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currency. Measurements of net cost can be-
come complicated because all costs influ-
enced by the intervention should also be in-
cluded, including costs of follow-up. If an 
intervention averts the need for future ex-
pensive clinical interventions, this will re-
duce the net cost estimate for the interven-
tion. Conversely, if an intervention results in 
more clinical interventions, the net cost esti-
mate will be higher. Nonmedical costs (e.g., 
time costs) are often included when they are 
likely to be significant and are measurable. 
Potential harm to the patient is generally not 
factored into the cost part of the equation, 
except where it affects medical care utiliza-
tion; instead, it is accounted for by adjusting 
the estimated effectiveness [4].

Effectiveness
The effectiveness of a CEA can be any 

measure of clinical impact (e.g., number of 
cancers detected or deaths averted); how-
ever, the most commonly reported effec-
tiveness outcomes in the United States are 
life years and quality-adjusted life years 
(QALYs) [4]. Life years gained represent 
an estimate of the expected time gained by 
averting a death—that is, the difference be-
tween how long people lived on average after 
receiving the intervention versus without it. 
This is valuable information, but it estimates 
only the duration of life, without accounting 
for the quality of life. QALYs include effects 
on morbidity as well and thus incorporate all 
health consequences of disease and interven-
tions. In QALYs, the duration of life is mul-
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C
ost effectiveness is playing an in-
creasingly important role in clin-
ical decision making and the de-
velopment of standards of care. 

The cost-effectiveness of screening and pre-
ventive care interventions in particular is 
scrutinized because the benefit is limited to a 
small proportion of people receiving the in-
tervention whereas the costs can be substan-
tial [1]. Evaluation of the cost-effectiveness 
of CT screening for lung cancer in high-risk 
patients appears particularly relevant as poli-
cy makers and practitioners grapple with the 
appropriate utilization of this technology. As 
radiologists, we must understand cost effec-
tiveness, including how to interpret published 
CEAs and the methodologic decisions made 
by the CEA researchers. In light of the recent 
publication of the National Lung Cancer 
Screening Trial (NLST) [2, 3] group’s offi-
cial CEA, we aim to explain the terminology, 
methods, and heterogeneity of CEAs. We 
will discuss these issues via an analysis of the 
NLST CEA and two additional analyses of 
CT screening that have been published by 
groups other than the NLST; they report sub-
stantially different results, allowing a com-
parison and discussion of the assumptions 
and methods used in performing a CEA.

Terminology
Cost

The definition and assessment of interven-
tion costs are generally straightforward, usu-
ally restricted to measurements of resources 
and their monetary cost in dollars or other 
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OBJECTIVE. Cost-effectiveness analyses (CEAs) contribute to informed decision mak-
ing, at both the practitioner and societal levels; therefore, understanding CEAs is valuable for 
radiologists. In light of the recently published National Lung Cancer Screening Trial (NLST) 
CEA, we aim to explain the terminology, methods, and heterogeneity of CEAs.

CONCLUSION. We compared the NLST results to two example lung cancer screening 
CEAs (which do not rely on NLST data). Both examples assessed screening but reached sub-
stantially different conclusions.
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tiplied by a coefficient estimating the aver-
age health state utility, which varies from 0 
(death) to 1 (perfect health) [4]. A CEA that 
uses QALYs as the effectiveness unit is often 
referred to as a “cost-utility analysis.”

Comparing Cost and Effectiveness
The outcome of a CEA for an intervention 

is the ratio of added cost to added effective-
ness (e.g., net cost per cancer identified per 
QALY gained). A CEA must compare two 
scenarios: costs and total QALYs are estimat-
ed with and without the intervention or test, 
and the differences are then divided. The re-
sult is the incremental cost-effectiveness ra-
tio (ICER) [4]. For example, if the net cost 
of screening was $10,000 per person higher 
than no screening and the health benefit was 
0.1 QALYs, then the ICER for screening ver-
sus no screening would be $10,000 / 0.1, or 
$100,000 per QALY.

Lung Cancer Screening Analyses
The NLST was a randomized controlled 

trial comparing low-dose CT screening to 
chest radiography in patients at high risk for 
lung cancer. The study followed 53,000 peo-
ple for 5–7 years and showed a 20% reduc-
tion in lung cancer mortality in the low-dose 
CT group. The recently published NLST 
CEA was performed using the NLST trial 
data for inputs including screening efficacy 
and resource utilization [2, 3].

In addition to the NLST analysis, two oth-
er recent publications have reported CEAs of 
lung cancer screening. Although both were 
published after the NLST results were avail-
able (but not the NLST CEA), neither explic-
itly used the results as inputs. One analysis, by 
Villanti et al. [5], is based on a model created 
by the private consulting group Milliman [6]. 
The other analysis, by McMahon et al. [7, 8], is 
based on the National Cancer Institute’s lung 
cancer policy model. All three analyses are 
cost-utility analyses because they use QALYs 
to calculate ICERs for screening versus usu-
al care as their primary outcome. Whereas 
the NLST reported an ICER of $81,000 per 
QALY [3], Villanti et al. [5] reported an ICER 
of $28,000 per QALY gained, and McMahon 
et al. [7] reported ICERs between $110,000 
and $169,000 per QALY gained; this four- to 
sixfold difference is potentially large enough 
that it would affect policy recommendations.

Cost-Effectiveness Analysis Inputs
Intervention cost inputs are simple at face 

value, but there are several decisions in-

volved. In the United States, the billed charge 
by the provider to the payer (e.g., Medicare 
or private insurance), the amount actually re-
imbursed (“allowed charges”), and the out-
of-pocket cost to the patient are all different 
values. The most common practice is to use 
the average amount reimbursed by payers as 
a reasonable approximation of true cost. If 
an analysis were to use billed charges rath-
er than the paid amount, the estimate of the 
ICER could be more than twice as large. If 
an analysis used actual costs to clinical pro-
viders, excluding profits, then the ICER esti-
mate could be lower. The accuracy and rele-
vance of cost inputs are highly specific to the 
context of a CEA; consequently, understand-
ing the population and economic setting of 
the analysis is important to appropriately in-
terpret the results [9].

Estimating effectiveness can be complicat-
ed. Inputs for models are typically numerous 
and diverse. They include probabilities (e.g., 
the chance that a new cancer will be detected 
in a screening interval), duration of life, and 
health state utilities [4]. For a screening test, 
estimates of effectiveness should include the 
consequences of false-positive and -negative 
tests, such as the morbidity of further diag-
nostic steps and treatment options [1]. Anx-
iety resulting from a false-positive can be 
accounted for as a utility decrease. (In the 
case of lung cancer screening, a recent study 
found no significant utility difference in pa-
tients with initially false-positive results ver-
sus those with true-negatives results [10]). 
For a population with a high overall mortal-
ity risk, such as older individuals screened 
for lung cancer, the analysis must accurately 
account for the effect of comorbidities on life 
expectancy without cancer when estimating 
the potential benefit of curative and life-ex-
tending treatments.

Often inputs that are most directly useful 
for a particular CEA are unavailable in the 
published literature. For example, for cancer 
interventions, the duration input most useful 
for calculating an ICER is mean overall sur-
vival in years, but the value reported in clini-
cal trials is often the percent surviving af-
ter a specific time interval. Having access to 
the actual trial data to derive desired inputs 
can reduce uncertainty in a CEA and is a sig-
nificant advantage of the analysis performed 
with the NLST data [3].

Inputs in Lung Cancer Screening Analyses
All three CEAs used a payer reimburse-

ment estimate to quantify the cost of the in-

tervention, but the estimates differ consider-
ably. The average annual cost of CT screening 
(including follow-ups) estimated in the study 
by Villanti et al. [5] was $210. The value es-
timated for the cost of a single CT screening 
in the study by McMahon et al. [7] was $283, 
and the value used in the NLST analysis was 
$285 [3]. The lower estimate in Villanti et 
al.’s study [5] is interesting: they used an es-
timated cost of CT that is lower than the cur-
rent actual cost on the basis of the assump-
tion that large-scale screening would result in 
lower fees for screening; they estimated the 
reduced cost in their model by applying the 
ratio of fees charged for screening versus di-
agnostic mammography [5, 6].

Treatment costs are not reported in the 
same manner between studies but also ap-
pear to differ considerably: both McMahon 
et al. [7] and Villanti et al. [5] used sourc-
es for treatment costs that exceed $100,000 
per lung cancer treatment, whereas the NLST 
analysis reported an average cost of treatment 
that equates to $27,000 per diagnosed cancer 
[3]. Finally, the number of follow-ups for an 
initially positive test could have a significant 
effect on cost: McMahon et al.’s model [7] av-
eraged approximately four follow-ups where-
as the NLST averaged closer to one [3]. The 
difference in costs between the CEAs—most 
significantly, the difference in screening CT 
cost estimates—contributes to the overall 
difference in ICER estimates, with a lower 
cost of screening in the study by Villanti et 
al. [5] contributing to a lower ICER.

The analyses also used different sources to 
estimate the health state utility (which large-
ly determines the effectiveness). For example, 
a patient with metastatic non–small cell lung 
cancer after treatment and after recurrence 
was assigned a utility modifier of 0.57 in the 
Villanti et al. study [5] and 0.62 in the McMa-
hon et al. study [7, 11, 12]. This difference, 
though relatively small, leads to an increase in 
the estimated effectiveness of preventing can-
cer in the analysis of Villanti et al. [5], which 
leads to an increase in the estimated QALYs 
gained and consequently a lower ICER.

Cost-Effectiveness Analysis Methods
There are many models that can be used 

for CEA, but they all involve some method 
of simulating what will happen with or with-
out an intervention, often relying on uncer-
tain data about disease acquisition and pro-
gression [13]. Modeling intervention effects 
adds further uncertainty to intervention 
evaluations. As has been shown thoroughly 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

jr
on

lin
e.

or
g 

by
 U

C
SF

 L
IB

 &
 C

K
M

/R
SC

S 
M

G
M

T
 o

n 
10

/1
5/

15
 f

ro
m

 I
P 

ad
dr

es
s 

12
8.

21
8.

58
.3

4.
 C

op
yr

ig
ht

 A
R

R
S.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d 



346 AJR:205, August 2015

Curl et al.

in clinical research, observational data may 
bias effectiveness estimates because of im-
portant differences between groups that are 
not randomized [1]. The analysis done by the 
NLST group included precise estimates for 
the period of close follow-up; however, for 
portrayal of the continued costs and benefits 
after the duration studied in the trial, simu-
lation was required, and their analysis mod-
eled costs based on Medicare reimburse-
ments rather than the trials’ actual costs [3]. 
This decision was likely appropriate given 
that research costs tend to differ from clini-
cal reimbursements. The length of time that 
should be simulated—the time horizon—is 
one of the most important factors in evaluat-
ing a CEA [4]. In cases where an interven-
tion is expected to provide only a temporary 
benefit, a short time horizon may be appro-
priate; by contrast, in the evaluation of inter-
ventions that have the potential to extend life 
or avert long-term sequelae, a lifetime hori-
zon is the most appropriate. The McMahon 
et al. [7] and NLST [3] analyses used a full 
lifetime horizon, and the Villanti et al. anal-
ysis [5] used a 15-year horizon. In the popu-
lation being studied, using a 15-year versus 
lifetime time horizon does not dramatically 
alter results and therefore does not substan-
tially contribute to the difference in ICER es-
timates between the two studies (though the 
difference slightly favors a higher ICER esti-
mate in Villanti et al.’s study).

When models include costs and clinical 
outcomes that occur years after the initial in-
tervention, experts recommend discounting 
values that are remote to that intervention at a 
rate of 3% annually [4]. This practice—based 
on the economic principle that costs or bene-
fits in the immediate present have more value 
than costs or benefits that will be experienced 
in the distant future—decreases the impact 
of late consequences of an intervention. The 
NLST [3] and McMahon et al. [7] analyses 
discounted both costs and QALYs at the cus-
tomary rate of 3%, whereas the Villanti et al. 
analysis [5] did not discount either costs or 
QALYs. Not discounting costs increases the 
total cost estimate (and thus increases the 
ICER), whereas not discounting QALYs in-
creases the total benefit estimate (and thus 
decreases the ICER). For a cancer screening 
CEA with substantial up-front costs and de-
layed benefit, the resulting increase in benefit 
will likely outweigh the increase in cost and 
consequently have a net effect of decreasing 
the ICER. Thus, the difference in discounting 
further contributes to the lower ICER report-

ed by Villanti et al. Table 1 summarizes many 
of the aforementioned differences between 
the two CEAs, as well as the effects that such 
differences have on the ICERs.

For complicated models such as those for 
simulating lung cancer screening, a valuable 
tool for improving precision is calibration [14]. 
Calibration (also known as “benchmarking”) 
is the practice of taking an established clini-
cal outcome (e.g., the mortality difference at 
6 years follow-up seen in a well-regarded ran-
domized trial like the NLST) and ensuring 
that the model predicts a similar outcome [14]. 
Calibration is used in the process of building 
a model, and knowing what data the authors 
used for calibration is important for validation: 
checking how closely the model’s results corre-
spond to outcomes from well-regarded clinical 
trials is a quick and effective way to assess the 
accuracy of a model. For lung-cancer screen-
ing, the NLST reported a lung cancer–specif-
ic mortality reduction at 6 years of 20%, the 
McMahon et al. model reported a 28% reduc-
tion in a similar scenario, and the Villanti et al. 
model did not report an exact number although 
the value was described as “more optimistic” 
than the NLST results [2, 3, 5–7]. Thus, the 
mortality benefit in the NLST model was low-
er than in the other two models.

Cost-Effectiveness Analysis Reporting
Most CEAs report the ICER produced by 

a base-case analysis. A base-case analysis 
uses the best estimated value for each input 
[4]. This single ICER can give a false impres-
sion of precision. The NLST [3] and Villan-
ti et al. [5] reported base-case results with 
ICERs of $81,000 and $28,000, respectively, 
per QALY gained. Alternatively, an analysis 
may report a range of ICERs; McMahon et al. 

[7] reported ICERs ranging from $110,000 to 
$169,000 per QALY gained; they reported a 
range of ICERs because they modeled multi-
ple scenarios with different population char-
acteristics (age, pack-years, gender) without 
highlighting one as a base case.

Whether the primary outcome is reported 
as a single base-case result or a range, report-
ing sensitivity analyses is necessary in any 
CEA given the large number of assumptions 
required. Sensitivity analyses vary inputs 
from the lowest to the highest reasonable val-
ues and report the effect of this variation on 
the ICER and its components (costs, effects). 
Sensitivity analyses allow the reader to assess 
the degree of uncertainty around the ICER 
estimate and help to identify the input val-
ues most influential in determining the cost 
effectiveness [4]. All three CEAs discussed 
performed sensitivity analyses [3, 5, 7].

Conclusion
CEA can seem mysterious, and there is in-

herent uncertainty in the inputs and the pre-
cision of the results. However, understanding 
the methods used, as well as the nature of the 
decisions made, can significantly reduce this 
mystery. Although the analyses discussed 
here reported vastly different results, the two 
estimates that preceded the NLST did sur-
round the NLST’s more robust estimate and 
did so without the benefit of randomized tri-
al data in their inputs. Further, looking at 
the inputs and methods identifies important 
reasons for the differences and allows an as-
sessment of which estimate is most appro-
priate. In a setting with screening efficacy 
equal to that observed in the NLST, current 
CT screening costs, and relatively low aver-
age treatment costs, the ICER reported by 

TABLE 1: Summary of Differences Between Three Recent Lung Cancer 
 Screening Cost-Effectiveness Analyses

Component of Analysis
Black et al. (NLST) 

[3]
McMahon et al.  

[7]
Villanti et al.  

[5]
Likely Effect on 

ICER

Demographics Unclear

Age (y) 55–74 50–74 50–64

Pack-y ≥ 30 ≥ 20 ≥ 30

Cost of screening CT ($) 285a 283a 210b ↓ Villanti

6-Year mortality reduction (%) 20 28 > 20 ↑ Black

Discount rate (%) 3 3 0 ↓ Villanti

Time horizon Lifetime Lifetime 15 y Small

ICER ($) 81,000 110,000–169,000 28,240

Note—NLST = National Lung Cancer Screening Trial, ICER = incremental cost-effectiveness ratio.
aPer CT examination.
bPer year.
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the NLST group (Black et al. [3]) is likely 
the most accurate; in a setting with higher 
efficacy but increased number of follow-up 
screens and higher average treatment costs, 
the ICER reported by McMahon et al. [7] is 
likely to be accurate; and in a setting with in-
creased efficacy and considerably decreased 
screening costs, the ICER reported by Vil-
lanti et al. [5] will be more accurate.

Awareness of the cost and the value of im-
aging is crucial to the field of radiology. CEAs 
may guide decisions at the individual radiolo-
gist level and often substantially influence de-
cisions made at the society and payer level. 
Medical imaging continues to be a costly, yet 
valuable, component of modern medical care, 
and imaging-based screening tests contribute 
to this cost and value [15]. Given the tremen-
dous sway that CEAs hold over the field, it is of 
benefit to radiologists to understand the inputs, 
methods, and reporting of CEAs. This article 
has reviewed the basics of this type of analy-
sis by using two published CEAs as examples; 
for interested readers, more detailed reading is 
available in the literature [1, 13, 14, 16–20].
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