
UNIVERSITY OF CALIFORNIA

Los Angeles

Curricula-Driven Approaches for

Efficient Model Training

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Elvis Nunez

2024

© Copyright by

Elvis Nunez

2024

ABSTRACT OF THE DISSERTATION

Curricula-Driven Approaches for

Efficient Model Training

by

Elvis Nunez

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Stefano Soatto, Chair

As deep learning models and datasets continue to scale up, the financial and environmental

costs associated with training these models have grown considerably over the past decade.

While hardware accelerators—such as GPUs and TPUs—have made strides in efficiency,

these gains are insufficient to offset the training demands of contemporary models. To

move beyond the limits of hardware improvements alone, we pursue a complementary

approach of developing more algorithmically-efficient training methods. In particular, we

explore dynamically modulating the capacity of neural networks during training in service

of improving training efficiency. Traditional training methods often assume a fixed model

capacity and dataset complexity during the training process. However, we demonstrate

that utilizing the model’s full capacity for the entire duration of training is unnecessary and

can lead to excessive resource consumption, overfitting, and slow convergence. To this end,

we explore several approaches for dynamically modulating both model capacity and data

complexity during training. For the model capacity, we consider techniques like dynamic

model compression and modifications to the underlying architecture. For data complexity, we

ii

consider dynamic adjustments to the input resolution. Central to our approaches are distinct

curricula, each governing how the model’s capacity and data complexity evolve throughout

training. By modulating capacity in alignment with the model’s learning stage, we reduce

unnecessary computation while maintaining the model’s performance. We demonstrate the

effectiveness of this modulation across a wide range of vision and language tasks, as well as

for various architectures.

iii

The dissertation of Elvis Nunez is approved.

Jonathan Chau-Yan Kao

Cho-Jui Hsieh

Aditya Grover

Stefano Soatto, Committee Chair

University of California, Los Angeles

2024

iv

To my parents.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Deep Learning Advancements and the Need for Efficient Training 1

1.2 Curriculum-Based Training: Dynamic Modulation of Model and Data Com-

plexity for Efficient Model Training . 3

2 Timing Matters: Identifying When Neural Networks Are Most Amenable

to Pruning . 8

2.1 Identifying Early Pruning Periods . 9

2.2 Experiments . 12

2.2.1 Early (Global) Pruning Periods . 13

2.2.2 Early (Local) Pruning Periods . 20

2.3 Linear Network Analysis . 24

2.3.1 Experimental Setup of Teacher-Student Network 25

2.3.2 Linear Network Analysis Results . 26

2.3.3 Extrapolating from Linear Networks To Deep Non-Linear Networks . 29

2.4 Discussion . 30

2.5 Appendix . 31

2.5.1 Training Details . 31

3 Dynamic Compression During Training for Real-Time Adaptive Inference 32

3.1 Overhead of Adaptive Inference by Deploying Multiple Models 33

3.2 Compressible Subspaces for Real-Time Adaptive Inference 35

vi

3.2.1 Compressible Lines . 35

3.2.2 Compressible Points . 37

3.2.3 Curriculum-Based Compression . 38

3.2.4 Compression Methods . 39

3.2.5 Circumventing BatchNorm Recalibration 43

3.2.6 Real-Time Compression Analysis . 45

3.3 Experiments . 45

3.3.1 Unstructured Sparsity . 47

3.3.2 Structured Sparsity . 49

3.3.3 Quantization . 51

3.3.4 Confirming the Linear Subspace Accuracy-Efficiency Trade-Off 54

3.4 Discussion . 55

3.5 Appendix . 57

3.5.1 Training Details . 57

3.5.2 Baseline Model Accuracies . 57

3.5.3 Memory and FLOPS Footprint of Compressed models 57

4 Curriculum-Based Multiscale Training . 61

4.1 Overview of Image Data Samplers . 62

4.1.1 Curriculum-Based Multi-Scale Variable Batch Size Sampler 64

4.2 Why Train With Multiscale Samplers? . 66

4.2.1 Faster Training . 66

4.2.2 Robustness . 67

4.2.3 Regularization . 70

vii

4.3 Multiscale Training Beyond ResNet and Classification 72

4.3.1 CNNs, Transformers, and Lightweight Image Classification Models . . 73

4.3.2 Object Detection with Mask R-CNN 74

4.4 Efficient Training via Progressive Compound Scaling 76

4.4.1 Progressive Compound Scaling . 76

4.4.2 ResNet-50 Progressive Compound Scaling 79

4.5 Discussion . 82

4.6 Appendix . 83

4.6.1 Training Details . 83

4.6.2 Multi-GPU vs. Single-GPU Training With Multiscale Samplers . . . 83

5 Cross-Attention and Curriculum-Based Masking for Efficient Masked Au-

toencoders . 86

5.1 Masked Autoencoders for Audio and Video 87

5.1.1 Masked Audio Video Learners (MAViL) 87

5.1.2 Diffusion-Based Masked Audio Video Learners (DiffMAViL) 89

5.2 Enhanced Training Efficiency . 90

5.2.1 Leveraging Cross-Attention . 90

5.2.2 Curriculum-Based Masking Ratio . 90

5.3 Experiments . 92

5.3.1 Benefits of Diffusion, Cross-Attention, Curriculum-Based Masking, and

Adaptive Batch Sizes . 93

5.3.2 FLOPS Analysis . 96

5.4 Discussion . 97

viii

5.5 Appendix . 97

5.5.1 Training Details . 97

6 Efficient Adaptation of Hybrid State Space Models to Long Sequences of

Tokens . 100

6.1 Hybrid SSMs: Complementing Fading Memory with Eidetic Memory 101

6.2 Span-Expanded Attention . 102

6.2.1 Attention . 103

6.2.2 Amnesic Attention . 104

6.2.3 Eidetic Retrieval Attention . 104

6.2.4 HyLoRA: Training SE-Attn with LoRA 107

6.3 Experiments . 108

6.3.1 Experimental Setup . 108

6.3.2 Mamba-2-Hybrid . 109

6.3.3 Llama1 7B . 114

6.3.4 Ablations on Mamba-2-Hybrid . 116

6.3.5 HyLoRA for Hybrid Models and the Subtle Pitfalls of Perplexity . . . 117

6.4 Runtime Analysis . 119

6.5 Discussion . 121

6.6 Appendix . 122

6.6.1 Training Details . 122

6.6.2 Retrieval with Landmark Tokens . 123

6.6.3 RULER Task Definitions . 124

7 Conclusion and Future Work . 128

ix

References . 130

x

LIST OF FIGURES

2.1 Early pruning periods correlate with tr(F). Blue points denote the test

accuracies of models pruned at a 90% sparsity level at the corresponding epoch

t and fine-tuned for 200 � t epochs. The red curve denotes the trace of the

Fisher Information Matrix of the baseline (unpruned) models computed over the

training set. The mean and standard deviation of three random seeds are plotted.

(a): ResNet18 on CIFAR-10. Baseline accuracy: 95.3 ± 0.06. (b): VGG11 on

CIFAR-10. Baseline accuracy: 94.7 ± 0.07. (c) ResNet18 on CIFAR-100. Baseline:

77.3 ± 0.1. (d): VGG11 on CIFAR-10. Baseline accuracy: 76.03 ± 0.11. 13

2.2 Models pruned via a Fisher Information criterion exhibit an early

pruning period. Rather than prune weights via a magnitude selection criterion,

here we use the weights’ Fisher Information as measure of importance. 15

2.3 The early pruning period correlates with the KLUniform metric. Models

are trained on CIFAR-100 at a 90% sparsity rate. The yellow curve denotes the

KLUniform metric of the baseline (unpruned) models computed over the training

set. We observe that KLUniform correlates with the test accuracies of the pruned

models. (a): Models trained with an exponential learning rate schedule. Baseline

accuracy: 77.4%. (b): Models trained with a cosine schedule. Baseline accuracy:

78.4%. (c): Models trained with a linear schedule. Baseline accuracy: 78.4%. . . 16

2.4 Early pruning periods emerge across models of various sizes. We train

ResNet20/32/44/56/110 on CIFAR-10 for 200 epochs. At every 20th epoch t,

we prune 90% of the models’ parameters and fine-tune for 200 � t epochs. We

observe that there is a period early in training when pruning the model performs

best. Baselines accuracies: ResNet20: 92.2%, ResNet32: 93.1%, ResNet44: 93.3%,

ResNet56: 92.5%, ResNet110: 93.94. 17

xi

2.5 Models pruned at various compression levels perform best when pruned

near the peak of tr(F). We train a ResNet18 model on CIFAR-10 for 200

epochs. At every 20th epoch t, we prune either 80%, 90%, or 95% of the model’s

parameters via unstructured magnitude-based pruning. Performance of pruned

models correlates with the peak of the dense model’s FIM trace. 18

2.6 The learning rate schedule modulates the length of the memorization

phase and when the early pruning period occurs. Models are pruned at

90%. (a): Models trained with an exponential learning rate schedule. Baseline

accuracy: 95.3%. (b): Models trained with a cosine schedule. Baseline accuracy:

95.0% (c): Models trained with a linear schedule. Baseline accuracy: 95.0%.

When fine-tuning pruned models, we use the same schedule used to train the

baseline models. 19

2.7 We train models with exponential, cosine, and linear learning rate

annealing schedules. Pruned models follow the same learning rate schedule as

their baseline model, with the max learning set as defined in Section 2.1. 20

2.8 How well a model fits the data influences the correlation strength

between a model’s early pruning period and the trace of its FIM. We

trained a ResNet18 model on CIFAR-10 with varying weight decay coefficients.

Each model was then pruned at varying points throughout training and fine-tuned

for the remaining epochs. (a): Weight decay coefficient 5 ⇥ 10�3; this baseline

model underfit the data. Baseline: 93.4%. (b): 5⇥ 10�4; this baseline model fit

the data well. Baseline: 95.3%. (c): 5⇥ 10�5; this baseline model overfit the data.

Baseline: 92.8%. 21

xii

2.9 Early pruning periods correlate with tr(F) when models are pruned

at a local level. Blue points denote the test accuracies of models pruned at a

90% sparsity level at the corresponding epoch t and fine-tuned for 200� t epochs.

The red curve denotes the trace of the Fisher Information Matrix of the baseline

(unpruned) models. The mean and standard deviation of three random seeds

are plotted. (a): ResNet18 on CIFAR-10. Baseline accuracy: 95.3 ± 0.06. (b)

ResNet18 on CIFAR-100. Baseline: 77.3 ± 0.1. 22

2.10 Early pruning periods emerge across models of various sizes when

pruned at a local level. We train ResNet20/32/44/56 on CIFAR-10 for 200

epochs. At every 20th epoch t, we prune 90% of the models’ parameters and

fine-tune for 200� t epochs. We observe that there is an optimal time to apply

pruning early in training. Baselines accuracies: ResNet20: 92.2%, ResNet32:

93.1%, ResNet44: 93.3%, 56: 92.5%, 110: 93.94%. 22

2.11 Models pruned via local unstructured pruning at various compression

levels perform best when pruned near the peak of tr(F). We train a

ResNet18 model on CIFAR-10 for 200 epochs. At every 20th epoch t, we prune

either 80%, 90%, or 95% of the model’s parameters via unstructured magnitude-

based pruning. Performance of pruned models correlates with the peak of the

dense model’s FIM trace. 23

2.12 The learning rate schedule modulates the length of the memorization

phase and when the early pruning period occurs for models pruned at a

local level. Models are pruned at 90%. (a): Models trained with an exponential

learning rate schedule. Baseline accuracy: 95.3%. (b): Models trained with a

cosine schedule. Baseline accuracy: 95.0% (c): Models trained with a linear

schedule. Baseline accuracy: 95.0%. When fine-tuning pruned models, we use the

same schedule used to train the baseline models. 23

xiii

2.13 The early pruning period and the trace of a model’s FIM are correlated

when the model is pruned at a local level. We trained a ResNet18 model on

CIFAR-10 with varying weight decay coefficients. Each model was then pruned at

varying points throughout training and fine-tuned for the remaining epochs. (a):

Weight decay coefficient 5⇥ 10�3; this baseline model underfit the data. Baseline:

93.4%. (b): 5⇥ 10�4; this baseline model fit the data well. Baseline: 95.3%. (c):

5⇥ 10�5; this baseline model overfit the data. Baseline: 92.8%. 24

2.14 Linear Networks Exhibit an Optimal Pruning Period. We train a two-

layer linear network on synthetic data for 104 epochs. Each point represents the

train/test loss of the model pruned with 90% sparsity rate at epoch t, and then

trained for the remaining 104� t epochs. We observe that the early pruning period

occurs near the epoch when the model begins to overfit. 27

2.15 The early pruning period of a linear network occurs after learning the

most salient features, and before fitting noise. We consider a two-layer

fully connected linear network which learns the mapping ŷ = W2W1x where W2W1

aims to approximate W which has rank 3 with singular values 5, 3.5, 2. Dashed

blue lines are the singular values of W . We prune the network at different epochs

t and continue training for 104 � t epochs. We plot the singular values of W2W1

throughout training. each subplot prunes the network at a different training epoch

with a sparsity rate of 90%. (a): Pruning the network at epoch 0 (before training)

yields to a network that does not learn the salient features of W . (b): Pruning

the network at the end of training produces a model that captures salient features,

but also a lot of noise in the data. (c)-(d): Pruning too early leads to a network

that does not adequately learn the salient features of W . (e): Pruning around

epoch 5000 yields a model that captures salient features well without fitting too

much to noise. (f)-(g): Pruning too late in training yields a model that fits too

much to noise. 28

xiv

2.16 Similar to linear networks, the optimal time to prune a deep non-linear

network occurs before convergence/overfitting. We train a ResNet18 model

on CIFAR-10 and plot the test accuracy throughout training in green. Moreover,

we prune the model with 90% sparsity rate at various epochs and plot the final test

accuracy in blue. We observe that the optimal performance of the pruned models

occurs before the test accuracy of the saturates, suggesting that the optimal

pruning period occurs before “overfitting,” though due to regularization during

training, we observe saturation rather than overfitting. (a): Pruning using global

pruning. (b): Pruning using local pruning. 29

3.1 Storing a set of BatchNorm parameters for every compression configu-

ration is expensive. We visualize the parameter overhead in Megabytes (MB)

for storing an extra set of pre-calibrated BatchNorm statistics for every possible

sparsity configuration between 0% sparsity and the given compression level. Our

method avoids this overhead by eliminating the need for storing BatchNorm

statistics (Section 3.2.5). 33

3.2 Depiction of our method for learning a compressible linear subspace.

Our linear subspace of networks !⇤ is parameterized by ↵ 2 [↵1, ↵2]. Networks

with ↵ ⇡ ↵2 exhibit high accuracy and low efficiency, while networks with ↵ ⇡ ↵1

trade off accuracy in favor of high efficiency. By varying ↵ 2 (↵1, ↵2), we obtain a

spectrum of networks which exhibit a strong accuracy-efficiency trade-off. 35

xv

3.3 LCS progressive compression for unstructured pruning. (a) When training

a compressible line via unstructured pruning, our LCS algorithm progressively

increases the compression strength following Algorithm 2. (b): When training

a compressible point via unstructured pruning, our LCS algorithm trains the

model at the weakest sparsity level (typically zero compression) for a specified

warm-up period, and then compresses the model at random compression levels as

in Algorithm 3. Compression via quantization follows a similar curriculum, but

chooses random bit widths rather than sparsity levels. Compression via structured

pruning follows the sandwich rule [125]. 41

3.4 Compressing networks corrupts their BatchNorm statistics. Left : Analy-

sis of observed batch-wise means µ̂ and stored BatchNorm means µ during testing

for models trained with TopK unstructured sparsity. The models are trained with

different target sparsities and evaluated with various inference-time sparsities.

Middle: Models trained in the structured sparsity setting with the Discrete and

Sandwich sampling rules (see Section 3.3.2). Right : models trained with different

quantization bit widths. (a)-(b): The distribution of |µ � µ̂| across all layers.

(c)-(d): The average value of |µ� µ̂| for individual layers. (e)-(f): The correlation

between the average of |µ� µ̂| and test set error. 44

3.5 Learning compressible subspaces with unstructured sparsity. We compare

our method for unstructured sparsity using a linear subspace (LCS+L+GN) and

a point subspace (LCS+P+GN) to networks trained for a particular TopK target.

The TopK target refers to the fraction of weights that remain unpruned during

training. We train models to perform in the wide sparsity regime (left) and high

sparsity regime (right). 46

xvi

3.6 Learning compressible subspaces with unstructured sparsity. We compare

our method for unstructured sparsity using a linear subspace (LCS+L+GN) and

a point subspace (LCS+P+GN) to networks trained for a particular TopK target.

Here we, consider compression in the wide sparsity regime, where our models can

tolerate a wide range of compression ratios. 48

3.7 Learning compressible subspaces with unstructured sparsity. Our method

for unstructured sparsity using a linear subspace (LCS+L+GN) and a point

subspace (LCS+P+GN) compared to networks trained for a particular TopK

target. Here, we apply out method to efficient networks designed to operate on

edge devices. 48

3.8 Learning compressible subspaces with unstructured sparsity. We compare

our method for unstructured sparsity using a linear subspace (LCS+L+GN) and

a point subspace (LCS+P+GN) to networks trained for a particular TopK target.

Here, we train vision transformer networks to operate in the wide sparsity regime. 49

3.9 Learning compressible subspaces with unstructured sparsity. We compare

our method for unstructured sparsity using a linear subspace (LCS+L+GN) and

a point subspace (LCS+P+GN) compared to networks trained for a particular

TopK target. Here, we train vision transformer networks to operate in the high

sparsity regime. 50

3.10 Learning compressible subspaces with structured sparsity. We compare

our method for structured sparsity using a linear subspace (LCS+L+IN) and a

point subspace (LCS+P+IN) to networks trained with Sandwich and Discrete. 50

3.11 Learning compressible subspaces with structured sparsity. We compare

our method for structured sparsity using a linear subspace (LCS+L+IN) and a

point subspace (LCS+P+IN), to Sandwich and Discrete. Here, we apply our

method to efficient networks designed to operate on edge devices. 52

xvii

3.12 Learning compressible subspaces with structured sparsity. We compare

our method for structured sparsity using a linear subspace (LCS+L+IN) and

a point subspace (LCS+P+IN) applied to MnasNet, to MnasNet trained with

Sandwich and Discrete. 53

3.13 Learning compressible subspaces with quantization. We compare our

method for quantization using a linear subspace (LCS+L+GN) and a point

subspace (LCS+P+GN) to networks trained to operate at a particular bit width

target. 53

3.14 Learning compressible subspaces with quantization. We compare our

method for quantization using a linear subspace (LCS+L+GN) and a point

subspace (LCS+P+GN) to networks trained to operate at a particular bit width

target. 55

3.15 Our linear compressible subspace optimizes one end for accuracy and

one end for efficiency,. We perform standard evaluation of a linear subspace

with network f(!⇤(↵), �(↵)) (Learned line), and evaluation when evaluating with

reversed compression levels, f(!⇤(↵), �(1� ↵)) (Reversed line). Evaluation with

the reversed line performs significantly worse, indicating that one end is optimized

for accuracy, while the other for efficiency. 56

xviii

4.1 Single-scale fixed batch size (SSc-FBS) vs multiscale variable batch size

(MSc-VBS) vs multiscale variable batch size with curriculum (MSc-

VBSWC) samplers. In the SSc-FBS sampler, at each training iteration, each

GPU receives a batch of data that is the same shape throughout training. In the

MSc-VBS sampler, at each training iteration, each GPU will randomly sample a

training resolution and dynamically adjust the batch size to use a large batch for

small resolutions, and a small batch for large resolutions. In the MSc-VBSWC

sampler, the sample resolutions expand throughout the course of training while

leveraging the dynamic batch sizes of the MSc-VBS sampler. 63

4.2 MSc-VBSWC expansion schedules. We experiment with four expansion

schedules, ⇢(e), for MSc-VBSWC that control the rate at which spatial resolutions

expand throughout training. We use initial compression factor ⇢0 = 0.75, and

expansion period ⌧ = 0.5. 65

4.3 Multiscale samplers improve model calibration, reduce embedding

variance, and improve robustness. Here we train a ResNet-101 model with

single-scale and multiscale samplers. We find that models trained with multiscale

samplers are better calibrated, learn embeddings with lower variance, and are

more robust to changes in input scale. Moreover, multiscale samplers exhibit a

larger shift in entropy, suggesting a larger exploration of the weight space. . . . 69

xix

4.4 Multiscale samplers are implicit data regularizers. We train ResNet-101

on the ImageNet dataset at different values of classifier dropout (y-axis) and

stochastic depth drop rate (x-axis) with three samplers (SSc-FBS, MSc-VBS,

and MSc-VBSWC). ResNet-101 trained with multiscale samplers (MSc-VBS and

MSc-VBSWC) requires less regularization as compared to SSc-FBS. Here, the

values in each cell are relative to the bottom left cell. The top-1 accuracy of

ResNet-101 for bottom left cell (i.e., the values of classifier dropout and stochastic

depth are 0.0) for SSc-FBS, MSc-VBS, and MSc-VBSWC are 81.31%, 81.66%,

and 81.53% respectively. 70

4.5 Models trained with multiscale samplers are less sensitive to weight

decay strength. Here we train ResNet-101 models on ImageNet with varying

degrees of weight decay. Models trained with multiscale samplers enjoy a lower

drop in accuracy due to stronger weight decay. 71

4.6 ResNet-50 progressive compound model and resolution scaling schedule.

We consider a ResNet-50 model trained for 600 epochs with an expansion period of

⌧ = 0.75. (a) Effect of linearly scaling only the width, depth, or both of ResNet-50

following a linear expansion curriculum. (b): The progressive resolution scaling

following our MSc-VBSWC data sampler. 79

xx

4.7 ResNet-50 progressive compound model and resolution scaling grid

search. We progressively expand the width and depth of ResNet-50 while also

expanding the sample resolutions. The initial compression factors for width,

depth, and resolution are w0 2 {0.25, 0.5, 0.75, 1}, d0 2 {0.25, 0.5, 0.75, 1}, and

r0 2 {0.25, 0.5, 0.75, 1}, respectively. The expansion period search space is ⌧ 2

{0.5, 0.75, 0.95}. (a) Expanding only the model depth and width yields a sub-

optimal accuracy-efficiency trade-off, while resolution scaling alone provides a

strong trade-off. To improve efficiency beyond that of resolution scaling, compound

scaling works best. (b): The Pareto-optimal ordering for expansion is: resolution

scaling, followed by joint width and resolution scaling, followed by joint depth,

width, and resolution scaling. 81

5.1 DiffMAViL architecture. Similar to the audio-video encoder-decoder architec-

ture of MAViL [50], our DiffMAViL architecture takes as input RGB video frames

and audio spectrograms. The spectrogram and RGB frames are first randomly

masked, and visible patches from each modality are encoded via their respective

encoders. Masked patches are diffused and concatenated with the outputs of

the audio-video fusion encoder, which are then fed through the audio and video

decoders to obtain reconstructions of the input spectrogram and RGB frames. . 87

5.2 DiffMAViL’s video decoder leverages Cross-Attention for efficiency. For

a sequence with L tokens and masking ratio ⇢ 2 (0, 1), in standard Self-Attention

(left), ⇢L masked patches + (1� ⇢)L visible patches attend to ⇢L masked patches

+ (1� ⇢)L visible patches, for a complexity of O((⇢L + (1� ⇢)L)2) = O(L2). In

contrast, in Cross-Attention (right), ⇢L masked tokens attend to (1� ⇢)L visible

tokens, for a complexity of O(⇢(1� ⇢)L2). 91

xxi

5.3 DiffMAViL progressively decays the masking ratio while dynamically

adjusting the batch size. DiffMAViL begins training with a masking ratio

⇢1 which gradually decays to ⇢2 throughout training. As the masking ratio

decays, DiffMAViL processes more visible patches. To maximize GPU utilization,

DiffMAViL uses a large batch size when the masking ratio is large (fewer visible

patches), and a small batch size when the masking ratio is small (more visible

patches). 92

6.1 Span-Expanded Attention (SE-Attn) overview. SE-Attn is a sparse At-

tention mechanism used to expand the memory span of Hybrid SSMs. We do so

by reserving a fraction of the Attention context for tokens retrieved arbitrarily

far back in the past, and use summary tokens to efficiently look back with a

reduced compute cost. We call this reserve the ‘expansion span,’ and we populate

it with blocks of previous tokens (memory blocks). When new tokens arrive, a

similarity-based search compares the queries with past memory blocks to decide

which memory blocks are most relevant. Then, these retrieved memory blocks

are jointly processed with the queries via Attention. While the final Attention

mechanism always processes a fixed number of tokens, it can have a longer span

since tokens from arbitrarily far back in the past can be retrieved. 103

6.2 Fine-tuning with SE-Attn outperforms SW-Attn and S2-Attn on the

RULER benchmark when applied to Mamba-2-Hybrid. We fine-tune

Mamba-2-Hybrid with a context size of 8192 using various Attention variants. We

average over eleven RULER tasks, as explained in Section 6.6.3.4. Fine-tuning with

SE-Attn consistently outperforms SW-Attn and S2-Attn even when evaluating on

context sizes beyond the fine-tuning size. 111

xxii

6.3 Mamba-2-Hybrid RULER benchmark fine-tuned on natural language

+ code. We fine-tune Mamba-2-Hybrid with different Attention layers on a

dataset that consists of 70% natural language and 30% code and evaluate on

RULER. Compared to fine-tuning on only natural language (as in Fig. 6.2), we

see a substantial improvement on tasks like variable tracking (VT), and needle-in-

a-haystack tasks (NIAH), both of which require strong recall capabilities enabled

by fine-tuning with SE-Attn. 113

6.4 Mamba-2-Hybrid RULER benchmark fine-tuned on PG-19. We fine-tune

Mamba-2-Hybrid with different Attention layers on the PG-19 [84] dataset and

then evaluate on RULER. Compared to fine-tuning on other natural language

datasets with a greater variety of text as in Fig. 6.2, here we observe a degradation

in performance across all models, likely due to a distribution shift in the PG-19

data and the RULER tasks. 115

6.5 Fine-tuning with SE-Attn outperforms SW-Attn and S2-Attn on the

RULER benchmark when applied to Llama1. We fine-tune Llama1 with a

context size of 16384 using various Attention variants. We average over eleven

RULER tasks, as explained in Section 6.6.3.4. Fine-tuning with SE-Attn consis-

tently outperforms SW-Attn and S2-Attn even when evaluating on context sizes

beyond the fine-tuning size. 116

xxiii

6.6 SE-Attn ablations on Mamba-2-Hybrid. We plot the average of eleven

RULER tasks as described in Section 6.6.3.4. (a): SE-Attn-NoMem processes

chunks of tokens without retrieval, while SE-Attn-Random populates its expansion

span by retrieving random memory blocks for each chunk. We observe that our

Attention-based memory retrieval (SE-Attn) gives the strongest performance. (b):

Using SE-Attn with a chunk size chosen randomly from {2048, 4096} acts as a

regularizer and outperforms SE-Attn with fixed chunk sizes of 2048 and 4096. (c):

SE-Attn with larger memory blocks (i.e., more tokens per memory block) with

a smaller top-k tends to do better than smaller block sizes with a larger top-k.

(d): An expansion span consisting of 256 total tokens (8 memory blocks with

32 tokens in each) gives the strongest performance. 32S/32k is omitted due to

memory constraints. 118

6.7 HyLoRA outperforms LoRA and LoRA+ on Hybrid models. We fine-

tune Mamba-2-Hybrid with Full-Attn (a) and SE-Attn (b) using LoRA, LoRA+,

and HyLoRA. We find that LoRA and LoRA+ perform sub-optimally. HyLoRA

augments LoRA+ by additionally training the 1D convolution layers and yields

strong performance regardless of which Attention mechanism is used during

fine-tuning. 119

6.8 Fine-tuning with a larger LoRA rank using HyLoRA improves perfor-

mance on the RULER benchmark. We fine-tune Mamba-2-Hybrid using

HyLoRA with different LoRA ranks (we maintain a LoRA rank to alpha ratio of

2). We observe that fine-tuning with a larger rank produces stronger downstream

results on RULER, with some saturation with a rank of 64. 120

6.9 SE-Attn is faster than S2-Attn and Full-Attn, especially on long contexts.

The retrieval overhead of SE-Attn is minimal, with runtime similar to SW-Attn

(which has a limited pre-determined Attention span). 121

xxiv

6.10 A larger learning rate does not improve the performance of S2. Here

we fine-tune a Mamba-2-Hybrid model using S2-Attn with two different learning

rates: 2⇥ 10�4 and 2⇥ 10�5. The learning rate used in [14] is 2⇥ 10�5, which we

found to work well. For all other Attention layers, we found 2⇥ 10�4 to offer a

slight improvement over 2⇥ 10�5. 123

6.11 Summarizing memory blocks via average pooling of attention yields

stronger performance than summarizing them using ‘landmark’ tokens.

We fine-tune Mamba-2-Hybrid using our SE-Attn, and SE-Attn-LM, which sum-

marizes memory blocks with a landmark token (similar to [74]). We find that

our simpler SE-Attn produces a stronger model, likely due to the easier training

task which does not require adapting the model to leverage landmark tokens for

comression. 124

xxv

LIST OF TABLES

3.1 Our compressible subspaces require no retraining, no BatchNorm recal-

ibration, and are adaptive. We compare our method with a linear subspace

(LCS+L) and a point subspace (LCS+P) to LEC [67], NS [126], and US [125].

Note that “Adaptive” refers to post-deployment compression at any compression

level. |!| denotes the number of network parameters, |b| denotes the number

of BatchNorm parameters, and n denotes the number of compression levels for

models that do not support arbitrary compression levels. 37

3.2 Runtime characteristics for structured sparsity. Note that models of a

particular architecture and sparsity level all have the same memory, FLOPS, and

runtime, so we only report one value. Runtime was measured on a MacBook Pro

(16-inch, 2019) with a 2.6 GHz 6-Core Intel Core i7 processor and 16GB 2667

MHz DDR4 RAM. Memory consumption refers to the size of model weights in

the currently executing model. 54

3.3 Accuracies of baseline (non-compressed) models with BatchNorm. We

provide the accuracies of all models used when no compression is applied and are

trained with BatchNorm. cPreResNet20 is trained on CIFAR-10 and all other

models on ImageNet. 58

3.4 Runtime characteristics for unstructured sparsity in the high sparsity

regime. Note that models of a particular architecture and sparsity level all have

the same runtime characteristics (memory and FLOPS), so we only report one

value. Runtime was not measured because it requires specialized hardware. So,

we follow the standard practice of only reporting memory and flops. Memory

consumption refers to the size of nonzero model weights in the currently executing

model. 58

xxvi

3.5 Runtime characteristics for unstructured sparsity in the wide sparsity

regime. Note that models of a particular architecture and sparsity level all have

the same runtime characteristics (memory and FLOPS), so we only report one

value. Runtime was not measured, because it requires specialized hardware (so

most unstructured pruning works report memory and flops). Memory consumption

refers to the size of nonzero model weights in the currently executing model. . . 59

3.6 Runtime characteristics for quantized models. Note that models of a

particular architecture and quantization bit width all use the same memory, so we

only report one value. Runtime was not measured, because it requires specialized

hardware. Memory consumption refers to the size of model weights in the currently

executing model. 60

4.1 MSc-VBSWC with a cosine schedule has a stronger accuracy-efficiency

trade-off . We train a ResNet-101 architecture on ImageNet with linear, cosine,

polynomial, and multi-step expansion schedules. Due to its stronger accuracy-

efficiency trade-off, we adopt the cosine schedule for all of our MSc-VBSWC

experiments. 65

4.2 Training with a multiscale variable batch size sampler promotes faster

training. Here we train a ResNet-101 model on ImageNet with single-scale (SSc-

FBS) and multiscale (MSc-FBS, MSc-VBS, MSc-VBSWC) samplers. Multiscale

training retains the accuracy of the model trained with SSc-FBS while training

faster and being more computationally efficient. 67

xxvii

4.3 Training with multiscale samplers improves robustness. Here we evaluate

our ResNet-101 models that were trained with single-scale and multiscale samplers

on ImageNet. We report the top-1 accuracy (%) across multiple datasets and

observe that models trained with multiscale samplers consistently outperform

the single-scale model. ImageNetV2-MF refers to the “matched frequency” sub-

set of ImageNetV2, ImageNetV2-Th refers to the “threshold 0.7” subset, and

ImageNetV2-TI refers to the “top images” subset (see [87]). 70

4.4 Training models with multiscale samplers reduces compute and training

time while improving accuracy. We train multiple CNN architectures using

single-scale and multiscale samplers on the ImageNet dataset. Multiscale samplers

are able to consistently match the performance of the single-scale models while

reducing training time, optimization updates, and FLOPs. 72

4.5 Training vision transformer models with multiscale samplers reduces

compute and training time without a significant drop in accuracy. We

train ViT-B [21] and Swin-S [66] using single-scale and multiscale samplers on

the ImageNet dataset. Training with multiscale samplers reduces training time,

optimization updates, and FLOPs. We observe a drop in accuracy when training

with MSc-VBSWC which we hypothesize is due to the small training resolutions

at the beginning of training which may affect the patch embeddings. 74

4.6 Multiscale samplers reduce training FLOPs of lightweight CNNs without

a significant drop in performance. We train MobileNet models on ImageNet

using the recipes in [70]. We observe that training lightweight networks with

multiscale samplers produces models with accuracies that are competitive to the

SSc-FBS model while being more efficient to train. 74

xxviii

4.7 Training with multiscale samplers increases mAP while decreasing train-

ing time and compute. We report bounding box and instance segmentation

mAP@IoU of 0.50:0.05:0.95 for a Mask R-CNN [37] model with a ResNet-101

backbone. Compared to single-scale training, multiscale samplers achieve better

performance while reducing optimization updates by 46% and training FLOPs

by 37%. Models in the lower part of the table were trained without pre-training

the backbone model. We also note that effective batch sizes in object detection

tasks are much smaller than classification tasks (e.g., 4 vs. 256 per GPU). Conse-

quently, effective batch sizes at high resolutions are similar to the batch sizes at

the base/reference resolution, causing multiscale variable batch size samplers to

behave like multiscale fixed batch size samplers. Hence, we observe a large peak

GPU memory. 75

4.8 Reference batch shapes and min/max spatial resolutions for MSc-VBS

and MSc-VBSWC. The reference batch shapes for each sampler are used

to determine the batch size of the spatial resolutions sampled at each training

iteration. Reference batch shapes maintain a similar compute within each model

and are reported as (B, C, H, W). Spatial resolutions at each iteration are sampled

from resolutions interpolated between the min/max spatial resolutions. 84

4.9 Multiscale samplers may benefit from multi-GPU training. We train

ResNet-101 on ImageNet either on a single GPU or 4. We report the accuracy

aggregated over three seeds. 4-GPU models were trained for 600 epochs while

1-GPU models were trained for 150 epochs. We observe that training with

multiple GPUs enables multiscale samplers such as MSc-VBS and MSc-VBSWC

to outperform single scale samplers; however, when training on a single GPU,

single scale samplers (SSc-FBS) outperform multiscale samplers. 85

xxix

5.1 DiffMAViL improves training efficiency while maintaining accuracy. Our

DiffMAViL model integrates diffusion into the MAViL [50] framework along with a

Cross-Attention video decoder, linear masking ratio schedule, and a dynamic batch

size to improve efficiency. ⇤We present results for our own MAViL implementation

as the public release is not available at the time of writing. 93

5.2 Diffusion improves the performance of AudioMAE. We augment the

AudioMAE [51] framework with diffusion and observe that diffusion facilitates the

learning of richer audio representations in the absence of the video modality. Both

models (with and without diffusion) were pre-trained on the AS-2M [26] dataset. 94

5.3 DiffMAViL ablations. Compared to our baseline DiffMAViL model (R1),

replacing the video decoder’s Self-Attention modules with Cross-Attention reduces

pre-training FLOPS by 19% (R2). Replacing the fixed masking ratio of 0.8 with a

linear schedule that decays from 0.9 to 0.8 reduces FLOPS by 32% (R3). Adding

an adaptive batch size reduces pre-training wall-clock time by 18% (R4). 94

5.4 DiffMAViL Is More Amenable to Cross-Attention. Replacing Self-Attention

in DiffMAViL’s video decoder with Cross-Attention has a more positive effect on

downstream performance compared to MAViL with Cross-Attention. Efficiency

metrics are measured relative to the standard MAViL model in Table 5.1. 95

5.5 FLOPS reduction in audio/video encoders and decoders due to use

of diffusion, Cross-Attention, and a masking ratio schedule. The use

of Cross-Attention instead of Self-Attention in the video decoder reduces total

pre-training FLOPS by 19%. Adding a linear masking ratio curriculum further

reduces the pre-training FLOPS by 32%. Efficiency metrics are reported relative

to the standard MAViL model in Table 5.1. 96

xxx

5.6 Pre-training and fine-tuning hyperparameters. We use the same hyper-

parameters for both diffusion and non-diffusion models. ⇤: Batch size refers to

effective batch size. †:“R” refers to sampling random starting points with cyclic

rolling in time when loading waveforms. “N” refers to adding random noise to the

spectrogram. ‡: “BCE” is binary cross entropy, and “CE” is cross entropy. 99

6.1 Mamba-2-Hybrid fine-tuned with SE-Attn or SW-Attn preserves per-

plexity up to 32⇥ the pre-training context size. We fine-tune a Mamba-2-

Hyrbid model (pre-trained on a context size of 2048) on a context size of 8192

using various Attention variants. Then, we deploy them on longer context sizes

using the same Attention variant used during adaptation. 110

6.2 Fine-tuning Mamba-2-Hybrid with SE-Attn outperforms fine-tuning

with S2-Attn and SW-Attn on long-context natural language tasks. We

fine-tune Mamba-2-Hybrid with a context size of 8192 using various Attention vari-

ants. We evaluate PG-19 validation perplexity (PPL) and observe that fine-tuning

with SE-Attn preserves performance at longer contexts better than S2-Attn and

SW-Attn. On short-context tasks from the LM Harness suite, all models perform

similarly. On long context tasks from the LM Harness suite, SE-Attn outperforms

S2-Attn and SW-Attn. Abbreviations: Hella=HellaSwag, LAMB=LAMBADA,

WG=WinoGrande, SQA=ScrollsQAsper, SNQA=ScorllsNarrativeQA. 111

xxxi

6.3 Fine-tuning Mamba-2-Hybrid with SE-Attn on a natural language +

code dataset outperforms fine-tuning with S2-Attn and SW-Attn on

natural language tasks. We fine-tune Mamba-2-Hybrid with a context size of

8192 using various Attention variants on a dataset that consists of 70% natural

language and 30% code. We evaluate PG-19 validation perplexity (PPL) and

observe that fine-tuning with SE-Attn yields better perplexity scores than S2-Attn

and SW-Attn. On short-context tasks from the LM Harness suite, all models

perform similarly. On long context tasks from the LM Harness suite, SE-Attn

outperforms S2-Attn and SW-Attn. 112

6.4 Fine-tuning Mamba-2-Hybrid with SE-Attn on PG-19 outperforms fine-

tuning with S2-Attn and SW-Attn on long-context natural language

tasks. We fine-tune Mamba-2-Hybrid with a context size of 8192 using various

Attention variants on PG-19. We evaluate PG-19 validation perplexity (PPL) and

observe that fine-tuning with SE-Attn yields better perplexity scores than S2-Attn

and SW-Attn. On short-context tasks from the LM Harness suite, S2-Attn has

the strongest performance. On long context tasks from the LM Harness suite,

SE-Attn outperforms S2-Attn and SW-Attn. 114

6.5 Fine-tuning Llama1 with SE-Attn outperforms fine-tuning with S2-Attn

and SW-Attn on natural language tasks. We fine-tune Llama1 with a context

size of 16384 using various Attention variants. Similar to applying SE-Attn to

Mamba-2-Hybrid, here we again observe that fine-tuning Llama with SE-Attn

improves upon SW-Attn and S2-Attn . 115

xxxii

6.6 Mamba-2-Hybrid LoRA Ablations. We fine-tune Mamba-2-Hybrid with a

context size of 8192 with SE-Attn using different LoRA variants. We consider

LoRA, LoRA+, and HyLoRA (ours) and evaluate perplexity on the PG-19 dataset.

We observe that all LoRA variants yield similar perplexity results. However, as

depicted in Fig. 6.7 and Fig. 6.8, different LoRA variants yield substantially

different performances on more complex tasks. 120

6.7 RULER NIAH definitions. The ‘Needle-in-a-Haystack’ (NIAH) tasks in the

RULER benchmarks are defined by 6 parameters which modulate the difficulty

of the tasks. We consider 8 different NIAH tasks as defined above (these are the

default NIAH tasks in the RULER library). 126

xxxiii

ACKNOWLEDGMENTS

My interest in pursuing a PhD began during my undergraduate studies at Brown University.

While there, I had the fortune of taking APMA1655 with Caroline Klivans, which proved to

be a transformative experience. It was here that I became enthralled by how mathematical

principles could elegantly describe and predict behavior of stochastic behavior, turning

uncertainty into something quantifiable and understandable. Soon after, I took Nicolas

Garcia-Trillos’s courses on statistical learning, and Jerome Darbon’s courses on convex

analysis. The interplay between these disciplines sparked my interest in machine learning

and set me on the path to a PhD. I am deeply grateful to Caroline, Nicolas, and Jerome for

nurturing my curiosity and guiding me into these fields.

Following my time at Brown, I had the pleasure of meeting and working with Shantanu

Joshi at UCLA. His kind and supportive mentorship has played an essential role throughout

my PhD journey. Thanks to Shantanu, I was able to meet my advisor, Stefano Soatto,

who welcomed me into his research group. Stefano’s guidance and support have helped me

navigate challenges, deepen my understanding of complex problems, and refine my research

approach. His influence has been significant in my development, fostering my growth not

only as a machine learning researcher but also in my personal resilience and confidence.

During my PhD, I had the pleasure of interning at both Apple and Amazon. At Apple, I

learned a lot from my collaborators Max Horton, Sachin Mehta, Mohammad Rastegari, Ali

Farhadi, Anish Prabhu, Yanzi Jin, Anurag Ranjan, Thomas Merth, and Mehrdad Farajtabar.

At AWS, I had the privilege of being mentored by Luca Zancato, and I am grateful for the

guidance I received from my collaborators Ben Bowman, Michael Kleinman, Aditya Golatkar,

and Aditya Chattopadhyay. The support I received through these experiences has helped me

develop into the researcher I am today and I will always be grateful for it.

In the development of this dissertation, insightful questions and comments from my

committee, Jonathan Kao, Cho-Jui Hsieh, and Aditya Grover, have helped me refine and

xxxiv

strengthen this work. I am very grateful for their kind and compassionate guidance throughout

this journey.

My PhD was supported by two fellowships: an NSF NRT fellowship (2020-2021) and

an NSF GRFP fellowship (2021-2024). This funding allowed me to pursue my curiosities,

for which I am deeply grateful. Moreover, I thank Andrea Bertozzi for helping me navigate

the landscape of academic funding; her dedication to students has inspired me on both a

professional and personal level.

Finally, I would like to thank my parents, Carlos and Margarita, and my brother, Galileo.

Without their unwavering support, I would not be where I am today. Thank you to Sophie

for supporting me during the last and most difficult leg of this journey. I appreciate all of

you more than you know.

xxxv

VITA

2014-2018 Sc.B. in Applied Mathematics - Computer Science, Brown University

2018-2019 PhD Student in Applied Mathematics and Statistics, Johns Hopkins Uni-

versity (left without degree)

2021 Machine Learning Research Intern, Apple

2022 Machine Learning Research Intern, Apple

2023 Machine Learning Research Intern, Apple

2024 Applied Scientist Intern, AWS AI Labs

2020-Present PhD Student in Electrical and Computer Engineering, University of Cali-

fornia, Los Angeles

xxxvi

CHAPTER 1

Introduction

1.1 Deep Learning Advancements and the Need for Efficient Training

The proliferation of deep learning models can be traced back to the AlexNet [60] model from

2012. AlexNet demonstrated that deep convolutional networks (CNNs) could be successfully

trained on large-scale datasets such as ImageNet [20] and take advantage of GPU acceleration

for faster training. Since then, model design has evolved from basic convolutional networks

to more sophisticated architectures incorporating depth [96], modularity [102], and residual

connections [38]. In parallel, advancements in the field of Natural Language Processing

innovated on recurrent neural networks [91, 119] by developing sequence-to-sequence (seq2seq)

models [101] built on top of long short-term memory (LSTM) modules [42]. These seq2seq

models relied on encoding entire input sequences into a single fixed-size vector which the

decoder would then use to generate the output sequence, making it challenging for the model

to retain information from long sequences. The Bahdanau Attention Mechanism [7] addressed

these issues by allowing the decoder to access the entire sequence of encoder outputs rather

than just a single vector. The Self-Attention mechanism [111] is more general than Bahdanau

Attention and operates on the input sequence itself, computing relationships between all

tokens in parallel; this makes Self-Attention highly scalable. The coupling of Self-Attention

layers with fully-connected layers and residual connections led to the development of the

Transformer model, which facilitated a convergence between the Computer Vision and Natural

Language Processing fields.

1

Since the introduction of the Transformer architecture in 2017, it has become the founda-

tion for most modern neural networks. In vision, Vision Transformer models [21, 107] have

been developed for object recognition and segmentation tasks [11, 12, 66]. Moreover, the

coupling of language and vision modalities has led to innovations in generative modeling , such

as diffusion models [85, 89]. Large Language Models (LLMs) have become a primary research

focus as their ability to parse unstructured data such as text, images, and audio enables them

to generate coherent insights and predictions across diverse tasks. This capability has proven

especially impactful in natural language processing, where LLMs such as GPT [2], Claude

[5], and Llama [22], have revolutionized applications ranging from machine translation, to

question answering and content generation.

Scaling laws of LLMs [57] dictate that increasing compute leads to stronger-performing

models. This increase in compute manifests itself in increasingly larger models with more

parameters and larger training datasets. This trend is driving the increasing strain on both

economic and ecological resources as model sizes expand and more compute-intensive tasks

are undertaken. The cost of training OpenAI’s GPT-4, for example, is estimated to be $40M,

while Google’s Gemini Ultra is estimated to be $30M [15]. Moreover, the CO2 emissions

associated with training a simple Transformer model having 108 parameters—far fewer than

contemporary LLMs—are projected to be greater than those of several cars over their entire

lifetime (when accounting for hyperparameter tuning) [98]. These realizations underscore the

need for more efficient training of deep learning models.

A common critique of research in efficient training of deep learning models is that

training costs are incurred only once and are then amortized over the model’s deployment

cycle. However, this perspective overlooks the iterative nature of model development. In

practice, a model undergoes multiple rounds of training and extensive hyperparameter tuning

before deployment to identify the optimal configuration. By applying efficient training

techniques across these iterative cycles, we can achieve significant cost savings and reduce the

environmental footprint of model development. Motivated by this need for sustainable and

2

scalable model training, our work explores approaches that dynamically modulate training

complexity—in service of improving training efficiency—without sacrificing performance.

1.2 Curriculum-Based Training: Dynamic Modulation of Model and

Data Complexity for Efficient Model Training

Human learning follows a structured progression and aligns with the natural development of

the brain. From infancy to adulthood, educational complexity builds systematically, allowing

foundational skills to precede more advanced concepts. This progression is not arbitrary;

rather, individuals advance through a highly organized sequence of increasing difficulty. This

mechanism that steers the difficulty of each subsequent step is referred to as a “curriculum,”

and the learning process it underpins is commonly referred to as “curriculum learning” [10].

In the context of machine learning, curriculum learning involves systematically increasing

the complexity of tasks presented to a model; such training has been shown to improve

generalization.

In our work, we adopt the term “curriculum” to describe a schedule that governs how the

model’s capacity and the training data’s complexity evolve throughout training. By “model

capacity,” we mean the model’s ability to effectively represent and fit its training data, which

is largely determined by its architecture and the number of parameters it contains. By “data

complexity,” we mean the richness or variability of information present in the training data,

which can be approximated by attributes such as sample resolution.

Traditional deep learning training methods generally maintain a fixed model architecture

throughout training. Moreover, certain characteristics of the training dataset, such as batch

size or image resolution (or sequence length for sequence models), are also kept fixed. In

pursuit of algorithmically-efficient training methods, we explore the dynamic modulation of

the model’s architecture and/or training data during training.

A common approach for enhancing model efficiency, particularly during inference, is

3

network pruning. This technique involves removing redundant parameters from a trained

model, reducing its size and computational requirements without significantly compromising

accuracy. The standard pruning framework is typically iterative and involves training the

model to convergence, pruning it, fine-tuning it to recover from pruning-induced accuracy

loss, and then repeating this process until the desired model size and performance trade-off

is reached [34]. Recent works [3] reveal that models undergo two phases during training: a

memorization and a forgetting phase. During the memorization phase, the network encodes

information about the training data in its weights, and then sheds this information during the

forgetting phase. In Timing Matters: Identifying When Neural Networks Are Most Amenable

to Pruning (Chapter 2), we reveal a correlation between the performance of a model pruned

at different training stages, and the phase transition between the memorization and forgetting

phases. In particular, we show that pruning a model via one-shot magnitude-based pruning

near this transition phase yields a higher accuracy model than pruning at the end of training.

An analysis on linear networks further elucidates this behavior, suggesting that models are

most amenable to pruning after they have learned the most salient features of their training

data, but before they begin to overfit. This insight allows us to strategically determine the

optimal time to prune a model during training, allowing the remaining training steps to

proceed on a compressed model and eliminating the need for training to convergence before

pruning.

In Dynamic Compression During Training for Real-Time Adaptive Inference (Chapter 3),

we tackle both training and inference efficiency. A common assumption when deploying a

neural network onto a device is that the device will always have sufficient computational

resources available to run the model. However, battery power and competing applications

may preclude the device from running the model. In this work, we develop a training

framework that produces a model capable of dynamically adapting to the device’s resources.

We accomplish this by compressing the model—via pruning or quantization—according to

the device’s available resources. This is done on-device without the need for recalibration

4

nor fine-tuning. To enable this, we propose a training method based on Neural Network

Subspaces [121] that gradually compresses a linear subspace so that one end is optimized for

efficiency, while the other end is optimized for accuracy, yielding a strong accuracy-efficiency

trade-off. By gradually compressing the model during training, we reduce the cost of training

while simultaneously producing a model amenable to a spectrum of compression levels after

deployment.

In Curriculum-Based Multi-Scale Training (Chapter 4), we perform a thorough analysis

on the effect of modulating the data resolutions during the training of vision models. We show

that training with multiple resolutions acts as an effective regularizer, producing networks

that are more robust to changes in input scales and adversarial inputs. We introduce a

curriculum, MSc-VBSWC, that governs how sample resolutions expand throughout training

and simultaneously adjust the batch size accordingly, ensuring full utilization of accelerators.

We show that this training method reduces compute by > 30% while preserving or improving

baseline accuracy. To further reduce training compute, we also explore growing the model

architecture in tandem with the sample resolutions. Namely, we progressively increase the

model’s depth and width alongside the sample resolutions, effectively increasing model capacity

and data complexity in parallel. We present a Pareto-optimal order for this expansion and

demonstrate that this compound model/data scaling yields networks with a higher accuracy

than baseline models trained within a similar compute budget.

Training deep learning models on video data presents significant challenges due to the

inherent computational cost of processing high-dimensional, temporal information. Modeling

such temporal dependencies leads to substantial resource consumption during training, and

as the demand for more accurate and robust video models increases, the need for efficient

training methods has become increasingly critical. To address this, in Cross-Attention and

Curriculum-Based Masking for Efficient Masked Autoencoders (Chapter 5), we augment a

multi-modal masked autoencoder for audio and video [50] with a diffusion process. Our model,

DiffMAViL, leverages this diffusion process to replace self-attention layers with cross-attention

5

layers so that masked (diffused) tokens only need to attend to visible tokens. We couple

this with a masking ratio that progressively decays throughout training. Similar to our

MSc-VBSWC curriculum sampler, we dynamically adjust the batch size so that we process

more samples when the masking ratio is high (fewer visible patches), and fewer samples when

the masking ratio is low (more visible patches). We demonstrate that these changes reduce

training FLOPS by > 30% while maintaining the baseline model’s performance.

Transformer-based models have have become ubiquitous across many areas in deep

learning. However, the computational complexity of Attention—the primary building block

of Transformers—scales quadratically in the sequence length, making them difficult to train

on long sequences without access to large-scale computational resources. A recent class

of architectures that rivals Transformers is State Space Models (SSMs) [32, 31], whose

computational complexity scales linearly in the sequence length. This linear scaling is

achieved by maintaining a fixed-size compressed state representation of processed tokens.

While SSMs offer improved computational and memory efficiency, their fixed-size state is

inherently lossy. Recently, Hybrid SSMs [18, 19, 28, 63] have interleaved Attention layers

with SSM layers in an effort to mitigate this “fading” memory. However, due to the quadratic

scaling of Attention, training these models on sequences with many tokens remains costly. In

Efficient Adaptation of Hybrid State Space Models to Long Sequences of Tokens (Chapter 6),

we introduce a sparse Attention mechanism, Span-Expanded Attention (SE-Attn), which

enables training on long context tasks by processing long sequences in chunks, and retrieving

relevant information from previous chunks. Interestingly, we find that dynamically adjusting

the chunk sizes during training leads to improved generalization. We show that this Attention

mechanism improves performance on long context downstream tasks when used to fine-tune

Hybrid SSMs on long sequences. Further, in order to efficiently adapt Hybrid SSMs to

leverage this retrieval, we develop a variant of LoRA, HyLoRA, specific to Hybrid models

and show that our training framework improves upon existing methods.

Our work explores a variety of methods for improving the efficiency of model training. The

6

common denominator across these methods is the modulation of model capacity and/or data

complexity during training. Ultimately, our work aims to contribute to the ongoing effort to

make deep learning more accessible and sustainable. We demonstrate that model capacity and

data complexity need not remain static throughout training, and that dynamically modulating

these factors offers a means to reduce training costs and improve training efficiency without

compromising performance.

7

CHAPTER 2

Timing Matters: Identifying When Neural Networks Are

Most Amenable to Pruning

The pruning of neural networks involves removing unnecessary weights from a trained network

to create a compressed model with a reduced memory and compute footprint. “Unstructured”

pruning is a technique used to remove individual weights according to some criteria, without

regard to their arrangement or position within the model’s structure. The most common

criterion for pruning is magnitude pruning [34], where the weights with the smallest magnitudes

are pruned; however, more sophisticated gradient-based methods have also been explored

[62, 35]. Typically, pruning is applied after training in an iterative process, where a network

is repeatedly pruned and fine-tuned to maintain performance.

Since pruning effectively reduces the model’s capacity to fit its data, in this chapter we

investigate the question: How long during training does a model need to maintain a high

capacity? By “capacity,” we mean the size of the model, i.e., its number of parameters, which

we use as a proxy for the size of the hypothesis class that can be learned by the learning

procedure. We are particularly interested in determining if there exists a point during training

when a model’s capacity can be reduced, allowing the remainder of training to be conducted

on a compressed model, thereby improving efficiency without compromising performance.

We showcase a phenomenon in which an “early pruning period” occurs—a period during

training where a model becomes amenable to pruning, prior to convergence. Specifically, we

find that pruning the model during this period leads to better performance compared to

pruning either earlier or later. To help understand this behavior, we draw inspiration from

8

recent work showing that model training undergoes two phases—the “memorization” and

“forgetting” phases [3]—and we show that the early pruning period often correlates with these

two phases, suggesting that a large model capacity is only needed for the transient period of

training, after which the model can be effectively compressed. Further, we investigate this

behavior in the case of deep linear networks and conclude that pruning should occur after

the model has learned the most salient features of its training data, and before it begins to

overfit.

2.1 Identifying Early Pruning Periods

We consider a neural network f(x; ✓) parameterized by ✓ 2 Rd that takes as input x. We

train f for a total of T epochs and denote by ✓0!k, k 2 {1, 2, . . . , T} the parameters after

training for k epochs when starting from random initialization ✓0. In this chapter, we consider

the discriminative task of classification. We denote by Acc (f(x; ✓0!k), D) the test accuracy

of the model on a held-out dataset D. We are interested in compressing ✓0!k by pruning

some of its weights, i.e., setting some of its values to 0. We denote by Prune (✓0!k, r) the

pruning of r% of the parameters of ✓0!k.

Our goal is to identify a point during training, t < T , such that Acc (f(x; Prune (✓0!t, r)t!T
), D) '

Acc (f(x; ✓0!T) , D) where Prune (✓0!t, r)t!T
denotes the training of parameters Prune (✓0!t, r)

for an additional T � t epochs. In words, we want to train a model for t epochs, prune it,

and then continue training it for the remaining T � t epochs. Ultimately, we would like

t to be such that the performance of the pruned model, Prune (✓t, r)t!T
, is similar to the

performance of the non-pruned model, ✓T . Below we describe our pruning methods and the

metrics we use to help identify t. We emphasize that our pruning method does not entail

fine-tuning the pruned model beyond the original training compute of T epochs.

Pruning. We compress our model using unstructured pruning [34], which simply zeros out

some of the elements in ✓0!k by performing an element-wise multiplication with binary mask

9

Mr: Prune (✓0!k, r) = ✓0!k �Mr where the percentage of zeros in Mr 2 Rd is r. Mr is

constructed such that only the top (100 � r)% of weights of ✓0!k are kept, and all other

values are set to 0. In this chapter, the “top (100 � r)%” of weights refers to the weights

with the largest magnitude; however, as we discuss in the next section, we also consider

another metric based on the Fisher Information in order to decide which parameters to prune.

Our pruning is done in a one-shot manner, i.e., we only prune the model once at the target

sparsity level. We consider both global and local unstructured pruning. In global pruning,

we keep the top (100� r)% of parameters across the entire model. In local pruning, we keep

the top (100� r)% of parameters within each layer.

Compression Signal. Our task at hand is to judiciously decide when to prune a model

during training, and which parameters to prune. Toward this end, we begin by performing a

perturbation analysis on the predicted posterior distribution p(y|x; ✓) modeled by the network

f(x; ✓). Given a perturbation, ✓̄ = ✓ + �✓, one way of measuring the discrepancy between

posterior distributions parameterized by ✓ and ✓̄ is via the KL divergence, whose second-order

approximation is given by

E
x⇠Q̂(x)[KL(p(y|x, ✓̄)kp(y|x, ✓))] = �✓TF�✓ + o(�✓2) (2.1)

where Q̂(x) denotes the training dataset and F is the Fisher Information Matrix (FIM) given

by

F = E
x⇠Q̂(x)

⇥
Ey⇠p(y|x;✓)

⇥
r✓ log p(y|x; ✓)r✓ log p(y|x; ✓)T

⇤⇤
. (2.2)

The FIM can therefore be interpreted as a local measure that quantifies how much the

perturbation to a set of weights affects the predicted distribution. As such, while we focus on

10

magnitude-based pruning due to its simplicity, we also consider pruning parameters with a low

Fisher Information, which helps us decide which parameters to prune. However, computing

the full FIM given by Eq. (2.2) is computationally expensive, so we compute only its trace,

which is given by

tr(F) = E
x⇠Q̂(x)

⇥
Ey⇠p(y|x;✓)

⇥
||r✓ log p(y|x; ✓)||2

⇤⇤
. (2.3)

The trace of the FIM, denoted by tr(F), can be well-approximated using Monte Carlo

estimation [3]. For a set of samples {x(i)}N

i=1 sampled from the training dataset, and corre-

sponding predicted labels {ỹ(i)}N

i=1, we use Monte Carlo sampling to estimate Eq. (2.3) by

computing:

tr(F) ⇡ 1

N

NX

i=1

||r✓ log p(ỹ(i)|x(i); ✓)||2. (2.4)

To help us understand when a model is most amenable to pruning, we draw inspiration

from [3], where it was shown that models undergo two phases during training: a “memorization”

phase and a “forgetting” phase. These two phases can be observed by measuring tr(F) during

training. During the memorization phase, which occurs first, the model’s weights undergo an

increase in the Fisher Information; afterwards, the model undergoes a “forgetting” phase, in

which the Fisher Information of the weights decreases. Since the Fisher Information measures

how much the predicted distribution is affected by a perturbation to the weights, weights

with a small Fisher Information do not have a significant influence on outputs. The shift from

the memorization phase to the forgetting phase therefore marks the period when parameters

begin to become redundant. Hence, we explore whether tr(F), computed over the training

set via Eq. (2.4), can be used as a metric for deciding when to prune a model.

11

Efficient Compression Signal. While the trace of the FIM can be approximated using

Monte Carlo estimation as in Eq. (2.4), it requires additional gradient computations beyond

those computed for training the model, which will slow down training. To remedy this, we

propose an alternative gradient-free metric that can be computed efficiently during training. In

particular, we propose tracking the expected KL divergence between the predicted distribution,

p(y|x; ✓), and the uniform categorical distribution over C classes, pu(y|x) = 1
C

for y 2 [C]:

KLUniform , E
x⇠Q̂(x) [KL(pu(y|x)kp(y|x; ✓))] . (2.5)

At initialization, the network’s predicted distribution is nearly uniform; as training

progresses, the learned distribution diverges from the uniform distribution, and computing

Eq. (2.5) during training quantifies how this divergence evolves. We found that this metric

also correlates with a model’s early pruning period.

Learning Rate Scaling. In the standard train-prune-fine-tune framework [34], the learning

rate used to fine-tune the pruned model is smaller than the learning rate used to train the

dense model—typically 1
10th of the original learning rate. However, since we apply pruning

earlier in training, we found that simply thresholding the learning rate defined by the learning

rate scheduler at the pruning epoch worked well. More precisely, the maximum learning rate

used to train the pruned model at epoch t was max(⇤, LR(t)) where LR(t) is the learning

rate schedule’s value at epoch t and ⇤ is a lower bound on the learning rate.

2.2 Experiments

We conduct extensive experiments on ResNet [38] and VGG [96] models on the CIFAR-10 and

CIFAR-100 datasets [59]. Training details are provided in Sec. 2.5.1. We conduct experiments

with global pruning in Sec. 2.2.1, and local pruning in Sec. 2.2.2. For each of these settings,

12

(a) (b) (c) (d)

Figure 2.1: Early pruning periods correlate with tr(F). Blue points denote the test
accuracies of models pruned at a 90% sparsity level at the corresponding epoch t and fine-
tuned for 200� t epochs. The red curve denotes the trace of the Fisher Information Matrix
of the baseline (unpruned) models computed over the training set. The mean and standard
deviation of three random seeds are plotted. (a): ResNet18 on CIFAR-10. Baseline accuracy:
95.3 ± 0.06. (b): VGG11 on CIFAR-10. Baseline accuracy: 94.7 ± 0.07. (c) ResNet18 on
CIFAR-100. Baseline: 77.3±0.1. (d): VGG11 on CIFAR-10. Baseline accuracy: 76.03±0.11.

we ablate over model size, compression levels, learning rate schedules, and regularization.

2.2.1 Early (Global) Pruning Periods

In this section, we compress models via global unstructured magnitude-based pruning, where

we keep the top (100� r)% of parameters across the entire model.

Early pruning. Discriminative models can be effectively pruned after an initial transient

period. We trained a ResNet18 and VGG11 model on both CIFAR-10 and CIFAR-100 for

200 epochs, saving a model checkpoint after each epoch. After training, we loaded the model

at various saved checkpoints, t, pruned 90% of the model’s parameters using unstructured

magnitude-based pruning, and then resumed training for the remaining 200� t epochs with

the learning rate computed as explained in Sec. 2.1. Our results are provided in Fig. 2.1,

where we load and fine-tune globally-pruned models at every 20th epoch. This procedure

was repeated three times, and we show results for the mean ± the standard deviation across

the three trials (illustrated with the low opacity bands). As illustrated by the blue curve,

pruning the model early, i.e., around epoch 60-70, yields the highest-accuracy pruned model.

The baseline (non-pruned) CIFAR-10 ResNet18 model achieves an average test accuracy of

13

95.3%, while the ResNet18 CIFAR-100 model achieve an average of 77.3%. Hence, we observe

that the model can be pruned early while incurring a minor accuracy degradation of about

0.2% on CIFAR-10, and 1.8% on CIFAR-100—though this is a more challenging task with an

aggressive pruning rate. A more moderate level of sparsity can better preserve accuracy, as

shown in Fig. 2.5.

These results suggest that a large model capacity is needed for the model to memorize

sufficient information about the training data, i.e., cross loss landscape bottlenecks as

hypothesized in [3], but once this threshold is crossed, model capacity becomes expendable,

and shedding some of these weights can yield more efficient training without a significant

reduction in accuracy.

When to prune? The trace of the FIM [4] correlates with the performance of a pruned model,

suggesting its potential use as a metric for deciding when to prune a model during training.

The red curve in Fig. 2.1 depicts the trace of the FIM of the dense model computed on the

training data after every training epoch. We observe the “memorization” and “forgetting”

phases first discovered in [3]. In the memorization phase, we see an increase in the amount

of information about the dataset that is stored in the model’s weights; afterwards, in the

forgetting phase, we see a decrease of information. Crucially, we observe that the early pruning

period occurs around the peak of tr(F), that is, at the boundary between the memorization

and forgetting phases. This suggests that a model may be most amenable to pruning when it

is near the memorization/forgetting phase shift.

2.2.1.1 Fisher-based Pruning Criterion

As discussed in Sec. 2.1, the Fisher Information of a set of the model’s weights quantifies

how much the predicted posterior distribution is affected by a perturbation to these weights.

Hence, the Fisher Information of a set of weights can be interpreted as a measure of their

synaptic strength, whereby weights with a low Fisher Information can be considered irrelevant.

Next, we experiment with pruning weights based on their Fisher Information, removing

14

Figure 2.2: Models pruned via a Fisher Information criterion exhibit an early
pruning period. Rather than prune weights via a magnitude selection criterion, here we
use the weights’ Fisher Information as measure of importance.

weights with a small Fisher Information. In Fig. 2.2, we prune a ResNet-18 model at a

sparsity level of 90% and prune it according to a Fisher Information criterion. We again

observe an early pruning period that correlates with the FIM trace. This suggests that tr(F)

can be an effective pruning criterion. However, comparing the performance of this model

to the model pruned with the magnitude-based criterion, i.e., Fig. 2.6a in Sec. 2.2.1.3, we

observe that the magnitude-based criterion achieves a higher test accuracy. While tr(F) can

often be a good proxy for assessing how much the model has memorized about its training

data in aggregate, it may not be the best local measure for assessing parameter importance.

2.2.1.2 Efficient Compression Signal

To decide when to prune a model during training, we would like a metric that can be computed

efficiently. As discussed above, tr(F) can often be an effective signal for deciding when to

prune; however, computing tr(F) requires additional gradient computations beyond those

computed to train the model, which will slow down training. To remedy this, we propose a

more efficient metric, KLUniform (see Eq. (2.5)), which forgoes gradient computations. This

metric measures the divergence between the uniform distribution over the data’s labels (the

distribution that assigns equal probability to all labels) and the model’s learned posterior

15

(a) (b) (c)

Figure 2.3: The early pruning period correlates with the KLUniform metric. Models
are trained on CIFAR-100 at a 90% sparsity rate. The yellow curve denotes the KLUniform

metric of the baseline (unpruned) models computed over the training set. We observe that
KLUniform correlates with the test accuracies of the pruned models. (a): Models trained
with an exponential learning rate schedule. Baseline accuracy: 77.4%. (b): Models trained
with a cosine schedule. Baseline accuracy: 78.4%. (c): Models trained with a linear schedule.
Baseline accuracy: 78.4%.

distribution. In Fig. 2.3, we plot our KLUniform metric of the unpruned model trained on

CIFAR-100, along with the accuracies of the pruned models. Similar to the correlation

observed with tr(F) in Fig. 2.1, here we again see that the best performing pruned model

tends to be the one pruned near the inflection point of the metric. While the inflection point

of tr(F) represents a shift from the memorization phase to the forgetting phase of training,

the inflection point of KLUniform marks a shift of the predicted posterior distribution toward

the uniform distribution. This can also be interpreted as a “forgetting” phase, since a decrease

in KLUniform implies an attenuation of the model’s overconfident predictions. Moreover, we

observe that this metric also correlates with tr(F), suggesting KLUniform may be an efficient

gradient-free proxy for tr(F).

2.2.1.3 Ablations

In this section, we investigate the sensitivity of early global pruning periods to model size,

compression strength, learning rate schedules, and regularization strengths.

Effect of Model Size. We observe that models across a spectrum of sizes (i.e., number of

16

parameters) can be effectively pruned early in training. In Fig. 2.1, we showed results for

ResNet18, which has approximately 11.2 million (M) parameters, and was originally intended

for use on the ImageNet dataset and adapted for CIFAR. We further experimented with

early pruning on ResNet20/32/44/56/110, each of which was designed specifically for the

CIFAR datasets and range from having 0.27M parameters to 1.7M—all of which are smaller

than the previous ResNet18 model. We provide the performance of these models in Fig. 2.4.

For all model sizes, we again observe that the performance of pruned models correlates with

tr(F), where the early pruning period occurs near the memorization/forgetting phase shift.

We also note that training a small model for a fixed number of epochs, T , does not

perform as well as training a larger model for t < T epochs, pruning it, and then training for

T � t epochs. As shown in Fig. 2.1a, pruning ResNet-18 after around 60 epochs of training

and then fine-tuning it for 140 epochs yields a model with around 1.1M parameters with an

accuracy around 95.04%. In contrast, training the ResNet110 model in Sec. 2.2.1.3 without

any pruning yields a model with 1.7M parameters with an accuracy of 93.94% when trained

for 200 epochs. Hence, we conclude that a large capacity early in training is beneficial for

generalization.

Figure 2.4: Early pruning periods emerge across models of various sizes. We train
ResNet20/32/44/56/110 on CIFAR-10 for 200 epochs. At every 20th epoch t, we prune 90%
of the models’ parameters and fine-tune for 200� t epochs. We observe that there is a period
early in training when pruning the model performs best. Baselines accuracies: ResNet20:
92.2%, ResNet32: 93.1%, ResNet44: 93.3%, ResNet56: 92.5%, ResNet110: 93.94.

Varying Compression Levels. The benefits of pruning a model earlier in training are

agnostic to the sparsity rate. Our experiments thus far have considered compressing a model

by 90%—that is, removing 90% of its parameters with the smallest magnitudes. Next,

17

we investigate how the performance of early-pruned models varies with sparsity levels. In

Fig. 2.5, we provide results for a ResNet18 model pruned at multiple compression levels:

80%, 90%, and 95%. Models trained with a more moderate compression level exhibit the

highest performance. Nevertheless, the model pruned early at a 95% sparsity rate maintains

a competitive performance compared to its baseline (94.7% vs. 95.3%). Additionally, we

again observe that the early pruning period occurs near the memorization/forgetting phase

shift.

Figure 2.5: Models pruned at various compression levels perform best when pruned
near the peak of tr(F). We train a ResNet18 model on CIFAR-10 for 200 epochs. At every
20th epoch t, we prune either 80%, 90%, or 95% of the model’s parameters via unstructured
magnitude-based pruning. Performance of pruned models correlates with the peak of the
dense model’s FIM trace.

Effect of Learning Rate Schedules. The learning rate schedule can modulate the duration

of the memorization and forgetting phases during training, as depicted by the red curves in

Fig. 2.6, and hence can control when a model becomes amenable to pruning. Our previous

experiments utilized an exponential learning rate decay, which decayed the learning rate by

0.97 after every epoch. Here, we additionally train with cosine and linear decay schedules. In

Fig. 2.6, we observe that the peak of the tr(F) curve is dependent on the learning rate, with

cosine and linear schedules reaching the forgetting phase later in training. This suggests that

learning rate schedules determine the length of the memorization phase. In particular, as

depicted in Fig. 2.7, the exponential schedule decays much faster than the cosine and linear

18

(a) (b) (c)

Figure 2.6: The learning rate schedule modulates the length of the memorization
phase and when the early pruning period occurs. Models are pruned at 90%. (a):
Models trained with an exponential learning rate schedule. Baseline accuracy: 95.3%. (b):
Models trained with a cosine schedule. Baseline accuracy: 95.0% (c): Models trained with
a linear schedule. Baseline accuracy: 95.0%. When fine-tuning pruned models, we use the
same schedule used to train the baseline models.

schedules, suggesting that models enter the forgetting phase once the model has memorized

sufficient information and the learning rate has become sufficiently small. Nevertheless, we

continue to observe a correlation between the peak of tr(F) and when the pruned model

performs best.

Weight Decay Regularization. The strength of correlation between a model’s early pruning

period and the trace of the FIM hinges on the model’s ability to fit the data well. Our

previous experiments employed L2 regularization (“weight decay”) as a means of regularizing

the network. The weight decay coefficient controls the strength of how much model parameters

are decayed; larger coefficients impose stronger regularization, while smaller coefficients may

lead to insufficient regularization. Our experiments have thus far used a coefficient of 5⇥10�4,

which we found to perform well. To study the effect of the regularization strength on the early

pruning period, we retrained baseline models with coefficients of 5⇥ 10�3 and 5⇥ 10�5, and

applied early pruning to these models. Our results are summarized in Fig. 2.8. The baseline

model trained with a coefficient of 5⇥ 10�3 (Fig. 2.8a) underfit the data, while the the model

trained with a coefficient of 5 ⇥ 10�5 (Fig. 2.8c) overfit the data. All three cases exhibit

an early pruning period; however, we observe a weak correlation between when the early

19

Figure 2.7: We train models with exponential, cosine, and linear learning rate
annealing schedules. Pruned models follow the same learning rate schedule as their baseline
model, with the max learning set as defined in Sec. 2.1.

pruning period occurs and the trace of the FIM. In the case of overfitting, we hypothesize

that the weak regularization strength prompted the model to quickly memorize its training

data and subsequently enter its forgetting phase early, leading to the discarding of parameters

that may have become important later in training. Hence, the early pruning period occurs

later—toward the end of the forgetting phase—once the appropriate superfluous weights

can be identified. In the case of underfitting, the model receives larger gradient updates (as

evidenced by the larger tr(F) values, which are the norm of the gradients, as per Eq. (2.4)),

and so tr(F) may not begin to decrease until the learning rate is sufficiently small later in

training. Hence, while the early weights to prune may have become evident earlier in training,

tr(F) was not able to capture when this occurred. Collectively, these results suggest that a

model’s early pruning period and its FIM trace are most strongly correlated when the model

fits the data well.

2.2.2 Early (Local) Pruning Periods

In this section, we expand on Sec. 2.2.1 and show that models compressed via local unstruc-

tured magnitude-based pruning, where we keep only the top (100� r)% of parameters on a

per-layer basis, also exhibit early pruning periods.

20

(a) Underfitting (b) Good fit (c) Overfitting

Figure 2.8: How well a model fits the data influences the correlation strength
between a model’s early pruning period and the trace of its FIM. We trained a
ResNet18 model on CIFAR-10 with varying weight decay coefficients. Each model was then
pruned at varying points throughout training and fine-tuned for the remaining epochs. (a):
Weight decay coefficient 5⇥ 10�3; this baseline model underfit the data. Baseline: 93.4%. (b):
5⇥ 10�4; this baseline model fit the data well. Baseline: 95.3%. (c): 5⇥ 10�5; this baseline
model overfit the data. Baseline: 92.8%.

In Fig. 2.9, we recreate Fig. 2.1 using local pruning and again observe an early pruning

period. Moreover, we again see a correlation between the trace of the FIM, and the performance

of the pruned model.

2.2.2.1 Ablations

Next, we investigate the sensitivity of early local pruning periods to model size, compression

strength, learning rate schedules, and regularization strengths.

Effect of Model Size. Similar to global pruning, we observe that models across a spectrum

of sizes can be effectively pruned via local pruning early in training. In Fig. 2.10, we plot the

performance of various ResNet models and again observe that the performance of pruned

models correlates with tr(F).

Varying Compression Levels. As was the case for global pruning, the early pruning

period of models pruned via local pruning remain agnostic to the sparsity rate, as illustrated

in Fig. 2.11.

Effect of Learning Rate Schedules. We plot the effect of the learning rate schedule on

21

(a) (b)

Figure 2.9: Early pruning periods correlate with tr(F) when models are pruned at
a local level. Blue points denote the test accuracies of models pruned at a 90% sparsity
level at the corresponding epoch t and fine-tuned for 200� t epochs. The red curve denotes
the trace of the Fisher Information Matrix of the baseline (unpruned) models. The mean and
standard deviation of three random seeds are plotted. (a): ResNet18 on CIFAR-10. Baseline
accuracy: 95.3 ± 0.06. (b) ResNet18 on CIFAR-100. Baseline: 77.3 ± 0.1.

Figure 2.10: Early pruning periods emerge across models of various sizes when
pruned at a local level. We train ResNet20/32/44/56 on CIFAR-10 for 200 epochs. At
every 20th epoch t, we prune 90% of the models’ parameters and fine-tune for 200� t epochs.
We observe that there is an optimal time to apply pruning early in training. Baselines
accuracies: ResNet20: 92.2%, ResNet32: 93.1%, ResNet44: 93.3%, 56: 92.5%, 110: 93.94%.

22

Figure 2.11: Models pruned via local unstructured pruning at various compression
levels perform best when pruned near the peak of tr(F). We train a ResNet18 model
on CIFAR-10 for 200 epochs. At every 20th epoch t, we prune either 80%, 90%, or 95% of
the model’s parameters via unstructured magnitude-based pruning. Performance of pruned
models correlates with the peak of the dense model’s FIM trace.

(a) (b) (c)

Figure 2.12: The learning rate schedule modulates the length of the memorization
phase and when the early pruning period occurs for models pruned at a local
level. Models are pruned at 90%. (a): Models trained with an exponential learning rate
schedule. Baseline accuracy: 95.3%. (b): Models trained with a cosine schedule. Baseline
accuracy: 95.0% (c): Models trained with a linear schedule. Baseline accuracy: 95.0%. When
fine-tuning pruned models, we use the same schedule used to train the baseline models.

23

(a) Underfitting (b) Good fit (c) Overfitting

Figure 2.13: The early pruning period and the trace of a model’s FIM are correlated
when the model is pruned at a local level. We trained a ResNet18 model on CIFAR-10
with varying weight decay coefficients. Each model was then pruned at varying points
throughout training and fine-tuned for the remaining epochs. (a): Weight decay coefficient
5⇥ 10�3; this baseline model underfit the data. Baseline: 93.4%. (b): 5⇥ 10�4; this baseline
model fit the data well. Baseline: 95.3%. (c): 5⇥ 10�5; this baseline model overfit the data.
Baseline: 92.8%.

the early pruning period of models pruned with local pruning in Fig. 2.12. We observe that

the time at which the memorization/forgetting phase transition occurs is largely dependent

on the learning rate, as we saw for models pruned via global pruning. Moreover, we see that

the early pruning period also shifts along with this phase transition.

Weight Decay Regularization. In contrast to global pruning (Fig. 2.13), early pruning

periods of models pruned via local pruning correlate more strongly with the trace of the FIM,

as illustrated in Fig. 2.13.

2.3 Linear Network Analysis1

In this section, we explore early pruning periods in the context of simple linear networks.

This linear framework provides an analytically tractable model for understanding the learning

dynamics observed in more complex neural networks. Our analysis follows the teacher-student

paradigm considered in previous works [93, 94].

1
Experiments in this section were done while interning at AWS in collaboration with Michael Kleinman.

24

2.3.1 Experimental Setup of Teacher-Student Network

Teacher Network. We begin by assuming there is some underlying target function that

a “teacher” network aims to approximate. The teacher network takes x 2 Rdin and outputs

ỹ = Wx + ✏ where W 2 Rdout⇥din and ✏ ⇠ N
⇣
0, 1

dout
Idout

⌘
. The noise, ✏, represents the

error bias in statistical learning theory. More precisely, we assume there is some underlying

target function that has generated the data, and the student network aims to learn this

function, but instead learns the mapping ỹ = Wx + ✏ due to its limited capacity to fit the

target function. W is constructed as a random matrix with a fixed rank, r. In particular, we

construct W by considering its singular-value decomposition (SVD), W = UW⌃WV T

W
where

UW 2 Rdout⇥dout , ⌃W 2 Rdout⇥din , and VW 2 Rdin⇥din . UW and VW are set by sampling form

the Haar distribution. We set r elements along the diagonal of ⌃W to be nonzero so that the

rank of W is r.

Training/Test Data. Having defined the teacher network, we then use it to construct

synthetic data for the student network. The student network is trained to approximate the

teacher network. We first create the set, {xi}N

i=1 where xi 2 Rdin and xi ⇠ N
⇣
0, 1

din
Idin

⌘
.

Next, we construct the dataset Dtrain = {(xi, ỹi}N

i=1 where ỹi = Wxi + ✏ are the outputs of

the teacher network for input xi. The “true” labels are the denoised yi = Wxi, which yields

the test data Dtest = {(xi, yi)}N

i=1.

Student Network. The student network is a two-layer fully-connected network. The first

layer is parameterized by W1 2 Rdh⇥din , and the second layer by W2 2 Rdout⇥dh . For input

x 2 Rdin , the network outputs ŷ = W2W1x 2 Rdout .

Training Procedure. We construct D with N = din = dh = 100. We set the rank of W to

r = 3 with singular values 5, 3.5, and 2. We train the network using the dataset Dtrain with

a learning rate of 0.002 for 104 epochs and minimize the mean squared error loss given by

Eq. (2.6) via gradient descent. The test loss is measured over Dtest and is given by Eq. (2.7).

25

Ltrain =
NX

i=1

||ỹi �W2W1xi||22 (2.6)

Ltest =
NX

i=1

||yi �W2W1xi||22 (2.7)

2.3.2 Linear Network Analysis Results

We plot the train and test losses of our linear network after pruning at various epochs in

Fig. 2.14. Specifically, we prune the network at epoch t by 90% (via magnitude-based pruning)

and then continue training the model for an additional 104 � t epochs. We first observe that

pruning right at the outset (epoch 0) yields the worst performance. This is expected since

the pruning is done via magnitude-based pruning and no information about the training data

has been used in the pruning selection criterion. Moreover, we see that pruning the model

at the end of training (epoch 104) also yields a model with high error, as the model is not

fine-tuned to compensate for the pruning.

Notably, we observe that the test error exhibits an early pruning period between epochs

4000 and 5200—pruning the model at these epochs yields the lowest test error. Beyond epoch

5200, the test error begins to increase, while the training error continues to decrease. This

is indicative of overfitting, and suggests that the early pruning period of a model occurs

before it begins to over fit its training data. To investigate this further, we examine the

singular values of the student network’s learned approximation to W , given by W2W1. As

the student network fits noisy labels, as given by Eq. (2.6), we do not expect the learned

W2W1 to capture the salient features of W , i.e., the singular values of W , perfectly. However,

we expect the learned singular values to be similar to W .

In Fig. 2.15, we plot the singular values of W2W1 throughout training. When the network

is pruned prior to any training as in Fig. 2.15a, we see that the top three singular values of

W2W1 do not come close to the those of W ; hence, the model is underfitting. Pruning at the

26

Figure 2.14: Linear Networks Exhibit an Optimal Pruning Period. We train a two-
layer linear network on synthetic data for 104 epochs. Each point represents the train/test
loss of the model pruned with 90% sparsity rate at epoch t, and then trained for the remaining
104 � t epochs. We observe that the early pruning period occurs near the epoch when the
model begins to overfit.

end of training as in Fig. 2.15b yields a network whose top three singular values are close

to those of W , but the network has also learned many noisy features (as evidenced by the

band of smaller singular values); hence, this network has overfit to noise. Pruning too early

in training, such as in Fig. 2.15c, yields a sub-optimal network where we see that, despite

improving upon pruning at epoch 0, W2W1 has still not fit the salient features of W . Pruning

a bit later in training, such as at epochs 3000 or 5200 as in Figs. 2.15d and 2.15e, yields

a network that fits the salient features of W well, while mitigating the amount of learned

noisy features. Pruning later in training, such as at epochs 7000 and 9000 as in Figs. 2.15f

and 2.15g produces a network that overfits to the noise, as evidenced by the larger singular

values besides the top three salient ones.

To conclude, our analysis on a linear network points to an early pruning of networks prior

to when overfitting occurs, and after the salient features of the data have been learned by

the dense model. This is consistent with our finding that the early pruning period correlates

27

(a) (b)

(c) (d) (e) (f) (g)

Figure 2.15: The early pruning period of a linear network occurs after learning the
most salient features, and before fitting noise. We consider a two-layer fully connected
linear network which learns the mapping ŷ = W2W1x where W2W1 aims to approximate W
which has rank 3 with singular values 5, 3.5, 2. Dashed blue lines are the singular values of
W . We prune the network at different epochs t and continue training for 104 � t epochs. We
plot the singular values of W2W1 throughout training. each subplot prunes the network at
a different training epoch with a sparsity rate of 90%. (a): Pruning the network at epoch
0 (before training) yields to a network that does not learn the salient features of W . (b):
Pruning the network at the end of training produces a model that captures salient features,
but also a lot of noise in the data. (c)-(d): Pruning too early leads to a network that does not
adequately learn the salient features of W . (e): Pruning around epoch 5000 yields a model
that captures salient features well without fitting too much to noise. (f)-(g): Pruning too
late in training yields a model that fits too much to noise.

with the Fisher Information. As shown in [3], the test error of a model typically plateaus

toward the end of the Fisher Information. This plateau coincides with when the network

would begin to overfit its training data, modulo proper regularization.

28

(a) (b)

Figure 2.16: Similar to linear networks, the optimal time to prune a deep non-
linear network occurs before convergence/overfitting. We train a ResNet18 model on
CIFAR-10 and plot the test accuracy throughout training in green. Moreover, we prune the
model with 90% sparsity rate at various epochs and plot the final test accuracy in blue. We
observe that the optimal performance of the pruned models occurs before the test accuracy of
the saturates, suggesting that the optimal pruning period occurs before “overfitting,” though
due to regularization during training, we observe saturation rather than overfitting. (a):
Pruning using global pruning. (b): Pruning using local pruning.

2.3.3 Extrapolating from Linear Networks To Deep Non-Linear Networks

Next, we validate our conclusions drawn in the linear network case to larger non-linear

networks. In Fig. 2.16, we plot the test accuracies of baseline ResNet18 models trained on

CIFAR-10 throughout training. In contrast to the linear setting, here the network is heavily

regularized with data augmentations during training in an effort to mitigate overfitting. As

such, we see that the baseline test accuracy (in green) eventually plateaus. However, when

overlaying the final accuracies of the pruned models (in blue), we observe that models perform

best when pruned before the test accuracy of the baseline model plateaus. This is consistent

with our analysis in the linear network setting where we observed that pruning too late could

cause the model to overfit to noise, and it is best to prune prior to this.

29

2.4 Discussion

In this chapter, we explored the question of when a model is most amenable to compression

via pruning, particularly during training. We investigated model compression in the context

of one-shot unstructured pruning, whereby we pruned the model once during training, and

then fine-tuned the model for the remaining epochs, staying within the original computational

budget, and yielding a pruned model without additional fine-tuning. We showed a correlation

between the trace of a model’s Fisher Information, and when the pruned model performs

best—what we refer to as “early pruning periods.” By tracking a model’s Fisher Information,

tr(F), during training, we found that a pruned model’s performance is often best if it is

pruned near the transition from the memorization phase to the forgetting phase. We posit

that the evolution of the Fisher Information throughout training may serve as a low-fidelity

signal that quantifies a model’s learned redundancy. Our experiments highlight the need for

a large model capacity at the outset of training, but after the initial transient period (i.e.,

near the memorization/forgetting phases), this capacity can be reduced in order to expedite

training. Our analysis on linear networks suggest that this transient period consists of the

model learning the most salient features of the training data, and networks are most amenable

to pruning after it has learned these features and before it overtfits to its training data.

In addition to showing a correlation between the trace of the Fisher Information and the

accuracy of pruned models at different stages of training, we also showed a correlation between

our KLUniform metric and when pruned models performed best. KLUniform measures the

KL divergence between the uniform posterior distribution assigning equal probability to data

labels, pu(y|x) = 1
C

, and the predicted posterior distribution defined by the model, p(y|x, ✓).

This gradient-free metric can be computed efficiently during training and may serve as a

proxy for tr(F), making it suitable for deciding when to prune a model. While we have shown

that this metric tends to correlate with when early pruning periods occur, it is not clear

whether this will be suitable for larger models and datasets. Exploring efficient functions for

30

identifying early pruning periods remains as future work.

Due to computational constraints, the experiments in this chapter were performed on

small-scale models and datasets. Validating the claims presented in this chapter on large-scale

models and datasets—as well as on other forms of compression, such as structured pruning

and quantization—remains an exciting future work with many practical applications that

can make training more efficient and can democratize access to large-scale training.

2.5 Appendix

2.5.1 Training Details

Our baseline models are trained on either CIFAR-10 or CIFAR-100 for 200 epochs. We

use random horizontal flipping and random cropping data augmentations. We use an SGD

optimizer with 0.9 momentum and a maximum learning rate of 0.1 (without a warm-up).

We use a batch size of 128. Unless stated otherwise, models are trained with a weight decay

value of 5⇥ 10�4 and with an exponential learning rate schedule that decays the learning rate

by 0.97 after each epoch. When a model is pruned at epoch t, the pruned model is trained for

an additional 200� t epochs with the same learning rate schedule as its base model. However,

as explained in Sec. 2.1, the pruned model is trained with a different maximum learning rate,

namely max(�, LR(t)) where LR(t) is the learning rate set by the learning rate schedule

at epoch t, and � = 0.001 is a lower bound hyperparameter. We choose this learning rate

so that models pruned later in training are trained with a sufficiently large learning rate to

recover performance, but not too large to compromise generalization; models pruned earlier

will be trained with a learning rate similar to that which would be used by the base model.

31

CHAPTER 3

Dynamic Compression During Training for Real-Time

Adaptive Inference
1

In Chapter 2, we showed that a model’s large capacity is needed during the transient period of

training, but the model becomes amenable to pruning after it has learned the salient features

of the training data. In this chapter, we leverage dynamic model compression during training

for improved training efficiency, and to enable a model to adapt to arbitrary compression

levels in real-time during inference. We expand our compression during training framework to

include structured pruning and quantization. Structured pruning removes contiguous groups

of weights from a network, such as entire columns or rows in linear layers, or channels from

convolution layers. Quantization reduces memory and compute requirements by representing

model weights with lower bit-width precision. We explore these compression methods because,

in contrast to unstructured pruning, they provide practical efficiency once deployed: models

pruned in a structured manner can be deployed without requiring special hardware, and

quantized networks can be deployed to devices that support multiple bit-width configurations

(e.g., most modern smartphones).

Models are deployed to a variety of computing platforms, including phones, tablets, and

watches. When deploying models to a device, it is traditionally assumed that available

computational resources (compute, memory, and power) remain static. However, real-world

computing systems do not always provide stable resource guarantees. Computational resources

need to be conserved when load from other processes is high, or available memory is low.

1
Work completed during an internship at Apple.

32

Figure 3.1: Storing a set of BatchNorm parameters for every compression configu-
ration is expensive. We visualize the parameter overhead in Megabytes (MB) for storing
an extra set of pre-calibrated BatchNorm statistics for every possible sparsity configuration
between 0% sparsity and the given compression level. Our method avoids this overhead by
eliminating the need for storing BatchNorm statistics (Sec. 3.2.5).

In this chapter, we present a dynamic compression training procedure to produce models

that, once deployed, can be compressed in real-time to arbitrary compression levels entirely

on-device. This enables the deployment of a single model that can efficiently adapt to its host

device’s available resources. We formulate this problem as learning an adaptively compressible

network subspace [121], where we gradually optimize one end for accuracy, and the other for

efficiency. Notably, our subspace models do not require recalibration nor retraining when

changing compression levels.

3.1 Overhead of Adaptive Inference by Deploying Multiple Models

Models are generally designed to consume a fixed budget of resources, but the compute

resources available on a device can vary over time. Computational burden from other processes,

as well as battery life, may influence the availability of resources to a model. Adaptively

adjusting inference-time load is beyond the capabilities of traditional neural networks, which

are designed with a fixed architecture and a fixed resource usage. A simple approach to the

33

problem of providing an accuracy-efficiency trade-off is to train multiple neural networks of

different sizes. Multiple networks are then stored on the device and loaded into memory when

needed. There is a breadth of research in the design of efficient architectures that can be

trained with different capacities, then deployed on a device [44, 92, 43]. However, there are a

few drawbacks to using multiple networks to provide an accuracy-efficiency trade-off: (1) it

requires training and deploying multiple networks (which induces training-time computational

burden and on-device storage burden), (2) it requires all compression levels to be specified

before deployment, and (3) it requires new networks to be loaded into memory when changing

the compression level, which prohibits real-time model switching on memory-constrained

edge devices.

Previous methods such as Network Slimming [126] and Universal Slimming [125] address

the first issue in the setting of structured sparsity by training a single network conditioned

to perform well when varying the number of channels pruned. However, these methods

require BatchNorm [52] statistics to be recalibrated for every accuracy-efficiency configuration

before deployment. This requires users to know every compression level in advance. If a

large number of compression levels are chosen, the storage burden of BatchNorm statistics is

significant (Fig. 3.1), especially for low-compute devices. If only a few compression levels are

chosen, a user will have to sacrifice accuracy and underutilize available resources by choosing

a smaller model if the desired compression level is not available.

In the next section, we introduce a training framework, Learning Compressible Subspaces

(LCS), designed to produce models that adapt to a device’s resources in real-time, guided by

a progressive compression algorithm.

34

3.2 Compressible Subspaces for Real-Time Adaptive Inference

3.2.1 Compressible Lines

Our method involves training a neural network subspace [121] that contains a spectrum of

networks that each have a different accuracy-efficiency trade-off. We recast the subspace

formulation of [121] to train a linear subspace with high accuracy solutions at one end and

high efficiency solutions at the other end, as depicted in Fig. 3.2.

Available
Resources

CPU

RAM

Compressible
Subspace
Model
Query

!�(↵1)

<latexit sha1_base64="Uf4jWIpMGfoPh5RdDA6s79jgrjU=">AAACD3icbVDLSsNAFJ3UV62vqAsXboJFqC5KIhVdFt24rGAf0MRwM520Q2eSMDMRSshH+A1ude1O3PoJLv0Tp4+FbT1w4XDOvdx7T5AwKpVtfxuFldW19Y3iZmlre2d3z9w/aMk4FZg0ccxi0QlAEkYj0lRUMdJJBAEeMNIOhrdjv/1EhKRx9KBGCfE49CMaUgxKS7555AY8c2NO+pA/nldcYMkAfOfMN8t21Z7AWibOjJTRDA3f/HF7MU45iRRmIGXXsRPlZSAUxYzkJTeVJAE8hD7pahoBJ9LLJg/k1qlWelYYC12Rsibq34kMuJQjHuhODmogF72x+J/XTVV47WU0SlJFIjxdFKbMUrE1TsPqUUGwYiNNAAuqb7XwAARgpTOb2xLwXGfiLCawTFoXVadWvbyvles3s3SK6BidoApy0BWqozvUQE2EUY5e0Ct6M56Nd+PD+Jy2FozZzCGag/H1C/dbnII=</latexit>

↵1

<latexit sha1_base64="HkRL5FBFXMls0Yq5jmRdf3h9JyA=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tDoNgFe5E0TJoYxnBfEByhLnNXrJkd+/Y3RPCEfA32GptJ7b+FUv/iZvkCpP4YODx3gwz88KEM20879sprK1vbG4Vt0s7u3v7B+XDo6aOU0Vog8Q8Vu0QNeVM0oZhhtN2oiiKkNNWOLqb+q0nqjSL5aMZJzQQOJAsYgSNldpd5MkQe36vXPGq3gzuKvFzUoEc9V75p9uPSSqoNISj1h3fS0yQoTKMcDopdVNNEyQjHNCOpRIF1UE2u3finlml70axsiWNO1P/TmQotB6L0HYKNEO97E3F/7xOaqKbIGMySQ2VZL4oSrlrYnf6vNtnihLDx5YgUcze6pIhKiTGRrSwJRQTm4m/nMAqaV5U/cvq1cNlpXabp1OEEziFc/DhGmpwD3VoAAEOL/AKb86z8+58OJ/z1oKTzxzDApyvX4IIllo=</latexit>

A
cc
ur
ac
y

Efficiency

Accuracy
Efficiency
Trade-Off

CPU

RAM

CPU

RAM

f(!�(↵), �(↵))

<latexit sha1_base64="N269fuCOqIybVRRy+5b7sSWBLis=">AAACIHicbVDLSgMxFM34rPU16tJNsAitSJmRii6LblxWsA/o1HInzbShycyQZIQy9Bf8CL/Bra7diUvd+SemD8G2Hrhwcs693Nzjx5wp7Tif1tLyyuraemYju7m1vbNr7+3XVJRIQqsk4pFs+KAoZyGtaqY5bcSSgvA5rfv965Fff6BSsSi804OYtgR0QxYwAtpIbTsf5D1fpF4kaBeG9yd5D3jcg8Ip9rogBPy+C2075xSdMfAicackh6aotO1vrxORRNBQEw5KNV0n1q0UpGaE02HWSxSNgfShS5uGhiCoaqXji4b42CgdHETSVKjxWP07kYJQaiB80ylA99S8NxL/85qJDi5bKQvjRNOQTBYFCcc6wqN4cIdJSjQfGAJEMvNXTHoggWgT4swWXwxNJu58AoukdlZ0S8Xz21KufDVNJ4MO0RHKIxddoDK6QRVURQQ9omf0gl6tJ+vNerc+Jq1L1nTmAM3A+voB17iisQ==</latexit>

!�(↵)

<latexit sha1_base64="9cl5E/d3SEIFias8lbdvEJn57gM=">AAACDXicbVDLSsNAFJ3UV62vqLhyEyxCdVESqeiy6MZlBfuAJpab6aQdOpOEmYlQQr7Bb3Cra3fi1m9w6Z84bbOwrQcuHM65l3M5fsyoVLb9bRRWVtfWN4qbpa3tnd09c/+gJaNEYNLEEYtExwdJGA1JU1HFSCcWBLjPSNsf3U789hMRkkbhgxrHxOMwCGlAMSgt9cwj1+epG3EygOzxvOICi4dw1jPLdtWewlomTk7KKEejZ/64/QgnnIQKM5Cy69ix8lIQimJGspKbSBIDHsGAdDUNgRPppdP3M+tUK30riISeUFlT9e9FClzKMff1Jgc1lIveRPzP6yYquPZSGsaJIiGeBQUJs1RkTbqw+lQQrNhYE8CC6l8tPAQBWOnG5lJ8nulOnMUGlknrourUqpf3tXL9Jm+niI7RCaogB12hOrpDDdREGKXoBb2iN+PZeDc+jM/ZasHIbw7RHIyvX7oDm94=</latexit>

↵

<latexit sha1_base64="Y3KwGzVKp8DnohKyj/2mxGLzlmM=">AAAB/HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4komXQxjKC+YDkCHObvWTN7t2xuyeEEH+DrdZ2Yut/sfSfuEmuMIkPBh7vzTAzL0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8aug4VZTVaSxi1QpQM8EjVjfcCNZKFEMZCNYMhrdTv/nElOZx9GBGCfMl9iMecorGSo0OimSA3WLJLbszkFXiZaQEGWrd4k+nF9NUsshQgVq3PTcx/hiV4VSwSaGTapYgHWKftS2NUDLtj2fXTsiZVXokjJWtyJCZ+ndijFLrkQxsp0Qz0MveVPzPa6cmvPbHPEpSwyI6XxSmgpiYTF8nPa4YNWJkCVLF7a2EDlAhNTaghS2BnNhMvOUEVknjouxVypf3lVL1JksnDydwCufgwRVU4Q5qUAcKj/ACr/DmPDvvzofzOW/NOdnMMSzA+foFUCqVtg==</latexit>

↵2

<latexit sha1_base64="IsR2rAXLqqdWPurpRmCO6rrjoCg=">AAAB/nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CRMugjWUE8wHJEeY2e8mS3btjd08IIeBvsNXaTmz9K5b+EzfJFSbxwcDjvRlm5gWJ4Nq47reT29jc2t7J7xb29g8Oj4rHJ00dp4qyBo1FrNoBaiZ4xBqGG8HaiWIoA8Fawehu5reemNI8jh7NOGG+xEHEQ07RWKndRZEMsVfpFUtu2Z2DrBMvIyXIUO8Vf7r9mKaSRYYK1LrjuYnxJ6gMp4JNC91UswTpCAesY2mEkml/Mr93Si6s0idhrGxFhszVvxMTlFqPZWA7JZqhXvVm4n9eJzXhjT/hUZIaFtHFojAVxMRk9jzpc8WoEWNLkCpubyV0iAqpsREtbQnk1GbirSawTpqVslctXz1US7XbLJ08nME5XIIH11CDe6hDAygIeIFXeHOenXfnw/lctOacbOYUluB8/QKDm5Zb</latexit>

!�(↵2)

<latexit sha1_base64="DMkUu2WDo146ltR3ZdM5vycwRzk=">AAACD3icbVDLSsNAFJ3UV62vqAsXboJFqC5KUiq6LLpxWcE+oInhZjpph84kYWYilJCP8Bvc6tqduPUTXPonTh8LWz1w4XDOvdx7T5AwKpVtfxmFldW19Y3iZmlre2d3z9w/aMs4FZi0cMxi0Q1AEkYj0lJUMdJNBAEeMNIJRjcTv/NIhKRxdK/GCfE4DCIaUgxKS7555AY8c2NOBpA/nFdcYMkQ/NqZb5btqj2F9Zc4c1JGczR989vtxzjlJFKYgZQ9x06Ul4FQFDOSl9xUkgTwCAakp2kEnEgvmz6QW6da6VthLHRFypqqvycy4FKOeaA7OaihXPYm4n9eL1XhlZfRKEkVifBsUZgyS8XWJA2rTwXBio01ASyovtXCQxCAlc5sYUvAc52Js5zAX9KuVZ169eKuXm5cz9MpomN0girIQZeogW5RE7UQRjl6Ri/o1Xgy3ox342PWWjDmM4doAcbnD/jvnIM=</latexit>

f(!�(↵2), �(↵2))

<latexit sha1_base64="bvjUx/zW1reTPQKGGgvAG6990DQ=">AAACJHicbVDLSgNBEJz1GeMr6tHLYBASCWE3RPQY9OIxgnlANobeyWwyZGZ3mZkVwpKf8CP8Bq969iYevAj+iZMHaBILGoqqbrq7vIgzpW3701pZXVvf2Extpbd3dvf2MweHdRXGktAaCXkomx4oyllAa5ppTpuRpCA8Thve4HrsNx6oVCwM7vQwom0BvYD5jIA2UidT8HOuJxI3FLQHo/uznAs86kOnlC9gtwdCwK+S72SydtGeAC8TZ0ayaIZqJ/PtdkMSCxpowkGplmNHup2A1IxwOkq7saIRkAH0aMvQAARV7WTy1QifGqWL/VCaCjSeqH8nEhBKDYVnOgXovlr0xuJ/XivW/mU7YUEUaxqQ6SI/5liHeBwR7jJJieZDQ4BIZm7FpA8SiDZBzm3xxMhk4iwmsEzqpaJTLp7flrOVq1k6KXSMTlAOOegCVdANqqIaIugRPaMX9Go9WW/Wu/UxbV2xZjNHaA7W1w9uh6P7</latexit>

f(!�(↵1), �(↵1))

<latexit sha1_base64="wLZstVR6cXjLwA8SAnW8011WEeY=">AAACJHicbVDLSgNBEJyNrxhfUY9eBoOQSAi7EtFj0IvHCOYB2Rh6J7PJkJndZWZWCEt+wo/wG7zq2Zt48CL4J04eoEksaCiquunu8iLOlLbtTyu1srq2vpHezGxt7+zuZfcP6iqMJaE1EvJQNj1QlLOA1jTTnDYjSUF4nDa8wfXYbzxQqVgY3OlhRNsCegHzGQFtpE626OddTyRuKGgPRveneRd41IeOUyhitwdCwK9S6GRzdsmeAC8TZ0ZyaIZqJ/vtdkMSCxpowkGplmNHup2A1IxwOsq4saIRkAH0aMvQAARV7WTy1QifGKWL/VCaCjSeqH8nEhBKDYVnOgXovlr0xuJ/XivW/mU7YUEUaxqQ6SI/5liHeBwR7jJJieZDQ4BIZm7FpA8SiDZBzm3xxMhk4iwmsEzqZyWnXDq/LecqV7N00ugIHaM8ctAFqqAbVEU1RNAjekYv6NV6st6sd+tj2pqyZjOHaA7W1w9rS6P5</latexit>

Figure 3.2: Depiction of our method for learning a compressible linear subspace.
Our linear subspace of networks !⇤ is parameterized by ↵ 2 [↵1, ↵2]. Networks with ↵ ⇡ ↵2

exhibit high accuracy and low efficiency, while networks with ↵ ⇡ ↵1 trade off accuracy in
favor of high efficiency. By varying ↵ 2 (↵1, ↵2), we obtain a spectrum of networks which
exhibit a strong accuracy-efficiency trade-off.

To learn a compressible subspace, we choose a model architecture and denote its collection

of weights by !. We randomly initialize two sets of network weights, !1 and !2, to define

the endpoints of our subspace. Our network subspace spans the line between !1 and !2 and

is defined by !⇤(↵) = ↵!1 + (1� ↵)!2, where ↵ 2 [↵1, ↵2], and 0 ↵1 < ↵2 1. In other

words, by varying our subspace parameter, ↵, we can obtain a set of weights !⇤(↵) through

35

interpolation.

We now adjust our subspace so that one end (e.g., ↵ ⇡ ↵1) yields highly compressed

networks, and the other end (e.g., ↵ ⇡ ↵2) yields highly accurate networks. Intermediate

values (e.g., ↵ ⇡ (↵1 + ↵2)/2) should exhibit moderate compression. In other words, tuning

↵ 2 [↵1, ↵2] allows us to move along the subspace, and we would like different points along

the subspace to exhibit different accuracy-efficiency trade-offs. To achieve this, we introduce

a function �(↵) which determines how much to compress the network at ↵, and a compression

function f(!, �) which compresses ! with compression level �.

To train our subspace, we first sample a position on the subspace by randomly choosing

some ↵ 2 [↵1, ↵2], yielding a network with weights !⇤(↵). We then compute �(↵), which

determines how much to compress the network. Finally, f compresses the network, obtaining

a network with weights f(!⇤(↵), �(↵)). We then perform a standard forward and backward

pass of gradient descent with it, backpropagating gradients to !1 and !2. We continue

training in this manner until convergence.

Once our model is trained, a user can deploy !1 and !2 on-device to allow efficient,

adaptive, real-time compression, as depicted in Fig. 3.2. To change compression levels in

real-time, the user first determines how many resources are available on the device; this

step is application-dependent, and may involve looking at the amount of currently available

memory or the current CPU load. The user then chooses the compression level �0 based

on currently available resources. From this quantity, the user calculates the appropriate

↵0 = ��1(�0) value corresponding to the desired compression level. Next, the user computes

the compressed network, f(!⇤(↵0), �0). This network is used until a new compression level is

desired by the user. Note that computing f is negligible compared to the cost of a network

forward pass in all our experiments (see Sec. 3.2.6).

36

Table 3.1: Our compressible subspaces require no retraining, no BatchNorm
recalibration, and are adaptive. We compare our method with a linear subspace (LCS+L)
and a point subspace (LCS+P) to LEC [67], NS [126], and US [125]. Note that “Adaptive”
refers to post-deployment compression at any compression level. |!| denotes the number of
network parameters, |b| denotes the number of BatchNorm parameters, and n denotes the
number of compression levels for models that do not support arbitrary compression levels.

LCS+P LCS+L LEC NS US
No Retraining 4 4 8 4 4

No Norm Recalibration 4 4 8 8 8
Adaptive 4 4 8 8 8

Stored Parameters |!| 2|!| n|!| |!| + n|b| |!| + n|b|

3.2.2 Compressible Points

In Sec. 3.2.1, we discussed formulating our subspace as a line connected by two endpoints in

weight space. This formulation requires additional storage resources to deploy the subspace

(Table 3.1), since an extra copy of network weights is stored. For many cost-efficient computing

devices, this overhead may be significant. To eliminate this need, we propose training a

degenerate subspace with a single point in weight-space (rather than two endpoints). We

still use ↵ 2 [↵1, ↵2] to control our compression ratio, but our subspace is parameterized

by a single set of weights, !⇤(↵) = !. The compressed weights are now expressed as

f(!⇤(↵), �(↵)) ⌘ f(!, �(↵)). This corresponds to applying varying levels of compression

during each forward pass.

This method still produces a subspace of models in the sense that, for each value of ↵,

we obtain a different compressed network f(!, �(↵)). However, we no longer use different

endpoints of a linear subspace to specialize one end of the subspace for accuracy and the

other for efficiency. Instead, we condition one set of network weights to tolerate varying levels

of compression.

37

3.2.3 Curriculum-Based Compression

When training our compressible subspaces, we need to sample our subspace parameter, ↵,

at each iteration of training. In [125], a “sandwich method” for training with varying levels

of structured sparsity is proposed. This method involves performing n rounds of forward

and backward passes in each iteration of training. One round uses the maximum sparsity

level, another round uses the minimum sparsity level, and the remaining n� 2 rounds use

randomly chosen sparsity levels. After all n rounds of forward and backward passes, the

gradient update is applied.

To incorporate this method into our algorithm, we introduce a stochastic function,

↵n : ⌦! [↵1, ↵2]n, where ⌦ represents the state of the stochastic function (e.g., the internal

state of a random number generator). For each training batch, we sample ↵ 2 [0, 1]n from

↵n. We perform n forward and backward passes using compressed networks f(!⇤(↵i), �(↵i))

for i 2 {1, ..., n}, where ↵i is the ith element of ↵. Then, the gradient update is applied. An

overview of our overall algorithm is given in Algorithm 1.

Line 7 of Algorithm 1 involves sampling a point on our subspace, which determines the

compression level of the corresponding network. For structured sparsity experiments, this

sampling follows the sandwich rule with n = 4. For experiments on unstructured sparsity

and quantization, we omit the sandwich rule (by setting n = 1) because we found the benefit

to be marginal compared to the increased training cost. Thus, in this setting, our sampling

function becomes ↵ : ⌦! [↵1, ↵2], and follows a curriculum that gradually compresses the

model during training. In particular, we consider a warm-up period aimed at allowing the

model to learn the data’s most salient features prior to applying more aggressive compression.

When learning a compressible line, our pruning and quantization strengths gradually increase

stochastically during training; our algorithm for this setting is provided in Algorithm 2.

When learning a compressible point, our pruning and quantization strengths remain fixed at

the lowest compression level during the warm-up period, and then are randomly chosen for

38

the remainder of training; our algorithm for this setting is provided in Algorithm 3. A toy

example of what this progressive scaling looks like for LCS+L and LCS+P in the unstructured

pruning setting is provided in Fig. 3.3. We expand on these curricula in the next section.

Algorithm 1 LCS Training Algorithm
1: Input: Network subspace !⇤(↵), compression level calculator �(↵), compression function

f(!, �), stochastic sampling function ↵n 2 [↵1, ↵2]n, dataset D, loss function L.
2: Replace BatchNorm layers with GroupNorm.
3: while !⇤ has not converged do
4: for batch B in D do
5: Sample a vector ↵ ⇠ ↵n

6: l 0
7: for ↵ 2 ↵ do
8: # compute loss on batch
9: l += L(f(!⇤(↵), �(↵)), B)

10: end for
11: backpropagate loss l
12: apply gradient update to !⇤

13: end for
14: end while
15: return !⇤

3.2.4 Compression Methods

We experiment with three different formulations for our compression function f(!, �). These

correspond to unstructured sparsity, structured sparsity, and quantization.

Unstructured Sparsity. In our unstructured sparsity experiments, our compression function

f(!, �) is TopK sparsity [131], which prunes a fraction � of the weights with the smallest

absolute value from each layer (we ignore the input and output layers). Our compression

level calculator is �(↵) = 1 � ↵. Our stochastic sampling function ↵n samples a single

↵ value uniformly along an interval [↵1, ↵2]. We experiment with different settings of

[↵1, ↵2] corresponding to the wide-sparsity regime and high-sparsity regime. See Sec. 3.3 for

experimental details.

It is typical to include a warm-up phase when training models with TopK sparsity [131].

39

Algorithm 2 Sampling of subspace parameter for unstructured pruning and quantization
for compressible lines (LCS+L).
1: Input: Smallest subspace parameter ↵L, largest subspace parameter ↵U , number of

warm-up iterations iw, current iteration ic, biased sampling probability p.
2: Sample X ⇠ Uniform(0, 1)
3: if X p then
4: ↵ ⇠ Uniform({↵L, ↵U})
5: else
6: ↵ ⇠ Uniform(↵L, ↵U)
7: end if
8: df = max(1� ic/iw, 0)
9: ↵out = ↵ + (1� ↵)df

10: return ↵out

Algorithm 3 Sampling of subspace parameter for unstructured pruning and quantization
for compressible points (LCS+P).
1: Input: Smallest subspace parameter ↵L, largest subspace parameter ↵U , number of

warm-up iterations iw, current iteration ic.
2: if ic iw then
3: ↵out = ↵U

4: else
5: ↵out ⇠ Uniform(↵L, ↵U)
6: end if
7: return ↵out

40

(a) (b)

Figure 3.3: LCS progressive compression for unstructured pruning. (a) When training
a compressible line via unstructured pruning, our LCS algorithm progressively increases the
compression strength following Algorithm 2. (b): When training a compressible point via
unstructured pruning, our LCS algorithm trains the model at the weakest sparsity level
(typically zero compression) for a specified warm-up period, and then compresses the model
at random compression levels as in Algorithm 3. Compression via quantization follows a
similar curriculum, but chooses random bit widths rather than sparsity levels. Compression
via structured pruning follows the sandwich rule [125].

In our baselines in Sec. 3.3.1, we increase the sparsity level from 0% to its final value over

the first 80% of training epochs. For our method, sparsity values fall within a range, so there

is no single target sparsity value to warm up to. For our point method (LCS+P), we simply

train for the first 80% of training with the lowest sparsity value in our sparsity range. We

finish training by sampling uniformly between the lowest and highest sparsity levels. For

our line method (LCS+L), our choice of sparsity level is tied to our choice of weight-space

parameters through ↵. We implement our warm-up by simply adjusting �(↵) to apply less

sparsity early in training, warming up to our final sparsity rates over the first 80% of training.

For transformer models in particular, our LCS+P training resembles our LCS+L method

whereby �(↵) applies less sparsity early in training and gradually warms up to our final

sparsity rates over a fraction of the training epochs. Moreover, we do not apply sparsity to

the patch embedding layer.

41

Structured Sparsity. In our structured sparsity experiments, our compression function

f(!, �) retains a fraction � of the input and output channels in each layer and prunes away

the rest (we ignore the input channels in the first layer, and the output channels in the

last layer). Our compression level calculator �(↵) : [↵1, ↵2] ! [a, b] is the unique affine

transformation over its domain and range. Here, [a, b] is the width factor range where a

and b are the minimum and maximum fraction of channels retained (see Sec. 3.3 for model-

specific parameter settings). Our stochastic sampling function ↵n samples n = 4 values as

[a, b, U(a, b), U(a, b)], where U(a, b) samples uniformly in the range [a, b]. This choice mirrors

the “sandwich rule” used in [125].

When training our method with a line in the structured sparsity setting, we do not use

two sets of weights (e.g., !1 and !2, Sec. 3.2.1) for convolutional filters. Instead, we only use

two sets of weights for affine transforms in GroupNorm [122] layers. For the convolutional

filters, we instead use a single set of weights, similar to our point formulation (and similar to

US [125] and NS [126]). By contrast, we use two sets of weights for convolutional filters as

well as for affine transforms when experimenting with unstructured sparsity (Sec. 3.3.1) and

quantization (Sec. 3.3.3).

The reason for only using one set of convolutional filters in the structured sparsity setting

is that the filters themselves are able to specialize, even without an extra copy of network

weights. Some filters are only used in larger networks, so they can learn to identify different

signals than the filters used in all subnetworks. Note that this filter specialization argument

does not apply to our unstructured or quantized settings.

In preliminary experiments, we found that using a single set of weights for convolutions

in our structured sparsity experiments gave a slight improvement over using two sets of

weights (roughly 2% for cPreResNet20 [38] on CIFAR-10 [59]). We hypothesize that this

slight difference may be attributed to the ease of learning fewer network parameters.

Quantization. In quantization experiments, our compression function f(!, �) is affine quan-

tization as described in [53]. Our compression level calculator is �(↵) = 2+6↵. Our stochastic

42

sampling function ↵n samples a single ↵ value uniformly over the set {1/6, 2/6, ..., 6/6}. This

corresponds to training with bit widths 3 through 8. We avoid lower bit widths to circumvent

training instabilities we encountered in baselines.

Our method applied to quantization trains without quantizing the activations for the first

80% of training, and then adds activation quantization for the remainder of training. Weights

are quantized throughout training. The number of groups in our GroupNorm layers is the

same as described in the unstructured setting.

3.2.5 Circumventing BatchNorm Recalibration

Previous works that train a compressible network require an additional training step to

calibrate BatchNorm [52] statistics at each compression level [125, 126]. This precludes

these methods from evaluating at arbitrarily fine-grained compression levels after deployment

(Table 3.1). We seek to eliminate the need for recalibration or storage of statistics.

To understand the need for recalibration in previous works, recall that BatchNorm layers

store the per-channel mean of the inputs, µ, and the per-channel variance of the inputs, �2.

The recalibration step is needed to correct µ and �2, which are corrupted when a network is

adjusted. Adjustments that corrupt statistics include applying sparsity and quantization.

In Fig. 3.4, we analyze the inaccuracies of BatchNorm statistics for two models trained

with specific compression levels and tested with a variety of inference-time compression levels.

We calculate the differences between stored BatchNorm means µ and the true mean of a

batch µ̂ during the test epoch of a cPreResNet20 [38] model on CIFAR-10 [59]. In the (a) and

(b) rows of Fig. 3.4a, we show the distribution of mean absolute differences (MAD), |µ� µ̂|,

across all layers of the models. Models have lower BatchNorm errors when evaluated near

compression levels that match their training-time compression level. Applying mismatched

levels of compression shifts the distribution of these errors away from 0. In the (c) and (d)

rows, we show the average of |µ� µ̂| across the test set for each of the BatchNorm layers.

43

Figure 3.4: Compressing networks corrupts their BatchNorm statistics. Left :
Analysis of observed batch-wise means µ̂ and stored BatchNorm means µ during testing for
models trained with TopK unstructured sparsity. The models are trained with different target
sparsities and evaluated with various inference-time sparsities. Middle: Models trained in the
structured sparsity setting with the Discrete and Sandwich sampling rules (see Sec. 3.3.2).
Right : models trained with different quantization bit widths. (a)-(b): The distribution of
|µ� µ̂| across all layers. (c)-(d): The average value of |µ� µ̂| for individual layers. (e)-(f):
The correlation between the average of |µ� µ̂| and test set error.

Across layers, the lowest error is achieved when the compression level matches training the

one used during training. In the (e) and (f) rows, we show the average of |µ� µ̂| and the

corresponding test set accuracy for various levels of inference-time compression. We find that

the increased error in BatchNorm is correlated with decreased accuracy.

Thus, BatchNorm layers’ stored statistics can become inaccurate during inference-time

compression, which can lead to accuracy degradation. To circumvent the need for BatchNorm,

we adjust our networks to use GroupNorm [122]. This computes an alternative normalization

over g groups of channels rather than across a batch. It does not require maintaining a

running average of the mean and variance across batches of input, so there are no stored

statistics that can be corrupted if the network changes.

GroupNorm typically uses g = 32 groups, but it also includes InstanceNorm [110] (in

which g = c, where c is the number of channels) as a special case. We use g = c in structured

sparsity experiments, since the number of channels is determined dynamically and is not

always divisible by 32. For all other experiments, we use g 2 {1, 8, 32} depending on the

44

architecture as discussed in Sec. 3.2.4.

3.2.6 Real-Time Compression Analysis

Next, we justify our claim that our network compression functions f(!, �) can be computed

in real-time. Consider a network layer with weights !l. The computational cost of a forward

pass is O(|!l|L), where L is the spatial dimension (in the case of a 2D convolution, L = HW ,

where H, W are the height and width of the output buffer). In the LCS+L algorithm, the

cost of computing !⇤ is O(|!l|), which is far less than the cost of a forward pass. In the case

of LCS+P, no computation is needed. Similarly, the cost of computing �(↵) is O(1).

Now, consider the cost of computing f(!⇤(↵), �(↵)). Our unstructured sparsity method

takes O(|!l|) for each layer (to calculate the threshold, then discard parameters below the

threshold). Our structured sparsity method takes O(1) for each layer, since we only need to

mark each layer with the number of filters to ignore. Since most inference libraries support

tensor slicing operations, we can simply pass a subset of the filters to the underlying matrix

multiplication or convolution. Our quantization method [53] takes O(|!l|) for each layer (to

calculate the affine transform parameters and apply them). In all cases, the complexity of

computing f(!⇤(↵), �(↵)) is at least L times lower than the cost of the convolutional forward

passes, meaning our compression methods can be considered real-time.

3.3 Experiments

We present results in the domains of unstructured sparsity, structured sparsity, and quanti-

zation. We train using Pytorch [79] on NVIDIA GPUs. On CIFAR-10 [59], we experiment

with the pre-activation version of ResNet20 [38] presented in the PyTorch version of the

open-source code provided by [67]. We abbreviate it as “cPreResNet20.”

We additionally experiment with a variety of architectures on the ImageNet [20] dataset.

In particular, we present results using standard convolutional neural network (CNN) architec-

45

Figure 3.5: Learning compressible subspaces with unstructured sparsity. We compare
our method for unstructured sparsity using a linear subspace (LCS+L+GN) and a point
subspace (LCS+P+GN) to networks trained for a particular TopK target. The TopK target
refers to the fraction of weights that remain unpruned during training. We train models to
perform in the wide sparsity regime (left) and high sparsity regime (right).

tures: ResNet18 [38], and VGG19 [96]; lightweight CNNs: MnasNet-B1 [103], MobileNetV2

[92], MobileNetV3-Small, and MobileNetV3-Large [43]; and vision transformer models: DeiT-

Ti, DeiT-S [107], and CaiT-XXS [108]. All models are trained using an input resolution of

224⇥ 224. The accuracies of our baseline models are provided in Tab. 3.3.

We train cPreResNet20 for 200 epochs and ImageNet CNNs for 90 epochs. We follow

hyperparameter choices in [121] for our methods and baselines (though we do not use the

� regularization they describe), with a few architecture-dependent parameters detailed in

Sec. 3.5.1. For transformer models, we train for 300 epochs and follow the hyperparam-

eter settings in [107]. Our baselines for each architecture always use the same training

hyperparameters as our own methods.

46

3.3.1 Unstructured Sparsity

We present results for our method using MobileNetV2 and ResNet18 in Fig. 3.5. For

MobileNetV2, we use an ↵ range of [0.025, 1], corresponding to a wide sparsity training

regime, while for ResNet18 we use a range of [0.005, 0.05], corresponding to a high sparsity

training regime (because ResNet18 is overparameterized, we operate over a high sparsity

range to make the accuracy-efficiency trade-off clearer).2 Our methods use GroupNorm in the

unstructured setting. For cPreResNet20, ResNet18, and VGG19, we set the number of groups

to g = 32 (we set g = c for the first few layers of cPreResNet20, because it has fewer than 32

channels). For MnasNet, MobileNetV2, MobileNetV3-Small, and MobileNetV3-Large, we use

g = 8. Transformer models use LayerNorm (equivalent to g = 1).

Our method achieves a strong accuracy-efficiency trade-off in both cases. Our line subspace

(LCS+L+GN) achieves a higher accuracy at high sparsities, at the expense of a lower accuracy

at low sparsities. To our knowledge, efficient, adaptive, real-time compression has not been

previously explored for unstructured sparsity. Thus, our baselines are networks that are

trained to perform at a particular TopK sparsity level, and each network is evaluated at a

variety of sparsity targets. These methods peak in accuracy near their target sparsity, but

decrease sharply at higher sparsities.

We present additional results in the unstructured wide sparsity regime in Fig. 3.6 and

Fig. 3.7. For MnasNet, our ↵ range is [0.0325, 1]. For the remaining models, our ↵ range

is [0.025, 1]. All other training details are unchanged. We find that our method is able to

produce a higher accuracy over a wider range of sparsities than our baselines.

We present additional results for our method using transformer architectures in Fig. 3.8.

Transformers contain LayerNorm [6] rather than BatchNorm, which does not require recali-

bration. Hence, we do not need to modify normalization layers in this case. As before, our

2
In the unstructured setting, we do not compress the first and last layers of our models. Hence a

compressed model’s sparsity rate may not be exactly 1� ↵.

47

method produces a strong accuracy-efficiency trade-off across a variety of sparsity levels.

Our LCS+L+LN method underperforms on DeiT models relative to LCS+P+LN, but still

achieves stronger results than baselines at high sparsities. We hypothesize that the benefits

of learning fewer parameters outweighs the benefits of increased capacity in this case, but we

leave more investigation to future work.

We also present results for vision transformer models in the high sparsity regime in Fig. 3.9.

For these models, our ↵ range is [0.05, 0.2]. Additionally, for these models we use a 65%

warm-up phase instead of 80% as we used for CNNs.

(a) (b) (c)

Figure 3.6: Learning compressible subspaces with unstructured sparsity. We compare
our method for unstructured sparsity using a linear subspace (LCS+L+GN) and a point
subspace (LCS+P+GN) to networks trained for a particular TopK target. Here we, consider
compression in the wide sparsity regime, where our models can tolerate a wide range of
compression ratios.

(a) (b) (c)

Figure 3.7: Learning compressible subspaces with unstructured sparsity. Our
method for unstructured sparsity using a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a particular TopK target. Here, we apply
out method to efficient networks designed to operate on edge devices.

48

Figure 3.8: Learning compressible subspaces with unstructured sparsity. We compare
our method for unstructured sparsity using a linear subspace (LCS+L+GN) and a point
subspace (LCS+P+GN) to networks trained for a particular TopK target. Here, we train
vision transformer networks to operate in the wide sparsity regime.

3.3.2 Structured Sparsity

We present results for our method using structured sparsity in Fig. 3.10. For all structured

sparsity experiments, we use an ↵ range of [0, 1]. We use a width factor range of [0.25, 1] for

both VGG19 and ResNet18. As discussed in Sec. 3.2.5, we use a special case of GroupNorm

[122] known as InstanceNorm [110] since the number of channels in the network varies. We

performed preliminary experiments with LayerNorm, but InstanceNorm achieved stronger

results in our case. In the case of structured sparsity, filters are able to specialize without the

need for an extra copy of network weights, since some filters are only used when the model is

lightly pruned. Therefore, we only create extra copies of our InstanceNorm parameters when

using LCS+L+IN, as an extra copy of network weights was unnecessary. We provide a table

49

Figure 3.9: Learning compressible subspaces with unstructured sparsity. We compare
our method for unstructured sparsity using a linear subspace (LCS+L+GN) and a point
subspace (LCS+P+GN) compared to networks trained for a particular TopK target. Here,
we train vision transformer networks to operate in the high sparsity regime.

Figure 3.10: Learning compressible subspaces with structured sparsity. We compare
our method for structured sparsity using a linear subspace (LCS+L+IN) and a point subspace
(LCS+P+IN) to networks trained with Sandwich and Discrete.

demonstrating the memory, flops, and runtime of structured sparsity models in Table 3.2.

To our knowledge, efficient, adaptive, real-time compression has not been explored before

for structured sparsity. As such, we compare our methods to two baselines that train a

50

network to operate at different sparsity levels. In the first method, which we denote Discrete,

we train a network at four discrete width factors of {0.25, 0.5, 0.75, 1}. In the second method,

which we denote Sandwich, we train a network using the sandwich rule (Sec. 3.2.3). At test

time, both methods are evaluated at arbitrary sparsities. We do not perform BatchNorm

calibration for either method. Note that our baselines are similar to NS and US, but our

baselines operate at arbitrary width factors without BatchNorm calibration.

Models trained with our method demonstrate a strong accuracy-efficiency trade-off. By

contrast, the trade-off produced by Sandwich peaks in the middle. We hypothesize that this

is due to the sandwich rule training formulation in which sparsity levels are randomly sampled.

This could cause the BatchNorm statistics to be more accurate (on average) near the middle

of the sparsity range. The trade-off produced by Discrete contains peaks and troughs. This

method trains only at discrete width factors of {0.25, 0.50, 0.75, 1} and produces stronger

accuracies at these sparsities than at sparsities that it was not explicitly trained for.

In preliminary experiments with transformers, we found that adaptive compression for

structured sparsity did not converge to high accuracies. We hypothesize this may be due to

inter-channel variation of transformers described in [65], but we leave more investigation to

future work.

We provide additional results on lightweight networks in the structured sparsity setting in

Fig. 3.11 and Fig. 3.12. Our width factor ranges for MnasNet, MobileNetV2, MobileNetV3-

Small, and MobileNetV3-Large are [0.5, 1], [0.55, 1], [0.57, 1], and [0.44, 1], respectively. We

observe that training with our method yields a better accuracy-efficiency trade-off for a wider

range of sparsity levels.

3.3.3 Quantization

We also provide experiments for quantization. Note that in the quantization setting, there are

a small number of discrete compression levels. As such, it is usually feasible to simply store

51

Figure 3.11: Learning compressible subspaces with structured sparsity. We compare
our method for structured sparsity using a linear subspace (LCS+L+IN) and a point subspace
(LCS+P+IN), to Sandwich and Discrete. Here, we apply our method to efficient networks
designed to operate on edge devices.

extra BatchNorm parameters for all desired parameter settings before model deployment.

Thus, our main purpose for experimenting in this setting is to characterize the behavior of

our method under another compression technique besides pruning and to verify the versatility

of our method.

We present results for our method in Fig. 3.13, comparing to baseline models trained at a

fixed bit width and evaluated at a variety of bit widths. Generally, baselines achieve high

accuracy when they are evaluated with the bit width used for training, and reduced accuracy

at other bit widths. In contrast, our method using a linear subspace (LCS+L+GN) achieves

high accuracy at all bit widths, matching or exceeding accuracies of individual networks

trained for target bit widths. In the case of VGG19, we found that our accuracy even exceeded

the baselines. We believe part of the increase is due to GroupNorm demonstrating improved

results on this network compared to BatchNorm (which does not happen with ResNets, as

reported in [122]). We provide quantization results for ResNet18 in Fig. 3.14. We find that

our models approach the accuracy of models trained at a single bit width, and our models

generalize better to other bit widths.

52

Figure 3.12: Learning compressible subspaces with structured sparsity. We compare
our method for structured sparsity using a linear subspace (LCS+L+IN) and a point subspace
(LCS+P+IN) applied to MnasNet, to MnasNet trained with Sandwich and Discrete.

Figure 3.13: Learning compressible subspaces with quantization. We compare
our method for quantization using a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) to networks trained to operate at a particular bit width target.

53

Table 3.2: Runtime characteristics for structured sparsity. Note that models of a
particular architecture and sparsity level all have the same memory, FLOPS, and runtime,
so we only report one value. Runtime was measured on a MacBook Pro (16-inch, 2019)
with a 2.6 GHz 6-Core Intel Core i7 processor and 16GB 2667 MHz DDR4 RAM. Memory
consumption refers to the size of model weights in the currently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 0 43.491 60.614 74.655 85.614 93.491
FLOPS (⇥106) 33.75 19.07 13.29 8.55 4.85 2.2
Memory (MB) 0.87 0.49 0.34 0.22 0.12 0.06
Runtime (ms) 3.13 2.64 2.09 1.83 1.64 1.28

Acc (LCS+P+IN) 87.51 86.07 84.46 82.02 78.39 75.96
Acc (LCS+L+IN) 88.49 86.22 84.54 81.92 78.73 75.25
Acc (Sandwich) 70.62 83.13 81.11 62.18 40.04 21.81
Acc (Discrete) 72.87 75.46 57.09 70.07 16.86 19.76

ResNet18
(ImageNet)

Sparsity (%) 0.0 42.91 59.89 73.88 84.89 92.91
FLOPS (⇥106) 1814.1 1042.66 736.42 483.16 282.89 135.61
Memory (MB) 46.72 26.67 18.74 12.2 7.06 3.31
Runtime (ms) 45.85 30.34 22.51 14.31 9.84 6.02

Acc (LCS+P+IN) 63.32 60.21 57.42 53.77 48.75 44.62
Acc (LCS+L+IN) 63.93 59.66 56.84 53.00 48.11 44.14
Acc (Sandwich) 58.91 60.39 53.76 44.72 22.51 8.34
Acc (Discrete) 50.63 57.58 22.93 48.52 0.84 1.34

VGG19
(ImageNet)

Sparsity (%) 0.0 43.28 60.35 74.37 85.35 93.28
FLOPS (⇥106) 19533.52 11008.56 7656.48 4911.33 2773.1 1241.81
Memory (MB) 82.12 46.58 32.56 21.04 12.03 5.52
Runtime (ms) 388.49 246.81 172.64 105.77 60.0 29.55

Acc (LCS+P+IN) 66.77 64.47 62.11 58.35 53.45 49.5
Acc (LCS+L+IN) 66.97 63.79 61.42 57.57 52.66 49.11
Acc (Sandwich) 36.27 43.99 42.17 36.5 20.42 7.07
Acc (Discrete) 34.05 44.91 18.44 36.26 0.57 0.14

3.3.4 Confirming the Linear Subspace Accuracy-Efficiency Trade-Off

We conclude our experiments by providing additional experimental evidence that our linear

subspace method (LCS+L) trains a subspace specialized for high accuracy at one end and

high efficiency at the other end. In Fig. 3.15, we plot the validation accuracy along our

subspace, as well as the validation accuracy along our subspace when compressing with

f̃(!⇤(↵), �(↵)) ⌘ f(!⇤(↵), �(1� ↵)). In other words, the weights that were trained for low

compression levels are evaluated with high compression levels, and vice versa. We see that

this leads to a large drop in accuracy, confirming that our method has conditioned one side of

54

Figure 3.14: Learning compressible subspaces with quantization. We compare
our method for quantization using a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) to networks trained to operate at a particular bit width target.

the line to achieve high accuracy at high sparsities, and the other side of the line to achieve

high accuracy at low sparsities.

3.4 Discussion

In this chapter, we presented a method for learning a compressible subspace of neural

networks. Our method produces models that can be deployed on-device and used for efficient,

adaptive, real-time model compression. Once deployed, our model can be compressed in real-

time, to any compression level, without retraining, and without specifying the compression

levels before deployment. Additionally, our LCS+P method incurs no parameter overhead.

We show that our generic algorithm outperforms baselines in the domains of unstructured

sparsity, structured sparsity, and quantization. To train these models, we employ a dynamic

compression scheme during training that adapts the model to operate at different compression

levels.

Our compressible subspaces yield several positive real-world impacts. Devices equipped

55

Figure 3.15: Our linear compressible subspace optimizes one end for accuracy and
one end for efficiency,. We perform standard evaluation of a linear subspace with network
f(!⇤(↵), �(↵)) (Learned line), and evaluation when evaluating with reversed compression
levels, f(!⇤(↵), �(1 � ↵)) (Reversed line). Evaluation with the reversed line performs
significantly worse, indicating that one end is optimized for accuracy, while the other for
efficiency.

with our models can dynamically adjust their energy consumption by efficiently compressing

models according to the device’s available resources. Additionally, our method circumvents

the need for training multiple models tailored to multiple devices. Increasingly larger DNNs

are inaccessible to older devices and devices with lower compute, and training models specific

to each device’s hardware constraints would be prohibitively expensive. Using our method,

users can train a single model and efficiently compress it to a particular device’s hardware

constraints prior to deployment.

While we have focused on CNNs and Transformers for vision, an exciting future work is

extending these results to large language models.

56

3.5 Appendix

3.5.1 Training Details

Our CNNs warm up to an initial learning rate of 0.1 (0.045 for MobileNetV2) over 5 epochs,

which then decays to 0 over 85 epochs (or 195 for cPreResNet20) using a cosine schedule.

We use a batch size of 128 on a single GPU for cPreResNet20 and ResNet18. We use the

version of VGG19 provided by [67]. This implementation modifies VGG19 slightly by adding

BatchNorm layers and removing the last two fully connected layers. For VGG19, we use a

batch size of 256 with 4 GPUs. We train MnasNet, MobileNetV2, MobileNetV3-Small, and

MobileNetV3-Large with a batch size of 128 using two GPUs. We train transformer models

using a batch size of 1024 with 8 GPUs. For cPreResNet20, VGG19, and ResNet18, we use a

weight decay of 5⇥ 10�4. For MobileNetV2, we use a weight decay of 4⇥ 10�5, and 10�5 for

MnasNet, MobileNetV3-Small, and MobileNetV3-Large.

3.5.2 Baseline Model Accuracies

As a reference, we provide the final test accuracies of our models trained with BatchNorm

and without any compression in Tab. 3.3.

3.5.3 Memory and FLOPS Footprint of Compressed models

In Tabs. 3.4 to 3.6 we provide memory and compute measurements of our models compressed

under different compression levels in the unstructured high sparsity regime, unstructured

wide sparsity regime, and quantization, respectively.

57

Table 3.3: Accuracies of baseline (non-compressed) models with BatchNorm. We
provide the accuracies of all models used when no compression is applied and are trained
with BatchNorm. cPreResNet20 is trained on CIFAR-10 and all other models on ImageNet.

Model BatchNorm Baseline Accuracy (%)
cPreResNet20 91.69

ResNet18 70.72
VGG19 62.21

MnasNet-B1 72.58
MobileNetV2 70.03

MobileNetV3-Small 66.5
MobileNetV3-Large 73.09

DeiT-Ti 72.7
DeiT-Ti + Distillation 73.1

DeiT-S 80.3
CaiT-XXS 76.02

Table 3.4: Runtime characteristics for unstructured sparsity in the high sparsity
regime. Note that models of a particular architecture and sparsity level all have the same
runtime characteristics (memory and FLOPS), so we only report one value. Runtime was not
measured because it requires specialized hardware. So, we follow the standard practice of
only reporting memory and flops. Memory consumption refers to the size of nonzero model
weights in the currently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 95.66 96.15 96.64 97.14 97.63 98.12
FLOPS (⇥106) 1.46 1.29 1.13 0.96 0.79 0.63
Memory (MB) 0.04 0.03 0.03 0.02 0.02 0.02

Acc (LCS+P+GN) 70.18 69.22 67.74 63.78 54.91 24.92
Acc (LCS+L+GN) 75.53 72.30 67.02 52.86 39.63 34.12
Acc (TopK=0.04) 14.83 12.83 10.8 9.66 10.01 9.79
Acc (TopK=0.02) 10.25 10.53 78.7 10.56 10.05 10.09
Acc (TopK=0.01) 10.02 9.97 9.96 10.64 59.2 10.79
Acc (TopK=0.005) 10.0 10.08 9.81 10.03 10.0 41.44

ResNet18
(ImageNet)

Sparsity (%) 92.67 93.15 93.62 94.1 94.58 95.06
FLOPS (⇥106) 169.42 160.94 152.46 143.98 135.51 127.03
Memory (MB) 3.42 3.2 2.98 2.76 2.53 2.31

Acc (LCS+P+GN) 51.5 51.1 50.37 48.62 44.8 30.69
Acc (LCS+L+GN) 58.63 56.96 54.70 51.02 44.87 39.41
Acc (TopK=0.04) 5.96 0.9 0.18 0.11 0.1 0.1
Acc (TopK=0.02) 24.66 45.37 59.92 3.84 0.1 0.11
Acc (TopK=0.01) 0.12 0.1 0.1 0.11 53.95 0.11
Acc (TopK=0.005) 0.1 0.12 0.11 0.1 0.11 46.35

58

Table 3.5: Runtime characteristics for unstructured sparsity in the wide sparsity
regime. Note that models of a particular architecture and sparsity level all have the same
runtime characteristics (memory and FLOPS), so we only report one value. Runtime was
not measured, because it requires specialized hardware (so most unstructured pruning works
report memory and flops). Memory consumption refers to the size of nonzero model weights
in the currently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 0.0 49.31 86.29 91.22 93.68 96.15
FLOPS (⇥106) 33.75 17.11 4.62 2.96 2.13 1.29
Memory (MB) 0.87 0.44 0.12 0.08 0.05 0.03

Acc (LCS+P+GN) 89.64 89.34 82.34 75.24 67.55 47.1
Acc (LCS+L+GN) 86.65 85.45 80.78 76.27 71.22 68.78
Acc (TopK=0.9) 91.66 83.17 10.54 10.0 9.76 10.0
Acc (TopK=0.5) 91.16 91.17 10.64 10.14 10.0 10.0
Acc (TopK=0.1) 40.74 40.74 78.56 39.54 11.67 10.26

Acc (TopK=0.025) 9.64 9.64 10.65 10.0 9.98 82.15

ResNet18
(ImageNet)

Sparsity (%) 0.0 47.77 83.59 88.37 90.76 93.15
FLOPS (⇥106) 1814.1 966.32 330.49 245.72 203.33 160.94
Memory (MB) 46.72 24.4 7.66 5.43 4.32 3.2

Acc (LCS+P+GN) 69.25 69.12 64.53 60.36 55.58 41.48
Acc (LCS+L+GN) 66.94 66.49 63.20 60.96 58.44 56.83
Acc (TopK=0.9) 70.57 63.17 0.1 0.1 0.1 0.1
Acc (TopK=0.5) 70.15 70.15 0.24 0.17 0.1 0.12
Acc (TopK=0.1) 58.21 58.21 66.44 29.93 0.24 0.1

Acc (TopK=0.025) 0.12 0.12 0.13 0.17 2.64 61.33

VGG19
(ImageNet)

Sparsity (%) 0.0 48.75 85.31 90.19 92.62 95.06
FLOPS (⇥106) 19533.52 9822.65 2539.51 1568.42 1082.88 597.34
Memory (MB) 82.12 42.09 12.06 8.06 6.06 4.06

Acc (LCS+P+GN) 70.0 69.45 62.11 55.62 48.58 25.87
Acc (LCS+L+GN) 65.64 64.76 59.93 56.80 51.89 53.15
Acc (TopK=0.9) 61.72 56.67 0.1 0.0 0.0 0.1
Acc (TopK=0.5) 61.07 61.07 0.15 0.09 0.06 0.1
Acc (TopK=0.1) 7.91 7.91 50.13 16.8 0.13 0.09

Acc (TopK=0.025) 0.09 0.09 0.1 0.16 3.91 46.66

59

Table 3.6: Runtime characteristics for quantized models. Note that models of a
particular architecture and quantization bit width all use the same memory, so we only report
one value. Runtime was not measured, because it requires specialized hardware. Memory
consumption refers to the size of model weights in the currently executing model.

Bit Widths 8 7 6 5 4 3
Memory (MB) 0.22 0.19 0.17 0.14 0.11 0.08

cPreResNet20
(CIFAR-10)

Acc (LCS+P+GN) 89.97 90.0 89.88 89.26 86.25 65.26
Acc (LCS+L+GN) 87.20 87.86 87.86 87.40 84.59 75.86
Acc (Bit Width=8) 91.36 91.02 90.47 87.98 65.91 16.65
Acc (Bit Width=6) 91.07 90.89 91.26 87.12 63.1 18.78
Acc (Bit Width=4) 84.93 84.65 84.77 82.37 88.22 25.19
Acc (Bit Width=3) 55.71 55.56 57.01 55.66 44.83 73.89

ResNet18
(ImageNet)

Memory (MB) 11.69 10.23 8.77 7.31 5.84 4.38
Acc (LCS+P+GN) 63.59 63.51 63.15 61.82 55.89 5.48
Acc (LCS+L+GN) 66.72 66.30 64.80 61.84 56.96 44.63
Acc (Bit Width=8) 70.36 69.2 67.18 41.67 0.54 0.08
Acc (Bit Width=6) 66.8 66.26 69.17 44.0 0.43 0.1
Acc (Bit Width=4) 9.82 9.57 8.57 4.84 59.39 0.1
Acc (Bit Width=3) 0.1 0.12 0.09 0.1 0.12 25.61

VGG19
(ImageNet)

Memory (MB) 20.542 17.974 15.406 12.839 10.271 7.703
Acc (LCS+P+GN) 57.83 57.74 57.24 55.64 47.11 0.25
Acc (LCS+L+GN) 64.38 63.89 61.95 57.72 50.28 31.85
Acc (Bit Width=8) 60.85 59.32 56.13 39.73 0.3 0.09
Acc (Bit Width=6) 56.52 55.35 59.89 23.24 0.16 0.1
Acc (Bit Width=4) 0.13 0.13 0.14 0.11 51.33 0.1
Acc (Bit Width=3) 0.12 0.1 0.1 0.12 0.09 20.72

60

CHAPTER 4

Curriculum-Based Multiscale Training
1

In Chapter 2 and Chapter 3, we explored modulating the capacity of models during training

by dynamically compressing them via pruning or quantization. In this chapter, we shift

our attention to modulating the data complexity during training. In particular, we perform

a detailed analysis of multiscale variable batch size data samplers [70], which randomly

sample an input resolution at each training iteration and dynamically adjust their batch size

accordingly. Such samplers have been shown to improve model accuracy beyond standard

training with a fixed batch size and resolution, though it is not clear why this is the case.

We explore the properties of these data samplers by performing extensive experiments on

ResNet-101 and validate our conclusions across multiple architectures, tasks, and datasets.

We show that multiscale samplers behave as implicit data regularizers and accelerate training

speed. Compared to models trained with single-scale samplers, we show that models trained

with multiscale samplers retain or improve accuracy, while being better-calibrated and more

robust to scaling and data distribution shifts.

We additionally introduce a multiscale variable batch sampler with a simple curriculum

that progressively grows resolutions throughout training, which further reduces training

compute while retaining accuracy. We further show that the benefits of multiscale training

extend to detection and instance segmentation tasks.

Building on the effectiveness of curriculum-based multiscale resolution training for enhanc-

ing training efficiency, we explore additional improvements by imposing a curriculum on the

1
Work completed during an internship at Apple.

61

model architecture. Drawing inspiration from Neural Architecture Search (NAS) and network

morphisms [117, 30], we explore progressive model growth during training, combined with

sample resolution expansion, as a means of improving training efficiency further. This is in

contrast to the dynamic model compression we considered in Chapter 2 and Chapter 3, where

we gradually compressed the model throughout training. In this setting, as we progressively

increase the data complexity by expanding sample resolutions, we simultaneously expand the

model’s capacity to handle the growing task complexity. Our results demonstrate that this

compound scaling yields models with higher accuracy compared to baseline models trained

within a similar budget.

4.1 Overview of Image Data Samplers

When training a deep neural network N for vision tasks, gradient descent is performed over a

dataset D for a specific number of epochs, E. Throughout training, N is fed batches B ⇢ D

with shape |B| , (B, C, H, W) where B denotes the batch size, C is the number of input

channels, and H, W are the image height and width, respectively. Typically, the batch shape

|B| is fixed throughout training so that at each iteration, the model is fed a fixed number of

samples at a fixed resolution. Throughout this chapter, we refer to the protocol that fetches

data batches at each training iteration as the data sampler. We discuss several data sampling

strategies and their trade-offs below.

Single-scale fixed batch size. The single-scale fixed batch size (SSc-FBS) data sampler

is the default sampling procedure that is implemented across many deep learning libraries

and frameworks [120, 80, 1]. In this setting, the batch shape at iteration t, |B|
t
, remains fixed

so that |B|
t
= (B, C, H, W) for all iterations t.

Multiscale fixed batch size. SSc-FBS allows the model to learn representations at single

scale. However, in the real world, objects appear at different scales. Multiscale samplers

62

GPU-4

GPU-3

GPU-2

GPU-1

time

SSc-FBS

GPU-4

GPU-3

GPU-2

GPU-1

time

MSc-VBS

GPU-4

GPU-3

GPU-2
GPU-1

time

MSc-VBSWC

H
ei

gh
t W

idt
h

Batch

Tensor

Gradient sync.

Figure 4.1: Single-scale fixed batch size (SSc-FBS) vs multiscale variable batch
size (MSc-VBS) vs multiscale variable batch size with curriculum (MSc-VBSWC)
samplers. In the SSc-FBS sampler, at each training iteration, each GPU receives a batch of
data that is the same shape throughout training. In the MSc-VBS sampler, at each training
iteration, each GPU will randomly sample a training resolution and dynamically adjust the
batch size to use a large batch for small resolutions, and a small batch for large resolutions. In
the MSc-VBSWC sampler, the sample resolutions expand throughout the course of training
while leveraging the dynamic batch sizes of the MSc-VBS sampler.

with a fixed batch size (MSc-FBS) [88, 70] address this shortcoming by training a model

at multiple input scales. More specifically, MSc-FBS randomly samples a batch with shape

|B|
t
= (B, C, Ht, Wt) at each training iteration t, where (Ht, Wt) is drawn randomly from a

set of possible spatial resolutions S = {(H1, W1), (H2, W2), . . . , (Hn, Wn)} .

Multiscale with variable batch size. One drawback of MSc-FBS is its fixed batch size

selection. Because the batch size B is fixed, if a large resolution (Ht, Wt) 2 S is chosen,

an out-of-memory (OOM) error can occur. Thus, the choices of (Ht, Wt) are limited by

B. Conversely, a small spatial resolution may lead to under-utilization of computational

resources. To address this, multiscale variable batch size samplers (MSc-VBS) were introduced

in [72, 70]. This sampler circumvents the compute bottleneck of the MSc-FBS sampler by

63

dynamically adjusting the batch size B according to the resolution (Ht, Wt). In particular,

a “reference” batch shape (B, C, H, W) is first defined. Then, at training iteration t, the

MSc-VBS sampler samples a batch with shape |B|
t
= (Bt, C, Ht, Wt) where (Ht, Wt) 2 S are

sampled randomly and Bt = HW

HtWt
B. Thus, MSc-VBS will use a larger batch size Bt when

the resolution (Ht, Wt) is small, and a smaller Bt when the resolution is large. The MSc-VBS

sampler dynamically controls the batch size to offset the change in compute due to the spatial

resolution, allowing it to efficiently utilize the underlying hardware and avoid OOM errors

during training. Figure 4.1 visualizes single-scale and multiscale variable batch samplers.

Next, we augment MSc-VBS with a curriculum to progressively expand training resolutions

during training.

4.1.1 Curriculum-Based Multi-Scale Variable Batch Size Sampler

Motivated by curriculum and progressive learning [10, 45, 105], we extend MSc-VBS with

a curriculum which we call the Multiscale Variable Batch Size Sampler with curriculum

(MSc-VBSWC). Similar to MSc-VBS, we first consider a set of possible spatial resolutions S

and a reference batch shape (B, C, H, W). In this setting, S serves as a “reference” pool of

spatial resolutions that our sampler expands to. In particular, at each training epoch e, we

consider a pool of sample resolutions s(e) = {(⇢(e) · H1, ⇢(e) · W1), . . . , (⇢(e) · Hn, ⇢(e) · Wn)}

where ⇢(e) is a monotonically increasing function such that ⇢(0) = ⇢0 2 (0, 1], ⌧ 2 (0, 1], and

⇢(⌧E) = 1. E is the total number of training epochs, ⇢0 represents the initial compression

factor, and ⌧ determines the fraction of epochs it takes for s(e) to expand to S. In words, at

the start of training, we sample from a “compressed” form of S where each spatial resolution

is scaled by ⇢0, then, as training progresses, the set of spatial resolutions we sample from,

s(e), expands to S over the first ⌧E epochs. For example, for ⇢0 = 0.75, ⌧ = 0.5, and

E = 600, training begins by sampling from s(0) = {(0.75H, 0.75W) : (H, W) 2 S}, and for

epochs e � 300, s(e) ⌘ S. We found ⇢0 = 0.75 and ⌧ = 0.5 to work well, and use these

hyperparameters for all MSc-VBSWC experiments.

64

0 100 200 300 400 500 600
Epoch (e)

0.75

0.80

0.85

0.90

0.95

1.00

⇢(
e) ⌧ =0.5

Cosine

Linear

Polynomial

Multi-step

Figure 4.2: MSc-VBSWC expansion schedules. We experiment with four expansion
schedules, ⇢(e), for MSc-VBSWC that control the rate at which spatial resolutions expand
throughout training. We use initial compression factor ⇢0 = 0.75, and expansion period
⌧ = 0.5.

Sampler Peak GPU Memory Training FLOPs Optimization updates Training time Top-1 Accuracy

SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 81.31

MSc-VBSWC (Linear) 1.72⇥ 0.70⇥ 0.66⇥ 0.91⇥ 81.34

MSc-VBSWC (Cosine) 1.75⇥ 0.70⇥ 0.66⇥ 0.84⇥ 81.53

MSc-VBSWC (Polynomial) 1.61⇥ 0.67⇥ 0.63⇥ 0.88⇥ 81.29

MSc-VBSWC (Multi-step) 1.32⇥ 0.67⇥ 0.64⇥ 0.87⇥ 81.22

Table 4.1: MSc-VBSWC with a cosine schedule has a stronger accuracy-efficiency
trade-off. We train a ResNet-101 architecture on ImageNet with linear, cosine, polynomial,
and multi-step expansion schedules. Due to its stronger accuracy-efficiency trade-off, we
adopt the cosine schedule for all of our MSc-VBSWC experiments.

The rate at which s(e) expands is controlled by the function ⇢(e), which we call the

“curriculum.” We consider four schedules for ⇢(e): 1) linear, 2) cosine, 3) polynomial, and 4)

multi-step, as illustrated in Fig. 4.2. We compare the performance of these different schedules

in Tab. 4.1, where we find that a cosine schedule offers the strongest accuracy-efficiency trade-

off. As such, all our MSc-VBSWC experiments expand the training resolutions according to

this schedule.

65

4.2 Why Train With Multiscale Samplers?

In this section, we analyze the properties of the different samplers in Sec. 4.1 and compare

their performances. We first establish their benefits over single-scale training and show

that multiscale variable batch size samplers train faster and lead to more accurate models

(Sec. 4.2.1). To further understand the properties of multiscale samplers, we study their

robustness and empirically show that they are better calibrated (Sec. 4.2.2). Finally, we also

study their regularization behavior (Sec. 4.2.3).

We study these properties on the ImageNet [20] dataset using the ResNet-101 architecture

[38] and follow the recipes in [70, 71] for training and evaluating the models. For results on

other architectures, see Sec. 4.3. Additionally, in Sec. 4.6.2, we provide a discussion on the

effect that the number of GPUs has on the performance of single and multiscale samplers, as

well as uncertainty measurements.

4.2.1 Faster Training

Metrics: We use the following metrics to measure the training speed: (1) Training FLOPs

measures computational complexity during training while being hardware-agnostic. Generally,

a data sampler with fewer training FLOPs is preferable. (2) Optimization updates measures

the number of training iterations it takes to train a model. Fewer updates is generally more

efficient and favorable. (3) Peak GPU memory measures the maximum memory that is

required for training a model. Data samplers with lower memory are preferable. (4) Training

time measures the wall-clock time taken to train the model. Data samplers with lower

training times are desirable. Note that, in these experiments, we used the same hardware for

training all models, as well as the same number of data workers and GPUs. However, a careful

tuning of hardware resources may vary the training time significantly. Such experiments are

beyond the scope of this chapter.

66

Sampler Peak GPU Memory Training FLOPs Optimization updates Training time Top-1 Accuracy (%)

SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 81.31
MSc-FBS 2.23⇥ 1.15⇥ 1.00⇥ 1.15⇥ 81.01
MSc-VBS 1.22⇥ 0.77⇥ 0.77⇥ 0.92⇥ 81.66
MSc-VBSWC 1.75⇥ 0.70⇥ 0.66⇥ 0.84⇥ 81.53

Table 4.2: Training with a multiscale variable batch size sampler promotes faster
training. Here we train a ResNet-101 model on ImageNet with single-scale (SSc-FBS)
and multiscale (MSc-FBS, MSc-VBS, MSc-VBSWC) samplers. Multiscale training retains
the accuracy of the model trained with SSc-FBS while training faster and being more
computationally efficient.

Results: Table 4.2 compares the performance of different samplers. In general, multiscale

samplers (MSc-FBS, MSc-VBS, and MSc-VBSWC) are able to match the performance of

the single-scale sampler (SSc-FBS). Multiscale samplers with variable batch sizes (MSc-VBS

and MSc-VBSWC) also reduce the training FLOPs and optimization updates significantly,

resulting in faster training. This is because multiscale variable batch samplers adjust the batch

size depending on the input spatial resolution (larger batch sizes are used for smaller spatial

resolutions and vice-versa). Compared to training with SSc-FBS, training with MSc-VBSWC

reduces training FLOPs, optimization updates, and wall clock time by 30%, 34%, and 16%

respectively, without compromising accuracy. Due to the large computational requirements

of the MSc-FBS sampler, we focus our multiscale sampler analysis on the MSc-VBS and

MSc-VBSWC samplers in the rest of our experiments.

4.2.2 Robustness

In Sec. 4.2.1, we observe that multiscale samplers can preserve or slightly improve accuracy

and accelerate training. In this section, we assess the robustness of models trained with

multiscale samplers compared to those trained with single-scale samplers.

Metrics: We study the robustness of models trained with multiscale samplers in five ways.

(1) Accuracy on standard robustness benchmarks. We evaluate the top-1 accuracy on

three standard benchmarks for estimating a model’s robustness: ImageNet-A [40], ImageNet-R

67

[39], and ImageNetV2 [87]. (2) Expected calibration error. A classification model is well-

calibrated if its predicted class probabilities capture the true underlying distribution correctly.

This is a desirable property as it allows users of such models to more reliably accept or reject

the models’ outputs. A standard metric to measure the degree of a model’s miscalibration is

the expected calibration error (ECE) [73, 61], which measures the discrepancy between the

model’s confidence and the accuracy. Hence, a well-calibrated model will have a low ECE. (3)

Image embedding variance. An image embedding is a vector representation of an image

that captures its semantic information. A model that produces low-variance embeddings

is robust and selective [29, 95]. (4) Robustness to scale changes. Generally speaking,

a discriminative model should be robust to scale changes. To assess this, we evaluate our

models across a broad range of input resolutions. (5) Entropy Skewness. The entropy

of a classification model’s predicted class distribution reflects the model’s uncertainty in its

prediction. By computing the entropy for each image in the validation set at each training

epoch, we can obtain empirical entropy distributions that we can monitor over the course of

training. Measuring the skewness of these distributions allows us to investigate the rate at

which a model becomes more certain in its predictions.

Results: (1) Table 4.3 shows results on different robustness datasets. We observe that

ResNet-101 trained with multiscale samplers consistently achieves a higher accuracy across

all benchmark datasets. Furthermore, models trained with multiscale samplers have (2) lower

ECE (Figure 4.3a), (3) low image embedding variance (Figure 4.3b), and (4) are less sensitive

to scale changes (Figure 4.3c) as compared to single scale samplers. These results suggest

that models trained with multiscale samplers are able to more effectively extract the salient

semantic information in the image (e.g., changes in image scale and rotation). Moreover,

these models are more robust and have a greater discriminative power. Our findings regarding

embedding variance match [54, 90], which also show that a reduction in embedding variance

accelerates training. (5) Additionally, the large variation in the entropy skewness of the

68

32 64 96 128 160 192 224 256 288 320
Resolution

0.0

0.2

0.4

0.6

0.8

E
C

E

SSc-FBS MSc-VBS MSc-VBSWC

(a) Calibration error

64 96 128 160 192 224 256 288 320
Resolution

0

2

4

6

8

10

A
ve

ra
ge

E
m

b
ed

d
in

g
V

ar
ia

n
ce

SSc-FBS MSc-VBS MSc-VBSWC

(b) Embedding variance

128 160 192 224 256 288 320
Resolution

74

75

76

77

78

79

80

81

82

V
al

id
at

io
n

T
op

-1
(%

)

SSc-FBS MSc-VBS MSc-VBSWC

32 64 96

25

50

75

(c) Accuracy across resolutions

0 200000 400000 600000
Optimization Update

�6

�4

�2

0

2

E
nt

ro
py

S
ke

w
n
es

s

0 50000

�5

0

SSc-FBS

MSc-VBS

MSc-VBSWC

(d) Skewness of empirical entropy distribu-

tions

Figure 4.3: Multiscale samplers improve model calibration, reduce embedding
variance, and improve robustness. Here we train a ResNet-101 model with single-scale
and multiscale samplers. We find that models trained with multiscale samplers are better
calibrated, learn embeddings with lower variance, and are more robust to changes in input
scale. Moreover, multiscale samplers exhibit a larger shift in entropy, suggesting a larger
exploration of the weight space.

multiscale samplers (Figure 4.3d) suggests that multiscale samplers explore more of the weight

space. Coupled with the gradual shift toward large skewness values, this suggests that the

increased exploration steers the model towards more robust minima.

69

Dataset SSc-FBS MSc-VBS MSc-VBSWC

ImageNet-A 16.05(0.0) 17.91(+1.86) 19.17(+3.12)

ImageNet-R 39.77(0.0) 41.61(+1.84) 41.57(+1.80)

ImageNetV2-MF 68.75(0.0) 69.86(+1.11) 70.05(+1.30)

ImageNetV2-Th 76.82(0.0) 77.97(+1.15) 77.66(+0.84)

ImageNetV2-TI 81.30(0.0) 81.75(+0.45) 82.03(+0.73)

Table 4.3: Training with multiscale samplers improves robustness. Here we evaluate
our ResNet-101 models that were trained with single-scale and multiscale samplers on
ImageNet. We report the top-1 accuracy (%) across multiple datasets and observe that
models trained with multiscale samplers consistently outperform the single-scale model.
ImageNetV2-MF refers to the “matched frequency” subset of ImageNetV2, ImageNetV2-Th
refers to the “threshold 0.7” subset, and ImageNetV2-TI refers to the “top images” subset
(see [87]).

0.0 0.1 0.2 0.3
Stochastic Depth Drop Rate

0.4

0.3

0.2

0.1

0.0

D
ro

p
ou

t

-0.69 0.33 0.23 0.15

-0.72 0.32 0.48 0.31

-0.80 0.29 0.50 0.29

-0.63 0.32 0.32 0.27

0.00 0.10 0.35 0.17 �1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

(a) SSc-FBS

0.0 0.1 0.2 0.3
Stochastic Depth Drop Rate

0.4

0.3

0.2

0.1

0.0

D
ro

p
ou

t

-0.31 -0.32 -0.53 -1.15

-0.09 -0.01 -0.11 -1.14

-0.06 0.13 -0.51 -0.91

0.03 0.10 -0.24 -0.69

0.00 0.24 -0.06 -0.44 �1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

(b) MSc-VBS

0.0 0.1 0.2 0.3
Stochastic Depth Drop Rate

0.4

0.3

0.2

0.1

0.0

D
ro

p
ou

t

-0.06 0.25 -0.03 -0.44

-0.07 0.39 0.01 -0.09

0.14 0.37 0.21 -0.12

0.21 0.37 0.41 -0.04

0.00 0.29 0.31 -0.05 �1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

(c) MSc-VBSWC

Figure 4.4: Multiscale samplers are implicit data regularizers. We train ResNet-101
on the ImageNet dataset at different values of classifier dropout (y-axis) and stochastic depth
drop rate (x-axis) with three samplers (SSc-FBS, MSc-VBS, and MSc-VBSWC). ResNet-101
trained with multiscale samplers (MSc-VBS and MSc-VBSWC) requires less regularization
as compared to SSc-FBS. Here, the values in each cell are relative to the bottom left cell.
The top-1 accuracy of ResNet-101 for bottom left cell (i.e., the values of classifier dropout
and stochastic depth are 0.0) for SSc-FBS, MSc-VBS, and MSc-VBSWC are 81.31%, 81.66%,
and 81.53% respectively.

4.2.3 Regularization

Multiscale data augmentation and sampling methods have been adopted in previous works

for improving model accuracy [72]. However, to the best of our knowledge, the pairing of

multiscale data sampling with explicit regularization methods (e.g., dropout [97], stochastic

70

4e-05 0.0004 0.004
Weight Decay

40

50

60

70

80

V
al

id
at

io
n

T
op

-1
(%

)

SSc-FBS

MSc-VBS

MSc-VBSWC

Figure 4.5: Models trained with multiscale samplers are less sensitive to weight
decay strength. Here we train ResNet-101 models on ImageNet with varying degrees of
weight decay. Models trained with multiscale samplers enjoy a lower drop in accuracy due to
stronger weight decay.

depth drop rate [49], and L2 regularization) has not been extensively studied. It may be the

case that multiscale samplers offer implicit regularization, and as a consequence, require little

or no explicit regularization and hence can lead to reduced parameter tuning. In this section,

we study the regularization aspect of different samplers.

Metrics: To assess the regularization, we consider three widely-used regularization methods

in state-of-the-art models: (1) classifier dropout, (2) stochastic depth drop rate, and (3) L2

weight regularization.

Results: Figure 4.4 shows the effect of varying the values of classifier and stochastic dropouts

during training of ResNet-101 on the ImageNet dataset. In the case of SSc-FBS training,

we observe that the best top-1 accuracy of 81.81% is obtained when strong regularization

(classifier dropout: 0.2 and stochastic depth drop rate: 0.2) is used (Figure 4.4a). On the

other hand, similar or better accuracy with smaller regularization coefficients is achieved when

we instead train with multiscale samplers. For example, MSc-VBS (Figure 4.4b) achieves

71

Model Sampler GPU Memory Training FLOPs Optimization updates Training time Top-1 Accuracy (%)

ResNet-50 [38] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 79.43
MSc-FBS 2.16⇥ 1.15⇥ 1.00⇥ 1.05⇥ 80.01
MSc-VBS 1.31⇥ 0.77⇥ 0.77⇥ 0.95⇥ 80.03
MSc-VBSWC 1.03⇥ 0.70⇥ 0.66⇥ 0.85⇥ 80.25

SE-ResNet-50 [48] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 80.24
MSc-FBS 2.21⇥ 1.15⇥ 1.00⇥ 1.13⇥ 80.64
MSc-VBS 1.32⇥ 0.77⇥ 0.77⇥ 0.99⇥ 80.71
MSc-VBSWC 1.04⇥ 0.70⇥ 0.66⇥ 0.88⇥ 80.56

RegNetY-16GF [83] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 79.64
MSc-FBS 2.29⇥ 1.15⇥ 1.00⇥ 1.11⇥ 80.52
MSc-VBS 1.11⇥ 0.77⇥ 0.77⇥ 0.79⇥ 80.96
MSc-VBSWC 1.45⇥ 0.69⇥ 0.66⇥ 0.72⇥ 80.64

EfficientNet-B3 [104] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 81.20
MSc-FBS OOM - - - -
MSc-VBS 1.01⇥ 0.66⇥ 0.75⇥ 0.78⇥ 81.47
MSc-VBSWC 1.03⇥ 0.58⇥ 0.65⇥ 0.64⇥ 81.86

Table 4.4: Training models with multiscale samplers reduces compute and training
time while improving accuracy. We train multiple CNN architectures using single-scale
and multiscale samplers on the ImageNet dataset. Multiscale samplers are able to consistently
match the performance of the single-scale models while reducing training time, optimization
updates, and FLOPs.

a top-1 accuracy of 81.91% with a stochastic dropout of 0.1 (and no classifier dropout).

Moreover, when there is no explicit regularization (i.e., the value of classifier and stochastic

dropouts are 0.0), the multiscale samplers increase the accuracy of ResNet-101 by 0.2-0.3%.

Furthermore, as shown in Figure 4.5, when the value of the L2 regularization coefficient

is varied from 4e�5 to 4e�3, the drop in top-1 accuracy of models trained with multiscale

samplers is significantly lower than the top-1 accuracy drop of the single-scale sampler. These

results, in conjunction with Figure 4.4, suggest that ResNet-101 trained with multiscale

samplers requires less explicit regularization and is less sensitive to the choice of weight decay.

This is likely because multiscale samplers act as data dependent regularizers.

4.3 Multiscale Training Beyond ResNet and Classification

In Sec. 4.2, we analyzed the efficacy of multiscale samplers using ResNet-101 on the ImageNet

dataset. In this section, we validate that the benefits of multiscale training extend to other

architectures and tasks.

72

4.3.1 CNNs, Transformers, and Lightweight Image Classification Models

CNNs. We study three different models on the ImageNet dataset using different data

samplers: (1) ResNet-50, (2) Se-ResNet-50 [48], (3) RegNetY-16GF [83], and (4) EfficientNet-

B3 [104]. Results are given in Table 4.4. We observe that multiscale samplers consistently

improve the performance of different models and accelerate training.

Transformers Our analysis of multiscale samplers has centered around CNNs. In this

section, we show that multiscale samplers improves training efficiency of vision transformers

while being competitive to SSc-FBS. We train ViT-B [21] and Swin-S [66] models using single

and multiscale samplers. Results are summarized in Table 4.5. We observe that training

ViT-B with MSc-VBS reduces compute by 24% while improving accuracy. MSc-VBS can also

be used to train Swin-S more efficiently with comparable accuracy. We observe a larger drop

in accuracy when training ViT-B and Swin-S with MSc-VBSWC. We hypothesize that the

smaller input resolutions used by MSc-VBSWC at the start of training adversely affect the

patch embeddings. We used a standard patch size of 16⇥ 16 and a minimum resolution of

128⇥ 128 with an initial compression factor of ⇢0 = 0.75. Hence, the smallest input resolution

at the start of training was 96⇥ 96 for MSc-VBSWC. While MSc-VBSWC may still be used

to train a vision transformer, larger min/max spatial resolutions may be required and is the

subject of future work.

Lightweight Models Our analysis thus far has only considered relatively “heavyweight”

networks. In Table 4.6, we train MobileNetv1 [44], MobileNetv2 [92], and MobileNetv3-Large

[43]—all of which are lightweight networks designed for computational efficiency—using

single-scale and multiscale samplers. We observe that training with multiscale samplers can

improve efficiency with similar or better accuracy compared to SSc-FBS.

73

Model Sampler GPU Memory Training FLOPs Optimization updates Training time Top-1 Accuracy

ViT-B [21] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 79.76
MSc-VBS 1.75⇥ 0.76⇥ 0.76⇥ 0.80⇥ 80.12
MSc-VBSWC 2.19⇥ 0.67⇥ 0.67⇥ 0.74⇥ 78.44

Swin-S [66] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 82.93
MSc-VBS 1.58⇥ 0.91⇥ 0.76⇥ 0.89⇥ 82.35
MSc-VBSWC 1.56⇥ 0.82⇥ 0.67⇥ 0.81⇥ 81.78

Table 4.5: Training vision transformer models with multiscale samplers reduces
compute and training time without a significant drop in accuracy. We train ViT-B
[21] and Swin-S [66] using single-scale and multiscale samplers on the ImageNet dataset.
Training with multiscale samplers reduces training time, optimization updates, and FLOPs.
We observe a drop in accuracy when training with MSc-VBSWC which we hypothesize is
due to the small training resolutions at the beginning of training which may affect the patch
embeddings.

Model Sampler GPU Memory Training FLOPs Optimization updates Training time Top-1 Accuracy

MobileNetv1 [44] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 73.92
MSc-VBS 1.01⇥ 0.77⇥ 0.77⇥ 0.98⇥ 74.16
MSc-VBSWC 1.24⇥ 0.70⇥ 0.66⇥ 0.97⇥ 74.05

MobileNetv2 [92] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 73.36
MSc-VBS 1.21⇥ 0.77⇥ 0.77⇥ 0.98⇥ 73.06
MSc-VBSWC 1.13⇥ 0.70⇥ 0.66⇥ 0.91⇥ 73.09

MobileNetv3 [43] SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 74.74
MSc-VBS 1.19⇥ 0.77⇥ 0.77⇥ 0.94⇥ 75.24
MSc-VBSWC 1.42⇥ 0.71⇥ 0.66⇥ 0.88⇥ 74.77

Table 4.6: Multiscale samplers reduce training FLOPs of lightweight CNNs without
a significant drop in performance. We train MobileNet models on ImageNet using the
recipes in [70]. We observe that training lightweight networks with multiscale samplers
produces models with accuracies that are competitive to the SSc-FBS model while being
more efficient to train.

4.3.2 Object Detection with Mask R-CNN

In this section, we study the effect of different samplers on a standard detection model, Mask

R-CNN [37] with a ResNet-101 image backbone. We train and evaluate the model on the

MS-COCO dataset [64]. To understand the effect of different samplers, we train the Mask

R-CNN model with and without pre-training across different sampler configurations. Our

results are summarized in Table 4.7. We first note that batch sizes for object detection tasks

are typically much smaller than for classification tasks (e.g., a common batch size per GPU

for object detection is 4, whereas 256 is commonly used for classification). Therefore, at

74

Pre-training Sampler Mask R-CNN Sampler Peak GPU Memory Training FLOPs Optimization updates Training time bbox mAP segm mAP

SSc-FBS
SSc-FBS 1.00⇥ 1.00⇥ 1.00⇥ 1.00⇥ 42.91 38.10
MSc-VBS 3.44⇥ 0.70⇥ 0.63⇥ 0.72⇥ 46.23 41.27
MSc-VBSWC 3.35⇥ 0.63⇥ 0.54⇥ 0.66⇥ 46.48 41.28

MSc-VBS
SSc-FBS 1.09⇥ 1.00⇥ 1.00⇥ 1.00⇥ 43.19 38.30
MSc-VBS 3.29⇥ 0.70⇥ 0.63⇥ 0.72⇥ 46.82 41.67
MSc-VBSWC 2.68⇥ 0.63⇥ 0.54⇥ 0.66⇥ 46.02 41.12

MSc-VBSWC
SSc-FBS 1.05⇥ 1.00⇥ 1.00⇥ 1.00⇥ 42.71 38.12
MSc-VBS 3.50⇥ 0.7⇥ 0.63⇥ 0.72⇥ 45.46 40.60
MSc-VBSWC 3.30⇥ 0.63⇥ 0.54⇥ 0.66⇥ 45.42 40.74

None
SSc-FBS 0.91⇥ 1.00⇥ 1.00⇥ 1.00⇥ 37.91 34.21
MSc-VBS 3.46⇥ 0.7⇥ 0.63⇥ 0.74⇥ 40.83 36.74
MSc-VBSWC 3.38⇥ 0.63⇥ 0.54⇥ 0.68⇥ 39.00 35.74

Table 4.7: Training with multiscale samplers increases mAP while decreasing
training time and compute. We report bounding box and instance segmentation mAP@IoU
of 0.50:0.05:0.95 for a Mask R-CNN [37] model with a ResNet-101 backbone. Compared
to single-scale training, multiscale samplers achieve better performance while reducing
optimization updates by 46% and training FLOPs by 37%. Models in the lower part of the
table were trained without pre-training the backbone model. We also note that effective
batch sizes in object detection tasks are much smaller than classification tasks (e.g., 4 vs. 256
per GPU). Consequently, effective batch sizes at high resolutions are similar to the batch sizes
at the base/reference resolution, causing multiscale variable batch size samplers to behave
like multiscale fixed batch size samplers. Hence, we observe a large peak GPU memory.

high resolutions, the effective batch size for multiscale samplers is similar to the batch size

of the base/reference resolution, causing multiscale variable batch samplers to behave like

the multiscale fixed batch size sampler. Therefore, we observe a larger peak GPU memory

when training object detection/instance segmentation tasks with variable batch samplers as

compared to classification tasks (Table 4.4).

Our experiments show that the Mask R-CNN model with a multiscale sampler significantly

improves performance both when training from scratch and when pre-training. For example, a

pre-trained MSc-VBS model attains a 0.47 mAP in detection when training the Mask R-CNN

model with MSc-VBS, compared to 0.43 when training the Mask R-CNN model with SSc-FBS.

We also observe a commensurate improvement in instance segmentation mAP, where training

with MSc-VBS yields an mAP of 0.42, while training with SSc-FBS yields a 0.38 mAP. In

addition to substantially improving the mAP, training with multiscale samplers significantly

reduces training time and compute. We also note that training with multiscale samplers

improves performance for both detection and instance segmentation tasks regardless of the

75

pre-training method. Our results are consistent with large-scale jittering data augmentation

[27] for object detection models. However, a key difference between models trained with

large-scale jittering and multiscale samplers is that large-scale jittering uses a fixed batch

size during training. As a result, training is slower. On the other hand, multiscale samplers

serve the dual purpose of improving accuracy as well as training efficiency.

4.4 Efficient Training via Progressive Compound Scaling2

In Sec. 4.2.1, we showed that progressive multiscale training can improve training efficiency

of classification models by more than 30% while preserving accuracy. To further improve

efficiency, we turn our attention toward progressively expanding the model’s capacity by

incrementally increasing its width and depth. At the start of training, we compress a model

by scaling down its width and depth along with the input resolution. As training progresses,

the model’s width, depth, and input resolution are gradually expanded following a curriculum.

This progressive learning allows us to improve the training efficiency significantly while

delivering the same performance as the dense model when trained with a similar compute

budget.

4.4.1 Progressive Compound Scaling

We begin by developing the notation used when discussing our model and data expansion

during training. Afterwards, we present a grid search analysis on ResNet-50 which allows us

to establish a Pareto-optimal relationship between our three scaling dimensions.

2
This section is based on unpublished work completed during an internship at Apple.

76

Model Scaling

Let N : RC⇥H⇥W ! Rm denote an image classification network that operates on images

of size (C, H, W) where C denotes channels and H, W are the spatial dimensions. Many

CNNs [38, 44, 92, 43] are designed as a sequence of s modules, Fi, followed by a classification

head, H. Hence, we can write N (X) = (H � Fs � · · · � F1)(X). Each module Fi is typically

constructed with a sub-module, f i

j
, e.g., a ResNet Bottleneck block, repeated Li times. In

other words, Fi(Xi) = (f i

Li
� f i

Li�1 � · · · � f i

1)(Xi). Each f i

j
can further be analyzed in terms

of its constituent convolution layers. Let Ki

j
denote the number of convolution layers in f i

j

and {C ij

l
}l=1,...,Ki

j
the corresponding output channels of each convolution layer.

Given network N , we compress it by modulating its width and depth independently. Let

w, d 2 (0, 1] denote width and depth scaling factors, respectively. Compressing the width of

N is equivalent to scaling {C ij

l
}l=1,...,Ki

j
by w for all i, j. In particular, we introduce a width

compression function, gw, used to uniformly scale each layer’s channels:

gw : ({C ij

l
}l=1,...,Ki

j
; w) 7! {dw · C ij

l
e8}l=1,...,Ki

j
, (4.1)

where d·e8 rounds to ensure divisibility by 8. We compress the network’s depth by scaling

each Li (the number of times module Fi is repeated) by d. We similarly introduce a depth

compression function, gd, to uniformly scale the number of sub-modules in each module:

gd : ({Li}i=1,...,s; d) 7! {max(1, bd · Lie}i=1,...,s, (4.2)

where b·e denotes rounding to the nearest integer.

77

Resolution Scaling

In addition to compressing the model along its width and depth dimensions, we also progres-

sively grow the resolution of the samples used to train the model. Our scaling follows our

MSc-VBSWC sampler as defined in Sec. 4.1. In particular, the resolution scaling factor, ⇢,

progressively grows throughout training.

Expansion Schedules

Our training method begins by compressing the network using initial factors w0 and d0,

yielding the network N0 = gd(gw(N , w0), d0). At each training epoch, e, we train a compressed

network Ne = gd(gw(N , we), de), where we � we�1 and de � de�1. Trained parameters from

Ne�1 are copied over to Ne. Motivated by [118], the new parameters of Ne are initialized

randomly. Hence, our training method begins training with compressed network N0 and

progressively grows it to its full size N over a specified expansion period. A model trained for

a total of E epochs has an expansion period of E⌧ = ⌧ ·E, where ⌧ 2 (0, 1] is a hyperparameter

that controls the fraction of training epochs dedicated to growing the model. After the model

reaches its full size, we continue training for the remaining (1� ⌧)E epochs using the full

model. The rate at which the model grows follows a linear schedule. Namely, the width and

depth multipliers at epoch e are computed using Eq. (4.3), where c0 represents an initial

width, depth, or resolution multiplier. We illustrate the effect of our width and depth scaling

on ResNet-50 in Fig. 4.6a, and resolution scaling in Fig. 4.6b.

hl(e; c0, E⌧) =

8
><

>:

c0 + 1�c0
E⌧

e, e < E⌧

1, e � E⌧ .
(4.3)

78

(a) (b)

Figure 4.6: ResNet-50 progressive compound model and resolution scaling schedule.
We consider a ResNet-50 model trained for 600 epochs with an expansion period of ⌧ = 0.75.
(a) Effect of linearly scaling only the width, depth, or both of ResNet-50 following a linear
expansion curriculum. (b): The progressive resolution scaling following our MSc-VBSWC
data sampler.

4.4.2 ResNet-50 Progressive Compound Scaling

To shed some light on the effect that w0, d0, r0, and ⌧ have on the performance of a model

versus its training compute, we perform a grid search on ResNet-50 over these four param-

eters with the following search space: w0 2 {0.25, 0.5, 0.75, 1}, d0 2 {0.25, 0.5, 0.75, 1}, r0 2

{0.25, 0.5, 0.75, 1}, and ⌧ 2 {0.5, 0.75, 0.95}. Each of these models is trained for 150 epochs

and with our compound scaling method discussed in Sec. 4.4.1. Additionally, we train eight

baseline dense models with the SSc-FBS data sampler (i.e., we do not apply model com-

pression and use a fixed sample resolution) for 150, 120, 105, . . . , 30 epochs, corresponding to

baselines with 100%, 80%, 70%, . . . , 20% of the total compute budget. For SSc-FBS baselines,

we train with a batch size of 128 and a resolution of 224 ⇥ 224. For our MSc-VBSWC

data sampler, we use a reference batch size of 256 and resolution 160⇥ 160. The minimum

(pre-scaled) resolution is 128⇥ 128 and the maximum (pre-scaled) resolution is 320⇥ 320.

In Fig. 4.7a, we plot the results of our grid search as a function of the fraction of

total training FLOPS used compared to the 100% SSc-FBS model. We make the following

79

observations:

• Keeping the model size fixed and varying only the resolution with ⌧ = 0.95 and

r0 2 {1, 0.75, 0.5, 0.25} (green points) yields the optimal accuracy-efficiency tradeoff

with up to a 60% reduction in total training FLOPS3.

• Keeping the resolution scaling fixed (r0 = 1) and scaling only the model width and

depth dimensions (blue and red points, respectively) yields a suboptimal tradeoff in

terms of training efficiency vs. accuracy.

• To reduce training FLOPS beyond what is enabled by resolution scaling alone, we must

perform a compound scaling where we vary width, depth, and resolution (gray points).

In particular, we observe that the optimal accuracy-efficiency trade-off consists of three

phases as depicted in Fig. 4.7b. This observation allows us to develop a Pareto-optimal

ordering in which compound scaling should be performed during training in order to improve

efficiency:

• Resolution Phase (R): Keep the model width and depth fixed at w0 = 1, d0 = 1.

Then, gradually reduce the initial resolution factor r0 until the desired training budget

is reached or r0 reaches its minimum value (0.25 for our experiments).

• Width Phase (W): If the resolution compression limits have been reached, then keep

r0 fixed at its minimum value, keep d0 = 1 fixed, and gradually reduce the width w0

until the desired training budget is reached or w0 reaches its minimum value (0.25 for

our experiments).

• Depth Phase (D): If the resolution and width phases have not yielded the desired

training budget, keep w0 and r0 fixed at their minimum values, then gradually decrease

3
The fraction of compute reduction will vary depending on the resolutions and batch sizes used for both

SSc-FBS and MSc-VBSWC.

80

d0 until the desired training budget is reached or d0 reaches its minimum value (0.25

for our experiments).

<latexit sha1_base64="OZWdoHu/uf8wOr3GpP+34bg09Qs=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgadkVo16EoBePEcwDkiXMTmaTIbMPZ3qFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7/EQKjY7zbRVWVtfWN4qbpa3tnd298v5BU8epYrzBYhmrtk81lyLiDRQoeTtRnIa+5C1/dDv1W09caRFHDzhOuBfSQSQCwSgaqd1Fml47drVXrji2MwNZJm5OKpCj3it/dfsxS0MeIZNU647rJOhlVKFgkk9K3VTzhLIRHfCOoRENufay2b0TcmKUPgliZSpCMlN/T2Q01Hoc+qYzpDjUi95U/M/rpBhceZmIkhR5xOaLglQSjMn0edIXijOUY0MoU8LcStiQKsrQRFQyIbiLLy+T5pntXtjV+/NK7SaPowhHcAyn4MIl1OAO6tAABhKe4RXerEfrxXq3PuatBSufOYQ/sD5/APtNj0o=</latexit>

� = 0.5
<latexit sha1_base64="ZxCr2tzRDB74ANiS7g7Ncw2/+us=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbB07Ir1noRil48VrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQasPBh7vzTAzL0w408bzvpzCyura+kZxs7S1vbO7V94/aOk4VYQ2Scxj1QmxppxJ2jTMcNpJFMUi5LQdjm9mfvuRKs1ieW8mCQ0EHkoWMYKNlR56BqdXnlur9ssVz/XmQH+Jn5MK5Gj0y5+9QUxSQaUhHGvd9b3EBBlWhhFOp6VeqmmCyRgPaddSiQXVQTY/eIpOrDJAUaxsSYPm6s+JDAutJyK0nQKbkV72ZuJ/Xjc10WWQMZmkhkqyWBSlHJkYzb5HA6YoMXxiCSaK2VsRGWGFibEZlWwI/vLLf0nrzPUv3OrdeaV+ncdRhCM4hlPwoQZ1uIUGNIGAgCd4gVdHOc/Om/O+aC04+cwh/ILz8Q12Io+L</latexit>

� = 0.75
<latexit sha1_base64="bvrp3ToAtSl3LuIpdVH1vIDt/iY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgadkV4+MgBL14jGAekixhdjKbDJmZXWZmhbDkK7x4UMSrn+PNv3GS7EGjBQ1FVTfdXWHCmTae9+UUlpZXVteK66WNza3tnfLuXlPHqSK0QWIeq3aINeVM0oZhhtN2oigWIaetcHQz9VuPVGkWy3szTmgg8ECyiBFsrPTQNTi98tzLaq9c8VxvBvSX+DmpQI56r/zZ7cckFVQawrHWHd9LTJBhZRjhdFLqppommIzwgHYslVhQHWSzgyfoyCp9FMXKljRopv6cyLDQeixC2ymwGepFbyr+53VSE10EGZNJaqgk80VRypGJ0fR71GeKEsPHlmCimL0VkSFWmBibUcmG4C++/Jc0T1z/zK3enVZq13kcRTiAQzgGH86hBrdQhwYQEPAEL/DqKOfZeXPe560FJ5/Zh19wPr4BeSyPjQ==</latexit>

� = 0.95

(a) (b)

Figure 4.7: ResNet-50 progressive compound model and resolution scaling grid
search. We progressively expand the width and depth of ResNet-50 while also expanding
the sample resolutions. The initial compression factors for width, depth, and resolution
are w0 2 {0.25, 0.5, 0.75, 1}, d0 2 {0.25, 0.5, 0.75, 1}, and r0 2 {0.25, 0.5, 0.75, 1}, respectively.
The expansion period search space is ⌧ 2 {0.5, 0.75, 0.95}. (a) Expanding only the model
depth and width yields a sub-optimal accuracy-efficiency trade-off, while resolution scaling
alone provides a strong trade-off. To improve efficiency beyond that of resolution scaling,
compound scaling works best. (b): The Pareto-optimal ordering for expansion is: resolution
scaling, followed by joint width and resolution scaling, followed by joint depth, width, and
resolution scaling.

Thus, progressive resolution expansion as performed by our MSc-VBSWC data sampler

gives a stronger accuracy-efficiency trade-off than model width and depth expansion. As

such, for the purpose of training efficiency, this method should be performed first. If one

wishes to further reduce training compute by modulating the capacity of the model, the next

best expansion method is joint model width and resolution scaling. Finally, jointly scaling

the model’s depth, width, and resolution should be used if training budget constraints have

not been met.

81

4.5 Discussion

In this chapter, we presented an empirical study of multiscale samplers for training deep

neural networks in visual recognition tasks. Compared to single-scale training, we showed

that multiscale training maintains or improves accuracy, while reducing training time and

FLOPs, enhancing robustness, and producing better-calibrated models. We analyzed three

different sampling strategies, including a novel curriculum-based multiscale sampler that

enforces a gradual increase in the resolution of images during the course of training, while

adapting the batch size for smarter utilization of compute and memory at different stages of

learning. Based on our experiments and analysis, we have demonstrated that using multiscale

samplers yields significant advantages compared to single-scale samplers in various aspects

of training and model properties. Furthermore, we extended our study to other network

architectures and visual recognition tasks, namely object detection and instance segmentation,

demonstrating similar benefits of multiscale training in these settings. We have shown that

multiscale samplers, across a wide range of tasks, can be more robust and efficient alternatives

to single-scale samplers.

To further reduce training compute beyond what is achieved by multiscale samplers alone,

we explored compound scaling, where we progressively increase both the model’s width

and depth in parallel with the sample resolutions. In this setting, we find that there is a

Pareto-optimal ordering in which resolution scaling alone provides the best accuracy-efficiency

trade-off. To further improve efficiency, joint model width and resolution expansion should

be performed. Finally, parallel expansion of all three, model depth, width, and resolution

scaling should be performed.

Our conclusions in this chapter provide a solid foundation for further exploration and

development of multiscale samplers in the context of deep neural network training. Extensions

to this work should investigate large-scale foundation models (e.g., CLIP [82]) in both visual

and language domains. Related to this, training with multi-modal multi-task data, wherein

82

different modalities and batch sizes are consumed, is a timely and exciting future direction.

4.6 Appendix

4.6.1 Training Details

In this section we provide additional training details of our experiments. For a particular

model, all sampling schedules (SSc-FBS, MSc-FBS, MSc-VBS, MSc-VBSWC) are trained

using the same recipe. Hence, multiscale samplers are drop-in replacements for single-scale

samplers, requiring no modifications to the existing SSc-FBS recipe. All models are trained

with the corresponding recipes implemented in the CVNets library [70]. RegNet [83] models

are trained with the ResNet recipe. Though CVNets recipes consider the exponential moving

average (EMA) of training checkpoints, all of our experimental results are reported for the

non-EMA model. All of our CNN architectures are trained on a single node with four NVIDIA

A100 GPUs. Vision Transformer models are trained on a single node with eight NVIDIA

A100 GPUs.

When training with a multiscale sampler (MSc-FBS, MSc-VBS, MSc-VBSWC), we must

first specify a “reference” batch shape as discussed in Sec. 4.1. Additionally, we define a

minimum spatial resolution, (H1, W1), and a maximum, (Hn, Wn). To construct the spatial

resolutions in S, we interpolate between the minimum and maximum spatial resolutions,

imposing divisibility by either 8 or 32. The batch sizes in S are computed based on the

batch size of the reference batch shape. We report the reference batch shapes as well as the

min/max spatial resolution used for each of our models and samplers in Table 4.8.

4.6.2 Multi-GPU vs. Single-GPU Training With Multiscale Samplers

The data samplers we considered in this chapter typically assume multi-GPU training,

however, they may still be utilized using a single GPU. Table 4.9 compares the top-1 (%)

83

Model MSc-VBS Ref. MSc-VBSWC Ref. Min (H,W) Max (H,W)

ResNet [38] (256, 3, 224, 224) (512, 3, 160, 160) 128 320
RegNet [83] (256, 3, 224, 224) (512, 3, 160, 160) 128 320
EfficientNet [83] (256, 3, 300, 300) (256, 3, 300, 300) 160 448
ViT [21] (256, 3, 224, 224) (256, 3, 224, 224) 128 320
Swin [66] (256, 3, 224, 224) (256, 3, 224, 224) 128 320
Mask R-CNN [37] (4, 3, 1024, 1024) (4, 3, 1024, 1024) 512 1280

Table 4.8: Reference batch shapes and min/max spatial resolutions for MSc-VBS
and MSc-VBSWC. The reference batch shapes for each sampler are used to determine
the batch size of the spatial resolutions sampled at each training iteration. Reference batch
shapes maintain a similar compute within each model and are reported as (B, C, H, W).
Spatial resolutions at each iteration are sampled from resolutions interpolated between the
min/max spatial resolutions.

accuracy of a ResNet-101 model trained using single and multiscale samplers on platforms

with either 1 or 4 GPUs. For each sampler and GPU configuration, we report the mean

and standard deviation for three seeds (due to computational constraints, we are unable to

provide such measurements for all experiments). We observe that, for a given number of

GPUs, the multiscale sampler performance is slightly lower than the single-scale sampler

performance when trained on a single GPU. However, the use of multiple GPUs for training

enables multiscale samplers to exceed the performance of the single-scale sampler. We

hypothesize that the aggregation of gradients across different batch sizes and resolutions

facilitates learning.

84

GPUs Sampler Top-1 Accuracy (%)

4 SSc-FBS 81.03 ± 0.32
MSc-VBS 81.79 ± 0.09

MSc-VBSWC 81.56 ± 0.10
1 SSc-FBS 80.15 ± 0.11

MSc-VBS 79.01 ± 0.23
MSc-VBSWC 79.68 ± 0.50

Table 4.9: Multiscale samplers may benefit from multi-GPU training. We train
ResNet-101 on ImageNet either on a single GPU or 4. We report the accuracy aggregated over
three seeds. 4-GPU models were trained for 600 epochs while 1-GPU models were trained for
150 epochs. We observe that training with multiple GPUs enables multiscale samplers such
as MSc-VBS and MSc-VBSWC to outperform single scale samplers; however, when training
on a single GPU, single scale samplers (SSc-FBS) outperform multiscale samplers.

85

CHAPTER 5

Cross-Attention and Curriculum-Based Masking for

Efficient Masked Autoencoders
1

In this chapter, we extend our focus beyond the image modality to include audio and video,

while also broadening our training approach to the self-supervised setting. Leveraging the

abundant availability of unlabeled videos, many unsupervised training frameworks have

demonstrated impressive results in various downstream audio and video tasks. Recently,

Masked Audio-Video Learners (MAViL) [50] has emerged as a state-of-the-art audio-video

pre-training framework. MAViL couples contrastive learning with masked autoencoding to

jointly reconstruct audio spectrograms and video frames by fusing information from both

modalities.

Pre-training of masked autoencoder models [36, 106, 113] on video is costly, often requiring

hundreds of GPUs. In an effort to mitigate this, in this chapter we study the potential

synergy between diffusion models and MAViL, seeking to derive mutual benefits from both

of these two frameworks. By incorporating diffusion into MAViL, we are able to leverage

efficient Attention mechanisms to reduce training costs. Moreover, motivated by our work on

multi-scale samplers (Chapter 4), here we train our masked autoencoder with a curriculum

imposed on the masking ratio. This curriculum guides the model to learn global features

early in training, followed by fine-grained features in later stages. By also adapting the batch

size according to the masking ratio, we enhance training efficiency while not compromising

the model’s performance on downstream audio-classification tasks when compared to MAViL.

1
Work completed during an internship at Apple.

86

Video
Encoder

Noise

Video
Encoder

Audio
Encoder

Audio
Encoder

Noise

Fusion
Encoder

Video
Decoder

Audio
Decoder

Masked Patches

Visible Patches

Visible Patches

Masked Patches

Video Clip

Audio
Spectrogram

Intra-
modal
Loss

Inter-
modal
Loss

MSE +
Contrastive

Loss

Figure 5.1: DiffMAViL architecture. Similar to the audio-video encoder-decoder architec-
ture of MAViL [50], our DiffMAViL architecture takes as input RGB video frames and audio
spectrograms. The spectrogram and RGB frames are first randomly masked, and visible
patches from each modality are encoded via their respective encoders. Masked patches are
diffused and concatenated with the outputs of the audio-video fusion encoder, which are then
fed through the audio and video decoders to obtain reconstructions of the input spectrogram
and RGB frames.

5.1 Masked Autoencoders for Audio and Video

We begin by introducing the MAViL [50] framework, from which our model, DiffMAViL, is

built upon.

5.1.1 Masked Audio Video Learners (MAViL)

Let (a, v) be an audio-video instance pair where a is an audio spectrogram and v is a

tensor of RGB video frames. a and v are first patchified and tokenized, producing a =

[a1, . . . , aM] audio tokens and v = [v1, . . . , vN] video tokens where ai, vj 2 Rd. In the

encoding step, a fraction, ⇢ 2 (0, 1), of the audio and video tokens are then randomly masked,

87

yielding a0 and v0 containing b(1� ⇢)Me and b(1� ⇢)Ne visible tokens, respectively, where

b·e denotes rounding to the nearest integer. These visible tokens are then embedded by

audio and video ViT-based encoders, fa, and fv, producing the uni-modal audio and video

representations aum , fa(a0) and vum , fv(v0). The uni-modal representations are then

concatenated, forming (aum,vum), and passed through a ViT-based fusion encoder, gav,

producing multi-modal representations (amm,vmm) , gav(aum,vum). In the decoding step,

the amm and vmm are first projected onto the decoder space. Then, a learnable [MASK]token

is appended to each of the multi-modal representations for each of the masked patches

in the encoding step, yielding ãmm and ṽmm. These are then passed through ViT-based

decoders for each modality, denoted f�1
a

and f�1
v

, followed by a linear projection head la

and lv. Therefore, the reconstructions of (patchified) a and v are given by â , la(f�1
a

(ãmm))

and v̂ , lv(f�1
v

(ṽmm)). Letting araw
i

, i = 1, . . . , M , and vraw
j

, j = 1, . . . , N denote the

patches of the original audio and video inputs, the mean-squared error (MSE) loss is given

by LMSE = 1
M

P
M

i=1 {ai masked}(âi � ai)2 + 1
N

P
N

j=1 {vj masked}(v̂j � vj)2 where the indicator

functions ensure that the loss is only computed for masked patches.

In addition to minimizing the MSE loss, the first stage of MAViL also considers two

contrastive losses. The first, the “inter-modal” loss, facilitates alignment across modalities

by first averaging the audio and video uni-modal representations, aemb , Avg(aum), vemb ,
Avg(vum), where Avg(·) denotes averaging along the sequence length. These instance-level

representations are then fed through the InfoNCE loss, where video and audio clips from the

same video constitute positive pairs while all other pairs are negatives. The second loss, the

“intra-modal” loss, promotes alignment within each modality. By applying a second random

masking to the input audio and video clips, a second “view” of each modality can be obtained,

āemb and v̄emb, which are then also fed through the InfoNCE loss. In this case, the two

views from the same instance are considered a positive pair and the negative pairs consist

of the views from all other instances of the same modality. MAViL’s first stage objective

function is therefore a linear combination of the MSE loss and the two contrastive losses;

88

hence, this procedure consists of four forward passes through the encoders (one pass for each

view through its respective modality’s encoder).

5.1.2 Diffusion-Based Masked Audio Video Learners (DiffMAViL)

To encourage our model to learn representations that capture high frequency features,

and motivated by DiffMAE [116], we augment the MAViL audio and video branches with

diffusion [41]. Our approach is outlined in Fig. 5.1. In MAViL’s audio and video decoders,

learnable [MASK]tokens are used to represent masked spectrogram/RGB frame patches. In

our DiffMAViL model, we replace the learnable [MASK]tokens with diffused patches. Let

xm

0 represent a masked audio or video frame patch where m denotes a masked patch and

the subscript denotes the diffusion time step. At each training iteration, we sample t ⇠

Unif({1, 2, . . . , T}), and diffuse xm

0 according to noise level t to obtain xm

t
=
p

1� ↵̄t✏+
p

↵̄txm

0

where ✏ ⇠ N (0, I) is a standard normal sample with the same dimension as xm

0 . The multi-

modal embeddings output by the fusion encoder, along with xm

t
, are then projected onto the

decoder’s embedding space, and after restoring the original patch ordering, are fed through

the corresponding decoder. The decoders are therefore tasked with reconstructing the original

input from the visible patch emebeddings and diffused masked patches in a single step.

As in [116], when training with diffusion we use the “simple” objective function proposed

in [41]. Namely, the objective is to minimize the reconstruction error between the masked

input xm

0 , and the decoder’s reconstruction given xm

t
and the visible latents. In other words,

this reduces to the reconstruction MSE used by MAViL. The objective function optimized by

DiffMAViL is therefore the same as MAViL.

89

5.2 Enhanced Training Efficiency

5.2.1 Leveraging Cross-Attention

We begin by replacing the Self-Attention modules in our video branch’s decoder with Cross-

Attention modules [111]. In Cross-Attention, masked patch embeddings only attend to visible

patch embeddings, as illustrated in Fig. 5.2. Due to transformers’ quadratic complexity in

the sequence length, Cross-Attention is more efficient than Self-Attention which operates

on the concatenated sequence of masked and visible patch embeddings. In particular, the

complexity of standard Self-Attention is O(L2) where L is the sequence length, and the

complexity for Cross-Attention is O(⇢(1� ⇢)L2) where ⇢ is the masking ratio. We note that

the use of Cross-Attention is facilitated by our use of diffusion; without diffused patches,

Cross-Attention would apply attention between masked tokens—which contain no information

about the masked patches—and visible tokens. Our decoder is similar to the “cross” decoder

presented in [116], however, our Cross-Attention modules attend only to the visible latents

of the final encoder block, rather than to all of them. For the audio decoder, we use the

Swin-Transformer local attention [66] as this was shown to perform favorably in [51].

5.2.2 Curriculum-Based Masking Ratio

Masking Ratio Curriculum. Curriculum learning [10] aims to organize training samples in

a way that facilitates learning. This notion has inspired several progressive learning methods

[105, 77] (Chapter 4) that progressively increase the resolution of training samples throughout

training. Inspired by this, we propose a dynamic masking ratio that progressively decays

over the course of training. In MAViL, a fixed masking ratio, ⇢ 2 (0, 1), is used throughout

training. As the transformer blocks for both the audio and video encoders in DiffMAViL

operate only on visible patches, we can improve efficiency by processing fewer visible patches.

The number of visible patches is a fraction, 1� ⇢, of the total number of patches. Hence, by

using a larger value of ⇢, we mask out a greater number of patches and consequently process

90

Ma
sk

 to
ke

ns

(Q
)

Visible tokens
(K,V)

Co
nc

at(
Ma

sk
, V

isi
ble

)
(Q

)

Concat(Mask, Visible)
(K,V)

Self-Attention Cross-Attention
Figure 5.2: DiffMAViL’s video decoder leverages Cross-Attention for efficiency. For
a sequence with L tokens and masking ratio ⇢ 2 (0, 1), in standard Self-Attention (left), ⇢L
masked patches + (1� ⇢)L visible patches attend to ⇢L masked patches + (1� ⇢)L visible
patches, for a complexity of O((⇢L + (1� ⇢)L)2) = O(L2). In contrast, in Cross-Attention
(right), ⇢L masked tokens attend to (1�⇢)L visible tokens, for a complexity of O(⇢(1�⇢)L2).

fewer visible patches. We therefore propose having a dynamic masking ratio that begins at

⇢1 2 (0, 1) and ends at ⇢2 2 (0, 1) following a schedule. We consider a simple linear masking

ratio schedule that varies from ⇢1 at the start of training to ⇢2 at the end of training.

In our experiments, we set ⇢1 > ⇢2, implying that training begins with a high masking

ratio and gradually decays to a smaller masking ratio (⇢1 in our experiments is the fixed

masking ratio used in MAViL, so we mask patches more aggressively early in training). This

curriculum encourages the model to initially learn global representations of its inputs by

exposing it to only a few visible patches at the start of training, thereby limiting the context

available to focus on local details. As training progresses and the number of visible patches

increases, the model is able to focus on reconstructing local details, while building on the

global representations learned earlier.

Adaptive Batch Size. In vision tasks, training with a lower sample resolution naturally

entails the utilization of fewer computational resources, which may lead to underutilization of

accelerators. As outlined in Chapter 4, this can be addressed by using an adaptive batch size,

where larger batch sizes are used when training at a lower resolution and smaller batch sizes

91

Masking
Ratio

Time

Batch
Size

Figure 5.3: DiffMAViL progressively decays the masking ratio while dynamically
adjusting the batch size. DiffMAViL begins training with a masking ratio ⇢1 which
gradually decays to ⇢2 throughout training. As the masking ratio decays, DiffMAViL
processes more visible patches. To maximize GPU utilization, DiffMAViL uses a large batch
size when the masking ratio is large (fewer visible patches), and a small batch size when the
masking ratio is small (more visible patches).

at higher resolution, resulting in faster training. We extend this method by making the batch

size adaptive to the masking ratio, as illustrated in Fig. 5.3. For a base batch size B0 (i.e.,

the batch size that will be used for the masking ratio min(⇢1, ⇢2)), the batch size at epoch e

is given by Be = 1�min(⇢1,⇢2)
1�⇢e

B0, where ⇢e is the masking ratio at epoch e as determined by

the masking ratio schedule.

5.3 Experiments

To pre-train our models, we use the union of the “balanced” and “unbalanced” splits of the

AudioSet [26] dataset, denoted “AS-2M.” We note that we were only able to acquire 85% of

the total AudioSet dataset, as many videos are no longer available on YouTube. We pre-train

all baselines on this dataset for fair comparison. We focus on fine-tuning on only the audio

modality, i.e., we fine-tune only the audio encoder branch of our DiffMAViL and MAViL

models. We fine-tune on the “balanced” AudioSet split (denoted “AS-20K”) and report the

92

mean average precision (mAP). Additionally, we fine-tune on VGGSound [13], Environmental

Sound Classification (ESC-50) [81], and Speech Commands v2 (SPC-v2) [115] where we use

the split considered in [76]. We report the Top-1 (%) accuracy for VGGSound, ESC-50, and

SPC-v2. For ESC-50, we report the mean accuracy under standard five-fold cross validation.

For each experiment, we report the mean and standard deviation of three independent seeds.

Additional training details are provided in Sec. 5.5.1.

In Tab. 5.1, we compare the performance of MAViL against our DiffMAViL model. We

observe that the use of diffusion, coupled with our efficiency strategies outlined in Sec. 5.2,

reduces pre-training FLOPS and wall-clock time without incurring a significant loss in

performance.

Model AS-20K
(mAP ")

VGGSound
(Top-1 ")

ESC-50
(Top-1 ")

SPC-v2
(Top-1 ") FLOPS Avg. Epoch

Time

MAViL 35.9 ± 0.10 57.2 ± 0.12 93.7 ± 0.13 98.0 ± 0.08 1⇥ 1⇥
DiffMAViL (ours) 35.8 ± 0.16 57.0 ± 0.17 93.1 ± 0.18 97.7 ± 0.04 0.68⇥ 0.82⇥

Table 5.1: DiffMAViL improves training efficiency while maintaining accuracy.
Our DiffMAViL model integrates diffusion into the MAViL [50] framework along with a
Cross-Attention video decoder, linear masking ratio schedule, and a dynamic batch size to
improve efficiency. ⇤We present results for our own MAViL implementation as the public
release is not available at the time of writing.

5.3.1 Benefits of Diffusion, Cross-Attention, Curriculum-Based Masking, and

Adaptive Batch Sizes

In this section, we ablate over several design choices of DiffMAViL.

AudioMAE + Diffusion. Here, we investigate the benefits of using diffusion in the

audio-only modality. In particular, we integrate diffusion into the AudioMAE [51] framework;

this is equivalent to discarding our video modality branch and focusing only on audio. As

described in Sec. 5.2, we simply replace the learnable [MASK]tokens in the decoder with

93

diffused spectrogram patches. In Tab. 5.2, we compare the downstream performance of our

implementation of AudioMAE with AudioMAE + Diffusion. We observe that training with

diffusion improves performance in downstream tasks, suggesting that diffusion may aid in

the learning of richer audio representations.

Diffusion AS-20K
(mAP ")

VGGSound
(Top-1 ")

ESC-50
(Top-1 ")

SPC-v2
(Top-1 ")

7 34.2 ± 0.06 57.1 ± 0.16 92.6 ± 0.12 98.4 ± 0.03
3 35.5 ± 0.07 57.9 ± 0.08 93.6 ± 0.02 98.4 ± 0.05

Table 5.2: Diffusion improves the performance of AudioMAE. We augment the
AudioMAE [51] framework with diffusion and observe that diffusion facilitates the learning
of richer audio representations in the absence of the video modality. Both models (with and
without diffusion) were pre-trained on the AS-2M [26] dataset.

Replacing Self-Attention with Cross-Attention. To reduce pre-training compute, we

replace the Self-Attention modules in the video branch’s decoder with Cross-Attention [111].

In row R2 of Tab. 5.3, we observe that the use of Cross-Attention reduces pre-training FLOPS

by 19% while preserving accuracy across multiple datasets.

Row # Video
attention

Masking
ratio

Adaptive
batch size

AS-20K
(mAP ")

VGGSound
(Top-1 ")

ESC-50
(Top-1 ")

SPC-v2
(Top-1 ") FLOPS Avg. epoch

time

R1 Self Fixed 7 36.0 ± 0.08 57.5 ± 0.09 94.7 ± 0.10 97.9 ± 0.04 1⇥ 1⇥
R2 Cross Fixed 7 36.3 ± 0.09 57.4 ± 0.03 94.2 ± 0.20 97.9 ± 0.08 0.81⇥ 0.96⇥
R3 Cross Linear 7 36.0 ± 0.07 57.3 ± 0.19 93.3 ± 0.10 97.6 ± 0.05 0.68⇥ 0.96⇥
R4 Cross Linear 3 35.8 ± 0.16 57.0 ± 0.17 93.1 ± 0.18 97.7 ± 0.04 0.68⇥ 0.82⇥

Table 5.3: DiffMAViL ablations. Compared to our baseline DiffMAViL model (R1),
replacing the video decoder’s Self-Attention modules with Cross-Attention reduces pre-
training FLOPS by 19% (R2). Replacing the fixed masking ratio of 0.8 with a linear schedule
that decays from 0.9 to 0.8 reduces FLOPS by 32% (R3). Adding an adaptive batch size
reduces pre-training wall-clock time by 18% (R4).

As mentioned in Sec. 5.2, the use of diffusion allows us to leverage Cross-Attention due to

the information contained in the masked patches. To validate this, in Tab. 5.4 we compare

how MAViL and DiffMAViL respond to using Cross-Attention versus Self-Attention. We

94

Model Video
Attention

AS-20K
(mAP ")

ESC-50
(Top-1 ")

SPC-v2
(Top-1 ")

MAViL cross 36.1 ± 0.04 93.6 ± 0.25 98.0 ± 0.12
DiffMAViL (ours) cross 36.3 ± 0.09 94.2 ± 0.20 97.9 ± 0.08

Table 5.4: DiffMAViL Is More Amenable to Cross-Attention. Replacing Self-Attention
in DiffMAViL’s video decoder with Cross-Attention has a more positive effect on downstream
performance compared to MAViL with Cross-Attention. Efficiency metrics are measured
relative to the standard MAViL model in Tab. 5.1.

observe that DiffMAViL with Cross-Attention tends to have a stronger performance on

downstream audio classification tasks compared to MAViL with Cross-Attention.

Curriculum-Based Masking. We further improve training efficiency by augmenting

DiffMAViL with a curriculum for the masking ratio. In row R3 of Tab. 5.3, we show that a

linear schedule that decays the masking ratio from 0.9 to 0.8 throughout training reduces

pre-training FLOPS by 32%. In Sec. 5.3.2, we analyze the FLOPS reduction within each

encoder and decoder module.

Adaptive Batch Size. While pre-training with a dynamic masking ratio reduces pre-

training FLOPS, it does not have a significant decrease in the wall-clock training time

as it leads to under-utilization of computational resources. To offset this, we augment

DiffMAViL with an adaptive batch size in service of maintaining constant compute at each

iteration (Sec. 5.2 for details). The dynamic balance between masking ratio and batch size

allows us to utilize hardware more efficiently and maintain similar FLOPs to R3 in Tab. 5.3.

Consequently, this reduces the number of optimization steps required per epoch, resulting in

an 18% reduction in wall-clock pre-training time while maintaining accuracy.

95

5.3.2 FLOPS Analysis

In Tab. 5.5, we summarize the reduction in FLOPS on a per-module basis for each of our

efficiency strategies. Efficiency metrics are measured relative to the standard MAViL model

in Tab. 5.1. Row R1 is our DiffMAViL model with no efficiency strategies. Here we observe

that the video encoder FLOPS are lower than MAViL’s. This is because, in MAViL, the

first step after patchifying the input is to project all the patches onto the encoder space and

then mask them; however, in DiffMAViL, we first mask patches and subsequently project

only the visible patches onto the encoder space. This is so that we can later diffuse the

masked patches before projecting them onto the decoder space. Moreover, we observe that

the decoder FLOPS in R1 are slightly higher than those of MAViL; we attribute this to

the fact that, in DiffMAViL, the diffused masked patches must first be projected onto the

decoder embedding space prior to being processed by the decoder. In contrast, the standard

video decoder without diffusion only projects visible patch embeddings output by the encoder

since the [MASK]tokens are already of the appropriate dimension. In row R2 we observe that

the use of Cross-Attention reduces the video decoder FLOPS by about 47%. In row R3, we

observe that the additional use of a linear masking ratio schedule reduces audio and video

encoder FLOPS by about 26-28%. This is because a higher masking ratio yields fewer visible

patches, and therefore fewer patches are processed by the encoders.

Row # Masking Ratio Video Attention Audio Encoder Audio Decoder Video Encoder Video Decoder Fusion Encoder Total

R1 Fixed self 1.0 1.0 1.0 1.0 1.0 1.0⇥
R2 Fixed cross 1.0 1.0 0.97 0.53 1.0 0.81⇥
R3 Linear cross 0.74 1.0 0.72 0.54 0.74 0.68⇥

Table 5.5: FLOPS reduction in audio/video encoders and decoders due to use of
diffusion, Cross-Attention, and a masking ratio schedule. The use of Cross-Attention
instead of Self-Attention in the video decoder reduces total pre-training FLOPS by 19%.
Adding a linear masking ratio curriculum further reduces the pre-training FLOPS by 32%.
Efficiency metrics are reported relative to the standard MAViL model in Tab. 5.1.

96

5.4 Discussion

In this chapter, we introduced a diffusion-based masked autoencoder for audio and video,

DiffMAViL. By augmenting our framework with diffusion, we were able to leverage Cross-

Attention to enhance training efficiency. Combined with our use of a masking ratio curriculum,

we were able to reduce training FLOPS and wall clock time without compromising accuracy.

Although we pre-trained our models on both audio and video data, we have only evaluated

our model on downstream audio tasks due to computational constraints. Evaluating our

method on downstream video tasks remains as future work. Moreover, while we have focused

on the audio and video modalities, our implementation is suitable for other domains, such as

images, as well. Extending our method to other domains is an exciting direction for future

work.

5.5 Appendix

5.5.1 Training Details

Our audio encoder-decoder architecture follows that of AudioMAE [51], while our video

encoder-decoder architecture follows that of SpatiotemporalMAE [23]. Namely, our audio

and video encoders are both ViT-B models [21]. Both decoders have 8 transformer blocks,

16 attention heads, and an embedding dimension of 512. The audio decoder uses local

attention Swin-Transformer [66] blocks. Both encoders and decoders use sinusoidal positional

embeddings, and the video encoder and decoder use separable temporal and spatial positional

embeddings. The fusion encoder consists of a two-layer Transformer. As a masking ratio

of 0.8 was shown to perform well in [50], we also use a masking ratio of 0.8 as our default.

Notably, we pre-train both our DiffMAViL and the standard MAViL models with the same

hyperparameters. Moreover, as the the code for MAViL is not publicly available at the time

of writing, our results for this model are from our own implementation.

97

We pre-train with both audio and video modalities, and fine-tune only on audio tasks.

To construct audio spectrograms, we use the entirety of the data sample. For AudioSet and

VGGSound, this corresponds to 10 second audio clips. ESC-50 and SPC-v2 correspond to 5

and 1 second clips, respectively. We use a 16K sampling rate and 128 Mel-frequency bands

with a 25ms Hanning window shifting every 10ms. This yields spectrograms with shapes

1024⇥ 128, 1024⇥ 128, 512⇥ 128, and 128⇥ 128 for AudioSet, VGGSound, ESC-50, and

SPC-v2, respectively. For video, we sample 4-second clips consisting of 16 frames. We use a

spatial patch size of 16⇥ 16 for both audio and video, and a temporal patch size of 2.

In Tab. 5.6, we provide the hyperparameters used to train DiffMAViL and MAViL (note

that we use the same hyperparameters for both models). For diffusion, we use a linear

variance schedule, �t, with t 2 {1, 2, . . . , 1000}. �t increases linearly from 10�4 to 0.02. As

was done in [116], we exponentiate the variances with hyperparameter � = 0.8 so that the

noise variance is ��

t . This amplifies the noise used at lower diffusion steps t.

We note that we did not use a weighted sampling for neither pre-training nor fine-tuning

on any dataset. All of our training was done on NVIDIA A100 GPUs.

98

Configuration Pre-training Fine-tuning

AS-2M AS-20k VGGSound ESC-50 SPC-v2

Optimizer AdamW [69]
Optimizer momentum �1 = 0.9, �2 = 0.95
Weight Decay 1e-5 1e-4 1e-4 1e-4 1e-4
Learning rate 4e-4 2.5e-4 2e-4 2.5e-4 1e-3
Learning rate schedule Cosine decay [68]
Layer-wise learning rate decay [8] None 0.75 0.75 0.75 0.75
Minimum learning rate 1e-6 1e-6 1e-6 1e-6 1e-6
Warm-up epochs 8 4 1 4 4
Epochs 60 60 60 100 60
Batch size⇤ 2048 64 256 64 256
GPUs 256 1 4 1 1
Augmentation† R R R+N R R
SpecAug [78] (time/freq) None 192/48 192/48 96/24 48/48
Stochastic dropout [49] 0 0.1 0.1 0.1 0.1
Mixup [130] None 0.5 0.5 0 0
Cutmix [127] None 1.0 1.0 0 0
Multilabel - True False False False
Loss function‡ MSE+Contrastive BCE BCE CE CE
Dataset mean -4.268 -4.268 -5.189 -6.627 -6.702
Dataset std 4.569 4.569 3.260 5.359 5.448

Table 5.6: Pre-training and fine-tuning hyperparameters. We use the same hyperpa-
rameters for both diffusion and non-diffusion models. ⇤: Batch size refers to effective batch
size. †:“R” refers to sampling random starting points with cyclic rolling in time when loading
waveforms. “N” refers to adding random noise to the spectrogram. ‡: “BCE” is binary cross
entropy, and “CE” is cross entropy.

99

CHAPTER 6

Efficient Adaptation of Hybrid State Space Models to

Long Sequences of Tokens
1

In previous chapters, we enhanced training efficiency of models by modulating the model’s

capacity and data complexity. Moreover, we concentrated our efforts on vision tasks. In this

chapter, we shift our attention to Large Language Models, particularly Hybrid State Space

Models. We focus on enhancing pre-training efficiency; more specifically, we are interested

in enabling the fine-tuning of pre-trained models on long context sequences. Similar to our

approach in Chapter 5, we achieve this efficiency by replacing the Attention mechanism of

the model with a more efficient variant. Within these layers, we show that modulating the

size of the local attention span during training improves performance on downstream long

context tasks.

While Transformer-based fine-tuning strategies for processing long sequences can also be

applied to Hybrid models, they typically work under the assumption that information in

the Attention layers is aggregated by recency and are thus more expensive as sequences get

longer. There exist efficient LoRA-based methods [47] to bring this cost down, however, we

show that Transformer-based methods tend to not work as well for Hybrid models as they

do for Transformers. We show that this is mostly due to the fact that combining LoRA (on

Attention layers) with SSM layers is not expressive enough to model long-range dependencies

beyond the pre-training context size.

1
Work completed during an internship at AWS.

100

To overcome such limitations, we propose a parameter-efficient fine-tuning method based

on LoRA that is better suited to Hybrid models. Namely, we employ a fine-tuning strategy

similar to LoRA+ [14] on Attention layers, while allowing the SSMs’ recurrent parameters

to be adapted as well. In particular, building on previous observations [128, 124], we also

adapt the 1D convolutional layers, which we empirically validate provide the best results at a

reduced computational cost.

6.1 Hybrid SSMs: Complementing Fading Memory with Eidetic

Memory

Transformers [111] have dominated the fields of Natural Language Processing and Computer

Vision. The core component driving Transformer models is the Attention mechanism,

which scales quadratically in its input sequence length, precluding researchers from training

Transformer models on long context tasks without access to vast computational resources.

In an effort to mitigate the quadratic scaling of many works have proposed sub-quadratic

approximations to Attention [58, 9, 114, 16, 75], though there remains a gap between the

performance of these Attention mechanisms and standard full attention.

While a great effort has been made to improve the efficiency of Transformer models, a

recent line of work has explored efficient alternative ‘linear’ architectures. In particular,

State Space Models (SSMs) [31, 33, 32, 123, 100] have emerged as promising competitors to

Transformer models due to their efficient scaling and strong empirical performance. SSMs are

inspired by classical state space models [55]: they process the input sequence by maintaining

a fixed-size state which acts as a compressed (lossy) representation of all the processed

tokens. However, when implemented in hardware, the state must have finite precision, and

therefore the information contained in the state about earlier tokens“fades” as more samples

are processed. In contrast, Transformer models have a state determined by the number of

tokens in their input sequence and are able to access information from all past tokens in their

101

context “eidetically.” However, they do so at the cost of extra compute and memory.

Hybrid State Space Models have been recently introduced in an effort to complement

the SSMs’ fading state with Attention layers [18, 19, 63, 28, 128]. However, Attention layers

only aggregate information by recency (i.e., they process the keys and values of the most

recent tokens up to hardware limitations). Hence, any token that lies beyond the Attention’s

limited span can only be approximately recalled through the SSMs’ state. This limits the

effectiveness of Hybrid SSMs when applied to long sequences of tokens, especially when

compute and memory resources are limited.

In this chapter, we modify Hybrid SSMs’ Attention layers to allow their state to be

allocated by relevancy rather than recency, allowing our models to retrieve information that

would otherwise fall outside their Attention span. To do so, we propose Span-Expanded

Attention (SE-Attn), a novel selection mechanism that complements the “fading” memory of

SSMs with “eidetically”-retrieved tokens.

6.2 Span-Expanded Attention

Our goal is to enable pre-trained Hybrid SSMs to accurately process sequences with a larger

number of tokens than were used for pre-training. For a sequence of L tokens with model

dimension dmodel, the computational complexity of standard Self-Attention is O(dmodelL2).

For very large L, computing Self-Attention can be prohibitively expensive. Training models

with a large L is particularly challenging, as training has the additional cost of computing

gradients, further limiting memory resources. To address this, we propose Span-Expanded

Attention (SE-Attn), a drop-in replacement for standard Self-Attention in Hybrid SSMs. To

train SE-Attn, we propose HyLoRA, a variant of LoRA+ [14] specifically tailored to Hybrid

models. A schematic of our SE-Attn is provided in Fig. 6.1.

102

 (3)
Retrieve memory
blocks from past

 (1)
 Split into
memory blocks

 (2)
Split into
 chunks

 Input
tokens

Figure 6.1: Span-Expanded Attention (SE-Attn) overview. SE-Attn is a sparse
Attention mechanism used to expand the memory span of Hybrid SSMs. We do so by
reserving a fraction of the Attention context for tokens retrieved arbitrarily far back in the
past, and use summary tokens to efficiently look back with a reduced compute cost. We call
this reserve the ‘expansion span,’ and we populate it with blocks of previous tokens (memory
blocks). When new tokens arrive, a similarity-based search compares the queries with past
memory blocks to decide which memory blocks are most relevant. Then, these retrieved
memory blocks are jointly processed with the queries via Attention. While the final Attention
mechanism always processes a fixed number of tokens, it can have a longer span since tokens
from arbitrarily far back in the past can be retrieved.

6.2.1 Attention

At the heart of modern LLMs is the Attention mechanism, whose role is to construct a

contextualized representation of their input. The input to Attention, x 2 RL⇥d, is a tensor

of L tokens, each with dimension d. Attention is parameterized by WQ, WK , WV 2 Rd⇥dmodel

and Wo 2 Rdmodel⇥d, which are used to construct linear projections of the input: Q = xWQ,

K = xWK , V = xWV 2 RL⇥dmodel . After adding positional information to the keys and queries,

the output of the Attention layer is2 Attention(Q, K, V) =
h
softmax

⇣
QK

T
p
dmodel

⌘
V
i
Wo 2 RL⇥d.

The realization of the attention score matrix, QKT 2 RL⇥L, grows quadratically in the

sequence length, L. Moreover, the output of Attention is typically followed by a feed-forward

layer (FFN), which expands and contracts the dimension of the input. While these FFNs

are generally regarded as being the primary computational bottlenecks of Attention-based

2
For simplicity, we consider Single-Head Attention in this exposition.

103

models, when the sequence length exceeds the expanded dimension, Attention becomes the

primary bottleneck. Since LLMs consist of many layers of Attention, this computation is

particularly expensive during training, where activations are cached. To make the Attention

mechanism computationally amenable to longer contexts during training, we draw inspiration

from RAG and Sparse Attention methods.

6.2.2 Amnesic Attention

The crux of our method is in the chunking of the L tokens in the input sequence x, into chunks

of size M . Namely, we begin by computing projections Q = xWQ, K = xWK , V = xWV and

adding positional information as in standard Attention. Next, each of the Q, K, V 2 RL⇥dmodel

projections are split into T = L

M
chunks of M tokens in each along the sequence dimension,

yielding Qi, Ki, Vi 2 RM⇥dmodel for i = 1, . . . , T . A naive way to reduce the quadratic cost of

Attention is by applying it independently on each of these chunks, Ai = Attention(Qi, Ki, Vi)

and then concatenate and project them to get the final output, Concatenate(A1, A2, . . . , AT).

However, since the chunks are processed independently, there is no information exchanged

between them. Hence, this naive—though efficient—Attention mechanism, which we refer to

as “SE-Attn-NoMem”, cannot model time dependencies on contexts larger than the chunk

size.

6.2.3 Eidetic Retrieval Attention

In this section, we improve upon SE-Attn-NoMem by allowing different chunks to exchange

information while minimizing compute; we call this Attention mechanism SE-Attn. To this

end, we augment the processing of each chunk with a mechanism to retrieve tokens from

previous chunks. In particular, we allow chunk i to retrieve tokens from chunks 1, 2, . . . , i� 1

and, when the most relevant chunks are selected, append their tokens to its context (its

“expansion span”). SE-Attn takes as input a sequence, x 2 RL⇥d and computes projections

104

Q = xWQ, K = xWK , V = xWV followed by the addition of RoPE [99] embeddings as in

standard Attention. As described in Sec. 6.2.2, Q, K, V are split into T chunks with M

tokens in each, yielding tuples (Qi, Ki, Vi), i = 1, . . . , T . Additionally, Q, K, V are split into

a second set of U chunks with S tokens in each, yielding tuples (QMem
j

, KMem
j

, V Mem
j

) where

QMem
j

, KMem
j

, V Mem
j

2 RS⇥dmodel for j = 1, . . . , U . We refer to these tuples as “memory blocks”;

in SE-Attn, the query from each chunk, Qi, attends not only to Ki, but also to a set of retrieved

memory blocks which populate SE-Attn’s expansion span. In particular, each Qi retrieves k

(top-k) key/value memory blocks from the past3:
⇣
KMem

�i(U)1
, V Mem

�i(U)1

⌘
, . . . ,

⇣
KMem

�i(U)k
, V Mem

�i(U)k

⌘

where �i(U)j denotes the index of the j-th memory block selected by the i-th chunk. These

retrieved blocks are then appended to the chunks’ keys and values, and SE-Attn computes

the Attention output for the ith chunk as in Eq. (6.3).

K̃ = Concatenate(KMem
�i(U)1 , . . . , K

Mem
�i(U)k

, Ki) (6.1)

Ṽ = Concatenate(V Mem
�i(U)1 , . . . , V

Mem
�i(U)k

, Vi) (6.2)

ASE-Attn
i

= Attention(Qi, K̃i, Ṽi) (6.3)

Afterwards, each chunk’s Attention outputs are concatenated and projected to obtain the

SE-Attn layer output:

oSE-Attn = Concatenate(ASE-Attn
1 , ASE-Attn

2 , . . . , ASE-Attn
T

). (6.4)

Note that Eq. (6.3) is a form of Cross-Attention since we are not concatenating memory

query tokens to the chunk’s query. This is to preserve causality, as the retrieved tokens

cannot attend to the chunk’s tokens. Next, we discuss how the memory tokens are retrieved.

Memory Retrieval. Each chunk xi must judiciously select which memory blocks to retrieve

3
By “the past,” we mean tokens in the sequence that came before tokens in the chunk.

105

from the past. To do this efficiently, we associate a 1-dimensional tensor, cj 2 Rdmodel , to each

of the j = 1, . . . , U memory blocks which act as a compressed representation of each memory

block. To determine which memory blocks Qi should attend to, we compute a “relevancy

score” between Qi and each cj, which measures how relevant memory block j is to chunk

i. This relevancy score is implemented with a Cross-Attention score between chunks and

compressed memory block representations. More specifically, recalling that Qi 2 RM⇥dmodel ,

we compute relevancy score Rij 2 R between chunk i 2 {1, 2, . . . , M} and memory block

j 2 {1, 2, . . . , U} as follows:

Rij =
MX

t=1

(Qicj)t. (6.5)

Ri 2 RU represents the relevancy scores between chunk i and all memory blocks. However,

since chunk i should only retrieve memory blocks that came before it temporally, we add a

mask to Ri and then apply softmax to obtain the final scores, R̃i, between chunk i and all

memory blocks as follows:

R̃i = softmax

✓
1p

dmodel
(Ri + Mi)

◆
2 RU (6.6)

where Mi is a mask of 0 and �1 constructed to set the scores of future memory blocks

(relative to chunk i) to �1. Once all relevancy scores are computed, chunk i simply retrieves

the top k memory blocks with the highest R̃ij scores and concatenates them with the keys

and values as in Eqs. (6.1) and (6.2) before computing Attention as in Eq. (6.3).

Compressed Memory Blocks. Next, we discuss how we construct the compressed memory

block representations, cj. Recently, Landmark Attention [74] considered using “landmark”

tokens to obtain compressed representations of memory blocks. We consider using landmark

106

tokens to construct cj in Sec. 6.6.2. In SE-Attn, we consider a simpler approach which we found

to work well. Namely, for each memory block, (QMem
j

, KMem
j

, V Mem
j

), we perform standard

non-causal Attention, AMem
j

= softmax
⇣

Q
Mem
j (KMem

j)T
p
dmodel

⌘
V Mem
j

2 RS⇥dmodel ; we consider non-

causal Attention since we are interested in a global representation where all tokens within

the memory block can attend to each other. Next, we simply compute the mean of these

weighted memory tokens in order to compute the compressed representation of the memory

block:

cj =
1

S

SX

t=1

(AMem
j

)t 2 Rdmodel (6.7)

where (AMem
j

)t denotes the tth row of AMem
j

.

6.2.4 HyLoRA: Training SE-Attn with LoRA

In this chapter, we fine-tune models pre-trained with standard Attention; however, we

fine-tune them with SE-Attn, which modifies the pre-trained Attention mechanism by

introducing a retrieval mechanism. SE-Attn repurposes the model’s Attention parameters

(WQ, WK , WV , Wo) to perform retrieval. In order to efficiently train the model to learn to use

SE-Attn, we use a variant of LoRA. Recently, [14] introduced LoRA+, a variant of LoRA

[47] designed to fine-tune Transformer models on long contexts. LoRA fine-tunes Attention

parameters with low rank adapter matrices. LoRA+ differs from LoRA by also training

embedding and normalization layers.

Recently, [24] found that pure SSMs can be fine-tuned by training the SSM projection

layers with LoRA. Since we fine-tune on long contexts, we prioritize efficient training, and

consequently apply LoRA only to the Attention layers of our hybrid models. However, it

is common for SSM layers to include a 1D convolution layer after their initial projection

in order to perform sequence mixing [128, 28, 63, 18, 19]. The 1D convolution parameters

107

constitute a very small portion of the model parameters (⇠0.7% for Mamba-2-Hybrid 2.7B),

but as discussed further in Sec. 6.3.5, we found that training these 1D convolution layers in

conjunction with LoRA+ improved our models’ performance on long-context tasks. We refer

to this augmented LoRA+ variation as HyLoRA and use it to fine-tune all of our hybrid

models.

6.3 Experiments

6.3.1 Experimental Setup

Models. We enhance the recall capabilities of pre-trained hybrid SSM models by fine-

tuning them with different Attention layers on spans of tokens longer than the ones used for

pre-training. We consider Mamba-2-Hybrid 2.7B4 [112] as our representative SSM hybrid

model. We also explore expanding the span of Transformer models, and consider Llama1 7B

[109] as our representative model. Both pre-trained model checkpoints were obtained from

HuggingFace and were pre-trained with a context size of 2048. Throughout our experiments,

“Non-fine-tuned” refers to the pre-trained model with no fine-tuning.

Datasets. We fine-tune models using a common language dataset and provide additional

results when fine-tuning on a mixture of language and code dataset in Sec. 6.3.2.1, and on

PG-19 [84] in Sec. 6.3.2.2.

Baselines. For Mamba-2-Hybrid, we compare SE-Attn to three Attention variants: standard

full Attention (“Full-Attn”) [111], Sliding Window Attention (“SW-Attn”) [9], and Shifted

Sparse Attention (S2-Attn) [14]. The Full-Attn baseline serves as the paragon, as the

other methods aim to approximate it. For Llama1, due to computational constraints, we

only compare against SW-Attn and S2-Attn. All Attention implementations are based on

FlashAttention-2 [17].

4
We use the Mamba-2-Hybrid weights available on HuggingFace: https://huggingface.co/

state-spaces/mamba2attn-2.7b.

108

https://huggingface.co/state-spaces/mamba2attn-2.7b
https://huggingface.co/state-spaces/mamba2attn-2.7b

Training Procedure. We adopt the training recipe used in [14] to fine-tune our models,

with the exception of using HyLoRA for Mamba-2-Hybrid. Additional training details are

provided in Sec. 6.6.1.

Evaluation Metrics. We assess the performance of our models across a range of common

benchmarks. To assess the predictive capabilities of our fine-tuned models on long sequence

lengths, we measure perplexity (PPL) on the PG-19 validation set. To assess performance

on more real-world language tasks in the short and long-context settings, we evaluate our

models on various LM Evaluation Harness tasks [25]. To measure our models’ performance

on long-context tasks, we evaluate on the challenging RULER [46] benchmark. We consider

eleven RULER tasks, encompassing needle-in-a-haystack, variable-hopping, and aggregation

tasks; we aggregate these metrics into five groups as explained in Sec. 6.6.3.4.

Evaluating with Full Attention Similar to [14], we utilize SE-Attn for efficient fine-tuning

and revert to using Full-Attn during evaluation. Due to KV-caching, the complexity of

Full-Attn scales linearly during evaluation, so an efficient Attention layer in this setting is not

as crucial as in training. Nevertheless, for the sake of completeness, we begin by evaluating

our models with the same Attention layer used during fine-tuning (i.e., we fine-tune and

deploy our Hybrid model with SE-Attn). In Tab. 6.1, we experiment with models that

use Full-Attn, SW-Attn, S2-Attn, and SE-Attn; then, we evaluate perplexity on the PG-19

dataset. All models were fine-tuned with a context size of 8192. We observe that SW-Attn

is best at preserving the perplexity on context sizes up to 32⇥ larger than the one used for

pre-training. SE-Attn is also able to maintain a lower perplexity across longer context sizes,

while S2-Attn deteriorates much more quickly.

6.3.2 Mamba-2-Hybrid

All of our Mamba-2-Hybrid models are fine-tuned with a context size of 8192. For SE-

Attn, we use a block size of 32, and a top-k of 8. For SW-Attn, we use a window size of

4096. S2-Attn uses the parameters from [14]. When fine-tuning Mamba-2-Hybrid using

109

Attention Evaluation Context Size (PPL #)
8192 16384 32768 65536

Non-fine-tuned 14.99 19.35 26.37 34.51
Full-Attn 10.28 10.39 11.14 12.38
SW-Attn 10.33 10.22 10.16 10.16
S2-Attn 10.73 10.76 11.85 13.72
SE-Attn 10.47 10.70 10.91 10.96

Table 6.1: Mamba-2-Hybrid fine-tuned with SE-Attn or SW-Attn preserves per-
plexity up to 32⇥ the pre-training context size. We fine-tune a Mamba-2-Hyrbid model
(pre-trained on a context size of 2048) on a context size of 8192 using various Attention
variants. Then, we deploy them on longer context sizes using the same Attention variant
used during adaptation.

SE-Attn, we found that applying the same chunk sizes at each layer leads to suboptimal

downstream performance, we therefore segment each sample into chunks of variable sizes

(picked randomly from {2048, 4096}). We found this prevents the model from ‘overfitting’

the given segmentation of the past which is a hyper-parameter of our method fixed a-priori

and not dependent on the actual data content. An ablation on SE-Attn with different chunk

sizes is provided in Sec. 6.3.4.

Perplexity. We provide PG-19 PPL results for Mamba-2-Hybrid in Tab. 6.2. All fine-tuned

models improve upon the non-fine-tuned model. SE-Attn yields the closest performance to

the paragon model fine-tuned with Full-Attn, outperforming S2-Attn and SW-Attn across all

context sizes at or above the fine-tuning size.

LM Harness. Next, we evaluate Mamba-2-Hybrid models across short and long-context

tasks in the LM Evaluation Harness suite. Our results are provided in Tab. 6.2, where we

observe that all models perform similarly on short-context tasks—including the non-fine-tuned

model—suggesting there is no performance regression when fine-tuning on larger contexts.

Furthermore, we observe that fine-tuning with SE-Attn gives the closest performance to

fine-tuning with Full-Attn.

RULER. Next, we assess the performance of our models on long-context tasks using the

RULER benchmark. We plot the average accuracy across eleven RULER tasks in Fig. 6.2

110

Attention Eval Context Size (PG-19 PPL #) Short Context Tasks (") Long Context Tasks (")
2048 8192 16384 32768 ARC-E ARC-C Hella. LAMB. PIQA WG Avg. SWDE SQA SNQA Avg.

Non-fine-tuned 10.72 14.99 19.35 26.37 69.91 37.97 67.62 69.84 76.06 65.04 64.41 85.60 15.18 3.65 34.81
Full-Attn 10.99 10.28 10.39 11.14 69.53 38.48 67.30 68.93 75.08 64.40 63.95 85.24 26.99 19.75 43.99
SW-Attn 10.98 10.80 11.82 13.45 69.82 38.23 67.35 69.18 75.30 63.85 63.95 84.61 24.85 15.41 41.63
S2-Attn 10.87 12.89 14.67 16.37 70.12 38.05 67.39 69.84 75.95 64.56 64.32 86.41 17.44 8.53 37.46
SE-Attn 10.99 10.45 11.14 12.64 70.20 38.65 67.15 69.11 75.57 63.93 64.10 85.96 26.70 18.04 43.57

Table 6.2: Fine-tuning Mamba-2-Hybrid with SE-Attn outperforms fine-tuning
with S2-Attn and SW-Attn on long-context natural language tasks. We fine-tune
Mamba-2-Hybrid with a context size of 8192 using various Attention variants. We evaluate
PG-19 validation perplexity (PPL) and observe that fine-tuning with SE-Attn preserves
performance at longer contexts better than S2-Attn and SW-Attn. On short-context tasks
from the LM Harness suite, all models perform similarly. On long context tasks from the LM
Harness suite, SE-Attn outperforms S2-Attn and SW-Attn. Abbreviations: Hella=HellaSwag,
LAMB=LAMBADA, WG=WinoGrande, SQA=ScrollsQAsper, SNQA=ScorllsNarrativeQA.

(see Sec. 6.6.3.4 for details on how we aggregate these metrics). We observe that fine-tuning

with SE-Attn yields a performance similar to fine-tuning with Full-Attn, and outperforms

S2-Attn and SW-Attn. We also note a substantial improvement on the variable tracking

(VT) task, which may be attributed to SE-Attn’s retrieval during fine-tuning.

Figure 6.2: Fine-tuning with SE-Attn outperforms SW-Attn and S2-Attn on the
RULER benchmark when applied to Mamba-2-Hybrid. We fine-tune Mamba-2-
Hybrid with a context size of 8192 using various Attention variants. We average over eleven
RULER tasks, as explained in Sec. 6.6.3.4. Fine-tuning with SE-Attn consistently outperforms
SW-Attn and S2-Attn even when evaluating on context sizes beyond the fine-tuning size.

111

6.3.2.1 Fine-Tuning on Natural Language + Code

Next, we consider fine-tuning on a dataset that augments natural language with a code

dataset. In particular, we construct a dataset consisting of 70% natural language, and 30%

C++ code extracted from the Lots of Code [129] dataset. We provide PG-19 validation PPL

results, as well as results on tasks from the LM Evaluation Harness suite in Tab. 6.3. Similar

to fine-tuning on natural language only (as in Tab. 6.2), we observe that fine-tuning with

SE-Attn yields the strongest performance in downstream tasks. We provide performance on

RULER in Fig. 6.3. We again observe that fine-tuning with SE-Attn yields the strongest

perfromance compared to other efficient Attention layers. Moreover, compared to fine-tuning

only on natural language, here we observe a greater improvement on the variable tracking

task. As explained in Sec. 6.6.3.4, this task requires the model to keep track of the values of

variables that are defined and overridden throughout the input context, and must then return

the variables equal to some value. This requires strong recall capabilities, which fine-tuning

with SE-Attn enables.

Attention Eval Context Size (PG-19 PPL #) Short Context Tasks (Acc ") Long Context Tasks (Acc ")
2048 8192 16384 32768 ARC-E ARC-C Hella. LAMB. PIQA WG Avg. SWDE SQA SNQA Avg.

Non-fine-tuned 10.72 14.99 19.35 26.37 69.91 37.97 67.62 69.84 76.06 65.04 64.41 85.60 15.18 3.65 34.81
Full-Attn 10.94 10.23 10.36 11.09 70.12 38.14 67.40 69.34 75.08 64.56 64.11 84.88 25.99 19.61 43.49
SW-Attn 10.94 10.76 11.81 13.43 69.70 38.82 67.51 69.38 75.41 64.88 64.28 84.52 24.44 15.30 41.42
S2-Attn 10.86 12.89 14.67 16.36 69.95 37.88 67.45 69.94 76.01 64.72 64.32 86.50 16.65 8.61 37.25
SE-Attn 10.95 10.41 11.07 12.50 70.45 38.91 67.39 69.07 75.08 64.96 64.31 85.24 26.14 18.08 43.15

Table 6.3: Fine-tuning Mamba-2-Hybrid with SE-Attn on a natural language +
code dataset outperforms fine-tuning with S2-Attn and SW-Attn on natural
language tasks. We fine-tune Mamba-2-Hybrid with a context size of 8192 using various
Attention variants on a dataset that consists of 70% natural language and 30% code. We
evaluate PG-19 validation perplexity (PPL) and observe that fine-tuning with SE-Attn yields
better perplexity scores than S2-Attn and SW-Attn. On short-context tasks from the LM
Harness suite, all models perform similarly. On long context tasks from the LM Harness
suite, SE-Attn outperforms S2-Attn and SW-Attn.

112

Figure 6.3: Mamba-2-Hybrid RULER benchmark fine-tuned on natural language
+ code. We fine-tune Mamba-2-Hybrid with different Attention layers on a dataset that
consists of 70% natural language and 30% code and evaluate on RULER. Compared to
fine-tuning on only natural language (as in Fig. 6.2), we see a substantial improvement on
tasks like variable tracking (VT), and needle-in-a-haystack tasks (NIAH), both of which
require strong recall capabilities enabled by fine-tuning with SE-Attn.

6.3.2.2 Fine-Tuning on PG-19

Next, we consider fine-tuning on the PG-19 [84] dataset. We provide perplexity results on the

validation set, along with LM Harness task results in Tab. 6.4. Compare to fine-tuning on a

different natural language dataset, and a natural language + code as in Tab. 6.2 and Tab. 6.3,

here we obtain lower perplexity scores due to the lack of distribution shift. Interestingly,

compared to fine-tuning on the previously mentioned datasets, we observe a slight degredation

on LM Harness tasks. Moreover, in Fig. 6.4 we plot RULER performance when fine-tuning on

PG-19, and here we also see a decay in performance compared to fine-tuning on the previous

datasets. This suggests that the PG-19 dataset may be too far out of distribution for these

long-context retrieval task. Nevertheless, we see that fine-tuning with SE-Attn yields the

best performance across all of these tasks.

113

Attention Eval Context Size (PG-19 PPL #) Short Context Tasks (Acc ") Long Context Tasks (Acc ")
2048 8192 16384 32768 ARC-E ARC-C Hella. LAMB. PIQA WG Avg. SWDE SQA SNQA Avg.

Non-fine-tuned 10.72 14.99 19.35 26.37 69.91 37.97 67.62 69.84 76.06 65.04 64.41 85.60 15.18 3.65 34.81
Full-Attn 10.73 10.04 10.14 10.91 67.34 37.12 66.80 68.62 74.32 62.67 62.81 84.88 25.35 18.46 42.90
SW-Attn 10.72 10.59 11.64 13.25 66.96 37.54 66.83 68.79 74.54 63.30 62.99 84.79 22.54 14.09 40.48
S2-Attn 10.78 12.74 14.42 16.11 69.36 38.14 67.45 69.90 76.12 64.72 64.28 86.50 17.00 7.74 37.08
SE-Attn 10.73 10.22 10.84 12.28 67.42 37.88 66.48 69.22 73.88 61.88 62.80 85.15 23.06 16.46 41.55

Table 6.4: Fine-tuning Mamba-2-Hybrid with SE-Attn on PG-19 outperforms
fine-tuning with S2-Attn and SW-Attn on long-context natural language tasks.
We fine-tune Mamba-2-Hybrid with a context size of 8192 using various Attention variants
on PG-19. We evaluate PG-19 validation perplexity (PPL) and observe that fine-tuning with
SE-Attn yields better perplexity scores than S2-Attn and SW-Attn. On short-context tasks
from the LM Harness suite, S2-Attn has the strongest performance. On long context tasks
from the LM Harness suite, SE-Attn outperforms S2-Attn and SW-Attn.

6.3.3 Llama1 7B

In this section, we explore the efficacy of SE-Attn to Transformers. When fine-tuning Llama

7B models, we found that using a fixed chunk size of M = 4096 gave better downstream

performance. All of our Llama models are fine-tuned with a context size of 16384. For

SE-Attn, we use block size of 32, and a top-k of 8. For SW-Attn, we use a window size of

4096, and S2-Attn uses the default parameters in [14]. All Attention variants use the same

RoPE [99] scaling as in [14].

Perplexity. Fine-tuning Llama with SE-Attn leads to better generalization on context sizes

smaller and larger than the one used for fine-tuning. In Tab. 6.5, we observe that fine-tuning

with SE-Attn preserves the performance of the non-fine-tuned model at smaller context

sizes, and offers greater generalization to larger context sizes than S2-Attn and SW-Attn, as

measured on PG-19 validation perplexity.

LM Harness. Fine-tuning Llama with SE-Attn yields a stronger performance on long-

context tasks on the LM Evaluation Harness benchmark. As shown in Tab. 6.5, fine-tuning

with SW-Attn, S2-Attn, and SE-Attn all improve upon the non-fine-tuned model on shorter

context tasks and perform similarly. However, SE-Attn gives a greater performance on long

context tasks.

114

Figure 6.4: Mamba-2-Hybrid RULER benchmark fine-tuned on PG-19. We fine-tune
Mamba-2-Hybrid with different Attention layers on the PG-19 [84] dataset and then evaluate
on RULER. Compared to fine-tuning on other natural language datasets with a greater
variety of text as in Fig. 6.2, here we observe a degradation in performance across all models,
likely due to a distribution shift in the PG-19 data and the RULER tasks.

Attention Eval Context Size (PG-19 PPL #) Short Context Tasks (") Long Context Tasks (")
2048 8192 16384 32768 ARC-E ARC-C Hella. LAMB. PIQA WG Avg. SWDE SQA SNQA Avg.

Non-fine-tuned 8.63 17.62 105.78 244.32 73.19 41.38 66.64 54.38 76.28 62.51 62.40 38.52 20.75 12.36 23.88
SW-Attn 8.80 8.17 8.35 10.32 74.20 43.09 75.00 71.96 77.42 67.48 68.19 82.81 24.41 21.06 42.76
S2-Attn 9.32 8.64 8.58 10.42 74.20 42.58 73.84 69.94 77.80 67.72 67.68 80.56 23.36 19.65 41.19
SE-Attn 8.76 8.13 8.01 9.28 75.04 44.37 75.02 71.03 78.02 67.17 68.44 84.79 24.59 21.36 43.58

Table 6.5: Fine-tuning Llama1 with SE-Attn outperforms fine-tuning with S2-Attn
and SW-Attn on natural language tasks. We fine-tune Llama1 with a context size of
16384 using various Attention variants. Similar to applying SE-Attn to Mamba-2-Hybrid,
here we again observe that fine-tuning Llama with SE-Attn improves upon SW-Attn and
S2-Attn .

RULER. Fine-tuning Llama with SE-Attn produces a model with stronger performance on

RULER tasks than fine-tuning with SW-Attn and S2-Attn, as illustrated in Fig. 6.5. On

average, SW-Attn and S2-Attn perform similarly, however, fine-tuning with SE-Attn improves

performance by ⇠5%. Interestingly, despite all models having a similar PPL up to a context

size of 16k as shown in Tab. 6.5, we observe a substantial difference between the RULER

performance of models fine-tuned with our SE-Attn and those fine-tuned with SW-Attn and

S2-Attn . We observe a similar PPL discrepancy for Hybrid models and expand on this

115

observation in Sec. 6.3.5.

Figure 6.5: Fine-tuning with SE-Attn outperforms SW-Attn and S2-Attn on the
RULER benchmark when applied to Llama1. We fine-tune Llama1 with a context
size of 16384 using various Attention variants. We average over eleven RULER tasks, as
explained in Sec. 6.6.3.4. Fine-tuning with SE-Attn consistently outperforms SW-Attn and
S2-Attn even when evaluating on context sizes beyond the fine-tuning size.

6.3.4 Ablations on Mamba-2-Hybrid

In this section, we ablate over some of the design choices of SE-Attn on Mamba-2-Hybrid. For

this analysis, we consider the RULER benchmark, as it is a strong indicator of performance

on long-context tasks. As our metric, we use the average of the eleven RULER tasks defined

in Sec. 6.6.3.4.

Does retrieval during training help? In Sec. 6.2.2, we introduced SE-Attn-NoMem,

a variant of SE-Attn where we do not do any retrieval and process chunks independently.

Naturally, we do not expect this to do well due to the lack of shared information across

chunks. We confirm this in Fig. 6.6a, where we observe that SE-Attn-NoMem achieves a

much lower performance than SE-Attn with retrieval. Furthermore, we also fine-tune with

SE-Attn-Random, a variant of SE-Attn where we retrieve random memory blocks from the

past. We observe that this improves upon SE-Attn-NoMem, indicating that retrieving some

information from the past improves upon no information. However, SE-Attn-Random does

116

not do as well as SE-Attn, which decides which blocks to retrieve based on relevancy.

Chunk size. For Mamba-2-Hybrid, we found that using a random chunk size during

each forward pass improved upon having a fixed chunk size. In Fig. 6.6b, we compare the

performance of SE-Attn, which chooses a random chunk size in {2048, 4096} during each

forward call, to SE-Attn (2048M) and SE-Attn (4096M), which use a fixed chunk size of 2048

and 4096, respectively. We observe that SE-Attn with a fixed chunk size of 4096 improves

upon SE-Attn with a fixed chunk size of 2048, but SE-Attn outperforms both. This suggests

that training with random chunk sizes may have a regularizing effect, making the model more

robust to changes in the input context size.

Block size and top-k. For a fixed expansion span size, we might expect that retrieving

memory blocks at a finer granularity should perform better than retrieving a smaller number

of large blocks; this is because retrieving a larger number of small blocks is as flexible as

retrieving a small number of large blocks. However, as illustrated in Fig. 6.6c, we found that

fine-tuning SE-Attn with larger block sizes and a smaller top-k gave the best performance.

This is possibly due to the increased complexity of the retrieval task, which becomes more

difficult as the number of possible blocks to retrieve increases. As we are fine-tuning with

LoRA, we hypothesize that the model’s capacity may not be sufficient to learn to retrieve

effectively in this setting. As illustrated in Fig. 6.6d, we found that an expansion span

populated with 256 retrieved tokens (32 memory blocks with 8 tokens in each) works best.

6.3.5 HyLoRA for Hybrid Models and the Subtle Pitfalls of Perplexity

We fine-tune our hybrid models using HyLoRA, which builds upon LoRA+ [14] by also

training 1D convolution layers. As illustrated in Fig. 6.7, when evaluated on long-context

RULER tasks, fine-tuning models with either Full-Attn or SE-Attn using HyLoRA gives the

strongest performance.

Effect of LoRA rank. We next explore how the rank used for LoRA fine-tuning affects

117

(a) (b) (c) (d)

Figure 6.6: SE-Attn ablations on Mamba-2-Hybrid. We plot the average of eleven
RULER tasks as described in Sec. 6.6.3.4. (a): SE-Attn-NoMem processes chunks of tokens
without retrieval, while SE-Attn-Random populates its expansion span by retrieving random
memory blocks for each chunk. We observe that our Attention-based memory retrieval
(SE-Attn) gives the strongest performance. (b): Using SE-Attn with a chunk size chosen
randomly from {2048, 4096} acts as a regularizer and outperforms SE-Attn with fixed chunk
sizes of 2048 and 4096. (c): SE-Attn with larger memory blocks (i.e., more tokens per memory
block) with a smaller top-k tends to do better than smaller block sizes with a larger top-k.
(d): An expansion span consisting of 256 total tokens (8 memory blocks with 32 tokens in
each) gives the strongest performance. 32S/32k is omitted due to memory constraints.

downstream performance on the RULER task. Given its stronger performance, we focus on

our HyLoRA. In our previous Mamba-2-Hybrid experiments, we used a LoRA rank (r) of 32

and an ↵ of 64 (for our Transformer experiments, we used r = 8 and ↵ = 16 as in [14]). In

Fig. 6.8, we plot the average RULER results for Mamba-2-Hybrid models fine-tuned with

HyLoRA using different ranks (we scale ↵ to maintain the ratio ↵/r = 2). Here, we observe

that training with a larger rank improves downstream performance, and we start to see some

saturation around r = 64.

In Tab. 6.6, we provide PG-19 perplexity results for Mamba-2-Hybrid trained with different

LoRA variants. All models are fine-tuned with a context size of 8192, and evaluated with

multiple context sizes. For a given context size, we do not see a substantial difference in

the perplexity. This is similar to the observation in [14]. However, as discussed above, the

rank can have a significant effect on downstream long-context tasks that require strong recall

capabilities, as in RULER. Hence, while perplexity results may be promising, they are not

necessarily indicative of performance on more complex long-context tasks.

Based on the analyses in this section, we conclude the following:

118

(a) Full-Attn (b) SE-Attn

Figure 6.7: HyLoRA outperforms LoRA and LoRA+ on Hybrid models. We
fine-tune Mamba-2-Hybrid with Full-Attn (a) and SE-Attn (b) using LoRA, LoRA+, and
HyLoRA. We find that LoRA and LoRA+ perform sub-optimally. HyLoRA augments LoRA+
by additionally training the 1D convolution layers and yields strong performance regardless
of which Attention mechanism is used during fine-tuning.

• Fine-tuning the 1D convolution layers, as we do in our HyLoRA, significantly improves

performance on downstream long-context tasks that require retrieval, such as RULER.

• Fine-tuning with larger LoRA ranks improves performance up to a certain point—64

for our experiments.

• Perplexity may not be the most faithful metric for assessing performance on long-context

downstream tasks. Instead, researchers should consider evaluating on more complex

tasks, such as those in the RULER benchmark.

6.4 Runtime Analysis

Empirical Analysis. SE-Attn is much faster than Full-Attn and S2-Attn on large contexts.

In Fig. 6.9, we profile different Attention layers on various context sizes and see that SE-Attn

is much faster than S2-Attn and Full-Attn. Moreover, we see that the runtime of SE-Attn

is similar to that of SW-Attn, indicating that our retrieval overhead is minimal despite the

much longer Attention span.

119

Figure 6.8: Fine-tuning with a larger LoRA rank using HyLoRA improves per-
formance on the RULER benchmark. We fine-tune Mamba-2-Hybrid using HyLoRA
with different LoRA ranks (we maintain a LoRA rank to alpha ratio of 2). We observe that
fine-tuning with a larger rank produces stronger downstream results on RULER, with some
saturation with a rank of 64.

Sequence Length LoRA Method (Rank=32) LoRA Rank (Method=HyLoRA)
LoRA LoRA+ HyLoRA 8 16 32 64

2048 10.77 10.98 10.99 11.00 11.00 10.99 10.99
8192 10.29 10.49 10.45 10.45 10.46 10.45 10.44

16384 10.91 11.18 11.14 11.03 11.10 11.14 11.14
32768 12.34 12.66 12.64 12.37 12.53 12.64 12.64
65536 13.99 14.36 14.26 13.84 14.08 14.26 14.28

Table 6.6: Mamba-2-Hybrid LoRA Ablations. We fine-tune Mamba-2-Hybrid with a
context size of 8192 with SE-Attn using different LoRA variants. We consider LoRA, LoRA+,
and HyLoRA (ours) and evaluate perplexity on the PG-19 dataset. We observe that all
LoRA variants yield similar perplexity results. However, as depicted in Fig. 6.7 and Fig. 6.8,
different LoRA variants yield substantially different performances on more complex tasks.

Analytical Analysis. The runtime of SE-Attn is lower than Full-Attn and S2-Attn on large

contexts. For an input with sequence length L, SE-Attn first constructs U = L

S
memory

blocks of size S. Attention is applied on each. Thus, the complexity of this operation is

120

Figure 6.9: SE-Attn is faster than S2-Attn and Full-Attn, especially on long
contexts. The retrieval overhead of SE-Attn is minimal, with runtime similar to SW-Attn
(which has a limited pre-determined Attention span).

O(dmodelUS2) = O(dmodelLS). Next, the input sequence is split into T = L

M
chunks of size

M . Cross-Attention is then applied between each chunk’s query and each memory block’s

compressed representation; the cost of this is O(dmodelMTU) = O(dmodel
L
2

S
). Cross-Attention

is then applied between each chunk’s query tokens and the concatenations of the chunk’s

key tokens and memory tokens. Since SE-Attn retrieves K blocks with S tokens in each, the

cost of this Cross-Attention for each chunk is O(dmodelM(SK + M)) = O(dmodelM2) since

SK < M . The cost for all chunks is therefore O(dmodelTM2) = O(dmodelLM). The total cost

of SE-Attn is therefore O(dmodelLS + dmodelLM + dmodel
L
2

S
).

6.5 Discussion

In this chapter, we introduced SE-Attn , an efficient retrieval-based Attention mechanism used

to expand the span of Hybrid SSM models, enabling them to operate over longer sequences.

To adapt Hybrid SSM models to leverage this retrieval mechanism, we introduced HyLoRA,

121

a variant of LoRA designed for Hybrid SSMs. We demonstrated improved performance

compared to existing baselines on a comprehensive set of long context tasks requiring strong

recall capabilities.

We close with the limitations of our method. Although we have conducted experiments

at a relatively large model scale (2.7B for Hybrid models and 7B for Transformers) and long

contexts (up to 32k), testing our method for efficiently adapting larger models on longer

contexts is paramount. Furthermore, while we utilize datasets that require modeling of

long-range dependencies, we found that perplexity-based tasks do not faithfully measure

models’ capabilities to handle long contexts, and instead tasks like RULER provide better

signals of long-context capabilities. However, RULER is mostly a synthetic dataset and does

not cover more nuanced tasks that require reasoning over long documents. Validating our

method on more complex long-range benchmarks is a promising area for future work.

6.6 Appendix

6.6.1 Training Details

Our fine-tuning recipe largely follows [14], with the exception of using a larger learning rate

for SE-Attn, SW-Attn, and Full-Attn models (2⇥ 10�4 vs. the default 2⇥ 10�5 for S2). We

found that using a larger learning rate for S2 did not improve its performance, as shown in

Fig. 6.10, so we used the default 2⇥ 10�5 learning rate for all S2 fine-tuning experiments.

All of our experiments are conducted on a single 8xA100 node. We fine-tune for 1000 steps

with a total of 0.5B tokens. We fine-tune Mamba-2-H with 8192 tokens with 8 accumulation

steps and a per-device batch size of 1. We fine-tune Llama1 with 16384 tokens with 4

accumulation steps and a per-device batch size of 1. We use FlashAttention-2 [17] and

DeepSpeed Stage 2 [86].

122

Figure 6.10: A larger learning rate does not improve the performance of S2. Here we
fine-tune a Mamba-2-Hybrid model using S2-Attn with two different learning rates: 2⇥ 10�4

and 2⇥ 10�5. The learning rate used in [14] is 2⇥ 10�5, which we found to work well. For
all other Attention layers, we found 2⇥ 10�4 to offer a slight improvement over 2⇥ 10�5.

6.6.2 Retrieval with Landmark Tokens

Landmark Attention [74] was recently introduced as way for Transformer models to process

long sequences by inserting ‘landmark’ tokens into the sequence whose representations would

then be used as summaries of the blocks of tokens that came before them. At a high level,

our approach in SE-Attn is similar. However, we simplify the process of compressing blocks

of tokens by forgoing the use of landmark tokens and instead using Attention to summarize

them, as described in Sec. 6.2.3. Moreover, to learn which blocks to retrieve, we do not rely

on a complex grouped softmax function, and instead use a simple Cross-Attention score to

ascertain relevance. In this way, we implement retrieval natively into the model’s architecture.

We consider a variant of SE-Attn, which we refer to as SE-Attn-LM, that is inspired

by Landmark Attention. Namely, instead of using our Attention-based compression to

construct summaries of memory blocks, we insert a non-learnable ‘landmark’ token into each

123

memory block, and use the cross-attention between this token and the memory tokens as

the summary of the memory block. We compare the performance of this variant to our

summaries computing using average pooling of Attention scores (see Eq. (6.7)) in Fig. 6.11.

Here, we see that SE-Attn yields better performance. We suspect this is because using a

non-learnable landmark token to summarize memory blocks is too challenging of a task to

accomplish using standard LoRA. While full fine-tuning (without LoRA) may improve the

performance of SE-Attn-LM, is is beyond the scope of our work as we prioritize efficiency.

Figure 6.11: Summarizing memory blocks via average pooling of attention yields
stronger performance than summarizing them using ‘landmark’ tokens. We fine-
tune Mamba-2-Hybrid using our SE-Attn, and SE-Attn-LM, which summarizes memory
blocks with a landmark token (similar to [74]). We find that our simpler SE-Attn produces a
stronger model, likely due to the easier training task which does not require adapting the
model to leverage landmark tokens for comression.

6.6.3 RULER Task Definitions

The RULER benchmark [46] consists of four different task categories: retrieval, multi-hop

tracing, aggregation, and question answering. In this chapter, we focus only on the retrieval,

124

multi-hop tracing, and aggregation tasks (we provide question answering results on the

LM Evaluation Harness benchmark). These three categories span eleven different tasks as

explained below.

6.6.3.1 Needle-in-a-Haystack (NIAH) Tasks

RULER consists of 8 different NIAH tasks. These tasks embed “needles” in a string of noise.

These needles are typically key-value pairs, and the goal is to return the value of a key. These

tasks are characterized by six parameters:

• type_haystack (TH): This specifies the type of noise to embed the key in. The choices

are “repeat” which constructs noise as in [74], “essay” which will use sentences from

the Paul Graham essays [56], or “needle” in which case each sentence will define a new

key-value pair.

• type_needle_k (TK): This specifies the type of the needle’s key. The options are “words”,

in which case the key is a word (in the form of adjective-noun, e.g., spiritual-oven), or

“uuids” in which case the key is a UUID.

• type_needle_v (TV): This specifies the type of the needle’s value. It can either be

“numbers” in which case the value is a 7-digit number, or it can be “uuids” in which

case the value is a UUID.

• num_needle_k (NK): This specifies the number of key-value pairs to embed in the

haystack.

• num_needle_v (NV): This specifies how many different values a key is assigned. If

greater than 1, the goal is output all the values of they key.

• num_needle_q (NQ): This specifies the number of different keys the model must return

the value for.

125

NIAH Task TH TK TV NK NV NQ
Single 1 repeat words numbers 1 1 1
Single 2 essay words numbers 1 1 1
Single 3 essay words uuids 1 1 1

Multikey 1 essay words numbers 4 1 1
Multikey 2 needle words numbers 1 1 1
Multikey 3 needle uuids uuids 1 1 1
Multivalue essay words numbers 1 4 1
Multiquery essay words numbers 1 1 4

Table 6.7: RULER NIAH definitions. The ‘Needle-in-a-Haystack’ (NIAH) tasks in the
RULER benchmarks are defined by 6 parameters which modulate the difficulty of the tasks.
We consider 8 different NIAH tasks as defined above (these are the default NIAH tasks in
the RULER library).

6.6.3.2 Multi-hop Tracing Tasks

RULER considers a “variable tracking” task that is a form of coreference resolutions. In this

task, a sequence of variables are defined throughout noisy text as in [74]. New variables are

defined as previous ones, and a final value is assigned to a particular variable. The goal is to

be able to trace back which variables have also been assigned the final value. We use the

default num_chains=1 and num_hops=4 parameters

6.6.3.3 Aggregation Tasks

RULER considers two aggregation tasks, common words extraction (CWE), and frequent

words extraction (FWE). In CWE, the context consists of list of words, and the goal is to

return the most common words. We use the default parameters freq_cw=30, freq_ucw=3,

and num_cw=10. In FWE, the context consists of random word strings, and the goal is to

return the ones that appear the most frequently. We use the default alpha=2 parameter for

this.

126

6.6.3.4 Aggregating RULER Tasks

We aggregate the eleven RULER tasks above into six groups:

1. NIAH-S : NIAH Single 1, NIAH Single 2, NIAH Single 3.

2. NIAH-M : NIAH Multikey 1, NIAH Multikey 2, NIAH Multikey 3.

3. NIAH-M-QV : NIAH Multivalue, NIAH Multiquery.

4. VT : Variable Tracking.

5. CF-WE : Common Words Extraction (CWE) and Frequent Words Extraction (FWE).

6. Average: The average of all eleven tasks above.

127

CHAPTER 7

Conclusion and Future Work

This thesis has demonstrated that dynamic modulation of model capacity, driven by pro-

gressive curricula, can reduce training costs while maintaining or improving model accuracy.

We demonstrate the efficacy of such modulation across a broad spectrum of vision tasks

and architectures. In several instances, our training techniques not only reduced training

compute, but also yielded efficient models for deployment—typically in the form of compressed

models. We hope that this exploration will encourage researchers to consider dynamic model

modulation during training as a means for both reducing training costs and developing more

robust and accurate models.

Although our exploration spans multiple areas of deep learning, our work is not exhaustive

and there are numerous avenues for further research. First, except for our work on Early Model

Pruning (Chapter 2), our curricula strategies are generally agnostic to the model’s training

performance. Future work could explore dynamically adjusting the curricula according to the

model’s performance on the training data (or a held-out dataset) during training. Unlike

our current framework, which pre-defines the curriculum structure, this approach could yield

even more accurate models. Second, our methods can be combined with other forms of model

compression techniques. For instance, our work on Compound Scaling (Chapter 4), could be

extended by exploring quantization as a means of compression rather than solely focusing on

model pruning. Third, except for our work on Hybrid State Space Models (Chapter 6), our

training frameworks were developed and tested for vision applications. Establishing whether

Large Language Models exhibit Early Pruning Periods, for instance, represents an exciting

128

avenue for future research with significant potential to substantially reduce the financial costs

of training.

The field of machine learning is evolving rapidly. Many of the methods that we developed

in this thesis have been applied to models that are becoming increasingly irrelevant. However,

the principles underlying these methods, such as the importance of efficiency and adaptability,

remain timeless. As models become larger and more complex, the need for innovative

strategies to optimize their training and deployment will only become more pressing. We

hope that the insights and approaches presented in this work can help lay the foundation

for more efficient deep learning methods that can help shape the future of accessible and

sustainable deep learning.

129

REFERENCES

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org. 62

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 2

[3] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in
deep neural networks. arXiv preprint arXiv:1711.08856, 2017. 4, 9, 11, 14, 28

[4] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191.
American Mathematical Soc., 2000. 14

[5] Anthropic. Model card: Claude 3, 2024. Accessed: 2024-11-11. 2

[6] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016. 47

[7] Dzmitry Bahdanau. Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014. 1

[8] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image
transformers. arXiv preprint arXiv:2106.08254, 2021. 99

[9] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150, 2020. 101, 108

[10] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, page 41–48, New York, NY, USA, 2009. Association for Computing
Machinery. 3, 64, 90

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. In European
conference on computer vision, pages 213–229. Springer, 2020. 2

130

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision transform-
ers. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 9650–9660, 2021. 2

[13] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A
large-scale audio-visual dataset. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 721–725. IEEE, 2020. 93

[14] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and
Jiaya Jia. Longlora: Efficient fine-tuning of long-context large language models. arXiv
preprint arXiv:2309.12307, 2023. xxv, 101, 102, 107, 108, 109, 114, 117, 118, 122, 123

[15] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, and David Owen. The
rising costs of training frontier ai models. arXiv preprint arXiv:2405.21015, 2024. 2

[16] Zihang Dai. Transformer-xl: Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860, 2019. 101

[17] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partition-
ing. arXiv preprint arXiv:2307.08691, 2023. 108, 122

[18] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient
algorithms through structured state space duality. arXiv preprint arXiv:2405.21060,
2024. 6, 102, 107

[19] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-
Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan,
et al. Griffin: Mixing gated linear recurrences with local attention for efficient language
models. arXiv preprint arXiv:2402.19427, 2024. 6, 102, 107

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. 1, 45, 66

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. xxviii, 2, 73, 74, 84, 97

[22] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al.
The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. 2

131

[23] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as
spatiotemporal learners. Advances in neural information processing systems, 35:35946–
35958, 2022. 97

[24] Kevin Galim, Wonjun Kang, Yuchen Zeng, Hyung Il Koo, and Kangwook Lee.
Parameter-efficient fine-tuning of state space models. arXiv preprint arXiv:2410.09016,
2024. 107

[25] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang,
Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07
2024. 109

[26] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 776–780. IEEE, 2017. xxx, 92,
94

[27] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk,
Quoc V Le, and Barret Zoph. Simple copy-paste is a strong data augmentation method
for instance segmentation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2918–2928, 2021. 76

[28] Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan
Pilault, Adam Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model.
arXiv preprint arXiv:2405.16712, 2024. 6, 102, 107

[29] Ian Goodfellow, Honglak Lee, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring
invariances in deep networks. Advances in neural information processing systems, 22,
2009. 68

[30] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward
Choi. Morphnet: Fast & simple resource-constrained structure learning of deep networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1586–1595, 2018. 62

[31] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state
spaces. arXiv preprint arXiv:2312.00752, 2023. 6, 101

[32] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021. 6, 101

132

[33] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christo-
pher Ré. Combining recurrent, convolutional, and continuous-time models with linear
state space layers. Advances in neural information processing systems, 34:572–585,
2021. 101

[34] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. Advances in neural information processing
systems, 28, 2015. 4, 8, 9, 12

[35] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal
brain surgeon. Advances in neural information processing systems, 5, 1992. 8

[36] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 16000–16009, 2022. 86

[37] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2980–2988, 2017.
xxix, 74, 75, 84

[38] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1, 12, 42, 43, 45, 46, 66, 72, 77, 84

[39] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob
Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of
out-of-distribution generalization. ICCV, 2021. 68

[40] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. CoRR, abs/1907.07174, 2019. 67

[41] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020. 89

[42] S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997. 1

[43] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1314–1324, 2019. 34, 46, 73, 74, 77

[44] Andrew Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
34, 73, 74, 77

133

[45] Jeremy Howard. Training imagenet in 3 hours for usd 25; and cifar10 for usd 0.26, Apr
2018. 64

[46] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh,
Fei Jia, Yang Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your
long-context language models? arXiv preprint arXiv:2404.06654, 2024. 109, 124

[47] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685, 2021. 100, 107

[48] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7132–7141, 2018. 72,
73

[49] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep
networks with stochastic depth. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV
14, pages 646–661. Springer, 2016. 71, 99

[50] Po-Yao Huang, Vasu Sharma, Hu Xu, Chaitanya Ryali, Haoqi Fan, Yanghao Li, Shang-
Wen Li, Gargi Ghosh, Jitendra Malik, and Christoph Feichtenhofer. Mavil: Masked
audio-video learners. arXiv preprint arXiv:2212.08071, 2022. xxi, xxx, 5, 86, 87, 93, 97

[51] Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba,
Florian Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. Advances
in Neural Information Processing Systems, 35:28708–28720, 2022. xxx, 90, 93, 94, 97

[52] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456. PMLR, 2015. 34, 43

[53] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2704–2713, 2018. 42, 45

[54] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26, 2013. 68

[55] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
1960. 101

[56] Gregory Kamradt. Needle in a haystack - pressure testing llms., 2023. 125

134

[57] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. arXiv preprint arXiv:2001.08361, 2020. 2

[58] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former. arXiv preprint arXiv:2001.04451, 2020. 101

[59] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 12, 42,
43, 45

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012. 1

[61] Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 68

[62] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989. 8

[63] Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos,
Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A
hybrid transformer-mamba language model. arXiv preprint arXiv:2403.19887, 2024. 6,
102, 107

[64] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 740–755. Springer International Publishing, 2014.
74

[65] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Fully
quantized vision transformer without retraining. ArXiv, abs/2111.13824, 2021. 51

[66] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2021. xxviii, 2, 73, 74, 84, 90, 97

[67] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. 2017
IEEE International Conference on Computer Vision (ICCV), pages 2755–2763, 2017.
xxvi, 37, 45, 57

135

[68] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016. 99

[69] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations, 2017. 99

[70] Sachin Mehta, Farzad Abdolhosseini, and Mohammad Rastegari. Cvnets: High per-
formance library for computer vision. In Proceedings of the 30th ACM International
Conference on Multimedia, MM ’22, 2022. xxviii, 61, 63, 66, 74, 83

[71] Sachin Mehta, Saeid Naderiparizi, Fartash Faghri, Maxwell Horton, Lailin Chen, Ali
Farhadi, Oncel Tuzel, and Mohammad Rastegari. Rangeaugment: Efficient online
augmentation with range learning. arXiv preprint arXiv:2212.10553, 2022. 66

[72] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose,
and mobile-friendly vision transformer. CoRR, abs/2110.02178, 2021. 63, 70

[73] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil
Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural
networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 15682–15694. Curran Associates, Inc., 2021. 68

[74] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access
infinite context length for transformers. arXiv preprint arXiv:2305.16300, 2023. xxv,
106, 123, 124, 125, 126

[75] Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context
behind: Efficient infinite context transformers with infini-attention. arXiv preprint
arXiv:2404.07143, 2024. 101

[76] Dianwen Ng, Yunqi Chen, Biao Tian, Qiang Fu, and Eng Siong Chng. Convmixer:
Feature interactive convolution with curriculum learning for small footprint and noisy
far-field keyword spotting. arXiv preprint arXiv:2201.05863, 2022. 93

[77] Elvis Nunez, Thomas Merth, Anish Prabhu, Mehrdad Farajtabar, Mohammad Rastegari,
Sachin Mehta, and Maxwell Horton. On the efficacy of multi-scale data samplers for
vision applications. arXiv preprint arXiv:2309.04502, 2023. 90

[78] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D
Cubuk, and Quoc V Le. Specaugment: A simple data augmentation method for
automatic speech recognition. arXiv preprint arXiv:1904.08779, 2019. 99

[79] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,

136

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. 45

[80] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32, 2019. 62

[81] Karol J Piczak. Esc: Dataset for environmental sound classification. In Proceedings of
the 23rd ACM international conference on Multimedia, pages 1015–1018, 2015. 93

[82] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021. 82

[83] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár.
Designing network design spaces. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10425–10433, 2020. 72, 73, 83, 84

[84] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lilli-
crap. Compressive transformers for long-range sequence modelling. arXiv preprint
arXiv:1911.05507, 2019. xxiii, 108, 113, 115

[85] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
Conference on Machine Learning, pages 8821–8831. PMLR, 2021. 2

[86] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed:
System optimizations enable training deep learning models with over 100 billion parame-
ters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3505–3506, 2020. 122

[87] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? CoRR, abs/1902.10811, 2019. xxviii, 68, 70

[88] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263–7271,
2017. 63

[89] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the

137

IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695,
2022. 2

[90] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an
exponential convergence _rate for finite training sets. Advances in neural information
processing systems, 25, 2012. 68

[91] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986. 1

[92] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018. 34,
46, 73, 74, 77

[93] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,
Brendan D Tracey, and David D Cox. On the information bottleneck theory of deep
learning. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124020,
2019. 24

[94] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,
2013. 24

[95] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and
improving convolutional neural networks via concatenated rectified linear units. In
international conference on machine learning, pages 2217–2225. PMLR, 2016. 68

[96] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 12, 46

[97] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(56):1929–1958, 2014. 70

[98] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consider-
ations for modern deep learning research. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 13693–13696, 2020. 2

[99] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing,
568:127063, 2024. 105, 114

[100] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong
Wang, and Furu Wei. Retentive network: A successor to transformer for large language
models. arXiv preprint arXiv:2307.08621, 2023. 101

138

[101] Ilya Sutskever. Sequence to sequence learning with neural networks. arXiv preprint
arXiv:1409.3215, 2014. 1

[102] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014. 1

[103] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2820–2828, 2019. 46

[104] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019. 72, 73

[105] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In
International conference on machine learning, pages 10096–10106. PMLR, 2021. 64, 90

[106] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders
are data-efficient learners for self-supervised video pre-training. Advances in neural
information processing systems, 35:10078–10093, 2022. 86

[107] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Herve Jegou. Training data-efficient image transformers & distillation
through attention. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 10347–10357. PMLR, 18–24 Jul 2021. 2, 46

[108] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé
Jégou. Going deeper with image transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 32–42, 2021. 46

[109] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023. 108

[110] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016. 44, 49

[111] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017. 1, 90, 94, 101, 108

139

[112] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti,
Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An
empirical study of mamba-based language models. arXiv preprint arXiv:2406.07887,
2024. 108

[113] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang,
and Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14549–14560, 2023. 86

[114] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020. 101

[115] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition.
arXiv preprint arXiv:1804.03209, 2018. 93

[116] Chen Wei, Karttikeya Mangalam, Po-Yao Huang, Yanghao Li, Haoqi Fan, Hu Xu,
Huiyu Wang, Cihang Xie, Alan Yuille, and Christoph Feichtenhofer. Diffusion models
as masked autoencoders. arXiv preprint arXiv:2304.03283, 2023. 89, 90, 98

[117] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In
International conference on machine learning, pages 564–572. PMLR, 2016. 62

[118] Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in
deep convolutional networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 833–841, 2020. 78

[119] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990. 1

[120] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 62

[121] Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad
Rastegari. Learning neural network subspaces. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 11217–11227. PMLR, 18–24
Jul 2021. 5, 33, 35, 46

[122] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018. 42, 44, 49, 52

[123] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim.
Gated linear attention transformers with hardware-efficient training. arXiv preprint
arXiv:2312.06635, 2023. 101

140

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[124] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484,
2024. 101

[125] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training
techniques. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1803–1811, 2019. xvi, xxvi, 34, 37, 38, 41, 42, 43

[126] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. In International Conference on Learning Representations, 2018. xxvi,
34, 37, 42, 43

[127] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with
localizable features. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 6023–6032, 2019. 99

[128] Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Ben-
jamin Bowman, Matthew Trager, Alessandro Achille, and Stefano Soatto. B’mojo:
Hybrid state space realizations of foundation models with eidetic and fading memory.
arXiv preprint arXiv:2407.06324, 2024. 101, 102, 107

[129] Vladislav Zavadskyy. Lots of code, 2017. Accessed: 2024-10-27. 112

[130] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 99

[131] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017. 39

141

	Introduction
	Deep Learning Advancements and the Need for Efficient Training
	Curriculum-Based Training: Dynamic Modulation of Model and Data Complexity for Efficient Model Training

	Timing Matters: Identifying When Neural Networks Are Most Amenable to Pruning
	Identifying Early Pruning Periods
	Experiments
	Early (Global) Pruning Periods
	Early (Local) Pruning Periods

	Linear Network AnalysisExperiments in this section were done while interning at AWS in collaboration with Michael Kleinman.
	Experimental Setup of Teacher-Student Network
	Linear Network Analysis Results
	Extrapolating from Linear Networks To Deep Non-Linear Networks

	Discussion
	Appendix
	Training Details

	Dynamic Compression During Training for Real-Time Adaptive InferenceWork completed during an internship at Apple.
	Overhead of Adaptive Inference by Deploying Multiple Models
	Compressible Subspaces for Real-Time Adaptive Inference
	Compressible Lines
	Compressible Points
	Curriculum-Based Compression
	Compression Methods
	Circumventing BatchNorm Recalibration
	Real-Time Compression Analysis

	Experiments
	Unstructured Sparsity
	Structured Sparsity
	Quantization
	Confirming the Linear Subspace Accuracy-Efficiency Trade-Off

	Discussion
	Appendix
	Training Details
	Baseline Model Accuracies
	Memory and FLOPS Footprint of Compressed models

	Curriculum-Based Multiscale TrainingWork completed during an internship at Apple.
	Overview of Image Data Samplers
	Curriculum-Based Multi-Scale Variable Batch Size Sampler

	Why Train With Multiscale Samplers?
	Faster Training
	Robustness
	Regularization

	Multiscale Training Beyond ResNet and Classification
	CNNs, Transformers, and Lightweight Image Classification Models
	Object Detection with Mask R-CNN

	Efficient Training via Progressive Compound ScalingThis section is based on unpublished work completed during an internship at Apple.
	Progressive Compound Scaling
	ResNet-50 Progressive Compound Scaling

	Discussion
	Appendix
	Training Details
	Multi-GPU vs. Single-GPU Training With Multiscale Samplers

	Cross-Attention and Curriculum-Based Masking for Efficient Masked AutoencodersWork completed during an internship at Apple.
	Masked Autoencoders for Audio and Video
	Masked Audio Video Learners (MAViL)
	Diffusion-Based Masked Audio Video Learners (DiffMAViL)

	Enhanced Training Efficiency
	Leveraging Cross-Attention
	Curriculum-Based Masking Ratio

	Experiments
	Benefits of Diffusion, Cross-Attention, Curriculum-Based Masking, and Adaptive Batch Sizes
	FLOPS Analysis

	Discussion
	Appendix
	Training Details

	Efficient Adaptation of Hybrid State Space Models to Long Sequences of TokensWork completed during an internship at AWS.
	Hybrid SSMs: Complementing Fading Memory with Eidetic Memory
	Span-Expanded Attention
	Attention
	Amnesic Attention
	Eidetic Retrieval Attention
	HyLoRA: Training SE-Attn with LoRA

	Experiments
	Experimental Setup
	Mamba-2-Hybrid
	Llama1 7B
	Ablations on Mamba-2-Hybrid
	HyLoRA for Hybrid Models and the Subtle Pitfalls of Perplexity

	Runtime Analysis
	Discussion
	Appendix
	Training Details
	Retrieval with Landmark Tokens
	RULER Task Definitions

	Conclusion and Future Work
	References

