(841 and ¢,,) of the first generator to the given noise-free potentials, and g3(8,2, ¢,;)
is an n x 1 vector valued function that relates the true dipole location and orientation
(842 and @,) of the second generator to the given noise-free potentials.

Using notation similar to that in the previous proofs, let

V;: = c“(qugmlél + ¢2t9m282)
V3 = pifmt
V;t = davot

I can also then define the nu x 1 vectors V3, V3, and V§$ as before:

[ Ve, Vi, R
Ve Ve Ve
Ve = .gl \,g — .ol V? — da .ol
| Vau | | Vou | | Vou |

I use equation 3.1 to solve for d*, and find

a’b = c*(poqiofmgmi181 - f + Pog20 fmgm282 - f) +---+
Ca(puqlufmgml él : ? + puq2ufmgm2g2 . i\‘)

- &fn [(gmlgl -fzptqu) + (gngz - fz:p,qm)]

t=0 t=0
u
a'a = f23 p}
t=0

a’b c* fm [(gmlﬁl Y, ptqlt) + (gngz e, Pt‘ht)]
aTa fL o p?

Equation 3.10 shows that d* # ¢* and that least squares fitting will lead to

d* =

(3.10)

errors in amplitude parameter estimates.
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Now I will consider amplitude ratio estimates. Let Vg be a second set of
given potentials and V% and V“} be the unscaled fitted and fitted potentials to Vg.
Let

Veo Vi Veo
b b b
-Vb — Vgl Vb - Vol Vg» — db vol
b b b
L Vgu § L VOU . L Vou J
where
Vg; = (qugmiB1 + G2t gm282)
Vgt = ptf mf
The ratio of the norms of the vectors V; to V: and V§ and V.'} can be easily
computed:

V5 ll2 JVEVE

Veret (921 Tico a2 + 20mi1gma&i82 Tieo qreda + 93 Tico 3:)
Ve (gha Tiso 63 + 20m19m28182 Tico Qiedae + 932 Yo 6
c* \/ It Lo @1t + 20m19m28182 Yimo q1eq2t + Gma Lo 95¢

cb \/ Im1 Lo Gt + 29m19m28182 Limo G1:92¢ + gz Yo I3
Ca
&

VVi- V3

VV5- VP

VEER+ PR+ + PR
VAP + ddipif2 + - + dbdp2 f2
Vdde f2 o Pt

V& f2 T ot

_ daf'm V ?:0 p?

dbfm V :‘=0 P?

I V§ Ilz

I'V5 Il2
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da
db

I can also show that d® is

_ a’b _ S fm [(gmlgl 3 Por ptqu) + (gmzéz £, Pt(hz)]

d 3.11
aTa fZ; ?:0 p? ( )
Then I compute d°/d® as
¢ fm[(gm181 £, chu)+(gm2§2'? Yoo P:Qm)]
e B e ??
db fm [(gmlgx £330, peaie)+(9mag2 -f'ZZ;o P:Qm)]
j'2" :‘=o P?
ca
= _ 3.12
c,, (.12

Equation 3.12 shows that amplitude ratios are estimated without bias when
the number of dipoles is misspecified and the same f , fm, and p; are used to fit both
sets of given potentials. It is important to note that the two given dipole generators
do not need to be bilaterally symmetric, and the two dipoles do not need to have the
same time-varying dipole magnitude (i.e., ¢;: does not have to equal g;), although
they must be scaled the same way (i.e., both dipoles must be scaled by ¢* and c).
When all true generators have the same amplitude, it is only important to use the
same model (f, f.., and p,) when fitting the two sets of data for unbiased ratio
estimation.

The preceding work seems to suggest that amplitude ratios are always pre-
served during dipole modeling, and may cause one to conclude that dipole modeling
can correctly estimate amplitude ratios for multiple dipole problems despite model
misspecification. Unfortunately, amplitude ratios are preserved only in the special
cases such as in Sections 3.2.1-3.2.3 (i.e., single dipole active, or two dipoles with the
same scaling). Dipole modeling is not a “magic” method for accurately estimating
generator amplitude ratios. In the next section I will show that, in general, nei-
ther amplitude parameter estimates nor amplitude ratio estimates will be unbiased
in the face of model misspecification, and will also show another special case in which

amplitude ratios are unbiased.

......
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3.2.4 Multiple dipoles

Proposition 3.4 For the case of fitting multiple dipoles to multiple time points with
head model and time-varying dipole magnitude function misspecification, both ampli-
tude parameter and amplitude ratio estimates are biased, unless all dipoles have the

same amplitude ratio (computed across data sets).
Proof 3.4

For an inconsistent set of equations of the form Ax = b, the least squares solution is »
[104]; e
x = (ATA)'ATb (3.13) Phe

and for the case of dipole modeling T

x = vector of dipole amplitudes
b = vector of given potentials
A = map from dipole amplitude to potentials at the : : A
measurement locations - ”' :
(ATA)7'AT = map from potentials to dipoles amplitudes A
where A € R"X!) x € R/, and b € R™. As previously defined, n is the number of
measurement locations, u is the number of time points, and I now define [ to be the

number of dipoles.

Using the notation developed in previous proofs, I can define A, x, and b.
Let

V, = V5, +V, +---+V,

Vi = Vi +V, +--+ Vg
where V] and Vj} are n x u matrices of given and fitted potentials. Letting j index
dipoles and ¢ index time points, I can write (V 7 and t),

Vot = €45t(x;)8i(04,t, ¢y,)

V;’,t = d?Pjt('/’j)fj(of,tad’f,)

"YeS. A
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or, in the shorthand notation used previously,

Vi = €¢tgm;8;
Voo = Pitfmsf;
Vie = diV,,

And now ) ]
Voo Voo Voo
A= | Vo :
_Vglu ng_
dtll V;10 + ngo +-+ V;lo
X = d; b= V;11+V;21.+.”+v;(1
| df | | Vaiut Vout-+ Vg, |

The map from potentials to dipole amplitudes, (ATA)~1AT is an I x nu
matrix, and I will denote the rows of this matrix by yJT, where y; are nu x 1 vectors,

as shown: ,

T
yi
T

y2 |

P
| ¥ ]

Using Equation 3.13, I can find that d? is just yTb, d3 is yIb, and so on for

(ATA)—IAT —

all d2, as shown:

u u u

4} = gmi {81 Y; ) e+ gmaciga-Yi) qut ...+ gmci@-y; Y _qe  (3.14)

t=0 t=0 t=0
It can be easily shown that for a second set of data, that differs from the
first data set by only the dipole amplitudes of each generator, that

u u u
d'} = gmlctl,gl ‘Y 2 q1e + gmzcgéz Y E 2t + ...+ gmwfél 'Y E qut
t=0

t=0 t=0
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Equation 3.14 shows that in general the amplitude parameters are biased
when estimated using dipole modeling via least squares fitting because d} # c}, and
instead d} is some combination of all the true dipole amplitudes. This is clear by

simply rewriting Equation 3.14 as
d; =ciritcr+...+czi+... +cfz (3.15)

where z; = gnigi - ¥; 210 ¢i- From Equation 3.15, it is obvious that d} # ¢f in
general.

The question that remains is whether or not the amplitude ratio for each
individual dipole is preserved. The amplitude ratio of the individual “true” dipoles
is simply the ratio of the norms of each dipole contribution to the potential map, the
V;J,. The amplitude ratio of the individual fitted dipoles is the ratio of the norms of

VY ,. These are easily shown to be:
J

AN
Vil —
| Viellz a4
Vel
For simplicity, I will again assume that z; = gmigi - ¥; > t=o ¢it- | can then
show
a _ 9B Yi Yo Qe+ 9maCiB2 - ¥i Lo ot t - + GmiC 81" Y5 dimo Qi
d? Im1Ci81 - Yi Cieo 1t + Im2C82 - Yi Limo G2t + - - + ImiC&1 - ¥i Lio Qe

i+ gz + ...+l
Az + Bz + ...+
a

¢ (G- F)e+ (G —Fd)mt.. + (- FD)u
- ct cizy + Eza + ...+

Equation 3.16 shows that, in general, d? /dg equals c?/ cg’- plus a remainder

(3.16)

term. For simplicity, I can rewrite Equation 3.16 as

G _G . M
dg cg z4

(3.17)

where z,, and z; are defined as follows:

2 = (Ca C—;cb).’t +(a_c_.¢1!b a_c_.c;b
n = 1~ 5%)h0 ) 4,02)"?2"'---'*'(61 bcl)xl
G G 21

b b b
2y = qri+czT+...+qay
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From Equation 3.17 it is obvious that d?/d’ will equal c?/c? only when the
remainder term z,/z4 is equal to zero. One case where this will occur is when all

terms of z, equal 0, i.e. when

)1 =0

b
1
)z, =0

c
CJ
and these equations are easily solved for all z,: = 1,...,1, as follows:
c®
i by
(Cz - ?ci) =0
J
c®
a ] b
Ci —_— ’gci
J
a a
G _ S
b b
C; Cj

This shows that one special multiple dipole case where estimated amplitude

ratios will be unbiased is when all dipoles have the same amplitude ratio, as defined

below:
a a a
a_%_ . _4
b= b =
(51 C2 4]

I have established that estimated amplitude ratios are unbiased despite head
model (g; # f; and gm; # fm;) and time-varying dipole magnitude function misspec-
ification (g;: # pj:) using dipole modeling and least squares fitting in three special
cases. These cases are the single dipole case, the case of multiple dipoles with equal
amplitude, and the case of multiple dipoles when all dipoles amplitudes are changing
the same way (equal amplitude ratios for all dipoles across data sets). In addition,
when all dipoles have the same amplitude parameters (i.e., all dipoles are scaled by
¢® and c*), misspecification of the number of dipoles will not lead to biased amplitude

ratio estimation.
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3.2.5 Reliability

The above results are encouraging, and prove that dipole modeling gives
valid results under the special circumstances detailed previously. However, they do
not explain the findings of Cardenas, Gerson, and Fein [105], who found that ampli-
tude ratios estimated using dipole modeling were more reliable than the estimated
amplitudes, because the proofs in Sections 3.2.1-3.2.4 all assumed the absence of
noise. Therefore, the results of Sections 3.2.1-3.2.4 showed only the effect of model
misspecification on the bias of amplitude and amplitude ratio estimates, and did not
address the variance of amplitude and amplitude ratio estimates. In order to try to
explain the findings of Cardenas, Gerson, and Fein [105], I must first look at the
definition of reliability.

The reliability of a measure, denoted by r, is

2

r= 030+—b03, (3.18)
where o2 is the variance within a class and o2, is the variance between classes. For
the case of dipole modeling, o2, is the variance of repeated measures (amplitude or
amplitude ratio estimates) on the same subject. For the case of dipole modeling,
o2, is the variance of the measure (amplitude or amplitude ratio) across subjects.
Equation 3.18 shows that r approaches a perfect value of 1 as o2 approaches 0.
Therefore, r increases as o2, decreases.

The results of Cardenas, Gerson, and Fein [105] suggest that for the auditory
P50 evoked potential, the within class variance of dipole modeling amplitude ratios is
smaller than the within class variance of the amplitude parameters estimated using
dipole modeling. If I can show that the amplitude ratios have a smaller 2, than
amplitude parameters in general, then I can explain why dipole modeling improved
the reliability of the C-T ratio over peak picking, but did not improve the reliability
of either the C or T amplitudes over peak picking [105].

In order to examine this question, I must add noise to the model for the

given potentials. For simplicity, I will consider the case of one dipole at a single time

AT

-5
.'.l’
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point t. Let
Vo =cqagmg + e

where e, is an n x 1 vector of noise due to EEG and EMG artifact. For simplicity,
I will assume that ey ~ N(0,0?) V k, where k indexes electrodes, and that ey is
independent of e, which means that the noise between electrodes is uncorrelated.
This assumption may be valid for widely spaced electrode locations, but is clearly
violated for electrodes which are closely spaced. For example, muscle artifact will
contaminate all nearby electrodes, resulting in correlated EMG noise between the
affected electrodes. Because EMG is not volume conducted, electrodes relatively far
from the muscle will not be affected. The noise on the affected electrodes will thus
be nearly independent of the noise on the unaffected electrodes.

The presence of noise on V, will affect the nonlinear fit of the dipole location
and orientation, i.e., the noise will lead to a rougher and more complex multivariate
estimation surface with more local minima. The noise may even “shift” the global
minimum. Therefore, the (84, ;) found by fitting on noise-free potentials is gener-
ally not the same as f'(8%, ¢’) found by fitting on noisy potentials. I will model the
difference between the two fits as noise, i.e. f(85,¢;) — (0%, ") = ey, and then I

can write:
;i = da(fmf + ef)

where e/ is an n x 1 vector For simplicity, I will assume that e;; ~ N(0,0%) V k, where
k indexes electrodes, and that ey is independent of egi, which means that the noise
present on the given potentials is not correlated with the difference between the noise
free and noisy fits. This assumption is clearly violated, because the noise present on
the given potentials results in the noisy fit, and so the noise free and noisy fits cannot
be uncorrelated. For simplicity, I will also assume that ey is independent of ey,
which means that the noise between electrodes is uncorrelated. This assumption is
probably also violated because ey is not truly independent of ey, and because egy is

not truly independent of e, as discussed above. I use equation 3.1 to solve for d*,

-5 -

L e,



75

the amplitude parameter:

&= pidifmgmf - &+ CGignB - €s + pifuf e, + e, e (3.19)
PIfh 4+ 2pifmf -es +es-ef

Equation 3.19 shows that d° is a function of several random variables. I can
rewrite Equation 3.19 as follows, using Y's to denote random variables, and Xs to
denote the other variables.

X1+ X1+ X3Yo + Vs

d®
Xe+ XsYa+ Y

(3.20)

where X; is ¢*pii frngmf - &, X2 is *qigm, X3 i8 Pifm, X4 is p’f2, and X5 is 2p; fmf,
and where Y isg-e;, Y, isf'-ey, Yise;-e4, Y, isf-e;,and Y; is es - e;.

The distributions of the Y's can be determined, some using simple probability
theorems. Recall that a linear combination of independent normally distributed ran-
dom variables is itself normally distributed as N (3 axpx, >k a202) [106]. Therefore,

I can write the following:

Yi = g-eg=gien+gep2+ -+ gnesn
i ~ N(ud_ gr,073 g¢)

i=k i=k
i ~ N(0,0'})

because 3, g2 is 1 since g is a unit vector. I can similarly determine the distributions

of Y; and Yy, and they are

Y27 ~ N (Oa UZ )
Yo ~ N (Oa 0'?»)
The random variable Y3 is more complicated, because it is the sum of random

variable products. I know from probability theory the mean and variance of the

product of two random variables, but not the distribution. Let

Wy ~ N(#l,af) Wy ~ N(M,Ug)
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Then, if Z = W;W,, the mean and variance are defined as
E(Z) = pip2
Var(Z) = ojo; +pjo; + pioq
I also know from simple probability theory that a linear combination of

random variables has a mean ¥, axux and variance 3"; aZo?. Therefore, I know the

mean and variance of X3, as shown:
Ys=e,-e =enep+enepn+ -+ emepn

Let Zy = ewesk, then Z; has mean 0 and variance a?a?. Y; is then 3", axZ; where
ar = 1 for all k. Thus I know that

E(Y3)=0 Var(Ys) =olo}

The distribution function of X3 has been shown by Khlobystov and Zadiraka
[107]. The distribution function of the random variable n(n) = Y_}_; ewesk, is given
by:

( tin

21+ (sgn z)(1 - 5,% X Qm_l(;]ffaLg))] n=2m
Fomy) =S (3.21)
L+ (sgm )2 (K (L) L (L4
\ +Lm(afag) x Km—l(ﬁﬂ;)}] n=2m+1

where ®o(w) = 1, &3 (w) = w+ 2, ¢,u(w) = (w+ 2m) D1 (w) — WPp_y(w), K (w)
and L,,(w) are the Macdonald and Struve functions, respectively [108].
The random variable Y5 is also complicated, because it is the sum of squared

normal variables. I have
)/5 = ef.e.f:e.2ﬂ+6§2+...+e§n
n
2
= Z €fk
k=1

= D (usk +onli)’?
k=1

k=1 fk
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and since oy = 0y and psp = py V k
_ 2
Ys = not Y (= + Uk)
k=1 of

where py is the mean of e; and Uy are independent samples from a standard normal
distribution. From [109] I know that the distribution of "F_,(us/0s + Ux)? is the
non-central x? distribution with n degrees of freedom and non-centrality parameter
S %=1 ks/os. Since I had previously defined us = 0, the non-centrality parameter is 0,
and the non-central x? distribution becomes the central x? distribution. Therefore,
Y; is distributed as no;x?(n).

The preceding discussion shows that the distribution of d cannot easily be
found analytically, because d is a function of random variables with different dis-
tributions. If I further simplify the problem and assume that Y;-Ys are normally
distributed, both the numerator and denominator of equation 3.20 become normally
distributed random variables. Previous research [92, 93, 105] has shown that the
variance of the ratio of independent normally distributed random variables is infinite,
and d would thus have a large variance and small signal to noise ratio.

Let us now turn to the discussion of amplitude ratios. If I let a second set

of noisy data be described as
Vg = cbq;gmé + ez

where I assume that this data were generated by the same dipole, ¢® is the amplitude
of the dipole, and eg is the EEG and EMG artifact present on the data. The fit is

modeled as
V4 = &(fupif +€%)

The amplitude ratio is then

@ _ Pigi fmgmf - & + 9igm8 - €1 + pifmf - €5 + €5 - (3.22)
@ pigi fmgmf - & + teigm - €4 + pifrf - €8 + b - €

Equation 3.22 shows that the amplitude ratio is a function of several random

variables. I can rewrite equation 3.22 as follows, using Y's to denote random variables,

P AR W]
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and Xs to denote the other variables.

f_ Xi+ XY+ X3+ Y3
¢ X+ XY+ XaYP + Y]

One can easily show that Y} and Y} are normally distributed, and that the
distribution of Y7’ is described by Equation 3.21. If for simplicity I assume that Y
is normally distributed, then d*/d® becomes a ratio of normally distributed random
variables. As previously mentioned, such a ratio has infinite variance.

I have shown that the variances of amplitude parameters and amplitude
ratios estimated by dipole modeling are not easily determined, even when simplifying
assumptions (such as the distributions of the noise vectors) are made. In addition, real
EEG and EMG artifacts are not normally distributed with 0 mean and same variance
across measurement channels (see above discussion), and the noise components e, and
ey are not independent, but are at least weakly correlated with each other. Therefore,
the mean, variance, and distributions of dipole modeling amplitudes and amplitude
ratios are even more complicated than I have presented.

In chapter 2, it was shown that the ratio of independent normal variates
had infinite variance. The violation of independence in the present chapter may in
fact lead to a decrease in the variance of the ratio measurement. For example, I can
define a random variable Y as the ratio of the random variable X with itself, i.e.
Y = X/X =1 for any sample X. In this case, the variance of the random variable
Y is 0, because X is perfectly correlated with itself. Therefore, if a random variable
is the ratio of two correlated random variables, the variance of the ratio may not be
infinite.

Because of the difficulty in solving this problem analytically, and because of
the difficulty in estimating the correlation between the noise vectors, I have designed
a simulation study in order to determine the relative variances of absolute amplitudes
and amplitude ratios estimated using dipole modeling. I can then empirically eval-
uate whether amplitude ratios are more reliable than amplitude parameters, when
estimated using dipole modeling.

I will estimate the variance for the absolute amplitude and amplitude ratio

under several types of model misspecification in the presence of noise. I will addi-
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tionally determine the effect of dipole location and orientation on the variances by

looking at several dipoles and dipole pairs. The simulations and results are described

in the following chapter.
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Chapter 4

é\“«: LAk

Simulations

4.1 Introduction | T

Chapter 2 showed that dipole modeling led to increased reliability of the au-
ditory P50 conditioning-testing ratio (an amplitude ratio) over peak picking, but did 3
not lead to increased reliability of the estimated conditioning and testing amplitudes.
In chapter 2 it was shown that the process of fitting several data sets and “pooling” S ‘
the noise across data sets did not account for the increase in reliability, as originally
proposed. The use of multiple channels of data did not appear to cause the increase
in reliability either, as the reliabilities of the amplitudes did not increase as the ratio
reliabilities did. At the end of chapter 2 I proposed that misspecification of the dipole
model may affect the variability of amplitudes more than ratios.

Chapter 3 investigated the effect of model misspecification on the amplitude
and ratio estimates, and showed that in several cases, model misspecification led to
biased amplitudes but unbiased ratios. Chapter 3 also showed that the variability of
amplitudes and ratios was difficult to determine analytically, leaving only simulations
as a means to test the hypothesis that model misspecification leads to increased
variability of amplitudes as compared to ratios.

I am interested in determining errors due to model misspecification when
dipole modeling (via minimization of a least squares criterion, such as the scaled

residual sum of squares, defined in Section 1.3.3) is used to estimate covariate effects
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on amplitude and the derived amplitude ratio. I shall treat the parameters represent-
ing the covariate effects on amplitude (hereafter called “amplitude parameters”, for
simplicity) as linear variables in the problem, and dipole location, orientation, and
time-varying dipole magnitude function are treated as nonlinear variables (this “split-
ting” of the problem into linear and nonlinear parts was discussed in Sections 1.3.2

and 1.3.3).

This chapter describes the simulations used to test the following hypotheses:

1 The coefficient of variation (COV -defined as the mean divided by the
standard deviation) of amplitude ratios estimated using dipole modeling
is higher than COV’s of estimated amplitude parameters in the presence of
model misspecification (head model misspecification, time-varying mag-
nitude function misspecification, and misspecification of the number of

dipoles) and averaged EEG noise.

2 The COV of dipole modeling amplitude parameter estimates will increase
as the signal to noise ratio of the data increases (i.e., the amount of EEG

noise present decreases).

3 The COV of amplitude parameters estimated using dipole modeling will
increase as the “true” dipole generator becomes more eccentric, because
the homogeneous sphere head model better approximates the head for
eccentric dipoles (i.e., head model misspecification decreases for eccentric

dipoles).

Three types of model misspecification were simulated during estimation of
the variances; head model misspecification, time-varying amplitude function misspec-
ification, and misspecification of the number of dipoles. I generated data in the 3-shell
skull shape model using an averaged and filtered P50 evoked potential as a template
for the time-varying amplitude function. Real averaged EEG “noise” was added to
these simulated data to generate several simulated averages for each dipole configu-

ration. Dipole modeling of these data sets using a homogeneous sphere model and
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decaying sinusoid amplitude function misspecified both the head model and ampli-
tude function. One or two dipoles were fit to data generated by two synchronous
dipoles in order to simulate misspecification of the number of dipoles. The means,
standard deviations, and coeflicients of variation (COV) of the dipole amplitudes and
amplitude ratios were computed.

Because of my interest in using the results of this chapter to understand
chapter 2, I simulated the proposed generators of the auditory P50 evoked response.
The generators of the auditory P50 have been widely debated in the literature [21,
110,111,112, 49, 113], and there is conflicting evidence suggesting bilateral generators
in (a) the central nuclei of the thalamus, (b) hippocampus, or (c) auditory cortex.
Therefore, I simulated dipoles in each of these locations, and investigated them singly

and in synchronously active bilateral pairs.

4.2 Methods

Simulated evoked potentials were generated at 30 scalp electrodes, using a
3-shell skull shape model. The dipole locations and orientations used are listed in
Table 4.1. These locations and orientations were estimated using the coordinates
from a stereotaxic atlas of the human brain [114] and scaling to a head radius of
1. The electrode locations I used are listed in Table 4.2. These electrode locations
correspond to those currently used to collect and analyze auditory P50 in George
Fein’s laboratory. These locations were chosen assuming a spherical head model, but
the real skull shape used to generate the data does not have the same symmetry
as a sphere. Because of the irregularities in the skull shape model, the electrode
locations were not in these exact coordinates. The adjusted locations (relative to a
spherical model) are listed in Tables 4.3. Figure 4.1 shows these electrode locations
superimposed on the x-y plane. Although the generator dipole locations listed in
Table 4.1 are exactly symmetric with respect to the center of the skull shape, because
of the asymmetry of the head, the corresponding equivalent dipoles in a sphere will
not be exactly symmetric.

The electrode weight function for the realistic skull model was generated



Table 4.1: Simulated Neural Generators

Dipole | Neural Generator Location Orientation
# 6, 0, 05 | & b2
1 left nucleus centralis medialis | -0.04 0.13 0.07 | 20 45
2 right nucleus centralis medialis | -0.04 -0.13  0.07 | 20 -45
3 left hippocampus -0.28 0.30 -0.02 | 30 -45
4 right hippocampus -0.28 -0.30 -0.02 | 30 45
5 left auditory cortex 021 0.71 0.04 | 30 -90
6 right auditory cortex 0.21 -0.71 0.04 | 30 90

The locations are scaled by the head radius (and are thus unitless), where the direction
of 6, is through the nasion, 0, is throuih

The orientations are given 1n degrees

Table 4.2: Electrode Locations

u_.abel 'l/)l ’(,[)2 l Label ‘![)] d)z
Fz 36.00 0.00 | FCz 18.00 0.00
Cz 0.00 0.00 | Pz 36.00 180.00
Fpl 72.00 18.00 | Fp2  72.00 -18.00
F3 49.44 40.70 | F4 49.44 -40.70
F5 60.72  49.00 | F6 60.72  -49.00
F7 72.00 54.00 | F8 72.00 -54.00
C1 18.00  90.00 | C2 18.00 -90.00
C3 36.00 90.00 | C4 36.00 -90.00
T3 72.00 90.00 | T4 72.00 -90.00
TH 72.00 126.00 | T6 72.00 -126.00
P3 49.44 139.30 | P4 49.44 -139.30
P5 60.72 131.00 | P6 60.72 -131.00
FC3 40.00 61.00 | FC4 40.00 -61.00
CP3 40.00 119.00 | CP4 40.00 -119.00
01 72.00 162.00 | O2 72.00 -162.00

Electrode locations given in spherical coordinates, where all electrodes have a radius

the left ear, and 03 is through the vertex.
ere ¢, is colatitude and ¢, is longitude.

of 1.0 (scaled to the head radius), and ¥; and ¥, are colatitude and longitude.

/
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Table 4.3: Electrode Locations: locations adjusted for skull shape

I Label ‘(/)1 ’([)2 I Label ’lbl '(/)2 I
Fz 39.44 442 | FCz  20.75 8.16
Cz 3.09 97.02 Pz 34.60 -174.37
Fpl 72.82 18.11 | Fp2  72.81 -18.93
F3 51.62 41.77 | F4 51.64 -42.16
F5 61.15 47.79 | F6 61.13  -48.47
F7 71.67 53.48 | F8 71.63 -54.68
C1 16.38 91.23 | C2 16.83 -91.10
C3 36.70 91.11 | C4 36.88 -91.19
T3 72.58 90.96 | T4 72.69 -91.12
T5 75.88 126.77 | T6 75.90 -124.93
P3 49.25 137.16 | P4 49.40 -138.86
P5 63.97 132.32 | P6 64.01 -130.79
FC3 3936 59.37 | FC4 39.44 -59.79
CP3 41.05 118.82 | CP4 40.69 -121.34
01 70.99 162.02 | 02 71.16 -164.17

84

Electrode locations given in spherical coordinates, where all electrodes have a radius

of 1.0 (scaled to the head radius), and %, and 1, are colatitude and longitude.
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Figure 4.1: Planar projection of the electrode locations for simulations

using a boundary element model [115] based on a Computed Tomography (CT) scan
of an adult human skull. The 3-shell skull shape model consisted of three concentric
skulls. The radii and conductivities of the skull were the same as those used by Ary
et al. [11]. The inner radii of the shells were determined in the following manner. A
sphere was fit to all the nodes of the outer skull shape model, and the radius of this
sphere was scaled to 1. In order to construct the skull shells, the skull shape model
was scaled down such that the best-fitting spheres to the nodes had radii (inner to
outer) of 0.8, 0.85, and 0.92. The conductivities of the shells were 1.0, 0.0125, and 1.0,
respectively. A dipole source was simulated using a point dipole. The scalp potentials
were computed at the locations listed in Table 4.3.

Several data sets were generated using these simulated dipoles. The data sets
and the dipoles generating them are shown in Table 4.4. Each data set consisted of
a pair of evoked potentials, corresponding to the conditioning and testing responses
of the auditory P50 collected in a paired click paradigm. Two amplitude ratios
were simulated for each data set, corresponding to normal P50 suppression (i.e.,

amplitude ratios between .25 and .50) and abnormal P50 suppression (i.e., amplitude
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Table 4.4: Data Sets Simulated

Data Set # | Generator # used | Description
1 1 left nucleus centralis medialis
2 3 left hippocampus
3 5 left auditory cortex
4 1 and 2 bilateral thalamus
5 3 and 4 bilateral hippocampus
6 5 and 6 bilateral auditory cortex

ratios between .75 and 1.0). The simulated magnitude function was an averaged and
digitally filtered P50 evoked potential recorded from Cz-left ear from a representative
subject.

Real EEG noise from an auditory P50 evoked potential recording was added
to each simulated data set. The EEG noise was collected at 30 scalp electrodes from
subjects while they were listening to paired clicks at 60 dB SL. Noise was collected
at a 2000 Hz sampling rate for 256 ms (512 data points), beginning 500 ms after the
second click. Approximately 120 single trials (the same number of single trials in a
typical P50 average) were collected from each of 2 normal hearing subjects. The noise
trials were multiplied by an amplitude factor to create data with the desired signal
to noise ratio (SNR). We used two values of the SNR: low (0.1) and high (0.5). The
estimated SNR was defined as follows. Let 6%, 6%, and 6% be unbiased estimators of

the noise, signal, and total power.

on 1/[u(m —1)] 32 Zt:[Vj(t) -V
&5 = (1/'4); V3(t) — (6% /m)
5 = 1/m) SE V)
where V(t) = (1/m)Z;V;(t), m is the number of single trials, u is the number of time

points, and Vj(t) is the measured voltage at a single electrode for trial j at time t.
The estimator of the SNR is then
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SNR =

" )

The derivation of the SNR estimator and its asymptotic distribution are
described in [116]. Examination of Equation 4.1 shows that this SNR estimate is
based on the signal at a single electrode. The SNRs I used, 0.1 and 0.5, were defined
at the vertex electrode (Cz). Therefore, electrodes that had higher maximal amplitude
than Cz would have higher SNR, and electrodes with lower amplitude than Cz would
have lower SNR.

A simulated data set was generated by first randomly choosing a sample of
200 simulated noise trials, and randomly choosing a set of 64 successive time points
(32 ms, the approximate duration of P50 and the length of the P50 evoked potential
used as a waveform template in the simulations) from each sampled trial. The sample
of 200 noise trials was randomly chosen with replacement from the 120 single trials
in each noise data set. Although the number of single trials in my noise data sets
is small, this should not pose a problem. When sampling with replacement from
a finite population of noise trials, two different random samples (of size 200) are
independent (conditional on that finite population), just as are two random samples
from an infinite population.

The scalp representation of the dipoles were then computed from the simu-
lated amplitude waveform (recall that the simulated amplitude waveform was an aver-
aged and filtered P50 evoked potential recorded from Cz-left ear) with the weighting
functions generated in a skull shape model. The weighting functions were scaled by
the conditioning amplitude parameter so that each simulated conditioning response
had maximal amplitude of 4 uV at the vertex electrode. The scalings, or “true” val-
ues for the conditioning amplitude parameters, were 28.35, 36.17, 51.70, 14.18, 18.09,
and 25.85 for Data Sets 1, 2, 3, 4, 5, and 6 (see Table 4.4), respectively. The “true”
values for the testing amplitude parameters are simply the conditioning ampl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>