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STABILITYOF INTENSE TRANSPORTED BEAMS* 
L. J. Laslett and Lloyd Smith** 

Summary ; 
At the previous National Accelerator Conference, 

the transport of intense ion beams, with particular 
reference to Heavy Ion Fusion, was analyzed by finding 
matched solutions of the coupledjenvelope equations.') 
This work established relations between lattice struc
ture, beam dimensions and space-charge tune depression 
as a function of intensity. In this paper we report on 
an investigation of the stability- of the K-V distribu
tion in transport by a periodic quadrupole system, a 
generalization of Gluckstern's analysis for a contin
uous solenoid.2) The results are presented and com
pared with simulation computations for a particular 
case; the results provide a prediction of maximum 
transportable current without degradation of emittance 
due to instability. 

Method3' ;•; 
The K-V distribution is unique in that it permits 

specification of a stationary state in the presence of 
variable linear external forces plus space.charge 
forces. Since the motion of individual ions is govern
ed by linear forces, a perturbed;solution of Vlasbv's 
equation can be usefully written:;as an integral of the 
perturbing forces along the unperturbed trajectories. 
The forces, in turn, are determined by Poisson's equa
tion in the two transverse dimensions; integration of 
the perturbed distribution function over the transverse 
momentum variables then leads to an integro-differen-
tial equation for the perturbed potential of the form: 

1 32V , 1 3ZV 
T ~~1 2 2 
a" 3xc b 3y 

-=>• v x . 

2ir 
ticab 3*„ 

/ dp 26'[p 2-(l-x 2-y 2)] J: d6 V(x',y', s 1) (1) 

where x' = x(s') = x(s) cos [> (s 1) - i|)„{s)] 

+ p(s) cose s i n k s ' ) -4>x(s)] 

r Ey(s') = y(s) cos [*y(s')-.*y(s)-]-

+ p(s) sine sin O y(s') - ij>y(s)] 

W s ) = ' ds 
x,y 
2 4NQ 
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AS Y per unit length of beam 
ire = emittance (assumed equal in both planes) 
a,b - half width of the beam in x and y, 

respectively. 
B and a, bare periodic functions of s, determined as x,y 
in reference (1). 
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In spite of the formidable appearance of eq'n (1), 
a brief inspection shows that the solutions for 
V(x,y,s).are mixed finite polynomials in x and y with 
coefficients that are functions of s. Eq'n (1) then 
reduces to a set of linear differential equations in
volving the coefficients. Finally, a numerical inte
gration of these equations through one period using 
the appropriate a(s) and b(s) leads to a matrix, the 
eigen-values of which determine whether the motion is 
'stable or unstable in the presence of that form of 
perturbation. 

Results 
„th We use a terminology in which an n — order per

turbation is one in which n is the highest power ap
pearing in the perturbed potential; it is further 
called even or odd according to whether even or odd 
powers of y occur. Thus, for example, V = Ax4 + 
B X2y2 + c y4 is "fourth order even" and V = Ax^y + By3 is "third order odd". In practice, the number of 
equations for the coefficients increases so rapidly 
with order that we have not gone beyond sixth order. 
A finer grained structure to the perturbation is in 
fact not very interesting in view of the doubtful re
lation of the K-V distribution to a real beam. 

The general character of the results is that in
stability occurs for all modes in finite ranges of 
intensity such that the frequencies of the modes pass 
through a rational relation to the Fourier components 
of the B-functions. In addition, for the even order 
modes a threshold is reached above which the motion is 
unstable for all higher intensities. For"reasons not 
fully understood, these thresholds occur at precisely 
the same tune depression as for the continuous solenoid 
a:id the growth rates.as.functions of further tune de
pressions, are precisely the same. Fig's 1 and 2 show 
the unstable regions for fourth and sixth order even 
perturbations for a F0D0 lattice with various zero-
intensity phase advances per period. 

j 2 2 
The second order even perturbation (V = Ax + By ) 

corresponds to integrating the envejope equations with 
a slight initial mis-match. This mode is unstable at 
an intensity which depresses the phase advance per cell 
to 90° if the zero intensity phase advance per cell is 
greater than 90°. On the basis of this result we feel 
that a transport channel for high intensity beams 
should be designed for less than 90° at zero intensity. 

Comparison with Simulation Computations 
In parallel with the analytic work, extensive 

simulation computations have been carried out by 
Haber.4) We find qualitative agreement for the onset 
of the extended region of instabiltiy but, s.ince many 
modes are unstable in this region, a quantitative com
parison is not possible. However, in a different para
meter range, Haber found an instability which we were 
able to identify as an isolated third order structure 
resonance. From the perturbed distribution function 
for the mode, expressions for the growth of various 
moments of the distribution and the distortion of the 
phase space boundaries were derived and compared, per
iod by period, with the simulation results. Surpris
ingly good agreement was found for the growth rate, the 
relative magnitudes of the moments and the.boundary dis
tortions, the only empirical parameters being the effec
tive initial amplitudes of the odd and even modes. 
Figure 3 illustrates the development of this instability 
as the intensity is increased, the larger of the two 
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180-deg. modes, being identifiable with the instability 
observed by Haber (with a a 46 deg.) Figure 4 shows 
a typical comparison of moments and'Figure 5 the dis
tortion of the emittance ellipse. This comparison 
provides a check on both the theory arid the simulation 
work, and lends credence to the simulation of dis
tributions which are not accessible to theory. 

Quadrupole Transport System 
p = 2 

Instabilities of 4'" order even 
equation 

Fig. 1. Regions of fourth-order even instability 
(heavy lines) for a symmetric FODO :quadrupole lattice 
with a magnet occupancy factor n =1/2. 

Conclusions 
Because of the singular nature of the K-V dis

tribution, it is somewhat more susceptible to instabil
ity than a more realistic distribution. Therefore, 
avoidance of these instabilities should provide a con
servative criterion for design of a transport channel. 
In this spirit, the zero-intensity phase advance should 
be less than 60° in order to avoid„the envelope and 
third order instabilities and then one should limit-the 
current to a tune depression of a factor of 2.5 
(e.g., 60° to 24°), at which intensity the extended un
stable range begins to appear. In the notation of 
eq'n (3)"of reference (1), the corresponding figure of 
merit, Q'/u„ /̂ , is then only a function of the frac
tion of the channel occupied by quadrupoles, as shown 
in Table I. 
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Fig. 3. Instability regions for the third-order 
mode. The curves represent the growth per period cal
culated for r, = 1/10, but are very insensitive to n 
when plotted vs. a. 
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Fig. 2. 
for r> = 1/2. 
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Regions of sixth-order even instability 
Fig. 4. Illustration of exponential growth of 

I < y P 2 > I found in simulation computations and 
attributed to the third-order mode instability. 
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Fig. 5. Boundary of computed distribution in a 
y, p projection. 
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Table I. 
Figures of Merit for o =60 Oeg.& o= 24 Deg. 

n* Q' = Q/U^K) [FH] = Q ' / u * / 3 

1 1.6581: 0,764 

2/3 1.5392 0.688 

1/2 1.3959 0.601 

1/3 1.1851 0.481 

1/4 1.0445 0.405 

V5 0.9436 0.354 

V6 0.8669. 0.315 

1/8 0.7567 • 0.263 

1/10 0.6799 0.228 

*n denotes the magnet occupancy factor. 
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