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Abstract 

When it comes to decision making, the dominant view 
suggests that engaging in a detailed analytical thought process 
is more beneficial than deciding based on one’s feelings. 
However, there seems to be a tradeoff, as the complexity and 
amount of elements on which to base the decision increases, 
decisions based on affect seem to be more accurate than 
decisions based on a thorough analytical process in specific 
contexts. In those last cases, an affective modulation of 
memory may help to make better decisions in complex tasks 
that exceed human’s limited cognitive capacities. Some dual 
process accounts, ‘‘deliberation-without-attention’’ 
hypothesis (Dijksterhuis et al., 2006), oppose a cognitive (i.e., 
conscious) route to an affective (i.e., unconscious) route.  
Since most dual process accounts suggest one type of process 
is better than the other, the interaction and integration of 
affective and more conscious analytical processes in decision 
making have been understudied. To address this issue, we 
propose an explanation of the dynamics and interaction of 
cognitive (i.e., explicit) and affective (i.e., implicit) encoding 
and retrieval of elements in memory, using a unified theory 
based on core affect (Russell, 2003), in the shape of a 
cognitive model in the ACT-R cognitive architecture.  
 
Keywords: Core affect; ACT-R; decision making; dual 
process theory; memory modulation; implicit strategy 

Introduction 
In a set of experiments, Dijksterhuis et al. (2006) and 

Mikels et al. (2011) show how being focused on the details 
of provided information, rather than feelings, affects 
accuracy in a decision making task. According to these 
results, being feeling focused in a more complex, memory-
overloading task proves to lead to better performance.  

Until recently, the influence of emotion has been 
neglected in the judgment and decision making literature, 
with the focus initially being put on the biases emotions 
enable (Kahneman & Tversky 1979). Gradually, the focus 
has shifted toward the positive role of emotions in decision 
making, as suggested by neurological evidence (Damasio, 
1994; Bechara, Damasio, & Damasio, 2000). In parallel, 
core affect theory (Russell, 2003) in emotion research, and 
the somatic marker hypothesis (Damasio, 1994) in decision 
making research, have emerged to explain how emotion can 
guide behavior towards a positive outcome. 

In this paper we suggest that the results from  Dijksterhuis 
et al. (2006) and Mikels et al. (2011) (i.e., being feeling-
focused in a more complex task leads to better performance) 
can be explained with a core-affect model. Core affect 
(Russell, 2009) is a neurophysiological state accessible to 
consciousness as a simple non-reflective feeling and can be 

described through the valence (i.e., negative or positive) and 
arousal (i.e., intensity) values. Our hypothesis here is that 
core affect modulates memory. The modulation would place 
emphasis on the objective value of an attribute (i.e., good or 
bad) rather than details (e.g., higher than average gas 
mileage), simplifying the information and allowing for more 
efficient use of cognitive resources. The core affect 
experienced by participants while implicitly considering 
options cumulates and later leads to a decision illustrating 
the emotion-cognition interaction. This, we think, proves to 
be a better strategy when the limit of memory capacity is 
reached (e.g., complex task). This hypothesis was tested 
using a cognitive architecture based on a unified theory of 
cognition, ACT-R. We previously used this core affect 
model to explain the impact of affective valence and arousal 
on memory and memory decay using participant’s memory 
of negative and positive emotion words after different time 
periods (Juvina & Larue, 2016). However, here the focus is 
on the role of affect in decision making. This allows for an 
explanation of how core affect and cognitive mechanisms 
are meshed.   

Background 
The concept of emotion has been a subject of interest for 

quite some time. However, theories have only recently 
attempted to explain their role in cognitive processes using 
empirical research. Appraisal theories (Lazarus & Folkman, 
1984; Ortony, Clore and Collins, 1990) have emerged as the 
dominant approach to emotions in the last few decades. 
Appraisal has been defined as the personal meaning and 
significance to well-being that is constructed from 
evaluations of situational factors and knowledge. While this 
trend of theories clarifies the route by which humans 
evaluate their environments (e.g., in a bottom-up way), they 
do not clarify how ongoing affect influences the encoding 
and retrieval of information in an implicit manner.  

In response to this incompleteness, core affect theory 
(Russell, 2003), “feeling is for doing” (Zeelenberg & 
Pieters, 2006), and the somatic marker hypothesis 
(Damasio, 1994) have attempted to bridge the gap between 
emotion and behavior. The latter particularly addresses the 
domain of decision making.  
Russell (2009) believes that most phenomena attributed to 
emotions can be explained in more simple terms (e.g., core 
affect) without the need for emotion. Core affect is a 
visceral state that happens before the emotion is consciously 
identified: feeling good or bad, lethargic or energized 
(Russell, 2009). Russell’s core affect theory suggests 
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underlying values for valence and arousal are more 
important than emotion, which he believes is socially 
constructed. The core affect is the central notion of this 
theory. Previous events change the core affect, which can 
occur before the event is actually consciously perceived by 
the subject and persists during the episode. It also influences 
the other elements of the emotional episode.  
In the domain of decision making, some researchers 
(Gigerenzer & Selton, 2002) view heuristics, not only 
affective ones, as strategies that lead to sufficient decisions. 
Implicit strategies for decision making have previously been 
studied in ACT-R with Instance Based Learning (Gonzalez, 
Lerch & Lebiere, 2003). In this paper, another type 
of implicit strategy involved in decision making – an 
affective strategy – is investigated. 

Existing computational models of affect and emotion are 
based on appraisal theories and tend to be pre-programmed 
and hardwired based on the specifications of a particular 
theory (e.g., Marsella & Gratch, 2009; Marinier, Laird, & 
Lewis, 2009). Previous attempts have been made in ACT-R 
to add biological roots of emotions (Dancy et al., 2015) 
effect of emotion on learning and decision making 
(Belavkin, 2003) and stress (Ritter, Reifers, Klein, & 
Schoelles, 2007) by overlaying the architecture.  

Since core affect is implicit, more primitive, and more 
general than the construct of emotion (Russell & Feldmann 
Barrett, 1999; Russell, 2009), it could be particularly 
adapted to be included in a cognitive architecture. When 
meshed with existing cognitive mechanisms, it could add to 
existing unified theories of cognition. The resulting model 
would increase the explanatory power of the core affect 
theory by clarifying different aspects of the emotion–
cognition interaction.  

Core affect and memory: theory and 
implementation 

ACT-R and memory 
To capture the core affect modulation of memory and its 

impact on decision making, we support our model with 
ACT-R (Adaptive Control of Thought – Rational; 
Anderson, 2007), a unified theory of human cognition. 
ACT-R is also a cognitive architecture that is used to 
develop computational models of various cognitive tasks. 
ACT-R is composed of various modules: goal, imaginal, 
visual, aural, manual, vocal, and two memory modules: 
declarative memory (i.e., facts) and procedural memory 
(i.e., how to do things). The declarative memory module, 
which stores facts (i.e., know-what), is the one the core 
affect directly modulates. Declarative memory includes both 
symbolic structures (i.e., memory chunks) and sub-symbolic 
quantities that control the operation of the symbolic 
structures in the equations. The valuation and arousal 
values, which help to define the core affect, are sub-
symbolic quantities added to the current sub-symbolic 
equations of ACT-R.  

Core affect and memory 
We present a summarized version of the core affect 

mechanism to facilitate the understanding of our model. An 
extended version of the core affect mechanism can be found 
in Juvina and Larue (2016). The original equation 
(Anderson, 2007) that computes the activation of a 
declarative memory chunk is:  

Ai = Bi + Si + Pi + εi                                                   (1) 

• Ai is the activation of the chunk i. 
• Bi is the base-level term and reflects the recency and 

frequency of use of chunk i.  
• Si is the spreading term and reflects the effect of the 

context on the retrieval of chunk i. 
• Pi is the partial matching term and reflects the degree to 

which the chunk i matches the specification of the 
retrieval request. 

• εi is a noise or variability component. 
 

Activation of a chunk reflects its use, and decays over 
time if the chunk is not used. Retrieval time and the retrieval 
probability of a chunk are determined by activation (e.g., 
chunks under a certain retrieval threshold cannot be 
retrieved). However, the selection process is impacted by 
noise. The chunk with the highest activation has the highest 
probability of being selected, but other chunks get the 
opportunity as well allowing some exploration behavior in 
ACT-R.  
In the current ACT-R architecture, reward based learning 
affects procedural memory. However, subjective values 
(e.g., pleasant or unpleasant) might actually be carried by 
declarative memory as affectively charged representations, 
which are easier/harder to retrieve according to these values 
(Smith, Most, Newsome, & Zald, 2006).  A new ACT-R 
module called “Valuation” was developed to add valuation 
and core affect capabilities into ACT-R. In theory, core 
affect is a diffuse affective state that is not necessarily 
linked to any specific event and is characterized as a point in 
a two-dimensional space, where the two underlying 
dimensions are valence (i.e., pleasure-displeasure) and 
arousal (Russell, 2009). In our implementation, core affect 
is defined as two accumulators called core-affect-valuation 
(Valuation) and core-affect-arousal (Arousal), which are 
sub-symbolic quantities computed by the “Valuation” 
module. It also maintains the parameters and history 
information that are needed for these computations. Both 
values affect the probability that a chunk can be retrieved 
from declarative memory. Valuation is an indicator of the 
affective valence of a particular stimulus or fact learned 
through interaction with the environment. Arousal is an 
indicator of the importance or priority that is given to a 
particular stimulus or fact; it is the absolute value of 
valuation. Relying on the existing memory mechanisms 
from the ACT-R theory, valuation and arousal are just two 
separate terms added to the general activation equation 
previously introduced: 
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Ai = Bi + Si + Pi + Vi + Ari + εi             (2) 

• Vi is the valuation term and reflects the rewards 
received by the model after referencing chunk i.     

• Ari is the arousal term which reflects the importance of 
chunk i and is computed as the absolute magnitude of 
the valuation term.  
 

The learning of valuations occurs when a reward is 
triggered: the valuations of all chunks that been referenced 
within a time window are updated. This is compatible with 
findings of overlapping neural substrates between the 
attribution of subjective value to stimuli and reward-based 
learning (Paton, Belova, Morrison, & Salzman, 2006). The 
effective reward of a chunk i is the reward value received at 
time n minus the time since the last reference of chunk i. 

The learning of valuations for a chunk i is controlled by 
the following equation:  

 
Vi(n) = Vi(n-1) + αv[Ri(n) – Vi(n-1)]            (3) 

 
• Vi(n) is the valuation of chunk i after its nth update.  
• Vi(n-1) is the valuation of chunk i prior to its nth 

update. 
• αv is the learning rate for valuations.  
• Ri(n) is the effective reward value received by chunk i 

before its nth valuation update.     
• Vi(0) is determined based on initial parameter settings. 
Reward signals allow the model to learn valuation and 
arousal values for elements according to what is presented 
in the environment. 
Additional parameters make it possible to weight valuation 
and arousal independently in the equation. Values used in 
this paper can be seen in Table 1:   
• Valuation weight (:vw) is a scale parameter for the 

valuation term in the general activation equation.  
• Arousal weight (:aw) is a scale parameter for the 

arousal term in the general activation equation. 
• Valuation time window (:vtw) is a time window over 

which to update the valuations. It determines how many 
chunks are updated. 
 

In the architecture, core affect is the weighted 
accumulation of valuation and arousal values for all 
retrievable chunks, and weights are probabilities of retrieval 
reflecting chunk activations.  This value is implicitly 
maintained by the architecture. 

In this implementation, affect phenomena are not 
hardwired in the cognitive architecture but learned from the 
interaction among various architectural components and 
between architecture and environment. Only primitive 
affective mechanisms: valuation (i.e., valence obtained 
through interactions) and arousal, were included in the 
cognitive architecture. Valuation and arousal are added as 
terms in the general activation equation and influence the 
probability of a chunk to be retrieved. This is consistent 

with the core affect theory (Russell & Feldmann Barrett, 
1999; Russell, 2009).  

Our hypothesis is that this is all that is necessary to 
include at the architectural level to model the interaction 
between cognition and affect. 

Model 

Conditions 
The procedure used here was derived from an experiment by 
Dijksterhuis et al. (2006) and replicated by Mikels et al. 
(2011). During these experiments, participants were given 
information about four different car options (i.e., Car A, Car 
B, Car C, and Car D) and were instructed to choose which 
car they believed to be the best choice. Simple attributes, 
framed as either positive or negative (e.g., this car gets 
good/bad gas mileage), were provided one at a time for each 
car option. The best choice was defined as the car with the 
most positive attributes. The best choice had 75% positive 
attributes, two cars had 50% positive attributes, and one car 
had 25% positive attributes. The design consisted of one 
dependent variable (i.e., car choice) and two independent 
variables (i.e., focus and complexity). 

 
Figure 1. Experiment procedure and memory 

representations across task in detail-focus vs feeling-focus 
conditions 

Participants were split into four conditions based on the 
two independent variables (i.e., feeling-focus simple, 
feeling-focus complex, detail-focus simple, and detail-focus 
complex). Those in the feeling-focus conditions were 
instructed to rate how they felt about each attribute and 
make their choice while focusing on their feelings. In the 
detail-focus conditions, participants were instructed to rate 
how well they were remembering the attributes and make 
their decision based on the details of the attributes. Simple 
conditions had four attributes for each car option, whereas 
complex conditions had 12 attributes per car option.  

All conditions completed a memory recall task at the end 
of the trial. Results from a chi-square analysis indicated that 
participants in the detail-focus simple condition performed 
better than participants in the feeling-focus simple 
condition, although this difference did not reach 
significance. However, participants in the feeling-focus 
complex condition significantly outperformed those in the 
detail-focus complex condition. There was no difference 
between focus conditions for memory recall, but there was a 
difference between simple and complex conditions. Both 
Dijksterhuis et al. (2006) and Mikels et al. (2011) concluded 
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that focusing on your feelings leads to better complex 
decisions compared to more deliberate thinking.  

Table 1. Model parameters 
 

:rt  -2.4 
:vw 1.0 
:aw  2.0 
:av  0.2 
:vtw  0.5 

Encoding across conditions 
Encoding mechanisms used are the same, but: 
• In the detail-focus, the strategy used makes you 

consider all features and ratings associated to those 
features. 

• In the feeling-focus condition, the strategy used gives 
more value to the ratings (i.e., good/bad) than their 
features.. 

 
Table 2. Model strategy in the detail-focus condition 

 
Detail-focus condition (Table 2). Stimuli consisting of 
three elements (car – feature - rating) are presented one at a 
time to the model The model looks at each element 
separately and encodes them as a memory chunk of the 
following association: car – feature – rating. Car is also a 
memory chunk (Presentation phase in “Detail-focus” in 
Figure 1).  

When all stimuli have been presented to the model, it 
proceeds to the evaluation through a tallying heuristic 
(Gigerenzer, 2016): by interrogating its memory on features 
for each car, counting all chunks for which it can retrieve an 
association with a “good” rating for a feature. The car with 
the highest overall number of “good” rating-feature-car 
associations that could be retrieved is the one that is named 

by the model as the best car choice (Evaluation phase in 
“Detail-focus” in Figure 1). The significantly higher number 
of reasoning steps in the detail-focus condition (Table 2) 
results from the thorough analytical process that participants 
were assumed to engage in during this condition. 

 
Table 3. Strategy in the feeling-focus condition 

 
Feeling-focus condition (Table 3). The same stimuli are 
presented to the model randomly; but the model is going to 
follow a different strategy. It only looks at the car and 
rating, as shown in Table 3 (Presentation phase in “Feeling-
focus” in Figure 1). The model retrieves the car chunk 
associated with the presented car, and according to the 
rating “good” or “bad”, sends a reward signal. This reward 
affects the valuation of this specific car without it being 
necessary to encode all the features of the car. When the 
reward signal is sent, all the valuations of chunks that were 
retrieved in this time window are updated. Recall the 
explanation in the previous section (detail-focus condition) 
that the memory representation includes the car chunks. 
Thus, if the car to which this rating was attached is in the 
time window, it gets a valuation update.  

When all stimuli have been presented to the model, it 
proceeds to the evaluation by retrieving one of the 
previously presented cars (Evaluation phase in “Feeling- 
focus” in Figure 1). The retrieved car is the one with the 
highest activation, which likely has the highest rating 
because valuation was updated positively during the first 
stage of car presentations. 

Results and Discussion 
Results in Figure 2 are shown for 50 runs of the model 
(stable performance, based on cumulative standard 
deviation, was reached after 43 runs). 
There was a significant difference in accuracy between the 
two feeling focus conditions (i.e., simple and complex), 
t(97.89) = 2.67, p < 0.01. A significant difference in 
accuracy was also found between the detail-focus complex 
condition and feeling-focus complex condition, t(83.1) = 
6.001, p < .001. These same differences were observed in 
the original experiments. 

Step Strategy in the detail-focus condition 
Presentation phase 

1 “Car-feature-value” triplet is displayed 
2 See car 
3 Encode  car 
4 See feature 
5 Encode feature 
6 See value 
7 Encode value 
8 Clear imaginal (enter chunk in declarative 

memory)  
9 Go back to step 1 until all cars have been 

displayed 
Evaluation phase 

10 Pick a car that has not been evaluated yet 
11 Retrieve triplet (car-feature-value) with a “good” 

judgment  
12 Count the positive values for this car 
13 Go back to step 10 until there are no cars left 
14 Decide the car with the highest count 

Step Strategy in the feeling-focus condition 
Presentation phase 

1  “Car-feature-value” triplet is displayed 
2  See car 
3  Retrieve chunk car 
4  See value 
5  Trigger reward depending on value 
6  Update valuations 
7  Go back to step 1 until all cars have been displayed 

Evaluation phase 
8  Retrieve car with highest activation 
9  Decide (highest valuation car is the one with the 

most “good” features) 
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The model also captured participant’s better performance in 
the detail-focus simple condition compared to the feeling-
focus simple condition (difference is not significant like in 
the original results). However, while still within the 
standard error range, the detail-focus complex condition 
appears lower than in the original experiments. This could 
be explained by something that is not captured in the 
strategy of our model. When uncertain, human participants 
could have guessed more accurately (compared to random 
guesses by the model) based on prior knowledge. For 
instance, a participant may have eliminated options based on 
memory that certain options had fewer positive attributes.  

 
Figure 2. Accuracy in feeling-focus vs. detail-focus in 

complex and simple conditions for the original experiments 
and our model 

Model dynamics in detail-focus condition 
In the simple condition, the model has a performance close 
to the feeling-focus condition. However, in the complex 
condition more features are memorized for each car. In this 
condition, more words are forgotten as the experiment is 
longer and there are more words to remember. Activation of 
those unused chunks decay over time. Therefore, when 
going through all the cars and remembering the features, 
there are more chances of memory retrieval failures.  

The forgetting time is also amplified by the length of the 
recall strategy, contributing to future retrieval failures. The 
model may be forgetting features of the next car while 
listing the elements of the current car. This explains the 
poorer performance of the model in the complex condition. 
It is important to note that the model does not account for 
possible confusions in the car and feature-rating 
associations. 

Model dynamics in feeling-focus condition 
The model performs better in the complex condition than in 
the simple condition. In the complex condition, while the 
proportion of good features is the same, the overall number 
of features per cars is higher. This gives the model more 
opportunity for rewards. In the simple condition, there are 

fewer features and less reward opportunities. The activation 
equation has a noise parameter. Due to this noise the chunk 
with the highest valuation might not be the one with the 
highest activation (thus, not the one retrieved). Therefore, 
when retrieval from memory is initiated, decay and noise 
might make the activation number obtained through the 
activation equation close but higher for another car than the 
one who received the highest rating. This happens more 
often in the simple condition where you will have chunks of 
very close valuations. Figure 3 illustrates the differences in 
valuation between the chunk representations of the car 
options. The gap in valuation between options is more 
visible in the complex condition. 

In contrast to the detail-focus condition, retrieving the 
highest rated car in the Feeling-condition is a very simple 
and fast process. It only requires one retrieval of the car 
with the highest activation (no features retrieval involved), 
therefore there is less decay of activation for the chunks and 
therefore less ground for retrieval mistakes. 

 
 

Figure 3. Evolution of the chunk valuation of each cars in 
feeling-focus condition across rounds, simple vs complex 

conditions   

General Discussion and Conclusion 
In this paper we presented a mechanism for core affect in 

ACT-R. This mechanism specifies how affect modulates 
memory (e.g., reducing information or emphasizing the 
positive or negative value) compared to attempting to 
remember the entire set of attributes in the detail-focus 
condition (i.e., high memory load). It also shows that 
implicit decisions might lead to better decisions than 
explicit decisions in certain contexts. 

We model affect in a cognitive architecture as a 
phenomenon, which emerges from the dimensions of the 
core affect theory (i.e., valence and arousal) and is learned 
through the interaction with the environment. We interpret 
valence as valuation. Valuation is a sub-symbolic quantity 
for chunks learned through interactions with the world. 
Arousal is the absolute value of valuation. Core affect is the 
weighted accumulation of valuation and arousal values for 
all retrievable chunks, and weights are probabilities of 
retrieval reflecting chunk activations. Parameters given to 
the ACT-R architecture, existing reward mechanism of the 
architecture, and usage information about the chunks are 
used to compute valuation and arousal values.  The core 
affect values are implicitly maintained by the architecture. 
Valuation and arousal are added as terms in the general 
activation equation and influence the probability of a chunk 
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to be retrieved. We rely on the existing general activation 
equation of ACT-R to integrate our model in a unified 
theory of cognition. 

While the core affect theory has been present in theories 
of emotion, and the role of emotions has been considered in 
the domain of decision making, very little has been done to 
connect the work on core affect theory to decision making.  

We hypothesized and demonstrated that those 
mechanisms that allow for an affect phenomenon to emerge, 
were sufficient to account for the behavior encountered in 
Mikels et al. (2011)’s experiment. Engaging in a detailed 
analytical thought process might be as beneficial as deciding 
based on your feelings in a simple environment (i.e., low 
cognitive load). However, there is a tradeoff. As the amount 
of elements on which to base your decision increases, 
exerting a high load on your declarative memory, decisions 
based on affect seem to be more accurate than decisions 
based on a thorough analytical process in those complex 
environments. We demonstrated that an affective 
modulation of memory by core affect, which simplifies the 
amount and complexity of information, could explain this 
phenomenon. Therefore, core affect may help individuals 
make better decisions in complex tasks, which exceed 
limited cognitive capacities by reducing the need to 
memorize each element included in the decision. Instead, 
the interaction with the elements a decision is supposed to 
be based on, can be implicitly processed in conjunction with 
affect, and the resulting decision can be based on those 
affects. Furthermore, we showed that an implicit mechanism 
(core affect) allows us to make an efficient decision.  
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