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Abstract

Significance: Growing levels of obesity and metabolic syndrome have driven demand for more
advanced forms of body composition assessment. While various techniques exist to measure
body composition, devices are typically expensive and not portable, involve radiation [in the
case of dual-energy x-ray absorptiometry (DXA)], and are limited to analysis of adiposity while
metabolic information from blood supply and oxygenation are not considered.

Aim: We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used to predict
site-specific adiposity and percent fat (whole body) while simultaneously providing information
about local tissue hemoglobin levels and oxygenation.

Approach: DOSI measures of tissue composition in gastrocnemius, quadriceps, abdomen, and
biceps, DXAwhole-body composition, and ultrasound-derived skin and adipose tissue thickness
(SATT) in the quadriceps were obtained from 99 individuals aged 7 to 34 years old.

Results: Various DOSI-derived parameters were correlated with SATT and an optical method is
proposed for estimating SATT using a newly defined parameter, the optical fat fraction (OFF),
which considers all parameters that correlate with SATT. Broadband absorption and scattering
spectra from study participants with the thinnest (SATT ≈ 0.25� 0.02 cm) and thickest SATT
(SATT ≈ 1.55� 0.14 cm), representing best estimates for pure in vivo lean and fatty tissue,
respectively, are reported. Finally, a trained prediction model is developed which allows DOSI
assessment of OFF to predict DXA body-fat percentage, demonstrating that DOSI can be used to
quantify body composition.

Conclusions: This study shows that DOSI can be used to assess the adiposity of specific tissues
or the entire human body, and the OFF parameter is defined for corroboration and further evalu-
ation in future research.
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1 Introduction

For several decades, the prevalence of obesity throughout the world has risen with many adverse
health effects including diabetes, cardiovascular disease, and metabolic syndromes.1–4 In addi-
tion, significant healthcare costs are required to manage obesity-related chronic metabolic
diseases.5,6 A statement released by the American Heart Association in 2011 reported that the
prevalence of obesity has reached “epidemic/pandemic proportions” and the clinical importance
of assessments of adiposity was emphasized.7 There is a growing demand for the development of
enhanced screening and monitoring techniques for rapid assessment of body composition and
metabolism and such technologies will play an important role in developing and optimizing
much-needed prevention and treatment strategies.

Body mass index (BMI) has been used for over 100 years to infer body composition, but it is
an inaccurate estimate of an individual’s adiposity and primarily works for epidemiologic
purposes.7,8 Direct adiposity assessment typically involves cadaver analysis, but indirect
methods have been developed that involve various assumptions about biological tissue, such as
hydrodensitometry, magnetic resonance imaging, and dual-energy x-ray absorptiometry (DXA).
Direct and indirect methods used to determine adiposity are relatively expensive, typically not
portable, and inaccessible by large portions of the population. In addition, there is a need for
methods that provide metabolic information from specific regions of the body rather than simply
as a whole.8 This type of assessment could have utility in the future as evidence continues to
emerge that monitoring fat mass and lean mass in specific tissue compartments can reveal impor-
tant information on disease progression and risk.8 In addition, there is likely to be value in readily
accessible, accurate, and non-invasive metrics that can be easily repeated for clinical trials and
for following children and adolescents during critical periods of growth.

Noninvasive optical absorbance spectroscopy to estimate tissue level oxyhemoglobin
obviated the need for painful manual sampling of arterial blood to assess oxygenation and trans-
formed clinical measurement of respiratory status. We hypothesized that near-infrared spectros-
copy (NIRS) devices, approximately spanning 600 to 1100 nm, could also present a non-invasive
and ionizing radiation-free method to quantify tissue composition and metabolism.9–11 For the
assessment of pulse or tissue oxygenation, NIRS devices utilize the absorbance spectrum of
hemoglobin and its dependence on oxygenation state.12 NIRS can also be used to assess levels
of fat and water since these two components absorb uniquely in the NIR spectrum.13 Not
surprisingly, there are some efforts to develop and commercialize NIRS approaches to measure
the key elements of body composition.14,15 As suggested in animal and human studies,16,17

current commercial efforts are, however, limited due to their reliance on continuous-wave
NIRS and their dependence on substantial assumptions about tissue scattering, optical path-
length, and composition. Advancements in time- and frequency-domain diffuse optical methods,
in combination with broadband time-independent NIRS, has reduced reliance on many of these
assumptions18 and allowed for multiple physiological variables to be assessed with a single
multi-modality device.10

In previous work, we utilized an advanced multi-modal NIRS technology, diffuse optical
spectroscopic imaging (DOSI), to demonstrate a relationship between optical measures of
heme protein, water, and fat content with DXA measures of lean soft tissue.13 This finding pro-
vided evidence that DOSI could be used to non-invasively and quantitatively measure body
composition in specific tissue compartments. In addition, we have also used DOSI to monitor
adipose tissue of adult obese individuals as they underwent caloric restriction and reported that
absorption and scattering changes track and may elucidate metabolic changes accompanying
weight loss.9 These two studies were limited to the gastrocnemius and the abdomen in adults,
respectively.

In this work, we used DOSI, ultrasound (US), and DXA to characterize local tissue and
whole-body composition in 99 healthy, non-obese participants aged 7 to 34 years. Our DOSI
protocol quantifies hemoþmyoglobin, water, fat, and the wavelength dependence of scattering
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in several general anatomical regions (gastrocnemius, quadriceps, abdomen, and biceps). In a
subset of measurement locations, US was also used to measure skinþ adipose tissue thickness
(SATT). A model is developed that correlates US with DOSI in order to predict adipose thickness
and the properties of fat and muscle using only broadband DOSI data. We propose two new
metrics, the optical fat fraction (OFF) and optical lean fraction (OLF), which use DOSI data
to describe the adiposity or leanness of a given tissue. Finally, whole-body DXA scans were
performed in order to quantify body fat mass and lean soft tissue mass. DXA parameters were
used to develop a method for the prediction of whole-body fat and lean soft tissue percentage
solely from DOSI data obtained from selected anatomical regions. Our results suggest that
portable, diffuse optical technologies can be developed that quantitatively assess both body
composition and parameters related to metabolism, such as hemo/myoglobin concentrations
and oxygenation. These methods may serve useful tools in the clinical characterization and
management of obesity and metabolic disease.

2 Methods

2.1 Participants and Experimental Design

The study was approved by the UC Irvine Institutional Review Board. Inclusion criteria included
healthy 7- to 35-year-old participants without any known respiratory, cardiac, or metabolic
disease, and not taking any chronic prescribed medication. BMI of each participant was between
the 3rd to 96th percentile for children (Tanner stages 1 to 5) and in the range of 18.6 to 28.2
for adults. Each volunteer visited the Institute for Clinical and Translational Science (ICTS),
University of California, Irvine, on six occasions to complete different exercise protocols on
cycle ergometer and treadmill. During the first visit, informed consent was obtained
(parental consent þ child assent for participants <18 years old), demographic and anthropomet-
ric data were recorded, and DXA, US, and DOSI were performed prior to any exercise activity.
Due to technical limitations, some measurements were collected during other visits. A total of
113 participants were recruited for the study, with 100 completing all DOSI, DXA, and US
scanning. Data of one participant were removed due to technical issues with the DOSI meas-
urement, resulting in complete data from 99 participants (Table 1).

2.2 Diffuse Optical Spectroscopic Imaging Measurements

DOSI measurements were performed using an approach that combines temporally resolved,
broadband, frequency-domain measurements with time-independent broadband spectroscopy

Table 1 Participant characteristics.

Age (years) Height (cm) Body mass (kg) BMI DXA fat% DXA LST%

Male
(n ¼ 46)

16.0� 6.8
(7.2 to 34.5)

161� 18*
(125 to 189)

54.6� 19.9*
(23.0 to 89.8)

20.1� 3.8
(13.9 to 28.2)

21.1� 6.9*
(10.3 to 39.0)

72.7� 7.4
(58.2 to 85.6)

Female
(n ¼ 53)

15.6� 6.7
(7.2 to 33.4)

151� 15*
(113 to 171)

47.2� 14.5*
(19.7 to 79.9)

19.9� 3.3
(14.2 to 27.8)

28.3� 5.1*
(18.3 to 39.8)

71.0� 6.5
(57.7 to 86.1)

Training
(n ¼ 79)

15.6� 6.8
(7.2 to 34.5)

155� 17
(125 to 189)

49.5� 17.2
(23.0 to 88.5)

19.8� 3.4
(14.2 to 28.2)

25.2� 6.8
(12.7 to 39.8)

71.9� 7.2
(57.7 to 86.1)

Test
(n ¼ 20)

16.7� 6.6
(7.2 to 31.5)

158� 18
(113 to 182)

54.8� 18.6
(19.7 to 89.8)

21.0� 4.0
(13.9 to 27.8)

23.9� 7.7
(10.3 to 39.0)

71.4� 6.0
(63.0 to 85.6)

Note: A summary of demographics is shown for the entire cohort with two sub-cohort splits. In the top two rows,
data from male and female participants are shown. In the bottom two rows, data from the “training” and “test”
participants are shown. Statistical differences (*) were detected between males and females in height, body
mass, and DXA fat% (p > 0.05). No statistical differences were detected between the training and test data
sub-cohorts which were used later in the study. n ¼ sample size. Data shown is mean� standard deviation
(minimum −maximum).
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in a scanning handpiece with source-detector separation of 28 mm. This method and related
instrumentation have been extensively described in recent clinical studies.9,19,20 Briefly, three
intensity-modulated laser diodes (690, 785, and 835 nm) and an avalanche photodiode are used
to acquire multi-frequency phase and amplitude data. These measurements are used to determine
absorption (μa) and reduced scattering (μ 0

s) coefficients at each wavelength. The scattering data
are fit to expected scattering behavior in biological tissue (Mie theory) in the form, which is
given by

EQ-TARGET;temp:intralink-;e001;116;651μ 0
sðλÞ ¼ A500 ×

�
λ

500 nm

�
−b
; (1)

where A500 is the scattering amplitude at 500 nm and b is the scattering power.9 Once A500 and b
have been determined, this function allows for the calculation of reduced scattering coefficients
at specific wavelengths of interest. For example, μ 0

sð800 nmÞ would give the reduced scattering
coefficient near the isosbestic point of hemoglobin and μ 0

sð500 nmÞ is equivalent to A500.
In conjunction, a broadband (650 to 1000 nm) continuous-wave (CW) diffuse reflectance
spectroscopy measurement is performed using a quartz tungsten halogen lamp and a miniature
spectrometer. The broadband reduced scattering results can be used as previously described
to determine broadband absorption coefficients from the CW reflectance results.21 These
absorption coefficients can be further decomposed into basis NIR absorbers. The dominant
NIR absorbers in biological tissue are oxygenated hemoþmyoglobin (HbMbO2), de-
oxygenated hemoþmyoglobin (HbMbR), water, and fat. The sum of HbMbO2 and HbMbR
concentrations is referred to as the total hemo + myoglobin concentration (THbMb). The
percentage of hemoþmyoglobin bound to oxygen is known as the tissue oxygen saturation
(StO2 ¼ HbMbO2∕THbMb). In addition to absorbing chromophores, we chose to include sev-
eral above-mentioned scattering parameters into our analysis such that our seven optical param-
eters of interest were: THbMb (μMolar), StO2 (%), water (%), fat (%), A500 (mm−1), b (unitless),
and μ 0

sð800 nmÞ (units of mm−1). While the scattering amplitude at 500 nm is useful to compare
to other literature values, we chose to include μ 0

sð800 nmÞ for two additional reasons: (a) 800 nm
is in the middle of the NIR window of 600 to 1000 nm, which is most commonly used for deep-
tissue diffuse optical spectroscopy, and (b) 800 nm is approximately the isosbestic point of
hemoglobin, and reduced scattering coefficients of biological tissue at this wavelength will
be of practical use to other researchers.

Ten anatomical sites were chosen and measured with DOSI for each participant (Fig. 1).
These 10 measurement locations were the short- and long-heads of the biceps (BS and BL),
four locations surrounding the navel on the abdomen (LL, LR, UL, and UR), the vastus lateralus
(VL), rectus femoris (RF), and medial and lateral gastrocnemius (GM and GL). At each location,
three DOSI measurements were performed, and results were averaged together to reduce the
potential for measurement error. We note that a previous study by Cerussi et al. found that
DOSI measurements had “<5% variance over the course of several instruments, operators, phan-
toms, and time points (∼8 months).” While we performed an abundance of measurements in
close proximity to each other (e.g., GM and GL within 10 cm of each other, LL, LR, UL, and
UR are within 10 cm of each other), we did this partially for redundancy and also in an attempt to
further average and reduce measurement error. Rather than keep all measurement locations dur-
ing analysis, results from certain anatomical regions were averaged together so only four ana-
tomical regions remained. We also did this since repeat measures on participants can falsely
inflate correlation coefficients and lead to overfitting. In particular, BS and BL were averaged
together to produce a single result for the biceps, LL, LR, UL, and UR were averaged together
to produce a single result for the abdomen, VL and RF were averaged together to produce a
single result for the quadriceps, and GM and GL were averaged together to produce a single
result for the calf. These easily accessible positions were chosen for two primary reasons: (1) to
sample a range of the human body spanning from the upper limbs through the torso and into
the lower legs and (2) because participants did not need to entirely remove clothing for the
measurements.
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2.3 Ultrasound Measurements

US measurements of SATTwere performed using a portable US device (Lumify, Phillips) with a
broadband linear array transducer (Lumify L 12-4). The same operator performed measurements
of SATT over the RF muscle and the VL muscle. SATT thickness was measured from the super-
ficial layer of the skin to the superficial layer of the muscle (Fig. 2). The RF and VL measure-
ments were performed in the same location as DOSI measurements, which were approximately
the lower third of the anterolateral part of the thigh.

2.4 Dual-Energy X-Ray Absorptiometry Measurements

DXA measurements were performed using a Hologic Discovery A DXA system with Apex 3.3
software (Hologic, Marlborough, Massachusetts, United States). Prior to scanning, participants
removed all metal objects and lay supine on a padded table. Using the standard approach with
DXA, a three-component model was utilized to quantify fat mass, lean soft tissue mass, and bone
mineral content for each participant,22 and these parameters were converted to fat percentage

Fig. 1 Broadband DOSI data were acquired from 10 specific measurement locations designated
by (X) on a representative DXA image (left). Each DOSI measurement contains broadband, 650 to
1000 nm absorption and reduced scattering coefficients (shown to the right for an abdominal
measurement). At each specific location, spectral data are decomposed into constituent absorbing
chromophores and scattering features, namely: THbMb, StO2, fat, water, scattering power, and
scattering amplitude. Prior to comparison with DXA, DOSI constituent data from specific meas-
urement locations (Xs) were averaged into four general anatomical regions (marked with gray
ovals) for comparison with DXA (biceps, abdomen, quadriceps, and calf). DOSI, diffuse optical
spectroscopic imaging; DXA, dual-energy x-ray absorptiometry; THbMb, tissue total hemoþ
myoglobin concentration; StO2, oxygen saturation of tissue hemoþmyoglobin; water, tissue
water content; fat, tissue fat content.
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(fat%), lean soft tissue percentage (LST%), and bone (bone%), respectively, by dividing by total
body mass, and the related equations are

EQ-TARGET;temp:intralink-;e002;116;392Total body mass ¼ Fat massþ Lean soft tissue massþ Bone mass; (2)

EQ-TARGET;temp:intralink-;e003;116;349Fat% ¼ Fat mass

Fat massþ Lean soft tissue massþ Bone mass
; (3)

EQ-TARGET;temp:intralink-;e004;116;316LST% ¼ Lean soft tissue mass

Fat massþ Lean soft tissue massþ Bone mass
; (4)

and

EQ-TARGET;temp:intralink-;e005;116;283Bone% ¼ Bone mass

Fat massþ Lean soft tissue mass þ Bone mass
: (5)

Only fat% and LST% were further analyzed in this study, as we did not expect DOSI to be
sensitive to bone mineral content given the locations of our measurements and the probable
penetration depths of NIR light.

2.5 Fat and Lean Tissue Distinction by DOSI

Data from SATT measurements were sorted to identify the five participants with the thickest
SATT measurements (SATT ≈ 1.55� 0.14 cm) and five participants with the thinnest SATT
measurements (SATT ≈ 0.25� 0.02 cm). DOSI data were further analyzed from these sub-
cohorts to isolate optical properties (absorption and reduced scattering coefficients) and optical
chromophore concentrations. We hypothesized that these two sets of data approximate when the
signal is predominantly from adipose tissue (thickest SATT) or when the signal is predominantly
from muscle tissue (thinnest SATT).

Fig. 2 A sample ultrasound image that was used to measure SATT. In each ultrasound image,
the outermost layer was skin, followed by an intermediate subcutaneous adipose tissue layer,
followed by the muscle layer. SATT was determined as the distance between the outermost
surface of the skin and the outermost surface of the muscle.
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2.6 Statistical Analysis

All data analysis and statistical tests were performed within MATLAB (2021b, The MathWorks,
Inc.) and were derived from the Handbook of Biological Statistics (McDonald 2014). Statistical
significance is defined as α<0.05 throughout this study. In addition, whenever multiple hypoth-
eses were tested in a similar class of comparisons a Bonferroni correction was applied to deter-
mine a test-specific p-value which would meet our desired significance criteria of α<0.05. These
instances of multiple hypothesis testing are noted later in this section.

For participant demographics, a two-sample t-test (MATLAB’s t-test2) was used to test the
null hypothesis that sub-cohort samples (e.g., male versus female, training versus test) came
from populations with equal means and equal variances.

The goal for DOSI and US comparisons was to determine which DOSI parameters were
associated with SATT prior to the development of a prediction method. Results were available
from two measurement locations in the quadriceps for each participant (RF and VL). As repeat
measures on participants can falsely inflate correlation coefficients, data from the two measure-
ment locations were averaged together prior to correlation tests. After viewing scatter plots of
data and identifying non-linear relationships, Spearman rank correlation coefficients were cal-
culated between seven individual DOSI parameters and SATT (p < 0.0083 for significance).
This initial set of correlation tests was used to determine if specific parameters of DOSI data
were significantly associated with SATT. In addition to meeting the correlation significance cri-
teria, we required that squared correlation coefficients be greater than (R2 > 0.5) if they would
be considered in our proposed prediction method. DOSI parameters which met the significance
criteria and explained a large amount of variation in SATTwere combined into a fractional met-
ric, the OFF, by placing positive correlates of SATT in the numerator and all correlates in the
denominator. Similarly, an alternative metric, the OLF, is defined where negative correlates of
SATT are placed in the numerator and all correlates are placed in the denominator. For the pre-
diction method, a functional relationship was determined between the OFF and SATT by using
the Curve Fitting app in MATLAB. A randomly assigned training set of 79 participants (80%)
was used for curve fitting and a test set of the remaining 20 participants (20%) was used to
evaluate the accuracy of the predictive method.

The goal for DOSI and DXA comparisons was to build a regression model for prediction of
DXA results given DOSI results at the four general anatomical regions (biceps, abdomen,
quadriceps, and calf). During comparisons with SATT, we determined the OFF and the OLF
from DOSI and these parameters were used when comparing to DXA. After viewing scatter
plots of DOSI and DXA data and identifying linear relationships, Pearson product-moment cor-
relation coefficients were calculated between DXA fat% and OFF and DXA LST% and OLF at
each of four general anatomical regions (four tests in total per DXA parameter). This initial set of
correlation tests was used to determine if DOSI data taken from general anatomical regions were
significantly associated with a corresponding parameter from DXA (p < 0.0125). Similar to the
correlation tests with SATT, we also determined if DOSI parameters explained a large degree of
variation in DXA parameters (R2 > 0.5). If correlations were not significant or did not explain a
large degree of DXA variation at a given measurement location, this DOSI parameter was not
considered for our final regression model.

A randomly assigned training set of 79 participants (80%) was used for regression modeling
and a test set of the remaining 20 participants (20%) was used to evaluate the accuracy of the
regression model. A generalized linear model was used for regression in MATLAB (glmfit)
where OFF or OLF from all four general anatomical regions were used as predictors of DXA
fat% or LST%, respectively.

3 Results

3.1 Participant Demographics

In all, 99 participants (53 female, 46 male) aged 7 to 34 years completed body composition
assessments with DOSI, US, and DXA (Table 1). While age, BMI, and DXA LST%were closely
matched between sexes, height, body mass, and DXA fat% were different between sexes
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(α < 0.05). All anthropometric characteristics were closely matched between the training and
test sub-cohorts that are used later in the study.

3.2 DOSI and Skin + Adipose Tissue Thickness

After averaging the results from the RF and VL measurement locations into a single anatomical
region (quadriceps), significant correlations were detected between SATT and all DOSI
parameters except A500 (Fig. 3 and Table 2). In addition, correlation coefficients >0.5 were only
detected between SATTand THbMb, water, and fat (Table 2). Since fat was positively correlated
with SATT and THbMb and water were negatively correlated with SATT, we define

Fig. 3 Comparison of DOSI results in the quadriceps (mean of rectus femoris and vastus lateralus
results) with the skinþ adipose tissue thickness as obtained from ultrasound. (a) THbMb,
(b) StO2, (c) water, (d) fat, (e) scattering power, and (f) μ 0

sð800 nmÞ were significantly correlated
with SATT (p < 0.0083) while (e) A500 (“scattering amplitude”) was not. However, only THbMb,
water, and fat resulted in R2 > 0.5.
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EQ-TARGET;temp:intralink-;e006;116;499OFF ¼ Fat

THbMbþWater þ Fat
; (6)

and

EQ-TARGET;temp:intralink-;e007;116;454OLF ¼ THbMb þ Water

THbMb þ Water þ Fat
: (7)

It is important to note that these fractions contain mixed units and are only convenient since
fat and water are in units of % (values 0 to 100) and THbMb is in units of μM (which also has
values in the range of 0 to ∼200 in mixed biological tissue).

Using data from 79 participants, OFF data was fitted against SATT given an assumed func-
tional form of

EQ-TARGET;temp:intralink-;e008;116;350SATT ¼ aeb:OFF; (8)

where a and b were free parameters (Fig. 4). After optimization in MATLAB’s curve fitting app,
a and b were determined to be 0.2856 and 2.214, respectively. Data from the 20 participants
excluded during fitting were input into the optimized function to predict SATT [Figs. 5(a)
and 5(b)]. Predictions had a mean error with respect to actual SATT of −0.02� 0.13 cm

(mean� standard deviation). Predictions lost accuracy as SATT increased [Figs. 5(a) and 5(b)].

3.3 Fat and Lean Tissue Distinction by DOSI

In general, SATT was greater at the RF location (0.88� 0.30 cm) than the VL location
(0.71� 0.30 cm). In addition, the overall thickest SATT measurements came from the RF while
the thinnest SATT measurements from the VL. We isolated optical properties (absorption and
reduced scattering coefficients) and optical chromophore concentrations from the RF of the five
participants with thickest RF SATT (SATT ≈ 1.55� 0.14 cm) and from the VL of the five par-
ticipants with the thinnest VL SATT (SATT ≈ 0.25� 0.02 cm) [Figs. 6(a) and 6(b) and Table 3].
These two sets of data approximate non-invasive diffuse optical measurements where the signal
is predominantly from either adipose tissue or muscle tissue. The overall levels of absorption in
lean tissue are 500% to 600% higher than fat tissue at all wavelengths except 850 to 950 nm
where the fat absorption peak is strongly absorbing enough to keep levels of lean tissue absorp-
tion to ∼300% higher. Alternatively, reduced scattering coefficients in fat tissue range from
20% to 80% higher than lean tissue.

Table 2 Correlation coefficients and p-values for Spearman correlation
tests between DOSI parameters and ultrasound SATT. While all DOSI
parameters except scattering amplitude met the significance criteria for
this study, only THbMb, water, and fat resulted in R2 values > 0.5.

DOSI parameter R2 p

THbMb 0.87 8.6e-45

StO2 0.17 2.0e-5

Water 0.80 6.1e-36

Fat 0.79 5.7e-35

A500 0.00 0.53

b 0.25 1.4e-7

μ 0
sð800 nmÞ 0.46 1.6e-14
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In lean tissue, THbMb concentration was 125.2� 18.3 μMolar, StO2 was 67.1� 3.7%,
tissue water content was 73.0� 8.1%, tissue fat content was 1.1� 2.5%, reduced scattering
amplitude was 0.87� 0.13 mm−1, and reduced scattering power was −1.28� 0.21. In addition,
participants comprising the lean subcohort were aged 22.9� 8.3 years old and had OFF and
OLF values of 0.6� 1.4% and 99.4� 1.4, respectively. In fat tissue, THbMb concentration
was 19.4� 3.2 μMolar, StO2 was 63.0� 6.7%, tissue water content was 11.3� 3.3%, tissue
fat content was 67.3� 3.4%, reduced scattering amplitude was 0.85� 0.11 mm−1, and reduced
scattering power was −0.42� 0.10. Participants comprising the fat subcohort were aged 12.5�
2.9 years old and had OFF and OLF values of 68.7� 4.2% and 31.3� 4.2, respectively.

Fig. 4 The relationship between OFF as calculated from DOSI data and SATT as measured with
ultrasound. Data from 79 participants were collected from both the vastus lateralus and rectus
femoris before being averaged together for each participant into a single value for the quadriceps.
A single-term exponential function was fit to the data and is plotted in red. Fitted coefficients can be
found in the text.

Fig. 5 The ability of OFF from DOSI to predict SATT as measured by ultrasound. (a) 20 partic-
ipants (blue dots) were not included in the initial exponential curve fitting (black Xs) and were used
here to evaluate predictive accuracy. SATT as predicted by DOSI data is plotted against measured
SATT values from ultrasound. A red line is shown to indicate perfect agreement. (b) A Bland–
Altman plot is shown to better visualize error in the predictive method. The x -axis shows the aver-
age between DOSI and ultrasound SATT values while the y -axis shows the difference between
the two SATT values. The black solid line shows the mean error of −:02 cm, while the two dotted
lines indicate a 95% confidence interval (�1.96 standard deviations) for the differences of −0.27 to
0.22 cm.
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3.4 Whole-Body DOSI and Dual-Energy X-Ray Absorptiometry

Significant correlations were detected between DOSI OFF at each general tissue location and
whole body DXA fat% [Figs. 7(a)–7(d)]. In addition, nearly identical correlations were detected
between DOSI OLF at each general tissue location and whole body DXA LST%. These figures
are not presented, but the relationship can be inferred from the OFF/fat% relationship since OFF
versus OLF and fat% versus LST% are directly inversely related. As OFF/OLF from all general
anatomical regions showed significant associations with whole-body DXA measures, all four
locations were included in the generalized linear regression models to predict DXA measures.
For each model, the same 79 participants were randomly selected for linear regression while the
remaining 20 were left out to assess predictive accuracy.

Fig. 6 Optical properties for fat tissue and lean tissue measured from rectus femoris and vastus
lateralus, respectively. Fat tissue measurements were selected by finding the five participants
with thickest SATT values as measured by ultrasound (SATT ¼ 1.55� 0.14 cm). Similarly, lean
tissue measurements were selected by finding the five participants with thinnest SATT values
as measured by ultrasound (SATT ¼ 0.25� 0.02 cm). Each line is the average of data from five
participants with error bars representing standard deviations.

Table 3 DOSI chromophore and scattering parameters for fat tissue (n ¼ 5) and lean tissue
(n ¼ 5).

Parameter Lean avg Lean std. dev. Fat avg Fat std. dev.

SATT (cm) 0.25 0.02 1.55 0.14

Age (years) 22.9 8.3 12.5 2.9

OFF (unitless fraction from 0 to 1) 0.6 1.4 68.7 4.2

OLF (unitless fraction from 0 to 1) 99.4 1.4 31.3 4.2

THbMb (μMolar) 125.2 18.3 19.4 3.2

StO2 (%) 67.1 3.7 63.0 6.7

Water (%) 73.0 8.1 11.3 3.3

Fat (%) 1.1 2.5 67.3 3.4

A500 (mm−1) 0.87 0.13 0.85 0.11

b (unitless) −1.28 0.21 −0.42 0.10

Using US measurements of SATT from rectus femoris and vastus lateralus tissue, participants with the five
thickest (fat tissue) and five thinnest (lean tissue) SATT values were identified, respectively. Results from each
subgroup of five participants were averaged and are shown in this table.

Warren et al.: Diffuse optical spectroscopic method for tissue and body composition assessment

Journal of Biomedical Optics 065002-11 June 2022 • Vol. 27(6)



For prediction of DXA fat%, OFF resulted in a mean error of −1.2% with a 95% confidence
interval between −7.3% and 4.9% [Figs. 7(e) and 7(f)]. For prediction of DXA LST%, OLF
resulted in a mean error of 1.2% with a 95% confidence interval between −4.7% and 7.1%
(figures not shown for reasons described in the previous paragraph).

Fig. 7 DOSI optical fat fraction results for each of the four general anatomical regions compared to
whole-body fat% according to DXA, as well as a generalized linear regression model and predic-
tive analysis. (a–d) OFF results from the biceps, abdomen, quadriceps, and calf, respectively,
plotted against whole-body fat% from DXA for all 99 participants. (e) Results from 79 participants
(black X marks) which were used in a generalized linear regression model and 20 participants
which were left out of the model (blue circles). The trained model was used to evaluate data from
the 20 excluded participants and resulting predictions are shown. (f) A Bland–Altman analysis is
shown for the 20 participants excluded from the linear regression modeling. The x -axis shows an
average between the measured DXA fat% and the predicted DOSI fat% while the y -axis shows
the difference between the measured and predicted results. The black solid line shows the mean
error of −1.2%, while the two dotted lines indicate a 95% confidence interval (�1.96 standard
deviations) for the differences of −7.3% to 4.9%.
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4 Discussion

In this study, DOSI was used to determine both individual tissue composition and whole-body
composition in a large cohort of participants ranging in age from 7 to 34 years old. These optical
results were compared with US measurements of SATT and DXA assessments of body com-
position, leading to our proposal for two new optical metrics: the OFF and OLF, which utilize
DOSI outputs to characterize the adiposity/leanness of tissue. This study adds to previous liter-
ature, which collectively validates measurements from DOSI in humans by placing optical
parameters in context of traditional and more commonly used modalities in today’s medical
practices.9,13,23 In addition, this study characterizes optical properties (absorption and scattering
behavior) in lean and fat tissue, which can be used by the diffuse optics research community.
Finally, methods were proposed to predict SATT from a single DOSI measurement and whole-
body fat percentage (fat%) and lean-soft tissue percentage (LST%) given multiple DOSI mea-
surements taken across the human body.

While significant correlations were detected between SATT and most DOSI parameters, the
associations with StO2, b, and μ 0

sð800 nmÞ were weak (R2 < 0.5), suggesting that only a small
amount of variance in SATT could be explained by these three DOSI parameters. Associations
were stronger between SATT and THbMb, water, and fat, so these parameters were used in the
definition of two complementary parameters: OFF and OLF. These two parameters are inversely
related, sum to 100%, and were designed to describe the level of adiposity or leanness, respec-
tively, of a tissue. We assumed an exponential relationship between OFF and SATTand used data
to fit a simple exponential function. This fitted exponential was used to predict SATT in a subset
of 20 participants. We did not explore other functions that might more accurately describe the
relationship between OFF and SATT. While predictions had minimal error (1 to 2 mm) when
SATT was less than 1 cm, predictions lost accuracy as SATT surpassed 1 cm suggesting a sen-
sitivity limit with DOSI. This finding was expected with a fixed source-detector separation of
28 mm and our rough sensitivity limit seems to be ∼1∕3 source-detector separation, which
matches findings from other researchers that report a “rule-of-thumb” for optical penetration
depth as a function of source-detector separation.24 In future work, this must be considered when
working with obese patients or when measuring tissues with SATT > 1 cm (e.g., abdomen). In
addition, it is important to note that the sensitivity to adiposity as discussed in this study is
different than, for example, as discussed in Ganesan et al.9 In the work of Ganesan et al., the
study was designed to isolate adipose tissue and to avoid potential contamination by the under-
lying muscle or visceral organs. In the current study, contamination by underlying muscle tissue
was expected and is the primary cause of a decreased “adipose” signal. The layered nature of
human tissue is what allows for the DOSI OFF assessment to predict SATT. If the layered struc-
ture is significantly different, such as on the head of a person, where there is very little adipose or
muscle between skin and the skull, then the OFF parameter will no longer be predictive of an
upper layer thickness. This could also be important to consider in conditions where the adipose
or muscle tissues are diseased or altered by some abnormal condition. For example, if an indi-
vidual’s muscle tissue contains a large amount of intramuscular fat, then OFF would overesti-
mate the upper SATT, even though it correctly reflects the overall adiposity of the tissue that was
measured. In summary, adipose layer thickness prediction by OFF as described in this study has
at least two limitations: (1) depth sensitivity, which can be overcome by modifications to hard-
ware to increase source-detector separation and (2) application to expected anatomical sites with
layered adipose and muscle.

We isolated optical properties and derived optical parameters from the participants with the
thickest SATT and the thinnest SATT. While this information adds to a growing body of refer-
ence literature for optical properties of human tissue,9,13,25 the age range of participants that these
data represent is unique compared to previous studies. As expected, absorption coefficients were
much higher in participants with thinner SATT than in those with thick SATT (Fig. 6). In addi-
tion, the relative magnitude of the fat absorption peak (∼930 nm) versus the water absorption
peak (∼970 nm) is a clear feature of thick versus thin SATT. Finally, participants with thin SATT
presented lower scattering coefficients but a steeper wavelength dependence (Fig. 6). In the sub-
set of participants with thick SATT, StO2 and fat results were comparable to those from Ganesan
et al. (63.0% versus 60.0% and 67.3% versus 64.3%, respectively), while the THbMb, water,
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scattering amplitude, and scattering power were in disagreement.9 Not only were the participants
from the current study much younger (16 years old) than those from Ganesan et al.’s study
(56 years old), but the individuals in Ganesan et al.’s study were obese and known to have some
presentations of metabolic syndrome. This finding suggests that there could be age-related
differences in adiposity that are insufficiently described by standard measures of oxygen satu-
ration (StO2) or adiposity (fat). Scattering parameters in particular have been of high interest in
relation to lipid content and this finding suggests they could be useful in distinguishing types of
fat (or age-related alterations to fat). In participants with thin SATT, both optical properties and
derived parameters are on the lean end of the range presented in our previous work studying calf
muscles.13 US was not used to quantify SATT in our previous work, but individuals from that
study with the highest concentrations of THbMb showed ∼120 μMolar while the participants
with thinnest SATT in this current study showed 125:2 μMolar.

Prediction of fat% and LST% using OFF and OLF, respectively, showed a minimal mean
error (−1.2%) with a 95% confidence interval spanning from −7.3% to 4.9%. The largest errors
came in individuals with high fat% with DOSI underestimating fat% by ∼10% in one case. This
error was expected in participants with higher fat% for the same reasons that SATT predictive
accuracy decreased with increasing SATT, namely that the fixed source-detector separation of
DOSI limits the tissue penetration depth (∼1 cm in this study). For individuals with >30% fat%,
we predict that most of the tissues measured with DOSI (biceps, abdomen, quadriceps, and calf)
would have had 1 cm or greater SATT. By increasing the source-detector separation of DOSI,
greater predictive accuracy would likely be achieved in populations that are more obese. The
tradeoff with increased source-detector separation, however, is a decreased signal-to-noise ratio,
which would be most apparent in measurements of high absorbing tissues (lean tissue). Given
the relatively high predictive accuracy of SATT and fat% in individuals with thin SATT and low
fat%, it seems likely that the overall predictive range could be extended with an increased source-
detector separation to ∼35 mm. In addition, we likely lost some information content in reducing
the size of our data set by averaging data in measurement locations of close proximity. We
hypothesized that measurement locations of close proximity would share similar tissue compo-
sition, and while this was true in some cases, it was incorrect in others, such as the VL and RF
from the quadriceps as discussed in Sec. 3.3. This could be mitigated in future work by lever-
aging more advanced statistical methods that account for repeated measures.

While we sampled across males and females, younger and older individuals, and BMI (as
examples), we did not power the study to perform sub-cohort analyses and are unable to make
accurate statements on one group compared with another. As such, the analyses in this study are
focused on highlighting feasibility across the overall cohort that contains a large range of different
types of participants. We expect that future studies will carefully design their participant dem-
ographics to answer specific questions of clinical interest. For example, there are age-dependent
changes in intramuscular fat, and it would be interesting to recruit the correct participants to
understand and validate the performance of DOSI across age. In addition to being limited in sample
size, we also were unable to recruit obese adults into this study. An interesting extension to this
work would be to expand the range of adiposity in the adult sub-cohort and determine if the pre-
liminary relationships shown here (i.e., DOS versus US and DOS versus DXA) are age-dependent.

In summary, we showed that DOSI can determine site-specific and body-wide levels of adi-
posity and leanness, and we proposed two new DOSI-derived metrics to encapsulate such assess-
ments: the OFF and the OLF. We also provide reference optical properties from lean and fatty
tissues and DOSI-derived parameters across a young population (7 to 34 years) and a wide range
of tissue sites. These results will be useful as NIRS technologies mature and produce clinical
products beyond pulse and tissue oximeters. Future studies should analyze additional popula-
tions, including those with disease, to better elucidate the applications of DOSI for site-specific
and body-wide composition analysis.
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