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Enabling Intent to Configure Scientific Networks for 
High Performance Demands 

Mariam Kiran*, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok, Inder Monga 
Energy Sciences Network (ESnet)  

Lawrence Berkeley National Labs, CA, USA 
*mkiran@es.net

Abstract— Globally distributed scientific experiments usually 
involve massive data volumes and distributed data analysis being 
done by many collaborators. With complex workloads and 
heterogeneous resources, each user may require certain 
characteristics for their network paths. In this paper, we present 
the iNDIRA tool, which interacts with SDN north-bound 
interfaces to enable intent-based networking. It provides reliable, 
simple, and technology-agnostic communication between users 
and networks. Focusing particularly on science applications, 
iNDIRA uses natural language processing to construct semantic 
RDF graphs to understand, interact, and create the required 
network services. The technical challenges addressed by iNDIRA 
are: (1) development of a high-level descriptive language to query 
for network-application requirements, (2) keyword identification 
and condition checking based on user profiles and topology 
details, (3) allow user negotiation based on the current network 
state, (4) provide network provisioning guidance, and finally, (5) 
automatically provision and monitor a layer-2 network path for 
use by the application. iNDIRA is implemented on the ESnet 
network, where it interacts with OpenNSA (aka the NSI client) 
and Globus data transfer tools, to build complex cross-domain 
network paths for heterogeneous science applications and 
perform secure data transfer. We describe our implementation of 
iNDIRA running on ESnet’s production network. We present 
results of iNDIRA’s query processing mechanism, evaluate 
iNDIRA’s intent language evaluation with other approaches, and 
describe future enhancements for iNDIRA. 

Keywords—Intent-based networking; Natural language 
processing; Ontology engineering, SDN north-bound interface. 

I. INTRODUCTION 
Scientific analysis and simulations such as climate 

modeling, or experimental facilities like the Large Hadron 
Collider (LHC) at CERN, have demonstrated the need for 
research communities to collaborate world-wide. These 
collaborations usually involve complex data-intensive activities 
such as secure data delivery to local sites, management of data-
transfer latencies, and a requirement that the network can 
consistantly and reliably meet performance expectations. To 
further these efforts, as dataset sizes continue to grow, it is 
imperative to have advanced network services and integrated 
software tools to help manage high bandwidth demands and 
traffic control. For instance, an application needing to send a 
large dataset by a specific time deadline, needs to know how to 
provision the network to achive this. In practice, users request 
network resources, technology capabilities and service 
offerings, which are then provisioned manually by network 
engineers, or using tools such as OSCARS [13] and 

OpenNSA/NSI [29]. To help accelerate this process through 
network automation, software defined networks (SDN) are 
being employed to centrally control network flows [3, 28]. The 
separation of data and control planes in SDN allows network 
virtualization to dynamically manage switches and flows. 
Open-source toolkits such as Ryu, ONOS and ODL [3], with 
OpenFlow controllers [4] can control network resources 
through south-bound interfaces to network devices. These 
south-bound interfaces (SBI) transfer instructions from north-
bound interfaces (NBI) and SDN controllers, using ‘how-to’ 
commands to provision the underlying network. This paper 
focuses on Intent-based networking, which allows users to 
achieve high-level network control using intent-based queries 
defined as ‘network service requests’. This enables better 
quality service and experience (QoS/QoE) for the requesting 
applications. High-level queries or service requests are defined 
in a descriptive language, such as “allow traffic between A and 
B”, which is translated into a prescriptive language as “from 
A:10.0.0.1 to B:10.0.0.2 set rule=allow” and rendered as 
OpenFlow rules to produce desired network connectivity [5]. 

High performance science applications such as LHC data 
analysis require high-volume bulk data transfers with dedicated 
or preferred topologies. Scientists often wish to specify 
network requirements, depending on the needs of their 
application. In order to optimize this exchange, Neuman et al 
[6] argued that there is a need to co-design and co-develop raw 
network capacity, system I/O architecture and network 
performance with distributed scientific instruments and 
computing infrastructure. The authors argued that SDN and 
Open vSwitch (OVS) are a potential solution, but require 
intensive system re-engineering. These would require new 
network setups and have a steep learning curve for non-
network engineers on how to use networks. Abstracting at a 
level higher, intent allows multiple users to automate their 
network workloads with a common language and remove 
dependency on underlying network architectures.  

The aim of this work is to develop a system (iNDIRA, or 
Intelligent Network Deployment Intent Renderer Application) 
to act as an interface between users/applications to the SDN 
NBI, understanding network QoS demands and automating the 
translation for scientific applications. iNDIRA uses natural 
language and ontology engineering to define queries and 
translates them to network commands, reconfiguring resources, 
preferences and policies. It then interfaces with network 
provisioning and transfer tools to allow the user’s intent to be 
rendered into specifications recognizable by these tools. The 
tools currently used are NSI, which allows multi-domain 



network provisioning, and Globus, to allow secure file transfer. 
Therefore, intent, through iNDIRA, presents a number of 
advantages such as portability, easy language definitions, and 
the ability to optimize network workflows.  

In industry, there are multiple efforts in developing intent-
based networking, discussed in the next section. However, 
these projects lack a common language specification and are 
difficult to use, requiring a number of configuration steps to 
prescribe and setup network services. The challenge goes 
further with lack of bandwidth availability and 
authentication/authorization checks before the intent is 
deployed. Our system can check for conflicts, match possible 
network services to intents, provision dynamic network 
resources across multiple network architectures, and 
communicate to users and applications, as needed. Our specific 
contributions are: 

§ We designed and implemented a system called iNDIRA to 
provision network resources based on user and application 
demands. The system currently interfaces with NSI and 
Globus tools to dynamically control networks for file 
transfer, and can be extended to multiple network 
providers. 

§ iNDIRA is able to converse with users in a natural manner, 
understanding their needs to discover contexts and give 
provisioning responses. iNDIRA is able to dynamically 
setup paths for heterogeneous science applications 
depending on the application requirements.  

§ iNDIRA automatically reserves, provisions and activates 
network states based on intent. We evaluate our system 
based on query processing time, topology size, conflict 
resolution and service satisfaction. We investigate these in 
two scenarios – user-iNDIRA interaction for setting up 
network provisions, and user-iNDIRA interaction for 
scheduling bulk data transfers using Globus tools [36] and 
API. We evaluate iNDIRA with current intent projects for 
usability, query processing time and improvements in 
network QoS satisfaction.  

The paper is organized as follows: Section 2 presents 
motivation and related work, presenting the need for intent and 
background to current efforts. This section discusses how 
science can benefit from tools such as iNDIRA by automating 
and optimizing network control. Section 3 presents the 
iNDIRA framework and its design using semantics and natural 
language. iNDIRA has a two-way communication process, 
with the ability to communicate in a human-like manner to 
human users, and using meaningful error messages to 
applications. These cases are discussed in Section 4 along with 
language and implementation details. Section 5 describes a 
demonstration of iNDIRA’s capabilities in setting up RDF 
graphs and performing conflict checking. Section 6 presents 
discussions and evaluation of the tool with current intent-based 
efforts. Finally, Section 7 presents conclusions and future work 

for increasing iNDIRA’s capabilities for science applications 
and networks. 

II. MOTIVATION 
Whether produced via simulations or consumed by other 

software, handling large data files is a cumbersome task. 
Networks are essential to connect data sources for analysis, and 
for collaboration between groups. However, collaborators 
located in different networking domains presents new 
challenges in multi-domain path setups, configuration files and 
policy checking. Figure 1 shows a high-level intent to setup a 
dedicated path between a scientist and collaborator involving 
multiple sites. Although a simple requirement, this case study 
presents multiple network configuration challenges in terms of 
unknown site addresses, unknown computing capabilities, 
security and maximum data speeds allowable. Further 
challenges include,  

§ Network congestion: Bursts of  network traffic can cause 
reduced performance. TCP/IP congestion is common 
across science demands, and requires active management 
of traffic.  

§ Mismatch in IO capacity: Data transfer nodes have varying 
IO capabilities. For example, Node A can be sending data 
to Node B at a fast rate, but the rate at which Node B can 
sink these datasets can be slow, leading to packet loss [7]. 

§ Time scheduling awareness: In science applications, some 
files need to be delivered by a certain deadline to enable 
further experiments or processing to start, e.g. remote data 
visualization. Eventually, this can lead to the workflows 
getting blocked. 

§ Heterogeneous applications with multiple network needs: 
Science collaboration activities have led to a plethora of 
applications that include real-time data rendering and 
transfers, on-demand communication tools, central file 
sharing repositories or processing data at high bandwidths 
for image and visual analysis. These have multiple 
network requirements such as guaranteed bandwidth, 
traffic isoloation and time schedulers.  

Currently, network service provisioning is done manually. This 
involves writing complex network reservation and provision 
steps, where the implementation is closely tied with underlying 
infrastructure. This leads to architecture dependency and 
sometimes unoptimized networks, accommodating complex 
network services and conditions. Users also have a steep 
learning curve to understand how to write these complex 
network commands and how multiple network tools interact to 
produce desired effects. A recent report [15] recognized a 
multitude of application categories such as bulk data transfer, 
remote analysis for visualization and dedicated collaboration 
tools (e.g. Skype) requiring dedicated high and sometimes low 
bandwidth paths.  



  

Fig. 1. Simple case of scientist requesting a high-bandwidth path between a DoE lab and University campus. 

To automate provisioning and network control, iNDIRA is able 
to handle most network complexity through its parser and 
engine, communicating in easy English statements with users. 
Particularly in scenarios of science dataflows, we envision two 
main possible users,  

§ End-users running science applications, who have little 
knowledge of network engineering and underlying 
architectures but desire particular network performance. 

§ The scientific applications sending and ingesting data. 
These have a start, end, source, destination and transfer 
requirements all specified as parameters needed for 
applications to execute. This is similar to Globus jobs for 
transfering bulk data transfers. 

iNDIRA’s intent capability follows a four-step approach, 
the network service (1) is requested, (2) responded to, (3) 
selected for most appropriate configuration and finally (4) 
confirmed back to the user. It allows heterogeneous devices, 
discovered at run-time, to be automatically configured to 
satisfy user requirements. It also works across multiple 
domains catering to cross-domain interaction, where interface 
or port addresses are not known, including provisioning with 
complex uniform resource names (urn) which are difficult to 
remember. Certain performance characteristics have to be 
monitored and aligned with user profiles for security checks. 
iNDIRA allows automatic query parsing to configure networks 
suited to user needs. 

III. RELATED WORK 
Descriptive languages can allow network providers with 

little programming experience to depart from traditional 
networking APIs [31]. Today, SDN research has led to a 
multitude of tools, multiple north and south bound interface 
controllers but lack implementation standards [17]. Most 
optimization algorithms are deployed using simulations and not 
implemented with OpenFlow protocols [18].  

Networks are difficult to manage because of their 
constantly changing states and low-level network configuration 
knowledge which is usually unknown [34]. The policies do not 
allow network operators to specify high-level intent and is 
difficult to design languages to react to continuous network 
state changes. Gurbani et al [35] presented an Application 
Layer Traffic Optimization protocol, that provided an abstract 
view of the network to enable applications to leverage a 
network without exposing the network provider’s internal 
details or policies. However, this work focused on content-
level networks. Similarly, Salsano et al. [36] discussed north-

bound APIs to optimize packet movement, but more user 
information was needed to make informed decisions to 
improve QoE [25]. Further, OpenStack [30] discussed how 
geographically distributed data centers, intent can help balance 
workload automatically, handle technical and even legislative 
procedures efficiently. However, they have not implemented a 
system to do so. 

Cohen et al. [25] presented the DOVE architecture 
(Distributed Overlay Virtual Ethernet network) for network 
virtualization abstraction. Intent, in this case, uses VXLAN and 
virtualization management tools to perform intent as policy 
enforcement through virtual interfaces. Endpoints are created 
based on policy profiles to capture network functionality and 
demonstrated through simulation frameworks. In further work, 
Procera [26] discussed a policy engine and language as 
functional reactive programming in Haskell for implementing 
reactive network policies, built upon OpenFlow technology. 
Fujitsu [27] uses Virtuora management tools to collaborate 
with centralized SDN controller to enable distributed network 
control. The system allows intent to perform topology 
discovery, path calculation and network policy prioritization 
before pushing these to OpenFlow protocol. This work has 
been planned to be extended with ONOS. All of these, present 
implementation designs but have not produced deployable 
solutions yet. 

Recent work by Boulder [23] describes intent as a 
‘principle of operation’ which use intent ‘expressions’ and 
‘mapping’ to separate implementation dependent parameters. 
Using information models to downstream network controller 
projects, Boulder proposes fragments to be part of an intent 
tree, with some initial work examples on usecases such as end-
to-end service function chaining. Another approach, ONOS, 
uses policy-based derivatives for groups through application-
policy rendering of the prescriptive module [32]. OpenStack, 
the cloud framework for networking across wide-area 
networks, has adopted group-based policy and focuses on 
application requirements rather than infrastructure 
requirements for satisfying application intents. 

NEMO [20] uses a transaction-based Northbound API, that 
provides a network language that characterizes network with 
paths and flows, abstracting necessary transitions to make 
modifications to policies from network perspectives. NEMO 
includes details for enabling and disabling virtual nodes in 
virtual networks. It uses an engine to process a network 
language to render modules like OpenFlow. The language 
defines intents as communication paths, rather than endpoints, 



which requires users to have some knowledge of the network 
before deploying intent. 

Table 1 shows how intent definitions vary dramatically 
across different projects. In Boulder, intent follows the original 
ONF definition of having intent specify a ‘need’ rather than 
‘how’. But embedding policies or more network specific 
information, as in NEMO, can quickly allow intent to specify 
‘how’ the network is to be configured, becoming more 
prescriptive than declarative.  

The projects also use different ontologies to represent 
intent. In ONF and Boulder, intent is defined as subject, 
predicate and objects [20]. Boulder defines objects to contain 
constraints and conditions on the network state. Alternatively, 
NEMO defines intent as collection of objects, operation and 
results, where operation contains the constraints and conditions 
and result denote expected or avoidable network states. Both 
projects provide use case examples with their grammars. Both 
grammars are still being developed and are highly focused on 
network use cases. Table 1 compares these projects with 
iNDIRA’s capabilities. 

TABLE I.  CURRENT INTENT-BASED NETWORKING EFFORTS  

Open Source 
Projects 

(Associations)  
Features 

Boulder 
(ONF) 

Controller agnostic, uses high-level 
language as expressions, maps to 
implementation-dependent parameters. 
Example “Bob connects to Alice with 10GB 
from 9 to 10pm”  

NIC 
(ODL) 

Define intent as set of commands with 
subjects, actions, and constraints.  
Uses Yang for abstraction.  
Defines intent to add, remove, and modify 
network. 

GBP 
(ODL/ 
OpenStack/ 
Cisco) 

Define intent as Policy-specific to certain 
controllers.  
Can configure ODL environment for each 
policy, involves several configuration steps. 

Congress  
(OpenStack/ 
VMWare) 

Implemented for Cloud use. 
Uses policy extension on applications. 

ONOS Intent 
Framework 
(ONOS) 

Interface with ONOS controller. Uses intent 
as policy derivatives.  
Uses intent commands as subjects and 
actions, translates them into installable 
actions on network. 

NEMO 
(ODL/ 
Huawei)  

Intent used as policy renderer, develop 
network modeling language to define intent 
deployment. 

iNDIRA High-level language to input intent similar to 
English commands 
Based on ontology engineering to identify 
services and arguments using RDF 
specifications. Can be extended further with 
other network semantic tools. 
Uses graph theory to identify conflicts, 
check rules and policies. 
Communicates network status back to users. 
Can be integrated with other tools to allow 
higher level of QoS translation. 

A. Definition of Intent 
Intent does not involve directly specifying routing or 

switching information, but rather a flexibility to allow easy 
portability to optimize networks for user needs. The statements 
can be either declarative, at a higher level stating the problem 
or need, or prescriptive, at lower level asking for solutions to 
solve the problem. In networking terms, a prescriptive example 
would be “Connect server A to B with a route across switch 
22”. Such cases do not serve as good intents, as users may 
receive a reply saying “switch 22 is not available”. Rather a 
declarative approach, allows users to specify the problem 
context, any rules or constraints and the result wanted. These 
details allows the network to think for itself, the best possible 
solution for servicing the intent. 

 
Fig. 2. Intent for users and applications filters through SDN layers. 

Figure 2 shows how intent filters down to network 
elements, through various modules, languages and 
components. Users can specify intent, by either using templates 
or high-level statement queries. The queries are input through a 
CLI, which is then translated using an ontology into intent 
descriptions. The ontology allows these descriptions to be 
easily mapped into network needs or prescriptive definitions, 
such as in python or APIs like ODL GBP, Openstack Congress 
which are prescriptive in nature. These can then easily interact 
with multiple controllers, to provide the rendering of the intent 
onto networks. For instance, ODL NIC allows OpenFlow 
rendering in the control plane, where as some would render as 
part of the data plane, depending on application use. Once the 
intent is rendered successfully, it is transferred onto the data 
plane to automatically configure network elements. The three 
main modules used are, 

§ The Descriptive Module acts as an external API module 
where intent is input. The descriptive module can render 
without need for long configuration procedures, installing 
and maintaining SDN deployments. Example markup 
languages such as XML, UML or OWL extensions can 
help allow data abstraction and object mapping. Here 
ontology engineering can help define what information is 
defined. Most iNDIRA’s research and innovation lies here. 

§ The Prescriptive Module uses endpoint and policy 
resolution, intent integration, conflict resolution and object 
mapping to discuss how network processes are executed 
(e.g. NIC, Congress). 



§ The Rendering Module is used as communication of Intent-
NBI to South-bound nodes via the Controller. As SDN 
technology matures, more south-bound interfaces will be 
used to connect network edges. This would require 
rendering modules to include other prescriptive modules to 
accommodate these SBIs. For example, NIC is a 
prescriptive module that uses GBP renderer. 

iNDIRA focuses on defining intent as a descriptive 
language. Using ontology engineering, it facilitates machine 
reasoning to understand user intents, through a common 
language. Web languages such as Web Ontology Language 
(OWL) and Resource Description Framework (RDF), can be 
employed for building constructs for describing performance in 
the past. However there is a lack of one ontology allowing 
researchers to write their own ontologies as needed [19].  

Multiple network performance efforts have focused on 
optimizing QoS by using semantics to define service quality 
and conditions. Chui et al. [9, 10] presented a framework for 
integrating QoS support in service workflow composition 
system. The authors discussed a relationship between 
workflow execution time, cost and error propagation which 
could dynamically be adapted for user QoS preferences. These 
approaches have been successful in defining web services, 
SLA validation and QoS monitoring tools. For example, 
Network Description Language (NDL) and NOVI information 
models have been successful in combining internet services 
across multiple groups [12]. However, unlike service 
computing applications, networks have not seen many 
semantic and ontology-based approaches. Similar to solving 
multi-device communication, these approaches can be very 
useful to enable multiple providers, switches and routers to 
communicate toegther and remove inter domain dependency. 

IV. INDIRA ARCHITECTURE 
The iNDIRA framework interfaces between the SDN 

north-bound interface and users as shown in Figure 3. The 
intent language gets converted to RDF graphs, through parsing 
and rendering, to eventual network commands. The renderer 
takes inputs from multiple data files that contain user profiles 
and topology details.  

 
Fig. 3. iNDIRA architecture. 

A. iNDIRA Application 
Networks using iNDIRA can provide the following 

purposes,  

§ Move stored data files to allowable sites for a project. 
§ Stream data in real-time to remote locations. 
§ Fulfill user and application network requirements such 

as transfer by date and time, check for policies and 
bandwidth restrictions. 

§ Maintain a dashboard, to display user intent and 
current network states. Use this as a means of 
communication.  

§ Possibly use intent and network information to provide 
users with optimized network configuration choices.  

The production networks must be able to support these 
functionalities to allow iNDIRA to fulfill its objectives. In 
order to do this, it needs to know the site topology details, 
user profiles, bandwidth restrictions and other security 
requirements. For example, a HD video-on-demand 
application can decide when to start and stop guaranteed 
bandwidth and setup low jitter paths between two or more 
sites.  

Over ESnet, both OSCARS and NSI tools were explored 
for setting up reservation requests and topology on demand. 
iNDIRA is able to communicate with both tools using 
topology information and project profiles. However, to 
show a concrete example of its potential with multiple 
domain demonstrations, the example discussed in Section 4 
focuses on network provisioning across multiple domains 
and transfer of files using the dedicated path (Figure 4). 
iNDIRA is able to interface with Globus via the Globus 
API [36] to schedule file transfers and add QoS details, 
without changing NSI and Globus code. 

The iNDIRA user interface allows users to interact with 
iNDIRA modules. Requests are parsed with associated files 
to commands immediately deployable by the NSI client. 

  
Fig. 4. iNDIRA’s componets and interaction with other tools. 

iNDIRA needs site topology information to: 

§ Produce an uptodate assessment on site, interfaces and 
available path information.  

§ Choose appropriate paths based on demands, for 
setting up the address details. 



Specifying endpoints, such as site “LBL” (Lawrence 
Berkeley Lab) can be rendered into two possible interfaces 
with details on capacity, bandwidth and range availabilities. 
iNDIRA can use this information (returned as JSON) to choose 
one available interface. 

iNDIRA also takes inputs on project details, users and 
security policies to check, before it sets up any network paths. 
This prevents users who do not have access to sites to create 
paths, or access data from there. For example, Project2 does 
not have access to certain sites. iNDIRA returns output error 
messages to users. 

Profiles.json:  
    { 
      "name":"admin", 
      "description":"Administrators", 
      "bandwidth":"unlimited", 
      "topology":"*", 
      "timezone":"UTC" 
    },{ 
      "name":"project2", 
      "description":"Collaborative project 2", 
      "bandwidth":"5096", 
      "topology":["anl","lbl","oak","cern"], 
      "timezone":"US/Pacific" 
    }, 
 
iNDIRA INTENT: For Project 2 connect BNL, LBL. 
 
iNDIRA GUI OUTPUT: 
> Sorry you dont have access to the following sites:  
['BNL'] 

 
iNDIRA can capture a number of conditions, time 

constraints and resource compatibility to fulfill user intent. We 
define an ontology schema to help iNDIRA capture these 
demands and replace them with appropriate network service 
commands.  

B. iNDIRA Language 
Ontology can help standardize communication over 

multiple tools and services. Researchers have used it to 
document QoS needs, workflows and cost functions for web 
services [9, 10]. Ontology represents relationships between 
services and its arguments. iNDIRA uses RDF graphs to 
record intended services and arguments. This is similar to 
works in [8] using RDF to describe network actions, [11] 
creating an ontology to organize information and [12] defining 
a NOVI information model to express resources, services and 
policies for interoperability. The RDF graphs can document 
collection of network actions and conditions, arranging it as a 
triplet – Subject (Service or Condition), relationship (has 
Arguments) and objects (multiple parameters). For example, 
consider intent, “Project1 connect from LBL to ANL”, the 
RDF triple represents two relationships:  
§ Project1 hasService Connect 
§ Connect hasArguments LBL, ANL  

We have identified three services iNDIRA users may 
request – Connect, Disconnect and Tap. These can be 
extended with conditions such as following, 
§ No bandwidth limitations 
§ Isolate the traffic 
§ lowest priority traffic (if congested, drop this traffic first) 
§ Schedule start time and duration for service 
§ Schedule start and end time for service 
§ Schedule deadline for service to finish 
§ Define a duration for the service to run. 

 
Fig. 5. UML diagram for iNDIRA’s intent language 

To allow iNDIRA to understand descriptive high-level 
language, it was equipped with a parser checker and an 
extendable ontology schema. iNDIRA is able to recognize 
full sentence queries and converse with users on what they 
expect from networks. For applications, it is able to take 
specific details as JSON header. It performs the following 
functions, 
§ Recognize and replace keywords such as ‘move’ to 

‘transfer’ to identify network specific commands 
easily. A dictionary of similar words is able to parse 
through sentences to replace words into recognizable 
services.  

§ Remove words such as ‘I want to’ to only service 
commands, such as,  
(a)I want to (b) move datasource1 from LBL to ANL 

 

Here, only (b) is recognized as a ‘transfer’ service for 
datasource1 and ‘from’ and ‘to’ are recognized as 
endpoints.  

§ Ask users for conditions if not defined.  
§ For applications, define json headers to provide 

network connection specifications to automate setting 
up. 

Figure 6 shows intent being parsed, “For project 1, connect 
sites ANL to LBL, with condition nobwlimit, nolimit and start 
time now”. iNDIRA first looks for keywords and creates 
services and conditions. Each of these are constructed into an 
RDF graph with arguments. It goes through a series of RDF 
conversions for iNDIRA’s rendering.  



 

  
Fig. 6. iNDIRA finds relevant services and conditions, with their arguments. It then replaces all values with network commands. 

§ For sites ANL and LBL, these are replaced with their 
urn addresses.  

§ For ‘nobwlimit’ and ‘nolimit’ it recognizes that these 
are the same, so one is removed. Although the user 
asks for no bandwdith limit, the maximum allowed is 
5 Mbps, which is then recorded. 

§ For time ‘now’, it returns current system time, the 
intent is recorded. 

§ All values are pushed on NSI client to call relevant 
network provisioning. 

The RDF graphs can be extended for more complex 
relationships such as ‘hasService’, ‘hasTime’ or 
‘hasBandwidth’. These allow SPARQL queries to extract 
relevant information to reduce processing time.  

C. NSI Deployment 
Multi-domain deployments carry multiple provisioning 

issues, unique to every site involved. To tackle dynamic circuit 
services, the network service interface, protocols and network 
service agent have been developed using a standardized 
framework for abstracting inter-network topologies and 
provisions [13, 14]. Each connection is managed by an NSI 
module that communicates with one main provider. This 
provider then communicates across multiple providers and 
creates paths across multiple domains.  

  
Fig. 7. NSI module communicates with a central provider server, which 

manages paths between multiple routers/switches/servers, distributed across 
multiple domains. 

iNDIRA currently interfaces with NSI client for dynamic 
circuit service interoperability to support connectivity 
management. It can take inputs for bandwidth, VLAN ids, 
start time, end time and more; to provide multi-provider 
network solutions. It works with a two-way reservation 
system, by first asking if the resources are available and then 
reserving them. All of this information is communicated back 
to iNDIRA, where it is then translated into language to 
communicate with users and applications.  

D. Globus File Transfer 
Globus allows users to transfer bulk data securely and reliably 
across the science networks. Users can specify files to be 
moved between two Globus end-points, which have been 
previously verified as allowing access. However, Globus does 
not allow users to specify any provisioning details, schedule 
jobs or specify time restrictions when transferring files. 
iNDIRA is able to gather this information from users in 
advance and then communicate it with Globus. Not changing 
any of the underlying Globus code, iNDIRA is able to 
schedule future Globus jobs and specify QoS parameters such 
as time limits, bandwidth, and traffic isolation.  

V. INDIRA DEMONSTRATION 
Using a natural conversation style [16] to intelligently 

reason with users and store responses into memory, iNDIRA 
can provide suggestions and ask for any missing input data. 
iNDIRA then merges this ‘conversation’ ability with ontology 
engineering to help identify and understand user needs.  

The following is a negotiation example. 

INDIRA> Hello and welcome! Tell me your project name? 
Scientist> Bob 
INDIRA> Is ‘Bob’ your project username? Y/N 
Scientist> N 
INDIRA> What is your project username 



Scientist> Project_test 
INDIRA> Tell me what want the network to do? Hint “I want 
to [connect] [disconnect] services 
Scientist> I want to connect from LBL to ANL 
INDIRA> Do you have any time constraints with the transfer 
from LBL to ANL? 
Scientist> No 
INDIRA> Ok. Give me the link to the file to be moved. Hint: 
use your globusid>foldername to destination. 
Scientist> project_test@LBL/datasource1 to 
project2@ANL/dataset 
INDIRA> Do you have any bandwidth requirements? 
Scientist> Yes Maximum  
INDIRA> Sorry, you have only 5Mb/s allowable to use. Do 
you want to use all of this? 
Scientist>No 
INDIRA> Thank you. Please contact the network 
administrator to allow you more bandwidth, as you don’t have 
permission to go above 5Mbps. 

 

Applications can also use iNDIRA’s intent engine directly 
to handle network requests, by calling the engine APIs. By 
stating conditions, various isolated streams can be set up to 
prevent packet loss and schedule workflow tasks. Figure 8 
shows the application defining data transfers, as future path 
provision and defining bandwidth restrictions for bulk 
transfers. These will be understood by iNDIRA and configured 
between the two data centers.  

 
Fig. 8. Dynamically setting up paths with multiple characteristics taken as 

input parameters. 

VI. DISCUSSIONS AND EVALUATION 
We developed the first version of the iNDIRA tool, which 

has its own language, parser and renderer to convert 
descriptive language into network commands. iNDIRA is able 
to perform complex rule checking, conflict resolution, provide 
suggestions, and has an extendable ontology schema to provide 
more network services in the future.  

Initial experimental results of parsing intent queries are 
shown in Figure 9. Initially, intent processing time seems to 
stabilize as all possible conditions for the same topology are 
exhausted. However, as the topology becomes more complex, 
the intent processing time increases, due to more checks and 
topology data being processed. Although the processing time is 
still quite low (less than two seconds on a laptop VM), this 
shows that processing time will increase with bigger topologies 
and multi-domain setups. In future versions iNDIRA will be 
modified to take advantage of mutiple cores to help improve its 
scalability. 

Currently iNDIRA provides the capability to add QoS on 
exisiting job schedules with Globus or NSI provisioning. Given 
that, this doesnot change any of the underlying tools, a delay of 
few seconds seems to be an overhead which can be beneficial 
to setting up networks paths where defined performance 
characteristics is difficult. 

iNDIRA provides users with a higher level of control of the 
network, but has added software complexity. Extra time is 
needed for software to render requirements and translate them 
into network APIs. Additionally, efficient management of the 
semantic ontologies is needed to compensate for computational 
time to solve conflicts and condition checking. Similar 
processing can be made more efficient through use of OWL 
and other web ontology languages. Building such libraries, 
may result in more processing time and need additional checks.  

 
Fig. 9. Query processing time versus query file size on a single core laptop. 

Working with multiple domains also provides new 
challenges in checking administration policies, authentication 
and topology information for underlying network. Currently 
we have all of this data for ESnet, but this may not be 
accessible in multi-domain situations. In order to fully optimize 
the network path, iNDIRA needs information on interfaces, 
their path capacities and bandwidth possibilities. As such 
iNDIRA, currently works very efficiently for science networks 
and research purposes where this information is available, but 
will need at least some configuration information between 
cross-domain network architectures. In future, this could be 
done by allowing multiple iNDIRA toolkits to communicate 
with each other and use local topology data available to make 
decisions for intent paths.  

Compared to current intent projects discussed in Table 1, 
iNDIRA is able to show a complete toolkit, with language, 
checks and translation. By providing a capability to ‘talk’ to 
users and read application intents, iNDIRA is able remove 
network knowledge dependency for users. Unlike NIC and 
ONOS, it does not need multiple complex network 
configuration commands, it does not need users to remember 
complex addresses and can easily summarize multiple 
conditions into one intent. Through an easy to use interface, 
users can monitor their intent states, see how the network is 
responding and have more information on why their network 
requests ‘failed’. These capabilities do not exist with any of the 
current intent projects [20-23]. 

iNDIRA’s descriptive language specification is closely 
aligned with Boulder’s. Project Boulder, has also explored 



ontology developments for constructing intent for network use 
cases. However, Boulder, has focused on complex scenarios 
and not on specific applications and user intents, as iNDIRA 
does with science applications. In such a way, iNDIRA has 
conceptualized and also implemented, how science intents can 
be communicated to network, reducing the complexity for 
network engineers and scientists. 

VII. CONCLUSIONS 
An Intent-North Bound Interface (NBI) can allow 

automated, dynamic setup of paths between network providers. 
iNDIRA is able to recognize a scientist’s needs and use an 
ontology-based approach to easily communicate with users, to 
optimally configure the network. iNDIRA provides a 
mechanism to improve scientific workflows, removing the 
manual dependency on how to setup a network circuit. 

iNDIRA has great potential for future improvements. The 
RDF graphs allow intent to be saved dynamically and link 
multiple intents together. Even query processing intelligence 
can be added to optimize network flows after every new intent 
arrives. More services and complex conditions such as using 
AND or OR can help users create their own network scenarios 
to link multiple possibilities together.  

iNDIRA demonstrates multiple portability advantages to 
the scientific community. The natural language parsing allows 
users to request a path using simple English commands, and 
questions the user for missing information. This allows 
network paths to be created easily with specific topologies and 
conditions.  

We have demonstrated a working tool to orchestrate 
network intent into physical network provisioning commands 
and performing file transfers. This work provides for potential 
future enhancements by incorporating intelligence algorithms 
to predict user/application needs to configure networks for 
optimum use, and will be improved in future to work with 
commercial network providers as well. 
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