
UCLA
UCLA Electronic Theses and Dissertations

Title
Quantum information through holography and applications

Permalink
https://escholarship.org/uc/item/2db0b3rs

Author
Trivella, Andrea

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2db0b3rs
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Quantum information through holography and applications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Physics

by

Andrea Trivella

2019



c© Copyright by

Andrea Trivella

2019



ABSTRACT OF THE DISSERTATION

Quantum information through holography and applications

by

Andrea Trivella

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Eric D’Hoker , Chair

In this dissertation we explore how some information theory quantities can be formulated

holographycally and used to explore and characterize strongly interacting quantum field

theories. In Chapter 1 we give a holographic formulation of the Quantum Information

Metric, a quantity that measures the distance between two infinitesimally different quantum

states. After giving the general prescription we illustrate its use in different examples and

show how it reproduces the expected field theory results.

In Chapter 2 we explore another quantum information theory quantity that finds vast ap-

plications in holography: entanglement entropy. In particular we focus on the regularization

of the entanglement entropy for holographic interface theories. The fact that globally well

defined Fefferman-Graham coordinates are difficult to construct makes the regularization of

the holographic theory challenging. We introduce a simple new cut-off procedure, which we

call “double cut-off” regularization.

While the spirit of the first two chapters is to develop tools that can be used in studying

quantum field theories holographically, in Chapters 3 and 4 we switch gears and explore

a concrete example of holographic duality: we study type IIB Supergravity duals to 5 di-

mensional super-conformal field theories. In Chapter 3 we look at a class of bulk solutions

without monodromy. The solutions exhibit mild singularities, which could potentially com-
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plicate holographic applications. We use the relation of the entanglement entropy for a

spherical entangling surface to the free energy of the field theory on the five sphere as a

well-motivated benchmark to assess how problematic the singularities are. The holographic

supergravity computations give well-defined results for both quantities and they satisfy the

expected relations. This supports the interpretation of the solutions as holographic duals for

5d SCFTs and gives first quantitative indications for the nature of the dual SCFTs.

In chapter 4 we discuss bulk solutions that include punctures around which the supergrav-

ity fields have non-trivial SL(2,R) monodromy. We show that punctures with infinitesimal

monodromy match a probe 7-brane analysis using κ-symmetry and we construct families of

solutions with fixed 5-brane charges and punctures with finite monodromy, corresponding

to fully backreacted 7-branes. We compute the sphere partition functions of the dual 5d

SCFTs and use the results to discuss concrete brane web interpretations of the supergravity

solutions.
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2011 B.S. (Physics), Università Cattolica del Sacro Cuore, Brescia, Italy
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Chapter 1

Holographic Computations of the

Quantum Information Metric

Since the formulation of AdS/CFT correspondence there has been a great effort in trying

to understand how gravity can emerge from the degrees of freedom of the dual field the-

ory. In this context entanglement entropy has been a promising tool. Entanglement entropy

has been extensively studied not only because it is an order parameter for quantum phase

transitions [6], but because the celebrated proposal for the computation of holographic en-

tanglement entropy [7] has given a geometric interpretation to a quantity that is intrinsically

quantum mechanical. This geometric interpretation has helped in building further connec-

tions between the gauge and the gravity sides of the duality [8–10].

Due to the fact that entanglement entropy is hard to calculate theoretically and difficult

to measure experimentally, it may be useful to find other quantum information quantities

that could be understood holographically.

One quantity that has been recently explored is the Quantum Information Metric (QIM).

It is defined on an infinite-dimensional space of all the deformations induced by all possible

operators away from the unperturbed theory. The authors of [11] and [12] have focused only

on deformations induced by a single marginal operator. In that particular case one can argue
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that the QIM can be constructed from the on shell action of a Janus type solution [13].

Since this solution is generally not available the authors of [11] have suggested that the

Janus solution could be replaced by a probe brane. This prescription is limited to the

case of deformation induced by marginal operators, in addition it reproduces results only

qualitatively and up to an order one constant.

In this chapter we present the results of [1, 2], where the QIM was obtained holograph-

ically using perturbative techniques: since the QIM measures the distance between two

infinitesimally separated states this approach is natural. The study is limited to a change

of state induced by deforming the Lagrangian of the theory by a conformal primary opera-

tor. From the bulk point of view this means that the scalar field dual to the operator that

induces the deformation on the CFT side is going to be considered as a perturbative exci-

tation of an unperturbed background (dual to the CFT state that we are deforming). This

allows us to extend previous results to deformations induced by any primary scalar operators

(not necessarily marginal) and to explore configurations in which the Janus solution is not

available.

The chapter is organized as follows: We introduce the definition of QIM in section 1.1. In

section 1.2, after defining the QIM for a CFT deformed by a primary operator of dimension

∆ > d/2 + 1, we give a holographic construction of this quantity. This extends the results

available in the existing literature where the holographic computation was performed only in

the case of a marginal deformation. In section 1.3 we put the CFT on a cylinder, we suggest

a formula for the universal contribution of the QIM. In section 1.4 we relate the computation

of the QIM for a marginal deformation on the cylinder to the computation of the free energy

for an interface theory on a sphere. We conclude the chapter with the generalization to a

multi dimensional parameter space where the deformation is induced by marginal operators

spanning a moduli space (section 1.5 ).
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1.1 Introduction to the Quantum Information Metric

A quantity that finds application in condensed matter physics and information theory is

fidelity [14]. For two generic quantum states A and B described by density matrices ρA and

ρB we define the fidelity F (ρA, ρB) by the following formula:

F (ρA, ρB) = tr
√
ρA1/2ρBρA1/2 (1.1.1)

where the trace is taken over the Hilbert space of all quantum states of the system.

When the states A and B are pure fidelity reduces to the absolute value of the overlap,

i.e. if ρA = |ΨA〉 〈ΨA| and ρB = |ΨB〉 〈ΨB| we have that

F (ΨA,ΨB) = | 〈ΨA|ΨB〉 |. (1.1.2)

We now consider a one parameter family of states, parametrized by λ, with corresponding

density matrix ρλ and we define the QIM Gλλ by considering fidelity between two states

relative to infinitesimally close parameters, say λ and λ+ δλ, and expanding in δλ:

F (ρλ, ρλ+δλ) = 1−Gλλδλ
2 +O(δλ3). (1.1.3)

We can generalize this concept to a multi dimensional parameter space with λ = {λa} and

a = 1, ..., N . The natural generalization is:

F (ρλ, ρλ+δλ) = 1−
N∑

a,b=1

Gabδλ
aδλb +O(δλ3). (1.1.4)

Notice that the presence of a term linear in δλ vanishes by unitarity.
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1.2 The QIM for the vacuum state of a CFT living on Rd−1 × R.

In this section we firstly review the computation of the QIM for a CFT in its ground state.

We then explain how to compute the same quantity holographically using a perturbative

approach.

1.2.1 CFT computation

Let us consider a d-dimensional CFT with Euclidean Lagrangian L0. We deform the theory

by adding to L0 a term of the form δλO(x), where O corresponds to a conformal primary

operator of the original theory with conformal dimension ∆ and δλ is a coupling constant. In

order to distinguish between quantities computed in the unperturbed theory and quantities

in the deformed theory we use respectively the subscripts 0 and 1.

We are interested in computing the absolute value of the overlap between the ground

states of the two theories | 〈Ψ1|Ψ0〉 | at second order in δλ. In order to do that we use a path

integral formalism.

We start by considering the overlap between the ground state of the undeformed theory

|Ψ0〉 and a generic state |ϕ̃〉. In a path integral language the quantity 〈ϕ̃|Ψ0〉 can be obtained

by considering an Euclidean evolution from τ = −∞ to τ = 0 where the state |ϕ̃〉 is inserted.

In equation:

〈ϕ̃|Ψ0〉 =
1√
Z0

∫
ϕ(τ=0)=ϕ̃

Dϕ exp

(
−
∫ 0

−∞
dτ

∫
dd−1xL0

)
, (1.2.1)

where Z0 is the partition function of the unperturbed theory:

Z0 =

∫
Dϕ exp

(
−
∫ ∞
−∞

dτ

∫
dd−1xL0

)
. (1.2.2)
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τ = 0

τ

Rd−1

L0 L0 + δλO

Figure 1.1: Pictorial representation of the path integral construction used to build 〈Ψ1|Ψ0〉. The
Euclidean propagation is governed by the unperturbed Lagrangian L0 in the blue region, while in
the red region we use the deformed Lagrangian L0 + δλO.

In a similar way we construct 〈Ψ1|ϕ̃〉 by considering the Euclidean evolution from τ = 0,

where the state |ϕ̃〉 is inserted, to τ =∞:

〈Ψ1|ϕ̃〉 =
1√
Z1

∫
ϕ(τ=0)=ϕ̃

Dϕ exp

(
−
∫ ∞

0

dτ

∫
dd−1x(L0 + δλO)

)
, (1.2.3)

with

Z1 =

∫
Dϕ exp

(
−
∫ ∞
−∞

dτ

∫
dd−1x(L0 + δλO)

)
(1.2.4)

being the partition function of the deformed theory. Notice that in this case we have used

the deformed Lagrangian L1 = L0 + δλO.

The overlap 〈Ψ1|Ψ0〉 can then be obtained as

〈Ψ1|Ψ0〉 =

∫
Dϕ̃ 〈Ψ1|ϕ̃〉 〈ϕ̃|Ψ0〉

=

∫
Dϕ exp

(
−
∫ 0

−∞ dτ
∫
dd−1xL0 −

∫∞
0
dτ
∫
dd−1x(L0 + δλO)

)
(Z0Z1)1/2

. (1.2.5)

This overlap is generally speaking ill defined, since the Lagrangian governing the Euclidean

propagation changes discontinuously at τ = 0 and this introduces UV divergences. For

this reason one should think of equation (1.2.5) as formal. For all explicit computations we

regularize the UV divergences in the formula for the overlap (1.2.5) by replacing |Ψ1〉 with

|Ψ1(ε)〉 =
e−εH0 |Ψ1〉

(〈Ψ1|e−2εH0|Ψ1〉)1/2
, (1.2.6)
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where H0 is the Euclidean Hamiltonian of the unperturbed theory. ε should be thought as an

UV cut-off, its physical meaning might seem obscure at this point, but it will later become

clear that ε removes the region where the Lagrangian changes abruptly .

We then rewrite equation (1.2.5) as an expectation value in the state |Ψ0〉:

〈Ψ1(ε)|Ψ0〉 =
〈exp

(
−
∫∞
ε
dτ
∫
dd−1xδλO(τ, x)

)
〉

〈exp
(
−(
∫ −ε
−∞+

∫∞
ε

)dτ
∫
dd−1xδλO(τ, x)

)
〉
1/2
. (1.2.7)

We can now expand the overlap (1.2.7) in powers of δλ. Taking into account that 〈O〉 = 0

for an operator of non-zero dimension in the unperturbed theory and that the two point

function of a primary operator enjoys the time reversal symmetry relation 〈O(−τ1)O(−τ2)〉 =

〈O(τ1)O(τ2)〉, we get that:

| 〈Ψ1|Ψ0〉 | = 1−Gε
λλδλ

2 +O(δλ3), (1.2.8)

where

Gε
λλ =

1

2

∫
dd−1x1

∫
dd−1x2

∫ −ε
−∞

dτ1

∫ ∞
ε

dτ2 〈O(τ1, x1)O(τ2, x2)〉 (1.2.9)

is the QIM. Notice that, as anticipated before, ε effectively removes a slab centered at τ = 0.

The two point function for a primary operator is

〈O(τ1, x1)O(τ2, x2)〉 =
N∆

((τ1 − τ2)2 + (x1 − x2)2)∆
(1.2.10)

with

N∆ =
`d−1 dΓ(∆)

κ2π
d
2 Γ(∆− d

2
)

(1.2.11)

where κ2 = 8πG, with G being the d + 1 dimensional Newton’s constant and ` being the

AdS radius scale appearing in the dual gravity description. This normalization is used to

guarantee agreement between bulk and field theory side.
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If d+ 1− 2∆ < 0 we get:

Gε
λλ = N∆NdVRd−1εd+1−2∆, (1.2.12)

where

Nd =
2d−1−2∆π(d−1)/2Γ(∆− d/2− 1/2)

(2∆− d)Γ(∆)
. (1.2.13)

Note that if we had to deform the theory by a linear combination of two primary operators,

i.e. L1 = L0 + δλAOA + δλBOB, normalized such that 〈OAOB〉 = 0, the QIM would be

diagonal. We will expand the discussion on multi dimensional parameter space in section

1.5 where we study the QIM in the case of a deformation induced by a linear combination

of marginal operators spanning a moduli space.

1.2.2 Bulk computation

In this subsection we discuss the holographic dual of this setup. The computation of the

QIM on the gravity side has appeared in [11] and [12] where O was taken to be exactly

marginal. We develop a perturbative method that allows to deal with any primary (provided

∆ > d+1
2

). The basic idea is to look at the right hand side of equation (1.2.5) and interpret

is as a combination of partition functions. We have:

〈Ψ1|Ψ0〉 =
Z2

(Z1Z0)1/2
, (1.2.14)

where Z0 is the partition function of a pure CFT, Z1 is the partition function of the deformed

CFT and Z2 is the partition function of a CFT that is deformed only for τ > 0.

We can evaluate these partition functions on the gravity side. In the large N limit we

can write Zk = exp(−Ik) where Ik is the on-shell action of the gravity solution dual to the

corresponding field theory configuration (k = 0, 1, 2). Since we consider the operator to have

conformal dimension ∆ the dual scalar field is going to have mass m2 = ∆(∆− d).

7



The action governing the bulk physics is

I = − 1

κ2

∫
dd+1x

√
g

(
1

2
R− 1

2
∂µΦ∂µΦ− 1

2
m2Φ2 +

d(d− 1)

2`2

)
+ IBND, (1.2.15)

where the last term has been introduced in order to guarantee that the variational principle

is well posed. The massive field is going to have a different profile in the three different cases

of interest. In particular for the computation of Z0 we notice that the massive field is turned

off, the dual solution is pure AdS, then Z0 = exp(−IAdS).

The scalar field profile for I1 and I2 will depend on δλ. Since we are interested only in

this quantities at order δλ2 we can use a perturbative approach. We write the fields as1:

Φ(x) = δλΦ̃(x), (1.2.16)

gµν(x) = g0
µν(x) + δλ2g̃µν(x), (1.2.17)

where g0
µν is the metric of pure AdSd+1. Notice that the metric receives corrections at order

δλ2 since the scalar field enters quadratically in Einstein’s equations.

We can now expand the on-shell action around the unperturbed solution

δI = δλ

∫
δI

δΦ(x)

∣∣∣∣
g0

Φ̃(x) +
1

2
δλ2

∫
δ2I

δΦ(x)δΦ(y)

∣∣∣∣
g0

Φ̃(x)Φ̃(y) +

+δλ2

∫
δI

δgµν(x)

∣∣∣∣
g0

g̃µν(x) +O(δλ3). (1.2.18)

Notice that the first and third terms vanish because the equations of motion of the back-

ground are satisfied. Notice also that the boundary term of equation (1.2.15) gets canceled

by the boundary terms that arise from integration by parts when obtaining the first and

third terms of equation (1.2.18). The second term of equation (1.2.18) should have been

1If the operator O is marginal the massless field should be taken to be Φ(x) = λ0 + δλΦ̃(x), where λ0 is
the coupling constant of the undeformed theory.
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τ=0 ρ =∞ρ = −∞

AdSdAdSd

Figure 1.2: Schematic representation of the AdSd slicing of AdSd+1. Each colored line corresponds
to a single AdSd slice located at a fixed value of the coordinate ρ.

accompanied by the boundary term that arises when recasting the second variation of I in

that guise. We omit it, since we will reintegrate the second term back by parts to bring δI in

a form similar to the original one. It is now clear that we are simply interested in computing

the contribution of the scalar field probing the unperturbed background. We can then write

Ik = IAdS + δIk, with

δIk =
1

2κ2

∫
dd+1x

√
g0

(
gµν0 ∂µΦk∂νΦk +m2Φ2

k

)
. (1.2.19)

Φk is the solution of the equation of motion of the massive field with fixed background. Φk

can be obtained easily by using the boundary to bulk propagator:

Φ1(z, τ, x) = zd−∆δλ (1.2.20)

Φ2(z, τ, x) = δλzd−∆

τΓ
(
−d

2
+ ∆ + 1

2

)
2F1

(
1
2
,−d

2
+ ∆ + 1

2
; 3

2
;− τ2

z2

)
√
πzΓ

(
∆− d

2

) +
1

2

 .(1.2.21)

We write the overlap as:

〈Ψ1|Ψ0〉 =
Z2√
Z1Z0

= exp

(
−IAdS − δI2 +

1

2
(IAdS + δI1 + IAdS)

)
= exp

(
−δI2 +

1

2
δI1

)
. (1.2.22)

We now need to regularize the action δIk (k = 1, 2). We mentioned before that the back-
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ground is Euclidean signature Poincaré AdSd+1:

ds2 = `2dz
2 + dτ 2 +

∑d−1
i dx2

i

z2
, (1.2.23)

the boundary is located at z = 0 and it is parametrized by (τ, xi). We are going to work

with AdSd+1 in AdSd slicing by performing the following change of coordinates:

z = Z sech ρ

τ = Z tanh ρ,

(1.2.24)

the metric becomes

ds2 = cosh2 ρ

(
`2dZ

2 +
∑d−1

i dx2
i

Z2

)
+ `2dρ2. (1.2.25)

There are two different ways to reach the boundary: either we take Z → 0 keeping ρ fixed

or we take ρ→ ±∞ keeping Z fixed. In the first limit we reach the boundary at (τ = 0, xi),

while in second limit we reach the points (τ = ±Z, xi). The AdSd slicing of AdSd+1 is

schematically represented in figure 1.2.

We regularize the action by putting cut-offs at ρ = ±ρ∞ and Z = ε. We call the

regularized manifold M̃. This regularization choice might seem odd, since it is not the

standard regularization condition used in many AdS/CFT examples. Chapter 2 is dedicated

to discussing the validity of this regularization procedure, we refer to [3] for an exhaustive

discussion of the subject. One could have adopted the usual regularization prescription by

cutting off the AdS volume at z = δ obtaining the same results.

At this point one can easily work in the (ρ, Z, xi) coordinates and evaluate δI1 and δI2.

Assuming 2∆ > d+ 1 we get the following result:

− δI2 +
1

2
δI1 =

VolRd−1`d−1εd−2∆+1

2κ2
(Ja + Jb + Jc)δλ

2 (1.2.26)

10



where

Ja =
1

(2∆− d− 1)

(
(−f2∂ρf2 + f1∂ρf1) coshd ρ

) ∣∣∣∣
ρ∞

, (1.2.27)

Jb = (d−∆)

∫ ρ∞

0

dρ
(
−f 2

2 (ρ) + f 2
1 (ρ)

)
coshd−2 ρ (1.2.28)

Jc = (d−∆)

∫ 0

−ρ∞
dρ
(
−f 2

2 (ρ)
)

coshd−2 ρ. (1.2.29)

The details of the computation can be found in [1]. Notice that Ja,Jb and Jc have no

divergence associated with ρ∞ and we are free to take the limit ρ∞ → ∞. Ja can be

computed explicitly:

Ja =
−dΓ

(
−d

2
+ ∆ + 1

2

)
2(2∆− d− 1)

√
πΓ
(
−d

2
+ ∆ + 1

) . (1.2.30)

The QIM is

Gε
λλ = −VolRd−1`d−1εd−2∆+1

2κ2
(Ja + Jb + Jc). (1.2.31)

This matches the CFT result (1.2.12) in the sense that we recover the same divergence

structure, we do not compare the coefficient of the divergence because it is a non universal

quantity. Notice that, as in the CFT computation, the divergence arises only from the

location where we turned on the deformation.

Note that if the operator O is marginal, i.e. ∆ = d, Ja and Jb vanish and we can write

the result explicitly as:

Gε
λλ =

dΓ
(
d+1

2

)
VolRd−1`d−1ε−d+1

4
√
π(d− 1)Γ(d

2
+ 1)κ2

. (1.2.32)

It is important to remark that the quantity computed is the bare QIM. Considering bare

quantities and regularizing them by imposing a cut-off is usual practice in many AdS/CFT

computations. The understanding is that, since the QIM is obtained by path integral ar-

guments, one could make use of the standard holographic renormalization. The divergences

can be removed by adding local counter terms to the bulk action. See [15] for a review on

the topic. Finally, it is worth to point out that even the bare QIM has its own significance.

11



|~x| = 1

τ = 0

τ

Sd−1

Figure 1.3: A map from Rd to R× Sd−1.

In fact it was the degree of the divergence of the bare QIM for a marginal deformation to

suggest the brane approximation proposed in [11].

1.3 The QIM for the vacuum state of a CFT living on Sd−1 × R.

In this section we discuss the QIM obtained by studying deformation of the vacuum state

of a CFT living on a cylinder. The CFT computation is analogous to the derivation showed

in the section 1.2.1, the only difference being that the integration over the space slice is now

performed on a sphere instead of a plane. For this reason we can write:

Gε
λλ =

1

2

∫
dd−1Ω1

√
gSd−1

∫
dd−1Ω2

√
gSd−1

∫ −ε
−∞

dτ1

∫ ∞
ε

dτ2 〈O(τ1,Ω1)O(τ2,Ω2)〉 . (1.3.1)

For simplicity we have set the radius of the sphere r to one, i.e. we measure lengths in

units of r. We eventually restore factors of r using dimensional analysis. The regularization

procedure effectively removes a strip shaped region centered on τ = 0. To compute Gε
λλ we

need to use the two point function for a primary operator on the cylinder. We start with

the two point function for Rd in Euclidean signature:

〈O(τP , x)O(τ ′P , x
′)〉 =

N∆

[ (τP − τ ′P )2 + (x− x′)2 ]∆
(1.3.2)

where τP indicates the Euclidean time on the plane.
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Since the metric of Euclidean signature Rd

ds2 = dτ 2
P +

d−1∑
i

(dxi)2 = dξ2 + ξ2ds2
Sd−1 (1.3.3)

and the metric of the cylinder

ds2 = dτ 2 + ds2
Sd−1 (1.3.4)

are related by the conformal transformation ξ = exp(τ), we can easily find the following

expression for the two point function on the cylinder

〈O(τ1,Ω1)O(τ1,Ω2〉 =
N∆

(2 cosh(τ1 − τ2)− 2Ω1 · Ω2)∆
. (1.3.5)

We depict the corresponding conformal map in Fig. 1.3. The form of the two point function

implies that in the ε → 0 limit one gets the following leading behavior for the quantum

information metric

Gε
λλ ≈ εd−2∆+1. (1.3.6)

This is not a surprise. In fact we recover the same leading behavior as the case of a CFT

living in flat space [1, 11, 12].

What makes the configuration on the cylinder more interesting is the existence of a phys-

ical universal contribution. In addition, even if flat space and the cylinder are conformally

equivalent, the quantum information metric on the cylinder cannot be inferred in general by

the knowledge of the quantum information metric in flat space. This is due to the fact that

we are turning on dimension-full coupling constants in the path integral formulation which

results in the breaking of conformal symmetry.

Focusing on integer values of the conformal dimension ∆ and taking ∆ > (d + 1)/2 to

avoid the issue of infrared divergences, one can show that the regularized QIM admits the

13



following expansion in ε [2]:

Gε
λλ = a−2∆+d+1

( ε
r

)−2∆+d+1

+ a−2∆+d−1

( ε
r

)−2∆+d−1

+ · · ·+ a0 + b0 log
ε

r
+O(ε) (1.3.7)

where we have restored the radius r of the spatial sphere where the CFT lives. The loga-

rithmic term is present only when d is odd.

To extract the universal piece one has in general to construct counterterms that need to

be added to action. This is a standard procedure in QFT. We choose to work in the minimal

subtraction scheme. Once the power divergences are removed we can identify the universal

piece in

Gλλ =

 −b0 log µr if d is odd

a0 otherwise.
(1.3.8)

where µ is the renormalization scale. This is can be explained heuristically when ∆ = d.

In fact the path integral formulation can be interpreted as the partition function of a field

theory with a conformal defect. The conformal defect lives in d − 1 dimension, it is not a

surprise that the anomalous term (logarithmic divergence) appears for d odd.

The computation of Gλλ is in principle a well posed problem and it is easy to work on

specific cases, however it seems that a generic derivation of Gλλ is difficult to obtain. Based

on numerous checks performed on both the CFT and on the bulk side [2] we propose that the

universal contribution of the quantum information metric for a CFT living on the cylinder

deformed by a scalar primary operator is given by

• d even:

Gλλ = `d−1 d

8κ2
(−1)[∆− d−1

2
]

[
Γ(∆

2
)Γ(∆

2
− d−2

2
)
]2

Γ(∆− d
2
)Γ(∆− d−2

2
)
VolSd−1 (1.3.9)
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where VolSd−1 is the volume of unit Sd−1 given by

VolSd−1 =
2π

d
2

Γ(d
2
)

(1.3.10)

• d odd:

Gλλ = Glog
λλ log µr

Glog
λλ = = `d−1 d

8κ2
(−1)[∆− d−1

2
]

[
Γ(∆

2
)Γ(∆

2
− d−2

2
)
]2

Γ(∆− d
2
)Γ(∆− d−2

2
)
VolSd−1

(
− 2

π

)
. (1.3.11)

As a final remark we discuss the connection between our results and the brane model [11]. If

the deformation is induced by a marginal operator, one can use the brane model to compute

the QIM on the bulk. The brane model is defined up to an overall constant, nd, the tension

of the brane. This constant can be fixed by comparing the brane model with the result of

this section. One finds:

nd =
`d−1Γ

(
1+d

2

)
2κ2
√
πΓ(d/2)

, (1.3.12)

however it is unclear how universal this quantity is.

1.4 Information metric and interface free energy of conformal

Janus on Sd

In this section we relate the QIM on the cylinder to the free energy of a conformal Janus

configuration on the Euclidean sphere.

As usual we start with the expression of the overlap between the deformed ground state

and the undeformed one:

〈Ψ1|Ψ0〉 =
Z2√
Z1Z0

(1.4.1)

We can compute the Zk holographically by Zk = exp(−Ik) where Ik is the on shell action of

15



a Einstein-dilaton theory. If the deformation is marginal we have

Z0 = Z1 = exp(−IAdS), (1.4.2)

and thus

〈Ψ1|Ψ0〉 = exp(−(I2 − IAdS)). (1.4.3)

If we expand the left hand side for small δλ we have

〈Ψ1|Ψ0〉 = 1−Gλλδλ
2 +O(δλ3) (1.4.4)

Thus

log(〈Ψ1|Ψ0〉) = −Gλλδλ
2 +O(δλ3) = −(I2 − IAdS), (1.4.5)

which results in

∆F = Gλλδλ
2 +O(δλ3). (1.4.6)

Therefore the free energy of a Janus interface at second order in the Janus deformation

parameter reproduces the QIM for a CFT ground state living on R× Sd−1.

At this point we want to relate the computation of the QIM on R× Sd−1 to the compu-

tation of the free energy on Sd. We can map the cylinder to the sphere. A way to do this is

to take the cylinder with metric

ds2
cyl = dτ 2 + ds2

Sd−1 (1.4.7)

and conformally map it to a sphere with metric

ds2
Sd

= dθ2 + sin2 θds2
Sd−1 (1.4.8)
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by using the following change of coordinates

τ = log(tan(θ/2)). (1.4.9)

We are allowed to perform the change of coordinates because the fields well behave at

τ = ±∞. We will return on this detail later. Under the map (1.4.9) the interface at τ = 0

is mapped to the equator of the sphere, the τ > 0 (< 0) region is mapped to the northern

(southern) hemisphere and the cut off surfaces τ = ±ε are mapped to cut off surfaces located

at constant θ = 2 arctan(e±ε).

To find the QIM on the cylinder one has to compute

∫
τ1>ε

∫
τ2<−ε

〈O(τ1,Ω1)O(τ2,Ω2)〉 . (1.4.10)

Under the conformal transformation (1.4.9) this maps to

∫
Ñ

∫
S̃

〈O(θ1,Ω1)O(θ2,Ω2)〉 , (1.4.11)

where Ñ (S̃) indicates the (regularized) northern (southern) hemisphere Using a path integral

construction we could have derived this formula by looking at the second order contribution in

δλ of ∆Fsphere. This indeed shows that we can compute the QIM for a marginal deformation

by looking at the leading order contribution of the interface free energy.

This result can be checked analytically in the bulk. The interface free energy for the

conformal Janus on the Euclidean sphere Sd has been computed in [16] for d = 2, 3 and

indeed the small δλ behavior matches the computation of the QIM presented in this chapter.

One could wonder if the same procedure can be applied for the QIM of a CFT living on

R×Rd−1. In this case the interface is a codimension one plane. A conformal transformation

between this configuration and a sphere with interface extended along the equator is avail-

able. Before performing the conformal map one has to compactify the space. This is not
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possible in this set up. The reason is that the interface extends to infinity, thus the fields

generally speaking would have a non trivial behavior at large distances. We cannot therefore

make the manifold compact.

The argument explained in this section fails if the deformation is not marginal. For

a non marginal deformation the conformal transformation will change the effective source.

Therefore the usual configuration on the cylinder would be mapped to a configuration on

the sphere with a coupling constant that depends on the polar angle.

We conclude the section with a comment about regularization. On the cylinder the regu-

larization is performed by excluding from the path integral the region close to the interface:

we put cut offs at τ = ±ε. These cut off surfaces are mapped to θ = 2 arctan(e±ε) ≈ π/2± ε,

which looks appealing since it is the natural cut off one would use. However it is important

to stress that generically one should make use of the entire expression θ = 2 arctan(e±ε) since

the relation between the cut offs in the two geometries is non linear and thus truncating the

relation for small ε could suppress some potential finite contributions.

1.5 The QIM for a multi dimensional parameter space

In this section we show how to generalize the method used so far to the case of a multi

dimensional parameter space.

We consider a CFT on a plane that has N coupling constants λa that couple to marginal

operators. We change each coupling constant by an infinitesimal amount δλa. We are

interested in studying the QIM in this set-up. We consider the absolute value of the overlap

and expand it in δλ:

| 〈Ψλ+δλ|Ψλ〉 | = 1 +Gabδλ
aδλb + ... (1.5.1)

As usual we write this overlap as a path integral where the value of each coupling constant

is changed at τ = 0.

On the bulk side we then must have N massless fields with nontrivial profile, dual to the
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operators Oa. In this context it is quite natural to study systems in which the bulk physics

is governed by

I = − 1

κ2

∫
dd+1x

√
g

(
1

2
R− 1

2
Gab(Φ)∂µΦa∂µΦb +

d(d− 1)

2`2

)
, (1.5.2)

the term in the action involving the scalars is a non linear sigma model which parameterize

a moduli space with metric Gab.

The reason for this choice is that the constant values of Φa around which we are perturbing

correspond to moduli, which need to be allowed to be arbitrary for marginal operators.

The equations of motion are

−2∂µ
(√

gGab(Φ)∂µΦa
)

+
√
g ∂Gac(Φ)

∂Φb
∂µΦa∂µΦc = 0 (1.5.3)

Rµν = Gab(Φ)∂µΦa∂νΦ
b − d

`2
. (1.5.4)

We now consider a perturbative expansion for the fields Φa. It is clear that the second term

in equation (1.5.3) is of order δλaδλc. This means that at first order in δλa the scalars

decouple from each other and they probe an unperturbed background. The derivation is

then analogous to the one parameter case. The profiles for the scalars reduce to:

Φa(ρ) = λa +
δλa

Id

∫ ρ

−∞

1

coshd(r)
dr, (1.5.5)

where ρ is the coordinate that foliate AdSd+1 in AdSd slices, as in equation (1.2.25), and

Id =
∫∞
−∞

1
coshd(r)

dr =
2
√
πΓ( d2+1)
dΓ( d+1

2
)

. The QIM is found to be

Gε
ab =

dΓ
(
d+1

2

)
VRd−1`d−1ε−d+1

4
√
π(d− 1)Γ(d

2
+ 1)κ2

Gab(λ). (1.5.6)

We notice that the information metric inherits the same tensor structure and symmetry

structure as the metric of the space where the scalars live.

19



Chapter 2

Regularization of Entanglement

Entropy in Holographic Interface

Theories

In the previous chapter we have seen explicit examples of how to compute the QIM, on both

the CFT side and the bulk side. The QIM was suffering from UV divergences on the CFT

side, the divergences were present also on the bulk side and they originated form the fact

that AdS space has infinite volume.

This features is not special to the specific computations performed in Chapter 1, but

it is a common characteristic of most AdS/CFT computations. Because of the ubiquity

of divergences in extracting quantities in any AdS/CFT set up a systematic discussion is

needed.

Usually the regularization scheme on the bulk side is based on the fact that an asymp-

totically AdS metric can be expressed in terms Fefferman-Graham coordinates [17]

ds2 =
dz2

z2
+

1

z2
gij(x, z)dx

idxj (2.0.1)
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where gij(x, z) has a leading z independent term and terms falling off as z → 0, whose exact

form depend on the dimensionality and details of the theory.

The boundary of the asymptotic AdS metric is located at z = 0 and the theory is

regulated by imposing a cut-off at z = δ.

Unfortunately the construction of Fefferman-Graham coordinates which cover all of the

boundary can be difficult, for example in systems with an interface (ICFT) or a defect

(DCFT). In this chapter we discuss the regularization procedure for holographic interface or

defect solutions which are commonly known as Janus solutions, where one solves the bulk

gravitational equations for a metric which is warped with an AdS factor. For some other

approaches to describe interface, defect or boundary CFTs holographically see e.g. [18–21].

In these cases the small z expansion used for the Fefferman-Graham construction turns

out to be an expansion in small z/x⊥, where x⊥ denotes the field theory direction perpen-

dicular to the defect. This dependence is dictated by scale invariance. The expansion breaks

down close to the defect, where x⊥ → 0. Thus there is a wedge bulk region originating

from the defect that cannot be covered. In the case of a co-dimension one defect we have

two different Fefferman-Graham coordinates patches that cover some portion of the bulk

on the two sides of the defect and a region just behind the defect that cannot be covered.

A schematic representation is given in figure 2.1.

This problem has been faced in literature in different ways. The authors of [22] connected

z

x⊥

x‖

Figure 2.1: Fefferman-Graham coordinates for holographic ICFT. The top surface represents the
field theory side, the two different colors identify the two sides of the interface (purple line). The
vertical dimension represents the holographic direction, there are two Fefferman-Graham coordinate
patches (represented with different colors) that do not cover the entire bulk geometry. In the gray
wedge originating from the interface the Fefferman-Graham coordinate expansion breaks down.
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the two Fefferman-Graham patches with an arbitrary curve, showing that any universal

quantity would not depend on the details of this curve. To avoid dealing with Fefferman-

Graham coordinates the authors of [16] simply imposed a cut off on the factor of the metric

that diverges as one moves to the boundary. We refer to this regularization procedure as

“single cut-off regularization”.

As mentioned in Chapter 1 and as discussed in [1] a third regularization procedure has

been used in literature in the computation of the QIM of a conformal theory which is de-

formed by a primary operator. Such a set up shares a lot of similarities with a DCFT [1,11,12]

since it is natural to express the bulk metric using an AdS slicing. In such coordinates one

encounters a divergence associated to the infinite volume of the AdS slice and a divergence

associated to the coordinate that slices the bulk geometry. It is then natural to introduce

two cut offs. We name this regularization procedure “double cut-off regularization”. Note

that an analogous cutoff was also used to regulate holographic duals of surface operators,

i.e. defects of higher co-dimensionality in [23,24].

In this chapter, based on [3], we study the double cut-off regularization procedure. This

procedure has been tested against several examples to show that it provides the same results

as the other regularization methods but involves much simpler computations.

2.1 Regularization prescriptions

To illustrate the different regularization procedures and their validity we mainly focus on the

computation of entanglement entropy for a ball shaped region in a CFT with a co-dimension

one interface. Notice however that the techniques that we will discuss can be used to the

computation of any holographic quantity that requires regularization.

Entanglement entropy can be computed holographically as the area of the minimal bulk

co-dimension two surface anchored at the boundary of AdS on the entangling surface [7]

SEE =
Amin

4GN

. (2.1.1)
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this quantity is divergent because of the UV degrees of freedom entangled across the en-

tangling surface. The regularization is achieved by introducing a UV cut-off. Once this is

done if we want to isolate the interface contribution we need to subtract the entanglement

entropy for the vacuum of the theory without interface. In this way we are able to compute

a quantity that is intrinsic to the interface. To better explain this statement let us discuss

in detail the divergence structure of entanglement entropy. For the vacuum state of a pure

CFT and a ball shaped region of radius R we have:

SEE = Ad−2
Rd−2

δd−2
+ ...+


A1

R
δ

+ s0 if d is odd

A2
R2

δ2
+ s log(2R/δ) + s̃0 if d is even

(2.1.2)

where we have introduced the UV cut-off δ [25]. Notice that in odd dimensions a rescaling

of the cut-off does not affect constant s0, while in even dimension it is the coefficient of the

logarithmic term, s, that is not sensitive to any rescaling of δ. For this reason s and s0 are

independent of regularization and are universal. Let us discuss how the presence of a defect

affects the structure of entanglement entropy. For definiteness we start with the vacuum state

of an even dimensional CFT. We then turn on a co-dimension one interface that breaks the

full conformal symmetry group SO(2, d) down to SO(2, d− 1), interpreted as the conformal

symmetry restricted to the interface. When this is done we expect the entanglement entropy

to show terms typical of both even and odd dimensional CFTs [26]. That creates a problem

in isolating the universal term characterizing the interface. In fact since the interface is

odd dimensional we expect that the universal term should be a constant, however since the

original CFT is even dimensional we have a logarithmic term in the divergence structure of

the entanglement entropy and we are free to change the additive constant by a rescaling of

the cut-off δ. The way to bypass this problem is to use the same cut-off for both the pure

CFT and the ICFT, once that is done we can isolate the interface contribution by subtracting

the vacuum component. We refer to this procedure as vacuum subtraction.
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Now that we have discussed regularization and vacuum subtraction on the CFT side of

the duality let’s focus on the bulk side, where all the computations will be performed. First

of all we need to identify a bulk geometry dual to the interface CFT. This is realized by a

metric that is invariant under SO(2, d− 1) transformations. The natural way to do that is

to consider a bulk geometry M that can be written in AdSd slices:

ds2 = A(x, ya)2gAdSd + ρ(x, ya)2dx2 +Gbc(x, y
a)dybdyc. (2.1.3)

The coordinate x is taken to be non compact and as x→ ±∞ we haveA(x, ya) ≈ L± exp(±x+

c±)/2 and ρ(x, ya) ≈ 1 such that the AdSd gets enhanced to AdSd+1. Unless otherwise stated

we will work in Poincaré coordinates for the AdSd slices

gAdSd =
1

Z2
(Z2 − dt2 + dr2 + r2gSd−3). (2.1.4)

The boundary is approached in different ways. Taking x→ ±∞ we recover the CFT region

on the right/left side of the interface, while taking Z → 0 we approach the CFT on the

interface itself.

We will now describe how to regularize divergent quantities on the bulk side using three

different methods.

• Fefferman-Graham regularization: The traditional approach is to make use of

Fefferman-Graham coordinates. As already mentioned this is problematic in a bulk

interface

Left
FG patch

Right
FG patch

z = δ z = δ

Figure 2.2: Schematic representation of the Fefferman-Graham regularization. Where the
Fefferman-Graham coordinates are available (red and blue regions) the cut off surface is chosen
to be z = ε. In the middle region a Fefferman-Graham coordinate patch is not available. The cut
off surface for this region is an arbitrary curve that continuously interpolates between the left and
right patches, this is represented by a black arc in the picture.
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geometry that is dual to a CFT with a defect or interface. There are two Fefferman-

Graham patches which do not overlap, so one cannot simply glue them together. A

possibility is then to interpolate with an arbitrary curve between these two patches,

this is the approach used in [22] where the authors were able to compute universal

quantities that do not depend on the interpolating curve. Even though this approach

is very rigorous it requires a heavy computational effort. For this reason we want to

explore other regularization procedures. A schematic representation of this procedure

is given in figure 2.2.

• single cut-off regularization: we follow the idea of [16], regularizing all the diver-

gent integrals by putting a cut-off at Z/A(x) = δ/L±. This is motivated by the study

of pure AdSd+1. In fact for pure AdSd+1 with unit radius one has A(x) = coshx, we

can then change coordinates to recover Poincaré AdSd+1 by choosing:

z =
Z

coshx
x̃ = Z tanhx, (2.1.5)

where z is the holographic coordinate and x̃ is the coordinate perpendicular to the

fictitious interface. The natural cut-off procedure z = δ corresponds, in the AdSd

slicing coordinates, to Z/A(x) = δ. For the interface solution which can be viewed as

a deformation away from the AdS vacuum we keep the same regularization procedure.

• double cut-off regularization: this procedure is based on the observation that,

after one performs the vacuum subtraction, one should be left with a quantity that

is intrinsic to the interface. In that sense a cut-off should be imposed not on the

full bulk geometry but on the AdSd slices, at Z = δ. Of course that cut-off does

not regulate all the possible divergences, since the metric factor in (2.1.3) diverges as

A(x) ≈ L± exp(±x+ c±)/2 as x→ ±∞. What one should do is to introduce a second

cut-off ε, such that A(x) = L±ε
−1, that regulates any x dependent divergence. The

presence of two cut offs might seem odd since on field theory side there should we a
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z

x⊥

x‖

Figure 2.3: Ryu-Takayanagi surface. In this figure we represent a time slice of the field theory
side. Two regions (blue and red) are separated by a interface (purple). We compute the holo-
graphic entanglement entropy for a ball centered on the interface. The Ryu-Takayanagi surface is
represented in green.

single cut off that regulates all the the UV divergences. In the presence of the interface

we can distinguish between degrees of freedom localized at or near the interface and

degrees of freedom in the bulk away from the interface. Hence both cutoffs δ and ε

have a physical interpretation.

In presence of Fefferman-Graham coordinates one should be able to relate δ to ε,

we would then be left with a single regulator also on the bulk side. However, as

mentioned above, the Fefferman-Graham coordinates do not cover the bulk geometry

near the interface. We are able to bypass the problem in the following way: we leave

the two cut offs δ and ε completely independent, any desired bulk quantities (such

that entanglement entropy) can then be computed, since all divergent terms have been

regulated by δ and ε. Once we subtract the vacuum contribution we will be allowed to

take ε→ 0, the result will be ε independent. The cutoff δ is interpreted as a physical

cut-off in the usual sense, it regulates the bulk divergence associated to the AdSd

integration and it is interpreted as a UV cut-off for the degrees of freedom localized on

the interface.
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2.2 Explicit example: Regularization of Holographic Entangle-

ment Entropy

This discussion applies to any divergent quantities that can be computed in a holographic

ICFT. Let us now focus on the computation of holographic entanglement entropy. We take

the entangling surface to be a ball shaped region of radius R centered on the interface (see

figure 2.3). The holographic entanglement entropy for these systems has been studied in [26],

where the authors were able to show that the RT surface is simply given by r2 + Z2 = R2,

giving the following expression for the entanglement entropy

S =
VolSd−3 R

4GN

∫
dyadxdZ

√
detGρAd−2 (R2 − Z2)(d−4)/2

Zd−2
. (2.2.1)

This equation can be adapted also for d = 3 by taking VolS0 = 2.

Let us discuss how to regulate the entanglement entropy using the single and double

cut-off regularizations. For the double cut-off procedure we cut-off the x integral at x = x′±,

defined as the two roots of A(x′) = L±ε
−1. In most examples A(x)2 is an even function, in

that case x′+ = −x′−, we can then focus only on x ∈ [0, x′+] and we will drop the subscript.

Generally speaking the form of A might be very complicated, however since ε eventually goes

to zero we can assume x′ large, allowing us to find x′± = ± (log(2/ε)− c±). We introduce a

cut-off for the Z integration at Z = δ. We then get:

∆S =
VolSd−3 R

4GN

(∫ R

δ

dZ
(R2 − Z2)(d−4)/2

Zd−2

)∫
dya∆

(∫ x+

x−

dx
√

detGρAd−2

)
, (2.2.2)

where the ∆ symbol denotes the vacuum subtraction. At this point we will take δ, ε → 0.

The divergence will come exclusively from the Z integral and the result will be ε independent.

This statement can be verified explicitly by similar arguments used in the appendix of [22].

27



In particular after the vacuum subtraction the divergence structure of the result is

∆S = Cd−3
Rd−3

δd−3
+ ...+


C1

R
δ

+ c0 if d is even

C2
R2

δ2
+ c log(2R/δ) + c̃0 if d is odd,

(2.2.3)

where all the dependence on the cutoff ε has disappeared. For all the examples we have

studied the results we find agree with this general form. It would be interesting to show the

agreement independently of any specific example.

We will now discuss the single cut-off procedure for the entanglement entropy. The

general strategy is to put a cut-off at Z/A(x) = δ/L±. Then one proceeds by performing

the x integral first and then the Z integral. To do so we start by fixing Z and integrating

in x over [x̃−, x̃+], where x̃± are the solutions to Z/A(x) = δ/L±. At this point we might

be tempted to take δ small, however that is not possible. The reason for it is that the

integration over Z runs over [min(A)δ/L±, R], where min(A) denotes the minimum of A (in

most examples that corresponds to x = 0). Nonetheless we can expand exp(x̃±) as a Laurent

series in δ/Z. Once this is done we will proceed to the integration, whose details depend on

the concrete examples we will examine.

Notice that one could work in different coordinates than (2.1.3). In particular one could

change coordinates from x to another coordinate, say q. The function A(x) will then be

replaced with another function, say B(q). In that case the regularization procedures just

described will go through without any change, one would simply put a cut-off for the q

integration at B(q) = L±ε
−1 for the double cut-off procedure and at B(q) = L±Zδ

−1 for the

single cut-off procedure.

Using these regularization procedures we computed ∆S holographically for the interface

conformal field theories dual to the following bulk configurations:

• Supersymmetric Janus. The Supersymmetric Janus is the bulk dual for a Yang-

Mills interface that preserves 16 supercharges [27, 28]. That is realized in the bulk
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by a metric that exhibits SO(2, 3)× SO(3)× SO(3) symmetry, where the first factor

is associated to the conformal symmetry of the interface and the other two factors

are related to the unbroken R-symmetry. The full supergravity solution has also the

dilaton, the three-form and the five-form turned on in the bulk.

• Non Supersymmetric Janus. The non Supersymmetric Janus is a solution of type

IIB supergravity that can be thought as a deformation of the vacuum solution AdS5×S5

[13, 29]. The deformation depends on a real parameter γ ∈ [3/4, 1], where γ = 1

corresponds to the vacuum solution. The metric is supported by a non trivial dilaton

and RR five-form. This solution breaks all supersymmetries. The bulk configuration

is interpreted as being dual to a deformation of N = 4 SYM, where an interface is

present and the Yang Mills coupling constant takes different values on the two sides of

the interface.

• Einstein-Dilaton Janus. We can engineer a ICFT from a CFT by considering a

marginal operator O and assigning it a coupling constant that jumps across the inter-

face. We can construct the bulk theory dual to this deformation by solving the equa-

tions of motion derived from the action of a massless field dual to O minimally coupled

to the metric [12]. The solution depends on a parameter λ ∈ [0,
√
d− 1

(
d−1
d

) d−1
2 ]

that quantifies the strength of the deformation. The case λ = 0 corresponds to the

undeformed solution.

• M-theory Janus. The M-theory Janus solution is a one parameter deformation of the

AdS4× S7 vacuum solution of the eleven dimensional supergravity [30]. The dual field

theory is ABJM theory deformed by a primary operator of dimension two localized on

a interface.

The details of the computation can be found in [3]. We find that the universal piece of ∆S

does not depend on the chosen regularization procedure and agrees with the result obtained

using the Fefferman-Graham regularization [22].
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2.3 Two dimensional holographic interfaces

It has been observed in various contexts that in a three dimensional CFT with a two dimen-

sional conformal defect one can associate an effective central charge to the defect [24,31,32].

This central charge appears both in the entanglement entropy and in the Weyl-anomaly of

the theory.

The fact that we can identify an effective central charge can be understood holographi-

cally. The argument is that when a 1+1 dimensional interface enjoys conformal symmetry we

expect the dual bulk geometry to present an AdS3 factor, we can thus associate an effective

central charge to the interface through the Brown-Henneaux formula [33]. This was first

done in [24] in the context of type IIB supergravity solutions dual to half-BPS disorder-type

surface defects in N = 4 Super Yang-Mills theory. It was also observed that the effective

central charge arising from the Brown-Henneaux formula was the same quantity that appears

in the computation of the entanglement entropy.

The M-theory Janus and the d=3 Einstan-Dilaton Janus are examples in which the

1+1 interface is embedded in a 3 dimensional theory. In addition to the computation of

entanglement entropy one can calculate the conformal anomaly and show that it is governed

by the same central charge appearing in the entanglement entropy computation and arising

from the Brown-Henneaux formula.

The discussion of the explicit examples can be found in [3], here we prove the following

statement:

In an ICFT with an even dimensional interface embedded into an odd dimensional space-

time the universal contribution of entanglement entropy for a spherical entangling surface

centered on the interface is equal to minus the universal term of the free energy on a sphere.

We explicitly prove this statement for a 3 dimensional theory with a 2 dimensional in-

terface. The generalization to arbitrary dimensions is straightforward. The proof follows
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closely section 4 of [34]. The field theory lives on a three dimensional spacetime given by:

ds2 = −dt2 + dρ2 + ρ2dφ2, (2.3.1)

where we have chosen polar coordinate for the spatial slice. The interface is located at

sinφ = 0. We perform the following change of coordinates:

t =
R cos η sinh(τ/R)

1 + cos η cosh(τ/R)

ρ = R
sin η

1 + cos η cosh(τ/R)
. (2.3.2)

The spacetime is then given by

ds2 = Ω2(− cos2 ηdτ 2 +R2(dη2 + sin2 ηdφ2))

Ω = (1 + cos2 η cosh(τ/R))−1, (2.3.3)

which, after removing Ω, corresponds to the static patch of de Sitter space with curvature

scale R. It can be shown (for details see [34]) that the new coordinates cover the causal

development of the ball ρ < R on the surface t = 0 (which is exactly our entangling region).

In addition one can show that the modular flow generated by the modular Hamiltonian in

the causal diamond corresponds to time flow in this new coordinate system and that original

density matrix can be written as a thermal density matrix with temperature T = 1/(2πR).

This implies that the entanglement entropy of the ball shaped region can be written as a

thermal entropy:

S = βE −W, (2.3.4)

where W is the free energy and E is the expectation value of the operator which generates
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time evolution, explicitly:

E =

∫
V

d2x
√
h 〈Tµν〉 ξµnν = −

∫
V

d2x
√−g 〈T ττ 〉 , (2.3.5)

where V is a constant τ slice, n is the unit normal nµ∂µ =
√
|gττ |∂τ and ξ is the Killing

vector that generates τ translations ξµ∂µ = ∂τ .

To compute E we need to write an expression for 〈T ττ 〉. A powerful tool to do that is

symmetry. In fact we know that the interface is extended along the surface sinφ = 0 which

corresponds to a two dimensional de Sitter spacetime. The isometry of de Sitter space forces

the stress tensor to satisfy the following relations:

〈Tαβ〉 = c̃ δαβ δ(sinφ)

〈T φβ〉 = 〈Tαφ〉 = 〈T φφ〉 = 0, (2.3.6)

where α and β denote any of the coordinates η and τ . This suffices to show that E is finite.

On the other side, since the interface is even dimensional we expect a logarithmic divergence

in both S and W . This means that E does not contribute to the universal terms in equation

(2.3.4), thus:

SUNIV = −WUNIV. (2.3.7)

In order to find WUNIV we go to imaginary time with periodicity 2πR. The metric becomes

ds2 = cos2 θdτ 2 +R2(dθ2 + sin2 θdφ2), (2.3.8)

which we recognize as the metric of S3 once we identify τ ∼ τ + 2πR. Thus:

SUNIV = −WUNIV(S3), (2.3.9)

as anticipated.
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We would like to relate this quantity to an effective central charge (since we are in

presence of a two dimensional conformal field theory living on the interface). To do that we

focus on WUNIV(S3). For definiteness let’s say we locate the interface at the equator of the

sphere. By the same symmetry arguments as in the de Sitter case we have:

〈Tϑϑ〉 = 〈Tϑα〉 = 0

〈Tαβ〉 =
ceff

24πr2
hαβδ

(
ϑ− π

2

)
, (2.3.10)

where α and β denotes the directions along the interface and h is the metric of the sphere

ds2
S3 = r2

(
dϑ+ sin2 ϑds2

S2

)
, (2.3.11)

with ϑ ∈ [0, π] and ϑ = π/2 corresponding to the location of the interface. If we change the

radius of the sphere by δr we have:

δrWUNIV =
1

2

∫
S3

d3x
√
hδhij 〈Tij〉 = −ceff

3r
δr = −ceff

3
δr log r, (2.3.12)

where we have used equations (2.3.10) to get the final result. This shows that the coefficient

of the logarithmic term of entanglement entropy is related to the coefficient of the Ricci

scalar in the conformal anomaly1.

Notice that a priori this is a non trivial fact. In a two dimensional CFT the only central

charge is the coefficient of the Ricci scalar in the trace anomaly, but in a ICFT the situation

is more complicated. In fact the 1+1 dimensional interface is embedded in a higher dimen-

sional spacetime where the theory lives, thus other terms, such as the trace of the extrinsic

curvature, could contribute to the trace anomaly.

1If the interface is even dimensional embedded into a odd dimensional spacetime of general dimension we
have that the coefficient of the logarithmic term is related to the A anomaly.
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Chapter 3

Investigating Type IIB Supergravity

duals for 5d SCFTs via Holographic

Entaglment Entropy and Free Energy

While the first two chapter are devoted to give a prescription to compute quantum infor-

mation quantities holographically, in Chapters 3 and 4 we look at a concrete realization of

AdS/CFT duality and explore features of the field theory though its holographic dual.

We restrict our focus to five dimensional super superconformal field theories (SCFTs).

These theories are interesting for a variety of reasons. Their existence is not obvious, since

Yang-Mills theories in 5d have a dimensionful coupling constant and are non-renormalizable

by power counting. Therefore they can not be treated consistently in perturbation theory.

Nevertheless, the classification of [35] states that there is a unique superconformal algebra

with 16 supercharges in five dimensions, given by the superalgebra F (4) [36]. Field theory

analysis of the dynamics on the Coulomb branch indeed indicates that for large classes of

combinations of gauge group and matter content, 5d super Yang-Mills theories admit a

well-defined UV limit where the coupling constant diverges [37,38].

There is no known standard Lagrangian description for the 5d SCFTs obtained as UV
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fixed points of the gauge theories. However, the theories can be engineered using brane

constructions in type IIA and IIB string theory [39–41], which further supports their existence

and has led to many insights. In the absence of a conventional Lagrangian description,

AdS/CFT dualities are a perfect tool for comprehensive quantitative analysis. Supergravity

duals in type IIA supergravity have indeed been known for some time, but they are singular

[42, 43]. Although the singular nature limits the kind of questions that can be addressed,

remarkable checks have been carried out with these solutions. In [44] the free energy on

S5 was compared to a localization calculation in the putative dual field theory. Due to

the singularities in the solutions, the holographic computation of the free energy had to

proceed through the entanglement entropy of a spherical region, which is less sensitive to

the singularities in the geometry.1 But once obtained, it matched the localization calculation,

lending strong support to the proposed holographic dualities.

More recently, large classes of holographic duals for 5d SCFTs have been constructed in

type IIB supergravity [48–50], where the geometry takes the form of AdS6×S2 warped over a

two-dimensional Riemann surface Σ.2 The solutions are singular as well, and avoid a recent

no-go theorem [56]. But in contrast to the type IIA solutions, the singularities are at isolated

points which have a clear interpretation as remnants of the external 5-branes appearing in

the brane-web constructions. Nevertheless, it is an interesting question whether or to what

extent these singularities affect AdS/CFT computations.

This chapter is based on the results of [4], where the finite part of the entanglement

entropy for a spherical region and the free energy of the field theory on S5 were computed.

The singularities present in the solution are mild enough to not interfere with the computa-

tion of either the free energy or the entanglement entropy. In fact, it appears that the poles

also do not contribute a finite part in either calculation, which would be well in line with

the interpretation that modes on the external 5-branes in brane web constructions decouple.

1Another strategy is to work in 6d gauged supergravity, where the singularities resulting from the brane
construction in type IIA string theory are not visible [45–47].

2For earlier work on AdS6 type IIB solutions see [51–55].
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Moreover, the relation of the finite part of the entanglement entropy for a spherical region to

the free energy on S5 holds as expected on general grounds [34]. For the non-trivial geome-

tries we are considering the equivalence depends on rather non-trivial identities and hence

provides a strong consistency check.

3.1 Review of type IIB supergravity solutions

The type IIB supergravity solutions we consider in this chapter have been derived and

discussed in detail in [48–50], and we will only give a brief review introducing the quantities

that will be relevant for the computation of free energy and entanglement entropy.

The relevant bosonic fields of type IIB supergravity are the metric, the complex axion-

dilaton scalar B and the complex 2-form C(2) [57,58]. The real 4-form C(4) and the fermionic

fields vanish. The geometry of the solutions is AdS6×S2 warped over a Riemann surface

Σ, which for the solutions considered here will be the upper half plane. With a complex

coordinate w on Σ, the metric and the 2-form field are parametrized by scalar functions f 2
2 ,

f 2
6 , ρ2 and C on Σ,

ds2 = f 2
6 ds

2
AdS6

+ f 2
2 ds

2
S2 + 4ρ2dwdw̄ , C(2) = C volS2 . (3.1.1)

The solutions are expressed in terms of two holomorphic functions A± on Σ, which are given

by

A±(w) = A0
± +

L∑
`=1

Z`
± ln(w − p`) . (3.1.2)

The p` are restricted to be on the real line and are poles with residues Z`
± in ∂wA±. The

residues are related by complex conjugation Z`
± = −Z`

∓. The explicit form of the solutions
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is conveniently expressed in terms of the composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ , (3.1.3)

G = |A+|2 − |A−|2 + B + B̄ , R +
1

R
= 2 + 6

κ2 G
|∂wG|2

. (3.1.4)

Regularity of the solutions requires that κ2 and G are both positive in the interior of Σ and

vanish on the boundary. These regularity conditions are satisfied if the residues are given by

Z`
+ = σ

L−2∏
n=1

(p` − sn)
L∏
k 6=`

1

p` − pk
. (3.1.5)

and the sn are restricted to be in the upper half plane. Moreover, the p` and sn have to be

chosen such that they satisfy

A0Zk
− + Ā0Zk

+ +
∑
`6=k

Z [`k] ln |p` − pk| = 0 , (3.1.6)

where Z [`k] ≡ Z`
+Z

k
− − Zk

+Z
`
− and 2A0 ≡ A0

+ − Ā0
−. The explicit form of the functions

parametrizing the metric is then given by

f 2
6 =
√

6G
(

1 +R

1−R

)1/2

, f 2
2 =

1

9

√
6G
(

1−R
1 +R

)3/2

, ρ2 =
κ2

√
6G

(
1 +R

1−R

)1/2

, (3.1.7)

where we used the expressions of [50] with c2
6 = 1, which was shown there to be required for

regularity. The function C parametrizing the 2-form field is given by

C =
4i

9

(
∂w̄Ā− ∂wG

κ2
− 2R

∂wG ∂w̄Ā− + ∂w̄G ∂wA+

(R + 1)2 κ2
− Ā− − 2A+

)
(3.1.8)

and the axion-dilaton scalar B is given by

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

. (3.1.9)
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The crucial feature for the identification of the solutions with 5-brane webs is that the 2L−2

free parameters of a solution with L poles can be taken as the residues Z`
+, subject to the

constraint that
∑

` Z
`
+ = 0. Combined with the observation that at each pole pm the solution

turns into a (q1, q2)Q 5-brane solution, in the conventions of [59], with

(q1 − iq2)Q =
8

3
Zm

+ , (3.1.10)

this gives a direct identification of the supergravity solutions with 5-brane intersections.

3.1.1 Killing spinors

These configurations solve the BPS equations for preserving sixteen supersymmetries, and

as shown in [60] also the equations of motion. For later convenience we review also the form

of the Killing spinors. We will use the Clifford algebra conventions summarized in appendix

A of [48]. The ten-dimensional Killing spinor ε is expanded in terms of AdS6 × S2 Killing

spinors χη1η2 and complex two-component spinors on Σ, ζη1η2 , as follows

ε =
∑

η1,η2=±

χη1η2 ⊗ ζη1η2 , (3.1.11)

and analogously3 C−1ε? =
∑

η1η2
χη1η2 ⊗ ?ζη1η2 , with ?ζη1η2 = −iη2σ

2ζ?η1−η2 . In a chirality

basis where σ3 is diagonal, we have

ζ++ =

ᾱ
β

 , ζ−− =

−ᾱ
β

 , ζ+− = iνζ++ , ζ−+ = iνζ−− . (3.1.12)

3To avoid confusion with the composite quantity B defined in (3.1.3), we will denote the charge conjugation
matrix by C throughout.
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where ν ∈ {−1,+1} and, with f−2 = 1− |B|2,

ρᾱ2 = f(∂wA+ +B∂wA−) , ρβ2 = f(B∂w̄Ā+ + ∂w̄Ā−) . (3.1.13)

The action of the Clifford algebra elements on the Killing spinors that will be relevant in

Chapter 4 are derived from the relation

(γ(1) ⊗ I2)χη1η2 = χ−η1η2 , (I8 ⊗ γ(2))χ
η1η2 = χη1−η2 , (3.1.14)

where γ(i) denotes the chirality matrices on the respective components of AdS6×S2×Σ (see

appendix A of [48] for more details). From these one concludes that

Γ01234567ε = −i
∑
η1η2

χη1η2 ⊗ ζ−η1−η2 ,

Γ67Γ01234567C−1ε? =
∑
η1η2

χη1η2 ⊗ ?ζ−η1η2 . (3.1.15)

3.2 On-shell action and free energy on S5

In this section we review the computation of the on-shell action for the solutions presented

in the previous section. Formulating an action for type IIB supergravity is subtle due to the

self-duality constraint on the 4-form potential, but since C(4) = 0 in our solutions this is not

an issue. Moreover, the on-shell action can be expressed as a boundary term [61]. We have:

SE
IIB =

1

64πGN

∫
M
d

[
1

2
f 2(1 + |B|2) C̄2 ∧ ?dC2 − f 2B̄C2 ∧ ?dC2 + c.c.

]

=
1

64πGN

∫
∂M

f 2

[
1

2
(1 + |B|2)C̄2 − B̄C2

]
∧ ?dC2 + c.c. (3.2.1)
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where f−2 = 1− |B|2. We now use that C2 = CvolS2 , where volS2 is the volume form on the

S2 of unit radius. This yields

?dC2 = f 6
6 f
−2
2 volAdS6 ∧ ?ΣdC , (3.2.2)

where volAdS6 is the volume form on AdS6 of unit curvature radius and ?Σ is the Hodge dual

on Σ with metric gΣ = 4ρ2|dw|2. We then find

SE
IIB =

1

64πGN

∫
∂M

f 2f 6
6 f
−2
2

[
1

2
(1 + |B|2)C̄ − B̄C

]
volS2 ∧ volAdS6 ∧ ?ΣdC + c.c. (3.2.3)

The AdS6 volume can be regularized and renormalized in the usual way for an AdS6 with

unit radius of curvature and we will just use VolAdS6,ren to denote the renormalized volume.

One can show that there are no finite contributions to the on-shell action from the boundary

introduced when regularizing the AdS6 volume. The explicit expression for the renormalized

volume of global AdS6 with a renormalization scheme preserving the S5 isometries of the

sphere is

VolAdS6,ren = − 8

15
VolS5 , (3.2.4)

for details see the appendix of [4]. Note that we denote by e.g. VolS5 the actual volume, i.e.

VolS5 =
∫

S5 volS5 . The only (remaining) boundary then is the boundary of Σ. We note that

∂Σ is not an actual boundary of the ten-dimensional geometry, so in particular there are no

extra boundary terms to be added, but for the evaluation of the on-shell action as a total

derivative we have to take it into account. We thus find

SE
IIB =

1

64πGN

VolAdS6,renVolS2

∫
∂Σ

f 2f 6
6 f
−2
2

[
1

2
(1 + |B|2)C̄ − B̄C

]
?Σ dC + c.c. (3.2.5)
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The task at hand is to evaluate the various ingredients in this expression more explicitly. To

evaluate the metric factors more explicitly we use the expressions in (3.1.7), which yields

f 6
6 f
−2
2 = 54G

(
1 +R

1−R

)3

. (3.2.6)

The pullback of ?ΣdC to ∂Σ does not involve ρ2, and to evaluate it explicitly we note that

∂Σ = R. It will be convenient for the explicit expansions to introduce real coordinates,

w = x+ iy, which yields

?ΣdC = −(∂yC)dx . (3.2.7)

Using eq. (3.2.6) and (3.2.7), the regularized on-shell action (3.2.5) becomes

SE
IIB = − 1

64πGN

54VolAdS6,renVolS2

∫
R

dx f 2G
(

1 +R

1−R

)3

(∂yC)
(

1

2
(1 + |B|2)C̄ − B̄C

)
+ c.c. ,

(3.2.8)

where the integrand is evaluated at y = 0. Close to the boundary we have κ2,G → 0 and

R = 1−
√

6κ2G
|∂wG|2

+ . . . . (3.2.9)

As discussed in sec. 5.5 of [48], G/(1 − R) remains finite at the boundary and the same

applies for f 2. We can thus simplify the on-shell action to

SE
IIB =

1

8πGN

VolAdS6,renVolS2I0 , (3.2.10a)

I0 = 54

∫
R

dx
G

1−R ×
∂yC

(1−R)2
×
(
B̄f 2C − 2f 2 − 1

2
C̄
)

+ c.c. , (3.2.10b)

where each factor in the integrand is finite separately on the real line.

To further evaluate the on-shell action in (3.2.10), we explicitly expand the composite
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quantities κ2, G as well as the actual supergravity fields around the real line, and it turns

out that the subleading orders in the expansion play a crucial role. Since all the fields are

determined from A± we start by introducing a small y expansion for this functions, where

we wrote w = x+ iy. We have:

A± = D± +
∞∑
n=0

1

n!
(iy)nf

(n)
± , ∂wA± =

∞∑
n=0

1

n!
(iy)nf

(n+1)
± , (3.2.11)

where for convenience we defined

f± = A0
± +

L∑
`=1

Z`
± ln |x− p`| , D± = iπ

L∑
`=1

Z`
±Θ(p` − x) , (3.2.12)

and f
(n)
± = (∂x)

nf±.

Simplifying the integrand of (3.2.10a) is a mere computation the details of which can be

found in [4]. One finds:

SE
IIB = − 5

3GN

VolAdS6,renVolS2

L∑
`,k,m,n=1
` 6=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ 1

x− pn
.

(3.2.13)

We note that the lower bound in the integral can be moved from −∞ to min`(p`) due to∑
` Z

`
+ = 0. The integral can be solved explicitly and involves polylogarithms. While the

result for generic configurations does not seem particularly illuminating, this allows us to

get analytic results for particular solutions. We notice that the presence of the poles does

not harm the integrability of the integrand: if we set x = pn + ε, where ε is real and |ε| small

compared to 1 and to all |pk − p`|, we find that the integrand in (3.2.13) is O
(
(ln |ε|)2

)
and

thus integrable across the pole. Note also that the Z [`k] are imaginary, so the expression

(3.2.13) is manifestly real.
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3.2.1 Scaling of the free energy

As shown in [50], the residues Z`
± of the differentials ∂wA± at the poles p` correspond to the

charges of external 5-branes in brane-web constructions for 5d SCFTs. The details of the

SCFT depend on the precise charge assignments, and the same applies for the free energy

and, correspondingly, the gravitational on-shell action. Before coming to those details, we

can address a more general question: how does the free energy scale under overall rescalings

of the 5-brane charges?

To address this question we can assume to start with a generic solution to the regularity

conditions in (3.1.6). Namely,

A0Zk
− + Ā0Zk

+ +
∑
`6=k

Z [`k] ln |p` − pk| = 0 . (3.2.14)

We note that the equation is invariant under the following scaling

Z`
+ → γZ`

+ , Z`
− → γ̄Z`

− , A0 → γA0 , p` → p` , (3.2.15)

where we have allowed for γ ∈ C. For the residues this simply amounts to a change of

the overall complex normalization parametrized by σ in (3.1.2). So starting with a solution

(Z`
±,A0, p`) to the regularity conditions, a rescaling of this form produces another solution,

and this precisely allows us to isolate the overall scale of the charges Z`
+. From (3.2.13) we

immediately see that the on-shell action scales as

SE
IIB → |γ|4SE

IIB . (3.2.16)

For a real overall scaling by N , we thus obtain a free energy scaling as N4. This is

different from the N2 scaling one would expect for the ’t Hooft limit of a four dimensional

Yang-Mills theory, and as exhibited by N = 4 SYM and its AdS5×S5 dual. But this is
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certainly not surprising, given the more exotic nature of the field theories described by 5-

brane web constructions. It is also different from the N5/2 scaling exhibited by the UV

fixed points of 5d USp(N) gauge theories and their gravity duals [44]. As a curious aside,

however, we note that the free energy for the orbifold quivers obtained from the USp(N)

theories, which scales as N5/2k3/2, shows the same scaling if one näıvely sets k = N . As

discussed in [50], there actually are classes of brane intersections described by the solutions

discussed here which would naturally correspond to long quiver gauge theories with gauge

groups of large rank, and we will discuss these examples in more detail in the next section.

3.2.2 Solutions with 3, 4 and 5 poles

We now evaluate the general expression for the free energy in (3.2.13) for classes of solutions

with 3 up to 5 poles. It will be convenient to separate off the general overall factors as in

(3.2.10a), and focus on the solution-specific part I0.

3-pole solutions

We start with the 3-pole case. As discussed in sec. 4.1 of [50], the SL(2,R) automorphisms

of the upper half plane can be used to fix the position of all poles, which we once again

choose as

p1 = 1 , p2 = 0 , p3 = −1 . (3.2.17)

The regularity conditions are solved by A0 = ω0λ0s ln 2. The free parameters of the solutions

are given by the residues, corresponding to the charges of the external 5-branes, subject to

charge conservation. The integral I0 in (3.2.10b) for a generic choice of residues evaluates to

I0 = −80πζ(3)(Z [12])2 . (3.2.18)
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The on-shell action therefore is a simple function that is quartic in the residues, and mani-

festly invariant under the SU(1, 1) duality symmetry of type IIB supergravity since the Z [`k]

are.4 Note also that Z [`k] is imaginary, and I0 positive. For the particular case of the “N -

junction” [62], discussed in sec. 4.3 of [50] and realized by the charge assignment Z1
+ = N ,

Z2
+ = iN , we have Z [12] = 2iN2 and thus find the free energy quartic in N .

4-pole solutions

For solutions with four poles we can once again fix the position of three poles by SL(2,R),

but the position of one pole remains a genuine parameter. It is fixed by the regularity

conditions in (3.1.6) and thus becomes a non-trivial function of the residues. We therefore

expect in general more interesting dependence on the charges compared to the 3-pole case.

However, for the special class of 4-pole solutions discussed in sec. 4.2 of [50], where

Z3
+ = −Z1

+ , Z4
+ = −Z2

+ , (3.2.19)

the position of the fourth pole is independent of the residues. In that case the regularity

conditions are solved by

p1 = 1 , p2 =
2

3
, p3 =

1

2
, p4 = 0 , (3.2.20)

along with A0 = Z2
+ ln 3 − Z1

+ ln 2. The position of all poles is therefore fixed regardless of

the choice of charges, and we may again expect the on-shell action to be a simple quartic

function of the residues. Indeed, the result for the integral is

I0 = −280πζ(3)(Z [12])2 , (3.2.21)

4The transformations spelled out in sec. 5.1 of [48] can be realized by transforming the residues as
Z`
+ → uZ`

+ − vZ`
− and Z`

− → ūZ`
− − v̄Z`

+.
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and of the same general form as the 3-pole result. We also note the factor ζ(3) appearing

again. For the solutions discussed in sec. 4.2 of [50], with −Z1
+ = Z3

+ = (1 + i)N and

Z2
+ = −Z4

+ = (1 − i)M , we have Z [12] = 4iMN . In particular, for M = N the free energy

again scales like N4, a feature which we will come back to in the discussion.

We will now discuss a different configuration with 4 poles, for which the position of the

fourth pole actually depends on the choice of charges. To this end, it is convenient to move

the position of one pole off to infinity, which we will discuss here for a generic L-pole solution.

To move the L-th pole pL to infinity, we perform the following replacements and limit

pL → −∞ , A0
± → Ã0

± = A0
± − ZL

± ln |pL| . (3.2.22)

Note that the conjugation relation between the original integration constants, Ā0
± = −A0

±,

holds in the same form for Ã0
±. In terms of the redefined integration constants, the expres-

sions for the holomorphic functions then become

A± = Ã0
± +

L−1∑
`=1

Z`
± ln(w − p`) . (3.2.23)

Note that this expression explicitly involves only L − 1 poles and L − 1 residues. These

residues, however, are not constrained to sum to zero and the number of independent pa-

rameters is therefore unchanged. The conditions for G = 0 on the boundary become

Ã0
+Z

k
− − Ã0

−Z
k
+ +

L−1∑
`=1
6̀=k

Z [`k] ln |p` − pk| = 0 , k = 1, .., L− 1 . (3.2.24)

These are only L− 1 conditions, as compared to L conditions previously. However, the sum

does not manifestly vanish and the number of independent conditions therefore is also not

modified. The class of 4-pole solutions with (3.2.19) can now be realized as

p1 = 1 , p2 = 0 , p3 = −1 , Ã0
± = 0 , (3.2.25)
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and computing the on-shell action reproduces (3.2.21).

The class of 4-pole solutions we wish to discuss next is parametrized by an overall scale

n of the residues and an angle θ, and obtained by fixing

Z1
+ = n , Z2

+ = in Z3
+ = neiθ , Z4

+ = −(1 + i+ eiθ)n . (3.2.26)

The position of three of the poles can once again be fixed arbitrarily, and we choose

p1 = 1 , p2 = 0 , p4 → −∞ . (3.2.27)

This leaves the position of the third pole, p3, along with the (complex) constant A0 to

be determined from the conditions in (3.1.6). The resulting equation determining p3 after

solving for A0 is

Z [1,3]Z [2,4] ln(1− p3)2 = Z [1,4]Z [2,3] ln p2
3 . (3.2.28)

Note that n drops out of this equation and p3 therefore depends on θ only. We take the

position of the pole as parameter and solve for θ, which can be done in closed form and

yields four branches of solutions. The criterion for the choice of branch is that θ should be

real and the zeros sn in the upper half plane. The explicit expressions are bulky and not

very illuminating, and we show a plot of θ as function of p3 in fig. 3.1 instead.

Since p3 is independent of n, the on-shell action depends on n only through an overall

factor n4, as expected from the scaling analysis in sec. 3.2.1. The dependence on θ, however,

is non-trivial and we show the result in fig. 3.1. We note the presence of three minima, which

all correspond to the 4-pole solution degenerating to a 3-pole solution: for θ → 0 we have

Z3
+ → Z1

+ and p3 → p1, for θ → π/2 we have Z3
+ → Z2

+ and p3 → p2, and for θ → 5π/4 we

have Z3
+ → (1 +

√
2)Z4

+ and p3 → p4. That means in all these cases two poles coalesce and

their residues add. The free energy coincides with that of the resulting 3-pole configuration.
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Figure 3.1: The left hand side shows θ as function of p3, for the 4-pole solution with residues given
in eq. (3.2.26). The right hand side shows I0, which via (3.2.10) corresponds to the on-shell action.

The 3-pole configurations resulting from θ → 0 and θ → π/2 have two charges with the same

moduli and the same relative phase up to a sign. Since the formula in (3.2.18) is insensitive

to these differences, this explains the coincident free energies. It is intriguing to observe that

the value of the free energy assumes a local minimum for all the cases where the solution

reduces to a 3-pole configuration. The sphere free energy in odd dimension can be used as

a measure for the number of degrees of freedom, and one may speculate that splitting one

pole into two, or equivalently one external 5-brane into two, will generically increase that

number. While certainly true for this specific example, it is an interesting open question

whether this behavior holds more generally.

5-pole solutions

As a final example we will consider a class of solutions with five poles. In general we now

have two positions of the poles depending on the choice of residues, but we will focus on a

class of solutions which are parametrized by only two real numbers, with residues given by

Z1
+ = −Z3

+ = M , Z2
+ = 2iN , −Z4

+ = iZ5
+ = (1 + i)N . (3.2.29)

The corresponding 5-brane intersection is shown in fig. 3.2.

As before three poles can be fixed by SL(2,R) and we resort to the choice in (3.2.17).
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Figure 3.2: The left hand side shows a 5-brane intersection corresponding to the charges in (3.2.29).
On the right hand side is a log-log plot of I0 for the 5-pole solution with residues given in (3.2.29).
Via (3.2.10) this corresponds to the on-shell action, as function of M/N . The constant dot-dashed
line shows 80πζ(3) · 16N4, which, via (3.2.18), is the value of I0 for the 3-pole solution resulting
from (3.2.29) for M = 0. The dashed line shows 280πζ(3) · 16M2N2, which, via (3.2.21), is I0 for
a 4-pole solution with −Z1

+ = Z3
+ = 2iN and Z2

+ = −Z4
+ = M .

The regularity conditions in (3.1.6) are solved by

p5 = −p4 , A0 = iN log |p2
4 − 1| , (3.2.30)

where p4 is determined by the equation

(M −N) log(p4 − 1)2 − (M +N) log(p4 + 1)2 +N log 16 = 0 . (3.2.31)

The choice of residues can be realized via (3.1.5), by fixing σ = −2iNp2
4/(s1s2s3) and the

zeros s1, s2, s3 as the three solutions to the cubic equation

isM(s2 − p2
4) + p4N(s2 − 1)(p4 − is) = 0 . (3.2.32)

To solve (3.2.31) it is once again convenient to fix p4 and determine the resulting ratio M/N .

We choose p4 ≤ −
√

5, which produces zeros in the upper half plane and positive M/N . The
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on-shell action divided by N4, as function of the ratio M/N , is shown in fig. 3.2. We clearly

see that the dependence on M/N is not simply quadratic, which we would have expected if

the position of the poles had not depended on M/N . Instead, I0/N
4 interpolates between

approaching a constant for small M/N and quadratic dependence for large M/N .

N

N

M

M

2N

Figure 3.3: Global deformation (in the classification of [39,40]) of the brane intersection shown in
the left hand side of fig. 3.2, corresponding to a relevant deformation of the dual SCFT.

The asymptotic behavior for M/N → 0 and M/N →∞ can be understood in more detail

as follows. For M → 0, we expect the solution to reduce to a 3-pole configuration, since two

of the residues in (3.2.29) vanish. Indeed, in that limit two of the zeros sn approach the real

line and annihilate the poles p1, p3. With one zero remaining in the interior of the upper

half plane and three poles on the real line, we indeed find a regular 3-pole configuration.

Correspondingly, the on-shell action as shown in fig. 3.2 for M/N = 0 agrees with (3.2.18)

evaluated with the remaining residues. For large M/N , the behavior is not quite as imme-

diately clear from the form of the residues. But we can gain some intuition from looking

at deformations of the web. The solutions we are considering here describe the conformal

phase of the dual SCFTs, where in the brane construction all external branes intersect at one

point. Deformations of the web where the external branes are moved correspond to relevant

deformations of the dual SCFT [39, 40], and a particular example is shown in fig. 3.3. We

may view it as gluing an intersection of M NS5-branes and 2N D5-branes with an SL(2,R)

rotated version of the “N-junction”. For large M , it suggests that the structure of the web is

dominated by the intersection of M NS5-branes and 2N D5-branes. The number of degrees
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of freedom provided by the “extra vertex” compared to the 4-brane intersection of NS5 and

D5-branes does not appear to scale with M , and we therefore expect the free energy of the

5-pole solution at large M/N to approach the free energy of a 4-pole solution with charges

corresponding to M NS5 and 2N D5-branes. As shown in fig. 3.2, this is indeed the case.

3.3 Entanglement entropy

In this section we use the Ryu-Takayanagi prescription [7] to compute holographic entangle-

ment entropies for the 5d SCFTs dual to the supergravity solutions. The main parts of the

derivation will hold for a generic choice of the region for which we compute the entanglement

entropy, as we will explain shortly, but our main interest is in regions of spherical shape.

The entanglement entropy is given by the area of a codimension-2 surface, anchored at

a fixed time on the boundary of AdS6 such that it coincides with the entangling surface.

For a generic choice of entangling surface, we thus have to compute the area of an eight-

dimensional surface γ8 wrapping S2 and Σ, and which is of codimension 2 in AdS6. The

resulting expression for the entanglement entropy reads

SEE =
Area(γ8)

4GN

=
1

4GN

∫
γ8

volγ8 . (3.3.1)

The volume form reduces to

volγ8 = f 4
6 f

2
2 volγ4 ∧ volS2 ∧ volΣ , (3.3.2)

where γ4 is the codimension-2 minimal surface in a unit radius AdS6 which is anchored at

the conformal boundary and ends there on the entangling surface. The computation of SEE

as a result simplifies to

SEE =
1

4GN

VolS2 ·J · Area(γ4) , (3.3.3)
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where Area(γ4) is the area of the four-dimensional minimal surface in AdS6 and with gΣ =

4ρ2|dw|2 we have

J = 4

∫
Σ

d2wf 4
6 f

2
2ρ =

8

3

∫
Σ

d2w κ2G =
8

3

∫
Σ

d2w(∂w̄G)∂wG . (3.3.4)

We note in particular that, due to the factorization in (3.3.3), once J is known the compu-

tation of entanglement entropies reduces to the analogous computation in AdS6.

One can explicitly evaluates the integrand of J in terms of the parameters of the problem.

Making use of the explicit expressions for A± and of the regularity conditions (3.1.6) we find

J = −8

3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [`k]Z [mn]

∫
Σ

d2w ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 ln

∣∣∣∣ w − pmpm − pn

∣∣∣∣2 1

w̄ − pn
1

w − pk
. (3.3.5)

This expression becomes manifestly real upon symmetrizing the integrand under the ex-

change of the index pairs (`, k) and (m,n), which are independently summed over. In

addition, using charge conservation, one can show that the combination dw∂wG is invariant

under SL(2,R) transformations

w → aw + b

cw + d
, pk →

apk + b

cpk + d
, (3.3.6)

with ad− bc = 1. The expression for J in (3.3.4) is therefore SL(2,R) invariant, as expected,

and we can again fix the location of three poles at arbitrary positions.

3.3.1 Spherical regions

For the specific case of a spherical entangling surface of radius r0 at a fixed t = t0, we just

have to evaluate the area of the corresponding minimal surface in an AdS6 of unit radius.

52



we choose coordinates in AdS6 such that

ds2
AdS6

=
dz2 − dt2 + dr2 + r2dΩ2

S3

z2
. (3.3.7)

The minimal surface can be parametrized by r = r(z) and its area is given by

Area(γ4) = VolS3

∫
dz
r(z)3

√
1 + r′(z)2

z4
. (3.3.8)

Extremizing this functional yields the usual solution

r(z) =
√
r2

0 − z2 . (3.3.9)

The z integral is divergent at z = 0. Although holographic renormalization for submanifolds

is well understood [63], the divergences in the entanglement entropy are usually kept, as a

reflection of the short-distance behavior of QFTs. The universal part in odd dimensions,

however, is the finite contribution and for the surfaces considered here given by

Arearen(γ4) =
2

3
VolS3 . (3.3.10)

In summary, the entanglement entropy for a spherical region is given by the expression in

(3.3.3), with the universal part of the area of the minimal surface in (3.3.10) and J given in

(3.3.5). We note that this expression manifestly exhibits the same scaling with the residues

Z`
+, corresponding to the charges of the external 5-branes, as the expression for the on-shell

action in (3.2.13).

3.3.2 Matching to free energy

In this section we show that for all the examples discussed in sec. 3.2.2 the finite part of the

holographic entanglement entropy for a spherical region is equal to minus the finite part of
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the free energy on S5. To accomplish this we will reduce part of the two-dimensional integral

over Σ appearing in equation (3.3.4) to a one-dimensional integral over the real line which

has the same form as the one-dimensional integral appearing in the on-shell action (3.2.13),

and show that the remaining part vanishes.

Using κ2 = −∂w∂w̄G and the definition of G in (3.1.4), the integral J given in (3.3.4) can

be rewritten as

J = −8

3

∫
Σ

d2w ∂w∂w̄G
(
|A+|2 − |A−|2 + B + B̄

)
. (3.3.11)

We split J into two terms:

J = J1 + J2 , (3.3.12a)

J1 = −4

3

∫
Σ

d2w ∂w∂w̄G
(
B + B̄

)
, (3.3.12b)

J2 = −8

3

∫
Σ

d2w ∂w∂w̄G
(
|A+|2 − |A−|2 +

1

2

(
B + B̄

))
. (3.3.12c)

First we evaluate J1 and will argue below that the second integral J2 vanishes. Using the

holomorphicity of B one can rewrite J1 at first as a sum of total derivatives and then as a

line integral over the real line. Using the explicit expressions for A± we find:

J1 = −8π

3

L∑
`,k,m,n=1
6̀=k,m6=n

∫ ∞
−∞

dx
Z [`k]Z [mn]

x− pn
ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ ln ∣∣∣∣ x− pkpk − p`

∣∣∣∣Θ (p` − x) . (3.3.13)

Plugging this result into (3.3.3) gives the following contribution to the entanglement entropy

SEE1 = − 4π

9GN

VolS2VolS3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ ln ∣∣∣∣ x− pkpk − p`

∣∣∣∣ 1

x− pn
.

(3.3.14)

We can compare this result with the value of the finite part of the on-shell action derived in
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section 3.2:

(SE
IIB)finite =

8

9GN

VolS5VolS2

L∑
`,k,m,n=1
` 6=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ 1

x− pn
.

(3.3.15)

Inserting the expressions for the volumes of the 2-, 3- and 5-sphere given by

VolS2 = 4π , VolS3 = 2π2 , VolS5 = π3 , (3.3.16)

confirms the equality of the finite parts of the entanglement entropy and the on-shell action

(SEE1)finite = −(SE
IIB)finite . (3.3.17)

What remains to be shown is that the integral J2 vanishes and hence SEE1 given in

(3.3.14) is the complete expression for the finite part of the entanglement entropy. The

integral J2 given in (3.3.12c) can be written explicitly as

J2 = −4

3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [mn]Z [`k]

∫
Σ

d2w
1

w̄ − pm

(
ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 ln

∣∣∣∣ w − pnpm − pn

∣∣∣∣2 1

w − pk

+ ln
w − p`
|pk − p`|

ln
w̄ − pk
|pk − p`|

1

w − pn

)
.

(3.3.18)

For the three-pole solutions we have shown analytically that this term vanishes, and for the

four and five pole solutions discussed in sec. 3.2.2 we have verified this numerically. For all

these cases we therefore find that the finite parts of the entanglement entropy and the on-

shell action are related as expected on general grounds [34]. Although we do not currently

have an analytic proof, this certainly suggests that the relation between free energy and

entanglement entropy holds for all the solutions reviewed in sec. 3.1.
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3.4 Discussion

We have studied the free energy of the field theories described by the supergravity solutions

constructed in [49,50]. Unlike for previously known AdS6 solutions in type IIA supergravity,

the computation of the free energy is straightforward albeit technically non-trivial for these

solutions. We conclude that the isolated singularities that are present are mild and do not

obstruct holographic computations. Moreover, the computation of the free energy via the

entanglement entropy of a spherical region reproduces the result of the direct computation, a

relation which is expected to hold on general grounds but corresponds to non-trivial integral

identities in the explicit solutions considered here. These results support the interpretation

of the solutions as holographic duals to the five-dimensional superconformal field theories

engineered in type IIB string theory via 5-brane webs, and give first quantitative indications

on the nature of the dual field theories. We will close with a more detailed discussion of the

implications and reference to recent developments.

An immediate question concerning the supergravity solutions and their interpretation

concerns the external 5-branes. In [49, 50] the singularities located at the poles were inter-

preted as the remnants of the external (p, q) five branes in the brane web construction of the

five dimensional field theories, which flow to the dual SCFT in the conformal limit.

Whether brane webs with parallel external branes lead to well-defined five-dimensional

SCFTs was initially questioned, with one potential obstacle being light states on the parallel

branes that may not decouple from the field theory on the intersection. It was later argued

that these light states do in fact decouple [43], and webs with parallel external branes indeed

lead to well-defined 5d field theories after factoring out the decoupled states [64–68].

For our supergravity solutions this immediately poses the question of whether or not

they include contributions from parallel external branes, e.g. in the form of states localized

around the poles on ∂Σ. The computation of the free energy in sec. 3.2 and 3.3 indicates

that this may not be the case: In both cases we could introduce a cut-off around the poles
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on Σ and effectively remove them from the geometry. If states localized around the poles

would contribute, we would expect the free energy to change by a finite amount, i.e. we

would expect to produce non-trivial boundary terms. The scaling analysis for both cases

shows that this is not the case, and we therefore do not seem to see contributions from the

external 5-branes.

Another open question about the solutions was whether and how the external 5-branes

end on 7-branes. We discussed in [50] that there was no indication for the presence of 7-branes

and that a natural expectation would be that the supergravity solutions describe brane webs

with only 5-branes. But with only access to the intersection, the possibility that external

7-branes would just not be directly accessible from the supergravity solution remained a

valid option. Another natural option could then be that all 5-branes within a given stack of

external 5-branes end on the same 7-brane. This allows for a brane web realization of the

USp(N) theory which was initially engineered in type IIA string theory [43]. Our results

for the free energy and entanglement entropy, however, disfavor this option: The scaling

of the free energy in the USp(N) theory is N5/2, which is different from the scaling in the

4-pole type IIB supergravity solutions discussed in sec. 3.2. In particular, the solutions with

Z1
+ = −Z3

+ = (1 + i)N and Z2
+ = −Z4

+ = (−1 + i)N , if all external branes within a given

stack would end on the same 7-brane, would realize the USp(N) theory. But the scaling we

find is N4 instead of N5/2. This suggests that the dual SCFTs may rather be of the long

quiver type, as discussed in [50].

Finally, our results for the free energy in specific examples provide a clear target for

field-theory computations. This result was recently replicated on the field theory side in [69],

where the authors computed the sphere partition function numerically using supersymmetric

localization.
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Chapter 4

Type IIB 7-branes in warped AdS6:

partition functions, brane webs and

probe limit

The space of 5d SCFTs that can be realized in Type IIB string theory can be extended

substantially by adding additional 7-branes into 5-brane webs [41], and many insights have

been obtained through the inclusion of 7-branes and in particular their associated branch

cuts [62, 68, 70–73]. This motivates a corresponding extension of the construction of super-

gravity solutions. In [74] the construction of supergravity solutions has indeed been extended

to incorporate punctures with non-trivial SL(2,R) monodromy, signaling the presence of ad-

ditional 7-branes. However, while the map between supergravity solutions and 5-brane webs

appeared very clearly and naturally in the case without monodromy, where a given 5-brane

intersection is entirely characterized by the charges of the external 5-branes, a corresponding

map is less automatic in the case with additional 7-branes. This is largely due to the fact

that 7-branes introduce a number of additional parameters, as we will review shortly and in

more detail in sec. 4.1, and the fact that the analysis of the supergravity solutions is tech-

nically more challenging. This motivates further study of the solutions with monodromy, to
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substantiate and clarify their interpretation.

As reviewed in section 3.1, the solutions in [74] are constructed in terms of two locally

holomorphic functions A± on the Riemann surface Σ, which is a disc or equivalently the

upper half plane. The differentials of these functions have common poles on the boundary

of Σ, at which the entire solution approaches that for a (p, q) 5-brane, as constructed in [59],

with p − iq identified with the residue at the pole. This facilitates the identification of

the solutions with (p, q) 5-brane webs. For solutions with monodromy, the differentials in

addition have a number of branch points in the interior of Σ with associated branch cuts,

across which the supergravity fields undergo a parabolic SL(2,R) transformation. The

regularity conditions for the supergravity solutions as constructed in [74] constrain each

puncture to lie on a curve in Σ. This leaves one real parameter in addition to the orientation

of the branch cut for a puncture with fixed monodromy. Adding a 7-brane into a 5-brane web

correspondingly adds new parameters. In addition to the orientation of the branch cut, there

is a choice of which face of the web the 7-brane is placed in. This choice remains meaningful

in the conformal limit and naturally turns into a continuous parameter in a “large-N” limit,

thus providing a potential brane web realization of the supergravity parameter. One may

wonder, however, whether a given puncture corresponds to an isolated 7-brane in a certain

face of the web, or whether 5-branes are attached to it. Similarly, one may wonder whether

solutions with punctures at different points in Σ can be related by 7-brane moves with the

associated Hanany-Witten brane creation effect [75], or whether punctures at different points

correspond to genuinely different brane webs. An unambiguous brane web interpretation

for the solutions constructed in [74] is therefore not immediately clear. In this chapter,

based on [5], we will expand on the interpretation of the solutions in [74] in several ways

and address these questions. We will constrain the monodromy around the punctures to

realize the SL(2,R) transformation appropriate for D7 branes for simplicity, but the results

immediately generalize to other 7-branes by globally conjugating with suitable SL(2,R)

elements.
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4.1 Review of warped AdS6 × S2 × Σ solutions with monodromy

We will now briefly review the construction to add punctures with monodromy to the solu-

tions without monodromy summarized in section 3.1. We will exclusively focus on punctures

with D7-brane monodromy in this chapter, and refer to [74] for the more general case. Note,

however, that with no restrictions on the residues at the poles on ∂Σ, the case of punctures

with generic (commuting) parabolic SL(2,R) monodromies can be obtained straightfor-

wardly from the results presented here by global SL(2,R) transformations. In that sense

the restriction to D7-brane monodromy is without loss of generality.

In addition to the parameters for the solutions without monodromy, a solution with D7-

brane punctures depends on the loci of the punctures, wi, i = 1, . . . , I, a real number ni for

each puncture and a phase γi specifying the orientation of the branch cut. From this data

one constructs a function f , which encodes the branch points and branch cut structure, via

f(w) =
I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
. (4.1.1)

With the help of this function and Y ` ≡ Z`
+ − Z`

−, the locally holomorphic functions for a

solution with monodromy are expressed as

A± = A0
± +

L∑
`=1

Z`
± ln(w − p`) +

∫ w

∞
dz f(z)

L∑
`=1

Y `

z − p`
, (4.1.2)

again with Ā0
± = −A0

∓. The contour for the integration is chosen such that it does not cross

any of the branch cuts. Once the functions A± are specified the other fields can be derived

using the same equations of section 3.1. The regularity constraints that the parameters have
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to satisfy for the solutions with D7-brane monodromy are

0 = 2A0
+ − 2A0

− +
L∑
`=1

Y ` ln |wi − p`|2 , i = 1, · · · , I , (4.1.3)

0 = 2A0
+Yk− − 2A0

−Yk+ +
∑
6̀=k

Z [`,k] ln |p` − pk|2 + Y kJk , k = 1, · · · , L . (4.1.4)

With Sk ⊂ {1, · · · , I} denoting the set of branch points for which the associated branch cut

intersects the real line in the interval (pk,∞), Jk is given by

Jk =
L∑
`=1

Y `

[∫ pk

∞
dxf ′(x) ln |x− p`|2 +

∑
i∈Sk

in2
i

2
ln |wi − p`|2

]
. (4.1.5)

The residues of the differentials of (4.1.2) at the poles are given by

Y`± = Z`
± + f(p`)Y

` . (4.1.6)

It is these residues that translate to the charges of the external 5-branes and replace the Z`
+

in (3.1.10), resulting in

(q1 − iq2)Q =
8

3
Ym+ . (4.1.7)

4.2 Match to probe D7 branes and κ-symmetry

In this section we study probe D7 branes embedded into the solutions reviewed in sec. 3.1,

subject to the requirement that they preserve all bosonic and fermionic symmetries of the

background. This is motivated by the fact that the solutions with and without punctures

discussed in sec. 3.1 are both invariant under SO(2, 5)⊕SO(3) and sixteen supersymmetries.

The requirement to preserve the bosonic symmetries forces the D7-branes to wrap the entire

AdS6 × S2 part of the geometry, and the entire embedding is therefore characterized by

the point at which the D7-branes are localized in Σ. The choice of coordinates on AdS6 is
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irrelevant for the analysis, and we will therefore leave it general. The worldvolume metric

induced by the string-frame background metric on the D7-brane reads

g = f̃6(w, w̄)2ds2
AdS6

+ f̃2(w,wb)2ds2
S2 , (4.2.1)

where the tilde denotes that the radii are in string frame. The pullback of the ten-dimensional

frame to the D7-brane, Ea, is given by

Em = f̃6ê
m , m = 0, . . . , 5 ,

Ei = f̃2ê
i , i = 6, 7 ,

E8 = E9 = 0 , (4.2.2)

where êm and êi denote the canonical frames for AdS6 and S2, respectively. The symmetry re-

quirement constrains the field strength of the worldvolume gauge field, F , to be proportional

to the volume form of S2, and we can thus parametrize it as

F = K volS2 , (4.2.3)

where volS2 is the canonical volume form on S2 of unit radius and K is a real constant to be

solved for for each supersymmetric embedding.

4.2.1 κ-symmetry and SU(1, 1)/U(1)

The supersymmetries preserved by a probe brane embedding are those generated by back-

ground Killing spinors ε that are compatible with the κ-symmetry condition

Γκε = ε , (4.2.4)
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where Γκ is a projector that depends on the embedding and has been constructed in [76–78].

The condition will provide constraints on the background fields, that single out the locations

where probe branes can be added while preserving supersymmetry. The explicit expression

for Γκ is given by

Γκ =
1√

det(1 +X)

∞∑
n=0

1

2nn!
γj1k1...jnknXj1k1 . . . XjnknJ

(n)
(p) , (4.2.5)

where the γµ ≡ Ea
µΓa are the pullback of the background Clifford algebra generators to the

7-brane worldvolume, X i
j ≡ gikFkj, g is the metric induced on the worldvolume by the

string-frame background metric, and F is defined in terms of the worldvolume field strength

F and the background NS-NS two-form field B2 as

F = F −B2 . (4.2.6)

For J
(n)
(p) we will use the conventions for complex spinors as spelled out in sec. 2.2 of [79],

such that

J
(n)
(p) ε = i(−1)(p−1)/2


Γ(0)ε n+ (p− 3)/2 even

C
(
Γ(0)ε

)?
n+ (p− 3)/2 odd

, (4.2.7)

with Γ(0) given by

Γ(0) =
1

(p+ 1)!
√− det g

εi1...ip+1γi1...ip+1
. (4.2.8)

We note in particular that Γκ is not a C-linear operator, which will play a role shortly.

A crucial subtlety in the formulation of the κ-symmetry conditions in the backgrounds

we are interested in arises due to the presence of non-trival axion-dilaton backgrounds. The

κ-symmetry conditions derived in [76–78] and the supergravity solutions in [48–50, 74] are

both formulated in terms of the physical axion and dilaton fields. This amounts to passing
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from the formulation of type IIB supergravity in [57, 58], with linear SU(1, 1) action and

U(1) gauge symmetry, to gauge-fixed versions. In the notation used in sec. 2 of [48], the

covariant formulation in particular involves a complex one-form P , which is constrained by

Bianchi identities and transforms under the U(1) as

P → e2iθP . (4.2.9)

Crucially for the κ-symmetry analysis, the generators of (local) supersymmetries transform

under this U(1) as

ε→ eiθ/2ε . (4.2.10)

Expressing P and Q in terms of physical fields was done in [48] by the following choice for

P

P =
dB

1− |B|2 , B =
1 + iτ

1− iτ . (4.2.11)

In contrast, as discussed in sec. 3 of [77], the expression used for the derivation of the

κ-symmetry condition is

Pκ =
dτ

τ̄ − τ . (4.2.12)

These two choices are related by a U(1) transformation as follows

P = e2iθκPκ , e2iθκ =
1 + iτ̄

1− iτ . (4.2.13)

Consequently, the background Killing spinors used in the κ symmetry condition have to

be transformed according to (4.2.10) to get the condition in the conventions used for the

supergravity solutions. Since Γκ is in general not a C-linear operator, this modifies the
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condition in a non-trivial way. We multiply (4.2.4) by eiθκ/2, and may then state the converted

condition as follows: The supersymmetries preserved by a probe brane embedding in the

solutions of [48–50,74] are those generated by Killing spinors compatible with

Γκε = ε , (4.2.14)

where Γκ is as given in (4.2.5) and

J
(n)
(p) ε = i(−1)(p−1)/2


Γ(0)ε n+ (p− 3)/2 even

eiθκC
(
Γ(0)ε

)?
n+ (p− 3)/2 odd

, (4.2.15)

with Γ(0) as given in (4.2.8) and ε in 4.2.14 referring to spinors in the supergravity conventions

of [48–50, 74]. We note that the phase eiθκ occured for similar reasons in the (re)definition

of the three-form field in [80].

4.2.2 BPS equations for D7-branes

We now turn to the specific case of probe D7 branes wrapping AdS6 × S2. We identify the

NS-NS two-form field B2 and the R-R two-form potential C(2) with the real and imaginary

parts of the complex two-form parametrized by C as follows,

B2 + iC(2) = C volS2 . (4.2.16)

With the form of F in (4.2.3) we then have

F = F volS2 , F = K − Re(C) . (4.2.17)
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The sum in (4.2.5) therefore terminates at n = 1. From (4.2.15) we have

J
(0)
(7) ε = −iΓ(0)ε , J

(1)
(7) ε = −ieiθκC

(
Γ(0)ε

)?
, (4.2.18)

We have thus all the ingredients to explicitly evaluate the projection condition in (4.2.14).

For the particular embedding where the D7-branes wrap AdS6 × S2, we have

Γ(0) = Γ01234567 , (4.2.19)

where Γa are the ten-dimensional Clifford algebra generators, explicit indices 0, ..., 5 are

frame indices on AdS6 and 6, 7 are frame indices on S2. Moreover,

1

2
γijXij = γ67X67 = Γ67f̃−2

2 F , (4.2.20)

where, following the notation in [50], the tilde on f2 denotes that it is the radius of S2 in

string frame. Finally,

√
det(1 +X) =

√
1 + f̃−4

2 F2 . (4.2.21)

Using (4.2.19), (4.2.20), (4.2.21), as well as C2 = 1 and CΓa = (Γa)?C, we find

Γκε =
−i√
f̃ 4

2 + F2

Γ01234567

(
f̃ 2

2 ε+ eiθκFΓ67C−1ε?
)
. (4.2.22)

Noting that raising all indices in Γ01234567 produces a sign, and using (3.1.15), we thus find

that the projection condition (4.2.14), after multiplying by
√
f̃ 4

2 + F2, evaluates to

∑
η1η2

χη1η2 ⊗
[
f̃ 2

2 ζ−η1−η2 + ieiθκF ? ζ−η1η2 −
√
f̃ 4

2 + F2ζη1η2

]
= 0 . (4.2.23)
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In order for the embedding to not break any supersymmetry, the term in square brackets

has to vanish for all combinations of η1 and η2, and we thus arrive at

f̃ 2
2 ζ−η1−η2 + ieiθκF ? ζ−η1η2 −

√
f̃ 4

2 + F2ζη1η2 = 0 . (4.2.24)

Using the explicit parametrization in (3.1.12), we immediately find that the conditions are

not independent, but rather that imposing the equation to be satisfied for one combination

of η1 and η2 implies the remaining conditions.

4.2.3 Solutions

To solve the BPS equations (4.2.23), we fix η1 = η2 = +. With the spinors ζ in (3.1.12) and

?ζ defined just above (3.1.12), the equation to solve becomes

f̃ 2
2

−ᾱ
β

− ieiθκF
β̄
α

−√f̃ 4
2 + F2

ᾱ
β

 = 0 . (4.2.25)

We note that setting F = 0 does not lead to consistent solutions unless α = 0, and we

therefore assume F 6= 0 from now on. Taking the complex conjugate of the second equation,

the system we have to solve is

(
f̃ 2

2 +

√
f̃ 4

2 + F2

)
ᾱ + ieiθκFβ̄ = 0 ,(

f̃ 2
2 −

√
f̃ 4

2 + F2

)
β̄ + ie−iθκFᾱ = 0 . (4.2.26)

Multiplying the second equation by (−i)eiθκF−1(f̃ 2
2 +
√
f̃ 4

2 + F2), which is manifestly non-zero

if F 6= 0, reproduces the first equation. The two equations are thus not linearly independent

and we are left with only one complex or two real conditions. From either of the two

equations, and reality of f̃2 and F, we conclude that e−iθκᾱ/β̄ must be imaginary or, more
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explicitly,

eiϑ =
ᾱβ

αβ̄
= −e2iθκ , (4.2.27)

where we recognized the combination of Killing spinor components as the phase eiϑ intro-

duced in sec. 4.3 of [48]. Eliminating the square root between the two equations in (4.2.26)

yields

2f̃ 2
2 ᾱβ̄ + iF

(
eiθk β̄2 + e−iθk ᾱ2

)
= 0 , (4.2.28)

which is a real equation once (4.2.27) is satisfied. The BPS equations are thus (4.2.27),

which determines the position of the D7 brane, and (4.2.28) which determines the flux as

F =
2if̃ 2

2 ᾱβ̄

eiθk β̄2 + e−iθk ᾱ2
. (4.2.29)

To evaluate the constraint on the position of the D7-brane in (4.2.27) more explicitly, we

follow through the changes of variables in eq. (4.22) and (4.27) of [48]. This yields

eiϑ =
eiψ − λR
1− eiψλ̄R =

L̄ − λLR
L − λ̄RL̄ , (4.2.30)

where we used that eiψ = L̄/L (see (4.36) and (4.48) in [48]) to obtain the second equality.

Finally, using κ−L̄ = −∂wG as well as κ± = ∂wA± and λ = κ+/κ− we can state the κ-

symmetry condition (4.2.27) as

eiϑ =
∂w̄Ā−∂wG −R∂wA+∂w̄G
∂wA−∂w̄G −R∂w̄Ā+∂wG

!
= −1 + iτ̄

1− iτ = −e2iθκ . (4.2.31)

This is one real condition on the complex position of the D7-brane in Σ, and we thus expect

a one-parameter family of solutions. We may evaluate this condition more explicitly by using
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that, from the definition of B as B = (1 + iτ)/(1− iτ), we have

1 + iτ̄

1− iτ =
1 +B

1 + B̄
. (4.2.32)

The condition in (4.2.31) can thus be reformulated as

(
∂w̄Ā−∂wG −R∂wA+∂w̄G

)
(B + 1) +

(
∂wA−∂w̄G −R∂w̄Ā+∂wG

) (
B̄ + 1

)
= 0 . (4.2.33)

Using the definition of B in (3.1.9) as well as the explicit expressions for ∂wG and ∂w̄G in

terms of A± and ∂wA± that follow from the definitions in (3.1.3), this evaluates to

(1 +R)κ2
(
A+ + Ā+ −A− − Ā−

)
= 0 . (4.2.34)

Since R ≥ 0 the first factor does not vanish. For κ2 → 0, the denominators in the original

equation (4.2.31), by which we have multiplied, vanish, and a more careful treatment is

needed. It shows that κ2 = 0 is actually not a solution. This leaves the case where the

combination of A± and their conjugates in the last factor of (4.2.34) has to vanish. The

latter condition, using Ā0
± = −A0

∓ and Z̄`
± = −Z`

∓, evaluates to

2A0
+ − 2A0

− +
L∑
`=1

(Z`
+ − Z`

−) ln |w − p`|2 = 0 . (4.2.35)

This is our final form for the κ-symmetry condition restricting the position of the probe

D7-brane.

4.2.4 Relation to backreacted solutions

The BPS condition for the probe D7-brane in (4.2.35) can be directly related to the regularity

conditions for the warped AdS6 solutions with monodromy in (4.1.3) and (4.1.4). The

regularity conditions in (4.1.3) and (4.1.4) constrain the parameters for solutions with an

69



arbitrary number of punctures and relative weights ni, and in particular also for the case

that we consider one puncture with n ≡ n1 infinitesimally small. To recover the probe

analysis, we take the residues of the seed solution, Z`
±, as given (with the constraint that

they sum to zero) and determine the remaining parameters as formal power series in n from

the regularity conditions. The ansatz for the parameters is

A0
± = A0

±,0 + n2A0
±,2 + . . . , p` = p`,0 + n2p`,2 + . . . ,

wi = wi,0 + n2wi,2 + . . . . (4.2.36)

At zeroth order in n, the conditions in (4.1.4) then reduce to the regularity conditions for a

solution without monodromy, as given in (3.1.6). The conditions in (4.1.3), on the other hand,

reduce precisely to the form of the κ-symmetry condition in (4.2.35). This independently

supports the identification of the punctures with 7-branes.

4.3 S5 partition function with backreacted 7-branes

In this section we turn to solutions with fully backreacted 7-branes and study the sphere

partition functions of the dual SCFTs. We will focus on a class of 3-pole solutions and a

class of 4-pole solutions. Implications for the relation to 5-brane webs will be discussed in

sec. 4.4.

Since the SCFT is defined in odd dimensions, the renormalized sphere partition function

is expected to be equal, up to a sign, to the finite part of the entanglement entropy for a

ball-shaped region [34]. In chapter 3 we verified this relation explicitly for solutions without

monodromy. In this chapter we take this relation for granted and we make use of it since the

computation of the entanglement entropy is technically simpler. The derivation of section

3.3 can be straightforwardly applied to solutions without monodromy as well, we can use

equations (3.3.3) and (3.3.4) which we report here for convenience:
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SEE =
1

4GN

VolS2 ·J · Area(γ4) (4.3.1)

J = 4

∫
Σ

d2wf 4
6 f

2
2ρ =

8

3

∫
Σ

d2w κ2G =
8

3

∫
Σ

d2w(∂w̄G)∂wG , (4.3.2)

where

Arearen(γ4) =
2

3
VolS3 . (4.3.3)

Notice that we were able to integrate by parts straightforwardly because G and κ2 are single

valued. This saves an extra integration to obtain G and can thus be evaluated more efficiently.

The behavior of the entanglement entropy and thus the partition function under an

overall rescaling of the charges can be obtained from a general scaling analysis, similar to

the one carried out in section 3.2.1 for solutions without monodromy. The new aspect here

of course is the presence of the punctures. From the explicit expression in (4.1.2), one can

see that A± transform homogeneously under the following rescaling of the charges

Z`
± → aZ`

± , ni → ni , a ∈ R . (4.3.4)

That is, the 5-brane charges are rescaled but the 7-brane monodromies are unchanged. The

regularity conditions in (4.1.3), (4.1.4) are invariant if A0
± → aA0

± with the p` and wi

unchanged. We thus find a solution again but with A± → aA±. This implies ∂wG → a2∂wG

and thus

SEE → |a|4SEE . (4.3.5)

This scaling in particular holds for a ball-shaped region and therefore also applies for the

sphere partition function. For the case of no punctures this reduces to the scaling derived in
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3.2.1. The punctures therefore do not alter the scaling behavior, provided that they are not

scaled with the 5-brane charges.

4.3.1 Dependence on branch cut orientation

From a brane-web picture interpretation we expect that the partition function does not

depend on the location of the branch cut, i.e. we expect that if we continuously deform the

branch cut, without crossing any poles, while keeping the physical charges of the external

five-branes fixed, the partition function should be a constant.

This fact is far form obvious in our set up: the 5-brane charges, Y`+, depend on the

choice of the branch cut, so it is difficult to keep them fixed while deforming the branch

cut. We take a slight different route and show that the invariance of the partition function

is achieved by establishing two results. The first is that varying the orientation of the

branch cut with fixed Z`
+ does not change the partition function. Keeping Z`

+ fixed while

moving the branch cut induces a change in Y`+. The second result shows that this change

amounts to an overall SL(2,R) transformation, which leaves the puncture and the 7-brane

charge invariant. One may therefore compensate it with the inverse SL(2,R) transformation,

under which the partition function is, again, invariant. Together these results imply that the

partition function is invariant under changes of the orientation of the branch cut with fixed

charges of the external 5-branes, Y`+.

To show that the partition function is invariant under changes of the branch cut orien-

tation for fixed Z`
+, we set up an infinitesimal shift of one of the γi as follows,

γi → γi(1 + iδγ) . (4.3.6)

Since γi is a phase, δγ is real. Under this change, we have

f(w)→ f(w) +
in2
i δγ

4π
. (4.3.7)
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The locally holomorphic functions and their differentials transform as

∂wA± → ∂wA± +
in2
i δγ

4π
(∂wA+ − ∂wA−) ,

A± → A± +
in2
i δγ

4π
(A+ −A−) . (4.3.8)

We furthermore notice that the Y`± change as follows,

Y`± → Y`± +
in2
i δγ

4π
Y ` . (4.3.9)

One can show that this new configuration still satisfies the regularity conditions (for details

see [5]).

Equation (4.3.8) can be written as an SL(2,R) transformation

A+ → uA+ − vA− , u = 1 + v ,

A− → −v̄A+ + ūA− , v =
in2
i δγ

4π
. (4.3.10)

Since G is invariant under SL(2,R) transformations, and the same is true for ∂wG, the

integrand in (4.3.2), which directly yields the partition function, is invariant under SL(2,R).

We have thus shown that the partition function is invariant under changes of the orientation

of the branch cut with fixed Z`
+, as long as no poles are crossed.

Finally, we note that the transformation of the actual residues at the poles corresponding

to the physical 5-brane charges, as given in (4.3.9), corresponds precisely to the SL(2,R)

transformation in (4.3.10). Performing the inverse SL(2,R) transformation therefore yields

a solution with unmodified Y`+ but shifted orientation of the branch cut. In particular,

the 7-brane charge is invariant under this SL(2,R) transformation. The argument that the

integrand in (4.3.2) is invariant under SL(2,R) transformations again applies, and we have

thus shown that the partition function is invariant under changes of the orientation of the

branch cut, as long as no poles are crossed, while keeping the Y`+ fixed.
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4.3.2 3-pole solutions with D5, NS5 and D7

We now turn to explicit solutions and start with a class of 3-pole solutions discussed already

in [74], where one of the external 5-brane stacks corresponds to D5 branes. The poles and

overall normalization σ are chosen as

p1 = 1 , p2 = 0 , p3 = −1 , σ =
iN

s1

. (4.3.11)

The regularity conditions in (4.1.3) and (4.1.4) are satisfied by the choices

A0
+ = iN ln 2 +

1

2
J1 , wi = iαi , αi ∈ R+ , (4.3.12)

which in particular implies J1 = J3. This solves the regularity conditions for an arbitrary

number of punctures, but we will focus on the case of a single puncture with D7-brane

monodromy in the following. With α ≡ α1 and n ≡ n1 we thus have

f(w) =
n2

4π
ln

(
γ
w − iα
w + iα

)
, α ∈ R+ . (4.3.13)

With s = (s1 − 1)/(2s1), the residues are given by

Y1
+ = −iN [s + (s− s̄)f(p1)] , Y2

+ = iN , Y3
+ = iN [s− 1 + (s− s̄)f(p3)] . (4.3.14)

That is, the pole p2 corresponds to D5 branes, while the charges of the other two poles

depend on the position of the puncture, the orientation of the branch cut and the remaining

parameters.

We will solve for the parameters such that the residues take the form

Y1
+ = M , Y2

+ = iN , Y3
+ = −M . (4.3.15)
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Figure 4.1: A disc representation of the 3-pole solution discussed in sec. 4.3.2

That is, a configuration with two poles corresponding to NS5 branes, one pole corresponding

to D5 branes and one puncture corresponding to D7 branes. The setup is illustrated in

fig. 4.1. This choice is obtained by imposing the following constraints:

s = im(1− 2f(p1)) , f(p1)− f(p3) =
i

2m
, (4.3.16)

wherem = M/N . The second equation gives one real constraint on the parameters associated

with the puncture, n, α and γ.

Branch cut orientation

We now discuss the orientation of the branch cut in more detail. From sec. 4.3.1 we know

that the partition function is independent of the choice of branch cut orientation as long as

no poles are crossed. This still leaves the option for solutions with the same 5-brane and

7-brane charges, but which can not be deformed into each other without having a branch

cut cross a pole.

Addressing this issue requires a careful treatment of the branch cuts, and to make that

explicit we rewrite the constraint on the right hand side of (4.3.16) as follows

∫
C(p3,p1)

dz ∂zf(z) =
i

2m
, ∂zf(z) =

in2

4π

2α

z2 + α2
, (4.3.17)

where C(p3, p1) denotes a contour from p3 to p1 that does not cross the branch cut in f . The
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choice of contour depends on whether the branch cut in f intersects the boundary between p1

and p3 or not, and the choices are illustrated in fig. 4.2. If the branch cut does not intersect

the boundary between p1 and p3, we can deform the contour to the segment of the real axis

connecting p3 to p1 without crossing the puncture. If, on the other hand, the branch cut

does intersect the boundary between p1 and p3, deforming the contour to the segment of

the real axis between p3 and p1 picks up the residue at the pole z = iα. We thus find the

following constraint

i

2m
= −2πiδγResz=iα(∂zf) +

∫ p1

p3

dxf ′(x) , (4.3.18)

where we defined δγ = 0 if the branch cut does not intersect the boundary between p3 and

p1, and δγ = 1 if it does. Evaluating the residue and the integral along the real line yields

π

2mn2
= −π

2
δγ + cot−1α . (4.3.19)

The left hand side is positive, in view of the fact that m > 0 is required for Im(s1) > 0.

The right hand side therefore has to be positive as well for a solution to exist. For α ∈ R+,

however, we have 0 < cot−1α < π/2. The right hand side is therefore negative if the branch

cut intersects the boundary between p1 and p3, and the constraint can not be solved. The

remaining option is to have the branch cut intersect the boundary outside of the interval

(p3, p1), such that δγ = 0. In that case a solution to the constraint exists provided that

mn2 > 1, and it is given by

α = cot
( π

2mn2

)
. (4.3.20)

This solution is, in particular, independent of γ.

We thus find the following picture. Solving the regularity conditions for given 5-brane

charge assignment, encoded by the Y`+, and given 7-brane charge, encoded by n2, imposes
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Figure 4.2: Integration contours for the constraint in (4.3.17), depending on whether or not the
branch cut intersects the boundary in the interval (p3, p1).

a ‘topological’ constraint on the orientation of the branch cut. In the sense that it fixes

between which poles the branch cut intersects the boundary, but not where exactly.

Fixed orientation of the branch cut

As shown in sec. 4.3.1, the partition function is invariant under changes in the orientation

of the branch cut, as long as no poles are crossed, and as shown in the previous section the

segment of the boundary in which the branch cut intersects intersects ∂Σ is fixed. We now

focus on the remaining dependence and keep the orientation of the branch cut, parametrized

by γ, fixed. We choose it to extend in the positive imaginary direction, such that

γ = −1 , s1 =
i

2m
. (4.3.21)

This is compatible with the discussion in the previous section and the solution for α was

given in (4.3.20).

As independent parameters we take M , N and n2, while α is fixed by (4.3.20). To exhibit

the functional dependence of the partition function, it is convenient to extract the overall

scaling of the 5-brane charges. We analyze the partition function as a function of m, which

is the ratio of NS5 and D5 charge, leaving N as the overall scale of the 5-brane charges, and

n =
1

mn2
, (4.3.22)

which is inspired by the form of α in (4.3.20). The dependence of the partition function on
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Figure 4.3: Plot of J0, which yields the partition function for the 3-pole solutions via (4.3.23).

the overall scale of the 5-brane charges, given by N , is quartic, as shown in (4.3.5). Since

the location of the puncture depends on n only, the combination Y `f(w), which appears

in the definition of A± and Jk, is independent of m. The A± can therefore be split into

an m-independent part and a part linear in m. Organizing the terms in J according to

their m-scaling shows that only the linear part is non-vanishing, and we thus find that J is

given by a function of n multiplied by an overall factor of N2M2. Extracting also an overall

numerical factor, we parametrize it as

J = 224πζ(3)N2M2J0(n) . (4.3.23)

A plot of J0(n) is shown in fig. 4.3. The entanglement entropy for a ball shaped region,

and thus the sphere partition function, is given by (3.3.5) with (4.3.3) and (4.3.23). The

normalization in (4.3.23) is chosen such that J0 = 1 reproduces the partition function of

a four-pole solution without monodromy, corresponding to an intersection of D5 and NS5

branes, as discussed in [4].

4.3.3 Turning a puncture into a pole

We now discuss how a 4-pole solution with D5 and NS5 branes can be recovered from the

3-pole solutions with D5 and NS5 branes and a puncture. To this end, we start from the
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configuration with fixed orientation of the branch cut, as discussed in sec. 4.3.2. Recall that

we have three poles at

p1 = 1 , p2 = 0 , p3 = −1 , (4.3.24)

with residues given by

Y1
+ = M , Y2

+ = iN , Y3
+ = −M . (4.3.25)

These residues could be realized by choosing the orientation of the branch cut as γ = −1,

and the position of the branch cut α related to the number of 7-branes at the puncture,

parametrized by n2, as in (4.3.20), such that

f(w) =
n2

4π
ln

(
iα− w
iα + w

)
, α = cot

( π

2mn2

)
. (4.3.26)

We will consider this family of solutions as parametrized by the location of the branch point,

α, and study the limit α→∞. The relation on the right hand side in (4.3.26) can be solved

straightforwardly for n2 and we can then expand for large α, which yields

n2 =
πα

2m
+O(α−1) , f(w) =

iw

4m
+O(α−1) . (4.3.27)

In particular, to realize a family of solution with fixed Y`+ as given in (4.3.25), the number

of D7-branes at the puncture has to grow with α as the puncture is moved towards infinity

(which is a regular point of the boundary of the disc). Due to this growing behavior, the

function f remains non-trivial in the limit.

We will now show that, as α → ∞, the differentials ∂wA± approach those of a 4-pole

solution, with the three poles on the boundary of Σ that were present already for finite

α, and an extra pole at infinity. The general form of the differentials for a solution with
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monodromy can be obtained straightforwardly from (4.1.2), which yields

∂wA± =
L∑
`=1

Z`
±

w − p`
+ f(w)

L∑
`=1

Y `

w − p`
. (4.3.28)

With the limiting behavior of f in (4.3.27) and expressing Z`
± in terms of Y`± using the

definition in (4.1.6), we find

∂wA±
∣∣
α→∞ =

L∑
`=1

1

w − p`
(
Y`± − f(p`)Y

`
)

+
iw

4m

L∑
`=1

Y `

w − p`
. (4.3.29)

For the particular family of solutions we are considering here, we have Y 2 = 0 and Y 1 = −Y 3.

Straightforward evaluation then shows that the terms proportional to Y ` cancel and the

differentials reduce to

∂wA±
∣∣
α→∞ =

L∑
`=1

Y`±
w − p`

. (4.3.30)

That is, the differentials for a solution with poles at (4.3.24) with residues given in (4.3.25).

However, since the sum over Y`± does not vanish, we also have a pole at infinity, with residue

given by1

Y4
±
∣∣
α→∞ = −

3∑
`=1

Y`± = −iN . (4.3.31)

We can thus explain the limiting behavior of the partition function computed in sec. 4.3.2:

As α → ∞, we have n → 0. As explained below (4.3.23), the partition function of a four-

pole solution with D5 and NS5 poles with residues iN and M , respectively, is recovered from

(4.3.23) for J0 = 1. From fig. 4.3 we indeed see that

lim
n→0
J0(n) = 1 , (4.3.32)

1Solutions without monodromy and a pole at infinity have been discussed in more detail in [4].
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as we expect from the fact the the three-pole solution with puncture reduces to a four-pole

solution without puncture in that limit.

4.4 Implications for the brane web picture

As discussed in more detail in [49, 50], the AdS6 solutions without monodromy have a

compelling interpretation as supergravity description of 5-brane intersections. This clear

interpretation is facilitated by the very natural mapping between the parameters of the su-

pergravity solutions and the parameters fixing a 5-brane intersection: once the charges of

the external 5-branes are fixed, supersymmetry completely fixes an intersection, and corre-

spondingly a supergravity solution. With the introduction of punctures into the supergravity

solutions and 7-branes into the 5-brane picture, this mapping of parameters becomes more

involved. While there is still a clear relation of the supergravity parameters to the brane

charges in the string theory picture (the 7-brane charge is given directly by n2 while the

physical 5-brane charges are given by the Y`± via (4.1.7)), the process of engineering a super-

gravity solution that realizes a given set of charges is more complicated. Moreover, a general

analysis of the number of parameters alone is not sufficient anymore to completely specify

the map between supergravity solution and brane webs.

The partition functions of the dual SCFTs may be used to discriminate different inter-

pretations for the parameters of the supergravity solutions, since the partition functions are

expected to agree for solutions that describe physically equivalent brane webs which realize

the same SCFT. In the following we will discuss the mapping of parameters between super-

gravity solutions and brane webs, and the results on the partition functions in that context.

As shown in [74], the number of free parameters for a solution with L poles and I punctures

is given by

2L− 2 + 3I . (4.4.1)
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(a) (b) (c)

Figure 4.4: Fig. 4.4(a) shows a possible 5-brane web corresponding to the class of supergravity
solutions illustrated in fig. 4.1, with a puncture corresponding to two D7 branes. The brane web
shows a general deformation of the SCFT, not the fixed point. Fig. 4.4(b) and 4.4(c) show two
options for 5-brane webs with the same external 5-brane charges but 7-branes in a different face of
the web. The web in fig. 4.4(b) is related to the web in fig. 4.4(a) by 7-brane moves, the web in
fig. 4.4(c) is not.

2L−2 parameters naturally arise as a choice of residues, Z`
+, of a seed solution, subject to the

constraint that they sum to zero. The three extra parameters per puncture correspond to the

7-brane charge, the location of the branch point on a curve in Σ, and the orientation of the

branch cut. While the charge and orientation of the branch cut have a clear interpretation in

the brane web picture, the freedom to choose a location on Σ may seem puzzling. A crucial

point for the interpretation of the solutions is that, upon adding punctures, the residues at

the poles are modified and given by the Y`± in (4.1.6) instead of Z`
±, and that it is these

modified residues that correspond to physical 5-brane charges. To address the interpretation

of the parameters associated with the puncture, we have for that reason realized families of

configurations with fixed Y`± in sec. 4.3.2.

In sec. 4.3.2 we discussed the case of two NS5 brane poles, one D5 brane pole and

one puncture. For fixed orientation of the branch cut and fixed Y`±, we found a two-

parameter family of solutions, where the 7-brane charge n2 and the location of the puncture

parametrized by α are related as given in (4.3.20), and the remaining parameter is the ori-

entation of the branch cut. Fixing a complete set of 5-brane and 7-brane charges therefore

entirely fixes the configuration, up to the choice of branch cut orientation. Upon varying

the position of the puncture one may keep either the 5-brane charges or the 7-brane charge
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fixed, but not both. This picture is consistent with the parameter count in (4.4.1) as fol-

lows. In the presence of 7-branes, the D5-brane charge is not necessarily conserved at the

intersection. Fixing the 5-brane charges given by Y`± in the presence of punctures therefore

fixes 2L−1 parameters, instead of 2L−2. For one puncture that leaves two free parameters,

corresponding to the 7-brane charge and the orientation of the branch cut. For the case of

more than one puncture, we expect relative motions of the punctures as free parameters.

To better understand the remaining parameters for one puncture, we analyzed the sphere

partition function. At fixed 5-brane and 7-brane charges, we found that the partition function

does not depend on infinitesimal changes in the branch cut orientation – at least as long as

no poles are crossed. This is indeed consistent with the brane web picture: changing the

orientation of the branch cut in the example web shown in fig. 4.4(a), without crossing any

external 5-branes, changes the web, which describes a deformation of the SCFT. But it does

not change the conformal limit, in which the web collapses to an intersection at a point. This

would indeed suggest that the partition function of the UV fixed point, which is the theory

described by the supergravity solution, should be independent of the precise orientation of

the branch cut as long as it does not cross poles, precisely as we found in sec. 4.3.2.

The results on the partition function also allow for conclusions on the interpretation of

the position of the puncture. We assume that the location of the puncture on Σ corresponds

to which face of the web the 7-branes are located in, which naturally becomes a continuous

parameter in the “large-N” limit: with large numbers of external 5-branes, one finds a dense

grid of faces, and the choice of which face the 7-branes are placed in remains meaningful in

the conformal limit. One may then consider two options for supergravity solutions with the

same 5-brane charges but a puncture at different positions:

(i) They are related by literally moving 7-branes within the web, with the corresponding

Hanany-Witten brane creation of 5-brane prongs stretching between the 7-branes and

the 5-branes of the web.

(ii) They correspond to genuinely different brane webs, where the 7-branes are placed
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(a) (b)

Figure 4.5: Starting from the web shown in fig. 4.4(a) and moving the 7-branes out of the web
along their branch cuts produces 5-brane prongs stretching between the 7-branes and the 5-branes
of the web, with avoided intersections due to the s-rule shown as broken lines.

in different faces, without 5-brane prongs stretching between the 7-branes and the

5-branes.

The two options are illustrated for a particular choice of 5-brane web in fig. 4.4. In case (i),

one would expect the 7-brane charge to not vary as the location of the puncture is changed

while keeping the external 5-brane charges fixed, as is clearly borne out by fig. 4.4(b). The

field theory would remain unchanged as the location of the puncture is changed, and the

same would be expected for the S5 partition function of the SCFT described by the web. In

case (ii), one would expect the 7-brane charge that is required to keep the external 5-brane

charges fixed to vary as the location of the puncture is varied, as is exhibited in fig. 4.4(c).

The webs would describe genuinely different SCFTs and the partition functions would be

expected to differ. As we found in sec. 4.3.2, the charge has to be related to the location

of the branch cut in a non-trivial way, as is given in (4.3.20), to preserve the external 5-

brane charges. Moreover, the dependence of the partition function on the remaining free

parameter is non-trivial, as can be seen explicitly from the plot in fig. 4.3. Both of these

results are inconsistent with case (i), but are very well in line with option (ii). Our results

show that solutions with the same 5-brane charges but punctures at different points in Σ

describe genuinely different brane webs and dual SCFTs, and the webs in fig. 4.4(a) and

4.4(c) appear as natural brane web realizations of the solutions.

The parametrization of J , which yields the entanglement entropy for a ball shaped
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region or equivalently the sphere partition function via (3.3.5), was chosen in (4.3.23) such

that J0 = 1 reproduces the partition function for a 4-pole solution with D5-brane poles

and NS5-brane poles with residues M and iN , respectively, as computed in [4]. One might

expect that a solution with 3 poles and a puncture is related to a solution with 4 poles and

no puncture via Hanany-Witten transitions: pulling the D7-brane out of the 5-brane web

produces a D5 brane whenever an NS5 brane is crossed, and one may suspect to get back

to a solution with no puncture but an extra pole in this way. This was described in detail

for an SU(2) web in [41]. However, for brane webs with large N and M , and a D7 brane

in a generic face of the web, we do not expect such a relation. The reason is illustrated in

fig. 4.5: due to the s-rule [62, 75], which states that no two D5 branes ending on the same

7-brane can end on the same NS5 brane while preserving supersymmetry, one would create

avoided intersections in the process of pulling the D7 branes out of the web. These avoided

intersections remain even if the D7-branes are moved off to infinity, and this process does

therefore not lead back to a pure 5-brane web. This explains why the partition functions

for the supergravity solutions computed in sec. 4.3.2 do in general not agree with that of a

4-pole solution without puncture.

However, as discussed in sec. 4.3.3, we can recover a 4-pole solution without monodromy

by moving the puncture along its branch cut towards the boundary of Σ, while scaling up

the 7-brane charge such that the physical 5-brane charges remain invariant. This limiting

procedure can be interpreted in the brane web picture as follows. For a given 7-brane we

can define the notion of a distance to the “boundary of the web” as the number of 5-branes

that cross its branch cut. For example, for the 7-branes shown in fig. 4.4(a), this distance

is 2. The limit discussed in sec. 4.3.3 can then be interpreted as increasing the number of

D7-branes while placing them in faces such that their distance to the “boundary of the web”

decreases. The transition from the web in fig. 4.4(a) to the web in fig. 4.4(c) gives an example

of one step in this limit. The external 5-brane charges are the same for the two webs, but the

distance to the “boundary of the web” is decreased from 2 to 1 in going from 4.4(a) to 4.4(c),
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(a) (b)

Figure 4.6: Starting from the web shown in fig. 4.4(c), where the branch cut of each 7-brane is
crossed by only one 5-brane, and moving the 7-branes out of the web, produces a pure 5-brane
web with no avoided intersections. Vertically aligning the D7-branes in the web on the right hand
side with the external D5 branes turns the web into an intersection of D5 and NS5 branes. This
deformation corresponds to a change of the flavor masses; the conformal UV fixed point, which is
described by the supergravity solution, remains the same.

while the number of D7 branes is doubled. For a supergravity solution with a puncture at a

generic point on Σ, the distance to the “boundary of the web” of the corresponding 7-branes

will be a generic number greater than one. But as the puncture is moved along its branch

cut towards the boundary of Σ, this number decreases, until the 7-branes are eventually

separated from the asymptotic region by only one 5-brane. Crossing this remaining 5-brane

then produces 5-branes via the Hanany-Witten effect, with no constraints from the s-rule

and no avoided intersections. For the web in fig. 4.4(c) this step is shown in fig. 4.6. The

7-branes may now be moved off to infinity and we recover a pure 5-brane intersection. In

this particular case that is an intersection of D5 and NS5 branes. This gives a brane web

explanation for the fact that the partition function of a 3-pole solution with puncture agrees

with the partition function of a 4-pole solution without puncture in the limit of sec. 4.3.3.
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mathématiques d’aujourd’hui - Lyon, 25-29 juin 1984, no. S131 in Astérisque,
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