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I developed a full-scale, biologically constrained model of hippocampal CA1 subfield that

is capable of spontaneous theta and gamma oscillations with distinct interneuronal phase

preferences. In addition to structural constraints on the cell numbers and connectivity, ex-

perimental observations drove the development of the electrophysiology for the nine cell types

and their synapses. To characterize and experimentally constrain the model, I designed and

developed a custom software tool called SimTracker. SimTracker works with my NEURON

code template to enable efficient coding, simulation design and execution, and analysis of

results for parallel network NEURON simulations. I also created the Network Clamp, a soft-

ware tool that implements the concept of a rational method for reducing a full-scale parallel

network model to a small, yet biologically constrained model whose simulations can be run

on a personal computer. Here I characterize the physiological oscillations displayed by the

model. Additionally, I explore the parameter-space of the model by studying its oscillatory

properties while manipulating its connectivity, excitation level, and synapse kinetics. This

dual approach model is well characterized, flexible and accessible, and it represents a use-

ful collation of experimental knowledge as well as a significant technical advance in neural

network modeling.
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Chapter 1

Introduction

In this work, I tested the hypothesis that an anatomically and electrophysiologically con-

strained computer model of CA1, when given tonic excitation, can induce and maintain

spontaneous theta oscillations with distinct phase preferences for each cell type. Hippocam-

pal theta oscillations (4-12 Hz rhythmic fluctuations present in the local field potential) are

important to learning and memory, and their generation and maintenance are of great inter-

est. Several experimental preparations in vivo, and in vitro (both in hippocampal slices and

isolated CA1) can produce theta oscillations. Therefore, I hypothesized that a detailed, bio-

logically constrained, full scale model of CA1 with realistic connectivity and diverse cell types

could also produce this theta rhythm. In this work, I discuss how I constrained my model

and show how my constrained model is capable of generating spontaneous theta rhythms.

In addition, I present the custom software I developed to manage the model constraints,

simulations, and analysis of results.
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1.1 Background

The hippocampus supports diverse cognitive tasks including learning, memory, and spatial

processing. While performing these tasks, hippocampal neurons display a distinct pattern

of membrane potential oscillations known as theta. In rodents, theta is a 4-12 Hz oscillation

visible in the local field potential (LFP) (Lee et al., 1994) as well as in the firing probabilities

of the hippocampal neurons (Klausberger and Somogyi, 2008). Theta occurs in vivo in awake

and anesthetized animals, as well as in animals in the REM stage of sleep. It is also displayed

in vitro in several hippocampal preparations, clearly involving distinct mechanisms.

In vivo, the medial septum is thought to drive the hippocampal theta rhythm (Bullock et al.,

1990; Villette et al., 2010; Kowalczyk et al., 2013). Cholinergic cells in the medial septum

provide slow depolarization to CA1, while GABAergic projections from the septum pro-

vide rhythmic inhibition to CA1 at the theta frequency (Lee et al., 1994). Lesions to or

inactivation of the medial septum have been shown to abolish theta in vivo (Andersen et al.,

1979; Givens and Olton, 1990; Soltesz and Deschenes, 1993), while stimulation of the medial

septum can drive theta activity (Monmaur and Breton, 1991).

However, theta oscillations can also be seen in CA1 independent of septal inputs. For

example, an isolated, full hippocampal CA1 preparation (Goutagny et al., 2009) can exhibit

theta. This spontaneous oscillation indicates the CA1 network is predisposed to oscillate

within the theta frequency range. Careful study of theta in other in vitro hippocampal

preparations also supports the idea that the hippocampus may be capable of internally-

generated theta (Kowalczyk et al., 2013).

The network mechanisms that enable theta (or disrupt theta in disease) are of great interest.

Therefore, I chose to investigate how an isolated CA1 network might develop and sustain

a theta rhythm. I built a detailed, biologically constrained computer model of an isolated

CA1 network with distinct interneuron types and tested whether it was capable of producing
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a spontaneous theta oscillation with distinct interneuron firing phase preferences. I found

that it was capable of a theta oscillation given a tonic, arrhythmic excitatory input. I

then subjected the model to various perturbations to determine the robustness of the theta

activity and to characterize the role of specific network components in the theta rhythm.

Finally, I compared this spontaneous theta with experimental observations of in vivo theta

to hypothesize whether similar mechanisms were involved in the generation of both rhythms.

1.2 Specific Aims

My work accomplished three specific aims. First, I tested the hypothesis that an anatomically

and electrophysiologically constrained computer model of CA1, when given tonic excitation,

could induce and maintain spontaneous theta oscillations. To test this idea, I assembled

the existing anatomical data about CA1 (Bezaire and Soltesz, 2013), which included real-

istic proportions of eight interneuron types and realistic connectivity between each type.

I also consulted existing electrophysiological resources (the NeuroElectro database at www.

neuroelectro.org/, single and paired cell electrophysiological data from other lab mem-

bers, and published data about synaptic connections and ion channels) to constrain the

electrophysiological properties of the model. Then I experimented with different levels of

excitation to the model and found that tonic excitation to the full-scale CA1 model was

sufficient for the network to develop theta and gamma rhythmic spiking. Multiple areas of

the parameter space produced theta.

Next, I hypothesized that the interneuron type-specific electrophysiological and network

properties were sufficient for each cell type to display a distinct preferred firing phase during

theta oscillations. I found that distinct cell types showed distinct firing phases, a phenomenon

also seen in vivo (Varga et al., 2012; Klausberger and Somogyi, 2008)
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Finally, to accomplish my other two aims efficiently and to enable others to reproduce and

build on my work, I designed and developed a user-friendly software package called Sim-

Tracker. SimTracker is a MATLAB-based software program that enables designing, execut-

ing, organizing, and analyzing simulations efficiently. It also interfaces with supercomputers

and produces figures, tables, and websites for communicating results. Users do not need to

buy a MATLAB license to use the SimTracker, and SimTracker is available for Windows,

Mac, or Linux users.

1.3 Significance

Theta is a 4-12 Hz oscillation in the local field potential (LFP), present in a variety of

animals including rodents and humans (Lee et al., 1994). Within CA1, theta is strongest

in the stratum lacunosum-moleculare (Buzsáki, 2002). The phase of theta shifts across

the layers of CA1 as a function of depth, achieving a 180o difference between stratum

lacunosum-moleculare and stratum pyramidale (Buzsáki, 2002). The LFP depends mostly

on synaptic currents and general membrane conductance, with only a small component

due to spiking. However, theta also modulates the spiking of many neuron types in CA1

(Klausberger and Somogyi, 2008).

Theta has been linked to learning, exploration, and recall of previously stored memories

(Wang, 2010; Hasselmo, 2005). Theta is thought to help organize and segregate information.

Specifically, Hasselmo et al. (2002) proposed that theta may organize encoding and retrieval

functions of the hippocampus, separating them in time. Recent experimental evidence sup-

ports this proposition. Siegle and Wilson (2014) showed that optogenetic stimulation during

theta rhythm differentially enhances encoding or retrieving functions, depending on the phase

of stimulation. This separation appears to be necessary; theoretical studies have shown it

is not possible for both processes to occur at the same time, in the same network, without
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interference (Hasselmo et al., 2002), and this requirement of task separation has recently

been pursued experimentally. Douchamps et al. (2013) found that disrupting cholinergic

modulation of the theta rhythm, which has traditionally been thought to mediate the sep-

aration between encoding and retrieval functions, decreases the encoding of novel spatial

environments.

Further, deficits in theta have been associated with deficits in learning, recall, and spatial

processing. For example, a study of the effects of seizures on theta and spatial processing

found a correlation between reduced theta power and deficits in spatial task performance

(Chauvière et al., 2009). In addition, temporary inactivation of the medial septum that

reduced hippocampal theta power also reduced performance in a spatial working memory

task (Givens and Olton, 1990).

Theta is not specific to rodents; it has been observed in humans during both spatial

(Kahana et al., 1999) and non-spatial tasks (Tesche and Karhu, 2000; Axmacher et al., 2010;

Lega et al., 2012). In a pioneering study of theta in the human hippocampus, Ekstrom et al.

(2005) showed that theta power increased during movement compared to standing still.

Watrous et al. (2013) compared human and rat hippocampal low-frequency oscillations dur-

ing spatial navigation, finding that humans have a lower oscillation frequency (3.4 Hz) than

rats (8 Hz), as had been suggested by other studies (Lega et al., 2012). However, the hu-

man experiments were performed using virtual reality, which is associated with a decrease

in oscillation frequency in rats, so it is possible that during real navigation humans would

exhibit a slightly higher frequency of oscillation.

Also, theta oscillations are generally slower in larger animals and so it may be consistent

with that trend for humans to have the slower theta oscillation (Lega et al., 2011). A human

memory free recall task found a prominent 3 Hz theta oscillation whose power was correlated

with correct responses to the task (Lega et al., 2011). They also found a higher frequency

theta oscillation (around 8 Hz) whose function was not as clear. Fell et al. (2011) saw an
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increase in theta band (4-8 Hz) hippocampal EEG power that was correlated with correct

functioning on a memory task. In addition, Rutishauser et al. (2010) found that the spike

timing of individual neurons correlated with function on a memory task: the more correlated

the spike timing was to the local theta rhythm, the better the subjects performed on a

memory task. Finally, Guderian et al. (2009) found higher amplitude theta oscillations prior

to word presentation correlated with better memory performance later.

1.3.1 The Role of the Model

Any model is necessarily a simplified view of reality. The simplification is the model’s power;

the model is a tool generally used to illustrate the importance of the included characteristics

(or the converse) to the behavior under study. In this work, we chose to focus on intrinsic

network mechanisms. Though it is known that CA1 receives phasic input during theta

(Mizuseki et al., 2009), recent optogenetic studies have shown that the oscillation in CA1

is not entirely determined by its afferents. By focusing on network properties within our

CA1 network model, we systematically examined the role of various characteristics in the

development and maintenance of theta.

Further, generating a highly constrained model forced us to take stock of the experimental

data available. The exercise highlighted gaps in our experimental knowledge as well as

provided a venue for collating experimental data for general use. Much of the anatomical

data we assessed gains value and explanatory power when combined or compared to other

data, as we have done in our quantitative assessment (Bezaire and Soltesz, 2013).

This detailed modeling is most effective when executed iteratively with experiments. Model

results can generate new hypotheses to test experimentally. In this case, the results can

refine our theory of theta and also help focus and choose the most efficacious experiments

to carry out. Using a model allowed a precise and complete control over which parameters
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we manipulated and to what extent. This gave us much more power than current experi-

mental techniques and was also much faster. Therefore, models represent a useful tool for

experimentalists, one that can help us achieve an overall goal of verifying a hypothesis in a

physiologically relevant, biological preparation.

1.4 Experimental observations

1.4.1 Hippocampal theta in experimental preparations

in vivo

In vivo, the medial septum is thought to drive the hippocampal theta rhythm (Bullock et al.,

1990; Villette et al., 2010; Kowalczyk et al., 2013). Cholinergic cells in the medial septum

mainly excite pyramidal cells, while reciprocal GABAergic projections between the medial

septum interneurons and the hippocampal interneurons drive the neurons of the hippocam-

pus at the theta frequency (Lee et al., 1994). Lesions to or inactivation of the medial septum

have been shown to abolish theta in vivo (Andersen et al., 1979; Givens and Olton, 1990),

while stimulation of the medial septum can drive theta activity (Monmaur and Breton,

1991).

However, there have been some surprising results from a recent optogenetic study that drove

septal neurons at specific frequencies and then observed their ability to entrain CA1 neurons

(Ducharme et al., 2013). This study demonstrated the limits of septal control of CA1 theta,

as CA1 theta behavior could be only partly attributed to septal activity, and CA1 did not

always respond robustly to frequencies imposed by the septal inputs (but see Brandon et al.

(2013)). Further, several groups have shown methods of obtaining theta oscillations in the

absence of the medial septum (or in in vitro preparations), so it appears that the hippocam-
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pus may be predisposed to oscillate within the theta range of frequencies. In addition, it has

been found that GABAergic backprojections from the subiculum to the hippocampus can

also drive theta (Jackson et al., 2014). Careful study of theta in in vitro hippocampal prepa-

rations also supports the idea that the hippocampus may be capable of internally-generated

theta (Kowalczyk et al., 2013).

In both awake and anesthetized animals, different cell types prefer to fire at different phases

during theta rhythm (Varga et al., 2012; Klausberger and Somogyi, 2008). The preferred

phases vary somewhat depending on the state of the animal, and different phases have also

been found by different laboratories (Table 1.1). These distinct phase preferences are likely to

be a central feature that enables theta to support learning, memory, and spatial processing.

Not only do various interneuron types supply precise inhibition to pyramidal cells in terms

of anatomical location on the pyramidal cell, but the distinct phase preferences enable the

interneurons to also supply precise inhibition in terms of timing.

in vitro

In an in vitro preparation, Konopacki et al. (1987) showed that the hippocampus is capa-

ble of producing theta oscillations independent of pulsed, rhythmic inputs from other brain

regions. They applied carbachol, a cholinergic receptor agonist, to hippocampal slices and

recorded the LFP from the granule or molecular layer of the dentate gyrus. Using the same

preparation, Williams and Kauer (1997) located the theta generator in CA3 and observed

that NMDA receptors were necessary to propagate theta to CA1. They also argued that

carbachol-induced theta and in vivo theta were generated by fundamentally different mech-

anisms. Gillies et al. (2002) elaborated on this criticism, observing that carbachol-induced

theta is independent of interneurons, but in vivo, theta is accompanied by strong interneuron

activity (Soltesz and Deschenes, 1993).
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As a more physiologically relevant alternative to carbachol-induced theta, Gillies et al. (2002)

activated metabotropic glutamate receptors (mGluRs) and reduced AMPA receptor (AM-

PAR) activation to generate theta in CA1 independent of CA3 and other afferent activation.

This theta persisted in the presence of atropine (a mAChR antagonist), so it also appeared to

be independent of cholinergic mechanisms; instead, it seemed to be caused by an inhibitory

network mechanism. Various network activity characteristics correlated with stratum oriens

interneuron spiking; the stratum oriens interneurons seemed to have intrinsic theta generat-

ing mechanisms, and their activity was necessary for the field theta and theta-related IPSP

trains.

Most relevant to my work, Goutagny et al. (2009) created an isolated, full CA1 subfield

preparation in which they could elicit a spontaneous theta rhythm by applying a mild,

tonic depolarization. The rhythm was detectable in the intracellular membrane potential of

the pyramidal cells and interneurons, as well as the local field potential. This preparation

received no input from the CA3, entorhinal cortex, or medial septum, suggesting that a

full, intact CA1 was sufficient to produce theta oscillations. In identical conditions in slices,

the authors were not able to detect a theta rhythm, underscoring the importance of having

the entire network intact to elicit the rhythm. However, rhythmic oscillation attributed to

theta could also be due to poor oxygenation, a problem in many preparations (Hajos et al.,

2009). This criticism was somewhat mitigated in an earlier work that observed a slower

spontaneous oscillation (around 3 Hz) and found no damage in explicit tests for damage due

to poor oxygenation (Wu et al., 2002).

Given the variety of methods capable of producing the theta rhythm, there may be mul-

tiple mechanisms of theta. Several pieces of experimental evidence suggest that multiple

mechanisms exist, such as the finding that theta is a traveling wave in the hippocam-

pus, due to the difference in preferred oscillation frequency from septal to temporal poles

(Lubenov and Siapas, 2009), the finding of multiple generators in the full, isolated CA1
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preparation (Hajos et al., 2009), and the presence of layer-specific differences in theta power,

coherence, and phase (Montgomery et al., 2009). Even in humans, there is evidence for

multiple mechanisms: Watrous et al. (2011) found that variation in theta power in dif-

ferent electrodes was differentially correlated with movement speed, task, and view, while

Mormann et al. (2008) found a gap in synchrony between the entorhinal cortex and the

hippocampus in both the theta and delta bands, suggesting that there are multiple theta

generators.

Given the likelihood of multiple theta generators existing and of there being multiple mecha-

nisms for theta, it follows that theta properties such as the dominant frequency, the oscillation

power, and even the phase preferences or firing rates of each neuron type may vary across

the preparations that exhibit theta rhythm.

1.4.2 Interneurons in theta

The interneurons of the CA1 are generally modulated by the theta rhythm and are more

likely to fire during certain phases of the rhythm, with each interneuron type having a distinct

preferred phase preference (Klausberger and Somogyi, 2008).Interneuron types also exhibit

distinct firing rates during theta. These firing rates and phase preferences are somewhat

dependent on the state of the animal. For example, though theta can be seen in the animals

both during anesthesia (urethane with ketamine and xylazine) (Klausberger et al., 2003;

2004; 2005; Fuentealba et al., 2008a; 2010) and in awake, head-fixed or freely moving animals

(Varga et al., 2012; Lapray et al., 2012), the firing phase preferences shift slightly, and the

interneurons fire more in the awake states (Table 1.1).
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Cell Firing Rate (Hz) Theta State of
Type Theta Non SWR Phase (o) Animal Ref.

ADI 8.60 0.06 0.25 156 anesth: u+k & x Klausberger et al. (2005)
Axo-axonic 17.10 3.50 2.95 185 anesth: u+k & x Klausberger et al. (2003)
Bistratified 5.90 0.90 42.80 1 anesth: u+k & x Klausberger et al. (2004)
CCK+ Basket 9.40 1.60 2.70 174 anesth: u+k & x Klausberger et al. (2005)
Ivy 0.70 1.70 0.80 31 anesth: u+k & x Fuentealba et al. (2008a)
Ivy 2.80 2.10 5.20 46 awake, free Lapray et al. (2012)
Ivy 2.40 3.00 6.70 awake, free Fuentealba et al. (2008a)
NGF 6.00 2.65 2.30 196 anesth: u+k & x Fuentealba et al. (2010)
O-LM 4.90 2.30 0.23 19 anesth: u+k & x Klausberger et al. (2003)
O-LM 29.80 10.40 25.40 346 awake, head restraint Varga et al. (2012)
PPA 5.75 1.95 1.50 100 anesth: u+k & x Klausberger et al. (2005)
PV+ Basket 7.30 2.74 32.68 271 anesth: u+k & x Klausberger et al. (2003)
PV+ Basket 234 anesth: u+k & x Klausberger et al. (2005)
PV+ Basket 21.00 6.50 122.00 289 awake, free Lapray et al. (2012)
PV+ Basket 25.00 8.20 75.00 307 awake, head restraint Varga et al. (2012)
Pyramidal 20 anesth: u+k & x Klausberger et al. (2003)
Trilaminar 0.20 0.10 69.00 trough anesth: u+k & x Ferraguti et al. (2005)
Double Proj. 0.90 0.55 26.93 77 anesth: u+k & x Jinno et al. (2007)
Oriens Retro. 0.53 0.37 53.37 28 anesth: u+k & x Jinno et al. (2007)
Radiatum Retro. 5.15 1.90 0.70 298 anesth: u+k & x Jinno et al. (2007)

Table 1.1: Firing rates and theta phase preferences for various cell types in various conditions. Theta phase is relative to the
LFP recorded in the pyramidal layer, where 0o and 360o are at the trough of the oscillation. non: non-theta/non-SWR state.
SWR: sharp wave/ripple. u+k & x: urethane + supplemental doses of ketamine and xylazine.
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1.5 Model general strategy and limitations

My strategy was to incorporate a wide array of anatomical (structural) and electrophysio-

logical (functional) constraints when designing my model, and to characterize the model in

a structured way, using the same concepts and protocols used by experimentalists to char-

acterize real, biological samples. My goal was to make the model detailed and constrained

by biology, with the exception of transient functional phenomena such as plasticity and neu-

romodulation. While these phenomena are clearly important for the learning and memory

functions associated with theta (Bliss et al., 1993; Hasselmo, 2006; Neves et al., 2008), I hy-

pothesized that the stable components of the network should be sufficient to produce a stable

oscillation, such that the role of transient phenomena can then be reserved for the encoding

and retrieval functions that happen within the framework of the theta oscillation.

Additionally, though the CA1 is expected to receive rhythmic input any time it is displaying

theta, I hypothesized that such input may not be necessary to initiate and maintain the

oscillation. Instead, the network may be predisposed to oscillate within the theta range,

freeing the phasic input from that task. The main function of the phasic input would

then not be to enforce theta, but to influence theta frequency and send the information

necessary for encoding or retrieving specific memories. Such an arrangement would make

the theta oscillation more robust and more sensitive to weak inputs, reminiscent of the

putative function of background gamma in enabling the creation of cell assemblies from even

weak inputs (Börgers et al., 2005; Kopell et al., 2010).

Also, the model does not include gap junctions. Mixed results have been found when studying

the effect on theta frequency and power of blocking, knocking out, or opening gap junctions

(Kowalczyk et al., 2013).

However, because of the specific approach and hypothesis, the model in its current state

should not be used to study encoding and retrieval functions as in Cutsuridis et al. (2010).

12



Short and long-term plasticity mechanisms, as well as neuromodulation, should be added

prior to any such studies. The model is currently capable of integrating inputs from CA3

and EC, so we hypothesize that the model in its present state may be capable of basic spatial

processing in its current state, given adequate spatial input.

1.6 Other models

This work represents a unique approach compared to other models of the hippocampus

or oscillations (or both). However, its findings are consistent with those of other models.

Previous computer modeling studies have shown that spontaneous oscillations within the

theta range can arise in networks that vary in their degree of biological constraint (Neymotin

et al., 2011a,b). Neymotin et al. (2011b) produced a 4,200 cell neocortical model based on

extended integrate-and-fire neurons connected in a straight-forward manner. Their model

produced a 7 Hz theta oscillation mostly visible in the firing patterns of the excitatory cells of

the model; the inhibitory neurons did not strongly follow this theta pattern in their spiking.

In a more biologically constrained 1,200 cell model of the CA3, Neymotin et al. (2011a)

showed that spontaneous oscillations can arise at 8.1 Hz. Their model contained pyramidal,

O-LM and basket cells only. When they supplied tonic, random input to all the synapses

of the model, an 8.1 Hz theta rhythm developed. This theta is apparently present just as

a peak in the power spectrum from their computed LFP; it’s not clear whether it is also

visible in the spiking patterns of all or some of the cell types. Rotstein et al. (2005) produced

a small network of conductance-based neurons, consisting of O-LM and fast-spiking cells,

which was able to produce an oscillation within the theta range. In this small scale network,

the bidirectional connections between the O-LM and fast-spiking cells were necessary, as

was Ih (the hyperpolarization-activated depolarizing current) in the O-LM cells, and some

applied, constant, bias current to each cell in the model. This network produced different
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theta phase firing preferences for the two classes of cell, as seen experimentally.

Cutsuridis et al. (2010) have also built a model of the CA1 network with theta driven by

rhythmic inputs from the medial septum, which they have used to study the role of theta

oscillations in learning and memory. They essentially showed how theta in the network could

be used to separate the phases of encoding and retrieval. Cutsuridis and Hasselmo (2012)

later used this model to study the contributions of CA1 interneurons to the theta rhythm.

However, they enforced different firing preferences of the interneurons by stimulating them

with two sets of medial septum neurons that were active at opposite phases of the theta

cycle, so the different timing of the interneurons was not emergent from the network, but

rather explicitly designed and controlled by the stimulation pattern they received.

We hypothesized that an isolated, full-scale, detailed CA1 network model could also exhibit

spontaneous theta and gamma rhythms as well as distinct phase preferences for each cell

type. We developed a detailed, biologically constrained computer model of CA1 and found

that it was capable of a theta oscillation given a tonic, arrhythmic excitatory input. Then

we subjected the model to various perturbations to determine the robustness of the theta

activity and to characterize the role of specific network components in the theta rhythm.

Finally, we developed a reduced model that is small enough to run on a personal computer

but still incorporates the biological constraints of network CA1.

Our model differs from these models in a number of specific ways. First, our model provides

realistic numbers and strengths of the inputs to each cell, as well as variability in the input

received by each cell. We can easily record voltage traces in our cells, see variability in the

behavior of our cells, study the activity of the cells by their position and connectivity, or

see the specific connections and inputs converging on a cell of interest. Our model provides

unprecidented detail, documentation, and flexibility for examining many hypotheses.
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1.7 Overview of the dissertation

Now we will delve into the specifics of the model. In general, this means delving into a

quantification of CA1, in which we will make reasonable estimates of anatomical properties

such as the proportion of each cell type, the total number of excitatory and inhibitory

synapses, and the number of boutons in the whole network. Specifically, chapters 2 and

3 discuss the anatomical constraints of the model. They include the work published in

Bezaire and Soltesz (2013) as well as some additional calculations required to fully constrain

the interneuron-interneuron connectivity. As the data associated with Bezaire and Soltesz

(2013) are rather dense, an alternative to understanding the calculation of cell numbers

is to walk through the interactive graphic available at www.ivansolteszlab.org for an

intuitive tour through the data and the assumptions used to generate the estimates of cell

numbers. In addition to these population constraints, there are also morphological properties

and topological constraints, also discussed in Chapter 3. Next, in Chapter 4, I discuss the

electrophysiological constraints of the model.

Chapter 5 moves on to discuss the behavior of the constrained model, specifically its ability

to generate and maintain spontaneous theta oscillations. I characterize many properties

of the oscillations and compare them with experimental observations. I also explore what

happens if the network receives timed or patterned inputs, to see under what conditions the

afferents can impose a specific oscillation on the CA1 network.

In Chapter 6, I share the software program and process documentation that I have made

publically available to fully document my model and ease its adoption by others who wish

to carry it forward. Finally, in Chapter 7, I discuss future steps that may be taken with the

model, as well as conclude my defense of my original thesis.
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1.8 General methods

All simulations were performed using the NEURON simulation environment

(Carnevale and Hines, 2005). We report results here from our full scale network model

as well as a reduced Network Clamp approach. We implemented our model in parallel

NEURON 7.3, a neural network simulator (Carnevale and Hines, 2005). The model

simulations were run with a fixed time step of 0.01 or 0.02 ms, for a simulation duration of

600 or 1000 ms. We executed the model on several supercomputers, including University of

Texas’ Stampede, San Diego Supercomputing Center’s Trestles, and University of California

at Irvine’s HPC. We used our custom-built, MATLAB-based SimTracker tool to design,

execute, organize, and analyze the simulations (Bezaire and Soltesz, 2015). A list of

abbreviations used throughout this work is given in Table 1.2

CB calbindin
CB1R CB1 cannabinoid receptor
CCK cholecystokinin
CR calretinin
COUP-TFII COUP transcription factor 2
M2R muscarinic acetylcholine receptor type 2
mGluR1α metabotropic glutamate receptor type 1α
mGluR8 metabotropic glutamate receptor type 8
nNOS neuronal nitric oxide synthase
NPY neuropeptide Y
PV parvalbumin
SOM somatostatin
VIP vasoactive intestinal polypeptide

ADI Apical dendritic innervating
PPA Perforant path-associated
SCA Schaffer Collateral-associated

Table 1.2: List of abbreviations for neurochemical markers and cell types.
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1.8.1 Model Development

The model contained one type of pyramidal cell (with either a simple or complex morphology)

and eight types of interneurons, including PV+ basket cells, CCK+ basket cells, bistratified

cells, axo-axonic cells, O-LM cells, Schaffer Collateral-associated cells, neurogliaform cells,

and ivy cells. The behavior of each cell type was characterized using a current injection

sweep that matched experimental conditions. Published experimental data and model cell

data were generated and compared side by side (see website). Next, cells were connected

using double exponential synapses, with each connection comprising a realistic number of

synapses (usually 10). Connections were randomly picked from all the cells whose somata

were within the axonal extent of the presynaptic cell’s soma, in such a way that the bouton

distribution of the cell was honored. Potential synaptic locations on the postsynaptic cell

were constrained by the known target area of the presynaptic cell.

1.8.2 Stimulation

The stimulation in our model moves the cell potentials away from rest and also away from the

chloride reversal potential, which is important to reveal the spontaneous, interneuron-driven

oscillation. Because none of the cells spike spontaneously in our network, some stimulation

was required.

We constrained the convergence of the stimulating afferents using anatomical data. We

also constrained the weight of the stimulation using electrophysiological observations and by

maintaining realistic firing rates for the cell types. Because we used experimental data for

the constraints, we occasionally refer to our proximal inputs as coming from CA3 and our

distal inputs as coming from entorhinal cortex. However, the stimulation was not patterned

to resemble actual spike trains from those areas, because the focus of this paper was CA1

network in isolation from rhythmic extra-CA1 influences, though the model is organized so
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that these inputs can be added and studied in detail in the future. Instead, we used random,

independent Poisson-distributed spike trains. The model cells were connected to a subset of

these afferents, such that they received a constant level of excitatory synaptic input.

1.8.3 Model Execution

We used Mercurial code versioning system to maintain our code across personal computers

and each supercomputer that we used. With every simulation, we logged the code version

used as well as all the parameter values. Simulations were run on several dozen processors

(HPC), several hundred processors (Trestles), or several thousand processors (Stampede) as

appropriate for the scale of the model. We began with a small scale model and, upon seeing

that small networks could produce physiological oscillations, gradually increased the size to

full scale while observing the network activity.

1.8.4 Analysis

We subjected each simulation to a standard analysis using our SimTracker tool. We first

visually observed the presence or absence of theta or gamma oscillations in the spiking

pattern of the network. Then we calculated the Fast Fourier Transform (FFT) to determine

the power of any oscillations in the spike timing per cell type. After finding a dominant theta

or gamma frequency, we then analyzed the level of modulation and preferred firing phase for

each cell type. Finally, we calculated the firing rate of each cell type. We also surveyed all

simulations together in a meta-analysis of how theta appeared within the parameter-space.
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1.8.5 Accessibility

The model website is http://www.ivansolteszlab.org/models/ca1.html. The website

includes a graphical tour of the model, links to our model code on ModelDB (published

version) and Open Source Brain (working version), and model results for modelers who want

to analyze our results without rerunning a simulation.

1.8.6 Network Clamp

Simulations consisted of a detailed pyramidal cell model and simple point process models of

local neurons and afferents that synapsed on the pyramidal cell. The somatic voltage of the

pyramidal cell was recorded. Data analysis was then performed on the somatic voltage trace.

Each simulation lasted 20 s and was run with a fixed time step of 0.1 ms. The simulations

were run in serial on a personal computer with 8 GB of RAM.

All analyses of data were performed using custom scripts in MATLAB, version R2014a.

To calculate the phase shifts between oscillations, each somatic voltage trace was subjected

to a bandpass filter at 8 Hz. The phase shift was calculated relative to a reference timepoint

(t=0) based on the average offset of the peaks of the oscillation. The phase shifts between the

control trace and the disinhibited traces were then compared. The power of the oscillation

at the theta frequency was computed using a Fast Fourier Transform.

The firing rate was calculated by counting the number of spikes throughout the simulation

and dividing by the simulation time. A spike was registered whenever the somatic voltage

potential crossed the threshold of -10 mV in the positive (depolarizing) direction.

We attached various presynaptic cells to the pyramidal cell model as described in the re-

mainder of this section. Then we recorded the voltage in the soma and various dendritic
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compartments, as well as the currents through the various ion channel mechanisms, and the

spiking pattern of the pyramidal cell. These outputs were subjected to various forms of

analysis as described in Chapter 5.
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Chapter 2

Quantitative Assessment of Neuron

Numbers

The CA1 network is one of the most studied areas in the mammalian brain. Both experi-

mentalists and modelers are interested in the roles played by each interneuron type in the

function of the CA1 network. As the field progresses in hypothesizing about and testing the

roles of various CA1 interneurons and microcircuits, an idea of the relative abundance of

each interneuron and its connections with other neurons has become important. To build a

truly data-constrained network model, the assembly of a current knowledge base is not just

important, but a requirement.

I determined that sufficient information existed about the rat CA1 region to estimate the

numbers of most interneuron types. I felt this assessment was necessary to sufficiently con-

strain the model and also to extract the most value out of existing data. Such an assessment

would be useful in modeling and for the field in general, to enable us to better quantify the

role of each interneuron type in the network. Therefore, I combined experimental data from

over 100 publications to estimate the fraction and absolute number of 16 types of interneu-

21



rons (Bezaire and Soltesz, 2013), as shown in Figure 2.1. The results of this quantitative

assessment of the CA1 have enabled me to better constrain my model network based on

biological observations (Table 2.2).

The knowledge base produced here, beyond constraining my model, is broadly useful. It

should inspire future projects for two reasons. One, the assessment is a single-frame shot of

the state of our collective knowledge. Because of the fast-moving pace of research, it will

need to be updated continually in the future. Two, the information would be more accessible

in an online database. By publishing the assessment in this form, I hope to lay a framework

upon which others can build an online system of sharing and calculating quantitative data.

2.1 Methods of assessment

In determining the relative abundance of each interneuron type, I looked for characteristics

that, when combined, uniquely identified a neuron type population. The key attribute that

distinguishes the various interneuron types is the axonal arborization pattern, which defines

where GABA is being delivered on the distinct axo-somato-dendritic domains of postsynaptic

neurons. However, for technical reasons, quantitative neuron counts cannot be made based

on axonal arborization alone. Such an approach would require that I visualize and count

all neurons of a single subtype within CA1 of a given animal, with each and every neuron’s

axonal arbor visualized and verified as belonging to that particular neuronal subtype, which

is not currently experimentally feasible. Consequently, the calculation of neuron numbers

was chiefly based on expression of neurochemical markers. By necessity, I often considered

co-expression of a certain marker combination as a signature of a particular interneuron

type. Not all interneurons of a given type necessarily express markers reliably enough to be

detected, so in general the estimates at which I arrived should be considered lower bounds.

After completing my analysis, a small percentage of neurons remained undefined; this number
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represents the leeway on the upper bound of the various neuron types plus the contribution

of the lesser known neuron types, for which I could not estimate their number.

In some cases I used marker expression by layer to refine my estimates. While layer position

is not sufficient to identify neuron types, quantitative data are often layer-specific and could

be used as a guide for differentiating similar neuron types. For example, when estimating the

numbers of CCK+ neurons other than basket cells, I assumed CCK+ neurons in the stra-

tum lacunosum-moleculare were perforant path-associated cells, while those in the stratum

radiatum were Schaffer Collateral-associated or apical dendritic innervating cells.

To arrive at more detailed estimates, I made assumptions about marker expression, laminar

distribution, and relative abundance of various neuron types. All assumptions are listed

in a separate table (Table 2.1), as well as in the text. In general, I did not account for

any gradients or heterogeneity in the distribution of individual neuron types. For example,

throughout the calculations I assumed the CA1 was homogenous along the septotemporal

axis. I averaged observations made in dorsal and ventral CA1 where available, or in some

cases took observations made in the dorsal CA1 to be representative of the entire CA1.

I made these simplifications though gradients and heterogeneity in marker expression have

been shown for some markers in both principal neurons and interneurons (Kosaka et al., 1987;

Nomura et al., 1997a;b; Fuentealba et al., 2010). These simplifications should be revisited in

models where dorsal/ventral differences are of interest. Additionally, cellular properties and

connectivity can vary as a function of depth within a layer or other factors (Mizuseki et al.,

2011a; Slomianka et al., 2011; Graves et al., 2012). Therefore, I made these simplifications

because not enough information is available to incorporate these characteristics into our

estimates, not because I think that these factors are not important for certain aspects of

hippocampal function.
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2.2 Estimates of neuron numbers

Combining the results of a vast literature survey and a well-documented list of assumptions

(Table 2.1), I arrived at a comprehensive estimate of interneuron numbers by cell type and

anatomical layer. The total estimates for each interneuron type by layer are given in Table

2.2 and shown in Figures 2.1 and 2.2. The strategies used to calculate the estimates for each

cell type depend on the experimental data available and so they vary for each cell. For an

interactive, graphical tour of the calculations, see www.ivansolteszlab.org. .

# Explicit, Forced Assumption Sec.

1 11% of CA1 and CA3 cells are GABAergic interneu-

rons.

2.2.1

Experimental observations range from 7 − 11%. We assumed

11% after calculating the number of boutons each interneuron

would be required to have for all the interneurons to fully cover

the GABAergic synapses on all the pyramidal cells.

2 CA1 pyramidal cells are homogeneous. 2.2.2

CA1 pyramidal cells vary in many properties as a function of

factors such as dorsal/ventral location and depth within the

pyramidal layer. However, in the absence of detailed quanti-

tative information about how the pyramidal cell bouton count

and dendrites vary with these factors, we considered the data

from a few CA1 pyramidal cells as representative of all pyra-

midal cells.
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# Explicit, Forced Assumption Sec.

3 Each CA1 pyramidal cell synapses only once onto each

postsynaptic CA1 pyramidal cell.

3.2.1

4 Each CA1 pyramidal cell connection onto a CA1 in-

terneuron comprises 3 synapses.

3.2.1

We made these assumptions to determine the divergence of each

CA1 pyramidal cell. Deuchars and Thomson (1996) studied

the anatomy of one pyramidal to pyramidal cell pair that was

found to have two synapses, but its amplitude was over twice

the average. We concluded that most pyramidal to pyramidal

connections comprise one synapse. For CA1 pyramidal cell to

interneuron connections, we based our assumption on an obser-

vation that CA1 pyramidal cells generally contact O-LM cells

with three synapses each (Biro et al., 2005). However, in CA3,

some pyramidal cell to basket cell connections included only one

synapse (Sik et al., 1993; Gulyás et al., 1993) and the EPSP

amplitude range of these connections (Gulyás et al., 1993) was

similar to that seen in connections in CA1 (Ali et al., 1998).

Yet, current clamp recordings of pyramidal cell to interneuron

connections (bistratified and basket cells) in the CA1 revealed a

large enough range in EPSP amplitude to suggest that at least

some connections may comprise multiple synapses, especially

connections onto bistratified cells (Ali et al., 1998).
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# Explicit, Forced Assumption Sec.

5 Observations made in dorsal CA1 are representative of

the whole CA1.

2.1

6 The expression of COUP-TFII in interneurons dorsally

is representative of the whole CA1.

2.2.3

Some properties (marker expression, frequency of certain cell

types) vary between dorsal and ventral CA1. Where possible,

we averaged values from both sides. In some cases, only dorsal

area observations were available. Therefore, our findings will

be more representative of the dorsal CA1.
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# Explicit, Forced Assumption Sec.

7 All nNOS+/NPY+ cells are either ivy cells or neu-

rogliaform cells.

2.2.3

8 All nNOS+/NPY+ cells with somata in the stratum

oriens or pyramidale are ivy cells.

2.2.3

9 nNOS+/NPY+/reelin+ cells in the stratum radiatum

are neurogliaform cells.

2.2.3

10 nNOS+/NPY+/reelin- cells in the stratum radiatum

are ivy cells.

2.2.3

11 All ivy cells are nNOS+/NPY+ with somata in the

stratum oriens, pyramidale, or radiatum.

2.2.3

12 All α-actinin-2+/CR- cells in the stratum lacunosum-

moleculare are neurogliaform cells.

2.2.3

We considered nNOS and NPY to generally indicate neurogli-

aform family cells, though we resorted to different criteria in the

stratum lacunosum-moleculare because some nNOS+/NPY+

cells there were found to not be neurogliaform family cells. Ivy

and neurogliaform cells have similar marker expression profiles,

so we resorted to separating them by layer and reelin expres-

sion.
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# Explicit, Forced Assumption Sec.

13 Ivy and neurogliaform cells make 10 classical synapses

on each postsynaptic cell.

3.2.2

Most neurogliaform family cell boutons do not participate in

classical synapses (i.e., do not have a corresponding postsy-

naptic element) but instead rely on volume transmission. For

our convergence calculations, we found it necessary to assume

a number of corresponding postsynaptic elements (classical

synapses) for each connection. We based this number on a

prediction made about classical synapses on observations of

neurogliaform cell to pyramidal cell connections in the neocor-

tex.

14 All stratum oriens SOM+/CB+ cells projecting to the

septum are double projection cells.

2.2.4

15 All SOM+ cells projecting to the subiculum are either

double projection or oriens-retrohippocampal cells.

2.2.4

Of the projection cells, four types are known to target the

subiculum. We separated these into two groups by their SOM

expression.
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# Explicit, Forced Assumption Sec.

16 Projection interneurons of the stratum oriens with ax-

ons in strata oriens and radiatum have the same num-

ber of local boutons as do the so-called back projection

cells.

3.2.2

17 Projection interneurons of the stratum oriens with ax-

ons in strata oriens and radiatum have the same lam-

inar distribution of local boutons as do conventional

bistratified cells.

3.2.2

For several projection cell types, their cell numbers could be

estimated but we had no direct observations of their bouton

counts or distribution. Because their axon arbors are similar

to those of the so-called back projection cells (both the lam-

inar distribution and the small number of local targets) and

conventional bistratified cells (laminar distribution), we used

information from those types to estimate total bouton counts

and distribution respectively, which enabled us to calculate lo-

cal convergence.
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# Explicit, Forced Assumption Sec.

18 All stratum oriens-specific cell types contact their post-

synaptic targets with 10 synapses each.

3.2.2

A light microscopy study of O-LM to pyramidal cell connec-

tions showed a range of three to 17 potential synapses per

connection (Maccaferri et al., 2000). We took the average of

10 synapses per connection, assuming the potential synapses

made actual contact. For projection cells whose axons mainly

ramify in the strata radiatum and oriens (formerly known as

oriens-bistratified cells), a connection was observed to comprise

10 potential synapses (Maccaferri et al., 2000). Therefore, we

assumed that all stratum oriens-specific cells contacted their

postsynaptic targets with 10 synapses.

19 The ratio of PV+ basket cells:bistratified cells:axo-

axonic cells within the stratum pyramidale is the same

as the ratio in other layers.

2.2.5

In the absence of data about the composition of the PV+ cells

in the stratum radiatum and oriens, we assumed they were sim-

ilar to the stratum pyramidale. Though this assumption may

favor PV+ basket cells, the majority of PV+ cells are located

in the stratum pyramidale, and so we felt observations made in

the stratum pyramidale were could be treated as broadly rep-

resentative of PV+ cells in the whole CA1 without introducing

significant error.
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# Explicit, Forced Assumption Sec.

20 Axo-axonic cells have an average of 7,200 boutons each. 3.2.2

We based this assumption on the published divergence of a

single axo-axonic cell and on the observed number of synapses

made for one connection onto a pyramidal cell.

21 The ratio of PV+:CCK+ basket cell boutons in the

entire CA1 is 1.6:1.

2.2.6

We averaged data regarding the relative frequency of PV+

and CCK+ basket cell boutons on pyramidal cell somata and

in the pyramidal layer of the mouse CA1 (Foldy et al., 2010;

Wyeth et al., 2010). We took this ratio to be representative

of the total number of boutons of each basket cell type in rat

CA1, for the purpose of calculating the number of CCK+ bas-

ket cells.

22 Only basket cells synapse on the somata of pyramidal

cells.

3.3.1

Though other cell types sometimes synapse on pyramidal cell

somata, such as bistratified, ivy, or trilaminar cells, we as-

sumed that their contribution was minor in our calculations

of interneuronal convergence onto pyramidal cells.
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# Explicit, Forced Assumption Sec.

23 Basket cells in the stratum radiatum are likely CCK+

basket cells.

3.2.2

24 CCK+ basket cells are found in all layers of the CA1. 2.2.6

Many CCK+ basket cells are located in the stratum radiatum;

therefore, we assumed unlabelled basket cells in the stratum

radiatum were representative of CCK+ basket cells. However,

CCK+ basket cells are also found in every other layer of the

CA1, even in the stratum lacunosum-moleculare (Vida et al.,

1998).

25 CCK+ SCA and ADI cells are only found in the stra-

tum radiatum; all CCK+ cells that are not basket cells

in that layer are SCA or ADI cells.

2.2.6

26 CCK+ PPA cells are only found in the stratum

lacunosun-moleculare; all CCK+ cells that are not bas-

ket cells in that layer are PPA cells.

2.2.6

27 Of CCK+ cells in the stratum radiatum that are not

basket cells, half are SCA cells and half are ADI cells.

2.2.6

To gain a rough idea of the numbers of CCK+ cell types,

we identified them based on their layer. However, various

CCK+ cell types are found in more than one layer. For ex-

ample, here we assumed that PPA cells were only in the stra-

tum lacunosum-moleculare, but in reality they are occasionally

found in the stratum radiatum and even once in the stratum

oriens (Klausberger et al., 2005).
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# Explicit, Forced Assumption Sec.

28 All CCK+/VIP+ and CCK+/VGLUT3+ GABAergic

cells are CCK+ basket cells.

2.2.6

However, ADI cells have been shown to express VGLUT3

(Klausberger et al., 2005), but it is not known what propor-

tion of them express VGLUT3.

29 CCK+ basket cells do not express CB; all CCK+/CB+

cells are non-basket cell types.

2.2.6

30 All the CCK+/CB- cells in the strata oriens and pyra-

midale are CCK+ basket cells.

2.2.6

31 Lesser known CCK+ cell types are found in the strata

oriens and pyramidale.

2.2.6

Since no CCK+ basket cells have been found to express CB,

we assumed that any CCK+/CB+ cells were not basket cells.

Little has been published about the lesser-known CCK+ cell

types, so we assumed they made up the remaining non-basket

cell types in the strata oriens and pyramidale.

32 The septotemporal and mediolateral bouton distribu-

tion of CCK+ basket cells is the same as for PV+

basket cells.

3.2.2

We made this assumption so that we could extrapolate from

the slice data to a full axonal bouton count for CCK+ basket

cells.
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# Explicit, Forced Assumption Sec.

33 CCK basket cells make 8 synapses per connection with

other interneurons.

3.2.2

We made this assumption because they have been shown to

make 8 synapses/connection with pyramidal cells in mouse.

However, it has been shown that PV+ basket cells make only

one or a few synapses per connection with interneurons despite

making many synapses per connection on pyramidal cells. It is

not known whether CCK+ basket cells also display this differ-

ence with connections onto interneurons, so we assumed they

did not.
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# Explicit, Forced Assumption Sec.

34 All IS cells express CR or VIP or both. 2.2.7

35 All cells that express CR or VIP are IS I, II, or III

cells, except for CCK+/VIP+ basket cells and CR+

septally projecting cells.

2.2.7

36 CR+/VIP- cells are IS-I or septally projecting cells,

CR-/VIP+ cells are IS-II cells, and CR+/VIP+ cells

are IS-III cells.

2.2.7

37 All VIP+ cells are CCK+/VIP+ basket cells or IS

cells.

2.2.7

CR is generally a marker of interneuron specificity, but not all

IS cells express it. Those that do not may express VIP (but

so do some basket cells). Therefore, we took CR and VIP

to be the most reliable markers of interneuron specificity and

considered that the various combinations of the two markers

identified different types of IS cells. Enkephalin may also be

expressed by IS cells, but it is also expressed by non-IS cells so

we have not derived any information from its expression.

38 Approximately 10% of GABAergic cells in the CA1 ex-

press calbindin.

2.2.8

It has been previously estimated that 10% of GABAergic cells

are CB+ (Freund and Buzsáki, 1996).
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# Explicit, Forced Assumption Sec.

39 Averaging the inputs to the CA1 from a CA3a and

CA3c cell represents the inputs from an average CA3

cell.

3.2.3

There are known to be significant differences in bouton count

and distribution from CA3a and CA3c. Since we had data from

both areas, we combined it to calculate the laminar distribution

and total CA1 divergence of an average CA3 pyramidal cell.

40 For those cell types for which their ratio of innervation

of pyramidal cells to interneurons is unknown, the bou-

ton target ratio of 92:8 (pyramidal cell:interneuron) is

adequate.

3.2.2

We determined the ratio as described in the methods. This ra-

tio took into account the proportion of pyramidal cells and

interneurons as well as their numbers of GABAergic input

synapses. In reality, the ratio is likely to be even more skewed

because some interneurons receive a significant amount of in-

hibition from afferent GABAergic neurons.
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# Explicit, Forced Assumption Sec.

41 Unless stated otherwise, proximally projecting cell

types only contact postsynaptic pyramidal cells on

basal dendrites in the stratum oriens and proximal api-

cal dendrites in the stratum radiatum.

Some bistratified cells have been shown to synapse in the stra-

tum pyramidale and some ivy or SCA cells to synapse in the

stratum lacunosum-moleculare, but there is no quantitative

data about the fractions of these cells that synapse in that

layer.

42 Unless stated otherwise, distally projecting cell types

only contact postsynaptic pyramidal cells on distal api-

cal dendrites in the stratum lacunosom-moleculare.

3.3.1

This assessment still accounts for some neurogliaform cell bou-

tons in the stratum radiatum and some O-LM cell boutons in

the stratum oriens, but assumes that PPA cells only synapse

in the stratum lacunosum-moleculare since there are no quan-

titative data about them in other layers.

43 The entorhinal cortex supplies most of the excitatory

inputs to the stratum lacunosum-moleculare.

3.2.3

Though the nucleus reuniens supplies a significant portion of

excitatory inputs to the stratum lacunosum-moleculare, not

enough data are available to quantify the contribution, so

we have assumed that the excitatory inputs to the stratum

lacunosum-moleculare are supplied by the entorhinal cortex.

Table 2.1: List of explicit assumptions we were compelled to make to complete our assess-
ment.
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Figure 2.1: Estimate of interneuron numbers in rat CA1

To calculate the number of each interneuron type, we first needed a basis of the total number

of interneurons. I combined an estimate of the total number of neurons in the rat CA1 with

an observation of the fraction of neurons that were GABAergic to calculate the total number

of interneurons. From there we calculated the fraction of interneurons that were each cell

type, and then arrived at total cell numbers for each interneuron type.

2.2.1 Neuron Numbers, Boutons, and Divergence

Here, we began by estimating the total number of neurons in the rat CA1 as 350,000,

within the range found for 30-day-old Wistar rats (320,000 - 380,000) (West et al., 1991).

GABAergic interneurons constitute 7% to 11% of all hippocampal neurons (Woodson et al.,

1989; Aika et al., 1994). To get a more precise estimate, we calculated the average number

of boutons each interneuron would need to have available to synapse on pyramidal cells if the
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Cell Type Fraction Total SO SP SR SLM
Neurogliaform Family 32.2% 12,390 980 5,410 3,030 2,970
Ivy 22.9% 8,810 980 5,410 2,420 0
Neurogliaform 9.3% 3,580 0 0 610 2,970
SOM Expressing 9.3% 3,580 3,580 0 0 0
O-LM 4.3% 1,640 1,640 0 0 0
Double Projection 2% 760 760 0 0 0
CB- septal proj. 0.5% 190 190 0 0 0
Oriens-retrohipp. 1.7% 640 640 0 0 0
Other SOM+ Cells* 0.9% 350 350 0 0 0
PV Expressing 23.9% 9,210 2,200 6,460 550 0
PV+ Basket 14.4% 5,530 1,320 3,880 330 0
Bistratified 5.7% 2,210 530 1,550 130 0
Axo-axonic 3.8% 1,470 350 1,030 90 0
CCK Expressing 13.9% 5,370 1,140 1,070 1,960 1,200
CCK+ Basket 9.4% 3,600 780 940 1,170 710
ADI 1% 390 0 0 390 0
SCA 1% 400 0 0 400 0
PPA 1.3% 490 0 0 0 490
CCK Misc. 1.3% 490 360 130 0 0
Interneuron Specific 19.4% 7,470 780 3,190 1,450 2,050
IS I 11% 4,250 780 1,800 780 890
IS II 5.1% 1,970 0 480 450 1,040
IS III 3.2% 1,250 0 910 220 120
Other Interneurons 1.2% 480
TOTAL 100% 38,500 8,680 16,130 6,990 6,220

Table 2.2: Estimate of interneuron numbers in rat CA1 (Bezaire and Soltesz, 2013). Ab-
breviations: ADI - apical dendritic innervating, CB- calbindin, CCK - cholecystokinin, IS -
interneuron specific, O-LM - oriens-lacunosum-moleculare, PPA - Perforant Path-associated,
proj. - projection, PV - parvalbumin, retrohipp. - retrohippocampal, SCA - Schaffer
Collateral-associated, SLM - stratum lacunosum-moleculare, SOM - somatostatin, SO - stra-
tum oriens, SP - stratum pyramidale, SR - stratum radiatum
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Figure 2.2: Square pie chart of interneurons
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CA1 cells
GABAergic
38,500 cells

COUP-TFII+
16,500 cells

Both
16,170 cells

42% 98%

Figure 2.3: Co-expression of GABA and COUP-TFII in CA1. Known data: 42% of GABAer-
gic cells express COUP-TFII and 98% of COUP-TFII are GABAergic (Fuentealba et al.,
2010); 38, 500 of CA1 cells are GABAergic (Table 2.1). Derived data: total number of
COUP-TFII+ cells in the CA1 (16, 500). We then used the calculated number of COUP-
TFII+ cells to estimate the abundance of other classes of cells.

total fraction of GABAergic neurons were 7% or 11%. At 7%, given that CA1 pyramidal cells

receive approximately 1,830 GABAergic synapses on their dendrites, somata, and proximal

axons (Meǵıas et al., 2001), each interneuron would need to have 24,310 boutons available

for synapsing onto pyramidal cells. However, with a fraction of 11%, each interneuron would

need only 14,810 boutons to synapse on pyramidal cells, within the range of bouton counts

seen for most interneurons. Though neurogliaform family cells have many more boutons,

when only the boutons contributing to classical synapses are considered (Olah et al., 2009),

the numbers are also within range. Therefore, we generated the following estimates using the

interneuronal fraction of 11%, for a total of 311,500 pyramidal cells and 38,500 GABAergic

interneurons (note that the 11% interneuronal fraction is listed as an assumption in Table

2.1).
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(a)

CA1 stratum pyramidale cells
nNOS+/NPY+
5,410 cells

COUP-TFII+
5,780 cells

Both
3,410 cells

63% 59%

(b)

CA1 stratum oriens cells
nNOS+/NPY+

980 cells
COUP-TFII+
2,310 cells

Both
790 cells

80% 34%

(c)

CA1 stratum radiatum cells
nNOS+/NPY+
3,030 cells

COUP-TFII+
3,630 cells

Both
1,270 cells

42% 35%

Figure 2.4: Co-expression of nNOS/NPY and COUP-TFII in distinct layers of CA1. We
used the number of COUP-TFII cells in each layer and the percentage of overlap relative
to each population (Fuentealba et al., 2010, see suppl. table 2) to calculate the total num-
ber of nNOS+/NPY+/COUP-TFII+ cells and then the number of nNOS+/NPY+ cells
(underlined) for each layer.
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(a)

CA1 stratum lacunosum-moleculare cells
α-actinin-2+
2,150 cells

COUP-TFII+
4,790 cells

Both
2,150 cells

100% 45%

(b)

CA1 stratum lacunosum-moleculare cells
α-actinin-2+
2,150 cells

Neurogliaform
2,970 cells

Both
2,110 cells

98% 71%

Figure 2.5: Co-expression of α-actinin-2 and COUP-TFII in CA1 stratum lacunosum-
moleculare. Logic used to obtain the number of neurogliaform cells in the CA1 stratum
lacunosum-moleculare. a) Given the number of COUP-TFII cells in the stratum lacunosum
and the percentages of overlap (Fuentealba et al., 2010), the total number of α-actinin-
2+/COUP-TFII+ and α-actinin-2+ cells can be calculated. b) Given the total number of
α-actinin-2+ cells and the percentage that are likely to be neurogliaform cells (Price et al.,
2005), the total number of neurogliaform cells can be calculated.

CA1 cells
CCK+

4,620 cells

CB1R+
5,400 cells

Both
4,620 cells

100% 86%

Figure 2.6: CCK and CB1 receptors in CA1. Known data: 100% of CCK+ cells express
CB1R and 86% of CB1R+ cells express CCK (Katona et al., 1999b). Derived data: total
number of CB1R+ cells in the CA1 (5, 400).

2.2.2 Calculation of Pyramidal Cells

Though CA1 pyramidal cells have recently been found to exhibit more heterogeneity

than previously realized (Mizuseki et al., 2011b; Slomianka et al., 2011; Graves et al., 2012;

Lee et al., 2014), in the absence of sufficient detailed, quantitative information, we considered

them as one homogenous group of 311,500 cells (see assumption in Table 2.1).
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(a)

CA1 stratum oriens cells
CR+/VIP-
970 cells

COUP-TFII+
5,780 cells

Both
810 cells

83% 35%

(b)

CA1 stratum pyramidale cells
CR+/VIP-
1,800 cells

COUP-TFII+
2,310 cells

Both
1,540 cells

85% 27%

(c)

CA1 stratum radiatum cells
CR+/VIP-
780 cells

COUP-TFII+
3,630 cells

Both
720 cells

93% 20%

(d)

CA1 stratum LM cells
CR+/VIP-
890 cells

COUP-TFII+
4,790 cells

Both
890 cells
100% 19%

Figure 2.7: Co-expression of CR+/VIP- and COUP-TFII in distinct layers of CA1. Given
the number of COUP-TFII cells in that layer and the percentage of overlap relative to each
population (Fuentealba et al., 2010, see suppl. table 2), the total number of CR+/VIP-
/COUP-TFII+ cells and then the number of CR+/VIP- cells (underlined) was calculated
for each layer.
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(a)

CA1 stratum oriens cells
CR-/VIP+
230 cells

COUP-TFII+
5,780 cells

Both
180 cells

80% 8%

(b)

CA1 stratum pyramidale cells
CR-/VIP+
1,040 cells

COUP-TFII+
2,310 cells

Both
890 cells

83% 15%

(c)

CA1 stratum radiatum cells
CR-/VIP+
250 cells

COUP-TFII+
3,630 cells

Both
200 cells

81% 6%

(d)

CA1 stratum LM cells
CR-/VIP+
120 cells

COUP-TFII+
4,790 cells

Both
120 cells
100% 3%

Figure 2.8: Co-expression of CR-/VIP+ and COUP-TFII in distinct layers of CA1. Given the
number of COUP-TFII cells in that layer and the percentage of overlap relative to each pop-
ulation (Fuentealba et al., 2010, see suppl. table 2), the total number of CR-/VIP+/COUP-
TFII+ cells and then the number of CR-/VIP+ cells (underlined) was calculated for each
layer.
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(a)

CA1 stratum pyramidale cells

CR+/VIP+
550 cells

COUP-TFII+
2,310 cells

Both
330 cells

60% 6%

(b)

CA1 stratum radiatum cells
CR+/VIP+
490 cells

COUP-TFII+
3,630 cells

Both
360 cells

72% 10%

(c)

CA1 stratum LM cells
CR+/VIP+
1080 cells

COUP-TFII+
4,790 cells

Both
900 cells

83% 19%

Figure 2.9: Co-expression of CR+/VIP+ and COUP-TFII in distinct layers of CA1.
Given the number of COUP-TFII cells in that layer and the percentage of overlap rela-
tive to each population (Fuentealba et al., 2010, see suppl. table 2), the total number of
CR+/VIP+/COUP-TFII+ cells and then the number of CR+/VIP+ cells (underlined) was
calculated for each layer.
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2.2.3 Calculation of Neurogliaform Family Cells

Neurogliaform family cells, including ivy and neurogliaform cells, form the most abundant

group of interneurons within CA1 (for a review, see Armstrong et al. (2012)). They often

express neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and α-actinin-2, as

well as the nuclear receptor COUP-TFII (Price et al., 2005; Fuentealba et al., 2010). We first

calculated the number of COUP-TFII+ cells and then used data about the co-expression

of COUP-TFII with nNOS and NPY or α-actinin-2 to estimate the number of ivy and

neurogliaform cells. We assumed that all nNOS+/NPY+ cells in the strata oriens, pyrami-

dale, and radiatum were either ivy or neurogliaform cells (Table 2.1). However, Price et al.

(2005) found that, in the stratum lacunosum-moleculare, some non-neurogliaform cells also

expressed nNOS or, more rarely, nNOS and NPY. Therefore, in our calculations for neu-

rogliaform cells in the stratum lacunosum-moleculare, we relied on α-actinin-2 expression

only.

Though there is known to be a dorsal/ventral gradient in the expression of COUP-TFII, we

assumed the expression of COUP-TFII in interneurons dorsally is representative of the whole

CA1 (Table 2.1). Approximately 42% of GABAergic neurons in the CA1 express COUP-TFII

(Fuentealba et al., 2010). Conversely, about 98% of COUP-TFII expressing neurons in the

CA1 are GABAergic. Combining these two observations (Fig. 2.3), there are roughly 16,500

COUP-TFII expressing neurons in the CA1 and 16,170 COUP-TFII+/GABAergic neurons

in the CA1. We combined this estimate of COUP-TFII+ neurons with their experimentally

observed laminar distribution (Fuentealba et al. (2010), see their Supporting Information

Fig. 1A) to get the total number of COUP-TFII+ neurons per layer, as shown in Table

2.3. Next, we used these numbers to calculate the number of ivy and neurogliaform cells.

Because the assays looked at the coexpression of various markers with COUP-TFII, but not

GABA, we performed our calculations on the basis of COUP-TFII+ neurons, rather than

GABAergic COUP-TFII+ neurons. However, we considered any neurons expressing nNOS
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or NPY to be GABAergic.

Ivy Cells

Ivy cells express nNOS and NPY (Fuentealba et al., 2008a) but not reelin (Fuentealba et al.,

2010; Armstrong et al., 2012). Their somata are generally found in the stratum pyramidale

and sometimes in the strata radiatum or oriens (Fuentealba et al., 2010; Somogyi et al.,

2012). Not all ivy cells express COUP-TFII (Fuentealba et al., 2010), so nNOS/NPY ex-

pression is a better indicator of ivy cells than the presence of COUP-TFII with nNOS and

NPY. No other cell type in the stratum pyramidale is known to express both nNOS and

NPY, though bistratified cells express NPY (Fuentealba et al., 2008a; Klausberger et al.,

2004) and interneuron-specific III cells may express nNOS (Tricoire et al., 2010).

Layer % cells Total cells
stratum lacunosum-moleculare 29% 4,790
stratum radiatum 22% 3,630
stratum pyramidale 35% 5,780
stratum oriens 14% 2,310

Table 2.3: Distribution of COUP-TFII expressing cells by layer. The percent of COUP-
TFII expressing cells found in each layer is listed (adds to 100% of GABAergic COUP-TFII
expressing cells), as well as the number of cells assuming a basis of 16,500 COUP-TFII
expressing cells. Percentages from Fuentealba et al. (2010, see their suppl. fig. 1A).

.
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Layer
Assay Total SO SP SR SLM Ref.
nNOS/NPY/CB 81.0% Fuentealba et al. (2008a, Table S2)
nNOS/NPY/CR 93.3% Fuentealba et al. (2008a, Table S2)
nNOS/NPY/SOM 80.3% Fuentealba et al. (2008a, Table S2)
nNOS/NPY/α-actinin-2 87.6% Fuentealba et al. (2008a, Table S2)
nNOS/reelin/NPY/SOM 73.6% 44.8% 81.7% 91.0% 55.2% Fuentealba et al. (2010, Suppl. Table 2)
NPY/COUP-TFII/nNOS 78.1% 63.0% 78.3% 87.4% Fuentealba et al. (2010, Suppl. Table 2)
PV/nNOS/NPY 56.7% 34.7% 54.2% 88.9% 41.2% Fuentealba et al. (2008a, Table S1)
PV/nNOS/NPY/GABAAR-α1 79.4% 94.8% 74.2% 93.5% 85.4% Fuentealba et al. (2008a, Table S2)

Table 2.4: Percentage of NPY+ cells expressing nNOS (Fuentealba et al., 2008a; 2010). For each assay included, the calculations
were made by summing all combinations including nNOS and NPY, and dividing that number by the sum of all combinations
including NPY. Though the assays included other markers (listed in column 1), the calculation process was the same for each
assay.
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From Table 2.3, there are 5,780 COUP-TFII expressing cells in the stratum pyramidale.

Approximately 59% of these cells express nNOS and NPY (Fuentealba et al. (2010), see their

Supporting Information Table 2), giving a total of 3,410 COUP-TFII+/nNOS+/NPY+ cells

in the stratum pyramidale. In the stratum pyramidale, 63% of nNOS+/NPY+ cells express

COUP-TFII (Fuentealba et al. (2010), see their Supporting Information Table 2). Using the

logic in Figure 2.4a, we determined there are about 5,410 nNOS+/NPY+ cells, the putative

ivy cells, in the stratum pyramidale.

We repeated this exercise for nNOS+/NPY+ cells in the stratum oriens. Approxi-

mately 34% of the 2,310 COUP-TFII+ cells in the stratum oriens are also nNOS+/NPY+

(Fuentealba et al. (2010), see their Supporting Information Table 2). Though some projec-

tion cells may express nNOS (Sik et al., 1994) and double projection cells can express NPY

(Klausberger, 2009), no other cell type in the stratum oriens is known to be nNOS+/NPY+.

Therefore, we assumed all nNOS+/NPY+ cells in the stratum oriens were ivy cells (Table

2.1). Using the logic in Figure 2.4b, we estimated there are roughly 980 ivy (nNOS+/NPY+)

cells in the stratum oriens.

For the ivy cells in the stratum radiatum, we first calculated the number of nNOS+/NPY+

cells. Then we considered that neurogliaform cells may also contribute to the nNOS+/NPY+

cell count in the stratum radiatum, as neurogliaform cells are often found at the border

of the stratum radiatum and lacunosum-moleculare (Klausberger and Somogyi, 2008). Ivy

cells predominate in the stratum radiatum (Somogyi et al., 2012): coexpression data of NPY

and nNOS with reelin, a neurogliaform cell marker (see Armstrong et al. (2012)), showed

reelin-expressing cells constituted only 20% of nNOS+/NPY+ cells in the stratum radiatum.

Following the logic in Figure 2.4c, we determined there are 3,030 nNOS+/NPY+ cells in the

stratum radiatum. Applying the observation by Somogyi et al. (2012) of reelin expression

in the stratum radiatum, we calculated that 2,420 (80%) of the nNOS+/NPY+ cells are ivy

cells (Table 2.1). We estimated a total of 8,810 ivy cells across strata oriens, pyramidale,
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and radiatum.

Neurogliaform Cells

Neurogliaform cells are found in the stratum lacunosum-moleculare or at the border of the

distal stratum radiatum (Vida et al., 1998), and they can express NPY, α-actinin-2, or nNOS

(Price et al., 2005; Fuentealba et al., 2010). According to a recent report, there are at least

two subsets of neurogliaform cells: those that arise from the medial ganglionic eminence

(MGE) and those that arise from the caudal ganglionic eminence (CGE) (Tricoire et al.

(2010), in mouse). Those cells derived from the MGE are expected to express nNOS and

those from the CGE to express COUP-TFII. However, a significant coexpression of COUP-

TFII and nNOS has been found for cells in all layers of the CA1 (Fuentealba et al., 2010).

Further, there is evidence for a CGE origin for some nNOS+ cells (Tricoire et al. (2010),

in mouse; Tricoire and Vitalis (2012) Tricoire and Vitalis, 2012). Therefore, neurogliaform

cells do not necessarily cleanly separate into two groups when taking into account both neu-

rochemical identity and origin. This may be due to interspecies differences, a dorsal/ventral

gradient in expression, different methods of observation, or other factors. To estimate the

expression of nNOS by neurogliaform cells, we calculated the percent of NPY+ cells in

the stratum lacunosum-moleculare that co-express nNOS (Fuentealba et al. (2010), see their

Supporting Information Table 2). In the stratum lacunosum-moleculare, the fraction of

NPY+ cells that also express nNOS ranges from 41% to 85% (Table 2.4) depending on

the combination of neurochemical markers tested in the assay (Fuentealba et al. (2010), see

their Supporting Information Table 2). Data about co-expression of nNOS with α-actinin-2

were also available, though not as a function of layer. Overall, 46% to 63% of α-actinin-2+

cells throughout the CA1 expressed nNOS (Price et al. (2005); Fuentealba et al. (2008a), see

their Supporting Information Table S2).

A more reliable marker of neurogliaform cells would be NPY or α-actinin-2 (Vida et al.,
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1998; Ratzliff and Soltesz, 2001; Price et al., 2005). Approximately 71% of neurogliaform

cells in the stratum lacunosum-moleculare express α-actinin-2 (Price et al., 2005). In the

stratum lacunosum-moleculare, 100% of α-actinin-2+ cells express COUP-TFII, while 45%

of COUP-TFII+ cells express α-actinin-2. We calculated the number of α-actinin-2 ex-

pressing cells in the stratum lacunosum-moleculare using the logic in Figure 2.5a, for a

total of 2,150 α-actinin-2+ cells. In the stratum lacunosum-moleculare, α-actinin-2 appears

to be a relatively specific marker: α-actinin-2+ cells do not co-express PV, CB, VIP, or

CCK (Ratzliff and Soltesz, 2001). Only 2% of α-actinin-2+ cells in stratum lacunosum-

moleculare express CR, while 43% express NPY (Ratzliff and Soltesz, 2001). Previous work

has considered α-actinin-2+ cells in the stratum lacunosum-moleculare as neurogliaform cells

(Fuentealba et al., 2010). We assumed that, in the stratum lacunosum-moleculare, 98% of

α-actinin-2 expressing cells were neurogliaform cells (the percent of α-actinin-2+ cells that

are GABAergic but do not express CR (Ratzliff and Soltesz, 2001); see Table 2.1). Using

the knowledge that 71% of neurogliaform cells express α-actinin-2 (Price et al., 2005) and

the logic in Figure 2.5b, we calculated there are 2,970 neurogliaform cells in the stratum

lacunosum-moleculare. We then included 20% of the nNOS+/NPY+ cells in the stratum

radiatum (610 reelin+ cells (Table 2.1), as calculated above in the ivy cell section), to get a

total of 3,580 neurogliaform cells across the strata radiatum and lacunosum-moleculare. Be-

cause not all neurogliaform cells express nNOS, there may be even more neurogliaform cells

in the stratum radiatum. However, we did not calculate the number of α-actinin-2+ cells in

the stratum radiatum because data were not available about the overlap of α-actinin-2 with

COUP-TFII in the stratum radiatum (Fuentealba et al., 2010).

2.2.4 Calculation of SOM+ Cells

SOM+ cells include O-LM cells and several projection cells (Maccaferri, 2005;

Klausberger and Somogyi, 2008), as well as conventional bistratified cells, which will be
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calculated in the PV+ cell section. Many of the projection cells have a local axonal ar-

borization consisting of boutons primarily in the strata radiatum and oriens. These include

double projection cells that project to the septum and subiculum, so-called back-projection

cells that project to the CA3 and dentate gyrus, and oriens-retrohippocampal projection

cells that target the subiculum (Klausberger and Somogyi, 2008). A projection cell tar-

geting both the CA3 and the subiculum has also recently been discovered (Jinno (2009);

Klausberger and Somogyi (2008), in mouse).

Layer
SO SP SR SLM Ref. Notes
85% 7% 8% Nomura et al. (1997b) Dorsal
92% 3% 5% Nomura et al. (1997b) Ventral

88.5% 5% 6.5% Nomura et al. (1997b) Averaged1

88.0% 9.1% 2.9% Kosaka et al. (1988) Dorsal
89.8% 6.8% 3.4% Kosaka et al. (1988) Ventral
89% 7.9% 3.1% Kosaka et al. (1988) Dorsal+Ventral

89.7% 7.3% 2.5% 0.5% Jinno and Kosaka (2006) Mouse
73.3% 22.8% 3.9% 0% Fuentealba et al. (2010) Calculated

Table 2.5: Laminar distribution of SOM within the CA1. Note that data from Nomura et al.
(1997b) combines the strata radiatum and lacunosum-moleculare. 1: Calculated average of
the dorsal and ventral values.

About 12% of GABAergic neurons in the CA1 express SOM (Kosaka et al., 1988). Ap-

plying this fraction to the calculation for GABAergic neurons gave 4,620 SOM+ neurons.

About 89% of these cells are located in the stratum oriens (Table 2.5) (Kosaka et al., 1988;

Nomura et al., 1997b), a total of 4,110 SOM+ GABAergic cells in the stratum oriens.

O-LM cells

O-LM cells, which express SOM and mGluR1α-actinin-2 (Ferraguti et al., 2004), are found

in the stratum oriens (Klausberger and Somogyi, 2008). Roughly 40% of SOM+ cells in the

stratum oriens are O-LM cells (Ferraguti et al., 2004), giving a total of 1,640 O-LM cells.
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Double projection cells

Of the SOM+ cells in the stratum oriens, 23% project to the medial septum (Jinno (2009),

in mouse), a total of 950 septally projecting SOM+ cells. Of the cells projecting to the

medial septum, 80% are CB+ (Toth and Freund, 1992; Gulyás et al., 2003; Jinno, 2009).

The double projection cells, which project both to the medial septum and to the subiculum,

are known to express CB and SOM (Toth and Freund, 1992; Somogyi and Klausberger, 2005;

Jinno et al., 2007); some also express mGluR1α-actinin-2, M2R, PV, or NPY (Jinno et al.,

2007). We assumed all septally projecting, SOM+/CB+ cells were double projection cells

(Table 2.1), for a total of 760 double projection cells.

Other septally projecting cells

Subtracting the SOM+/CB+ double projection cells from the total of septally projecting

cells, we were left with a subset of 190 SOM+/CB-, septally projecting cells. This subset

likely constitutes another group of septally projecting cells. Katona et al. (1999a) suggested

that so-called back-projection cells, which are not known to express CB but often express

SOM (70%, see Jinno (2009)), can project to the septum, in addition to projecting to the

CA3. The observation that 18% of septally projecting cells express CR may also be relevant,

as it has not been shown that double-projection cells express CR (Jinno, 2009). There

is also a subset of SOM+ cells that are weakly M2R+ and may project to the septum,

but this subset does not appear to express CR (Hajos and Mody, 1997; Ferraguti et al.,

2005). For now, we consider the subset of 190 SOM+/CB- septally projecting cells in our

calculations, noting that this cell type may also be the so-called back-projection cells or a

subset of M2R+ septally projecting cells. In addition to these multiple subsets of SOM+

septal projection cells, there may be another small subset of septally projecting cells that

are SOM- (Jinno et al., 2007). We do not attempt to identify or include those cells.
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Oriens-retrohippocampal cells

About 34% of SOM+ cells in the stratum oriens express CB, a total of 1,400 cells

(Gulyás et al., 2003). Like double projection cells, oriens-retrohippocampal cells can be

SOM+/CB+ but may also express M2R (Jinno et al., 2007). We subtracted the double

projection cells from the SOM+/CB+ population in the stratum oriens, leaving 640 other

SOM+/CB+ cells, which we assumed were oriens-retrohippocampal cells (Table 2.1).

Other SOM+ cells

Other stratum oriens cells also express SOM (Jinno, 2009). Subtracting the estimates for

O-LM, oriens-retrohippocampal, double projection, and other septally projecting cells from

the total number of SOM+ cells left 880 SOM+ cells unidentified. Most of these are likely

to be bistratified cells, which express SOM and PV (Klausberger et al., 2004; Baude et al.,

2007) and are sometimes located in the stratum oriens (Baude et al., 2007); they will be

calculated in the PV+ cell section.

2.2.5 Calculation of PV+ Expressing Cells

Approximately 26% of GABAergic neurons in the CA1 express PV (Kosaka et al., 1987).

Given our previous calculation of 38,500 GABAergic cells in the CA1, 10,010 PV+ GABAer-

gic cells reside in the CA1. These include the PV+ basket cells, bistratified cells, and

axo-axonic cells. Also, up to one third of O-LM cells (Varga et al. (2012), in mouse)

and double projection cells (Jinno et al., 2007) express PV, but at a weaker level (but see

(Ferraguti et al., 2004), where up to 75% of mGluR1α-actinin-2+/SOM+ cells in the stra-

tum oriens also expressed PV). Subtracting one third of the O-LM and double projection

cells from the total gave 9,210 remaining PV+ cells.
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Layer
SO SP SR SLM Ref. Notes

36.0% 60.0% 4.0% Nomura et al. (1997b) Dorsal
24.0% 69.0% 7.0% Nomura et al. (1997b) Ventral
30.0% 64.5% 5.5% Nomura et al. (1997b) Averaged1

40.7% 54.9% 4.5% Kosaka et al. (1987) Dorsal
39.4% 52.8% 7.9% Kosaka et al. (1987) Ventral
40.0% 54.0% 6.0% Kosaka et al. (1987) Dorsal+Ventral
28.4% 64.5% 6.2% 0.9% Jinno and Kosaka (2006) Mouse

Table 2.6: Laminar distribution of PV+ cells within CA1. Note that data from Nomura et al.
(1997b) combines the strata radiatum and lacunosum-moleculare. 1: Calculated average of
the dorsal and ventral values.

Layer
SO1 SP SR Total

Cell Type % cells 30.0% 64.5% 5.5% Cells
PV+ basket cells 60.0% 1320 3870 330 5690
Bistratified cells 24.0% 530 1550 130 2280
Axoaxonic cells 16.0% 350 1030 90 1520
Total cells 2200 6460 550 9210

Table 2.7: Relative proportion and number of each type of PV+ cell in the CA1. Cell type
percentages are from Baude et al. (2007) and laminar distribution percentages are averaged
from dorsal and ventral data in Nomura et al. (1997b). Note that the percentage reported to
be in the strata radiatum/lacunosum-moleculare is here attributed to the stratum radiatum
only, as PV distribution data from the mouse showed that the stratum lacunosum-moleculare
contained less than 1% of PV+ cells (Jinno and Kosaka, 2006, in mouse). 1: A fraction of
PV+ O-LM and double projection cells was subtracted from the total PV+ cells in the
stratum oriens before calculating the number of PV+ basket, bistratified, and axo-axonic
cells in that layer.
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While 64.5% of PV+ cells are located in the stratum pyramidale, a substantial number

reside in the stratum oriens (30%, see Table 2.6) (Kosaka et al., 1987; Nomura et al., 1997b).

Baude et al. (2007) gave relative percentages of PV+ basket, bistratified, and axo-axonic

cells in the stratum pyramidale. We assumed the ratio held for the other layers to calculate

the number of cells of each type in each layer, for a total of 5,530 PV+ basket cells, 2,210

bistratified cells, and 1,470 axo-axonic cells (Table 2.7). Note that this number of bistratified

cells does not include any contributions from the GABAergic projection cells in the stratum

oriens that also have boutons in the strata radiatum and oriens and, in the case of double

projection cells, occasionally express PV (Jinno et al., 2007).

2.2.6 Calculation of CCK+ Cells

About 12% of the GABAergic neurons in the CA1 express cholecystokinin (CCK)

(Kosaka et al., 1985), a total of 4,620 CCK+ GABAergic neurons in the CA1. CCK+ cells

usually express cannabinoid receptor type 1 (CB1R) (Katona et al., 1999b; Cope et al., 2002)

and often express vasointestinal protein (VIP) (Somogyi et al., 2004), vesicular glutamate

transporter 3 (VGLUT3) (Somogyi et al., 2004), or sometimes calbindin (CB) (Cope et al.,

2002; Somogyi et al., 2004). The presence of CB1R is generally an indicator of a CCK+

cell (Katona et al., 1999b). Therefore, CB1R expression data may be useful as a confirma-

tion of the total number of CCK+ cells. Given the overlap of CCK and CB1R expression

(Katona et al., 1999b) in the somata of CA1 interneurons (Fig. 2.6), we determined that

there are 5,400 CB1R+ cells in the CA1. CB1R may be a more reliable indicator of CCK+

cells than CCK expression itself, so we based the rest of our CCK+ cell calculations on a

total of 5,400 cells rather than 4,620 cells. However, we did not have detailed laminar distri-

bution or marker expression overlap data for the CB1R+ cells, so we used the corresponding

fractions from CCK+ cell studies.
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CCK+ cell types include CCK+ basket cells, Schaffer Collateral-associated (SCA) cells,

apical dendritic innervating (ADI) cells, and perforant path-associated (PPA) cells. ADI and

SCA cells reside mostly in the stratum radiatum (Cope et al., 2002; Klausberger et al., 2005;

Klausberger and Somogyi, 2008). PPA cells are found at the border of strata radiatum and

lacunosum-moleculare (Klausberger et al., 2005; Klausberger and Somogyi, 2008). PPA cells

are also known as R-LM cells because their cell bodies are generally found near the stratum

radiatum while their axons innervate the stratum lacunosum-moleculare (Hajos and Mody,

1997).

The relative frequency of each of these cell types is unknown. To estimate the number of

CCK+ basket cells, we used data about the synaptic convergence of basket cells onto pyra-

midal cells. Foldy et al. (2010) (in mouse) found that PV+ basket cells make about twice as

many total synapses onto pyramidal cell somata as do CCK+ basket cells. However, CCK+

basket cell boutons are known to occur more frequently proximal to the soma (Foldy et al.

(2010), in mouse), as evidenced by Wyeth et al. (2010), who found a ratio of 13.1:10.9 for

PV:CCK boutons in the whole pyramidal cell layer of the mouse CA1. We averaged these

two estimates to obtain a ratio of 1.6:1 PV:CCK boutons onto pyramidal cells. We assumed

this ratio also held for the total number of PV+ basket cell and CCK+ basket cell boutons in

the CA1 (Table 2.1). Because there are approximately 5,520 PV+ basket cells with 10,440

boutons each, the total number of PV+ basket cell boutons in the CA1 is 57.7 million.

Therefore, we calculated the total number of CCK+ basket cell boutons as 36.0 million. As

CCK+ basket cells may have about 10,000 boutons each (see synapse calculations below),

we calculated a total of 3,600 CCK+ basket cells.

Using data from Pawelzik et al. (2002), we determined the laminar distribution of CCK+

cells (Table 2.8) and estimated the relative abundance of each type of CCK+ cell in each

layer. We included marker coexpression data from Somogyi et al. (2004) to solve for the

populations of CCK+/CB+, CCK+/VIP+, CCK+/VGLUT3+, and CCK+only cells in
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Layer
SO SP SR SLM Ref. Notes

16.1% 17.7% 66.3% Kosaka et al. (1985) Method A
18.8% 19.7% 61.6% Kosaka et al. (1985) Method B
21.3% 20% 36.5% 22.2% Pawelzik et al. (2002)
22.6% 29.2% 39.1% 9.2% Jinno and Kosaka (2006) Mouse

Table 2.8: Laminar distribution of CCK within the CA1. Note that data from Nomura et al.
(1997b) combines the strata radiatum and lacunosum-moleculare. Methods A and B are
described in the original paper, see Kosaka et al. (1985).

each layer, which we used to refine our estimates by cell type.

We assumed (Table 2.1) the CCK+ basket cells were found in all layers of the CA1 (including

the stratum lacunosum-moleculare, see Vida et al. (1998) and Elfant et al. (2008)), SCA

and ADI cells in the stratum radiatum, and PPA cells in the stratum lacunosum-moleculare

(Table 2.1) (Klausberger and Somogyi, 2008). We assumed some lesser-known CCK+ cell

types were found only in the strata oriens and pyramidale (Table 2.1). The lesser-known

types include CCK+ quadrilaminar, CCK+ bistratified cells (different from SCA cells), and

CCK+ SO-SO cells, so called because both their axons and dendrites remain in the stratum

oriens (Pawelzik et al., 2002). In addition, some of the CCK+ basket cells found in the

stratum oriens may be horizontal basket cells (Klausberger et al., 2005).

Since CCK+ basket cells have not been shown to express CB (Cope et al., 2002;

Klausberger et al., 2005; Somogyi et al., 2004), we assumed none of the CCK+/CB+ cells

were basket cells (Table 2.1). We considered CCK+/CB+ cells in the stratum lacunosum-

moleculare as PPA cells, CCK+/CB+ cells in the stratum radiatum as SCA or ADI cells,

and CCK+/CB+ cells in the strata oriens and pyramidale as the lesser-known types men-

tioned above (Table 2.1). Note that PPA and SCA cells are both often found straddling the

border of the strata radiatum and lacunosum-moleculare, so the laminar-based calculations

for these CCK+ cell types will only give a rough approximation of each type.

We assumed all the CCK+/CB- cells in the strata oriens and pyramidale were CCK+ bas-
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ket cells, including CCK+/VIP+ cells, CCK+/VGLUT3+ cells, and CCK+only cells (Table

2.1). In the strata radiatum and lacunosum-moleculare, we assumed all the CCK+/VIP+

and CCK+/VGLUT3+ cells were basket cells. However, Klausberger et al. (2005) showed

that ADI cells can express VGLUT3 and a high concentration of VGLUT3+ boutons has

been found at the border of the strata radiatum and lacunosum-moleculare, suggesting that

PPA or SCA cells may also express VGLUT3 (Somogyi et al., 2004) (Table 2.1). After count-

ing the CCK+/VIP+ and CCK+/VGLUT3+ cells in the strata radiatum and lacunosum-

moleculare, there were still an additional 430 CCK+ basket cells to be assigned, which we

assumed to be CCK+only cells. Next, we assumed all of the non-basket cells in the stratum

lacunosum-moleculare were PPA cells (Table 2.1). Of the non-basket cells in the stratum

radiatum, we assumed the SCA and ADI each made up half the balance (Table 2.1). This

led to an estimate of 65% of SCA cells being CB+, though only 32% have been observed to

be CB+ experimentally (Cope et al., 2002). The numbers of each CCK+ cell type are given

in Table 2.9.

2.2.7 Interneuron-specific cells

Interneuron-specific (IS) cells only synapse on other interneurons, avoiding the pyramidal

cells, and they often express calretinin (CR), VIP, or enkephalin (ENK) (Acsady et al.,

1996; Acsády et al., 1996; Gulyás et al., 1996; Fuentealba et al., 2010). Recently, they have

been shown to express COUP-TFII as well (Fuentealba et al., 2010). IS cells can be fur-

ther divided into multiple categories. One type, known as the IS III cell, expresses both

CR and VIP and has axons projecting to the stratum oriens and alveus (Acsády et al.,

1996; Gulyás et al., 1996). A second type, known as the IS II cell, has axons targeting the

stratum radiatum and dendrites in the stratum lacunosum-moleculare (Acsády et al., 1996;

Gulyás et al., 1996). This type is known to express VIP but has not been shown to express

CR (Somogyi and Klausberger, 2005). A third, broad category known as IS I includes cells
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Layer
SO SP SR SLM Total

Cell Type 21% 20% 37% 22% Cells
CCK+ Basket 670 810 850 540 2870

VIP 270 200 70 40 580
VGLUT3 120 150 700 430 1400
CCK only 280 460 80 70 890

SCA 0 0 420 0 420
CB 0 0 220 0 220
VGLUT3 0 0 0 0 0
CCK only 0 0 200 0 200

ADI 0 0 420 0 420
CB 0 0 220 0 220
VGLUT3 0 0 0 0 0
CCK only 0 0 200 0 200

PPA 0 0 0 490 490
CB 0 0 0 270 270
VGLUT3 0 0 0 0 0
CCK only 0 0 0 220 220

Misc. CCK 310 110 0 0 420
CB 310 110 0 0 420

Total cells 980 920 1690 1030 4620

Table 2.9: Relative proportion and number of each type of CCK+ cell in CA1. Laminar
distribution percentages from Pawelzik et al. (2002) and marker coexpression fractions from
Somogyi et al. (2004).
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Layer
Marker SO SP SR SLM Ref. Notes
CR+ 22.0% 38.0% 40.0% Nomura et al. (1997b) Dorsal
CR+ 19.0% 34.0% 47.0% Nomura et al. (1997b) Ventral
CR+ 20.5% 36.0% 43.5% Nomura et al. (1997b) Averaged1

CR+ 14.1% 45.2% 24.8% 15.9% Jinno and Kosaka (2006) Mouse
CR+ 19.7% 46.8% 16.9% 16.6% Fuentealba et al. (2010) Calculated2

CR+ 18.8% 38.7% 12.6% 29.9% Fuentealba et al. (2010) Calculated3

VIP+ 9.6% 57.7% 19.2% 13.5% Jinno and Kosaka (2006) Mouse
VIP+ 6.0% 42.4% 19.7% 31.9% Fuentealba et al. (2010) Calculated2

CR+ or VIP+ 14.6% 41.4% 18.5% 25.5% Fuentealba et al. (2010) Calculated2

CR+ and VIP- 21.9% 40.6% 17.5% 20.0% Fuentealba et al. (2010) Calculated2

CR+ and VIP+ 13.9% 63.6% 15.2% 7.4% Fuentealba et al. (2010) Calculated2

CR- and VIP+ 0.0% 26.0% 23.2% 50.8% Fuentealba et al. (2010) Calculated2

Table 2.10: Laminar distribution of CR and VIP within CA1. Note that data from
Nomura et al. (1997b) combines the strata radiatum and lacunosum-moleculare. 1: Av-
erage of the dorsal and ventral values. 2: Calculated based on data from the marker
assay: CR/COUP-TFII/PPE/VIP. 3: Calculated based on data from the marker assay:
CR/CB/COUP-TFII/PV.

with dendrites spanning all layers and axons targeting the stratum radiatum, and perhaps

also the stratum oriens (Acsády et al., 1996; Gulyás et al., 1996). These cells generally ex-

press CR, though a subset of them do not (Acsady et al., 1996). Additionally, a subset of

VIP+ cells in mice has been found to express nNOS as well; this subset has axonal and

dendritic projection patterns resembling those of an IS III cell (Tricoire et al. (2010), in

mouse).

We used data about the coexpression of COUP-TFII with other markers to calculate the

number of IS cells. Because some non-IS cells express ENK (Price et al., 2005), we did not

consider the presence of ENK to indicate interneuron-specific cells. Instead, we characterized

IS cells as those that express CR or VIP (Table 2.1) (Fuentealba et al., 2010). We used

information about the co-expression of CR, VIP, and COUP-TFII (Fuentealba et al., 2010),

along with our earlier calculation of COUP-TFII cells per layer, to determine the number

of CR or VIP positive cells in each layer (Table 2.10). We looked at three combinations of
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marker expression which we took to represent specific IS cell types. We assumed CR+/VIP-

cells were IS I cells, CR-/VIP+ cells were IS II cells, and CR+/VIP+ cells were IS III

cells (Table 2.1). This may underestimate the number of IS I cells, since not all of them

express CR (Acsady et al., 1996). Using the logic in Figures 2.7, 2.8, and 2.9, we determined

the number of CR+/VIP-, CR-/VIP+, and CR+/VIP+ cells in each layer. Considering

some basket cells also express VIP, we subtracted the number of CCK+/VIP+ basket cells,

assuming the remaining VIP+ cells were IS cells (Table 2.1). For each layer, we removed

an equal fraction of VIP+ cells (the CCK+/VIP+ basket cells) from the CR-/VIP+ and

CR+/VIP+ populations. Note that 18% of septally-projecting cells express CR (Jinno,

2009); this number may align with the 190 SOM+/CB- septally projecting cells that are not

double projection cells (calculated above). We subtracted these 190 cells from the CR+/VIP-

population of cells in the stratum oriens to obtain an estimate for each IS cell type in each

layer (Table 2.11).

Cell Type SO SP SR SLM Total
IS I cells 780 1800 780 890 4250
IS III cells 0 910 220 120 1250
IS II cells 0 480 450 1040 1970

Table 2.11: Calculated number of each IS cell type in CA1 by layer.

2.2.8 Other cells

Several cell types remain for which we have not estimated their number. Here, we provide

a crude estimate of number for several types given the limited information we have about

them. However, we do not include the estimates made in this section in our final count in

the summary section, because the estimates are likely to contain multiple cell types and may

overlap with cell populations already counted.

We have not yet addressed a few of the cell types found in the stratum radia-

tum. These include large calbindin cells (Klausberger and Somogyi, 2008) and radiatum-
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and dentate-innervating (RADI) cells (Fuentealba et al., 2010), which both express CB.

Freund and Buzsáki (1996) suggested 10% of GABAergic cells in the CA1 express calbindin

(CB), for a total of 3,850 CB+ cells (Table 2.1). We subtracted the previously calculated

CB+ cells (CCK+/CB+ cells and SOM+/CB+ cells) from this total, for a remainder of

1,230 CB+ cells across all layers. This represents an upper bound on the large calbindin and

RADI cells. They are likely to number much fewer, because the remaining CB+ cells in the

strata oriens and pyramidale may actually include some of the other cell types calculated

above, for which their CB expression was unknown.

There are additional projection cells that we have not calculated. So-called back projection

cells project to the CA3 and dentate gyrus and are known to express nNOS (Sik et al., 1994).

They may also express SOM (Katona et al., 1999a) and may even project to the septum (see

Section 2.2.4 above). Unfortunately, not enough information is known about so-called back

projection cells to estimate their relative abundance or even to consider them as a distinct

cell type.

There are also other projection cells that target the subiculum. We performed a rough

calculation to gain an idea of the cells projecting to the subiculum, including the radiatum-

retrohippocampal cells and the trilaminar cells. To do this, we combined experimen-

tal data with the above calculations for double projection and oriens-retrohippocampal

cells. Both double projection and oriens-retrohippocampal cells project to the subiculum

(Klausberger and Somogyi, 2008). We assumed these two cell types constituted the entire

population of SOM+, subicular-projecting cells, a total of 1,400 cells (Table 2.1). Since 50%

of cells in the CA1 projecting to the subiculum are SOM+ (Jinno et al., 2007; Jinno, 2009),

we calculated that a total of 1,400 SOM- cells project to the subiculum. These are likely

to include trilaminar cells in the stratum oriens and radiatum-retrohippocampal cells in the

stratum radiatum, both of which project to the subiculum and are not seen to express SOM.

However, as both of these cell types are somewhat rare, it is unlikely that they comprise the
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entire group of SOM- subicular projecting cells.

No data were available to break down our estimate of trilaminar and radiatum-

retrohippocampal cells into an estimate for each cell type or even by layer. Once more

data become available about the laminar distribution and total number of subicular project-

ing cells, further identification may be possible. Radiatum-retrohippocampal projection cells

have not been found to express any of the major neurochemical markers, such as SOM, VIP,

nNOS, CCK, CB, PV or CR, nor any particular receptors (Jinno et al., 2007; Jinno, 2009),

though 80% of them express COUP-TFII (Fuentealba et al., 2010). Therefore, it is difficult

to make any estimation for this type of cell. Of note, a study marking neurons that project

to the granular retrosplenal cortex found that a significant portion of the axons originated

from GABAergic neurons at the border of the strata radiatum and lacunosum-moleculare

(Miyashita and Rockland, 2007). Most of the cells were found to be negative for the major

neurochemical markers, though a small percentage expressed M2R (Miyashita and Rockland,

2007). Some of these neurons may be radiatum-retrohippocampal cells. Also, within the

strata radiatum and lacunosum-moleculare, about 5% of subicular projecting cells were neg-

ative for all tested markers (Miyashita and Rockland, 2007); these cells may correspond to

some or all of the putative radiatum-retrohippocampal cells.

In both the strata oriens and radiatum, approximately half of subicular projecting cells were

M2R+. These M2R+, subicular projecting cells are the putative trilaminar cells that locally

innervate stratum pyramidale in addition to the strata radiatum and oriens (Sik et al., 1995;

Ferraguti et al., 2005; Klausberger and Somogyi, 2008). However, trilaminar cells are con-

sidered somewhat rare, so it is not clear whether they make up the entire M2R+, subicularly

projecting population. Trilaminar cells are also mGluR8-decorated (Ferraguti et al., 2005);

however, there is not enough information about the prevalence of mGluR8-decorated cells

to base any calculations on that property.

In addition, a population of ENK expressing cells in the stratum radiatum has recently been
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found (Fuentealba et al., 2008b). This cell type projects to the subiculum as well; 11.3%

of subicular projecting interneurons in the CA1 expressed ENK (Fuentealba et al., 2008b).

Given our calculations of subicular projecting interneurons above (2,800), approximately 320

subicular projecting cells may express ENK.

2.3 Evaluation of Estimates

We were able to confidently estimate the numbers of the most abundant interneuron types

in the CA1, including the PV+ basket, bistratified and axo-axonic cells, the O-LM cells, the

CCK+ basket cells, and the neurogliaform family cells (ivy and neurogliaform). Together,

these cell types constituted 70% of GABAergic interneurons in the CA1. We also estimated

that interneuron-specific cells make up an additional 19% of GABAergic interneurons. By

making some layer-based assumptions, we were able to estimate the numbers of an additional

5% of interneurons comprising the remaining CCK+ cell types. The remaining SOM+ cells

and other projections cells were less readily quantifiable, but appeared to constitute 5%

to 7% of the GABAergic interneurons, with other, more obscure cell types making up the

remaining fraction (about 1%).

Regarding the calculations of cell numbers, some previous estimates exist.

Freund and Gulyas (1997) estimated that CR+ cells comprise 13% of all hippocam-

pal interneurons. By our calculations (adding IS I, IS III and possibly the small subset

of CB- septally projecting cells), the CR+ cells constitute 14% to 15% of CA1 cells,

roughly the same as the previous estimate. Baude et al. (2007) estimated the fraction of

interneurons that were PV+ basket, bistratified, or axo-axonic cells as 12%, 5%, and 3%,

respectively. We reached a similar conclusion, with fractions of 14%, 6%, and 4%, for PV+

basket, bistratified, and axo-axonic cells.
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Jinno and Kosaka (2006) have provided experimental observations of the neurochemical com-

position per layer and laminar distribution, but for mouse hippocampus. It is not clear

whether these data in rat and mouse should match, as the laminar distribution data for

various markers have been shown to be somewhat different for rat (Kosaka et al., 1985;

1987; 1988; Nomura et al., 1997b; Pawelzik et al., 2002; Fuentealba et al., 2010) and mouse

(Jinno and Kosaka, 2006), as seen in Tables 2.5, 2.6, 2.8, and 2.10. As more data about the

expression of all markers by each interneuron type become available and standardized (hip-

pocampome.org), it will be possible to calculate the expected neurochemical composition

per layer in rat, based on the cell number estimates provided here.

In quantitatively assessing the CA1, we have taken most of our data from the rat. However,

some data were not available for the rat CA1 and so we used observations made in mouse,

instead. This includes the percent of SOM+ cells projecting to the medial septum.

In general, we expect that our estimates could be refined as the projection cell types become

better defined and their marker combinations further characterized. In addition, more so-

phisticated ways are needed to distinguish the various CCK+ cell types, rather than relying

on laminar position. We also look forward to more data becoming available for the lesser-

known cell types, such as the large calbindin cell, RADI cell, and the enkephalin-expressing

subicular projecting cell.

With this current, quantitative knowledge of CA1 cell numbers, researchers will be better

able to hypothesize about and quantify the roles of the various interneuron types in network

functions. In addition, the knowledge base enabled the construction of a more accurate,

biologically constrained computer model of CA1, similar to the data-driven models of the

dentate gyrus (Santhakumar et al., 2005; Morgan and Soltesz, 2008; Schneider et al., 2012).

The assembled data also enables better contrasting of the network makeup of the CA3 and

other regions with that of the CA1.
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Chapter 3

Quantitative Assessment of Neural

Connectivity

The concepts of divergence and convergence are useful for quantifying connectivity. The

divergence of a cell is the number of outgoing synapses it makes onto other cells in the

network. Anatomically, the divergence is related to the boutons of the cell. Conversely,

convergence is the number of incoming synapses the cell receives from other cells in the

network. The anatomical correlate is the number of postsynaptic sites on the dendrites,

soma, and axon of the cell. There are experimental observations for both of these types of

connectivity. Therefore, we compared the connectivity as defined by both of these concepts.

We found descrepancies between the estimates obtained from each concept. To conclude, we

discuss reasons for the difference in numbers and describe how we handled the discrepancies

when generating constraints for our model.
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3.1 Calculation of Connectivity

For many neuron types, experimental estimates existed of the total boutons per axonal

arborization. We multiplied these estimates by the total number of each neuron type as

calculated here to get the total number of boutons available from each cell type for synaps-

ing on postsynaptic neurons. Then we combined these data with the pyramidal cell and

interneuron electron microscopy (EM) data to obtain the final convergence and divergence

estimates in terms of synapses on a pyramidal cell or interneuron. These calculations en-

abled us to determine the overall connectivity of each neuron type, but did not permit us to

calculate the local connection probability. To do so would require knowledge of the bouton

distribution within the axonal extent, as well as the density of neurons of each type and their

dendritic extents. However, we have still included data on the axonal extent of each neuron

type wherever possible.

The total number of synapses onto a pyramidal cell has previously been calculated.

Meǵıas et al. (2001) measured dendritic length and synapse density, multiplying the two

to calculate the total synapses. They estimated the number of synapses on each type of

dendrite across all layers for a pyramidal cell within the dorsal CA1 (Meǵıas et al., 2001).

Meǵıas et al. (2001) served as the basis for our calculations of synaptic convergence onto

CA1 pyramidal cells.

3.2 Divergence

3.2.1 Local divergence of pyramidal cells

We calculated the total boutons on a CA1 pyramidal cell axon using the observed axon

length and bouton density (Esclapez et al., 1999). Esclapez et al. (1999) provided bouton
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density measurements as a function of axonal segment branch order for CA1 pyramidal cells.

Although the axonal length was computed from an axon fill in a slice, the axon fills were

selected from those that appeared to be fully contained within the slice (Esclapez et al.,

1999). In a representative CA1 pyramidal axonal arbor, segments of third or fourth order

constituted most of the axonal length; therefore we used an average of the bouton densities

of the third and fourth order segments (13.56 boutons per 100µm) multiplied by the average

total axonal length (3,732µm) to obtain a total of 506 boutons per CA1 pyramidal cell within

the CA1.

Takács et al. (2012) observed that 39% of local collateral boutons synapse on other pyrami-

dal cells in vivo, so we calculated that each pyramidal cell makes 197 synapses onto other

pyramidal cells. We were also interested in the number of synapses made per connection to

calculate the total number of connections made onto other pyramidal cells. In a study of pyra-

midal to pyramidal cell pairs within the CA1 (Deuchars and Thomson, 1996), a pyramidal

to pyramidal connection comprising two synapses was found. However, its EPSP amplitude

was over twice the average amplitude of the other recorded pairs, so we assumed it was an

exception. We assumed that CA1 pyramidal cell local collaterals made one synapse onto

each postsynaptic pyramidal cell (Table 2.1). Therefore, we calculated that each pyramidal

cell diverges to contact 197 other CA1 pyramidal cells.

Takács et al. (2012) also found that CA1 pyramidal cells make 54% of their local synapses

onto interneurons. To calculate their divergence onto interneurons, we estimated the number

of synapses forming each pyramidal cell to interneuron connection. Biro et al. (2005) ob-

served that a single CA1 pyramidal cell to O-LM cell connection comprised, on average, three

synapses. Although some pyramidal cell to basket cell connections in the CA3 were observed

to include only one synapse (Sik et al., 1993; Gulyás et al., 1993), current clamp recordings

of pyramidal cell to bistratified cell connections in the CA1 revealed a large enough range

in EPSP amplitude to suggest that some connections include multiple synapses (Ali et al.,
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1998). Therefore, we assumed that CA1 pyramidal cells made, on average, three synapses

onto each postsynaptic interneuron (Table 2.1). We then calculated that each CA1 pyramidal

cell diverges to innervate 91 interneurons. Aside from the 39% of synapses made onto other

pyramidal cells and the 54% made onto interneurons, there are an additional 7% of local

synapses made onto unknown targets (Takács et al., 2012). Therefore, each CA1 pyramidal

cell contacts an additional 11 to 35 unknown, local targets.
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Axonal Boutons Laminar Distribution (%) Divergence
Extent Length Density Syn.s Pyr. Inrn.

Cell (mm) (µm) (/100 µm) Total /Conn. SO SP SR SLM Total Pyr. Inrn Fraction Fraction

Neurogliaform
ML: 0.5 mmd 144, 000c 41.7a,c,t,u 13, 200c 10q 0c 0c 17c 83c 1, 320 1, 228 92 93%a 7%a

ST: 1.2 mmd

Ivy
ML: 0.75 mme 176, 760c 41.7a,c,t,u 16, 200c 10a,q 40e,p,c 2e,p,c 50e,p,c 8e,p,c 1, 620 1, 507 113 93%a 7%a

ST: 1.31 mme

Bistratified
ML: 2.09 mmf 76, 040f 21.0c 15, 970f,c 10g 51c,f,m 7c,f,m 42c,f,m 0c,f,m 1, 597 1, 485 112 93%a 7%a

ST: 1.86 mmf

Backprojection ML: 2.20 mmh 24, 540h 24.8h 6, 080h 10s 58a,f,c 0a,f 42a,f,c 0a,f 608 565 43 93%a 7%a

Double projection 6, 080h,a 10s 58a,f,c 0a,f 42a,f,c 0a,f 608 559 49 92%c,i,v 8%c,i,v

Oriens retrohipp. 6, 080h,a 10s 58a,f,c 0a,f 42a,f,c 0a,f 608 584 24 96%i 4%i

Trilaminar
ML: 2.45 mmf 54, 740f 28.2f 15, 440f,c 10s 13f,c 17f,c 70f,c 0f 1, 544 618 926 40%j 60%j

ST: 2.60 mmf

O-LM
ML: 0.50 mmf 63, 440f 26.6f 16, 880f,c 10s 7f,c 0f 0f 93f,c 1, 688 1, 502 186 89%o,c 11%o,c

ST: 0.84 mmf

PV+ Basket
ML: 1.04 mmf 46, 180f 22.6f 10, 440f 11k 1, 014f,c 943f,c 71f,c 99%c,f 1%c,f

ST: 1.19 mmf 1f

CCK+ Basket PD: 1 mml 10, 000c,l 8k 19m 60m 20m 1m 1, 250 1, 163 87 93%a 7%a

SCA PD: 1.1 mml 12, 000a,c,l 6l 10m,p,c 4m,p,c 82m,p,c 4m,p,c 2, 000 1, 860 140 93%a 7%a

PPA 8, 000a,c,l 6l 0a 0a 0a 100a 1, 333 1, 240 93 93%a 7%a

Axoaxonic
0.60 mmn 7, 200a,c,n 6n,c Xn Xn 1, 200n 1, 200 0 100%r 0%r

0.85 mmn

Table 3.1: Bouton counts and laminar distribution, along with divergence, for various interneuron types. The ’density’ column
gives the average bouton density of the axon. The axon length and total bouton counts refer to the local (CA1 area) only.
ML: medio-lateral, ST: septo-temporal, PD: proximo-distal, RC: rostro-caudal. The subscripts are as follows: a: assumed;
c: calculated; d: Fuentealba et al. (2010); e: Fuentealba et al. (2008a); f: Sik et al. (1995); g: Klausberger et al. (2004); h:
Sik et al. (1994); i: Jinno et al. (2007); j: Ferraguti et al. (2004); k: Foldy et al. (2010); l: Vida et al. (1998); m: Pawelzik et al.
(2002); n: Li et al. (1992); o: Katona et al. (1999a), p: Szabo et al. (2012), q: Tamás et al. (2003); r: Buhl et al. (1994b); s:
Maccaferri et al. (2000); t: Szabadics and Soltesz (2009); u: Armstrong et al. (2011); v: Takacs et al. (2008)
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Cells Num. Synapses
Marker Included* Cells GABA- GABA+
PV All 3 types 9,200 15,322 978
CCK CCK+ Basket 2,870 5,248 2,952
CR IS I, II, III 6,720 1,738 462

Hippocampal-septal 950 18,920 3,080
Weighted Avg. 9,405 1,190

Table 3.2: Total number of synapses and ratio of GABA- to GABA+ synapses for various
cell types by marker (Gulyás et al., 1999; Mátyás et al., 2004; Takacs et al., 2008). The
calculated number of each interneuron class is also given. We calculated the average number
of GABA- and GABA+ synapses per interneuron, weighting the average by the total number
of cells in each class. *We used the reported laminar distributions of the dendrites of the
cells in each class to determine which interneurons to include in that class (Gulyás et al.,
1999; Mátyás et al., 2004; Takacs et al., 2008).

3.2.2 Local divergence of interneurons

The divergence of interneurons (Bezaire and Soltesz, 2013) is given in Table 3.1.

To calculate both divergence and convergence as a function of neuron class (pyramidal or

interneuron), we needed each interneuron’s preference for innervating pyramidal cells over

interneurons. For some neuron types, these data have been published. For those types

for which the data were not available, we assumed they innervated their postsynaptic tar-

gets in the ratio of 92 pyramidal cell synapses to eight interneuron synapses. To arrive at

this ratio, we performed the following calculation. We first calculated the average num-

ber of GABAergic synapses made onto interneurons (Table 3.2) using published data about

the GABAergic synapses onto various interneuron types (Gulyás et al., 1999; Mátyás et al.,

2004; Takacs et al., 2008) and our estimated neuron numbers. We weighted the number

found on PV+ cells by the calculated number of PV+ basket, bistratified, and axo-axonic

cells, the number found on CCK+ basket cells by the number of CCK+ basket cells, the

number found on CR+ cells by the total number of IS I and IS III cells, and the number

found on hippocampal-septal cells by the number of septally projecting cells to get an av-
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erage of 1,274 GABAergic input synapses per interneuron (Table 3.2). We then multiplied

this average by the estimated number of interneurons in the CA1 and compared it to the

total number of GABAergic synapses on all pyramidal cells in the CA1. We found that

GABAergic synapses onto interneurons make up only 8% of all GABAergic synapses in the

CA1, while GABAergic synapses onto pyramidal cells make up the other 92%. Therefore,

when the preference for innervating pyramidal cells over interneurons was not reported for a

given neuron type, we assumed the ratio was 92:8 pyramidal cells:interneurons (Table 2.1).

Available local inhibitory inputs

We multiplied the total bouton estimate for each interneuron type by the total number of

that interneuron from Table 2.2 and the fraction of boutons that synapse onto interneurons

to arrive at the number of local inhibitory boutons available for inhibitory connections onto

interneurons within the CA1.

However, this sum is not the total, as we were unable to perform this calculation for certain

interneuron types for which we were missing information. For example, the contribution

of the interneuron-specific interneurons were not included here because, to my knowledge,

there are no published estimates of their total bouton counts. Conversely, trilaminar cells

are also excluded because we do not have an estimate of their total cell number.

To continue in the presence of these gaps, we will now focus only on the cell types included

in the model, for which we have both the bouton counts and the cell counts. However,

our choice of focus means the model specifications for the interneuron connectivity are not

to be used as overall characterizations of the in vivo network. Finally, we arrived at our

model’s total inhibitory boutons available for synapsing on interneurons by layer, as dis-

played in Tables 3.3 and 3.4. The eight interneuron types together contribute almost 25

million GABAergic boutons for synapsing onto other interneurons, with individual interneu-
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rons contributing approximately 1000 - 9000 boutons each. As a thought experiment, how

might the contribution of IS interneurons affect the total bouton count? Let’s assume they

contribute about 10,000 boutons each to local interneuron synapses (given that many in-

terneurons have around 10,000 boutons, and IS cells only synapse on interneurons). Given

that there are about 7,500 IS cells in the CA1, they could contribute approximately about 75

million boutons. Therefore, it is possible that IS cells contribute 75% of the local GABAergic

innervation of interneurons, but they could also contribute far less.
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Ivy Neurogliaform O-LM PV+ Basket Bistratified Axo-axonic CCK+ Basket SCA Total
SLM 913421 3137798 2746428 0 0 0 28800 15360 6841807
SR 5708880 642682 0 0 1185868 0 576000 314880 8428310
SP 228355 0 0 577332 197645 0 1728000 15360 2746692
SO 4567104 0 206720 0 1439983 0 547200 38400 6799407
Total 11417760 3780480 2953148 577332 2823496 0 2880000 384000 24816216

Table 3.3: Interneuronal bouton numbers in rat CA1

Ivy Neurogliaform O-LM PV+ Basket Bistratified Axo-axonic CCK+ Basket SCA
SLM 13% 46% 40% 0% 0% 0% 0% 0%
SR 68% 8% 0% 0% 14% 0% 7% 4%
SP 8% 0% 0% 21% 7% 0% 63% 1%
SO 67% 0% 3% 0% 21% 0% 8% 1%

Table 3.4: Interneuronal bouton fractions in rat CA1
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Neurogliaform family cell boutons

Neurogliaform family cells (ivy and neurogliaform cells) are known to have a much higher

bouton count than other cell types. For neurogliaform family cells, we averaged two estimates

of interbouton length: 2.5µm (Szabadics and Soltesz, 2009) for ivy cells in the CA3 and

2.3µm (Armstrong et al., 2011) for neurogliaform cells in the dentate gyrus for an average of

2.4µm. Also, 78% of boutons are not involved in classical synapses, instead affecting other

neurons via volume transmission (Olah et al. (2009), in somatosensory cortex). Therefore,

we subtracted 78% of boutons from the total bouton count to determine the number of

classical synapses made by each cell. However, the boutons not participating in the classical

synapses are still involved with volume transmission (Olah et al. (2009), in somatosensory

cortex) and are therefore functionally relevant. Their contribution should be considered in

any theoretical or computer model that includes ivy and neurogliaform synapses. For both

neurogliaform and ivy cells, we assumed they made 10 classical synapses per connection

(Table 2.1). This assumption is based on the observation that neurogliaform cells in the

somatosensory cortex were predicted to make 10 synapses per connection, though the status

of those synapses as classical (with a corresponding postsynaptic element) was not confirmed

(Tamás et al., 2003).

Layer
SO SP SR SLM Ref. Somata Layers
75% 0% 25% 0% Fuentealba et al. (2008a) Pyramidale
6% 3% 75% 16% Szabo et al. (2012) Pyramidale, Radiatum

40% 2% 50% 8% Average

Table 3.5: Laminar distribution of ivy cell boutons. Both studies used Sprague-Dawley rats.

Ivy cell boutons The axonal extent of the ivy cells is 0.75mm in the medio-lateral direc-

tion and 1.31mm in the rostro-caudal direction (Fuentealba et al., 2008a). Their total axonal

length was calculated by comparison with a bistratified cell axonal arbor. By measuring the

relative axonal lengths of ivy and bistratified cells within a 100x100x70 µm volume surround-
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ing the soma, ivy cells were found to have an axon length 2.2 times that of bistratified cells

(Fuentealba et al., 2008a). A complete bistratified cell axon had previously been measured

as 78,800 µm; therefore, we calculated a total ivy cell axon length of 176,760 µm. We calcu-

lated the total bouton count, at a density of one per every 2.4 µm, as 73,650. Considering

only 22% of synapses make classical synapses (Olah et al., 2009), we calculated 16,200 bou-

tons available for classical synapses. We assumed ivy cells made 10 classical synapses on

each postsynaptic cell (Table 2.1). Therefore, they diverge to innervate 1,620 cells. Their

relative preference for synapsing on pyramidal cells versus interneurons is not known, so we

used the ratio of 92:8 as discussed above (Table 2.1). We calculated that they contact 1,490

pyramidal cells and 130 interneurons. Ivy cells make most of their synapses in the strata

oriens and radiatum (Fuentealba et al., 2008a; Klausberger, 2009). Different studies have

found different distributions for ivy cell axons, as shown in Table 3.5. We took the average

of two studies (Fuentealba et al., 2008a; Szabo et al., 2012), assuming that ivy cells make

40% of their synapses in the stratum oriens and 50% in the stratum radiatum.

Neurogliaform cell boutons A neurogliaform cell filled within the confines of a 400µm

slice has more boutons (13,000) than a complete fill of a basket cell axon (10,000)

(Halasy et al., 1996; Vida et al., 1998). Also, within an equivalent volume, neurogliaform

cell axons have a release probability about five to six times that of basket cells (Olah et al.

(2009), in somatosensory cortex). Therefore, each neurogliaform cell has roughly 60,000

boutons. Because 78% of boutons are not involved in classical synapses (Olah et al. (2009),

in somatosensory cortex), we determined 13,200 boutons were available for synapses. As

we assumed neurogliaform cells make 10 classical synapses per connection (Table 2.1), their

divergence was calculated as 1,320 cells. We assumed they innervate pyramidal cells and

interneurons in a 92:8 ratio (Table 2.1) for a total of 1,214 pyramidal cells and 106 interneu-

rons.
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Neurogliaform axons concentrate around the cell in a tight, radially distributed cloud. The

axonal extent of neurogliaform cells was found to be 0.5mm in the mediolateral axis and

1.2mm in the septotemporal axis (Fuentealba et al., 2010). Given the total number of bou-

tons and calculated bouton density, we calculated the total axonal length as 144,000µm.

The axons are mostly found within the stratum lacunosum-moleculare (Price et al., 2005).

However, as some neurogliaform cells are found within the stratum radiatum (see above), we

assumed the distribution of boutons across the strata radiatum and lacunosum-moleculare

matched the distribution of somata across those two layers (83% in the stratum lacunosum-

moleculare, 17% in the stratum radiatum).

O-LM cell boutons The axonal extent of O-LM cells is rather compact, only 500µm

in the medio-lateral direction and 840µm in the septo-temporal direction (Sik et al., 1995).

O-LM cells have a local axonal length of 62,490µm and a bouton density of 26.6/100µm

(Sik et al., 1995). We calculated a local CA1 bouton count of 16,370 (Sik et al., 1995). A

light microscopy study of O-LM to pyramidal cell connections showed a range of three to

17 potential synapses per connection (Maccaferri et al., 2000). We took the average of 10

synapses per connection, giving a divergence of 1,637 cells (Table 2.1). There are 74% of

O-LM cell synapses made onto non-GABAergic cells, while only 9% are made on GABAergic

cells and 17% are unidentifiable (Katona et al., 1999a). Of the known synaptic targets, the

ratio was 89% of synapses made on pyramidal cells to 11% of synapses made on interneurons

(Katona et al., 1999a) for a total innervation of 1,457 pyramidal cells and 180 interneurons.

Within the CA1, most of the O-LM cell boutons are found in the stratum lacunosum-

moleculare, though a variable amount can be found in the stratum oriens. Sik et al. (1995)

found 93% of axon collaterals in the stratum lacunosum-moleculare and 7% in stratum oriens.

Other SOM+ cell boutons The other projection cells of the stratum oriens with local

axons in the CA1 usually innervate the strata radiatum and oriens. In one case, a so-called
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back-projection cell made 25,000 synapses in the hippocampus (Sik et al., 1994). Of the

axon length within the hippocampus, 24.3% remained within the CA1, giving an estimate of

6,080 boutons in the CA1 (Sik et al., 1994). Here, we assumed the other projection neurons

with local axon collaterals also had a similar number of boutons in the CA1 (Table 2.1). For

each projection cell with axons in strata oriens and radiatum, we assumed their local boutons

were distributed similarly as bistratified cells (Table 2.1), between the stratum oriens and

radiatum, with 58% of their length in the oriens and 42% in the stratum radiatum (following

a bistratified cell with its soma in the stratum oriens, from Sik et al. (1995)). As the few

collaterals within the stratum pyramidale did not exhibit a significant number of boutons,

we were concerned only with the relative proportions in the oriens and radiatum.

For some types of SOM+ cells, information was available about their relative preference

for synapsing on pyramidal cells or interneurons. Oriens-retrohippocampal cells send 96%

of their boutons to pyramidal cells (Jinno et al., 2007). Jinno et al. (2007) also found that

double projection cells send 86% of their local boutons to pyramidal cells and 14% to in-

terneurons, whereas Takacs et al. (2008) found that, of the known local targets of septally

projecting cells, 97% are on pyramidal cells and 3% are on interneurons. We averaged these

two data points to calculate that double projection cells make 92% of their local targets

on pyramidal cells and 8% on interneurons. Additionally, there appears to be a subset of

septally projecting cells that target interneurons locally (Gulyás et al., 2003). It is possi-

ble that interneuron-specific septally projecting cells constitute the other group of septally

projecting cells mentioned above. This other group is CB- and may align with the 18% of

septally projecting cells seen to express CR (Jinno, 2009).

For each of the SOM+ cell types, we assumed the cells contacted their postsynaptic targets

with 10 synapses each (Table 2.1). Because we assumed the same bouton counts for dou-

ble projection, so-called back projection, and oriens-retrohippocampal cells, they all had a

calculated divergence of 608 cells. Their preference for innervating pyramidal cells differed,
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however. Double projection cells may innervate 559 pyramidal cells and 49 interneurons,

while oriens-retrohippocampal cells innervate 584 pyramidal cells and 24 interneurons.

PV+ basket cell boutons The extent of the PV+ basket cell axon was found to

be 1,185µm in the septotemporal direction and 1,042µm in the medio-lateral direction

(Sik et al., 1995). The total axon length was 46,180µm (Sik et al., 1995). At a density of

22.6 boutons per 100µm, the estimated total bouton count per PV+ basket cell was 10,440

(Sik et al., 1995). Most of the boutons were found within the pyramidal layer, with few found

in the strata oriens or radiatum (Sik et al., 1995). Though the observed number of basket

cell synapses per connection varies from 2 to 12 (Buhl et al., 1994a; 1995; Sik et al., 1995;

Halasy et al., 1996; Foldy et al., 2010, in mouse), here we took PV+ basket cells to make

about 11 synapses on each pyramidal cell (Foldy et al., 2010, in mouse). However, PV+

basket cells have been shown to make connections comprising single or very few synapses on

other PV+ interneurons (Sik et al., 1995) (but see Cobb et al. (1997), where a basket cell

innervated a bistratified cell with 12 synapses) so we assumed they made only one synapse

on all connections with other interneurons (Table 2.1). Sik et al. (1995) found PV+ basket

cells connect with pyramidal cells and other PV+ cells with equal probability, which we took

to mean in proportion to the number of each cell type. Therefore, we calculated each PV+

basket cell contacts 1,014 other cells, 943 pyramidal cells and 71 other interneurons.

Bistratified cell boutons Bistratified cells project to the strata oriens and radiatum

(Klausberger, 2009). A range of values has been found for the number of boutons present

on each bistratified cell. Pawelzik et al. (2002) found a mean of 4,000 boutons, in contrast

to an earlier finding of 15,970 boutons within the CA1 for a bistratified cell with its soma in

the oriens (Sik et al., 1995). Additionally, Halasy et al. (1996) found that a bistratified cell

axon within a 400µm slice contained 8,752 boutons; therefore, the finding of 15,970 boutons

in a complete axon within the CA1 seems likely. The bistratified cell observed by Sik et al.
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(1995) had a local axonal length of 76,040µm and a bouton density of 21.0 boutons per

100µm.

Bistratified cells make 10 to 11 synaptic contacts with each cell they innervate

(Klausberger et al., 2004) (but see Buhl et al. (1994a) and Miles et al. (1996), where five

to nine were found). Therefore, each bistratified cell diverges to contact approximately

1,597 cells. Because the relative preference for synapsing on pyramidal cells was not given,

we assumed (Table 2.1) that bistratified cells synapse on pyramidal cells and interneurons

in a 92:8 ratio, for a total divergence of 1,469 pyramidal cells and 128 interneurons.

Layer
SO SP SR SLM Ref. Somata Layers
42% 6% 52% 0% Pawelzik et al. (2002) Pyramidale, typical
53% 14% 33% 0% Pawelzik et al. (2002) Oriens, atypical
58% 0% 42% 0% Sik et al. (1995) Oriens

51% 7% 42% 0% Average

Table 3.6: Laminar distribution of bistratified cell boutons.

Laminar distribution data for the bistratified cell was available from both Pawelzik et al.

(2002) and Sik et al. (1995); an average was calculated from the two references (Table 3.6)

such that 51% of collaterals were found in the stratum oriens, 7% in the pyramidale, and 42%

in the radiatum. Qualitative observations of laminar axonal distribution were also available

(Fuentealba et al., 2008a; Halasy et al., 1996). The medio-lateral extent of the axon was

1.15 mm, and rostro-caudally it was 1.53mm (Klausberger et al., 2004).

Axo-axonic cell boutons An experimentally observed axo-axonic cell had an elliptically

shaped axonal arbor, with a 600 by 850µm extent (Li et al., 1992). Each axo-axonic cell

had multiple rows of boutons, where each row corresponded to the synapses made on one

postsynaptic axon. Each row contained two to 10 boutons (Li et al., 1992), with an observed

divergence of one axo-axonic cell onto 1,200 pyramidal cells (Li et al., 1992). Therefore, we

calculated that each axo-axonic cell has 2,400 to 12,000 boutons and assumed an average
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of 7,200 boutons per axo-axonic cell (Table 2.1). Axo-axonic cells appear to contact only

pyramidal cells (Buhl et al., 1994a;b).

CCK+ basket cell boutons Comparably less information is available about CCK+ bas-

ket cell axonal arbors than PV+ basket cell axons. Axonal extent, total length, and bouton

density were generally not reported, though the proximal-distal extent of a CCK+ basket

cell axon was found to be 1mm (Vida et al., 1998).

The study of stratum radiatum basket cells (presumably CCK+, Table 2.1) showed that a

basket cell axon within a 400 µm slice contained almost 8,000 boutons (Vida et al., 1998).

We assumed (Table 2.1) the same bouton distribution as for the PV+ basket cells (20%

more boutons outside the slice, as in Halasy et al. (1996)), so the overall bouton count for

that cell is likely around 10,000. Though the observed number of basket cell synapses per

connection varies from two to 12 (Buhl et al., 1994a; 1995; Sik et al., 1995; Halasy et al.,

1996; Miles et al., 1996; Foldy et al., 2010, in mouse), here we took CCK+ basket cells to

make about eight synapses per connection (Foldy et al., 2010, in mouse). It is not known

whether CCK+ basket cells make fewer synapses in their connections with other interneurons

(as PV+ basket cells do), so we assumed they also made eight synapses per connection with

other interneurons (Table 2.1). This gave a divergence of 1,250 cells: 1,150 pyramidal cells

and 100 interneurons assuming the 92:8 ratio of innervation (Table 2.1). The average laminar

distribution of boutons across several CCK+ basket cells was shown to be 19% in the stratum

oriens, 60% in the stratum pyramidale, 20% in the stratum radiatum, and 1% in the stratum

lacunosum-moleculare (Pawelzik et al., 2002).

SCA cell boutons The axonal length and bouton density of SCA cells has not been

reported. The proximal-distal extent of the axon was found to be 1.1mm (Vida et al., 1998).

A 400 µm slice contained 6,000 boutons (Vida et al., 1998). By comparison, a bistratified
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cell in the middle of a 400 µm slice had an axon with almost 8,800 boutons (Halasy et al.,

1996). However, the full, local axonal arbor of another bistratified cell had 15,970 boutons

overall (Sik et al., 1995), suggesting that the bouton distribution of bistratified cells extends

significantly beyond the confines of a 400 µm slice. Therefore, we assumed the SCA cell

axon was distributed similarly and also had only 50% of its boutons within the confines of

the 400 µm slice (Table 2.1); we calculated a complete axon as having approximately 12,000

boutons. SCA cells make approximately six synapses per connection (Vida et al., 1998),

so they may contact roughly 2,000 cells. We assumed they contact pyramidal cells and

interneurons in a ratio of 92:8 for a total of 1,840 pyramidal cells and 160 interneurons. SCA

cells preferentially synapse in the stratum radiatum (Vida et al., 1998; Szabo et al., 2012),

with an average distribution of 82% of axons in the stratum radiatum. Table 3.7 shows the

different laminar distributions that have been observed for SCA cells.

Layer
SO SP SR SLM Ref.
0% 0.2% 97.4% 2.4% Vida et al. (1998)

19.2% 8.2% 67.4% 5.2% Szabo et al. (2012)

9.6% 4.2% 82.4% 3.8% Average

Table 3.7: Laminar distribution of SCA cell boutons.

ADI cell boutons No quantitative information has been reported about ADI cell axons.

ADI cell boutons are known to innervate the main apical dendrite of pyramidal cells in

preference to the oblique dendrites (Klausberger et al., 2005; Klausberger, 2009). If ADI cells

gave rise to one tenth of the 111 GABAergic synapses on the distal main apical dendrite of

the pyramidal cells (Meǵıas et al., 2001), each of the 390 ADI cells would need approximately

8,870 boutons.

PPA cell boutons Though a 400µm slice was found to contain 8,000 boutons, over half

of them were positioned outside the CA1 (Vida et al., 1998). We used the same logic as
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with the SCA cell to estimate a total of 16,000 boutons (Table 2.1). Considering half of the

boutons as being within the CA1 (Vida et al., 1998) gave a total of 8,000 boutons. PPA cells

are thought to make six synapses per connection as seen with SCA cells (Vida et al., 1998),

for a divergence of 1,333 cells. We assumed they followed the ratio of 92:8 for innervation,

for a total divergence of 1,227 pyramidal cells and 106 interneurons (Table 2.1).

IS cell boutons Bouton counts of the IS cells were not available, probably due to the

difficulty of determining an average bouton density for their axon collaterals. The bouton

density of IS cells varies significantly along the axons (Acsady et al., 1996). This variability

in bouton density, with large lengths of axon in which few boutons are found, interspersed

with sections of high bouton density, may arise because of these interneurons selectivity in

only synapsing on other interneurons (Acsady et al., 1996).

Trilaminar cell boutons There was sufficient information about trilaminar cells to es-

timate their divergence. Trilaminar cells innervate mainly the stratum oriens and stratum

radiatum, but also the stratum pyramidale (Klausberger, 2009). They should be considered

distinct from other projection cells whose axons ramify mainly in the strata radiatum and

oriens, the cell types formerly known as oriens-bistratified cells (Maccaferri et al., 2000). Of

the synapses made within the CA1, a trilaminar cell made 70% of its synapses in the stratum

radiatum, 17% in the stratum pyramidale, and 13% in the stratum oriens (Sik et al., 1995).

The observed axonal length and bouton density suggested the trilaminar cell had 15,800 bou-

tons within the hippocampal formation, with 15,440 boutons in the CA1 (Sik et al., 1995).

A trilaminar cell from a different study made 40% of its synapses on pyramidal cells, while

60% were made onto interneurons (Ferraguti et al., 2005). The trilaminar cell observed in

(Ferraguti et al., 2005) had a more extensive axonal projection to the subiculum and most

of its axon collaterals ramified in the stratum oriens, rather than the stratum radiatum,

as compared to the trilaminar cell in Sik et al. (1995). Note that the trilaminar cell from
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Ferraguti et al. (2005) was considered as an oriens-retrohippocampal cell in a later study

(Jinno et al., 2007). We assumed trilaminar cells contacted each postsynaptic target with

10 synapses (Table 2.1), giving a local divergence of 1,544 cells (618 pyramidal cells and 926

interneurons).

Dendrite subclass Total Synapse number Total GABA- Total GABA+
Ori/dist 12, 141 ± 3, 255 11, 735 ± 3, 147 405 ± 108
Ori/prox 479 ± 161 246 ± 83 233 ± 78
Rad/T/prox 196 ± 33 3.8 ± 0.6 193 ± 32
Rad/T/med 340 ± 138 277 ± 112 63.0 ± 25.6
Rad/T/dist 2, 219 ± 980 2, 171 ± 959 47.6 ± 21.0
Rad/t 14, 862 ± 3, 249 14, 425 ± 3, 154 437.1 ± 95.6
L-M/T 565 ± 349 485.7 ± 300.0 79.6 ± 49.1
L-M/M 493 ± 175 418.0 ± 148.4 75.5 ± 26.8
L-M/t 1, 051 ± 365 873.0 ± 303.0 178.6 ± 62.0
Total 32, 351 ± 5, 486 30, 637 ± 5, 259 1, 713 ± 261

Table 3.8: Number of GABA- and GABA+ synapses on pyramidal cell dendrites by layer
and thickness of dendrite, from Table 3 in Meǵıas et al. (2001). T: thick, M: medium, t: thin,
dist: distal, med: medial, prox: proximal, Ori: stratum oriens, Rad: stratum radiatum, L-M:
stratum lacunosum-moleculare

3.2.3 Divergence of afferents

We used bouton counts and synapse counts from EM studies on the dendrites and somata of

CA1 pyramidal cells to quantify their inputs (see (Meǵıas et al., 2001); we have reproduced

their data with permission in our Table 3.8). We included the contributions of afferents to

the CA1 as well as the local axonal projections of CA1 pyramidal cells and interneurons.

In Bezaire and Soltesz (2013), we employed a novel concept to move beyond the lack of

information regarding connections onto interneurons. We calculated the convergence of

afferents and intrinsic inputs onto a hypothetical average interneuron and compared it to the

synapse data available for several neurochemical classes of interneuron (Gulyás et al., 1999;

Mátyás et al., 2004). However, that hypothetical average was not adequate for constraining

our network model, and so here we ventured further in our assumptions in order to progress

86



with our estimates for use in our network constraints.

Glutamatergic afferents of the CA1

Excitatory inputs arrive mainly from the CA3 (Schaffer Collaterals) and the entorhinal

cortex, but also from the nucleus reuniens of the thalamus and other areas (Wouterlood et al.,

1990; Sotty et al., 2003; Kajiwara et al., 2008; Klausberger and Somogyi, 2008). Here, we

calculated the inputs from the Schaffer Collaterals and entorhinal cortex. The Schaffer

Collaterals represent the main excitatory input to the CA1. The entorhinal cortex supplies

significantly less excitatory input. There are additional, smaller excitatory inputs as well,

though insufficient data exist to quantify them. For example, the subiculum is known to

target all layers of the CA1 (Köhler, 1985). The amygdalar input to the CA1 is also excitatory

(Klausberger and Somogyi, 2008). There are also some connections from the subiculum,

presubiculum, and parasubiculum as reviewed in Van Strien et al. (2009). In addition, there

is glutamatergic input from the septum (Sotty et al., 2003).

It should be noted that the count of non-GABAergic synapses received by the pyramidal cell

includes synapses that are not glutamatergic (Meǵıas et al., 2001). Some non-GABAergic

synapses are contributed by the cholinergic pathway from the septum. Less commonly, the

serotonergic pathwaymay innervate sparsely the pyramidal cells, though it appears to rely

mostly on volume transmission to pyramidal cells (Gulyas et al., 1990; Borhegyi et al., 2004).

Schaffer Collaterals The CA3 is estimated to contain 230,000 neurons, within the range

for 30-day-old Wistar rats (210,000-250,000, from West et al., 1991). Approximately 11%

of neurons in the hippocampus are interneurons (Woodson et al. (1989), also see our Table

2.1), for a total of 204,700 pyramidal cells and 25,300 interneurons in the CA3.

Though the Schaffer Collaterals innervate both the strata radiatum and oriens of the CA1,
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there is a gradient in innervation where the CA3c neurons prefer the stratum radiatum and

the CA3a neurons prefer the stratum oriens (Amaral and Witter, 1989). The CA3c neu-

rons also tend to synapse more temporally whereas the CA3a neurons synapse more septally

(Amaral and Witter, 1989). Therefore, we averaged data from a CA3c and a CA3a neu-

ron to calculate the average input from a CA3 neuron to the CA1. The CA3c pyramidal

cell was shown to have about 39,200 boutons within the dorsal area of the ipsilateral hip-

pocampus (Wittner et al., 2007). Approximately 70% of these boutons were found in the

CA1 region, so that this single pyramidal cell may contribute 27,440 boutons to the Schaffer

Collateral pathway (Wittner et al., 2007). This CA3c neuron was shown to make 94% of

its Schaffer Collateral synapses in the stratum radiatum and only 3% in the stratum oriens

(Wittner et al., 2007). In contrast, the CA3a neuron was shown to make 64% of its synapses

in the stratum oriens, 15% in the stratum pyramidale, and 21% in the stratum radiatum

(Sik et al., 1993), for a total of 15,295 boutons. The relative laminar distributions of the

Schaffer Collateral boutons yielded the bouton counts per lamina shown in Table 3.9. We

calculated the input of an average CA3 neuron to the Schaffer Collateral pathway, assuming

that the bouton distributions for the CA3a and CA3c neurons could be taken as the extreme

examples on each end of a uniform gradient (Table 2.1).

Septal Temporal
Layer % Boutons % Boutons
Lac. Mol. 0 0 0.4 67
Radiatum 20.8 2, 960 94.2 15, 797
Pyramidale 15.4 2, 191 2.4 402
Oriens 63.8 9, 079 3 503
Total 14, 230 16, 770

Table 3.9: Schaffer Collateral bouton counts per CA1 pyramidal cell based on a CA3a/septal
distribution or a CA3c/temporal distribution.

However, this calculated contribution is certainly low. The CA1 pyramidal cell has a total of

28,860 excitatory synapses on its dendrites in the stratum radiatum and oriens (Meǵıas et al.,

2001) (see Table 3.8), which are mainly innervated by the Schaffer Collaterals. This number
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Exc. Synapses on a CA1 Pyramidal Cell
Layer Total S.C. Inputs Remaining
Lac. Mol. 1776 34 1, 742
Radiatum 16, 878 8, 871 7, 547
Pyramidale 921
Oriens 11, 982 3, 233 8, 288
Total 30,636 13,059 17,577

Table 3.10: Comparison of the total available excitatory synapses on a CA1 pyramidal cell
with the calculated boutons available from the Schaffer Collateral path per CA1 pyramidal
cell. The remaining “unclaimed” synapses left after subtracting the Schaffer Collateral inputs
are also given. Because no dendrites were reported in the pyramidal layer (Meǵıas et al.,
2001), the boutons reported in the pyramidal layer were evenly divided between the stratum
radiatum and stratum oriens. S. C.: Schaffer Collateral.

is much greater than the input calculated from the average of the CA3a and CA3c neurons

(Table 3.9). There are two reasons for the discrepancy. First, the contralateral CA3 axons

contribute a significant number of boutons to each CA1 pyramidal cell. Second, at least in

the case of the Wittner et al. (2007) axon, the axonal extent of the filled CA3 neuron may

have extended outside the slices that contributed to the bouton count, so that the ipsilateral

axon fill was incomplete (the axon published in Wittner et al. (2007) was reconstructed from

48 slices 70 µm thick in the ipsilateral dorsal hippocampus for a total of 39,200 boutons;

earlier work by Li et al. (1994) had estimated a CA3 pyramidal cell could contribute up

to 60,000 boutons to the ipsilateral hippocampus). In the case of Sik et al. (1993), the

axon was reconstructed from 32 sections 60 µm thick of the ipsilateral hippocampus and

was said to be a complete reconstruction of the ipsilateral axon. By comparing the total

number of available synapses on the CA1 pyramidal cell dendrites in the strata radiatum and

oriens with the reported bouton counts from the CA3 pyramidal cells, we estimated that the

reported counts represent only 46% of the boutons expected to project to the ipsilateral and

contralateral CA1 from each CA3 neuron. The comparison of Schaffer Collateral boutons

per CA1 pyramidal cell and available synapses on the CA1 pyramidal cell (as calculated in

Meǵıas et al. (2001)) is shown in Table 3.10. To calculate the boutons available per CA1

pyramidal cell, we multiplied the average CA1-area bouton count by the number of CA3
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pyramidal cells, took 93% of the total as synapsing on CA1 pyramidal cells (Takács et al.,

2012), and then divided that total by the number of CA1 pyramidal cells.

We also considered the divergence of the CA3 pyramidal cells within the ipsilateral CA1.

For pyramidal cells within the CA3c, most connections made onto CA1 pyramidal cells

comprise one to two synapses (Ropireddy and Ascoli, 2011), for an ipsilateral divergence of

12,760 to 25,520 CA1 pyramidal cells. Given the total number of CA1 pyramidal cells, this

range corresponded to each CA3c pyramidal cell contacting 4% to 8% of CA1 pyramidal cells

ipsilaterally, in line with the 4% to 9% potential CA1 pyramidal cell connectivity determined

for CA3c pyramidal cells using 3D anatomical reconstruction data (Ropireddy and Ascoli,

2011). The ipsilateral CA1 divergence for the CA3a cell, with its significantly lower bouton

count in the CA1, is expected to be much lower. Though no CA3a cells were included in

the work of Ropireddy and Ascoli (2011), a CA3b cell was shown to have a much lower

connectivity onto the CA1 pyramidal cells % compared to connections from the CA3c cells.

Other excitatory afferents The main source of glutamatergic inputs to the stratum

lacunosum-moleculare of the CA1 is the temporoammonic pathway from the entorhinal

cortex (Andersen et al., 2007). This pathway is likely responsible for the majority of the

excitatory synapses on the distal apical dendrites of CA1 pyramidal cells, though the gluta-

matergic inputs from the nucleus reuniens in the thalamus also make up a significant portion

of synapses (Wouterlood et al., 1990). The input from the nucleus reuniens is differentiated

by the presence of VGLUT2 in the boutons (Halasy et al., 2004). The VGLUT2+ boutons

are only found in the stratum lacunosum-moleculare (Halasy et al., 2004). We do not know

the relative proportion of inputs from the entorhinal cortex versus the nucleus reuniens, so

we have assumed that the entorhinal cortex supplies most of the excitatory inputs (Table

2.1). Together, they contribute about 1,742 synapses, which is the number of distal apical

synapses found on a pyramidal cell (Meǵıas et al., 2001) after subtracting a small contribu-
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tion of the Schaffer Collaterals to the stratum lacunosum-moleculare (see contribution from

a CA3c cell, Table 3.9).

Both the medial and lateral entorhinal cortex project to the CA1, though the lateral pro-

jection appears to be stronger (Witter et al., 1988). The number of principal neurons in the

entorhinal cortex layer III was found to be 250,000, with 130,000 in the medial entorhinal cor-

tex and 120,000 in the lateral entorhinal cortex (Mulders et al., 1997). We made a cursory

estimate of the divergence of the entorhinal cortical neurons to the stratum lacunosum-

moleculare. We assumed that both medial and lateral parts contributed proportionally to

the stratum lacunosum-moleculare-targeting temporoammonic path, and that all 1,742 of

the stratum lacunosum-moleculare synapses were innervated by the temporoammonic path

(Table 2.1). With those assumptions, each entorhinal cortical neuron would need to pro-

vide an average of 2,171 boutons to the stratum lacunosum-moleculare-targeting part of

the temporoammonic path. Given that the nucleus reuniens input may be significant, this

calculation of divergence may be overestimated.

The temporoammonic path also includes an alvear targeting component. Although there

are no solid quantitative comparative data, the alvear pathway is considered a minor source

of entorhinal cortical input compared to the temporoammonic pathway that targets the

stratum lacunosum-moleculare directly, so it must contribute significantly fewer than 1,742

synapses to each CA1 pyramidal cell.
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3.3 Convergence

3.3.1 Convergence onto pyramidal cells

Next, we calculated the convergence of various neuron types onto a CA1 pyramidal cell. We

compared the calculated inputs with the observed synapses on CA1 pyramidal cell dendrites

and somata (see Table 3.8, which reproduces data from Meǵıas et al. (2001)).

Excitatory synapses

Given the calculations above, we estimated that each pyramidal cell received 13,059 to 28,697

synapses from the Schaffer Collateral pathway. Additionally, each pyramidal cell received up

to 1,742 synapses from the entorhinal cortex via the stratum lacunosum-moleculare-targeting

portion of the temporoammonic pathway, and a smaller number of synapses from the en-

torhinal cortex via the alvear pathway. Previously, we had calculated that each pyramidal

cell receives 197 synapses from other local collaterals. In total, a CA1 pyramidal cell receives

approximately 30,636 excitatory inputs (Meǵıas et al., 2001). A summary of the excitatory

convergence onto pyramidal cells is given in Table 3.11.

Calculated Boutons/
Input Type CA1 Pyr. Cell.
Entorhinal Cortex via SLM < 1, 742
Schaffer Collaterals 13, 059− 28, 860
Entorhinal Cortex via Alveus << 1, 742
Local Collaterals 197

Table 3.11: Calculated convergence of excitatory synapses onto a CA1 pyramidal cell, based
on observations of CA1 pyramidal cell dendrites from Meǵıas et al. (2001). The lower end
of the Schaffer Collateral range is based on the bouton counts from axonal fills of CA3
cells, while the upper end of the range is based on CA1 pyramidal cell synapse counts from
Meǵıas et al. (2001). SLM: stratum lacunosum-moleculare
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Perisomatic GABA+ synapses

Basket cells are known to synapse on and around the pyramidal cell soma, with CCK+ cell

synapses being found further out from the soma than PV+ basket cell synapses (Foldy et al.,

2010, in mouse). There are approximately 92 synapses, all GABAergic, on the pyramidal cell

body; including the proximal oriens and thick radiatum dendrites that extend up to 100 µm

from the soma, there are 518 perisomatic, GABAergic synapses (Meǵıas et al., 2001). We

multiplied the number of each type of basket cell by the number of boutons (Table 3.1) to get

the total number of basket cell boutons in the CA1. Then we computed the average number

of boutons that can synapse on each pyramidal cell, taking into account their preference for

innervating pyramidal cells as discussed earlier. That gave a total of 289 basket cell synapses

per pyramidal cell. We assumed that only basket cells synapse on the soma (Table 2.1). Since

only 92 of these 289 synapses are found directly on the soma, we calculated that only 32% of

basket cell synapses are on the soma. This calculation is slightly lower than the 51% observed

experimentally for basket cells generally (Buhl et al., 1994a), or the 48 to 77% observed for

CCK+ basket cells, specifically (Pawelzik et al., 2002). Subtracting the 92 synapses found

on the soma (assuming all somatic GABAergic synapses are made by basket cells, Table 2.1)

gave a total of 197 proximal dendritic synapses made by basket cells. That left 229 of the

518 perisomatic synapses (somatic, proximal basal, and thick, proximal radiatum synapses)

unclaimed. However, since other cell types occasionally make perisomatic synapses as well

(such as trilaminar cells (Ferraguti et al., 2005), bistratified cells (Buhl et al., 1994a), or ivy

cells (Fuentealba et al., 2008a)), those could account for some of the perisomatic synapses

found on the pyramidal cell.

To determine the convergence of basket cells onto a pyramidal cell, we divided the total

number of synapses contributed from each basket cell type by the average number of synapses

per connection made by each basket cell type. The ratio of PV:CCK basket cell synapses

on the soma is about 2:1(Foldy et al., 2010, in mouse). Therefore, we calculated that each
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pyramidal cell is innervated by 17 PV+ basket cells and 13 CCK+ basket cells.

Axon initial segment GABA+ synapses

There are at least 25 synapses on the axon of the CA1 pyramidal cell (Meǵıas et al., 2001).

This count only includes proximal synapses, though there are likely more synapses distally

(Meǵıas et al., 2001). These axonal synapses were not included in the dendritic or somatic

counts for pyramidal cells, given in Table 3.8. Dividing the total number of boutons from all

axo-axonic cells by the total number of pyramidal cells in the CA1, we calculated that there

are 34 axo-axonic boutons for each pyramidal cell (assuming they only innervate pyramidal

cells, see (Buhl et al., 1994a;b)) and that a pyramidal cell receives input from about six

axo-axonic cells on its proximal axon.

Proximal dendritic GABA+ synapses

The number of GABAergic synapses found on the proximal basal and apical dendrites of a

pyramidal cell total 953 (Table 3.8) (Meǵıas et al., 2001). A number of interneuron types

synapse on these proximal dendrites of the pyramidal cell, which include the dendrites in the

strata oriens and radiatum. This category encompasses bistratified cells, ivy cells, Schaffer

Collateral-associated (SCA) cells, apical dendritic innervating (ADI) cells, large calbindin

cells, trilaminar cells, and various projection cells (Klausberger and Somogyi, 2008). Note

that some of the neurons associated with the stratum lacunosum-moleculare also synapse

in the stratum radiatum. For example, neurogliaform cells located close to the strata

lacunosum-moleculare/radiatum border make many of their synapses in the stratum ra-

diatum (Vida et al., 1998). For this assessment, we generally assumed that the distally

projecting neuron types only make synapses on the distal apical dendrites in the stratum

lacunosom-moleculare (Table 2.1). However, we did account for the subset of neurogliaform
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cells identified in the stratum radiatum as synapsing within the stratum radiatum (see neu-

ron numbers calculation above) and a small fraction of O-LM cell axons remaining in the

stratum oriens.

Bistratified cell synapses Bistratified cells synapse on the small and medium-sized den-

drites, generally avoiding the main apical dendrite of the pyramidal cell (Klausberger et al.,

2004). Multiplying the average number of boutons per bistratified cell by the estimated

number of bistratified cells gave an average of 104 boutons per pyramidal cell, assuming that

92% of their boutons innervate pyramidal cells. Given that bistratified cells usually make 10

synapses per connection, each pyramidal cell receives input from 10 bistratified cells. The

inputs from the bistratified cells represent about 7.5% of the inhibitory input synapses on

the dendrites in strata oriens, pyramidale, and radiatum dendrites of the CA1 pyramidal

cell.

Projection cell synapses To calculate the contributions of the double projection and

oriens-retrohippocampal cells to CA1 pyramidal cell innervation, we assumed that they had

a similar number of local boutons as the so-called back-projection cell (Table 2.1). We

calculated that these projection cells (which make up 4% of interneurons) could supply 2%

of the available inhibitory dendritic synapses on CA1 pyramidal cells. The contribution of

the other projection cell types could not be calculated since their cell numbers are unknown.

Ivy cell synapses Given the number of ivy cells and the calculation of their classical

bouton count, we estimated that a CA1 pyramidal cell receives 422 synapses from ivy cells.

Ivy cells therefore innervate 28% of the synapses on the strata radiatum, pyramidale, and

oriens dendrites of the pyramidal cell. Since ivy cells make about 10 synapses per connection,

each pyramidal cell receives classical synaptic input from 42 ivy cells. If there are ivy cells

that only influence pyramidal cells through volume transmission without making any classical
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synapses, we have not included them in this calculation of convergence.

Stratum radiatum neurogliaform cell synapses As neurogliaform cells are often found

near the border of the strata radiatum and lacunosum-moleculare, their axons sometimes

fall within the stratum radiatum. Here, we made the simplifying assumption that those

neurogliaform cells found in the stratum radiatum contribute their boutons to dendrites in

the stratum radiatum. Earlier we had calculated that there were 610 neurogliaform cells in

the stratum radiatum; therefore, they are expected to contribute a total of 24 boutons to the

stratum radiatum dendrites of each CA1 pyramidal cell. Since neurogliaform cells make 10

synapses per connection, a single CA1 pyramidal cell likely receives classical synaptic input

from two neurogliaform cells in the stratum radiatum. As with the ivy cells, if some neu-

rogliaform cells contact pyramidal cells only through volume transmission but not classical

synapses, they were not included in this calculation.

Schaffer collateral associated cell synapses SCA cells synapse mainly in the stratum

radiatum, but also in the stratum oriens. In the stratum radiatum, SCA cells prefer to

synapse on the oblique dendrites rather than the main shaft (Klausberger, 2009). We esti-

mated that a CA1 pyramidal cell receives 14 synapses from SCA cells. Since SCA cells make

about six synapses per connection, each pyramidal cell receives input from about two SCA

cells.

Apical dendritic innervating cell synapses ADI cells have similar targets to SCAs

but tend to innervate the main shaft more than SCA cells; in general, they prefer the large

apical dendrites (Klausberger et al., 2005; Klausberger, 2009). We do not know much about

the axonal length or bouton density of ADI cells. We estimated above that there are 390

ADI cells in the CA1, but without any bouton data, their convergence cannot be estimated.
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Other proximal dendritic synapses Several other neurons known to innervate the basal

and proximal apical dendrites have not been included here, such as so-called back projection,

trilaminar, RADI, large calbindin, and some lesser-known CCK+ cell types. The numbers of

these neurons are not known very precisely, nor are their bouton counts, with the exception

of the bouton counts for the trilaminar cells.

Assessing the difference between interneuron boutons available for synapsing onto pyrami-

dal cells and GABAergic synapses on pyramidal cell dendrites, we find that there are still

available synapses on the dendrites for which we have not determined the source. In the

stratum oriens, 290 inhibitory synapses on the basal dendrites (128 of them perisomatic)

were still unclaimed. In the stratum radiatum, there were still 333 inhibitory synapses (87

perisomatic) remaining.

Distal dendritic GABA+ synapses

Neurogliaform, O-LM, and lesser well-known types such as the perforant path associated

(PPA) and radiatum-retrohippocampal projection cells are known to synapse on the dis-

tal dendrites in the stratum lacunosum-moleculare (Klausberger and Somogyi, 2008). The

total number of synapses made onto the distal apical dendrites of a pyramidal cell is 335

(Meǵıas et al., 2001).

Neurogliaform cell synapses As discussed above, a large portion of neurogliaform cell

boutons are found in the stratum lacunosum-moleculare. We made the simplifying as-

sumption that all of the neurogliaform cells found in the stratum lacunosum-moleculare

contributed their boutons to that layer. Therefore, 2,970 neurogliaform cells in the stra-

tum lacunosum-moleculare contribute an average of 116 classical boutons per pyramidal cell

and innervate 35% of stratum lacunosum-moleculare inhibitory synapses. It follows that
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each pyramidal cell receives input from 12 neurogliaform cells in the stratum lacunosum-

moleculare and 14 neurogliaform cells overall, given that neurogliaform cells have been ob-

served to make 10 synapses per connection (Tamás et al. (2003); also, see Table 2.1). As

mentioned above, if some neurogliaform cells contact pyramidal cells only through volume

transmission but not classical synapses, they were not included in this calculation.

O-LM cell synapses About 99% of O-LM boutons remain in the CA1 (Sik et al., 1995),

giving a total of 77 synapses per pyramidal cell (72 on the distal apical dendrites and 5 on

the basal dendrites). We estimated that O-LM cells make 10 synapses per connection (Table

2.1) based on light microscopic observations (Maccaferri et al., 2000), such that eight O-LM

cells converge on a single pyramidal cell.

PPA cell synapses PPA cells seem to innervate small to medium-sized dendrites mostly

in the stratum lacunosum-moleculare (Vida et al., 1998; Klausberger, 2009). Accounting for

the estimated number of PPA cells (490) and the local bouton count (8,000), the average

number of boutons available per pyramidal cell is 12. Given that PPA cells make about six

synapses per connection, we calculated a convergence of two PPA cells onto each pyramidal

cell.

Other distal dendritic synapses An average of 99 distal, stratum lacunosum-moleculare

dendritic synapses per pyramidal cell remain unclaimed. Some of these synapses may be

innervated by the radiatum-retrohippocampal cell, but we have no bouton information for

that cell so we cannot calculate its contribution.

Summary of inhibitory convergence onto pyramidal cells
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Total Boutons/ Boutons Boutons/
Cell Type Cells Cell Total % on Pyr. Cells Per Pyr. Cell Connection Convergence
Ivy 8, 520 14, 700 129.5M 93% 387 10 39
Neurogliaform 3, 560 13, 200 47.3M 93% 141 10 14
O-LM 1, 640 16, 730 27.3M 89% 78 10 8
Double Projection 760 6, 080 4.6M 92% 14 10 1
Oriens retrohipp 640 6, 080 3.9M 96% 12 10 1
PV+ Basket 5, 520 10, 400 57.4M 99% 182 11 17
Bistratified 2, 210 16, 020 35.4M 93% 106 10 11
Axo-axonic 1, 470 7, 200 10.6M 100% 34 6 6
CCK+ Basket 2, 870 10, 000 28.7M 93% 86 8 11
SCA 420 12, 000 4.9M 93% 15 6 3
PPA 490 8, 000 4.1M 93% 12 6 2
Total per Pyr. Cell Inhibitory Synapses 1, 067 Convergence 113

Table 3.12: Calculated convergence of interneurons onto a CA1 pyramidal cell. Note that several cell types are not included
here, such as back-projection, radiatum-retrohippocampal, and more. a: all stratum oriens-specific cells were assumed to make
6 synapses/connection. b: all oriens-bistratified cells were assumed to have the same number of CA1 boutons as back-projection
cells.

99



Total Oriens Radiatum
Cell Type Boutons Distal Proximal Thick prox. Thick dist. Thin L-M Soma Axon
Ivy 387 155 3 4 0 194 31 0 0
Neurogliaform 141 0 0 0 0 24 117 0 0
O-LM 78 5 0 0 0 0 73 0 0
Double Projection 13 8 0 0 0 5 0 0 0
Oriens retrohipp 12 7 0 0 0 5 0 0 0
Trilaminar ∗ ∗ ∗ ∗

Back Projection ∗ ∗

Radiatum retrohipp ∗ ∗

PV+ Basket 182 0 61 60 0 0 0 61 0
Bistratified 106 45 3 3 0 55 0 0 0
Axo-axonic 34 0 0 0 0 0 0 0 34
CCK+ Basket 86 0 27 28 0 0 0 31 0
SCA 15 1 1 0 0 12 1 0 0
ADI ∗

PPA 12 0 0 0 0 0 12 0 0
Misc CCK+ ∗ ∗ ∗ ∗ ∗

Total Boutons
Total Available 1839 405 233 193 111 437 334 92 34
Total Claimed 1067 221 95 94 0 296 235 92 34
Total Remaining 772 184 138 99 111 141 99 0 0
Percent Remaining 42% 45% 59% 51% 100% 32% 30% 0% 0%

Table 3.13: Calculated convergence of interneurons onto a CA1 pyramidal cell by layer and dendrite type. For some interneuron
types, no data were available but the likely locations of their synapses are marked with an asterisk. Other interneuron types
are not shown in this table. The ’Total Available’ column values are based on the synapse counts on an average CA1 pyramidal
cell from Meǵıas et al. (2001). The ’Total Claimed’ column gives the counts for the presynaptic cell types we have calculated in
this assessment, and the ’Total Remaining’ column gives the number of synapses on the average pyramidal cell remaining after
subtracting the estimated innervation calculated in this assessment.
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Table 3.12 summarizes the estimated convergence of interneurons onto a single CA1 pyra-

midal cell, while Table 3.13 details convergence by layer. Although a CA1 pyramidal cell

has been shown to have about 1,840 inhibitory synapses on its dendrites, soma, and axon,

we only calculated 1,118 inhibitory inputs. Therefore, 39% of the inhibitory inputs remain

unspecified by our calculations. There are several possible reasons for this discrepancy. We

should consider that axonal fills of interneurons may be incomplete, or bouton density may

be higher, or the fraction of boutons that participate in classical synapses from neurogliaform

family neurons may be much higher, or the fraction of CA1 neurons that are interneurons

may be higher than previously reported. Though some afferent projections to the CA1 are

GABAergic, they mainly target interneurons rather than pyramidal cells (Freund and Antal,

1988; Gulyas et al., 1990; Melzer et al., 2012, in mouse), so we do not consider them signifi-

cant here.

3.3.2 Convergence onto interneurons

Some experimental observations have been made regarding inputs to interneurons. While

in Bezaire and Soltesz (2013) we used the concept of a hypothetical average interneuron to

enable accounting for boutons and input synapses onto interneurons, the concept does not

offer sufficient detail for model implementation. Therefore, we took a different strategy to

arrive at estimates of inputs onto each interneuron type in our model.

This consisted of using an estimated or experimentally determined dendritic length and

synapse density of the cells, in each layer, and distributing the available boutons evenly

across all potential input synapses in that layer.

For some neurochemical classes of interneuron, the input synapse numbers have been calcu-

lated (Table 3.14). These classes include CCK+, PV+, CB+, and CR+ cells. The CCK+

cell class represents CCK+ basket cells only. The PV+ class was heterogeneous, but the mor-
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Marker Total Synapses Percent GABA+ Non GABAergic GABAergic
PV 16, 300 6% 15, 322 978
CCK 8, 200 36% 5, 248 2, 952
CB 3, 800 29% 2, 698 1, 102
CR 2, 200 21% 1, 738 462
HS* 22, 00 14% 18, 920 3, 080

Table 3.14: Total number of synapses and ratio of GABA- to GABA+ for various cell types
by marker (Gulyás et al., 1999; Mátyás et al., 2004; Takacs et al., 2008). * Hippocampal-
septal cells, classified by their projection target rather than a marker expressed.

phological traits varied smoothly such that there were no distinctive groups (Gulyás et al.,

1999) (Gulyás et al., 1999); it is likely that multiple PV+ cell types are included. The iden-

tity of the CB+ cell class was unclear. Judging from their dendritic distribution, the Type 1

neurons (Gulyás et al., 1999) could be large calbindin cells or perhaps CB+ bistratified cells.

Since they do not have many dendrites in the stratum lacunosum-moleculare, they seem less

likely to be SCA or PPA cells. The Type 2 neurons mentioned here but not analyzed look

to be double projection cells (Gulyás et al., 1999). The CR+ cell type is likely to include

multiple interneuron-specific cell types (Gulyás et al., 1999).

Excitatory afferents

Calculated Boutons/
Input Type CA1 Pyr. Cell.
Entorhinal Cortex via Stratum Lacunosum-Moleculare < 1, 394
Schaffer Collaterals 7, 952− 17, 576
Local Collaterals 2, 211
Total 11,557 - 21,181

Table 3.15: Calculated convergence of excitatory synapses onto a hypothetical average in-
terneuron in the CA1. There are also inputs from the entorhinal cortex via the alveus, as
well as from other afferents.

Takács et al. (2012) found that 93% of Schaffer Collateral synapses were made onto pyrami-

dal cells, while 7% of synapses were made onto interneurons. We started with the number

of Schaffer Collateral synapses on pyramidal cells and used the ratio to determine the Schaf-
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fer Collateral synapses available for interneurons. This gave an average of 7,952 to 17,476

Schaffer Collateral synapses onto each interneuron (Table 3.15), depending on whether we

counted only the observed boutons on the CA3 neurons or what we calculated must be the

total number based on the available CA1 pyramidal cell synapses in the strata radiatum and

oriens.

Performing the same exercise with the remaining stratum lacunosum-moleculare inputs (as-

suming they are all from the entorhinal cortex, Table 2.1) gave an additional 1,394 entorhinal

cortical boutons available per interneuron, since 9% of the entorhinal cortical input to the

stratum lacunosum-moleculare synapses on interneurons (Takács et al., 2012). Additionally,

there are 2,211 boutons per interneuron from the local collaterals of the CA1. This gave a

total of 11,557 to 21,081 excitatory inputs (Table 3.15), much higher than most of the ob-

served values in those classes reported in Table 3.2, where the weighted average gives 9,461

excitatory inputs per interneuron. Note that it does not include entorhinal cortical inputs

coming from the alvear pathway (in which the fraction of synapses made onto interneu-

rons is high, at 21%, see Takács et al. (2012)), so the actual number of available excitatory

boutons may be even higher. Additionally, interneurons receive non-GABAergic input from

subcortical sources. They also receive some cholinergic input from the septum, and sero-

tonergic and glutamatergic input from theraphe Gulyas et al. (1990); Freund et al. (1990);

Freund and Gulyas (1997); Varga et al. (2009). Of course, not all interneurons receive in-

puts from all excitatory sources, so there may be a significant variation in total number of

excitatory inputs across all interneuron types.

Convergence by cell type

An excellent recent qualitative review of interneuron-interneuron connectivity is given in

Chamberland and Topolnik (2012) and a detailed analysis of specific connections seen in

the literature is underway as part of the Hippocampome project (hippocampome.org). In
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Synapse Density Dendritic
Layer Excitatory Inhibitory Length
Lm M 143.44 27.89 213.92
Lm t 126.75 28.97 441.74
Rad T 444.68 39.13 255.27
Rad M 416.01 16.67 1712.61
Rad t 133.5 12.14 401.36
Pyr M * * 248.28
Ori T 568.45 44.49 21.13
Ori M 344.95 16.13 685.81
Ori t 325.08 23.46 367.63
Total 304.89 20.72 4347.75
Somatic 40.7 18.09 1006.01

Table 3.16: PV+ cell synapse densities and dendritic lengths. Synapse densities are given
in terms of synapses per 100 µm length of dendrite or per 100 µm2 area of soma surface.
Somatic entry in dendritic length column is area in µm2. Data from Gulyas et al. (1991).

the meantime, we estimated the convergence onto specific interneuron types as given in the

following sections.

Convergence onto PV+ cells Experimental data from Gulyas et al. (1991) has been

reproduced in Table 3.16 in the form of input synapse density and dendritic length. I used it

to calculate the total number of input synapses for PV cells, given in Table 3.17, arriving at

a total of 14,609 excitatory synapses and 1,050 inhibitory synapses. I used the same number

of inputs for PV+ basket cells, axo-axonic cells, and bistratified cells as Gulyas et al. (1991)

found no distinctive groups within their dataset.

Convergence onto CCK+ cells Table 3.18 reproduces data from Mátyás et al. (2004).

As with the PV+ cells in a previous work, all CCK+ cells were lumped together in ex-

perimental observations, so we used the same convergence data for CCK+ basket cell and

Schaffer Collateral-associated cell.

My calculated convergence estimates are given in Table 3.19.
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Layer Excitatory Inhibitory
Im M 307 60
Lm t 560 128
Rad T 1135 100
Rad M 7125 285
Rad t 536 49
Pyr 856 40
Ori T 120 9
Ori M 2366 111
Ori t 1195 86
Total 14200 868
Somatic 409 182
AIS 10

Table 3.17: My calculation of total synapses, which differs somewhat from the totals calcu-
lated by Gulyas et al. (1991). Note that the AIS number is just taken directly from their
paper since the synapse density and AIS length were not reported, only the final number.

Synapse Density Dendritic
Layer Excitatory Inhibitory Length
LMt 85.07 57.55 803.47
LMm 88.78 60.81 487.71
RLMt 80.96 42.24 375.68
RLMm 86.77 36.71 271.12
Rt 64.68 13.92 466.02
Rm 87.76 35.21 1821.76
RM 71.81 45.11 477.03
RT 94.86 137.03 110.99
PM 48.77 67.68 155.77
PT 56.58 107.2 154.84
OT 82.26 140.52 20.16
OM 84.02 62.24 137.36
Om 78.05 28.67 521.48
Ot 90.61 24.51 534.92
Total 6338.31
Soma* 3.4 16.12 966

Table 3.18: CCK+ cell synapse density and dendritic lengths. Synapse densities are given in
terms of synapses per 100µm length of dendrite or per 100µm2 area of soma surface. Somatic
entry in dendritic length column is area in µm2. Data from Mátyás et al. (2004)
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Layer Excitatory Inhibitory
LMt 684 462
LMm 433 297
RLMt 304 159
RLMm 235 100
Rt 301 65
Rm 1599 641
RM 343 215
RT 105 152
PM 76 105
PT 88 166
OT 17 28
OM 115 85
Om 407 150
Ot 485 131
Total 5191 2757
Soma* 33 156
AIS 1 5

Table 3.19: CCK+ cell synapse calculations. My calculation of total synapses differs some-
what from the totals calculated by Mátyás et al. (2004) at the end of their paper. Note that
the AIS number is just taken directly from their paper since the synapse density and AIS
length were not reported, only the final number
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Dendritic Length
Layer Neurogliaform Ivy
SLM 895.8 75.1
SR 1885.5 1758.6
SP 0 49.6
SO 0 51.2
Total 2781.4 1934.4
Somatic 254.6 385.7

Table 3.20: Ivy and Neurogliaform dendritic lengths are given in µm. Somatic entry in
dendritic length column is area in µm2.

Synapse Density
Layer Excitatory Inhibitory
SLM 88.7 31.7
SR 154.5 27.1
SP 123.7 42.5
SO 133.7 24.9
Somatic 17.8 15.9

Table 3.21: Ivy and Neurogliaform synapse densities are given in terms of synapses per
100µm length of dendrite or per 100µm2 area of soma surface.

Convergence onto neurogliaform family cells We calculated the dendritic lengths and

somatic area of ivy and neurogliaform cells in Table 3.20.

Then I took the average of all dendritic synapse densities, regardless of cell class, and used

that average to calculate the average synaptic density from the interneuron data that we

have (Mátyás et al., 2004)and arrived at the estimates given in Table 3.21.

Synapses
Layer Excitatory Inhibitory
SLM 67 24
SR 2717 477
SP 61 21
SO 68 13
Total 2913 534
Somatic 69 61

Table 3.22: Ivy cell synapse estimates.
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Synapses
Layer Excitatory Inhibitory
SLM 795 284
SR 2913 511
SP 0 0
SO 0 0
Total 3708 795
Somatic 45 41

Table 3.23: Neurogliaform cell synapse estimates.

Dendritic
Layer Length
SO 4165.68
Somatic 3007.78

Table 3.24: O-LM cell dendritic lengths are given in terms of synapses per 100µm length of
dendrite or per 100µm2 area of soma surface. Somatic entry in dendritic length column is
area in µm2.

Convergence onto OLM cells The dendrites of O-LM cells are confined to the stratum

oriens. The dendritic length and somatic area were reported by Kispersky et al. (2012) and

are given in Table 3.24. We used the CB+ cell density from Gulyas et al. (1991), averaging

medium and thin dendritic densities for Table 3.25 to arrive at the total convergence given

in Table 3.26. The observed CB+ cell fraction of 36% for GABAergic synapses fits with

the observations of OLM cell inputs from Blasco-Ibez and Freund (1995), which stated that

greater than 60% of incoming synapses appeared to be innervated by CA1 pyramidal cells.

Synapse Density
Layer Excitatory Inhibitory
SO 53.02 29.58
somatic 12.75 17.97

Table 3.25: O-LM synapse densities are given in terms of synapses per 100µm length of
dendrite or per 100µm2 area of soma surface. Somatic entry in dendritic length column is
area in µm2.
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Synapses
Layer Excitatory Inhibitory
SO 2209 1232
somatic 383 540

Table 3.26: O-LM cell synapses.

Synapse Density Dendritic
Layer Excitatory Inhibitory Length
Lm M 75.31 16.14 0
Lm t **** **** 554.13
Rad T 85.36 23 377.19
Rad M 93.93 18.04 387.86
Rad t 49.73 11.48 118.06
Pyr M 42.53 28.36 232.73
Ori T 66.39 29.7 86.87
Ori M 61.36 20.06 375.81
Ori t 37.89 7.98 146.82
Total 72.83 19.02 2279.47
Somatic 14.22 11.55

Table 3.27: CR+ cell synapse densities are given in terms of synapses per 100µm length of
dendrite or per 100µm2 area of soma surface. Dendritic lengths are in terms of µm and the
somatic entry in the dendritic length column is area in µm2.

Convergence onto other cells For other cells not included in the model, there is limited

convergence information. CR+ cells are likely interneuron-specific (IS) cells, so we used

the CR+ cell information from Gulyas et al. (1991), shown here in Table 3.27. The total

synapses per CR+ cell are given in Table 3.28.

There are 7,470 IS cells and about 504 input synapses per each IS cell (assuming the CR+

cell bouton info from Gulyas et al. (1991) applies), so there are almost 4 million additional

input boutons required onto IS cells. Of course, the IS cells also contribute a certain number

of boutons to the inhibition of other interneurons. With our earlier estimate of 75 million

boutons contributed by IS cells, there would be enough local inhibitory boutons available

for full coverage of all CA1 local, GABAergic input synapses.

There are a few other miscellaneous cell types, including other CCK+ cells and some stratum-
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Synapses
Layer Excitatory Inhibitory
SLM 417 89
SR 745 170
SP 99 66
SO 344 113
total 1605 439
somatic 77 57
axonic 0 8

Table 3.28: CR+ cell synapses.

oriens cells. Using the CCK+ cell info, we expect the other 1,370 CCK cells (PPA, ADI,

and miscellaneous CCK+ cells) need an additional 4 million GABAergic synaptic inputs,

and the remaining 2,420 stratum-oriens cells require an additional 4.3 million GABAergic

synaptic inputs (assuming CB+ cell properties apply to these cells).

Therefore, we expect that the total GABAergic boutons in CA1 (local and afferent) required

for innervating interneurons would be about 43 million, as given in Table 3.29. If this

coverage needed to be achieved entirely with local boutons, then the remaining cell types for

which we do not know the boutons would need to contribute an average of 1928 boutons each

to local inhibitory innervation (if we exclude any contribution from trilaminar cells, since

we don’t know their total cell number). This number is well within the range of bouton

numbers seen in individual interneuron axons.
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Post-syn. Type Ivy NGF. O-LM Dbl. Proj. CB- septal proj. Oriens-retrohipp. Other SOM+* PV+ B.
# Cells 5530 8810 3580 1640 760 190 640 350
Dend. Inputs 868 534 795 1232 1087 1087 1087 1087
Soma. Inputs 177 61 41 540 142 142 142 142
AIS Inputs 10 8 8 8 7 7 7 7
Total Per Cell 1055 603 844 1780 1236 1236 1236 1236
Total Per Type 5834150 5312430 3021520 2919200 939360 234840 791040 432600
Fraction 14% 12% 7% 7% 2% 1% 2% 1%

(continued)
Post-syn. Type Bis. Axo. CCK+ B. ADI S.C.-A PPA CCK Misc. IS I IS II IS III Total
# Cells 2210 1470 3600 390 400 490 490 4250 1970 1250 38020
Dend. Inputs 868 868 2757 2757 2757 2757 2757 438 438 438 24612
Soma. Inputs 177 177 156 156 156 156 156 57 57 57 2692
AIS Inputs 10 10 5 5 5 5 5 8 8 8 131
Total Per Cell 1055 1055 2918 2918 2918 2918 2918 503 503 503 27435
Total Per Type 2331550 1550850 10504800 1138020 1167200 1429820 1429820 2137750 990910 628750 42794610
Fraction 5% 4% 25% 3% 3% 3% 3% 5% 2% 1%

Table 3.29: Inhibitory convergence onto interneurons in rat CA1
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3.4 Comparing Convergence and Divergence

Overall, the 8 interneuron types have 25 million boutons available for synapsing locally onto

other interneurons, while the 8 types expect 33 million boutons to innervate their input

synapses. So we have achieved 76% inhibitory synaptic coverage of the interneurons (as

compared to 59% inhibitory synaptic coverage of pyramidal cells). The inhibitory diver-

gence and convergence of interneurons are graphically depicted in Figure 3.1. In our model,

we have not considered the contributions of the missing types, especially IS cells, nor the

inputs needed to inhibit the missing types. However, we have created two alternate model

connectivities, one with the inhibitory synapse numbers calculated here and one with scaled

up values for inhibitory synapses to achieve full inhibitory coverage of pyramidal cells. This

differences between the behavior of these networks are discussed in Chapter 5.

3.4.1 Subset selectivity

It is informative to consider the results of our calculations in light of some experimental ob-

servations about inhibitory connections. Gulyas et al. (1991) observed that PV cells receive

about 27% of their inhibitory inputs from other PV cells. Does that imply that PV cells

have some selectivity in their innervation, preferring to innervate other PV cells?

By layer, the fraction of interneuron-targeting boutons supplied by PV cells is given in

Table 3.30. It totals 14%, but is completely absent in SLM, so in the layers where the

boutons are present, it is generally higher. In the pyramidale layer, PV+ boutons comprise

28% of inhibitory boutons. Experimentally, Gulyas et al. (1991) found that the GABAergic

innervation of PV+ cells by PV+ boutons is at least 27.6%, but probably higher. With the

minimum value, there is some selectivity of PV+ cells for each other.

For CCK+ cells, 4% -28% of GABAergic inputs were from other CCK cells (Gulyas et al.,
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Layer Fraction
SLM 0%
SR 14%
SP 28%
SO 21%
Total 14%

Table 3.30: Of the inhibitory boutons targeting other interneurons, PV boutons make up
about 14% overall.

Layer Fraction
SLM 1%
SR 11%
SP 63%
SO 9%
Total 13%

Table 3.31: Of the inhibitory boutons targeting other interneurons, CCK boutons make up
about 13% overall.

1991). Given that the calculated fraction of available boutons that are CCK+ is about 13%,

there doesn’t seem to be any particular preference of CCK cells for other CCK cells (Table

3.31).

3.4.2 Gaps in experimental data

In estimating the connectivity of the CA1, we performed an initial calculation of the exci-

tatory and inhibitory convergence onto CA1 pyramidal cells, as well as onto a hypothetical

average interneuron. The calculation revealed that we could only account for about half of

the excitatory and inhibitory inputs to CA1 pyramidal cells based on known afferent and

interneuron axon data and our calculated cell numbers. We were surprised by the magnitude

of the difference and hope that the exposure of this difference will drive more experiments

to fill in this gap of our knowledge. In contrast to the pyramidal cell, the convergence onto

the hypothetical average interneuron aligned with or exceeded our expectations based on the

observed input synapses for several classes of interneurons.
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More in vivo axon fills of interneurons would help refine the divergence calculations for axo-

axonic cells, CCK+ cells, and interneuron-specific cells. Also, convergence data in the form

of what percent of inhibitory inputs onto pyramidal cells are associated with the various

neurochemical markers would provide a validation of our convergence calculations and could

explain the source of the remaining 39% of GABAergic inputs that were unknown in this

assessment. Further quantification of excitatory inputs is also necessary, especially those

targeting the stratum lacunosum-moleculare.

3.4.3 Potential reasons for gaps

As mentioned above, possible candidates for this discrepancy include incomplete axonal

fills, more neurogliaform family cell boutons participating in classical synapses, or more

GABAergic cells (a higher fraction of CA1 cells being GABAergic). We must also consider

the inputs of GABAergic projection cells onto inhibitory synapses on interneurons.

3.4.4 How we address the gaps for our model

We first calculated the inhibitory inputs in the reduced model. We chose the number of cells

converging, the number of synapses per connection, and the total number of synapses from

each interneuron type based on our quantitative assessment (Bezaire and Soltesz, 2013). As

this only accounted for 59% of the inputs, we also ran the model with the ”full” approach,

where most of the cell types had proportionally increased their numbers synapsing onto the

pyramidal cell (Table 4.2).
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3.5 Connectivity values used in the model

Because not all CA1 interneuron types were included in the model and due to other differ-

ences, our model connectivity does not precisely match the expected connectivity in vivo.

3.5.1 Interneuron to interneuron connectivity

Our model implementation of the inhibition of interneurons was less experimentally con-

strained than the other connectivity properties in the model. To arrive at reasonable esti-

mates, we focused on the available inhibitory inputs (divergence) and contrasted that info

with the inhibitory input synapses onto each interneuron type. At the most cursory level,

we estimated that, for our 8 model interneuron types only, there are about 25 million local

GABAergic boutons available from the 8 types to synapse on them. For those 8 types, we

expect that they would receive about 33 million GABAergic input synapses. Now, many or

perhaps most of these inputs could actually come from the interneuron-selective interneu-

rons. However, those cells are not included in the model, and therefore we have a lower level

of inhibition (and may be missing inhibition at specific phases during theta).

We began by calculating the total convergence onto our 8 interneuron types, given in Table

3.29, and contrasting that with the divergence information from Table 3.3. Since some types

are missing from our model network, we realize that these interneurons would not make all

of their connections with the 8 interneuron types, and that these types would receive other

inputs, so this model connectivity is a bit different than in vivo connectivity. However, for

simplification, we are making all connections between these 8 interneuron types only. In

general, the types that we have left out are also likely to to be projection neurons or to be

smaller populations of neurons, so they are less likely to receive significant input or make

significant contributions to local inhibition. The broad exception to this is the IS cells.
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There are limited data available about which interneurons each IS cell type targets

(Tyan et al., 2014), so we assumed that all interneurons receive approximately the same

fraction of IS inputs. Therefore, we determined the percent of coverage that our available

boutons achieved across all of our model interneuron expected inputs, and used that same

fraction for each of our interneurons.

In general, for each cell type’s boutons, we distributed them evenly among the input synapses

for all cell types in that layer. The two exceptions were PV+ boutons and neurogliaform

family boutons. We introduced a PV skew to ensure that the overall PV+ synaptic inner-

vation onto PV+ cells was 28% of the GABAergic innervation, as observed in Gulyas et al.

(1991). Due to that skew, PV+ cells were more likely to receive inputs from PV+ cells and

less likely to receive input from other cell types, whereas PV- cells were more likely to receive

inputs from PV- cells and less likely to receive inputs from PV+ cells. We set this skew to

30% to achieve the 28% metric.

We also diverted some of the ivy cell boutons available for synapsing on olm cells to synapse

on other ivy cells in the stratum oriens, because we had 100% coverage of OLM cells without

connecting all of the ivy cell inputs to them. Neurogliaform cells only innervated pyramidal

cells and other neurogliaform cells, though there is evidence in vivo that they innervate other

interneurons, including PV+ cells (Booker et al., 2013).

Our final model interneuron connectivity came out to be as shown in Tables 3.33 (connec-

tions) and 3.32 (synapses). This resulted in coverage of inhibitory synapses ranging from

67% to 100% for the various cell types in the model, as shown in Table 3.34.
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Synapses Ivy Neurogliaform O-LM PV+ Basket Bistratified Axo-axonic CCK+ Basket SCA
Ivy 258 281 1270 238 238 238 958 1024
Neurogliaform 35 172 0 92 92 92 500 508
O-LM 10 127 62 77 77 77 402 402
PV+ Basket 8 0 0 39 39 39 38 24
Bistratified 32 29 276 156 156 156 136 141
Axo-axonic 0 0 0 0 0 0 0 0
CCK+ Basket 63 25 161 94 94 98 280 217
SCA 13 14 11 7 7 7 34 38

Table 3.32: Local inhibitory synaptic innervation of interneurons in model CA1

Connections Ivy Neurogliaform O-LM PV+ Basket Bistratified Axo-axonic CCK+ Basket SCA
Ivy 26 28 127 24 24 24 96 102
Neurogliaform 4 17 0 9 9 9 50 51
O-LM 1 13 6 8 8 8 40 40
PV+ Basket 8 0 0 39 39 39 38 24
Bistratified 3 3 28 16 16 16 14 14
Axo-axonic 0 0 0 0 0 0 0 0
CCK+ Basket 8 3 20 12 12 12 35 27
SCA 2 2 2 1 1 1 6 6

Table 3.33: Inhibitory intra-connectivity in model CA1

Cell Type Ivy Neurogliaform O-LM PV+ Basket Bistratified Axo-axonic CCK+ Basket SCA
Model Inputs 424 646 1782 711 711 711 2354 2346
Expected Inputs 603 844 1780 1055 1055 1055 2918 2918
Coverage 70% 77% 100% 67% 67% 67% 81% 80%

Table 3.34: Inhibitory coverage of interneurons in the model
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3.6 Use of non-rat or non-hippocampal data

We preferred to use entirely rat, hippocampal data for this anatomical assessment, but

in some cases we did not have enough rat data to proceed. For those calculations where

comparable mouse hippocampal data existed, we used the mouse data instead and noted it

in the calculation. One such instance was the ratio of PV+ basket cell boutons to CCK+

basket cell boutons. We used this ratio to calculate the total number of CCK+ basket

cells, and it was averaged from two experiments done in mouse. In addition, the number of

synapses per connection made by PV+ basket cells and CCK+ basket cells onto pyramidal

cells was taken from mouse data. We are not aware of published differences between rat and

mouse regarding the projection cells or the basket cell connectivity.

For a few data points, we relied on data from other parts of the brain than the CA1. This

occurred for the neurogliaform family bouton properties: the fraction of boutons forming

classical synapses (taken from somatosensory cortex) and the density of boutons (taken

from the dentate gyrus and CA3). We are not aware of significant differences between

neurogliaform cells of the somatosensory cortex and the CA1. However, we have taken care

to note the fraction of boutons forming classical synapses in the assumption table. Because

the bouton densities in the dentate gyrus and CA3 were similar, we believe that the bouton

densities of neurogliaform family cells in the CA1 will also be similar to the those in the

dentate gyrus and CA3.
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Figure 3.1: (a) Divergence and (b) convergence of inhibitory cells onto other interneurons,
by type. The inhibitory divergence and convergence of each interneuron is quantitatively
represented by the height (divergence) or width (convergence) of the color-coded area. Black
widths represent the experimentally-based estimate of inhibitory input synapses that are
not innervated by boutons due to the discrepancy in experimental data about interneuronal
divergence and inhibitory convergence as discussed in the main text; not enough inhibitory
boutons were available on the model interneurons to achieve full coverage of all inhibitory
input synapses except to O-LM cells.
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3.7 Impact of morphology and network topology on

connections

The locations of the synapses on the postsynaptic cell were influenced by the morphology of

the cell and by model logic that constrained the available locations based on the presynaptic

cell type. In addition, the specific cells available for connecting were constrained by their

distance from each other (soma to soma), as each cell had a set 3-dimensional position within

the network and each presynaptic cell had a set axonal bouton distribution and extent. The

details of how these properties were used to set realistic connection locations and topology

are given in the following sections.

3.7.1 Morphology of single cells

Table 3.35 gives the lengths and areas of the soma and dendrites for each model cell type, as

well as the number of compartments used in the model. Figure 3.2 shows the morphology of

each model cell. Note that the surface area of most model cell types is significantly smaller

than their biological counterparts. We scaled the membrane capacitance and resistance

accordingly, so that our model cells still had similar electrophysiological personalities as

their biological counterparts. In this way, we were able to adequately mimic the electrical

behavior of the cells while reducing the computational load required for simulations.

3.8 Locations of incoming synapses

When connecting cells, each postsynaptic cell has many potential synapse locations available.

A certain number of them are randomly picked for use. More details about the potential

locations and actual locations chosen used are given in the following sections 3.8.1 and 3.8.2.
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(a) CCK+ basket and
S.C.-Assoc.

(b) OLM

(c) Pyramidal (Simple) (d) Pyramidal (Complex)

(e) PV+ and neurogliaform
family

Figure 3.2: Various cell morphologies used
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Cell Type
Somatic Dendritic

Area Area Length Compartments
Axo-axonic 628.3 11309.7 1800.0 17
Bistratified 628.3 11309.7 1800.0 17
CCK+ basket 628.3 9479.8 1800.0 17
Ivy 628.3 11309.7 1800.0 17
Neurogliaform 628.3 11309.7 1800.0 17
O-LM 628.3 4718.3 500.6 4
PV+ basket 628.3 11309.7 1800.0 17
Pyramidal (complex) 421.0 15946.5 9995.2 202
Pyramidal (simple) 314.2 9124.9 1502.5 15
S.C.-Assoc. 314.2 9479.8 1800.0 17
Pyramidal (simple) 314.2 9124.9 1502.5 15

Table 3.35: Morphology of cells included in the model

3.8.1 Potential synaptic locations

The spatial resolution of the cells is temporarily set to a high value, and the possible synapse

locations are enumerated along all the dendrites, with a constant density over all possible

locations. Then, the spatial resolution is set to a lower value to be used throughout the sim-

ulation. All the synapses are shifted to the nearest node. This has the effect of reducing the

unique locations of the synapses, but making the number of synapses on each compartment

correlate better with the length of the compartment (instead of blindly choosing to put in

the middle of each segment only).

Also, each possible compartment that is within a specified distance from the soma is a

candidate for receiving a synapse. Each potential synapse location is added to a list for

that synapse type (that particular combination of presynaptic and postsynaptic cell). Then

whenever a synapse is needed, the list of potential synapses is consulted - the total length

of the list is passed into a random number generator so that any synapse in the list could

potentially be selected. A uniform distribution is used and returns an integer describing an

index into the list. That particular synapse is then connected to the presynaptic cell’s spike

detector.
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3.8.2 Choosing random locations

We allowed the presynaptic cell to synapse on the pyramidal cell n times as shown in Table

4.2, where n equaled the number of synapses per connection reported in the literature for that

cell type (Bezaire and Soltesz, 2013). Synapse locations were randomly chosen from among

all the possible dendritic, somatic, and axonic locations where that presynaptic cell type

has been experimentally observed to synapse (Table 3.36). Note that the various dendritic

sections are shown in Figure 3.3.

Presynaptic SLM SR SO Peri-
Cell Type Dendrites Dendrites Dendrites Somatic Axon
Pyramidal X
Axoaxonic X
Bistratified X X
CCK+ Basket X
Ivy X X
Neurogliaform X
O-LM X
PV+ Basket X
SCA X

Table 3.36: Possible synapse locations for various presynaptic cell types; Figure 3.3 shows
the categories of dendrites by color.

3.8.3 Actual synaptic locations used

The actual synapse location used for each connection in the model is not routinely recorded

into the output because the dataset would be too large. However, this information can be

easily be determined for all connections to and from cells of interest. The model also contains

code to track these data for every cell, but that option should only be used for very small

networks as it generates so much data.
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1

Figure 3.3: Sections of pyramidal cell dendrites. Blue: distal apical, orange: proximal apical,
green: perisomatic, red: axon, lilac: basal.

3.9 3D arrangement of cells

The cells were arranged in a prism, distributed evenly throughout their specified layer, with

their position completely specified by the dimensions of the prism and the unique ID (gid)

of the cell (Figure 3.4). To accomplish this, we compiled x, y, and z positioning algorithms

and then called them, passing in the cell’s gid, whenever the cell’s position was required.

The formulae used in the positioning algorithms are given in Equations . Their equations

can easily be replaced by parametric surface equations that are capable of modeling a more

realistic, 3D shape of the CA1 if desired.
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(a)

(b)

Stratum o

Stratum py

Stratum ra

Stratum la

Figure 3.4: (a) The model has a 3D arrangement of neurons with realistic dimensions. (b)
Parametric equations can also be used to assign cell positions efficiently while maintaining
a realistic shape of the network.

3.10 Axonal Distributions of the cells

In our model, cells can be connected if the soma of the postsynaptic cell falls within the area

of the axonal extent of the presynaptic cell. We used normal distributions to determine the

connections between cells, such that after all connections are made, for each cell type, the

distances from each presynaptic cell soma to each postsynaptic cell soma follow a normal

distribution. Figure 3.5 gives an example axonal distribution for each presynaptic cell type

onto an example pyramidal cell.
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Figure 3.5: For the cells connecting to a single pyramidal cell in the model, the distribution of distance between each presynaptic
cell soma and the postsynaptic pyramidal cell soma are plotted.
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Chapter 4

Electrophysiological Properties of

CA1 Neurons and Synapses by Type

For each of the eight interneuron types in my model, as well as the CA1 pyramidal cells, I fit

my model cells to experimental electrophysiological data to ensure that I have biologically

constrained neurons that behave realistically. The model cells and their comparisons with

experimental cells are described here. First I discuss the ion channels used in the model cells

and the model cells themselves. Then I describe the model implementation of the synaptic

mechanisms found on the postsynaptic cell, through which the connectivity functions of the

model are implemented.

While fitting some cells, I altered the kinetics of the voltage-gated channels associated with

the cell type to achieve the characteristic firing pattern of that cell. I considered this allow-

able because the channel models that we work with are not necessarily precise representations

of those found in the biological hippocampal neurons. In general, the ion channel models de-

veloped from experimental data may be from widely varying preparations including differing

temperatures, reagents, animal types, and nervous system areas. Therefore, I felt that it was
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acceptable to adjust channel timing and dependence on voltage within reasonable bounds

to achieve the experimentally observed properties at the cellular level. However, this made

it all the more important to fully characterize the behavior of the ion channels so that their

behavior and contributions to the cell behavior could be fully understood. Therefore, in

the following section each ion channel is fully described, including its origins (experimental

constraints and model creaters) and its behavior in a uniform preparation (channel type at

uniform density inserted into a uniformly-sized somatic compartment at the same calcium

concentration, temperature, axial and specific membrane resistance, and capacitance).

4.1 Components of single cells

In this section, we describe subcellular mechanisms such as ion channels and other calcium

mechanisms. We included many ion channels found in principle cells and interneurons of the

CA1 (Table 4.1). A detailed characterization of each ion channel’s properties, along with a

description of the strategy used to generate the ion channel model, is given in the following

subsections. Except for the L-type calcium channel, the ion channels all use a quasi-ohmic

equation to express the driving force that sets the instantaneous conductance of the channel.

The L-type calcium channel takes into account a dependence on the calcium concentration

that leads to inwardly rectifying behavior, and it does this by using a GHK-style equation to

calculate the driving force on the channel. All other channels used a quasi-ohmic calculation

of their driving force.

We fixed some channel bugs from previous implementations, which are detailed in the sections

on the individual ion channels that were affected (Sections 4.1.1 and 4.1.3). We also removed

most temperature dependence equations (q10 equations) from the cells because they were not

being used correctly. We found that the baseline temperature being used in these equations

often did not match the temperature used in the experimental preparation on which the
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channel was based, but had instead been changed to another value, such as 6.3oC, the

default temperature in the NEURON simulation program, to circumvent any alteration in

channel behavior from the behavior at the temperature of the experimental preparation used

to characterize the channel.

To directly compare the behavior of each channel, we subjected each to the same conditions

and characterization protocol, as shown in the figures below. The protocol consisted of

inserting the channel at a density of .001 S/cm2 into a cylindrical membrane compartment

of size 16.8 µm height by 16.8 µm diameter at 34oC, with an internal calcium concentration

of 5.e-6 mM and an external concentration of 2 mM. The reversal potentials were set to

ENa=+55 mV, EK=-90 mV, ECa2+=+140 mV, and EHCN=-35 mV .

Channel Description Model Type

Cav,L L-type Calcium GHK

Cav,N N-type Calcium Quasi-ohmic

HCN Hyperpolarization-activated, Cyclic Nucleotide-

gated

Quasi-ohmic

HCNOLM Hyperpolarization-activated, Cyclic Nucleotide-

gated for O-LM cells

Quasi-ohmic

HCNp Hyperpolarization-activated, Cyclic Nucleotide-

gated for pyramidal cells

Quasi-ohmic

KCa,S Small (SK) Calcium-activated potassium Quasi-ohmic

Kdr,fast Fast delayed rectifier potassium Quasi-ohmic

Kdr,fast,ngf Fast delayed rectifier potassium for neurogliaform

family cells

Quasi-ohmic

Kdr,p Delayed rectifier potassium for pyramidal cells Quasi-ohmic

Kdr,slow Slow delayed rectifier potassium Quasi-ohmic

Kv,A A-type voltage activated potassium Quasi-ohmic
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Kv,A,dist,p A-type voltage activated potassium for distal pyra-

midal dendrites

Quasi-ohmic

Kv,A,ngf A-type voltage activated potassium for neurogli-

aform family cells

Quasi-ohmic

Kv,A,olm A-type voltage activated potassium for O-LM cells Quasi-ohmic

Kv,A,prox,p A-type voltage activated potassium for proximal

pyramidal dendrites

Quasi-ohmic

Kv,Ca,B Big (BK) Calcium-activated, voltage dependent

potassium

Quasi-ohmic

Kv,Group Multiple slower voltage dependent potassium Quasi-ohmic

leak Leak Quasi-ohmic

Nav Voltage dependent sodium Quasi-ohmic

Nav,bis Voltage dependent sodium for bistratified cells Quasi-ohmic

Nav,ngf Voltage dependent sodium for neurogliaform cells Quasi-ohmic

Nav,p Voltage dependent sodium for pyramidal cells Quasi-ohmic

Table 4.1: Ion channels included in the model

4.1.1 Calcium channels

The calcium channels and other calcium mechanisms have previously been used in Soltesz

Lab models (Santhakumar et al., 2005; Dyhrfjeld-Johnsen et al., 2007; Morgan and Soltesz,

2008) and given their own calcium current that operates separately from the calcium currents

through other channels. The purpose of that arrangement was to be able to model local

calcium dynamics, assuming that the various calcium channel types had isolated calcium

concentrations even though the channels could possibly be intermixed within a compartment.

We removed the unique calcium currents , returning the channel to its original state, because
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(b) Inactivation Curve
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Figure 4.1: Calcium channel currents.

we were not interested in local calcium pools and the two channel types that we use are not

necessarily even placed in the same compartments, rendering the change unnecessary.

In Figure 4.1, the differing behavior of the N-type and L-type calcium channels can be

seen. The L-type channel is not significantly inactivating; in contrast, the N-type channel

inactivates.

Cav,L Channel This channel model was developed by Jaffe et al. (1994) and has been

used in many other models implemented by Migliore. It uses the GHK equation to calculate

131



driving force such that there is inward rectification of the channel caused by a mild depen-

dence on calcium concentration. The equations for this channel were based on activation

data from CA1 and CA3 hippocampal neurons in adult guinea pigs, at room temperature.

The voltage of half-activation was shifted by −10 mV to account for ionic differences in the

bath of the experimental preparation compared to the model condition.

Cav,N Channel This channel was also developed by Jaffe et al. (1994), using the

same preparation as that for the Cav,L channel. However, it was later modified by

Aradi and Holmes (1999), replacing the GHK calculation for a quasi-ohmic calculation of

the driving force. In addition, its behavior was altered somewhat compared to previous

implementations such as Morgan and Soltesz (2008) and Santhakumar et al. (2005). Their

implementations contained a typo in the channel definition that caused its equations to dif-

fer from those presented in Aradi and Holmes (1999), and had the effect of reducing the

conductance of the channel below its intended magnitude.

The channel had a slightly decreased conductance at high levels of activation, as shown in

Figure 4.1. This odd behavior has been present since the replacement of the GHK calculation

with a quasi-ohmic expression. However, it may not have too large of an effect since it only

happens at very depolarized potentials, potentials that are likely to be achieved only at the

peak of the action potential.

4.1.2 HCN channels

While HCN channels are technically gated by the presence of cyclic nucleotides, it is not

common practice to include the gating in HCN channel models used in network modeling.

Instead, only the voltage-dependent activation (the hyperpolarizing preference) is included.

In addition, the mixed cation current of Na+ and K+ is not explicitly modeled. Instead,
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−120 −100 −80 −60 −40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voltage (mV)

N
o

rm
a
li
z
e
d

 C
o

n
d

u
c
ta

n
c
e

 

 

HCN

HCN
O−LM

HCN
p

(b) Peak Current

−150 −100 −50 0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

Voltage (mV)

C
u

rr
e

n
t 

(n
A

)

 

 

HCN

HCN
O−LM

HCN
p

(c) Steady State Current

−150 −100 −50 0 50 100 150
−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Voltage (mV)

C
u

rr
e

n
t 

(n
A

)

 

 

HCN

HCN
O−LM

HCN
p

Figure 4.2: HCN channel currents.

either a fake ”‘h”’ ion is invented or a non-specific current is used. This has the side effect

of rendering the reversal potentials of Na+ and K+ unable to affect the driving force of the

H current.

None of these channel models included an inactivating component. Also, because they

are hyperpolarization-activated, the protocol used to characterize the inactivating of other

channels was used to characterize the activation of the HCN channels. In Figure 4.2, the

differing behavior of the HCN channels can be seen.
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HCN Channel In Chen et al. (2001), the HCN current was experimentally observed in

CA1 pyramidal cells of Sprague-Dawley rats at room temperature. They then developed

a model channel based on their observations, which included fast and slow components

and used separate, artificial ion definitions for each. We kept only the slow component

as the cells that included this channel were displaying a non-physiological, oscillating sag

when both components were included.We further modified the channel by adjusting the

calculation of the slow component slightly (removing some of the voltage dependence, which

further decreased the oscillation of the sag) and by replacing the fake ion definition with a

non-specific current (which did not further affect the channel behavior).

HCNOLM Channel This model was developed by Saraga et al. (2003) based on data from

young Sprague-Dawley rats at a warm room temperature. It was then used in an O-LM

cell model by Cutsuridis et al. (2010), which we incorporated into our model. It included an

artificial ”‘h”’ ion and we found that this ion could not be replaced with a non-specific current

without altering the conductance of the channel slightly. This may be due to the inability of

the non-specific current to take into account local ion shortages near the membrane . Unlike

the previous HCN model, this one only ever had a single time constant.

HCNp Channel This model, based on experimental data from adult Sprague-Dawley rats

at 23o or 33o (Magee, 1998) was implemented by Cutsuridis et al. (2010) for their pyramidal

cell model. It uses a non-specific current.

4.1.3 Potassium channels

A variety of potassium channels were included. For the delayed rectifier and A-type potas-

sium channels, multiple varations were produced for disparate cell types. The variations

enabled us to tune their thresholds and voltage dependence to produce the different voltage
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Figure 4.3: Delayed rectifier potassium channel currents.

dependence and AP thresholds of the cells into which we placed them. The leak channel is

also included here since it mostly conducts potassium.

Delayed Rectifier Potassium Channels

The delayed rectifiers did not include an inactivating component. If they do inactivate, it

is likely to happen after several seconds of voltage clamp, a condition that is not usually

physiologically relevant.

In Figure 4.3, the differing behavior of the delayed rectifiers can be seen.

Kdr,fast Channel This fast delayed rectifier potassium channel was originally implemented

by Yuen and Durand (1991). They based it on a model of a fast delayed rectifier in a

squid axon, and then adjusted the equation parameters until their model action potential

wave form matched that of an experimental mouse cell. Their model was later modified by

Aradi and Holmes (1999), shifting the voltage dependence slightly.
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Kdr,fast,ngf Channel This is a variation of the Kdr,fast channel, which I shifted by -10 mV

to better match the action potential waveform and threshold of the neurogliaform family

cells, which tend to have a higher threshold than other cells.

Kdr,p Channel This channel was implemented by Migliore, based on experimental data

from hippocampal cells in rat pups at room temperature (Klee et al., 1995). It has been

used in many models since then, including Poolos et al. (2002). .

Kdr,slow Channel This model was originally implemented by Yuen and Durand (1991)

based on data from Storm (1990). It is meant to serve as a combination of slow delayed

rectifier current and M-type potassium current. It was modified by Aradi and Holmes (1999).

A-type Potassium Channels

The A-type potassium channel is a transient, quickly-inactivating channel that activates

near the action potential threshold. It has the effect of delaying action potential onset and

increasing action potential threshold, and it can modulate early repolarization after an action

potential (Storm, 1990).

Kv,A Channel This channel model was developed by Migliore et al. (1995), using some

equations from Borg-Graham (1991) as a starting point. They modified those equations to

take into account data from Ficker and Heinemann (1992) and Numann et al. (1987), which

enabled their model cell to better display the burst behavior they were studying.

Kv,A,dist,p Channel This channel was also developed by Migliore et al. (1995); it was used

in the CA1 pyramidal cell model of Poolos et al. (2002) and was based on experimental
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(a) Activation Curve
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(b) Inactivation Curve
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(d) Steady State Current
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Figure 4.4: A-type potassium channel currents.
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observations of rat hippocampal pyramidal cell from Klee et al. (1995).

Kv,A,prox,p Channel This channel model was also developed by Migliore et al. (1995) and

is similar to the Kv,A,dist,p channel, differing slightly in timing and voltage.

Kv,A,ngf Channel A variation of the KvA A-type channel developed by Migliore et al.

(1995). I modified its activation and inactivation equations, offseting them by +10 mV to be

compatible with the high-threshold neurogliaform cell family, for use in neurogliaform and

ivy cells.

Kv,A,olm Channel This channel was used in the O-LM cell by Cutsuridis et al. (2010),

originally implemented by Saraga et al. (2003) based on experimental data from the McBain

lab and others.

Other Potassium Channels

The leak and KCaS channels are not voltage activated nor inactivating. While KvCaB was

voltage-dependent, it was also Ca2+ gated. KvGroup had voltage-dependent activation and

had no inactivating component.

KCa,S Channel This calcium-activated potassium channel is also known as the small or

”‘SK”’ channel. The model was first developed by Yuen and Durand (1991), and altered by

Aradi and Holmes (1999) based on data from Beck et al. (1997), Latorre et al. (1989), Sah

(1996), and Lancaster et al. (1991).
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(a) Activation Curve
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(b) Peak Current
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Figure 4.5: Other potassium channel currents. Because they didn’t have a voltage-sensitive
inactivation component, only the activation curve, which is equivalent to the IV Peak curve,
need be shown here.

Kv,Ca,B Channel Also known as the big (”‘BK”’) channel, this potassium channel is both

voltage dependent and calcium-gated. It was implemented by Migliore et al. (1995) based

on a model from Moczydlowski and Latorre (1983). A variation of this model used in other

Soltesz Lab models (Santhakumar et al., 2005), (Morgan and Soltesz, 2008) contained a bug

such that it did not update the calcium concentration at each time step, rendering it essen-

tially calcium-independent (it only sampled the calcium concentration once at the beginning

of the simulation, when the internal concentration of each cell was likely to be very low due to

no spiking activity occurring yet). After fixing the bug, the channel contributed much more

current during spiking activity and became calcium dependent as in the original Migliore

implementation.

In Figure 4.5, the behavior of these other channels is shown as a function of voltage. Figure

4.6shows the calcium-gated potassium channels as a function of internal Ca2+ concentration.

Kv,Group Channel This is a modified version of the fast delayed rectifier potassium channel,

with the parameters adjusted to match the channel model given in Lien and Jonas (2003).
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(a) KvCaB Activation Curve
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(b) KvCaB Peak Current
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(c) KCaS Peak Current
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Figure 4.6: Calcium-dependent potassium channel dependence on calcium concentration.
(a) The normalized conductance of the channels are plotted as a function of test voltage
step and calcium concentration. (b) and (c) The current-voltage relation is shown at several
calcium concentrations for (b) KvCaB channel and (c) KCaS channel. Note that the KCaS
channel is only active at the highest calcium concentration and is not dependent on voltage
(although the voltage continues to set the driving force) when it is active.
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However, while the channel was presented in that paper as a model of the Kv3.1b channel,

the methods used in that paper to experimentally characterize the current are likely to have

included multiple potassium channel types. Specifically, they added 300 uM of 4-AP, which

they indicated was a low enough dose that it would block only Kv3.1b channels. Then they

subtracted the intracellular potential recording of the cell in the presence of that blocker from

the control recording and attributed that entire difference to Kv3.1b. But Campanac et al.

(2013) used only 5-10 uM of 4-AP to block Kv1.1 channels, so at least two potassium channel

types, and possibly others, must have been blocked in Lien and Jonas (2003). Therefore,

more than one potassium channel type contributes to the dynamics of the model channel

they fit, hence our name of KvGroup.

leak Channel A very simple channel that employs a non-specific current and is quasi-

ohmic. It should generally have its reversal potential set near to (but not hyperpolarized

relative to) the potassium reversal potential and should be used to implement the specific

membrane resistance by setting its conductance to the reciprocal of the membrane resistance.

4.1.4 Sodium channels

As with the potassium channels, we made several variations of the fast activating, fast-

inactivating sodium channel so that each cell type contained a version with a compatible

threshold for the cell, enabling the cell to display its physiological AP threshold.

In Figure 4.7, the differing behavior of the sodium channels can be seen.

Nav Channel This channel model was originally developed by Yuen and Durand (1991)

and then modified by Aradi and Holmes (1999).
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(a) Activation Curve
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(b) Inactivation Curve
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(d) Steady State Current
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Figure 4.7: Sodium channel voltage dependence. The normalized conductance of the sodium
channel is plotted as (a) a function of test voltage step to show activation and (b) as a
function of holding voltage prior to the test step to show inactivation.
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Nav,bis Channel This channel is modified from ch Nav to have a slightly higher threshold,

which makes it suitable for bistratified cells. The voltage dependence of its activation has

been shifted by -5 mV and of its inactivation has been shifted by -3 mV. Additionally, the

coefficients have been adjusted as well.

Nav,ngf Channel This channel is modified from ch Nav to have a much higher threshold,

which makes it suitable for neurogliaform family cells. Its activation and inactivation volt-

age dependences have been offset by about -19 mV, and the coefficients have been slightly

modified as well.

Nav,cck Channel This channel is modified from ch Nav to have slightly different kinet-

ics. While the voltage dependence has not been much changed, the coefficients have been

significantly adjusted to achieve more realistic CCK+ cell behavior.

Nav,p Channel This channel is from Migliore et al. (1999) and used in Poolos et al. (2002).

It contains both a fast and an optional slow inactivating component. In general, we did not

use the slow, inactivating option so that this channel model was essentially equivalent to the

Nav channel for axons used in Poolos et al. (2002).

4.1.5 Other calcium mechanisms

We did not include special calcium mechanisms in the model, such as those necessary to

model calcium buffering, diffusion, or internal stores. Such mechanisms are complex enough

to be beyond the scope of this work, although they would be useful in studying single cell

dynamics, such as when using our network clamp tool described in Chapters 5 and 6.

143



4.2 Matching experimental conditions when fitting the

model cell

As with our ion channel models, we wished to characterize our model cells in experimental

terms. For each model cell type, we had at least one experimental observation available

(albeit in a mouse preparation). In general we matched the current injection level for the

current sweeps, as well as the duration of the injection. We did not, however, take into

account any baseline current injected to push the cell to a certain resting potential prior to

the beginning of the sweep, nor did we account for any bath or pipette ion concentrations

that resulted in a divergence of reversal potentials from physiological values. Nor did we

correct for the junction potential inherent in all patch clamp experiments, except in a small

CA1 microcircuit model published in Lee et al. (2014).

Our rationale for not including the junction potential is that we were not sure whether to

trust the calculated, estimated junction potential based on plugging the list of reagents into

AxoClamp’s Junction Potential Calculator. Nor did most publications report the junction

potential of their preparation. Therefore, though we would prefer to account for this shift

in potential of the cell, because it is not widely reported in experimental literature, we have

disregarded it.

Additionally, most experimental publications do not report the reversal potentials caused

by their choice of reagents when reporting whole cell patch clamp data, so we have again

assumed that any reversal potential differences can be ignored. Nor did we account for a

baseline current injection, since many experiments never documented it and I only discovered

from talking to experimentalists that often a baseline current is injected and not reported

in the methods.
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4.2.1 Properties that are fit

We focused on the firing rate and rheobase (current threshold) as the most important prop-

erties to fit. However, we also tracked the input resistance, membrane time constant, sag

properties, and many others to see how well they matched the experimental data. Below

is a table comparing experimental and model electrophysiological properties for all neurons.

Note that the experimental data is generally from mouse cells, which may be smaller than

the rat neurons that our model cells represent.

A detailed explanation of all properties that were characterized is given in the description

of our SimTracker tool, section 6.4.

A summary of how we characterized the various electrophysiological properties of the cells

is given in our description of the Experimental Data tool in Section 6.4. Our strategy for

fitting the cells based on experimental data is given next.

4.3 Combining components into a working cell model

To fit our cells, we used a combination of trial and error as well as NEURON’s Multiple

Run Fitter (MRF). In theory, our recommended strategy for fitting took the following form,

although we did occasionally deviate from this form depending on the circumstances of the

fitting. In general, the values for later properties depended on parameter values that were

set by fitting earlier, more general properties.

1. Match the RMP and the input resistance. Parameters to adjust:

• leak channel conductance (or the specific membrane resistance)

• reversal potential
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2. Match the membrane time constant. Parameters to adjust:

• capacitance

3. Match the hyperpolarization properties (sag amplitude and timing). Parameters to

adjust:

• HCN channel conductance

• HCN channel reversal potential

• HCN channel kinetics

4. Match the properties of the transient peak during depolarization (amplitude and decay

time constant). Parameters to adjust:

• T-type Ca2+ channel conductance

• T-type Ca2+ channel kinetics

5. Match the rheobase and firing curve. Parameters to adjust:

• Na+ channel conductance

• K+ channel conductance

• L-type and N-type Ca2+ channel conductance

6. Match action potential properties (width, threshold, amplitude). Parameters to adjust:

• Na+ channel kinetics

• K+ channel kinetics

• L-type and N-type Ca2+ channel kinetics
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Pyramidal Cell Model

We used two different pyramidal cell morphologies in our simulations. For some networks,

we tested a realistic morphology from a pyramidal cell model previously used to study Ih

(Poolos et al., 2002), available online from ModelDB, accession # 9769 Hines et al. (2004).

The model contained detailed morphology, including 187 sections of dendrites, 13 somatic

sections, and 2 axonal sections. In addition, several subcellular mechanisms were present,

such as A-type and delayed rectifier K+ channels, a Na+ channel, a HCN channel, and leak

channels. We adjusted the calculation of the reversal potential for the HCN channel such

that it was never more negative than -90 mV.

We also employed a simpler morphology pyramidal cell model in some of our simulations. We

adapted the pyramidal cell model used by Cutsuridis et al. (2010) so that it had a slightly

lower, more realistic firing rate. We accomplished this by giving it the electrophysiological

properties from the other pyramidal cell model we used. We performed most structured

parameter space exploration with model networks containing this cell type, as it required

less memory to model its simple morphology.

The differences in results achieved between networks using each of the models is given in

Chapter 6.

Interneuron Cell Models

We included 8 types of interneurons in our network model. Many of the cell types were

developed from scratch, as existing models were not available on ModelDB. These included

the neurogliaform family cells (neurogliaform and ivy), the CCK+ basket cell, and the

Schaffer Collateral-Associated cell. For the OLM cell and the PV+ cells, we modified existing

CA1 cell models published by others.
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(a) Experimental current sweep
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(b) Complex model current sweep
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(c) Simple model current sweep
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(d) Firing rate
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Figure 4.8: Pyramidal cell firing characterization.
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(a) Experimental current sweep
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(b) Model current sweep
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Figure 4.9: CCK+ basket cell firing characterization.

Using these distinct electrophysiological profiles for each cell type enabled us to introduce

variability into the model network. Although we did not introduce variability within each

cell type, the variability across cell types enabled us to study the network’s mechanisms of

theta in a more biologically relevant manner.

CCK+ Cells

I developed my own cell models for the CCK+ basket cell and the Schaffer Collateral As-

sociated cell, as we had not used these types before. I prioritized fitting the sag amplitude,
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(a) Experimental current sweep
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(b) Model current sweep
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(c) Firing rate
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Figure 4.10: Schaffer Collateral-associated cell firing characterization.
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(a) Experimental current sweep
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(b) Model current sweep
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(c) Firing rate
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Figure 4.11: PV+ cell firing characterization.

rheobase, and firing rate of some experimental mouse cells from Lee et al. (2010). The com-

parison of the model cell with the experimental cells is shown in Figure 4.9 for the CCK+

basket cell and Figure 4.10 for the Schaffer Collateral-Associated cell.

PV+ Cells

I took the CA1 PV+ cell models from Cutsuridis et al. (2010) as a starting point and mod-

ified them so that they better fit the experimental cell observations from our lab. For the

PV+ basket cell, I lowered the Nav concentration to better match the firing rate found in
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(a) Experimental current sweep
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(b) Model current sweep
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Figure 4.12: Axoaxonic cell firing characterization.
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(a) Experimental current sweep
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(b) Model current sweep
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Figure 4.13: Bistratified cell firing characterization.
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the experimental PV+ basket cells from our lab (mouse cells). For the axo-axonic cell, a

different Nav channel was used, the one used in the axon of the pyramidal cell, to better

fit the firing rate of the experimental axo-axonic cells. The bistratified cell was modified

even more, and given a different Na+ channel with a higher activation threshold so that the

higher action potential threshold observed in these cells experimentally could be recreated.

The firing rates and current sweeps of the cells are given in Figures 4.11 (PV+ basket cell),

4.13 (bistratified cell), and 4.12 (axo-axonic cell).

OLM Cell

I started out with the O-LM cell model from Cutsuridis et al. 2009 (ModelDB 123815), which

they had modified from Saraga et al 2003 (Model DB 28316). However, I substituted ion

channels from my other cells for the ones originally with the O-LM cell, because the originals

caused an unphysiological resonance in response to any inhibitory synaptic input; the cell

would oscillate dozens of millivolts, amplifying with time, in response to a single input. After

substituting other ion channels, that behavior disappeared. The rebound spikes remained,

though spontaneous activity was not seen.I also increased the specific membrane resistance

and some of the potassium channel densities to achieve a higher firing frequency without

depolarization block. The firing rate and current sweep are shown in Figure 4.14.

Neurogliaform Family Cells

I developed a neurogliaform family cell model to represent both neurogliaform and ivy cells.

The two cells are both members of the neurogliaform family and have similar electrophysi-

ological behavior. The ivy and neurogliaform cell have significantly depolarized action po-

tential thresholds compared to other interneuron types. This special characteristic required

me to design special sodium and potassium channels with depolarized activation and inacti-
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Figure 4.14: O-LM cell firing characterization.
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(a) Experimental current sweep
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Figure 4.15: Neurogliaform cell firing characterization.
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Figure 4.16: Ivy cell firing characterization.
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vation voltage dependence. I successfully produced these ion channels and used them in the

ivy and neurogliaform cell models to produce the characteristic action potential waveform,

including the late-spiking property, the depolarized action potential threshold, and the min-

imal afterhyperpolarization (AHP; hyperpolarization after spike), as shown in Figure 4.16

for ivy cells and Figure 4.15 for neurogliaform cells.

Our model ivy cell appeared to have slightly more of an AHP than the biological cells, and

the subthreshold ramp depolarization back to threshold was more linear in the biological

cells than in our model cell. We then obtained the current v. firing frequency curve for the

model ivy cell and compared it with the firing rate curves of several biological ivy cells. At

low levels of depolarized current injection, the model ivy cell had similar firing frequencies.

However, its curve was much steeper and so it had much higher firing frequencies with larger

current injections than did the biological ivy cells. However, within the range of excitation

the ivy cell is likely to receive within the context of the network model, where the ivy cells

fired generally at lower than 5 Hz, it behaved similarly to biological ivy cells.

Neurogliaform Cell

As mentioned above, we used the same model for our ivy and neurogliaform cells. A compar-

ison of the model neurogliaform cell with the biological cells is given in Figure 4.15. There

was a broad range of excitability in the biological neurogliaform cells.

4.4 Components of Connections

In addition to constraining the numbers, distributions, and locations of connections (see

Chapter 3), we also constrained and characterized the properties of individual connections

and synapses. We did this by performing ”‘paired recordings”’ of our model cell connections
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and comparing the resulting postsynaptic current (or potential) with experimental data.

4.4.1 Using experimental data to fit a model synapse

When making pairs, we took into account the experimentally observed number of synapses in

a connection. Using electron microscopy, various experimentalists found that connections in-

volving different presynaptic and postsynaptic combinations comprised different numbers of

synapses (Tamás et al., 2003; Klausberger et al., 2004; Maccaferri et al., 2000; Foldy et al.,

2010). We designed our model connections to use these experimentally determined num-

bers of synapses in each connection. Then we matched experimental conditions for voltage

clamp paired recording and compared our results with the experimental results. Specifi-

cally, we matched the holding potential of the postsynaptic cell and the reversal potential

of the synapses involved in the recording. We used the Nernst equation to calculate the

reversal potentials for ions of interest when fitting pairs, unless they were explicitly given

in the publication. As with our single cell characterizations, we ignored the contribution of

the junction potential. We inactivated the sodium channels in the model while fitting the

synapses to prevent the occurrence of action currents (in many experimental conditions, the

chloride reversal potential was significantly depolarized).

Then we fired the presynaptic cell and recorded the current response in the postsynaptic

cell. For each cell type, we tested 10 different connections (where each connection was

composed of an experimentally determined number of randomly placed synapses). We then

determined the kinetics (10 − 90% rise time and decay time constant) and amplitude of

the response of each of the 10 connections and altered our synapse parameters by hand so

that the average of these properties matched the experimentally determined averages. The

parameters that we altered were the rise and decay time constants as well as the weight

(maximum conductance) of the individual synapses. Our parameter values and resulting
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weights and kinetics are given in Table 4.5; the weights and kinetics are generally within

5% of the experimentally determined values (Tables 4.3 and 4.4). For reasons that are not

understood, the rise time of the O-LM cell to pyramidal cell connection could not be tuned

to produce a rise time as fast as that seen experimentally; the rise time of the model synapse

was 10% longer than the rise time observed experimentally.
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Reduced Approach Full Approach
Cell Type Synapses/Conn. Convergence Total Synapses Convergence Total Synapses
Axo-axonic 6 6 36 6 36
Bistratified 10 10 100 18 180
CCK+ Basket 8 13 104 23 184
Ivy 10 42 420 73 730
NGF 10 14 140 25 250
O-LM 10 8 80 15 150
PV+ Basket 11 17 187 30 330
SCA 6 2 12 3 18
Total 112 1, 079 187 1, 842

Table 4.2: Number of cells of each type converging onto the model CA1 pyramidal cell, along with the number of synapses
per cell connection and the total number of synapses from each cell type, for both the reduced and the full approaches. Note
that the number of synapses per connection stays the same in both approaches. Number of neurons converging and number of
synapses per connection based on estimates from Bezaire and Soltesz (2013)161



For the neurogliaform cell, we fit the GABAA and GABAB components separately, as there

were data available for each component (Table 4.4, (Price et al., 2008)). Because only the

time of peak current was given for the GABAB component of the neurogliaform cell, we

estimated the decay kinetics.
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Holding Junction 10-90% Rise Decay Ampl. Reversal
Presynaptic Cell Pot. (mV) Pot. (mV) Time (ms) τ (ms) (pA) Pot. (mV) Ref.
Axoaxonic cell −70 +4.6 0.80 11.20 308.0 ECl- = +7 Maccaferri et al. (2000)
Bistratified cell −70 +4.6 2.00 16.10 150.0 ECl- = +7 Maccaferri et al. (2000)
CCK+ basket cell −70 +10.8 0.63 6.47 115.4 ECl- = -26 Lee et al. (2010)
Ivy cell −50 +15.0 2.80 16.05 8.0 ECl- = -88 Fuentealba et al. (2008a)
O-LM cell −70 +4.6 6.20 20.8 26.0 ECl- = +7 Maccaferri et al. (2000)
PV+ Basket cell −70 +10.8 0.59 5.35 65.44 ECl- = -26 Foldy (2007)
SCA cell −70 +10.8 1.43 8.30 60.2 ECl- = -26 Lee et al. (2010)

Table 4.3: Table of paired recording data. Note that the ivy cell entry only includes the GABAA component. Pot.: potential

Holding Junction Peak Decay Ampl. Reversal
Receptor Type Pot. (mV) Pot. (mV) Time (ms) τ (ms) (pA) Pot. (mV) Ref.
GABAA -50 mV +15 mV 29 ms 50 ms 4.9 -89 Price et al. (2008)
GABAB -50 mV +15 mV 187 ms 1.9 -91 Price et al. (2008)

Table 4.4: Table of data from a CA1 neurogliaform cell to pyramidal cell pair. Note that peak current times rather than rise
times were given, and that a decay time constant was only given for the GABAA component.
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Cell Model Parameters Sim. Synapse Properties
Type Weight (uS) Syn.s τ1 (ms) τ2 (ms) Ampl. (pA) 10-90% Rise Decay
PV+ Basket 1.86e− 4 11 0.40 4.8 66.19 0.60 5.24
CCK+ Basket 4.50e− 4 8 0.40 5.8 116.15 0.60 6.40
SCA 8.50e− 4 6 0.46 3.9 58.48 1.36 8.28
Axo-axonic 1.00e− 3 6 0.3 8.5 308.0 0.79 10.64
Bistratified 5.10e− 4 10 0.42 11 149.40 1.97 16.49
O-LM 1.20e− 3 10 0.25 7.5 27.03 6.84 19.82
Neuroglia. (A) 1.45e− 4 10 8 39 4.88 29.60 50.01
Neuroglia. (B) 4.30e− 5 10 180.00 200.0 1.86 189.20 *
Ivy (A) 7.70e− 5 10 2.9 3.1 16.50 2.65 8.35

Table 4.5: Table of model IPSC parameters from fits to experimental data from Table 4.3. The ’Model Parameters’ column
gives the values of each synapse parameter that enabled the best fit of the experimental data. The actual characteristics of the
model synapses under experimental conditions are given the ’Sim. Synapse Properties’ column. * unable to compute unless run
really long simulation.164



Cell Model Parameters Sim. Synapse Properties
Type Weight (uS) Syn.s τ1 (ms) τ2 (ms) Ampl. (mV) 10-90% Rise H.W.
CA1 Pyr. Cell 8.10e− 4 1 0.05 3.5 0.71 2.95 16.10
Ento. Cortex 1.50e− 4 1 0.50 3.0 0.25 7.38 22.40
CA3 Pyr. Cell 1.00e− 4 1 0.50 3.0 0.20 3.66 15.86

Table 4.6: Table of model EPSP parameters from fits to experimental data from Table 4.3. The ’Model Parameters’ column
gives the values of each synapse parameter that enabled the best fit of the experimental data. The actual characteristics of the
model synapses under experimental conditions of current clamp are given the ’Sim. Synapse Properties’ column. H.W.: width
at half amplitude

PV+ B. CCK+ B. S.C.-Assoc. Axo. Bis. O-LM NGF. Ivy
PV+ B. D X X X D X
CCK+ B. X X X X X X X
S.C.-Assoc. X X D X X X X X
Axo.
Bis. X X X X X X X
O-LM X X D X D X D
NGF. D
Ivy X X X X X X X X

Table 4.7: Possible interneuron to interneuron connectivity. ”X” indicates connections that we have put into the model without
direct biological constraints. ”D” indicates connections in the model constrained by experimental data.
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After fitting each connection type under the corresponding experimental conditions, we then

characterized all of the connections under a uniform, physiological condition so that we

could directly compare the behavior of each connection. We chose to hold the postsynaptic

cell at -50 mV to simulate mild excitation, to use the ion reversal potentials used in our

single cell current sweeps and ion channel characterization (ENa+=+55 mV, EK+=-90 mV,

ECa2+=+140 mV, and EHCN=-35), and to set the synaptic reversal potentials to 0 mV for

excitatory synapses, -60 mV for GABAA synapses, and -90 mV for GABAB synapses.

Inhibitory Synapses onto Pyramidal Cells

Paired recordings were available for each interneuron connection onto pyramidal cells. We

fit the experimental data under the experimental conditions for each cell type (Table 4.5).

Inhibitory Synapses onto Interneurons

Few paired recordings have been published for interneuron to interneuron connections. Table

4.7 gives the possible interneuron-interneuron pairs that were included in the full network

model. Those pairs for which we have experimental data are marked with a ”D”. Those

which we estimated at are marked with an ”X”. For the estimated ones, our justifications

are listed in the appendix, as well as some parameter variations that we tested for each one.

Excitatory Synapses

The CA1 pyramidal cell in this model received excitatory input from other CA1 pyrami-

dal cells, the entorhinal cortex, and the CA3. The CA1 pyramidal cell to CA1 pyra-

midal cell connection was characterized using a sharp electrode current clamp recording

(Deuchars and Thomson, 1996). Though sharp electrode recordings are known to be leaky,
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we didn’t have enough information to correct for leakage. We assumed the reversal potential

was 0. The cells were current clamped such that their resting voltage was between -67 and

-70 mV. The mean PSP was 0.7 mV and the 10-90 % rise time was 2.7 ms, while the width

of the EPSP at half maximum of the amplitude (half-width) was 16.8 ms. In our model,

the current clamp was set to - 0.06 nA so the cell rested at about -67. The resulting EPSP

amplitude was 0.71 mV, the 10-90 % rise time was 2.95 ms, and the half-width was 16.10

ms, as given in Table 4.6. We achieved this using a weight of 8.1e-4 µS, and synapse time

constants of 0.05 and 3.5.

We fit the CA3 and entorhinal cortical afferents similarly. Assuming that the afferents make

one synapse per connection with each pyramidal cell, we use the data from experiments that

showed a single synapse was capable of causing a 0.2 mV change (EPSP) or was equivalent

to injecting 4.3 - 5.6 pA of current (EPSC) (Magee and Cook, 2000). Because the amount

of current injected was not provided in the experimental protocol, in our model we current

clamped the pyramidal cell with 0 nA injected current.

For both afferents, we used a 10-90% rise time of 0.5 ms and a decay tau of 3 ms. Figure

shows EPSCs obtained under physiological conditions, but with Nav channels inactivated.

(With Nav channels allowed to activate during the EPSC, all three excitatory input types

could cause action potentials).

The experimental data we were fitting used stimulation protocols intended to excite one

synapse, so we fit the data using one synapse. However, actual connections, especially from

the CA3, may comprise multiple synapses (Ropireddy and Ascoli, 2011). Therefore, after

fitting the data using a single synapse, we altered the connectivity to assume that each

connection from the CA3 and entorhinal cortex comprises two synapses.
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Chapter 5

Spontaneous Theta Oscillations Arise

in a Model CA1 Network

5.1 Results

Cell numbers as well as convergence and divergence of the model connectivity (Figure 5.1)

are based on the quantitative assessment discussed in Chapters 2 and 3. To conduct the

assessment, we surveyed over 100 experimental publications for anatomical data about CA1.

Then we combined immunohistochemical data about laminar distribution and coexpression

of markers to estimate the number of each interneuron type in CA1. Next, we extracted from

the experimental literature bouton and input synapse counts for each cell type. We multiplied

these counts by our estimated number of each cell and totaled the available input synapses

and boutons, GABAergic and other, by layer of CA1. Then we determined the number

of connections each cell type was likely to make with every other cell type based on the

results of our quantitative assessment. When actually determining which cells of the model

to connect, we distributed all cells evenly in 3D space and enabled random connectivity
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Figure 5.1: Intrinsic connectivity within CA1 network. (a) Model cells form synapses at
experimentally observed locations on post-synaptic cells. (b) Each cell type innervates and
receives connections from other cell types in a biologically constrained manner.
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for cell connections where the postsynaptic cell body fell within the axonal extent of the

presynaptic cell. Each time a connection was established between two cells, the presynaptic

cell innervated the experimentally observed number of synapses on the postsynaptic cell.

The synapse locations were randomly chosen from all possible places on the cell where the

presynaptic cell type had been experimentally observed to innervate.

In addition to constraining our model to experimental cell and connection numbers, we also

constrained the electrophysiology of individual cells and synapses (Figure 5.2). We first

analyzed whole cell current injection traces of experimental cells of each type included in the

model, calculating standard activate and passive electrophysiological properties. Then we fit

our model cells to the experimental data, even subjecting the model cells to the same current

injection protocols so we could directly compare their properties to those of the experimental

cells. After fitting the single cell properties, we simulated experimental paired recordings

to characterize the connections between our model cells. Where experimental data existed

for paired recordings, we matched the experimental holding potential and synapse reversal

potential, then performed 10 different paired recordings. We characterized the synapse

properties including the synaptic amplitude, 10% - 90% rise time, and decay time constant.

Finally, we fit our averages to the experimental data.

As the experimental data used to constrain the model were substantial and we wanted

an intuitive way for people to view the constraints we used, how well the model fit the

constraints, and the source of the constraints, we built a website for the model. The website

enables anyone to intuitively browse the model’s properties in a standard format for detailed

information about cell types, ion channels, connectivity, comparison of model to experimental

data, experimental data sources, simulation results, and more.

We implemented the model in parallel NEURON (Carnevale and Hines, 2005) and executed

the simulations on supercomputers, including University of Texas’ Stampede, UC Irvine’s

HPC, and San Diego Supercomputing Center’s Trestles. Additional details are given in the
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methods section in Chapter 1, section 1.8. All model results, characterizations, and exper-

imental comparisons are available on our model website at http://www.ivansolteszlab.

org/models/ca1.html.

5.1.1 Constrained network configuration displays physiological os-

cillations

After constraining the network based on published experimental observations, we chose rea-

sonable estimates for the remaining unconstrained parameters, namely the synapse ampli-

tudes for most incoming connections onto interneurons. We ran the network simulation with

a variety of realistic amplitude levels for the interneurons. In a fraction of the total network

configurations we used, we found that a spontaneous theta rhythm developed. We looked in

depth at one such network where the oscillation was particularly prominent, which we called

the Basic network configuration. This configuration contained pyramidal cells with complex

morphology and realistic connectivity based on the calculations from Bezaire and Soltesz

(2013). Further details about the various network configurations studied are available in

section 5.1.3.

When given arrhythmic, tonic excitation, the Basic network configuration displayed oscilla-

tions in both the theta and gamma frequency ranges (Figures 5.3 and 5.6). The pyramidal

cell spikes exhibited peak power at the theta frequency of 8.30 Hz. Within the gamma

frequency range, they displayed some power at 25.15 Hz, but several interneuron types dis-

played their highest power at the gamma frequency of 25.15 Hz. Gamma was most obvious

in PV+ interneurons, though the CCK+ basket cells displayed noticeable gamma power as

well (Figure 5.6).
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Figure 5.2: The electrophysiology of the model is biologically constrained and fully charac-
terized. (a) The pyramidal cell models contained five ion channel types, some of which had
varying densities along the dendrites of the cell (top). The morphology of the complex pyra-
midal cell, taken from (Poolos et al., 2002), is shown (bottom). (b) and (c) The behavior of
each ion channel is physiological and characterized in experimental terms including (b) the
activation and inactivation curves and (c) the peak and steady-state current-voltage rela-
tionship. (h) The electrophysiological properties of the cells, both active and passive, were
characterized. (d-g) The current injection sweep is shown for several model cells, including
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Figure 5.3: When given tonic excitation, the physiologically-connected Basic network con-
figuration spontaneously displays theta and gamma oscillations. (Top) The calculated LFP
analogue based on the pyramidal cells of the network displays a theta oscillation. (Middle)
The oscillations are apparent in the spike times of the cells. Each cell’s spikes are displayed
horizontally at a given y-axis position per cell. (Bottom) A somatic, intracellular potential
trace is shown for one cell of each type.
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(a) 0.30 Hz (b) 0.40 Hz

(c) 0.45 Hz (d) 0.475 Hz

(e) 0.50 Hz (f) 0.55 Hz

(g) 0.65 Hz
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5.1.2 Oscillatory properties depend on excitation level

Next, we varied the excitation level of the network by increasing or decreasing the mean

Poisson frequency of our randomly generated afferent spike trains. In the Basic network

configuration, the oscillatory properties varied as a function of excitation level (Figure 5.7b).

Between 0.4 Hz and 0.65 Hz, the oscillation frequency steadily rose. We took the Fast

Fourier Transform of the pyramidal cell spike times and found that the power at the peak

theta frequency steadily rose as well (Figure 5.7b), in correlation with the total number of

spikes, as expected. In general, theta oscillations were only apparent within a small range

of excitation levels dependent on the particular network configuration. When the excitation

level fell below a mean Poisson frequency of 0.4 Hz in the Basic network configuration,

the theta oscillation fell apart because several interneuron types were no longer adequately

excited and became silent. The remaining types became less inhibited and fired at a higher

rate. Although the theta oscillation disappeared, most of the interneurons that were still

sufficiently excited to spike settled into a gamma rhythm that was even displayed in the

pyramidal cell firing (Figure 5.4a).

5.1.3 Multiple network configurations exhibit theta and gamma

In addition to varying the stimulation level, we employed two distinct connectivity sets in

the model. First, we set the convergence and divergence of the pyramidal cells to match the

numbers calculated in the quantitative assessment (Bezaire and Soltesz, 2013). The conver-

gence onto the pyramidal cells was calculated based on the synapse densities and dendritic

lengths observations from Meǵıas et al. (2001) and then compared with the calculated diver-

Figure 5.4 (preceding page): Spike rasters of the Basic network simulations at various levels of
afferent excitation. Note the disappearance of the theta oscillation with the lowest excitation
level of 0.3 Hz in (a).
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Figure 5.5: With reduced interneuronal variability, the theta oscillation disappears. Succes-
sive reductions are applied here from a to d. (a) The electrophysiological diversity is reduced
so all interneurons have the same electrophysiology of the PV+ basket cells. (b) Next, the
diversity of the excitatory input synapses to all interneurons is reduced so they all receive
the same excitatory synapse weights as the PV+ basket cells. (c) Then, the diversity of
the inhibitory input synapse weights to all interneurons is reduced so they all receive the
same inhibitory synapse weights as the PV+ basket cells. (d) Finally, the diversity of the
convergence onto the interneurons is reduced so they all receive the same synapse numbers
as the PV+ basket cells.
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gence of the interneurons and afferents onto the pyramidal cells. As noted in the quantitative

assessment, there were not enough inhibitory boutons available to fully innervate all of the

expected GABAergic input synapses on the pyramidal cells or interneurons; about 30% of

expected inhibitory input synapses onto the pyramidal cells did not receive any inhibitory

boutons. Because it has not yet been resolved which interneurons supply these synapses, we

employed two different connectivity sets in our network model (calculated and full coverage).

The calculated connectivity used the connection numbers for the inhibitory connections onto

pyramidal cells from the quantitative assessment directly (Bezaire and Soltesz, 2013). In

contrast, the full coverage connectivity scaled up the numbers of some of the inhibitory

convergence onto the pyramidal cell to achieve full coverage of all expected inhibitory input

synapses onto pyramidal cells, as given in Meǵıas et al. (2001). We also used two different

pyramidal cell models in our simulations: either a detailed morphology pyramidal cell model

with over 200 compartments, from Poolos et al. (2002), or a simplified pyramidal cell model

with similar electrophysiology, modified from Cutsuridis and Hasselmo (2012).

Throughout this work, we followed three network configurations in particular. Aside from the

Basic network configuration described already, we also focused on two network configurations

we will call ScaledUp and SimplePC, the spiking activity and the FFTs of which are given

in Figure 5.6. The ScaledUp model included the detailed pyramidal cell morphology but

with the scaled up number of inhibitory connections to its pyramidal cells. The SimplePC

model contained the calculated number of inhibitory connections onto pyramidal cells and a

simpler morphology pyramidal cell model. The simulation execution time and the memory

requirement for the SimplePC model were quite a bit lower than for the other two models,

due to the simpler pyramidal cell morphology used.

We found that almost all cell types in each simulation displayed a peak in power within

the theta range, the gamma range, or both ranges, and that the peak frequency in each

range was generally shared by all cell types within that network. In addition, the peak theta
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frequencies were similar across the networks (Basic = 8.30, ScaledUp = 7.08, SimplePC =

6.59). For the three simulations of interest, they achieved their oscillations with a variety of

firing rates for each cell type, though the rates are within a physiological range when com-

pared to the experimentally observed rates found in published literature (Figure 5.6c). For

the other configurations aside from Basic, we found that the level of stimulation provided

to the model did not have a straightforward correlation with the theta frequency or normal-

ized power, hinting at the presence of non-linear network dynamics due to the connections

between interneuron types. In general, increasing the afferent firing rate differently affects

each interneuron type due to the different input resistances of the interneurons. While the

interneurons may achieve a particular steady state firing rate at one level of excitation, when

the excitation is raised, a few interneuron types may become proportionally more excited

relative to the rest of the network, enabling them to fire strongly enough to shut down other

interneuron types.

Network Theta Freq. Theta Power Gamma Freq. Gamma Power
Basic 8.30 4155.18 25.15 2777.37
ScaledUp 7.08 40.59 51.03 37.77
SimplePC 6.59 12.82 29.54 4.91

Table 5.1: FFT theta and gamma properties for the pyramidal cell spikes from all pyramidal
cells of the highlighted networks.
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Figure 5.6: Multiple network configurations can generate theta oscillations. (a, b) The spike
rasters are shown for two other network configurations, (a) ScaledUp and (b) SimplePC. (c)
Firing rates of experimental and model cells during theta oscillations. Both awake-state and
anesthetized firing rates are shown for each cell type, as found in experimental literature.
The firing rates for each model network configuration were also included. Model firing rates
were generally similar to anesthetized firing rates in vivo.
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Figure 5.7: Network solutions with a variety of physiological firing rates can achieve theta and gamma oscillations. (a) The
FFT power of each cell type’s spikes is shown for the Basic network. (b - c) In the Basic configuration, varying tonic excitation
level alters the theta properties within a small range of excitation levels. Increased excitation corresponds with increased theta
frequency b and increased theta power c.

180



5.1.4 Model manipulations

Next, we manipulated various aspects of the network to characterize their contributions

to the spontaneous oscillations. We reduced the interneuronal diversity of the network,

altered the network connectivity, or altered the synapse kinetics and amplitudes. Out of

infinite possibilities for manipulating the network, we chose these three disparate approaches

to highlight the flexibility of the model implementation. As the model is now available

online with thorough documentation and is compatible with a user-friendly simulation helper

(SimTracker), we encourage others to use the model to answer their own questions about

the role of various network components in CA1 function.

Reduced diversity

We reduced the interneuron diversity of the network in a variety of ways. First, we replaced

the electrophysiological profiles of the different interneuron types with a single electrophys-

iological profile (Figure 5.8a). In each case, the theta power dropped drastically and the

visible theta pattern in the spike raster disappeared. Because this may alternatively be due

to inappropriate excitation levels, for one profile we also matched the excitatory afferent

weights, all incoming synaptic weights, and the convergence onto each cell to that of the

replacement type. While having a incoming connectivity that corresponded to the electro-

physiological profile enabled all the cell ’types’ to better participate, it did not restore the

theta rhythm (Figure 5.5).

.
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Figure 5.8: Network manipulations in the SimplePC configuration often reduced theta power.
(a) Setting the electrophysiological profiles of all interneurons to that of a single cell type
(PV+ basket, CCK+ basket, O-LM or neurogliaform cell) significantly reduced theta power,
frequency, or both. (b) Removing the outputs of each cell type in turn had differing effects
on theta power and frequency depending on cell type.(c) Characterization of the effect on
theta oscillations of the GABAA,B synapses innervated by neurogliaform cells. Inset shows
the IPSC of a neurogliaform to pyramidal cell connection, for each synapse variation. Even
when a GABAA,only connection was strengthened sufficiently to induce a comparable total
charge transfer per connection, the slower kinetics of the GABAA,B synaptic connections
better supported theta oscillations. Blue to green data represent GABAA,B synaptic connec-
tions with slower or faster GABAB kinetics than the control. Red to yellow data represent
GABAA,only synaptic connections with stronger synapse amplitudes.
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Contribution of individual cell types

We also characterized the contribution of each cell type to the spontaneous oscillation by

removing that cell type’s outgoing connections and observing the effect. We found that re-

moving different cells differently affected the theta oscillation. Schaffer Collateral-associated

had a small effect as characterized by this test, which was not surprising given their small

number (400 cells). Bistratified cells somewhat more surprisingly did not have a large effect,

probably because the coincident inhibition from the O-LM cells remained intact. While the

theta power remained high with the loss of PV+ basket cell outputs, in fact the normalized

power was reduced and the theta frequency dropped to the lowest end of the range. The

other cell types had noticeably lower theta power, though the frequency was not as affected

as it was with the PV+ basket cell cut.

For characterization of the PV+ basket cell role, we additionally removed only PV+ basket

cell synapses onto interneurons or only PV+ basket cell synapses onto pyramidal cells. We

found that the greater disruption resulted from removing the synapses onto pyramidal cells,

although there was a mild change in the network when PV+ basket cell connections to

other interneurons were removed.We also removed the PV+ basket cell to pyramidal cell

connections from the ScaledUp network configuration and found that while theta also fell

apart, a strong gamma remained.

Contribution of GABAB

GABAB is suspected to play a role in the phase preferential firing of interneurons and in a

computer model was found to help differentiate between spatial trajectories with identical

starting points (Wallenstein and Hasselmo, 1997; Sohal and Hasselmo, 1998). Also, in a

preparation used to study LTP, Mott and Lewis (1991) found that the disinhibition activity

of GABAB was necessary to the induction of LTP. Therefore, we examined the role of
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GABAB in the theta oscillations of our model network.

Postsynaptic GABAB was included in our model for inhibitory synapses innervated by neu-

rogliaform cells (Olah et al., 2009). Although ivy cells are part of the neurogliaform cell

family and may also provide GABAB mediated inhibition (Bezaire and Soltesz, 2013), their

potential GABAB component has not been experimentally characterized, so we only included

a GABAA component for synapses made by ivy cells. The postsynaptic GABAB component

provided by the neurogliaform cells is likely to be the largest contribution to the network

dynamics attributed to postsynaptic GABAB, as it has been experimentally observed that

the GABAB inhibition activated by tempero-ammonic inputs (assumed to be innervating

neurogliaform cells) was stronger and produced larger effects on spike timing than the prox-

imal GABAB inhibition activated by the Schaffer Collateral input (Kohl and Paulsen, 2010;

Kwag and Paulsen, 2009).

Next, we removed the GABAB component from our neurogliaform synapses and found that

it dramatically decreased the theta power. However, this could be due simply to a general

decrease in inhibition. Therefore, we next tried increasing the weight of the remaining

GABAA component until it achieved a similar total charge transfer as the intact GABAA,B

synapse. While the theta power increased with stronger GABAA synapses, it was still lower

than that achieved with a similar charge transfer via GABAA,B synapses.

We first altered the rise and decay time constants of the GABAB synapse component and we

found that quickening the kinetics of the GABAB synaptic component decreased the theta

power (Figure 5.8c) while having a minimal effect on theta frequency. Next, we removed the

GABAB component altogether and found a significant drop in the theta power. This may

be due to a general decrease in inhibition, so we next increased the weight of the remaining

GABAA component until it achieved a similar total charge transfer as the intact GABAA,B

synapse. While the theta power increased with stronger GABAA synapses, it remained

lower than in networks containing GABAA,B synapses capable of similar total charge transfer
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(Figure 5.8c). For the neurogliaform synapses in our model network, receiving equivalent

charge transfer more quickly is not as effective for maintaining the theta rhythm.

5.1.5 Distinct theta phase preferences and modulation levels

When we analyzed the firing rate of each cell type as a function of phase at the theta

frequency, we found that, in each network, the neurons displayed distinct firing phase prefer-

ences segregated by neuron type (Figure 5.9). These firing phase preferences were compared

to the experimentally observed phase preferences published in the literature for each cell

type (Table 1.1). We found that different network configurations led to different phase

preferences, which we had suspected given that different experimental preparations (awake

animals versus anesthetized animals) also displayed somewhat differing phase preferences.

As the spontaneous theta observed in our network is a different state than the theta dis-

played in vivo in the presence of rhythmic input, we expected our interneurons to display

different phase preferences. However, there were some similarities present across the differ-

ent network configurations. One, the O-LM cells and bistratified cells often fired around

the time at which the pyramidal cells fired. Two, the neurogliaform and ivy cell synapse

phase preferences were consistently shifted from each other. Three, the PV+ cell phases

were generally distinct among themselves while in two out of three cases, the CCK+ cells

had similar phases.

It is also important to note that, while the cells displayed firing phase preferences, they fired

at other phases as well, though at a lower level (Figure 5.9). This distribution of spikes across

different phases is also seen experimentally, as well as the differing levels of modulation by

theta and gamma that is seen across different interneuron types experimentally.

We were able to achieve theta in smaller networks as well; however the smaller networks

required a higher level of convergence and stronger connectivity between cell types than is
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Figure 5.9: Model cell types display distinct theta phase preferences in their spike times.
(Top) Theta phase preference is shown in reference to an idealized, hypothetical stratum
pyramidale LFP wave. (Middle) Firing probability as a function of theta phase (double
plotted for two theta periods) is shown per cell type. (Bottom) The shift in phase required
to match anesthetized phase preferences is shown for each cell type. These data are displayed
for (a) anesthetized experimental data and (b) Basic network. Experimental data used for
CCK+ basket cell and Schaffer Collateral-Associated cell are categorized as CCK+ cells in
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seen physiologically. Using connection strengths that are stronger than warranted for the

synapses could render the network better able to synchronize its cells than in reality, so we

considered it necessary to also achieve the oscillation in the full-scale network with relevant

synapse weights and numbers. However, we also wanted some way to study a reduced version

of the model on a personal computer while still maintaining the experimentally constrained

connectivity. This led to the development of the Network Clamp.

5.1.6 Network Clamp

We wanted some way to study a reduced version of the model on a personal computer while

still maintaining the experimentally constrained connectivity. This led to the development

of the Network Clamp. The Network Clamp is a rational way to incorporate the biological

detail of the network model into a manageable model that can be run on a personal computer.

It can also be used to answer questions about how the network activity influences single cells.

The concept of the Network Clamp is to observe a single cell in its natural state, essentially

receiving all of the incoming connections that it would receive in a network, and to receive

the synaptic input from those connections as they would be active in the network (Figure

5.10a). The Network Clamp enables a modeler to use realistic connectivity onto the cell of

interest, and also to design realistic in vivo inputs, to use actual recorded spike trains for

input or to replay a network model result into a cell. In a sense, one can visualize Network

Clamp as if a single cell were to be dissected out of the full-scale network, with all of its

input synapses still attached to its membrane (Figure 5.10a), so that these inputs can be

then driven according to their natural pattern of activity during theta (or other) oscillations.

We previously applied this cookie-cutter technique to create a microcircuit model of CA1

pyramidal and PV+ basket cells (Lee et al., 2014) to study the effects of interneuronal con-

nectivity specificity. Now we have taken this idea even further by zooming in on a single

187



pyramidal cell with all of its incoming connectivity still intact. Here we Network Clamped

a simple pyramidal cell using the SimplePC connectivity, so that the cell received inputs

from over 7,000 afferent cells. Locally, almost 200 synapses were innervated by other CA1

pyramidal cells, and over 1000 GABAergic synapses were innervated by CA1 interneurons,

preserving the convergence determined in the quantitative assessment (Bezaire and Soltesz,

2013). We programmed the presynaptic cells to fire on average at their experimentally ob-

served rates and to display phase preferential firing at their experimentally observed phases

during an 8 Hz theta oscillation. Then we ran a 20 second long simulation while recording the

intracellular potential from the soma of the pyramidal cell (Figure 5.10b). As expected, the

cell displayed a prominent 8 Hz theta oscillation in its membrane potential (Figure 5.10c).

We then used the Network Clamp to explore the contributions of network inhibition onto the

pyramidal cell. Experimentally using optogenetics, the role of PV+ inhibition and SOM+

inhibition have recently been compared (Royer et al., 2012). We wanted to check whether

we obtained similar results in our model with PV+ disinhibition and SOM+ disinhibition.

To do this, we either cut the connections from PV+ cells (PV+ basket, bistratified, and

axo-axonic cells) or cut the connections from SOM+ cells (bistratified and O-LM cells) and

compared the resulting pyramidal cell spikes and membrane potential oscillations.

We found with the PV+ disinhibition, the cell fired at a much higher rate than baseline

(Figure 5.10a, inset) and also tended to fire at any phase and to be unmodulated by the

rhythm. In contrast, with the SOM+ disinhibition, though the cell fired somewhat more

than in the baseline simulation (Figure 5.10a, inset) and the phase shifted (Figure 5.10d),

the cell remained far more phase-locked to the theta oscillation than in the case of the PV+

disinhibition (Figure 5.10e). Because the firing during PV+ disinhibition was so high, we

decided to also run each simulation with inactive sodium channels to observe the membrane

potential oscillation independent of spikes. We found that the theta rhythm was much more

disrupted during PV+ disinhibition than during SOM+ disinhibition (Figure 5.10f). This
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result corresponds to the observations made in a recent experiment that used optogenetics

to selectively block PV+ inhibition or SOM+ inhibition in vivo in CA1 (Royer et al., 2012).

Commensurate with these differences, when we took the FFT of the cell’s membrane potential

in each simulation, the PV+ disinhibition caused a significant drop in FFT power at 8

Hz while the SOM+ disinhibition actually slightly increased the power as it removed the

inhibition experienced by the cell at its most depolarized, further amplifying the membrane

potential oscillation.

5.1.7 Model performance

Another benefit of the Network Clamp can be seen when observing the performance of the

model code. The full scale model was well parallelized; the execution time decreased in

direct proportion to the number of processors used to execute the simulation. The model

also scaled well, with the execution time and memory usage correlating strongly with the

number of cells and synapses in the simulation. A full scale model simulation lasting 1 s

could be executed on 4,000 Stampede processors in 3.5 hours using a complex pyramidal cell

or 40 minutes using a simple pyramidal cell.

Although the code is quite efficient and enables modelers to run their network simulations

quickly, it is still a slow endeavor when compared with other models. In contrast, the

Network Clamp is extremely fast and convenient to run. To run a 20 s Network Clamp

simulation on a personal computer in serial required 33 minutes with the complex pyramidal

cell morphology and 22 minutes with the simple morphology. Using a multithreaded single

cell simulation would further reduce the time required for a Network Clamp simulation.
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Figure 5.10: Network Clamp of a pyramidal cell shows greater disruption in theta phase
for PV+ disinhibition than for SOM+ disinhibition. (a) Network Clamp diagram shows
realistic spike trains in all cells converging on the pyramidal cell of interest. The cell’s
somatic membrane potential is recorded using an intracellular current clamp. (b) Given
phasic inhibition and tonic excitation, the pyramidal cell membrane potential displays robust
theta oscillations. (c) When 50% of PV+ inputs are removed, theta power of the membrane
potential drops much more than when 50% of SOM+ inputs are removed. (d) Filtered
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5.2 Discussion

The model was found to be capable of spontaneous oscillations, often within the theta and

gamma range. It was able to display theta and gamma concurrently, along with distinct

phase preferences per cell type. We had hypothesized that the network should be capable of

these, and that the diversity of interneurons is likely to play a role. We found that indeed, in

our model, the variation in cell inputs and electrophysiology obtained simply by constraining

the behavior to experimental observations was sufficient to enable distinct phase preferences.

Not all tested connectivity or stimulation protocols resulted in oscillations. The majority of

our network configurations did not display any stable oscillation. Only about % displayed

theta. Of all the network configurations, % displayed gamma and an overlapping % displayed

theta and gamma (% of theta-producing networks also displayed gamma and % of gamma-

producing networks also displayed theta). When a network did not display theta, it was

often because entire cell-type populations were overactive or silent. When we constrained

the excitation level of each interneuron type to achieve physiologically relevant firing rates,

we found it much more likely that the network would display theta (% of networks with

physiologically relevant interneuronal firing rates displayed theta).

5.2.1 Model constraints

While there is a wealth of experimental data available to constrain the cells and connec-

tions of CA1, there are also some gaps in our knowledge. For example, there were paired

recordings available that we used to characterize synapses from and to pyramidal cells, and

a few interneuron-interneuron connections, but there are very few available for connections

between interneurons, and we see that there are actually a significant number of connections

between interneurons (Bezaire and Soltesz, 2013). Also, for the synapses that have been

191



characterized, it is not always clear how the junction potential contributed to the recorded

responses, so behavior of the synapse may diverge in vivo. In addition, though we have used

current injection sweeps from firing rate characterizations performed in our and others’ labs

(Maccaferri et al., 2000; Lee et al., 2014; 2010; Krook-Magnuson et al., 2011) to constrain

the electrophysiology of our cells, we have not investigated the full variability within each

cell type, nor directly considered the effect of morphology and morphological diversity on

cell behavior.

The connectivity and cell numbers data used in our model were systemically obtained and

discussed in Bezaire and Soltesz (2013). As with the synapse data, there remains much to be

learned about the anatomical structure and abundance of the connections between various

interneurons. Our model is structured in such a way that it can easily be updated when new

anatomical data become available to further constrain the network.

5.2.2 Relevance to experimental data

We hypothesized that the model would be capable of distinct phase preferences. Though

there are many inputs to the network that are phasic and sometimes interneuron-selective

(afferents, neuromodulators, etc), we surmised that unique phase preferences should be a

built-in property of the network for robustness, as the phasic inputs to the model are likely

required to convey learning or memory, and may need to be an additional input, not the

fundamental mechanism to drives phase preferences.

With such a model, we showed that not only is the network inherently supportive of theta

and gamma oscillations, but it also enables phase preferences without any phasic input to

the model. In an intact animal, there are phasic inputs from CA3, entorhinal cortex, and

other cortical areas, as well as from the medial septum and other neuromodulatory inputs.

Therefore, we expect that these phasic inputs can influence the phase preferences seen in
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vivo. However, they are not necessary to achieve unique phase preferences.

In our model, different network configurations resulted in different phase preferences. For

some cell types, the phase preferences diverged from what is seen in vivo, but this divergence

was not surprising. The model most closely resembles the isolated CA1 experimental prepa-

ration (Goutagny et al., 2009), without the rhythmic excitatory and inhibitory infuences

from brain regions connected to the CA1, including the septum, CA3, entorhinal cortex,

and thalamus; we do not yet know the phases of each interneuron type in this experimental

preparation.

We found that the slow kinetics of the postsynaptic GABAB component of neurogliaform

synapses was important for our spontaneous theta rhythm, independently of the large total

charge transfer that occurs at those synapses. There are several reasons to suspect that

GABAB contributes even more to network dynamics than what our model captured. Re-

cent experimental studies have observed postsynaptic GABAB receptors on perisomatically-

targeting parvalbumin-expressing interneurons (Booker et al., 2013). Because we only in-

cluded a GABAB component for neurogliaform cells, and because our model neurogliaform

cells only synapsed onto other neurogliaform cells and pyramidal cells, it is likely that

postsynaptic GABAB plays an even greater role in network dynamics than our model pre-

dicts. In addition, the phase preferential firing of different interneurons means that high

levels of GABA may be present in and around synapses at various times during theta

(Kohl and Paulsen, 2010), allowing for a stronger extrasynaptic GABAB response than what

has been recorded in paired experimental preparations. Finally, many cells have presynaptic

GABAB receptors (Booker et al., 2013).

While postsynaptic GABAB inhibits pyramidal cells and some interneurons, presynaptic

GABAB autoreceptors only inhibit interneurons, though they affect interneuronal synapses

onto both interneurons and pyramidal cells. Therefore any network manipulations that

reduce GABAB activity may actually enable the other interneurons to provide greater inhi-
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bition during specific phases, increasing the amplitude of the theta oscillation. As inhibition

is crucial to theta generation (Soltesz and Deschenes, 1993; Ylinen et al., 1995), it is not

surprising that a network manipulation reducing presynaptic GABAB and increasing the ac-

tivity of most interneurons would lead to greater theta power (Leung and Shen, 2007). The

reduction of presynaptic GABAB in vivo may have a similar effect to adding tonic excitation

to the model to enable spontaneous theta oscillations.

Relevance of the Network Clamp to experimental data

Our finding that the PV+ inhibition served a role of modulating spike and potential phase,

and that removing the PV+ inhibition led to a greater phase shift than removing SOM+

inhibition, is consistent both with our full scale network and with experimental observation

(Royer et al., 2012). In the full scale network, removing the output of PV+ basket cells

greatly reduces normalized theta power in the FFT computed from the spike times (to 29%

of the value for the control network), while removing the output of O-LM cells only drops

the power to 45% of control. In the Network Clamp, PV+ disinhibition causes the theta

power of the membrane potential oscillation to drop to 38% of baseline. In contrast, SOM+

disinhibition actually causes a slight increase in theta power, likely due to the removal of

inhibition at the pyramidal cell’s most depolarized potential, causing a larger amplitude

oscillation.

5.2.3 Reduced models

We used two ways of reducing our model for development and testing on a personal computer.

We scaled down the network so that it had a few hundred cells connected to each other

instead of several hundred thousand cells. We also introduced another method of reduction,

which we are naming ’Network Clamp’. The Network Clamp provides a way to test network
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manipulations on a smaller scale before employing them in a full-scale model, as well as a

way to investigate questions about single cell dynamics. The benefit of the network clamp as

opposed to a smaller-scale network model is that it preserves the convergence of the network,

whereas a smaller network model either sacrifices the number of incoming connections or

ramps up the connectivity (or weights) to maintain the same level, but then artificially

increases the synchrony of the network. One important aspect of the network clamp is that

it can only be used to study the first-order effects of any network manipulations; the resulting

changes in the cell’s firing rate do not influence its inputs at all, though they (or those of

other cells in the network) do alter the input spike trains in real life and in a network model.

This trait can also be a benefit; the reaction of the network to changes can be examined

piecemeal to understand what is the immediate effect of a change, and what is a reaction to

the immediate effect as the network settles into a new steady state.

5.2.4 Model accessibility

Our model is public, well documented, and also well characterized in experimentally rel-

evant terms. Model cells sometimes are found to behave much differently than expected

when subjected to experimental current sweep protocols or paired synapse recordings. We

implemented a standard, thorough characterization strategy for each cell and made it avail-

able in an accessible, intuitive, and interactive website. Our ultimate goal is to have each

model component constrained by standardized experimental data derived from a standard

experimental protocol. Until that becomes a reality, we believe it is important to clarify the

experimental constraints we used, show how well our model fits those constraints, and also

to fully characterize the model components especially in the absence of available experiental

data.
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Chapter 6

SimTracker Software Tool and Model

Code Template

Close to a thousand network simulations and more than a thousand network component

simulations were executed to complete this work, and so simulation organization and doc-

umentation quickly became a problem. Further, it was difficult to keep track of all the

constraints used in the model and how well the model fit them. Getting an objective, quan-

titative sense of how each component of the model worked was difficult without a standard

way to assess model components. Finally, analyzing model results was tedious and suscep-

tible to unnecessary variation. All of these issues were resolved with the introduction of

SimTracker.

The SimTracker MATLAB tool (Figure 6.1) supports the process of designing, executing,

organizing, documenting and analyzing simulations, as well as organizing and documenting

results. SimTracker works with Mercurial, an established code versioning system, to track

the exact code used to perform each simulation. It allows the user to specify configuration

sets of cell numbers, connectivity, synapse kinetics, and all parameters used in the simulation
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(Figure 6.5). These two abilities together allow complete documentation and replication of

any simulation.

In addition, SimTracker serves as an organizer of simulations and their results. It can archive,

reload, and back up simulation results. It also serves to ensure that the code version on the

supercomputer where code will run matches the version on the user’s personal computer,

and takes care of generating and submitting the job script to the supercomputer’s batch

queueing system. When the simulation has completed, SimTracker can be prompted to

download all the results from the supercomputer. SimTracker can also be used with the

Neuroscience Gateway (NSG); it will package the simulation directory in the format necessary

for submission to the NSG and can extract the results from an NSG output package.

SimTracker can produce a variety of outputs for each simulation, ranging from spike rasters

to connectivity matrices to single cell traces. Almost every figure produced in the previous

chapters of this work was generated by SimTracker. Each time that SimTracker produces

a figure from a simulation, it logs which simulation produced the figure, the name of the

figure file, and its location. Logging the details of figure generation enables better tracking

of figure origins that becomes important once many simulation results are produced.

SimTracker http://mariannebezaire.com/SimTracker/

Sumatra http://neuralensemble.org/sumatra/

NeuroTools http://neuralensemble.org/NeuroTools/

NeuroConstruct http://www.neuroconstruct.org/

Neuronvisio http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368231/

Lancet http://ioam.github.io/lancet/

Neural Query System http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683631/

Table 6.1: Some tools that aid in various aspects of neural network modeling.

Within SimTracker are three other tools: CellClamp (Figure 6.2), discussed in section 6.2,

NetworkClamp (Figure 6.3), discussed in section 6.3, and ExperimentalData (Figure 6.4),

discussed in section 6.4. CellClamp allows characterization of model components via com-

monly used experimental protocols. In contrast, NetworkClamp allows one to place a ’Net-
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Figure 6.1: SimTracker software

Figure 6.2: CellClamp software
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Figure 6.3: Network Clamp software

Figure 6.4: Experimental Data software
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(a) (b)

(c)

Figure 6.5: Parameter sets for the cell numbers, connections, and synapse kinetics can be
designed.

work Clamp’ on a single cell within a network, a concept discussed in Chapter 5. Experi-

mentalData supports uploading an AxoClamp atf file from an experimental current injection

sweep and then analyzes various electrophysiological properties of the cell, reporting them

in a variety of formats. It can also analyze the output from a CellClamp current injection

sweep performed on a model cell.

Though a variety of other simulation helpers exist (Table 6.1), SimTracker is unique in that

it supports the entire NEURON model development process in a highly structured manner.

Its structure enables it to provide such strong support throughout the modeling process

that even inexperienced modelers can quickly characterize their model components, become

comfortable with the inner workings of the model, and analyze results efficiently. SimTracker

supports integration of experimental data at every step of the model development process

(Table 6.2).
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Because SimTracker is MATLAB-based, it has flexibility in how it interfaces with other

programs, and users of moderate experience with programming can customize it to fit their

own development process. Some of the applications SimTracker already works in complement

with include NEURON (including the Multiple Run Fitter), the batch queuing software of

several supercomputers, outputs of experimental data from pClamp, Mercurial, and Excel.

Users do not need MATLAB to use SimTracker. Compiled, stand-alone versions of Sim-

Tracker exist for Windows (32-bit and 64-bit), Mac, and Linux operating systems. In addi-

tion, the MATLAB code used to create SimTracker is available for people with MATLAB

who wish to customize SimTracker. SimTracker has been tested by several users on Windows

and Linux, using both the compiled and the uncompiled versions. Additional issues found

within SimTracker can be reported via an online issue-tracker at https://bitbucket.org/

mbezaire/simtracker. SimTracker will be made available within SimToolsDB, a known

database for simulation helpers, as well as MATLAB Central. In addition, it will be adver-

tised on http://ivansolteszlab.org and http://mariannebezaire.com and potentially

listed on other websites as appropriate.

The tool is actively used by its developer and so it will continue to be supported in the

near future. Eventually, the unique functions provided by the tool may be accomplished by

other resources, such as model characterization by NeuroConstruct or Open Source Brain, or

simulation and results organization by Neuroscience Gateway or a similar project. The tool

itself may inspire further development of other resources or development of new resources to

accomplish the same tasks. Until that time, the tool will remain useful and supported.
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6.1 Stepwise use of SimTracker

SimTracker aids each step of the modeling process, from simulation design to results analysis.

Below, I briefly walk through the use of SimTracker for an average simulation. Additional

information about SimTracker is available at http://mariannebezaire.com/SimTracker/.

6.1.1 Design

SimTracker supports simulation design by displaying the possible parameters and parameter

sets that can be defined, and by listing the possible choices where appropriate. In addition,

SimTracker stores the parameter and parameter set values for each executed simulation.

Later, these values can be referred back to or they can be used to conduct meta-analyses

of simulations. Users can also select from the available code versions associated with the

model if they need to revisit a previous version to run a variation. Chosen parameters are

prominently displayed along with the name for each simulation. Users can also design a

whole family of runs simultaneously, where only one parameter value changes, and specify

all possible values of that parameter.

6.1.2 Execution

After designing a simulation, the user can efficiently execute the simulation on their personal

computer or on a supercomputer. If the user chooses to execute the code on a supercomputer,

SimTracker will ensure the supercomputer is using the desired code version, check that all

the required files are available on the supercomputer, set all the necessary parameters to

the user’s chosen values, create a custom job-script for use by that supercomputer for that

particular simulation, and submit the simulation to the batch queue for the supercomputer,

reporting back to the user when all of that has been complete. This streamlined process cuts
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out many opportunities for error by ensuring that the desired simulation is the one that is

run, with all parameters and code versioning as expected. It also saves the user from the

tedious task of file management and job-script creation.

6.1.3 Retrieving and storing results

When the simulation is executed on a supercomputer, the results must be retrieved from

the supercomputer. SimTracker handles this task, finding and downloading the results to a

standardized location on the user’s personal computer. Then all simulation results, regardless

of where the simulation was executed, are available on the user’s personal computer. Each

results folder is named for the name of the simulation and contains standard result files

that can be read by SimTracker (or other custom scripts that the user may wish to run).

SimTracker displays the status of every simulation, whether the simulation has been designed,

submitted to a supercomputer, or has been executed with results downloaded to the personal

computer. In addition to storing simulation results, SimTracker also stores and displays

simulation metadata, including which computer executed the simulation and how many

processors were used, the date and time of execution, the user name of the person who

executed the simulation, and the time taken to run the simulation.

6.1.4 Analysis of results

Once the results of a simulation are available, SimTracker lists the available analyses when

the simulation is selected in SimTracker. Which analyses are available depends on which

results files the user specified should be generated, but there are always some standard

outputs available for every simulation, such as the spike raster, which shows the spike times

of every cell in the model. Other outputs include:
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• Spike histogram - Histogram of spikes per time, by cell type

• Connection matrix - Matrix of connections between each cell type in the model,

including total number of connections, divergence, and convergence

• Firing rates - Average firing rate of each cell type

• FFT - FFT power at each frequency, based on spike times for each cell type

• Intracellular trace - Intracellular whole cell recording for select cells

• Axonal distributions - Density of axonal connections as a function of distance from

the soma, for select cells

• Incoming synaptic activity - Synaptic event histograms by incoming synapse type,

for select cells

• Oscillatory phase preferences - Oscillatory spike phase preference histograms and

compasses

• Run time - Average and standard deviation of time required for each processor per

stage of simulation

• Memory requirement - Memory usage of the model as a function of simulation stage

6.1.5 Figure generation

In the course of analysis, SimTracker will produce MATLAB-based figures. However, these

figures can also be exported in a variety of formats including pdf, eps, bmp, jpg, and more.

Each time a figure is saved, its name, location, and associated simulation is logged for future

reference. If users later need to remember what parameters were in play for the simulation

displayed in a particular figure, they can reference this log within SimTracker.
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Experimental Data Model Development SimTracker Tool
Ion channel acti-
vation/inactivation
curves

Subcellular mechanisms CellClamp

Single cell current in-
jections

Model cell electrophysiological
profiles

CellClamp

Biological cell characterization ExperimentalData
Paired synapse
recordings

Synapse amplitudes and kinetics CellClamp

Cell fills, axonal and
dendritic lengths and
synapse densities

Structural connectivity between
cells (divergence and conver-
gence)

SimTracker Connections
Tool

In vivo theta observa-
tions

Model characterization, valida-
tion, analysis and communication

SimTracker, Network-
Clamp, and WebsiteMaker

Table 6.2: SimTracker enables integration of biological data at each step of model develop-
ment.

6.1.6 Customization of the tool

For users with MATLAB, the scripts that created the SimTracker are available and can

be freely customized (with attribution according to the license terms). Even users of the

compiled version have some flexibility in how they use the tool, with a variety of settings

accessible for changing. Users can always add supercomputers or change the settings of

supercomputers; in addition they can change which outputs are available, the parameter

defaults, some behaviors of SimTracker, and more.

6.2 CellClamp

CellClamp enables characterization of various network components in experimental terms.

For example, for ion channels, it can produce activation and inactivation curves as well as

a current-voltage relation. To characterize single cells, it allows current clamping at various

levels, and will analyze the sag, steady state voltage shift, and firing rate as a function of

current injection. For synapses between cells, it performs current or voltage clamped paired
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recordings (mimicking the experimental holding potential or baseline current injection, as

well as the reversal potential of the dominant ion through the synapse) and analyzes the

maximum conductance and kinetics of the synapse.

6.2.1 Ion channels

CellClamp can characterize ion channels in experimental terms. It accomplishes this by

inserting a given ion channel into the membrane of an otherwise empty cell soma (single

compartmental model). The ion channel files within the model directory (any file starting

with ’ch ’) are all listed in the table of ion channels available to be characterized. The

user can design the current sweep levels for the activation, inactivation, and current-voltage

curves. In addition, the channel density can be set by specifying the maximum conductance

of the channel per area, and the reversal potential of the channel can also be set. There are

other adjustable settings that affect all channel simulations, including the temperature, the

axial resistance and the soma size. After the simulations complete, CellClamp will display

the activation/inactivation curve and the current-voltage relation (see examples in Chapter

4).

6.2.2 Single cells

As with the ion channels, the cells of the model can also be characterized in experimental

terms by CellClamp. The user can specify a series of current injection levels, along with

the duration and start time of the injection. After executing the current injection sweep,

CellClamp will display the firing rate curve and several other electrophysiological analyses

of the cell. For detailed analysis, the simulation results can be imported into the Experi-

mentalData tool of SimTracker and characterized in the same manner as experimental cells.

CellClamp can also prepare a session for NEURON’s Multiple Run Fitter tool, so that a
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model cell can be optimized to a particular experimental cell recording.

6.2.3 Synapses and connections

The connections between cells can be characterized in experimental terms as well. Be-

cause connections are usually characterized using paired patch clamp recordings, CellClamp

includes analogues to paired current clamp and voltage clamp recordings. To match the

experimental conditions, the user can specify a holding potential for the postsynaptic cell

(including the junction potential contribution if desired) and can set the reversal potential

of the synapse as well. The connection will include a set number of synapses as determined

by the connectivity dataset used and the synapses will have the kinetics set by the kinetics

dataset used. Ten different connections will be recorded and their results will be averaged.

At the end of the simulation, the rise time, decay time constant, and synaptic amplitude are

calculated and displayed along with the PSC or PSP.

6.3 Network Clamp Tool

NetworkClamp is used to implement the Network Clamp concept described in Chapter 5.

A particular cell within the network is chosen and receives all the same connections that it

would receive within the full network. Then specially designed inputs are given to the cell by

stimulating its input cells with specific spike trains. The spike trains may either be the exact

spike times of those cells within the full network, or some idealized trains (for example, spike

trains with oscillatory properties constrained by experimental observation during theta), or

actual spike trains from experiments. Then, the cell of interest is recorded (usually in the

soma) and its intracellular trace and spike times are displayed. In NetworkClamp, it is very

easy to perform parameter sweeps, systematically adjusting various aspects of the incoming
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connections or synaptic activity to observe their effect on the cell of interest.

6.4 Experimental Data Tool

The Experimental Data tool is used to characterize biological and model cells in experimental

terms. It reads in AxoClamp atf files from current injection sweeps and calculates many

passive and active electrophysiological parameters based on the imported AxoClamp data.

In addition, it can read in CellClamp results from single model cells and perform the same

calculations on the model cells. Finally, it can export its results to the website directory for

display on a model website.

More details are given below regarding the calculations of electrophysiological properties.

First, a variety of methods exist for calculating the threshold of action potentials. Some

considerations for calculating action potential threshold are given below.

Action Potential Threshold or Onset

The action potential threshold is defined as the membrane potential where, once reached,

the cell will experience an action potential. This concept may be different from that of

spike onset, which is the potential at which the action potential begins. Using spike onset or

emperical threshold measures may overestimate the threshold Platkiewicz and Brette (2010).

Experimentally, the spike threshold varies somewhat as a function of input and previous

behavior. Generally, it becomes more depolarized with more activity, as the Nav channels

inactivate. Platkiewicz and Brette (2010) differentiates between thresholds for slow inputs

and fast inputs.

Model cells often fail to capture this variability in spike threshold. Models would have
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more realistic thresholds (including variability seen in real life), if their Na channels were

fit focusing on the spike initiation voltage range, rather than the whole voltage range (more

depolarized potentials play a role in the spike shape, but not much in the spike initiation)

Platkiewicz and Brette (2010).

It should also be noted that most cells will have a higher threshold in vivo than in vitro,

due to the higher conductance state of the cell in vivo. In vivo, the conductance of the cell

is several times larger due to all the synaptic input.

6.4.1 Approaches to Calculation of Threshold

I gave the user an option to pick between three methods and to adjust the parameters for

the chosen method, as explained in the list below.

1. The change in the derivative of the potential (Atherton and Bevan, 2005)

Take the derivative of the potential trace with respect to time. Then calculate the

standard deviation of that derivative for the 50 ms prior to the action potential. The

point at which the derivative exceeds the mean + 2 standard deviations is considered

the threshold. Note that the number of standard deviations to be exceeded can be

changed within the Analysis Settings and does not have to be an integer.

2. The derivative threshold (Cooper et al., 2003; Metz et al., 2005) Take the

derivative of the potential trace with respect to time. Then set a cutoff point of the

derivative, such as 30 mV/ms, and the point at which it is exceeded (within the 50 ms

previous to the spike) is considered the threshold. Note that the cutoff point can be

changed within the Analysis Settings and does not have to be an integer.

3. The maximum of the second derivative (Mainen et al., 1995) Take the second

derivative of the potential trace with respect to time. Find the maximum of it (within
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the 50 ms previous to the spike) and use that point as the threshold.

From my experience, calculation method 1 worked the most reliably, with 2 often producing

the same result, while 3 frequently got stuck at the peak of the action potential.

6.4.2 Calculation of Other Cell Properties

In addition to the action potential threshold, many other cell properties were calculated.

The properties and their calculation strategy are given below:

RMP: Resting Membrane Potential The average potential of the cell when no current

is being injected (or when only the baseline current is being injected)

Baseline: Average baseline current injected The amplitude of a constant current in-

jection that occurs throughout all experimental characterizations, or 0 if no baseline

current is injected.

Input Resistance #1: Input resistance calculated from least hyperpolarized step

The change in potential (most hyperpolarized potential subtracted from resting mem-

brane potential) divided by the change in current injection (current injection step

subtracted from the baseline current injection), from the smallest hyperpolarizing

current injection.

Input Resistance #2: Input resistance fitted to hyperpolarization line The

change in potential for each hyperpolarizing step is divided by the current injection

for that step, and the results are fitted to a straight line and then the slope is used as

the input resistance.

Input Resistance #3: Input resistance calculated from least depolarized and

hyperpolarized steps The change in potential for each step is divided by the change
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in current injection for that step and the results are averaged. For the hyperpolarized

step, the potentials used are resting membrane potential and the most hyperpolarized

potential during current injection. For the depolarized step, the potentials used are

the resting membrane potential and the most depolarized potential during current

injection.

Sag Amplitude: Peak of sag for most hyperpolarized step The difference between

the most hyperpolarized potential occurring during current injection and the steady

state potential reached by the end of the current injection.

Sag Tau: Tau of sag for most hyperpolarized step The value of tau achieved from

the best fit of the trace from the most hyperpolarized current injection. The equa-

tion used in the fit is set within the Analysis Settings dialog, the section on fitting sag

tau line. The portion of the trace used to fit the line starts at the most hyperpolarized

potential on the trace and continues until the trace reaches steady state.

Sag e Tau: Time to 63.2% of steady state (sag) The time taken for the trace to reach

63.2% of its steady state value as compared to the potential at the most hyperpolarized

point on the trace. As with the calculation of the Sag Tau, the most hyperpolarized

current injection step is used for this calculation.

Membrane Tau: Tau of membrane for most hyperpolarized step The membrane

time constant is calculated as the value of tau achieved from the best fit of the trace

from the most hyperpolarized current injection. The equation used in the fit is set

within the Analysis Settings dialog, the section on fitting the membrane time constant

from a hyperpolarized potential. The portion of the trace used to fit the line starts

at the time the current injection starts and continues up to the most hyperpolarized

potential of the trace.

Membrane e Tau: Time to 63.2% of steady state The time taken for the trace to
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reach 63.2% of its most hyperpolarized potential, as compared to the initial voltage at

the start of the current injection. As with the calculation of Membrane Tau, the most

hyperpolarized current injection step is used for this calculation.

Rebound Amplitude: Rebound amplitude after end of most hyperpolarized step

The difference between the most depolarized potential after the end of the current

injection and the resting membrane potential, for the most hyperpolarized current

injection.

Peak Amplitude: Transient peak amplitude at most depolarized quiet step The

difference between the most depolarized potential during current injection and the

resting membrane potential, for the most depolarized current injection without spikes.

Peak Decay Tau: Transient peak decay time constant at most depolarized quiet

step The time constant fit to the decay of the transient depolarized peak (using the fit

equation specified in the Analysis Settings) for the most depolarized current injection

without spikes.

Pre Rheobase: Most depolarized step without any spikes The most depolarized

current injection level that has no spiking.

Rheobase: Least depolarized step with spikes The least depolarized current injection

level where at least one spike occurs.

Delay to 1st Spike: At rheobase, spike time after injection starts For the least de-

polarized current injection level, the number of milliseconds after the current injection

starts to the time the potential crosses the action potential threshold.

First Reg. Spiking: Least depolarized step with regular spiking (at least 3 spikes)

The least depolarized current injection level where the cell spiked at least 3 times.
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ISI: Average of all ISIs at first regular spiking step The average interspike interval

(ISI) considering all ISIs occurring during the least depolarized current injection with

at least 3 spikes.

Threshold: Avg. threshold of first 3 spikes (first regular spiking step) The aver-

age interspike interval (ISI) considering only the first 3 ISIs occurring during the least

depolarized current injection with at least 3 spikes.

Spike Amplitude: Avg. amplitude of first 3 spikes (first regular spiking step)

The average spike amplitude considering only the first 3 spikes occurring during the

least depolarized current injection with at least 3 spikes.

Half-Width: Avg. duration of first 3 spikes at half amplitude (first regular

spiking step) The average spike duration at half the maximum amplitude consider-

ing only the first 3 spikes occurring during the least depolarized current injection with

at least 3 spikes.

Fast AHP Amplitude: Avg. fast AHP of first 3 spikes (first regular spiking step)

The average amplitude of the fast AHP (if one exists) considering only the first 3

spikes occurring during the least depolarized current injection with at least 3 spikes.

Slow AHP Amplitude: Avg. slow AHP of first 3 spikes (first regular spiking step)

The average amplitude of the slow AHP considering only the first 3 spikes occurring

during the least depolarized current injection with at least 3 spikes.

ADP Amplitude: Avg. ADP of first 3 spikes (first regular spiking step) The av-

erage amplitude of the afterdepolarization (if one exists) considering only the first 3

spikes occurring during the least depolarized current injection with at least 3 spikes.
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6.5 Model code organization

The model code has a modular organization, enabling quicker understanding and debugging.

The code is organized in the following manner:

1. cells directory - contains a separate template file for each cell type

2. connectivity directory - contains one file for each method of connecting model cells

3. datasets directory - contains separate files for each possible parameter set defining

cell numbers, numbers of connections, or synapse kinetics

4. jobscripts directory - contains downloaded job scripts and output files from super-

computers

5. setupfiles directory - contains various standard code modules for executing the sim-

ulation

6. stimulation directory - contains one file for each method of stimulating the model

7. main.hoc - the main code file for executing the simulation

8. subcellular mechanisms - various mod files defining ion channels, synapses, and

other compiled mechanisms

In addition, the results are stored within the same directory as a code, within their own

subdirectories:

1. cellclamp results directory - contains a separate directory for each CellClamp sim-

ulation
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2. networkclamp results directory - contains a separate directory for each network

simulation upon which the Network Clamp simulations are based, and within that

directory are found separate results folders for each Network Clamp simulation

3. results directory - contains a separate directory for each simulation

Each results folder contains standard results files for that run, which can be analyzed using

built-in functions in SimTracker. This organization both of the results and of the model code

increases the efficiency of the user and also allows faster debugging. In addition, it increases

the usability of the code and of SimTracker.

6.6 Impact

For the life of most of this work, SimTracker has been an irreplaceable resource to ensure

consistency, efficiency, and organization of the model. It is a great tool for assisting new

modelers as well. It provides support and a model structure that is helpful for users new to

modeling concepts, especially for those familiar with experimental principles but not with

coding. There is much potential for SimTracker to support new users and to also be reviewed

by people designing other tools or websites who are looking for use cases to determine required

functionality for their systems.
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Chapter 7

Conclusion and Future Directions

Our model is unique in that it incorporates many more biological constraints than previous

models. In addition, our model spontaneously produces theta oscillations, gamma oscilla-

tions, and distinct phase preferences for each interneuron type. Though our model is large

and detailed, we have made it very accessible by introducing the network clamp and by

characterizing the model in experimental terms and displaying the constraints, experimental

comparisons, and resulting model behavior in an intuitive, interactive way on our website.

Our model represents a new approach to modeling, one whose benefits are increasingly

recognized in the broader community. The nature of the model renders it usable for an

almost infinite number of questions with no or few updates to the existing code. This style

of modeling contrasts with previous models whose properties and scope were chosen with a

very focused, specific question. Such models are effective and powerful in answering their

chosen question. However, many are not designed to be reused to study other questions

unrelated to the initial one. While our model development was also driven by a question,

because of our large scope and the broad significance of the question asked, the model will

be useful for diverse other questions including the study of memory tasks, spatial processing,
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high frequency oscillations, and epileptic phenomena.

I have structured the model so that new data can easily be incorporated. As data gath-

ering and data mining tools become more powerful and prevalent in neuroscience, we are

achieving an abundance of accessible, reusable data. This represents both a challenge and an

opportunity for modeling: how can we best use and maintain such data sets? In this work,

I have shown how biological constraints can be incorporated and displayed to users without

being overwhelming. I have produced a software tool that allows others to employ this same

modeling strategy, one that can also be used to generate use cases for others wishing to

produce resources for large scale modelers.

Modeling the CA1 network at full scale presented another challenge. We felt that a full scale

network was necessary to answer our question of whether an isolated model network can

initiate and maintain theta oscillations. If we had used a smaller network, we would have

been forced to choose between having lower levels of synaptic input (due to fewer incoming

connections) or we would have had to scale up the connections between cells (either the

numbers of connections or the weights), so that the effect of any one cell on another one was

much stronger than found in vivo. Neither of these options felt appropriate for studying the

ability of the network to exhibit synchronized, rhythmic firing. By running the model at

full scale, we were able to maintain realistic connectivity numbers and strengths, while also

relying on the natural rates of synaptic input to each cell type.

Of course, our model is not an exact replica of a biological CA1 network. There are param-

eters that are not yet described well enough for all the cell types to be included, such as

gap junctions, short-term plasticity, and sub-layer specific connectivity. For the purpose of

our model question, we found that the lack of these in the model means that the theta and

gamma do not require these properties. We fully expect that additional network properties

will be discovered experimentally, ones that are also not included in our model. Although

we view our model as the most complex currently available model of the hippocampus, it
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will need to be continuously updated in the future to include additional properties.

We are making our code and software tool publically available to anyone for reuse or refine-

ment. As additional knowledge is gained about CA1, it can be incorporated into our model.

Also, anyone can use the model to answer their own question about CA1 network activity

or to specifically ask more questions about the mechanism of spontaneous theta generation

that we found in the model. It is our hope that other modelers will find our model readily

accessible and understandable, and that they will feel free to use the model to study any

questions they may have about theta or other network phenomena.
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