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Separating Decision and Encoding Noise in Signal Detection 
Tasks

Carlos Alexander Cabrera1, Zhong-Lin Lu1, and Barbara Anne Dosher2

1The Ohio State University

2University of California, Irvine

Abstract

In this paper we develop an extension to the Signal Detection Theory (SDT) framework to 

separately estimate internal noise arising from representational and decision processes. Our 

approach constrains SDT models with decision noise by combining a multi-pass external noise 

paradigm with confidence rating responses. In a simulation study we present evidence that 

representation and decision noise can be separately estimated over a range of representative 

underlying representational and decision noise level configurations. These results also hold across 

a number of decision rules and show resilience to rule miss-specification. The new theoretical 

framework is applied to a visual detection confidence-rating task with three and five response 

categories. This study compliments and extends the recent efforts of researchers (Benjamin, Diaz, 

& Wee, 2009; Mueller & Weidemann, 2008; Rosner & Kochanski, 2009, Kellen, Klauer, & 

Singmann, 2012) to separate and quantify underlying sources of response variability in signal 

detection tasks.

Keywords

decision noise; internal noise; external noise; signal detection theory; double-pass; confidence 
rating

Signal detection theory (SDT; Green & Swets, 1966; Peterson, Birdsall, & Fox, 1954; 

Tanner & Swets, 1954) remains one of the most influential models of cognitive science. 

Disparate areas of psychological research have adopted SDT as an explanatory framework 

for a broad range of topics including sensation and perception (Fechner, 1860; Tanner & 

Swets, 1954), category perception (Macmillan, Kaplan, & Creelman, 1977), recognition 

memory (Wickelgren & Norman, 1966), attention (Lu & Dosher, 1998), perceptual learning 

(Dosher & Lu, 1998, 1999), group decision behavior (Sorkin & Dai, 1994; Sorkin, Hays, & 

West, 2001), neurophysiology (Britten, Shadlen, Newsome, & Movshon, 1992), and clinical 
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applications (McFall & Treat, 1999). Many studies have found application for SDT in areas 

far beyond traditional psychological studies (Hutchinson, 1981; McClelland, 2011).

The fundamental assumptions of SDT include a representation stage and a response stage. 

The representation stage assumes a noisy transformation mediating the mapping between an 

external stimulus and an internal response along a decision axis. Over the course of many 

trials, a specific stimulus elicits internal responses with some mean level of activation 

(corresponding to stimulus strength) and some variability (corresponding to the noise in the 

internal response), so that the observer’s internal representation takes the form of a 

probability density function. Stimuli of different strengths lead to probability density 

functions with different means along the decision axis and potentially different variances as 

well. The response stage assumes that observers use criteria to partition the decision axis in 

order to map internal responses to observable decisions (Figure 1, top panel).

This relatively simple model has recently been described as one of the most successful 

“theoretical frameworks” and “mathematical models” in psychology (Benjamin et al., 2009; 

Kellen, Klauer, & Singmann, 2012). However, results from a number of studies have 

undermined some of the assumptions of SDT, most notably the assumption that decision 

criteria remain fixed upon a decision axis over the sequence of trials in an experiment 

(Benjamin, Tullis, & Lee, 2013; Mueller & Weidemann, 2008; Wickelgren, 1968). An 

alternative possibility is that decision criteria fluctuate from trial to trial over the course of 

the experiment (Figure 1, bottom panel). Evidence that challenges the noiseless decision 

mechanism may appeal to a reevaluation of the principle measures of sensitivity and bias, as 

decision noise may modify the interpretation of these estimates and the conclusions drawn 

from them. Experimental methods capable of distinguishing representation and decision 

noise in signal detection tasks will serve to estimate decision noise and to evaluate the 

impact of criterion variability on SDT parameter estimates. So far, such methods are few 

and restrictive, so that it is often impossible to know whether reevaluation is even necessary 

for many SDT tasks. In this paper, we build such a framework to separately estimate 

decision and representation noise components at the decision stage.

We begin with an overview of the SDT framework and a review of the empirical evidence 

suggesting that decision boundaries are variable or noisy, along with a review of recent 

efforts to identify and quantify decision noise in categorical judgment tasks with at least 

three stimulus classes (Rosner & Kochanski, 2009). We then develop a new framework that 

combines a decision noise model for a confidence rating procedure with a multi-pass 

external noise paradigm (Burgess & Colborne, 1988; Green, 1964; Lu & Dosher, 2008). 

Using simulations, we demonstrate the feasibility of parameter recovery that estimates the 

separate contributions of decision and representation noise for three different decision rules. 

Our development applies to tasks with only two stimulus classes over a range of possible 

underlying noise configurations, i.e., different relative levels of representation and criterion 

noise. We then illustrate this method with an application using a multi-pass visual detection 

experiment with external noise. Finally, we consider some ideas for future studies as well as 

limitations of this framework. Details of our experiment along with derivations and a more 

formal analysis of this framework are provided in the appendix.
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SDT and Static Criteria

In a typical yes/no signal detection experiment, an observer monitors an observation interval 

for the presence of a designated signal stimulus. The observer responds affirmatively if she 

believes the signal was present during this interval. The observer cannot respond with 

perfect accuracy on every trial, sometimes correctly reporting the presence of a signal when 

a signal stimulus in fact occurred, but sometimes incorrectly affirming the presence of a 

signal when a signal was not present. The hit rate (HR) is the relative frequency of saying 

“yes” when a signal is present; the false alarm rate (FAR) is the relative frequency of saying 

“yes” when a signal is not present. Misses and correct rejections are the relative frequencies 

of saying “no” when a signal is present and when a signal is absent. Manipulation of the 

observer’s ‘yes’ rate by changing task instruction, pay-off structure, or stimulus base rates 

elicits different values of HR and FAR, and the HR plotted against the FAR defines the 

receiver operating characteristic (ROC, Figure 2, left; Green & Swets, 1966).

The data from empirical ROCs often comprise the fundamental features researchers wish to 

model in signal detection tasks. In most applications, SDT posits internal representations in 

the form of Gaussian random variables with mean values positioned along a decision axis 

and monotonically related to stimulus strength (Graham, 1989). Consequently, the 

representational distributions of two stimuli of different strength often overlap, leaving some 

non-zero likelihood that a stimulus sample from either stimulus class (signal present or 

signal absent) could have generated the internal response in a given trial. Many signal 

detection models assume that the observer responds by establishing a boundary or criterion 

along the decision axis, and chooses “yes” when the value of the sampled internal 

representation exceeds this criterion, and chooses “no” otherwise (Figure 2, right panels). 

Representations from signal present trials exceeding the criterion contribute to HR, and 

representations of signal absent trials exceeding the criterion contribute to FAR. Insofar as 

distributions of internal representations really do approximate Gaussian probability density 

functions, HR and FAR may be transformed into standardized scores (z-scores) to indicate 

the position of the criteria along the decision axis in units of the standard deviation of the 

underlying distributions (see Appendix A.1). Empirical zROC functions are often 

approximately linear, consistent with the Gaussian distribution assumption (Macmillan & 

Creelman, 2004). The classical SDT model does not incorporate trial-by-trial variability in 

the criterion position, so all response variability accrues from variations in the internal 

representations of the stimuli (Benjamin et al, 2009).

While some simple SDT applications assume equal variances for signal present and signal 

absent distributions, researchers frequently relax this equal variance assumption to account 

for the non-unity slopes often observed in many empirical zROC’s. Meanwhile, the static 

criterion assumption has rarely been relaxed. Early formulations of SDT excluded decision 

noise for two reasons (Tanner & Swets, 1954). First, because a static decision mechanism 

was optimal and part of a cognitive operation, an observer would not willingly choose to 

vary its operation from trial to trial, since this variable strategy would lead to lower overall 

performance (Benjamin et al, 2013; Mueller & Weidemann, 2008). And second, typical 

analyses of signal detection data simply could not differentiate between noise arising from 
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representational and decision-related processes (Figure 2, right panels; see Wickelgren, 

1968).

Evidence for Criterion Variability

Though practical considerations led to omissions of criterion variability in early applications 

of signal detection theory, in fact, lines of evidence suggesting a variable decision process 

predate even the Thurstonian framework (Fernberger, 1920). Later, reduced performance on 

absolute identification due to increased stimulus range was attributed to increased variance 

in identification criteria (the range effect; Pollack, 1952). Early research in auditory 

amplitude identification led to the explanation that the change in response variability arose 

due to subjects exhibiting a range-dependent criterion noise (also interpreted as memory 

noise; see Durlach & Braida, 1969). Later research suggested an independence between the 

range effect and the total number of response categories (Braida & Durlach, 1972) and 

specifically implicated the criterial range as the source of the performance decrement 

(Gravetter & Lockhead, 1973), though not to the exclusion of representation-related 

mechanisms as well (Luce, Nosofsky, Green, & Smith, 1982; Luce & Nosofsky, 1984; 

Nosofsky, 1983). Additionally, investigators have invoked criterion noise to help explain 

anomalies in the shape of the ROC curve (Murray, Bennett, & Sekuler, 2002; Mueller & 

Weidemann, 2008; Wickelgren, 1968); discrepancies in distribution-free estimates of 

response bias in confidence rating tasks (Mueller & Weidemann, 2008); performance 

decrements related to larger rating scales in confidence ratings tasks (Benjamin et al, 2013); 

and feedback-associated manipulation (Carterette, 1966) and learning (Friedman, Caterette, 

Nakatani, & Ahumada, 1968) in auditory amplitude detection. Others have suggested that 

decision noise results from criterion-setting mechanisms for reconstructing stimulus 

representations at the decision level (Parks, 1966); and that criterion noise is related to non-

optimal criterion shifting (Thomas, 1973,1975). For a more extensive review, see Benjamin 

et al (2009).

Although we have presented a small sample here, evidence arising from these disparate 

research areas has generated a great body of literature implicating the presence of criterion 

variability. Along with these empirical results, a literature of theoretical contributions has 

also emerged (e.g., Kac, 1962; Treisman, 1984; Treisman & Williams, 1985). Strictly 

speaking, to whatever extent quantitative models can account for the phenomena of criteria 

shifting, we can no longer refer to this as “noise” in the proper sense of the word. We here 

follow earlier writers who have disambiguated “systematic” noise from “unsystematic,” 

“irreducible,” or “random” noise (Levi, Klein, & Chen, 2005; Rosner & Kochanski, 2009). 

We now turn to the research efforts to separate and measure decision noise.

Decision Noise Methods and Models

Analysis of the categorical judgment task showed that standard signal detection 

experimental procedures could not generally distinguish representational noise from 

decision noise without significant simplifying assumptions (Rosner & Kochanski, 2009; 

Torgerson, 1958). The first serious research effort to understand the influence of decision 

noise began with Wickelgren and his study of response predictions for a variety of signal 
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detection task conditions in the presence of significant criterion noise (although see also 

Tanner, 1961, for consideration of decision noise under a less rigid interpretation of decision 

criterion in a 2-alternative forced choice task). In a seminal paper, Wickelgren (1968) 

examined the ramifications of decision noise for subject performance in yes/no and 

confidence rating tasks. He derived functional forms for the zROC and showed that 

observers with non-trivial decision noise could produce linear zROCs as long as decision 

noise remained constant across criteria and task structure did not alter representational 

characteristics (see also Benjamin et al., 2009). Static criteria with Gaussian representational 

distributions lead to linear zROCs, but linear zROCs do not necessarily imply static criteria. 

Wickelgren also considered the implications of attenuated criterion noise at a primary 

decision boundary relative to the remaining criterion boundaries in bipolar confidence rating 

tasks and the data signature this affords in a zROC curve (see also Mueller & Weidemann, 

2008; Murray et al, 2002). In particular, he observed that the subject could exhibit a peaked 

zROC when criterion noise at the primary decision boundary is significantly less than the 

decision noise at the remaining boundaries. Reviewing studies with greater numbers of 

category boundaries, he often identified larger peaks, leading to the speculation that 

increasing the number of category boundaries could increase decision noise. This finding 

was consistent with Miller’s famous paper on information retrieval (Miller, 1956) and the 

criterial range interpretation of the range effect (Gravetter & Lockhead, 1973) insofar as 

additional criteria lead to broader criterion spread across the decision axis.

Wickelgren’s close examination of the shape of subjects’ ROCs and zROCs became a 

standard diagnostic approach for criterion variability in signal detection type tasks. But 

because data collection in typical yes/no tasks requires bias manipulations that might alter 

either representational or decision processes, researchers preferred confidence rating 

procedures for their greater assurances of representation and decision noise stability over the 

duration of the experiment. However, even studies using rating procedures may have fallen 

short of unambiguous estimates of representation and decision variability owing to tradeoffs 

between these parameters in estimation (e.g., Mueller & Weidemann, 2008; Benjamin et al., 

2009).

Nosofsky (1983) developed a multiple presentation method to examine the range effect with 

an identification task. On individual trials in his study, subjects made multiple responses to 

repeated identical presentations of a stimulus from one of the available stimulus classes. 

Although he treated each response as independent of the others, he assumed that noisy 

internal representations were averaged while decision noise remained constant across 

presentation repetitions. By separately measuring sensitivity for each presentation repetition, 

he demonstrated non-trivial decision and representational noise with both components 

increasing with larger criterion range.

Benjamin et al (2009) developed an Ensemble Recognition task similar to the multiple 

presentation method of Nosofsky to examine the effects of decision noise in memory 

recognition. In this study, subjects were first presented a study list of words they would later 

be asked to recognize during a test phase. During the test phase individual trials contained 

ensembles of one, two, or four words. Each ensemble contained either one, two, four, or no 

words from the previously examined study list. The Ensemble Recognition framework 
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assumed that each word of each trial ensemble led to internal activations independent of the 

other words, and that either the sum or the average of these activations would comprise the 

internal representation at the decision stage. Similar to Nosofsky, these authors assume that 

the decision noise remained constant while the summing or averaging would lead to adding 

or averaging of the representational noise. The averaging model performed best in model 

selection tests and estimated a very significant role for decision noise in word recognition.

More recently, Kellen et al (2012) offered a critique of the conclusions drawn from the 

Ensemble Recognition study and provided new reports on the question of decision noise in 

memory recognition using a model generalization framework. This approach involves 

combining a 4-alternative forced choice task with a rating procedure under the traditional 

assumptions that internal representations are identical under the two regimes and that 

response bias does not play a role in subject response during forced choice tasks. They 

jointly fit their elaborated SDT model with decision noise to data from both the 4AFC and 

the confidence rating tasks but found virtually no significant decision noise influencing 

subject performance in their memory recognition experiments.

Rosner and Kochanski (RK; 2009) developed a categorical judgment model to separately 

estimate criterion noise at decision boundaries. They corrected an error in an earlier formal 

description of a categorization task that allowed for decision noise in absolute identification 

and confidence rating tasks (Torgerson, 1958). However, RK showed that the earlier 

formulation failed to account for the fact that truly independent noisy criteria might overlap 

from trial to trial and could result in predictions of negative response frequencies. Their 

revised formalization accounts for this overlap and can be reduced to two special cases: in 

the absence of decision noise the model simplifies to the traditional SDT model, and in the 

absence of representation noise the model simplifies to a complimentary SDT model (a 

formulation which ascribes all response variability to noisy criteria). Using simulated 

experiments, RK showed parameter recovery was possible for a range of assumed parameter 

configurations. They argued that the general formulation of the model disambiguated the 

conflated parameters, and that acquiring sufficient degrees of freedom in data posed the only 

constraint to parameter estimation. In particular, a categorization task with N stimulus 

classes and M+1 response categories requires identification of the means and variances of 

2N-2 stimulus parameters (assuming a reference stimulus class with mean 0 and variance 1) 

and 2M criterion parameters. This categorization task has NM independent data points, so 

that full model identification is possible only when NM > 2(N+M)-2; that is, when both N >2 

and M >2. For the standard signal detection paradigm with 2 stimulus classes (N = 2), a 

solution is available only if the criterion variances are assumed equal at all category 

boundaries.

A New Approach

Intuitions and Rationale

We develop a framework combining two well-known experimental paradigms to estimate 

both representational and decision noise components in signal detection type tasks with only 

two stimulus classes, S0 and S1 (where 0 refers to signal absent trials and 1 refers to signal 

present trials). The first paradigm is a confidence-rating task in which subjects provide a 
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rating Ri indicating their degree of certainty that the present trial contains a signal stimulus 

(Egan, Shulman, & Greenberg, 1959). The second component is the multi-pass procedure, 

an external noise paradigm involving multiple presentations of identical stimuli (Burgess & 

Colborne, 1988; Greene, 1964; Lu & Dosher, 2008). We show that this combination 

sufficiently constrains elaborated signal detection models by providing measures of 

agreement in addition to rating frequencies.

Here we offer some basic intuitions to illustrate our strategy for dissociating representation 

and decision noise components. To begin with, we simplify our exposition by considering 

response variability with a single criterion C with stimulus class Sh, where h = 0 or 1. If an 

observer responds differently to two or more trial presentations with identical stimuli, we 

attribute the change in response to internal noise. Researchers have explored this basic idea 

by adding external noise to stimulus presentations in order to estimate internal noise 

(Barlow, 1957; Pelli, 1990; Lu & Dosher, 1998, 2008). Examples of external noise include 

random assignment of contrast increments or decrements to individual pixels in a visual 

stimulus, samples of “white noise” added to an auditory stimulus, or any other random trial-

by-trial perturbations to the stimulus. Multiple presentation methods that utilize external 

noise assume that the total noise degrading subject performance is a composite of 

component noise sources. The first component, with standard deviation σext, reflects a 

variability in the subject’s internal representation of the external noise that is entirely 

correlated with the variability in the physical stimuli. This assumption implies that identical 

samples of external noise lead to internal representations that are partly composed of 

identical offsets along the decision axis. Therefore, a given sample offset reflected by this 

consistent noise component depends entirely on the specific noisy stimulus that evoked it1. 

The second component, with standard deviation σEh, signifies the internal noise induced 

during trials of stimulus class h and reflects random perturbations arising from the encoding 

of both signal (if present) and external noise in trial stimuli. Finally, random trial-by-trial 

sampling of a variable criterion with standard deviation σC constitutes a third component. 

The distributional parameters of the encoding noise component may be functionally related 

to features of a stimulus class (e.g., contrast level), but it is still stochastic in nature and 

results in random perturbations of the internal representation to identical stimuli. The 

criterion variability, by assumption, neither depends on individual stimulus samples nor on 

the general stimulus class. We refer to these secondary noise components as random noise 

(Levi & Klein, 2003) insofar as they operate independently of any external noise samples 

(drawn from a single distribution). Therefore, the total response variability σThduring trial 

presentations of stimulus Sh, is the combined result of the perturbations arising from 

consistent and random noise components.

(1)

1To our knowledge, filtered or bandpass noise has not generally been used with the mutli-pass paradigm. However, color or frequency 
spectrum notwithstanding, we see no difference in the principle assumption that trial sampled internal noise is comprised of stimulus 
dependent (consistent) and stimulus independent (random) components.
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In a multi-pass paradigm, subjects perform a signal detection task over multiple passes of 

trials. Each trial from the first pass includes an independent sample of external noise. 

However, subsequent passes of trials contain the same stimuli and exactly identical samples 

of external noise as in the first pass (Figure 3). Although two passes suffice to obtain an 

estimate of agreement, in practice experiments often include additional passes for better 

accuracy and precision. Since any change in overt response to identical presentations of a 

stimulus reflects a change in the internal state of the observer, variability in response to 

identical stimuli reflects internal noise (Burgess & Colborne, 1988; Green, 1964; Lu & 

Dosher, 2008). Researchers can assess to what extent subject responses agree over multiple 

presentations of identical samples of noisy stimuli and this agreement can be used as an 

additional constraint to determine the ratio  (see Appendix). Low ratios of 

internal to external noise will lead to greater agreement between responses to identical 

stimuli, while higher ratios lead to a decline in agreement. The estimated statistic of 

agreement depends on the task specifications but can be measured with percent agreement 

(Burgess & Colborne, 1988; Spiegel & Green, 1981; Lu & Dosher, 2008), correlation (Levi 

& Klein, 2003), or covariance between responses to corresponding trials on successive 

passes.

For multi-pass experiments involving only a single decision criterion, the observed response 

frequency and response agreement can provide estimates of the total internal to external 

noise ratio in addition to sensitivity and response bias (Green, 1964; Burgess & Colborne, 

1988). The separate parameters of criterion and encoding variance, however, leaves many 

possible combinations of criterion and encoding noise that are compatible with the measured 

combination of HR, FAR, and agreement measures. In a multi-pass signal detection 

experiment with a single criterion, there are five parameters to estimate (encoding noise for 

each stimulus class, a mean value for the signal distribution, a criterion mean, and a criterion 

variance) with only four data points (HR, FAR, agreement on signal present trials, and 

agreement on signal absent trials).

Degrees of freedom increase with additional criteria in a rating experiment. Rosner & 

Kochanski (2009) demonstrated the possibility of independent estimates of criteria 

variability, criteria positioning, stimulus positioning, and stimulus representational noise 

(they did not distinguish between consistent and random components) in rating tasks with at 

least three stimulus levels and four response categories. Estimating these parameters with 

only two stimulus classes, however, requires additional constraining data measurements. In 

this paper, we use a multi-pass confidence rating procedure (MCR) and we measure the 

covariance of responses to trials of a specific stimulus class across different passes as an 

index of response correlation between these passes. The full covariance matrix provides a 

compact summary of agreement measures for the same categorization of identical trials 

across passes (within-category covariance along the diagonal) as well as disagreement for 

different categorizations of identical trials (between category covariance off the diagonal). 

Conceptually, if trial-by-trial responses over each pass are taken as vector elements, then the 

covariance gives the (mean adjusted) dot product of these response vectors. A highly 

positive covariance estimate implies response agreement across passes. Very low covariance 

(near zero) implies lack of agreement. Highly negative covariance implies not only lack of 
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agreement but strong disagreement across passes. With low to moderate levels of internal 

noise, we intuitively expect positive covariance values for within-category estimates along 

the diagonal of the covariance matrix. For between-category covariance estimates for 

adjacent regions of decision space (e.g., response assignments of “2” and “3” across passes) 

we might expect lower though still positive values. For between-category covariance 

estimates for response assignments of nonadjacent regions (e.g., response assignments of 

“2” and “5” across passes), we expect nearly zero or negative covariance estimates.

Here we show that the MCR procedure sufficiently constrains a class of decision noise 

models to identify all relevant parameters even when the task involves only two stimulus 

classes. Under the MCR procedure, each stimulus class gives us M independent response 

frequencies as well as M independent agreement measures for identical responses between 

passes. In addition to the covariance of responses for the same rating category across passes 

(within-category covariance: e.g., response category “2” in the first pass and “2” again in 

subsequent passes), the covariance of responses for different rating categories across passes 

may provide even stronger constraints for model fits to data (between-category covariance: 

e.g., response category “2” in the first pass and “3” in subsequent passes). In total, the MCR 

provides M(M+3) data points (2M response frequencies and M(M+1) covariance estimates) 

to fit 2M+3 free parameters: M criterion positions, M criterion variances, an encoding 

variance for the signal absent trials, an encoding variance for the signal present trials, and 

the mean position of the signal stimulus along the decision axis (Table 1). Therefore, the 

MCR procedure may provide sufficient constraints to recover all decision noise parameters 

for a rating task with as few as three response categories (corresponding to M = 2).

To illustrate this point, Figure 4 (left) shows two overlapping and nearly identical ROCs 

generated using very different underlying internal noise components. In one case, the 

encoding noise is equal for signal-absent and signal-present trials while decision noise is 

small for all criteria. In the second case, the encoding noise for signal-present trials is half 

that for signal absent trials, while the decision noise varies markedly across criteria and even 

well exceeds the encoding noise at one of the decision boundaries. Yet, in spite of these very 

different noise profiles, the resulting ROC’s are essentially the same. On the other hand, the 

covariance measures estimated from an MCR procedure are drastically different (Figure 4, 

right) and may provide additional constraints to disambiguate the underlying noise 

components.

While a greater number of independent data points relative to the number of free parameters 

provides a necessary condition for fitting those parameters within the context of a model, 

this is not sufficient all on its own (Busemeyer & Diederich, 2010). Even with more data 

points relative to free parameters, the data may fail to fully constrain the model and 

disambiguate the parameters, so that successful model identification depends on more than 

degrees of freedom alone.

We will provide evidence that the MCR framework allows for full parameter recovery from 

simulated data over a wide range of conditions. However, we first seek an intuitive 

demonstration of the relationship between observed data and underlying noise components. 

While some changes to covariance data are straightforward (e.g., representational noise for a 
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specific stimulus class selectively depresses covariance estimates for responses to that 

specific stimulus class, but nontrivial decision noise at even a single criterion boundary will 

lead to changes in covariance and z-scores at all criteria owing to positional overlap), the 

pattern of expected values becomes more complex with the introduction of decision noise. 

In Figure 5, we examined changes to expected values of response frequencies and 

covariance structure for a three-category rating task in which we selectively increase the 

variability for one of the criteria from zero to match the level of variability in the stimulus 

representation. For this very simple example, we assumed that observers map internal 

representations to responses according to a corrected Law of Categorical Judgment as 

described by Rosner and Kochanski (2009; see Decision Rules below). This decision rule 

determines response assignment by subtracting each trial-sampled representation from trial-

sampled criteria and choosing the category where the difference between representation and 

corresponding criterion gives the least positive value; when all values are negative, the 

representation is assigned to the highest response category.

We begin from the standard SDT account with no decision noise. In this case we assume 

that two static criteria, each positioned at the mean of the signal-absent and signal present 

distributions, divide the decision space into three response categories (Figure 5, top-left). 

Our example assumes a d′ = 1 with equal representational noise for the two evidence 

distributions. In contrast, we juxtapose a second scenario in which we selectively increase 

the decision noise for the more lax criteria to match the representational noise, without 

modifying any of the other parameters. The joint distributions accounting for both the 

variability in the criterion as well as variability in the signal-absent and signal-present 

representations are shown as concentric circles (Figure 5, left middle and bottom). The 

vertical axis represents positions of the noisy criterion, the horizontal axis reflects positions 

of the noisy internal representations, and the solid blue lines reflect the position of the means 

of the noisy and static criteria with respect to the noisy criterion (horizontal blue lines) and 

representational (vertical blue lines) distributions. Finally, we superimpose rating response 

column and row labels A, B, C, and D for regions of the joint distributions according to the 

decision rule described above. For example, when trial samples of both the noisy criterion 

and representation exceed the stricter (and static) criterion in region DD, some trial 

representations will be classified as “1”s instead of “3” depending on whether the sampled 

criterion exceeds the sampled representation. Similarly, trial representations will always be 

classified with a response category of “2” anytime a sampled criterion exceeds the static 

criterion while the sampled representation does not (regions AD, BD, and CD). Each 

column of these joint distributions illustrates how some representations falling along the 

decision axis become reassigned depending on the position of the trial sampled criterion. In 

column C, for example, all representations remain with a response assignment of “2” except 

in row C where some will be reassigned to a response of “1.”

Figure 5 (right) also shows the corresponding changes to the zROC and covariance in the 

classical SDT treatment with no decision noise (shown as circles) and with the targeted 

increase in decision noise at the most lax criteria (shown as ‘+’ symbols). In the case of the 

zROC plot, we can see how the introduction of decision noise at the more lax criterion 

results in small but noticeable change in position for the stricter criterion in z-space. Column 
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D in the joint distributions shows that response assignments of “3” can only decrease with 

increased decision noise at the more lax criterion, and no responses previously mapped to 

“1” or “2” will be reassigned to “3” according to the parameters we have chosen for this 

illustration. This net loss of assignments to “3” occurs for both signal-absent and signal-

present trials and is reflected by a shift in the criterion estimate in the zROC towards the 

bottom left. Similarly, columns A and B show how the criterion variability on signal-absent 

trials results in a net decrease of response assignments mapped to “1” leading to a significant 

rightward shift in the more lax criterion estimate in zROC space: losses from region BB are 

canceled by gains in region CC, but region AA, BA, AD, and BD all lose response 

assignments of “1” without corresponding counterbalancing regions. These regional 

reassignments are also true for signal-present trials, but in this case the region CC represents 

a much higher likelihood under the joint density function than is counterbalanced by regions 

AA, BA, AD, and BD. These regional exchanges, coupled with an additional increase in “1” 

responses from region DD to counterbalance losses in region BB, results in a very slight net 

increase in response assignments of “1” with a corresponding subtle downward shift in the 

position of the more lax criterion in the zROC plot.

We can also observe this increased decision noise changes the covariance data, though 

overall response frequency will also affect this measure in addition to the correlation in 

responses across passes. For both signal-absent and signal-present trials, the covariances for 

response assignments of “3” decrease due to changes in lower correlations and lower 

response frequencies when trial samples of both criterion and representation fall within 

region DD. Within-category covariance for response assignments of “2” also decrease with 

increased decision noise for signal-absent trials since many of the regions previously 

assigned to “1” become remapped to “2” under the joint distribution. Although the 

remapping of these regions also occurs during signal-present trials, covariance for response 

assignments of “2” nets a small increases here because the overall response frequency 

increases with decision noise, but the shifted position of the signal-present joint distribution 

leads to a lower drop in correlation than occurs in signal-absent trials (note the lower impact 

of regions AD, BA, BB, and BB). On the other hand, the between-category covariance of 

responses “2” and “3” become increasingly negative on both signal-absent and signal-

present trials. These negative covariances occur because response assignments of both “2” 

and “3” become increasingly associated with “1” on subsequent passes, thereby decreasing 

the “2–3” covariance from baseline.

Decision Rules

For any task amenable to analysis within the signal detection framework, SDT assumes 

observers generate responses by comparing internal representations of the trial stimulus with 

one or more decision criterion. A decision rule constitutes a specific protocol that 

determines how an observer assigns an internal representation to a response. With static 

criteria, most straightforward decision rules predict identical responses for any given trial-

sampled representation. With noisy criteria, the situation may be quite complex. When the 

task involves only a single noisy criterion (yes/no, 2AFC, 2IFC with bias, etc), no ambiguity 

arises in consideration of this comparison. Similarly, for tasks calling for multiple criteria 

(rating procedures, identification, classification, etc), it is straightforward to map a trial-
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sampled representation to response as long as the noisy criteria do not overlap from trial to 

trial. We might even expect the operation of an enforcement mechanism maintaining ordinal 

relations between trial-sampled criteria (Treisman & Faulkner, 1984).

When noisy criteria have overlapping distributions, trial-sampled criteria may sometimes 

become disordered along the axis, requiring subjects to implement a more complicated 

decision rule. Simultaneous decision rules require the observers to compare the internal 

representation with available criteria all at once. These decision rules then determine a 

response category by making a unique selection among the results of these comparisons. 

The work in this paper focuses on several forms of simultaneous decision rules.

We first formulate the simultaneous decision rule used by RK: subtract the position of the 

stimulus representation from each criterion boundary and respond with the category 

affording the least positive distance; if all differences are negative respond with category M

+1. Following a similar notation used by RK, let sh ∈ G(0, 1) where G(μ, σ) is a Gaussian 

random variable with mean μ and variance σ2. Then shσEh equals the random offset of the 

internal response from its mean position μSh due to the subject’s encoding noise during a 

trial of stimulus class Sh. Also, let ci ∈ G (0,1) and ci σCi equal a trial-sampled offset of the 

ith criterion from its mean location μCi due to the subject’s internal decision noise at that 

boundary. We now assume a single external noise level σext = 1, so that all parameters are 

estimated in reference to this term. We let sext equal an observer’s consistent trial-by-trial 

offset to the internal representation due to presentation of a specific sample of Gaussian 

external noise, so that sext ∈ G(0,1). The RK decision rule just described can be formalized 

as follows: for a trial-sampled stimulus of class h is to choose the category m when the 

following equation evaluates to true, or category M+1 if the equation evaluates false for all 

m:

(2)

Klauer & Kellen (2012) proposed two alternative simultaneous decision rules. In the first of 

these alternatives, the decision rule determines the trial-by-trial response according to the 

rule: subtract the m criterion boundaries from the trial-sampled stimulus representation and 

respond with the category m+1 yielding the smallest positive distance; in the event all 

comparisons are negative, choose category 1. The second rule determines the trial-by-trial 

response by computing the least absolute distance between criterion boundaries and the trial-

sampled representation. Specifically, subtract the stimulus representation from all M 

criterion boundaries, identifying the smallest absolute value of the difference between 

stimulus representation and criterion boundary m, and choose category m if the difference 

is positive and m+1 otherwise. This second rule also has the additional consequence that 

rating frequencies will be symmetrically distributed when the corresponding means of 

criteria distributions are symmetrically distributed about an evidence distribution. Given any 

M > 1 trial sampled criteria, these decision rules can be used to map any trial sampled 

internal representation to overt observer responses.
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To distinguish these three decision rules, we follow Kellen et al (2012) and denote RK’s 

Law of Categorical Judgment as LCJ (given by equation 2); we denote the second (Klauer 

and Kellen’s complimentary version of the LCJ) as LCJc, and the last as LCJsym due to its 

symmetric treatment of criterial boundaries relative to trial sampled representations. Figure 

6 contrasts the response mappings for each of these three decision rules when trial-sampled 

criteria overlap. For a given sample of criteria, the rules prescribe different response profiles 

for stimuli falling in a given region along the decision axis. Note that for any given 

overlapping criteria the LCJ and LCJc prescribe entirely incongruent responses while 

LCJsym shows some response agreement with both. These differences suggest the possibility 

that the LCJ will produce distinctly different data patterns in the aggregate from the LCJc 

rule and moderately different patterns from the LCJsym rule. With these three different 

decision rules in hand, we examined the possibility of parameter recovery in simulated MCR 

experiments using simultaneous decision rules that either matched or mismatched the rule 

used to generate simulated data.

Simulation Study

In the present study, we recruit the power of external noise and the MCR method in a 

confidence rating task to disambiguate and estimate criterion noise under the various 

simultaneous decision rules LCJ, LCJc, and LCJsym. We derived the expected values of the 

response frequencies and covariance data conditioned on trial-by-trial samples of external 

noise. Here in the main text we show the equations describing LCJ. For a formal description 

of LCJc and LCJsym, please see Appendix A.

For the LCJ decision rule, the expected response frequencies conditioned on the external 

noise sample sext for the hth stimulus class are given as,

(3)

where ϕ(x) is the Gaussian probability density function. We then easily determine P (R= M 

+ 1|sext, Sh) as . The first term in eq. 3 integrates over all possible 

values of the mth criterion. The middle term integrates over stimulus representation values 

up to that criterion. The third term estimates the probability that the response is consistent 

with any other criterion. We then integrate over all external noise samples sext to get the 

overall response frequency for this stimulus class h.

(4)

Similarly, across any two passes i and j, the covariance between any two response categories 

m and m′ is,
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(5)

We now show that data from the MCR experiment adequately constrains the models to 

uniquely identify individual representational and decision noise components. We approach 

this problem by examining the precision, accuracy, and goodness-of-fit of recovered model 

parameters from simulated data. For each decision rule adopted by our simulated observer 

we tested parameter recovery when fitting simulation data with matched models (e.g., LCJ 

fitted to data generated with a simulated observer using LCJ) as well as when fitted with 

mismatched models (LCJc and LCJsym fitted to data generated with simulated observer 

using LCJ). In the multi-pass framework, response frequencies and the covariances of 

responses across passes are estimated. This covariance data paired with the rating response 

sufficiently specifies the models for independent identification of encoding and decision 

noise contributions.

Methods

Rationale—In order to demonstrate full parameter recovery for the model using our new 

framework, we simulated a number of MCR experiments under a range of noise 

configurations. Because MCR experiments schedule identical stimuli over each pass, data 

collection may require significant empirical investment. Since the minimal data for 

acceptable model recovery was of interest, we examined not only the possibility but also the 

feasibility of parameter recovery at different numbers of trials and passes per simulated 

experiment.

Our simulations investigated several plausible configurations for the parameters of criterion 

and stimulus distributions using three response categories and two stimulus classes. We 

focus on the minimum number of stimuli and rating categories because earlier efforts 

towards parameter recovery became problematic with fewer response categories. We 

investigated configurations in which either the criterion noise variances or the encoding 

noise variances were equated along the decision axis (labeled equ), increased along the 

decision axis (labeled asc) or decreased along the decision axis (labeled des). We assume a 

single external noise variance of unity for all stimulus classes, with an external noise mean 

of zero. For any given variance configuration,  and 

. We also normalized the sum of the highest decision and 

encoding noise variances to equal the variance of the external noise. In other words, 

. This constraint accords with the reports of 

previous authors that the total internal noise lies near this level for visual and auditory 

detection and discrimination experiments over a considerable range of external noise levels2 

(Burgess & Colborne, 1988; Green, 1964; Lu & Dosher, 2008). For all other noise 

components, we computed variances by applying logarithmic decrements in the ascending 

and descending conditions. We positioned each criterion mean along the decision axis at 

2The dependence of internal noise on external noise is predicted from observer models that show internal noise increases with the total 
energy of the stimulus (Lu & Dosher, 2008).
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 and  so that we could ensure a robust level of trial-by-trial 

criterion overlap. Finally, we kept the position of the mean of the signal distribution at 

. The various arrangements of parameter configurations is shown in Table 2 

and Figure 7.

The simulated experiments emulated a confidence rating detection paradigm in which an 

observer maintains two criteria that define three response categories. The simulated observer 

implemented a LCJ decision rule for all noise level configurations. We also generated 

simulated data with the LCJc and LCJsym decision rules for a single parameter configuration 

in which decision and encoding noise are equal across criterion boundaries and stimulus 

classes. The probability of a signal present stimulus was 0.5. The simulated experiments 

varied the number of trials per pass and number of passes per experiment, in addition to a 

specific parameter configuration. The number of trials n per pass was 250, 500, or 1000 and 

the number of passes was either four or six. We set the minimum number of passes to four in 

order to obtain variance estimates on covariance data for weighted-least squares model 

fitting.

Data analysis—The data were arranged in this way: for each stimulus class h, we have M

+1 subject response matrices R(m,h) of size T × J, where J is the number of passes, T is the 

number of trials per pass, and m is an available response category. Then each entry of R(m,h) 

contains 1’s for trial responses to stimulus class h classified as category m and 0’s otherwise. 

Thus, we denote  as the jth T × 1 column vector of the matrix R(m,h) with the tth entry 

 equal to 1 or 0, signifying whether or not subjects classified the stimulus from the tth 

trial of the jth pass with a classification of m. The matrix corresponding to the lowest 

confidence rating R(m = 1 ,h) was dropped due to its redundancy given the other response 

rates and fixed trial numbers.

For every simulated experiment, we computed the relative frequency of the mth 

classification rating during each pass j as

(6)

The average of each response rating across all passes is the best and final estimate of the 

rating response rate. That is

(7)

Covariance was computed for every combination of passes for every rating category. For 

passes i and j, where i≠j, and category ratings m and m′, the covariance is given as,
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(8)

We refer to the covariance as within category covariance when m= m′ and between category 

covariance when m ≠ m′. For an MCR experiment with J passes, we have  observations 

of within category covariance estimates for each response rating m, and  observations 

of between category covariance estimates for each response pairing of m and m′. We took 

the average of all pairwise estimates as our final covariance estimate between categories m 

and m′.

Weighted least-squares model estimation requires estimates of the variance for each of the 

final response rates. The variability of the response rates for each pass was estimated by the 

variance of each response rate across all passes:

(9)

The final estimate of each response rate is the average of the response rates across passes, 

and the final estimate of variance for an averaged response rate across all passes is given by 

dividing the variance among individual passes by the total number of passes. That is,

(10)

Variances for covariance data were computed by first taking the variance of each within and 

between pass estimate and then dividing by the  or  possible pairing combinations, 

respectively.

Modeling—We fit the LCJ, LCJc, and LCJsym to simulated data derived from each 

parameter configuration and LCJ decision rule, and to simulated data derived from one 

parameter configuration using the LCJc and LCJsym decision rules. Model fits used a Matlab 

simplex optimization routine (Nelder-Mead) and a weighted least-squares cost function. The 

cost function heavily penalized a possible solution if any variance parameters fell below 

zero or if the criterion means violated their ordinal relation. At the beginning of each 

parameter search routine, we generated initial starting parameters by independently 

perturbing the true means of each parameter using a Gaussian random number generator 

with a standard deviation of 0.15σext. Apart from penalties just stated, the constraints 

imposed on parameters of the simulated observer were not imposed upon the model during 

parameter recovery: candidate fits of criteria and signal distribution means were not 

restricted to specific positions along the decision axis nor were they restricted to maintain 
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certain relative distances; nor were any decision and encoding noise variances constrained to 

sum to unity. We ran 250 experiments at each experimental condition and at each parameter 

configuration.

Results

We computed the median and 95% confidence interval for each model parameter using the 

250 simulated runs at each parameter configuration and pass-trial combination. In every 

case, the actual parameter values of the simulated observer fell within the 95% confidence 

intervals of the estimated values for each position and variance parameter. The median 

parameter values recovered from the matched model were very close to the parameter values 

used to generate the simulated data. These results stand in contrast to the attempted 

parameter recovery for decision protocols of the models mismatched against decision rule of 

the observer. In the case of LCJc fitted to the data simulated with LCJ, at least one 

generative parameter failed to fall within the 95% confidence interval when simulations 

were run with four passes at 500 trials/pass or with six passes at 250 trials/pass. When we 

fitted LCJsym to the data simulated with LCJ, at least one generative parameter failed to fall 

within the 95% confidence intervals when simulations were run with four passes at 500 

trials/pass.

We also examined the precision and accuracy of our model fits as a function of trials per 

pass and passes per experiment. We calculated the standard error (SE) of individual 

recovered parameters by computing the standard deviation of each fitted parameter across 

all experiments within a given noise configuration, trials/pass, and passes/experiment 

setting. Similarly, we estimated an individual parameter mean-squared error (MSE) by 

squaring the difference between the true parameter value adopted by the simulated observer 

from the corresponding fitted parameter in each experiment and averaging across all 

experiments within the given configuration, trials/pass, and passes/experiment setting. Mean 

SEs (averaged across all model parameters), as well as the SE of the most variable 

parameter, strictly decrease with increasing trials per pass and passes per experiment at each 

experimental configuration (Figure 8). Mean MSEs (again, averaged across all model 

parameters) also exhibit a pattern of increasing accuracy (decreasing MSE) with greater 

numbers of trials and passes for the correctly matched decision rule (Figure 9). The MSE of 

the most poorly fitted parameters (i.e., those parameters with the highest MSE) also decrease 

with increasing trials and increasing passes (a single exception occurs in the DN-asc EN-des 

configuration at 500 trials/pass comparing four vs six passes per experiment).

We also examined fits at six passes/experiment for mismatched relative to matched models 

(Figure 10). For both fits of LCJc and LCJsym to an observer using LCJ, the averages of the 

MSE for mismatched protocols do not generally monotonically decrease with trials/pass or 

passes/experiment. Furthermore, at six passes/experiment, fits for both mismatched models 

show a higher average MSE across all trials/experiment relative to MSE for the correctly 

matched model for all configurations except DN-0 EN-asc. The models perform equally 

well for simulations assuming zero decision noise because the models make identical 

predictions for negligible decision noise. For one parameter configuration, we used both 
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LCJc and LCJsym as our simulation decision rule (Figure 10, bottom). Here too, accuracy 

improved for matched but not mismatched models with increasing trials.

An important concern is whether differences in parameter recovery between matched and 

mismatched models correspond to goodness-of-fit when actual underlying parameters are 

unknown. A weighted least squares estimate (χ2) finds parameters that minimize the 

difference between simulated data and expected values of data based on recovered 

parameters. We computed χ2 for each fit of matched and mismatched models to each 

simulated data set. We averaged across simulations from a given configuration and trials/

pass setting using six passes/experiment from mismatched and correctly matched models. In 

this case, the average χ2 fits for the correctly matched model remains nearly constant with 

increasing trials/experiment (Figure 11). On the other hand, average χ2 for mismatched 

models increases with increasing trials/experiment for all configurations except DN-0 EN-

asc. In contrast to the other configurations, average χ2 fits for DN-0 EN-asc are notably 

consistent across both matched and mismatched fits. For simulated observers with zero 

decision noise, fits show an increasing accuracy while the log of the mean chi-square fits lie 

within a narrow range across all trials/experiment for all model protocols. We also 

investigated the frequency with which the model fits for correctly matched model resulted in 

lower weighted least square costs than fits for mismatched models. For every configuration 

except DN-0 EN-asc, χ2 fits were lower for correctly matched models than mismatched 

models for at least 91% of the individual simulations with four passes and 250 trials/pass. 

This lower bound on success rate increased to 97% for individual simulations with six 

passes and 1000 trials/pass.

We also examined MSE and χ2 for model fits to data generated using the LCJc and LCJsym 

decision rules for a single parameter configuration, DN-equ EN-equ (Figure 11, bottom). 

Similar to results when using the LCJ as a generative model, MSE decreased with additional 

trials for correctly matched rules but did not generally show similar decreases with 

mismatched rules. Again, the χ2 results for models matched to the generative model 

remained low with increasing trials, while the χ2 increased with increasing trials for 

mismatched models. When using LCJc as the generative decision rule, χ2 fits for correctly 

matched models were lower than mismatched models for at least 90% of the individual 

simulations with four passes and 250 trials/pass. This lower bound success rate increased to 

99% of individual simulations with six passes and 1000 trials/pass. However, when using 

the LCJsym as the generative decision rule, success rate decreased significantly for correctly 

matched models relative to mismatched models at 60% of individual simulations with four 

passes and 250 trials/pass, increasing to 80% with six passes and 1000 trials/pass.

Discussion

Previous attempts to estimate decision noise in simple response signal detection type tasks 

with two stimulus classes have required strong simplifying assumptions about the various 

noise components. Here we demonstrate that an MCR procedure provides a sufficiently rich 

data set to effectively recover decision noise parameters in many representative parameter 

configurations without assuming specific relationships between noise components. 
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Importantly, this framework uses a model that permits overlapping criterion distributions 

and a decision rule that deals with this possible overlap.

The results show that both the precision (1/SE) and the accuracy (1/MSE) of the parameters 

increase with the number of trials/pass and passes/experiment. Furthermore, model fitting is 

not only possible, but also feasible with a number of total trials amenable to typical 

experiments in psychophysical studies. For all parameter configurations, it appears that 

parameter recovery does no worse and often improves with total number of trials up to 2000 

total trials. However, within the range of 3000 to 4000 total trials, allocating less trials over 

more passes results in better average accuracy than a greater number of total trials 

distributed over less passes for some parameter configurations (cf, DN-asc EN-equ, and 

DN-0 EN-asc). Still, though the optimal allocation strategy may depend on the underlying 

parameter configuration, the accuracy generally appears to improve with total number of 

trials.

For the configuration assuming zero decision noise, our simulations showed that all three 

decision models gave accurate and precise fits to the data of simulated experiments. This 

result should come as no surprise because each of the protocols prescribes identical trial-by-

trial responses to a trial-sampled representation when criteria remain static over the course 

of the experiment. However, the results for accuracy look quite different for mismatched 

model and simulation protocols for all configurations imposing non-trivial decision noise. In 

every configuration with decision noise the accuracy and χ2 estimates are much worse 

relative to correctly matched model fits. In these cases, the accuracy generally fails to 

improve in any significant way with increasing trials/pass or passes/experiment and the χ2 

estimates become notably worse. The failure of these models to fit simulated data from 

mismatched protocols shows that the χ2 estimates of recovered parameters for correctly 

matched pairings do not result from under-constrained models. It appears that some 

combinations of response frequencies and covariance data are simply not compatible with 

data sets generated by certain decision protocols. Therefore fitting a decision rule model to 

data derived from an MCR experiment could recover erroneous estimates of the underlying 

parameters when the model rule fails to match the decision strategy of the observer. At least 

in some cases, however, mismatched models can be ruled out by comparison to fits of 

models more closely aligned with decision rules used by the observer. Some positive 

evidence exists suggesting that the experimenter may manipulate the observer’s decision 

strategy by instruction and task structure (Treisman & Faulkner, 1985). However, a more 

parsimonious approach would attempt to disambiguate potential protocols through model 

selection techniques.

In a related study, we investigated the possibility of trade-offs between decision and 

encoding variance parameters. That is, for a given data set of response frequencies and 

covariance estimates, are variances associated with decision and encoding processes 

fungible? Using the LCJ decision rule, we generated expected values of response 

frequencies and covariance data using the same underlying parameter sets from our 

simulation study (Table 2) for three response categories. We then independently perturbed 

these generative parameters using a Gaussian random number generator with a standard 

deviation of 0.15σext. We then used these perturbed parameters as an initial guess in model 
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fitting routines to assess how changes in model parameters led to differences between 

expected values in the data obtained from our generative parameters. We penalized 

violations of criterion ordering along the decision axis, but we did not constrain our model 

fitting with the same constraints imposed on our simulated observer: decision and encoding 

noise variances were not constrained to sum to unity. We obtained fits for 500 iterations at 

each parameter configuration. The norm of the difference between expected values resulting 

from the fitting routine and those given by the true generative parameters was always greater 

than zero when the search failed to converge on the true parameters. That is, we did not find 

any alternative model solutions that resulted in non-zero costs.

Finally, we compared the expected values of the LCJ for each of our representative 

parameter settings with those obtained when random numbers were given as parameter 

inputs to the model. The sum of squared differences between model outputs for the 

representative parameter sets and model outputs for random selected parameters generally 

increased with the Euclidean distance between parameter sets. This relationship was not 

monotonic, but a general trend showed an increasing sum of squared error with increasing 

distance between parameters.

We have demonstrated the feasibility of recovering estimates for decision noise as well as 

encoding noise within an expanded signal detection framework for representative parameter 

configurations. These configurations imposed identical positioning of the criteria and signal 

distribution means, and caps on the total noise at the decision stage. While we do not believe 

that this circumstance poses any fundamental constraints on the application of our 

framework, more complex configurations might lead to more variable parameter estimation. 

For example, a higher overall total internal noise relative to external noise would necessitate 

a greater number of total trials in order to achieve comparable levels of accuracy and 

precision in parameter estimates. Nevertheless, the total internal noise levels assumed by our 

simulated observer lay well within the range often reported in multi-pass experiments 

(Burgess & Colborne, 1988; Green, 1964; Lu & Dosher, 2008). While simulation studies 

cannot guarantee that the parameters of the decision noise models considered here uniquely 

map to confidence rating and covariance estimates, we believe the demonstrations given 

here provide strong evidence for the efficacy of the procedure in resolving and identifying 

factors underlying response variability.

Application

We applied our framework to a simple visual detection confidence rating experiment in 

order to assess the degree to which decision noise contributes to response variability, and to 

investigate the dependence of noise components on the response structure of the task. We 

conducted a multi-pass, Gabor detection experiment with external noise in foveal vision (see 

appendix for additional details). Subjects performed in sessions with both three and five 

rating categories each day. For each subject and for each rating scale, we collected response 

frequencies and covariance estimates for signal absent and signal present trials across five 

days. We cumulatively summed response frequencies with traditional zROC plots and also 

plotted both within- and between-category covariance estimates for signal present and signal 

absent trials.
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We found the best fitting lines for zROCs (fit to both coordinates) estimated with yes rates 

for experiments with three response categories fell above the best fitting line of the zROC 

determined by yes rates for experiments with five response categories for both subjects 

(Figure 12). This result is consistent with the prediction of Benjamin et al (2013) that more 

response categories are associated with more decision noise. We then fit our data with each 

of the three decision noise models (LCJ, LCJc, and LCJsym) and the classical signal 

detection model without decision noise cSDT. Our criteria for model selection among those 

with equal number of parameters (i.e., LCJ, LCJc, and LCJsym) was simply to choose the 

model with the lowest weighted least-squares cost function. For selection between these 

more complex models and the simpler reduced model cSDT, we used F-tests for nested 

models (Wonnacott & Wonnacott, 1981). For both subjects, the decision noise models did 

not fit the data significantly better than the cSDT model without decision noise when 

subjects used only three response categories. With five response categories, the LCJ 

decision noise model fit the data better than the LCJc or LCJsym models, and it provided 

significantly better fits than the cSDT model for both subjects. For further verification of the 

LCJ model fits to data with five response categories, we randomly sampled, analyzed, and 

modeled subject responses to 80% of trial stimuli, and then computed the r2 between 

predictions of the model with these parameters and the remaining 20% of the data. 

Repeating this procedure for over 100 repeated samples, we found median rROC = 0.99 in 

zROC data and rcov = 0.82 in covariance estimates for subject CC, and median rROC = 0.97 

in zROC data and rcov = 0.87 in covariance estimates for subject YZ.

We also examined whether representational parameters at the decision stage remained 

constant across three and five response categories. We fit LCJ to subject data from the five-

category rating experiment while jointly fitting the cSDT to the three category rating 

experiment. We either allowed all parameters to vary freely, or assumed that the 

represention-related parameters σE0, σE1, and μS1 remained identical across response 

structures. For both subjects, fits using the representation-constrained model were 

statistically equivalent to the unconstrained model suggesting stationary representational 

distributions but decision noise increasing with the number of response categories. These 

preliminary findings suggest that decision noise may play a larger role in task processing 

when tasks require a large number of response categories.

Of course, other SDT models might be generating the observed data patterns – for example 

the data may be generated by a mixture model in which a sample representation from a 

signal-present trial may derive from one of two underlying distributions (DeCarlo, 2002). 

When a trial is well attended, the trial representation is sampled from a distribution with 

mean μS1 and variance  If however the trial occurred during a lapse of attention 

then the trial representation is sampled from a distribution with mean 0 and variance 

 A mixture parameter λ determines the base rates for attended and unattended 

signal present trials. Relative to LCJ model, the mixture model also provided very good fits 

to the data, but the parameter λ changed inconsistently from three to five response categories 

for each subject. Cross-validation results from the mixture model and those obtained with 

the LCJ decision model resulted in very similar performance outcomes so we are unable to 

distinguish between these with our experimental data (see appendix for details).
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Nevertheless, the success of the mixture model to account for the data patterns in an MCR 

experiment raises the question of whether the decision noise models might mis-characterize 

response variability generated from attentional lapses as variability arising from decision 

mechanisms. We carried out a preliminary study by fitting decision noise models to 

simulated data from a mixture distribution. Despite assuming a 5% lapse rate well within the 

typical range assumed in attentional lapse studies, the decision noise models did not mis-

attribute attentional lapse to a decision noise mechanism (see appendix for further details). 

These results suggest that the decision noise estimates from the decision noise models 

considered here are not mistakenly conflating decision noise with lapses in attention as an 

alternative mechanism of response variability.

General Discussion

In this paper, we present a new framework for understanding performance in signal 

detection tasks that combines rating responses with multi-pass measurements. The 

framework resolves response variability arising from representation and decision processes, 

and can be applied to tasks with only two stimulus classes. Combined use of rating 

responses and multi-pass procedures provide stronger constraints on parameter estimation in 

extended SDT models with decision noise. A multi-pass procedure allows for a measure of 

total internal noise relative to consistent noise, but this technique by itself cannot achieve 

any further resolution of noise beyond this first order partitioning. A rating response task 

with more than two stimulus classes may provide for separate estimates of decision and 

representation noise, but the efficacy of this approach does not extend to experiments with 

only two stimulus classes without significantly simplifying assumptions about the 

underlying noise levels. Our combination of these two approaches provides a set of 

observations rich enough to separate and measure contributions of noise components at the 

decision stage. The MCR procedure can be used whenever meaningful external noise 

manipulations can be defined for the stimulus set (see below).

We demonstrated the efficacy of our framework by simulating MCR experiments for 

observers with a number of underlying noise configurations. We modeled the data from each 

of these experiments and found that precision and accuracy of parameter fits improved by 

increasing the number of trials and passes. For each tested configuration, we found these 

measures improved when averaged over all parameters as well as when considering only the 

worst performing parameters. That each of these improvements depended on the number of 

trials and passes gives us strong evidence that response frequencies and response agreement 

estimates together constrained the extended SDT model with decision noise. Importantly, 

models with mismatched decision rules generally provided worse χ2 with worsening results 

as the number of trials increased. This suggests that the framework is robust to model miss-

specification and that methods of model selection could help identify underlying decision 

rules in addition to model parameters.

We also deployed this framework in a visual detection confidence-rating task with multiple 

passes. MCR procedures afforded estimates of response agreement in addition to response 

frequencies. For both subjects, the data were better explained by an extended SDT model 

with decision noise for tasks with five response categories. When only using three response 
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categories, the decision noise model did not provide significantly better fits than the 

classical SDT model without decision noise. For many applications of SDT in which 

subjects may respond with a limited number of alternative categories, our result suggests the 

static criterion assumption of classical SDT remains valid and useful. However, ROCs for 

our subjects included features consistent with decision noise like peaked midpoints and 

lower performing operating characteristics for five but not three response categories. When a 

task structure offers a larger number of response categories, decision noise may become an 

important determinant in trial-by-trial response outcomes. Of course, the models we use to 

interpret our data affect what kinds of conclusions we may draw, and the classical signal 

detection model can be elaborated in a number of ways. A mixture model with static criteria 

(DeCarlo, 2002) provided very good fits as well when applied to our data. Moreover, the 

assumption of a latent distribution in the mixture model seems no less plausible than the 

assumption of fluctuating criteria in decision noise models. It may be the case that the 

decision noise models considered here misattribute an underlying latent distribution to 

greater variability in the criteria. To test this consideration we ran 250 additional simulated 

experiments of an MCR procedure to emulate an observer with static criteria. We assumed 

equal variance for signal-absent and signal-present distributions, sensitivity (d′) equal to 

one, and a 5% rate of attention lapses modeled by sampling from a latent signal-present 

distribution with mean of zero. We simulated six passes of 500 trials each to match our 

experimental procedure and then fit these simulated data sets with each of our decision noise 

models. The median model fits showed recovered parameters quite close to the actual 

generative parameters used in the simulations (Table 7). In particular, median fits for 

criterion variances were very nearly zero and median estimates of the positions of these 

criteria only slightly underestimated the true locations along the decision axis. The median 

fits for encoding parameters also closely matched the underlying generative parameters, 

although in this case the solutions converged with considerable variability and sometimes 

resulted in entirely unrealistic parameter values. Distinguishing between elaborated SDT 

models positing alternative mechanisms will require future experimental work and the 

developments presented in this paper allow for the consideration of explanations involving 

decision noise that were not previously available.

Key features of ROC and zROC data do not depend on the static criterion assumption and in 

some cases contradict it. In the case of rating procedures, our framework now provides a 

way to identify and quantify the separate contributions of encoding and decision noise to 

these features. For example, some researchers have noted that the “peaks” in empirical 

zROCs could emerge with highly stable central criteria and highly variable criterion 

boundaries at more extreme positions (Mueller & Weidemann, 2008; Wickelgren, 1968). In 

the current study, one subject exhibited a peaked zROC and our model fits verified this 

prediction quantitatively. The framework introduced here may shed light on other anomalies 

observed in zROC data as well. Previous work has argued that decision noise is induced in 

rating tasks when task instructions require subjects to use the rating categories with equal 

frequency (Murray et al, 2002) or, more generally, when task instructions alter criterion 

placement from default positions that subjects would use absent any instruction (Kellen et 

al, 2012; Wixted & Gaitan, 2002). These authors suggest that decision noise emerges from 

the conflict between subject’s pre-conditioned preferences acquired over extensive lifetime 
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experience, and instructions that bias subjects to adopt criterion positions conflicting with 

these default preferences. The subjects in our study had extensive practice in psychophysics 

experiments, so we expect that default preferences were moderated. Moreover, while we 

asked subjects to utilize the full scale, we did not request that subjects use each response 

category with equal frequency. Still, we remain agnostic as to whether decision noise results 

from conflicts between response instruction and predisposition, or whether this arises 

because of limitations on the resolution of a representation-response mapping, or for any 

other reason. The method we propose here may prove useful in determining the degree to 

which response instruction and subject expertise influence response variability.

Ours is not the first attempt to resolve decision and representational processes in signal 

detection tasks. For example, Wickelgren (1968) proposed a “Criterion Operating 

Characteristic” that allowed for comparison of the variances of criteria adopted across 

different signal strengths. The method’s validity, however, assumes equal noise standard 

deviations for all signal strengths. An alternative framework has been developed to separate 

decision and representational noise in the domain of perception with the Decision Noise 

Model (DNM) of Mueller and Weidemann (2008). In memory recognition, Benjamin et al. 

(2009) developed an Ensemble Recognition task in which participants gave confidence 

ratings on whether stimulus ensembles of a variable number of words were previously 

observed on a study list. These authors compared fits from a number of models and reached 

the conclusion that decision noise played a significant role in subject performance. 

However, Kellen et al (2012) introduced their own model generalization approach for 

memory recognition that interleaved trials of a 4AFC-ranking task with those of a 

confidence rating procedure. These authors found no evidence of decision noise in their 

study and offered a critique of the conclusions drawn by Benjamin et al. The merits and 

shortcomings of each of these frameworks are discussed in detail in Kellen et al (2012) and 

Benjamin (2013).

In our view, both the Ensemble Recognition and the model generalization approach advance 

our understanding of response variability considerably, although they reach contradictory 

conclusions about the significance of decision noise in confidence rating tasks for 

recognition memory. One potential limitation with both of these approaches is the strong 

constraints imposed between different noise components. The Ensemble Recognition 

paradigm assumes that a single variance term applies to the noise at all criterion boundaries. 

Likewise, the model generalization approach assumes either a single variance for decision 

noise across all criteria (adopting the LCJ as a decision rule) or a single variance for the 

confidence boundaries (adopting the DNM decision rule). Our own experimental results 

suggest that criterion noise may vary considerably across criterion boundaries when decision 

noise is significant (see Appendix for details). Further, the model generalization approach 

assumes that representational noise is constant across forced choice and rating-response 

paradigms, and that no decision bias (and by extension no decision noise) is present during 

the forced choice tasks. Though Kellen et al argue that the decision bias observed in forced 

choice tasks only applies when trial stimuli are presented in sequence, the presence or 

absence of any such bias is ultimately unknown and is not precluded by their model. Bias 

has been shown to play a role in similar experimental paradigms that had previously 

assumed a bias free framework (Klein, 2001; Yeshurun, Carrasco, & Maloney, 2008). If 
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decision noise contributes to response variability in n-alternative forced choice tasks, it may 

appear as inflated representational noise during model fitting; this inflated estimate of 

representation variability may then incorrectly discount the effects of any decision noise in 

the corresponding rating task. More generally, the constraints imposed by these models may 

lead to parameter estimates that do not accurately reflect underlying processes in 

representation and decision-making. Rosner and Kochanski’s (2009) LCJ model allows 

independent parameter estimates for variance terms at the decision stage in paradigms with 

at least three stimulus intensities and at least four response categories. While this model 

provides a powerful new tool to understand categorical judgment, it does not apply to the 

frequently used signal detection task with two stimulus classes without introducing 

constraints among the noise components. The framework presented here fills that gap for 

tasks with at least three response categories while allowing independence among noise 

components.

An essential feature of our approach requires the implementation of external noise. Research 

in recognition memory has not generally implemented this method, but the external noise 

method is not fundamentally incompatible with investigations of higher-level cognitive 

processes (Lu & Dosher, 2008, p71). For example, Tsetsos, Chater, and Usher (2012) used 

external noise to examine decision biases and preference reversals in the domain of 

economic value integration. With regard to the MCR method in particular, however, 

mnemonic representations of both studied and unstudied items will likely change with the 

number of times stimuli are presented during test trials. However, the MCR paradigm is 

only one of a number of methods that use multiple presentations to investigate levels of 

internal noise (Burgess & Colborne, 1988; Swets, Shipley, McKey, & Green, 1959). In 

particular, Nosofsky (1983) used multiple presentations without the use of external noise in 

order to estimate the representation and criterion noise in an auditory identification task. 

Nosofsky deployed this method to study noise contributions to the range effect, but this 

technique might offer a means of determining decision noise for tasks with only binary 

response alternatives. The Ensemble Recognition task of Benjamin et al (2009) in the 

domain of recognition memory bears some resemblance to this approach insofar as 

additional presentations (or larger ensemble size) of stimulus samples lead to less variability 

in processes underlying representation.

Recent studies have brought to light the importance of a decision rule that resolves 

ambiguities that arise with noisy criterion boundaries in signal detection tasks with three or 

more response categories (Klauer & Kellen, 2012). When trial-sampled criteria overlap, 

category assignment becomes ambiguous without specific decision rules accounting for 

contingencies owing to positional relations among criteria and representations. However, 

any possible set of rules unambiguously resolving trial-sampled representations to category 

assignment may serve as a decision rule. Our experiments used either three or five response 

categories. The symmetry (or lack thereof) in the number of response categories may 

influence the choice of rule adopted by our subjects. Symmetric response structures have an 

odd number of category boundaries and an even number of response categories. These 

response structures might induce the adoption of an initial, central, and binary decision 

boundary with participants only subsequently utilizing the remaining criteria as a confidence 

rating on their antecedent choice. This is dubbed a sequential rule, along with any rule 
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whereby subjects compare trial stimuli with trial-sampled criteria in a sequential manner. 

Asymmetric response structures have an even number of category boundaries. Since 

asymmetric response structures, like the one we examined in this study, do not naturally 

suggest any particular criterion as a central designation as in symmetric response structures, 

we restricted our examination to simultaneous rules in this article. However, rating category 

asymmetry may naturally allow for the emergence of a neutral category that subjects use as 

a preferred classification during trials with lapses of attention and so may not wholly reflect 

categorization based on representational determinants. Although we cannot determine a 

priori which decision rule a subject might adopt, specific data signatures may reflect 

idiosyncratic strategies to deal with significantly different processing constraints in the 

course of encoding information and making decisions about that information. Previous 

studies lend weight to the idea that task instructions (explicitly; Treisman & Faulkner, 

1985), response structure (implicitly), and individual subject differences (Petrov, 2009) may 

all influence decision rule adoption. We hope to explore alternative decision rules and 

hybrid rules in future studies.

Klauer and Kellen (2012) showed that if an observer’s criterion boundaries were centered 

and distributed evenly about the mean of an underlying representational distribution, the 

LCJ would yield asymmetric response distributions. They argued instead for a modified 

decision rule that determined response selection according to the proximity of an internal 

representation to the trial-sampled criteria and that would result in a symmetric distribution 

of response frequencies. We have instantiated that alternative rule here as LCJsym, but have 

found it underperformed relative to LCJ in our data sets for which decision noise was 

deemed significant. Given the limitations of our experimental study, we hesitate to make 

strong claims regarding the general validity of alternative decision rules in operation for 

specific tasks or individuals. Other tasks or experimental manipulations may very well 

induce subjects to adopt another decision rule such as LCJsym and the framework introduced 

here may allow us to identify that rule.

Experimental paradigms investigating perceptual and cognitive processes obtain information 

about these underlying processes by examining responses conditioned on input stimuli, task 

instructions, subject population, etc. In the case of an MCR procedure, we collect additional 

information by conditioning subject responses on specific samples of external noise. By 

presenting these samples over multiple passes, we can estimate response agreement to test 

more nuanced hypotheses than would be feasible otherwise. Sequential dependence, for 

example, may offer a potential target for investigation insofar as the phenomenon of these 

dependencies introduce a form of systematic decision noise. Trial-by-trial dependencies 

certainly bear on estimates of agreement in multi-pass psychophysics tasks. Sequential 

dependencies influenced by stimulus schedule (Fernberger, 1920; Parducci, 1959), response 

choice (Howarth & Bulmar, 1956), or feedback (Carterette, Friedman, & Wyman, 1966) 

could generate greater response agreement to the degree that these factors are preserved 

across passes. In this case, estimates of the internal to external noise ratio are at a lower 

bound. If response dependencies artificially increase agreement estimates, then removing 

these dependencies will reduce covariance estimates, which in turn leads to greater estimates 

of internal noise (Green, 1964). Levi et al (2005) proposed randomizing the sequence of 
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trials from pass to pass in order to mitigate agreement effects deriving from stimulus-

response dependencies. The current study followed the prescription of Levi et al by 

randomizing the stimulus schedule from pass to pass, but we did not examine response data 

for synchronized stimulus schedules across passes. Comparing internal to external noise 

ratios measured in multi-pass experiments with and without randomized trial ordering 

suggests itself as one way to begin teasing apart the purely stimulus related factors on trial 

outcomes from other contributions to response agreement.

Elaborated observer models makes more detailed claims regarding the functional 

mechanisms transforming stimulus inputs to overt responses (Lu & Dosher, 2008; Lu & 

Dosher, 2013). Many of these models emphasize the account of representational processing, 

but use the simplified decision processes of standard SDT. When ignored, response 

variability arising from decision processes will redound to representational processes 

instead, potentially leading to erroneous model predictions. When task conditions call for 

increasing the number of response categories, decision boundaries may become more 

variable (Ratcliff & Starns, 2009). In these cases, observer models incorporating our 

framework may lead to a more detailed understanding of the transformation from stimulus to 

response.

The aim of analyzing noise contributions is a fundamental objective in cognitive 

psychology. Isolating component sources of noise helps us to characterize corresponding 

component processes in human behavior and decision making (Brunton, Botvinick, & 

Brody, 2013; Ratcliff & Starns, 2009). The MCR paradigm makes available new research 

directions involving noise analysis and decision strategy. The importance of the MCR 

procedure and analyses in future research will depend upon the amount of decision noise 

present for a given task, subject population, and experimental condition. If the decision 

noise is relatively negligible, a simpler SDT model will serve as a more parsimonious and 

efficient explanation for the observed outcomes. The experimental results presented here 

suggest that decision noise is not a significant determinant for tasks with few response 

alternatives, but may become more influential when the number of response alternatives 

increase.

Conclusion

In this paper, we present a new framework that combines two well-established procedures in 

psychophysics: a confidence rating response procedure and a multi-pass experimental 

paradigm. In combination, these procedures allow estimation of response agreement as well 

as response frequency for each response category. We provide evidence that data collected 

with this framework sufficiently constrains extended SDT models with decision noise. Our 

simulation study showed that the parameters of a decision noise model fitted to responses 

from simulated experiments led to increasing accuracy and precision with increasing trials 

and passes. These simulations also demonstrated that decision noise models matched to the 

decision rule adopted by the subject will outperform mismatched models. We also 

conducted a visual detection rating experiment with multiple passes. Our results showed that 

decision noise was negligible when subjects responded with three confidence rating 

categories, but that it influenced trial responses with as few as five response categories. For 
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tasks with few response alternatives, classical SDT may adequately account for the observed 

data. But for tasks offering a large number of response alternatives or where decision noise 

is suspected, the framework presented here offers a more detailed description of the 

underlying processes.
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General Appendix

Table A.1

Model Variables and Parameters3

Variables\ Parameters Formal Definition Description

sext sext ∈ G(0,1) Trial-sampled component of internal response induced by 
external noise.

Variance of consistent noise across all possible samples of 
external noise. We assume σext = 1.

sEh sEh ∈ G(0,1) Trial-sampled component of internal response due to 
encoding processes on Sh trials.

μSh Mean of internal response to hth stimulus category.

Variance of encoding noise during Sh trials.

cm cm ∈ G(0,1) Trial-sampled criterion of the mth decision boundary.

μCm Mean of representation of mth criterion boundary.

3In addition to their use as samples of random variables, the terms sext, sE, sU, sS, sT, and cm will sometimes be used as random 
variables themselves. In these cases they will be denoted in boldface.
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Variables\ Parameters Formal Definition Description

Variance of criterion noise at the mth decision boundary.

SUh SUh ∈ G(0,1) Sample of random noise at the decision boundary reflecting 
variability of encoding and decision processes on Sh trials.

Variance of random noise during Sh trials at a single decision 
boundary.

SSh SSh ∈ G(0,1) Sample of representational noise reflecting encoding 
processes and external noise on Sh trials.

Variance of representational noise during Sh trials

STh STh ∈ G(0,1) Sample of total noise reflecting reflecting all stimulus, 
encoding, and decision factors on Sh trials.

Total variance of internal response on Sh trials.

R≡m (R≡m)~B(p) Bernoulli random variable signifying a match of subject 
response with a given stimulus category m.

Equation 1 illustrates a schema of noise components comprising the total variability of 

response, σTh, to stimulus Sh at a single criterion, C. We now consider how three different 

task structures may constrain and identify these various components. These are single 

criterion – single pass; single criterion – multi-pass; and multiple criterion – multi pass. In 

what follows, we denominate the means of criterion boundaries μC, as well as the means of 

the stimulus distributions, μS, in units of σT0, σS0, and σext depending on convenience of task 

analysis.

Appendix A. Response Frequencies and Covariance

Single criterion: single pass

In a typical signal detection task for which subjects provide a binary response to each trial 

event, we conceive the decision processes as a comparison of the internal representation of 

the stimulus to the position of the criterion boundary along the decision axis at some 

position μC. The traditional detection paradigm involves only two stimulus classes, “signal 

absent and “signal present”; in the following exposition, we let stimulus class h=0 represent 

our “signal absent” stimulus and h=1 represents our “signal present” stimulus. Then given 

some internal representation of a trial sample sSh σSh + μSh σS0 from stimulus Sh, subjects 

transform this internal response into an explicit response R according to the following 

decision rule.

(A1)

Assuming a subject has sufficient knowledge of the probability density functions of the 

representational distribution for stimulus Sh, traditional SDT assumes that subjects maintain 

Cabrera et al. Page 32

Psychol Rev. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a static value of μCσS0once they understand task instructions, payoff structure, and have 

adequate information to compute the likelihood ratio ϕSh (μCσS0)/ϕS0 (μCσS0). These 

affirmative responses to samples from the stimulus class h are given as,

(A2)

If there is some variability in the criterion, we represent a trial-sampled criterion offset as 

cσC. Then the decision rule is slightly modified for a given sample pair as follows.

(A3)

Let Φ be the Gaussian cumulative distribution function and let Q(x; μ, σ)= 1 − Φ(x; μ, σ). 

When dealing with decision noise, the overall rate of affirmative responses for Sh trials is 

given as,

(A4)

From equations A4 we may recover the criterion position relative to each stimulus 

distribution h in units of the total variability of each distribution (we make the usual 

assignments of σT0 = 1 and μS0= 0). Additionally, assuming σTh= σT0, we may also recover 

the position μSh in units of σT0. We estimate these quantities with the following equations.

(A5)

When σTh ≠ σT0, the position of μSh can still be recovered in units of σT0 if we induce 

subjects to adopt different criteria C through experimental manipulation. In that case, we 

may recover the functional relationship z [P (R = 1| Sh)] = f (z [P (R = 1| S0)]) (assuming 

total noise remains constant), and estimate μSh = μC when z [P (R = 1| Sh)] = 0. In addition, 

the slope of this functional form gives us αh = σT0/σTh.

Because the only relevant variance terms in equations A5 are σT0 and σTh, the underlying 

variance components  and  are constrained only by the relations
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(A6)

Therefore any values σC, σSh, satisfying the equations  and  will 

suffice to explain the observations  and d′. In other words, we cannot 

separately estimate σC and σSh.

Single criterion: multiple passes

Double-pass experiments ultimately provide more information from the data, providing not 

only estimates of response frequency for each stimulus class but also for each individual 

noise sample. Under the assumptions of the double-pass methodology, each external noise 

sample induces a representation comprised of a reproducible component, for example, sext, 

as well as a random component shσEh. The consistent component is presumed to yield 

identical values for identical external noise samples, whereas the random component arising 

from encoding processes is presumed to deviate even for identical stimulus samples. Over 

multiple presentations across passes, we can estimate the probability that an observer will 

provide an affirmative response R given an external noise sample sextσext. We will derive 

these probabilities and other relevant quantities from expected values over response 

outcomes EVR and expected values over external noise samples EVsext. The probability of an 

affirmative response, given sample sext is,

(A7)

The factors contributing to these probability estimates conditioned on sext may be expanded 

as,

(A8)

The probabilities expressed in equation A8 are conditioned on the consistent component of 

the internal representation of a specific stimulus sample. Generally speaking, stimulus 

samples inducing greater values of sext tend to lead to higher probabilities that the subject 

will respond affirmatively to trial stimuli. The overall ‘yes’ rate for a given stimulus class h 

is the expectation of a ‘yes’ response with respect to sext.

(A9)
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On the other hand, higher consistency between responses is conditioned on the total random 

noise of the internal representation. This random noise poses the limiting factor for 

consistent responses to a repeated stimulus with a given sample of external noise. When the 

ratio of total random to consistent noise is very low, response consistency will be high and 

the quantities expressed in equation A8 will nearly equal zero or one for any given sample 

of external noise. On the other hand, when the internal to external noise ratio is very high, 

response consistency decreases and the probabilities in equation A8 become less extreme. 

We may express the covariance of response between corresponding trials of two passes i and 

j as,

(A10)

Under the double-pass procedure and using σext= 1 as a unit of measure, equation A5.a is 

restated as,

(A11)

Then the observed covariance estimates of responses R across corresponding trials between 

the ith and jth passes are computed as the expected values of the covariance with expectation 

taken with respect to sext.

(A12)

For a given response frequency P(R= 1|Sh) the covariance is monotonically related to σUh. 

That is, a given ‘yes’ rate along with a covariance estimate corresponds to a specific ratio of 

random and consistent response variability. Therefore, by equation A12, we may estimate 

σUh. Squaring this term and using equation 1, we can compute . Further, 

we may recover μC−μSh =−z[P(R= 1|Sh)]σTh as well as the mean of the signal distribution 

along the decision axis as, μSh = z [P(R= 1|Sh)]σTh −z [P(R= 1|S0)]σT0.

When the internal noise is equal to zero, the covariance of response outcomes across ith and 

jth passes will equal the expected variance of the ‘yes’ rate as calculated as a binomial 

random variable. That is, as P(R= 1|Sh) −P(R= 1|Sh)2 (see Appendix B). For higher internal 

to external noise ratios, the covariance decreases.

The foregoing analysis shows that the double-pass procedure can recover the mean of the 

signal distribution along the decision axis (in units of σext) without the equal variance 
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assumption. Further, if internal noise does not change across bias manipulations we can 

predict the slope the zROC at a single criterion measurement. However, at this point, we 

have yet to isolate response variability due to decision processes. With a single criterion, the 

components of random noise are only constrained by the following relations.

(A13)

This implies that any values σC and σEh consistent with  may generate the 

‘yes’ rates and covariance data of equationsA9 and A12. We cannot obtain unique solutions 

of the two from the data. We now attempt to resolve these components using multiple 

criteria.

Multiple criterion: decision rules

As mentioned previously, the introduction of decision noise into signal detection models 

involving multiple criteria raises the issue of a decision rule. A decision rule is a strategy 

that allows an observer to assign a specific response to an internal representation. When 

decision noise is inconsequential for a task, different rules may prescribe the same decision 

for trial-by-trial responses. In these cases, the significance of utilizing any particular rule 

over another may be trivial. When decision noise grows significant enough to affect changes 

to the response outcomes for each trial, different rules may lead to distinctly different 

decision behavior. Over the course of an experiment, these decision rules may give rise to 

idiosyncratic data patterns associated with specific rules. In our research, we focus on three 

simultaneous decision rules: LCJ, LCJc, and LCJsym (Klauer & Kellen, 2012; Rosner & 

Kochanski, 2009).

Multiple criteria: multiple passes

With a simultaneous rule, an observer adopts a decision protocol with which the internal 

representation is compared to all criterion boundaries simultaneously. No criterion has any 

kind of priority with respect to the others, but we assume that the means of each criteria 

maintain their ordinal relation to each other throughout the duration of the experiment. For 

our development here, we consider M+1 response categories, and we enumerate these 

categories according to their ordinal positions along the decision axis with the set [1, 2, …, 

M, M+1].

The formal description of the overall response frequencies under this decision rule, as well 

as the LCJc and LCJsym decision rules, have been described elsewhere for single-pass 

procedures (Rosner & Kochanski, 2009; Klauer and Kellen, 2012). For an MCR procedure, 

the consistent noise component of the total response variability can be separately considered 

in describing the subject’s rating response. The separate noise components will be given in 

units of the standard deviation of this consistent noise component. Since the observed 

quantities of response rates and covariances are given relative to the level of consistent 

noise, we may consider the representational noise in terms of its component terms. For the 
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LCJ decision rule, an observer subtracts the internal representation from the trial sampled 

criteria. The observer then classifies the representation from stimulus class Sh according to 

the response category corresponding to the criterion m with the least positive difference 

[μCm + cmσCm]− [μSh + sEh σEh + sext]. If the strength of the internal representation exceeds 

all the trial-sampled criteria, then the observer responds with the highest level of confidence, 

M+1.

We have already described the trial-by-trial response frequency for LCJ in equation 3, with 

the overall response frequencies and the covariances described by equations 4 and 5, 

respectively. For the LCJc decision rule, observers subtract the trial sampled criteria from 

the internal representation and classify the internal representation in the category just above 

the decision boundary with the least positive distance. If all differences are negative, the 

observer classifies the internal representation with the lowest response category. For a given 

sample of external noise, the response probabilities are given as,

(A14)

Finally, for LCJsym, observers take the difference between the trial sampled criteria and the 

internal representation of the stimulus. The observer identifies the decision boundary 

corresponding to the least absolute value and classifies the trial in the category 

corresponding to the boundary index if the representation falls short of the boundary, or 

classifies the trial in the category just above the boundary index if the representation falls 

about the boundary. That is,

(A15)

For all the simultaneous rules we have discussed, the overall response frequencies across all 

trials are then computed as in equation 4 and the covariance between any two response 

categories m and m’ are described by equation 5.

Decision noise changes the interpretation of the ROC for the decision models we have 

presented here. Ostensibly, the ROC intends to reflect the operating performance of the 

receiver during binary decision tasks for a single criterion positioned according to a specific 

likelihood ratio. When decision noise is not present, ROC analysis in rating tasks assumes 
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that any stimulus inducing a response from a stricter response class should cumulatively 

redound to less strict response classes. In this case, the ROC accurately reflects the operating 

performance at the more lax criteria because every representation classified in the stricter 

categories would have been classified in the lower confidence categories if the stricter 

classifications had not been available for report. But for simultaneous decision rules, 

classification in every response category depends on the trial-by-trial positions of all criteria, 

so the traditional interpretation of the ROC does not hold for any HR and FAR pairing.

Appendix B. Variance in Response Frequency

Double-pass methods have utilized measures of agreement (probability of agreement, 

correlation, covariance) together with response frequency data to estimate total internal 

noise in psychophysical tasks (Burgess & Colborne, 1988; Gold, Bennett, & Sekuler, 1999; 

Green, 1964; Lu & Dosher, 2008). For the purposes of modeling, it may prove useful to 

state the expected variability of the observed response frequencies. However, in addition to 

modeling, the variability in response frequencies across multiple passes may also serve as an 

index of internal noise. The variability of a subject’s response for a representation sext, 

induced by a given sample of external noise is formulated as a Bernoulli trial conditioned on 

sext. We express this quantity as,

(A16)

On the other hand, the observed variability of response over an entire pass is the expected 

value of the variance as formulated in the equations above, with that expectation taken over 

all possible samples of sext. We express this overall variability as,

(A17)

We may observe here that the overall variability of response frequencies for a given 

stimulus class within a double-pass paradigm generally differs from the overall variability of 

response frequencies when passes do not contain identical noise samples. This difference in 

variability increases with lower internal to external noise ratios, because the variability of 

response at a given sample sext approaches zero as the internal to external noise ratio 

approaches zero. And the variability of this response at a given sext approaches P(R= m|Sh) 

−P(R= m|Sh)2 as the internal noise increases and overwhelms the external noise. In the case 

of a high internal to external noise ratio, the index sext provides no consequential 

information and does not significantly influence subject performance.

As a consequence of the double-pass paradigm, we see from equation A16 that 0 ≤ 

Var[P(R= m|Sh)] ≤ P(R= m|Sh) −P(R= m|Sh)2. Thus, the variance of response frequencies 
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between passes also provides an index of the total internal to external noise ratio for each 

stimulus class.

Appendix C. Application of Method in Visual Detection Experiment

A psychophysical procedure designed to partition internal noise into representation and 

decision noise affords at least two meaningful contributions to the study of cognitive 

processes. First, separating different sources of noise can contribute to our understanding of 

the functional architecture underlying human decision behavior. Using the MCR procedure 

allows us to quantify the contributions of these two sources of internal variability to 

response variability. Second, this framework provides a test of the assumptions broadly used 

within the extensive literature on signal detection tasks. If decision noise is relatively low in 

a given signal detection task, then the simpler traditional SDT model suffices to explain the 

data. However, if decision noise is significant in a given task, then the estimates of 

sensitivity, response bias, and the conclusions derived from these estimates will be improved 

by the methods described here. We now describe a confidence rating visual detection 

experiment in which we analyzed both response frequencies and covariance across multiple 

passes to asses how decision and representational noise influence task performance.

Methods

Procedure

We conducted a Gabor detection experiment in fovea with external noise over multiple 

passes. Subjects gave confidence ratings on the presence or absence of a Gabor temporally 

embedded in external noise. Two subjects completed experiments with both three and five 

rating categories in separate sessions during a day. Each subject completed two consecutive 

forty-minute sessions per day over five days with, at minimum, a fifteen-minute break 

between sessions. Each session consisted of six passes with 100 trials per pass. 

Corresponding trials across passes contained identical stimulus samples but with 

randomized stimulus schedules. In total, subjects responded to 500 trials per pass for both 

three and five response categories after concatenating corresponding sessions across all five 

days. We alternated the order of sessions so that if subjects started the previous day’s 

session using three response categories, they would begin the next day’s session with five 

response categories, and vice versa. In all conditions, the highest category rating 

corresponded to the highest degree of confidence in the presence of a signal stimulus for 

each trial and the lowest rating corresponded to the lowest degree of confidence in the 

presence of a signal stimulus. On each trial, the stimulus (either external noise alone or 

external noise with the Gabor signal) appeared at the center of the computer monitor with a 

signal probability of 0.5. A brief auditory cue sounded 133ms before stimulus onset in order 

to minimize effects of temporal uncertainty (Spiegel & Green, 1981). The fixation cross and 

box disappeared after 664 ms, followed by the stimulus onset. Five stimulus frames 

consisting of two external noise frames, either a Gabor or blank frame, and two additional 

external noise frames appeared in sequence for 33 ms each, followed by a blank screen until 

subjects provided a rating response.

Cabrera et al. Page 39

Psychol Rev. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Following each trial response, a trial score (see Table 3) briefly appeared on the screen, 

followed by the subject’s cumulative score for the session. Before the first pass on each day, 

subjects were instructed to utilize the full range of confidence ratings and to achieve the 

highest possible score over the course of the experiment. The scoring structure for both low 

and high response categories is given in table 3. Subjects took short breaks after each pass of 

100 trials.

To select a stimulus contrast, we used an Accelerated Stochastic Approximation Method 

(Treutwein, 1995) to estimate contrast thresholds prior to the MCR detection experiment. 

This adaptive procedure varied the contrast of the Gabor from trial to trial so as to converge 

on a threshold corresponding to a desired performance level of d′ = 1 in high external noise 

using binary (Yes/No) responses. Frames of external noise were completely independent 

across all trials.

Stimuli

We generated all stimuli with a G4 Macintosh computer utilizing Matlab programs with 

Psychtoolbox extensions (Brainard, 1997; Pelli, 1997). Stimuli appeared on a ViewSonic 

Professional Series P95f monitor with a refresh rate of 120 Hz and mean luminance of 

~50cd/m2. A video attenuator modified grey level display by combining voltages of two 

graphic channels to produce 6,144 distinct grey levels for enhanced contrast (Li, Lu, Xu, Jin, 

& Zhou 2003). A psychophysical method (Lu & Sperling, 1999) was used to estimate and 

linearize luminance. Subjects placed their heads in a chin rest to minimize head movement 

and viewed the stimuli from approximately 1 m under scotopic lighting conditions.

Signal Gabor targets consisted of a 3.75 cpd sine wave grating oriented 12 degrees to the 

right of vertical and multiplied by a Gaussian spatial window with a standard deviation of 

0.44 degrees of visual angle. External noise frames consisted of individual pixels randomly 

sampled from a Gaussian distribution with 0 mean and a standard deviation of 0.33 of the 

full contrast range. Both Gabors and external noise frames subtended 1.6 × 1.6 degrees of 

visual angle at the center of the screen. The box within which the stimuli appeared 

subtended the same visual angle as the target stimuli. The fixation cross subtended 0.12 × 

0.12 degrees of visual angle.

Observers

One University of Southern California graduate student as well as the first author 

participated in the study. Both subjects had normal or corrected to normal vision and both 

had significant previous experience as subjects in psychophysics experiments.

Data Analysis

For each subject and for each rating structure, we collected response frequencies and 

covariance estimates across all five days. We computed both within category covariance 

(covariance between the same rating category across different passes) and between category 

covariance (covariance between different rating categories across different passes). For the 

purpose of fitting the model to the data, we also estimated the variances of all response rates 

and covariance estimates (equations 7 and 8). We fit our data with a corrected Law of 
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Categorical Judgment (LCJ; Rosner & Kochanski, 2009), as well as with complimentary 

(LCJc) and symmetrically adjusted (LCJsym) modifications of the LCJ (Klauer & Kellen, 

2012), and finally with the classical SDT model (cSDT) without decision noise. For all 

model fits we used a weighted least-squares cost function with a simplex optimization 

routine (Nelder-Mead) and assessed parameter fits with a χ2 statistic. Our cost functions 

incurred significant penalty if ordinal positioning of candidate mean criterion positions 

became disordered, if variances fell below zero, or if the encoding noise for signal absent 

trials exceeded the encoding noise for signal present trials. We reorganized the response 

frequencies into standardized ROC plots according to the usual method of starting with the 

highest category rating and cumulatively adding response frequencies to the next strictest 

response category. We computed covariance estimates for signal absent trials and signal 

present trials and separately plotted them to more easily distinguish model fits to data. We 

also computed separate correlation statistics for response frequencies (r2
ROC) and 

covariance estimates (r2
Cov) because these data do not share a common scale.

Results

Parameter estimates and χ2 results for all model fits to subject data are found in Table 4. For 

both subjects, the best fitting decision noise model did not provide significantly better fits to 

experimental data with three rating categories than the cSDT model without decision noise 

(subject YZ: F(2,3) = 5.6487, p = 0.096; subject CC: F(2,3) = 0.7259, p > 0.1). For subject 

YZ, we found the reduced (cSDT) model fits at χ2 = 7.1811, r2
ROC = 0.99, r2

Cov = 0.96. For 

subject CC, these fit statistics were χ2 = 2.5716, r2
ROC = 0.99, r2

Cov = 0.98.

For the paradigm with five response categories, we found the decision noise model LCJ fit 

the data better than any other model and significantly better than the cSDT model for both 

subjects (subject YZ: F(4,17) = 6.8171, p < 0.01; subject CC: F(4,17) = 10.8981, p < 0.001). 

Fits for subject YZ with this model were χ2 = 8.5944, r2
ROC = 0.99, and r2

Cov = 0.95. For 

subject CC, we found χ2 = 6.6640, r2
ROC = 0.99, r2

Cov = 0.95.

Winning model fits for all subjects and response categories are shown in Figure 13. In order 

to ensure these fit statistics accurately represented the predictive power of our model, we ran 

100 cross validation checks on each of our data sets. For each subject, response condition, 

and iteration, we sampled (without replacement) 80% of trial stimuli and computed yes rates 

and covariances from subject responses to those stimuli across passes. After modeling each 

partial data set, we computed the expected values of yes rates and covariances of each fit to 

predict the yes rates and covariances of the complimentary portion of each data sample. For 

subject YZ with five response categories we used LCJ to determine the median r2
ROC = 0.97 

and median r2
Cov = 0.87. For subject CC, r2

ROC = 0.99 and median r2
Cov = 0.82 for data 

with five response categories.

The LCJ dominated the classical SDT model for both subjects when using five rating 

categories and but not for three categories. We also investigated whether the change in 

response structure between low and high number of response categories could change the 

representational features of stimuli. To test this hypothesis, we fit the data from both the 

three- and five-category rating experiments together with the LCJ model under two distinct 
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assumptions. In the first case, we allowed all parameters to vary independently, thus 

permitting representation noise to vary with response structure; in the second case, we 

assumed that the representational parameters σS0, σS1, and μS1 remained identical across 

response structures. We used an F test for nested models to compare these results and found 

that the extended model did not significantly improve fits over the reduced model for either 

subject (subject CC: F(3,20) = 1.2443, p > 0.1; subject YZ: F(3,20) = 0.8803, p > 0.1). From 

this we conclude that the criterion variability but not representation variability was affected 

by the larger number of rating categories. We further fit our subject data using the classical 

SDT model (no decision noise) for the three-category response structure while jointly 

modeling data from the five-category response structure with the LCJ assuming either 

completely independent parameters or identical representational parameters. The results 

again showed no significant improvement using the full model relative to the restricted 

model (subject CC: F(3,22) = 1.1130, p > 0.1; subject YZ: F(3,22) = 0.9047, p > 0.1). These 

parameter fits are listed in Table 5. The fits imply that representational features do not 

significantly change with a change in response structure from three- to five-category rating 

tasks.

When we fit the data from our five-category rating task with the classical SDT model with 

no decision noise, we estimated encoding noise for each of our subjects. For subject CC we 

estimated encoding noise at 2.03 for signal present trials and 1.74 for signal absent trials 

(relative to σk). For subject YZ we estimated encoding noise for signal present and signal 

absent trials at 1.51 and 1.48, respectively. In the case of subject CC, estimates of 

representation parameters are quite similar between LCJ and cSDT. For subject YZ, 

however, cSDT overestimates encoding noise by about 14% for signal present trials and 

12% for signal absent trials.

We also fit data for each subject using five response categories to the LCJ using only yes 

rates (i.e., without covariance data). For these fits, we kept the decision noise parameter 

results from the LCJ model and allowed the remaining parameters (criterion positions, 

representation noise on signal present trials, the mean of the signal present distribution) to 

vary. When considering only ROC data, the model estimates each parameter in units of the 

representation noise of the signal-absent distribution (rather than merely the consistent 

noise). The results of these fits are shown in Table 6. We recomputed our original parameter 

estimates for the LCJ fits to full data sets (ROC and covariance data) for each subject in 

units of the entire representational noise for signal-absent trials. These are shown along with 

the ROC-only fits for comparison. The estimates for ROC-only and full data sets are nearly 

identical for both subjects.

The emphasis of this report was to illustrate the sufficiency of the framework to separately 

estimate contributions of decision and encoding noise in response data from signal detection 

tasks. Other models may explain this data as well. At the suggestion of one reviewer, we 

examined the performance of a mixture model (DeCarlo, 2002) according to which signal 

present trials are drawn from two underlying distributions depending on whether or not 

subjects gave an adequate allocation of attention while sampling from each trial (mean 

distribution of attended trials are given as μS, mean of non-attended trials assumed equal to 

zero4). The mixture model assumes that representational variance is equal for both signal 
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present distributions as well as the signal absent distribution. For signal present trials, the 

portion of trials drawn from each distribution depends on a mixture parameter, λ. For our 

experiments with five response categories, fits for subject CC were χ2 = 21.02, r2
ROC = 

0.99, r2
Cov = 0.90, while for subject YZ we found χ2 = 22.02, r2

ROC = 0.99, r2
Cov = 0.94. 

Differences in performance between three and five response category conditions were 

accounted for with a slight decrease in λ for subject YZ (7% for three vs 5% for five 

categories) and a more pronounced increase for subject CC (1% for three vs 9% for five 

categories). Applying the same cross validation testing described earlier, we found median 

r2
ROC = 0.98 and median r2

Cov = 0.82 for subject CC. For subject YZ, median r2
ROC = 0.97 

and median r2
Cov = 0.83. Although these cross validation results for the mixture model are 

worse than those obtained for the LCJ decision noise model, the performance outcomes are 

still quite similar.

The reasonably good fits of the mixture model raises the question of whether a decision 

noise model might misattribute the effects of non-decision mechanisms to decision noise. To 

addressed this concern, we conducted an additional 250 simulations of an observer operating 

under the assumptions of a mixture model (assuming λ = 0.05 in line with estimates typical 

for psychophysical experiments (Green, 1995; Lesmes et al, 2006; Wichmann & Hill, 2001)) 

and fit these data using the LCJ, LCJc, and LCJsym decision noise models. Each simulated 

experiment consisted of six passes with 500 trials in each pass. We perturbed the true 

generative parameters of our mixture model by randomly sampling from a normal 

distribution with means matched to the true parameters and standard deviation of 0.15σext in 

order to obtain initial guess parameters for our fitting algorithms. The parameters used in the 

generative mixture model as well as the recovered parameters from each decision noise 

model are shown in Table 7. Each of the decision noise models accurately estimated the 

influence of decision noise as nearly zero when fit to data generated from the mixture 

model. Furthermore, the median parameter estimates of the decision noise models all came 

very close to the true parameter values of the generative mixture distribution (excluding λ 

insofar as this parameter does not figure into our decision noise models). The 95% 

confidence intervals were quite large for the encoding noise parameters, with estimates 

sometimes reaching into nonsensical values, but this result might be expected when model 

assumptions fail to describe the mechanisms underlying the data-generative model.

While we acknowledge the possibility that alternative elaborations of the SDT model may 

account for this data, we also noted that our data are consistent with the prediction issued by 

Benjamin et al (2013) for ROCs generated from rating scales of different size: if additional 

criteria results in additional decision noise, then ROCs generated from larger rating scales 

should fall below ROCs measured with smaller rating scales. In our data, we plotted the best 

fitting line through zROC data when each subject used both three and five response 

categories. For both subjects, the yes rates from three-category experiments resulted in 

points lying above the best fitting line fitted to the data from five response categories (Figure 

12)

4The mean distribution for unattended trials may be non-zero, but an F-test for nested models showed no significant improvement 
over the reduced model. We therefore report results for the reduced model only.
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Discussion

The LCJ model fit the response rates and covariance estimates very well in the five category 

response experiments, and accounted for about 95% of the variability in the data for subject 

CC and 96% for subject YZ. Even though we computed separate estimates of r2 for zROC 

and covariance data, the model still appears to capture the broad data trends. More 

particularly, the standardized ROC plots of subject CC exhibit a ‘bowing’ shape suggesting 

greater sensitivity for zROC scores at the center than at peripheral criterion boundaries. 

Previous studies have predicted this shape for decision noise structures in rating tasks when 

criteria at extreme boundaries exhibit greater variance than at the more central boundaries 

(Mueller & Weidemann, 2008; Wickelgren, 1968). These predictions are borne out here.

Qualitative patterns in covariance data also provide some insight into the underlying 

representation at the decision stage. Greater encoding noise for a specific stimulus type has 

the effect of depressing the absolute value of covariances globally across all category 

boundaries but strictly within that stimulus type. On the other hand, greater criterion noise 

tends to lower the absolute value of covariance for both stimulus types. Additionally, both 

decision rules and boundary placement influence covariance outcomes. With internal noise 

at parity, covariance for within category estimates will reach a maximum as the response 

frequency for that stimulus
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Figure 1. 
Top: decision axis under a classical confidence rating framework. Representations of signal-

absent and signal-present distributions take the form of Gaussian probability density 

functions. The subject uses static criteria to partition the decision axis in order to map 

internal representations to overt responses. Bottom: a modified confidence rating framework 

in which the criteria are formulated as probability density functions with means μC1, μC2, 

and μC3 due to trial by trial variability in decision processes. In this this and later figures, 

probability density functions for criteria noise are shown reflected below the decision axis 

for clarity.
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Figure 2. 
Left: An ROC with three different decision criteria. When the signal strength is low, 

performance decreases, values of HR and FAR converge, and the ROC curve approaches the 

unity slope. With higher signal strength, HR and FAR diverge, so the ROC curve moves up 

and to the left. Right: underlying distributions of stimulus representations at the decision 

stage shown with high encoding noise and low decision noise (top panel) and an alternative 

representation with lower encoding noise and higher decision noise (bottom panel), each 

leading to the same performance outcome.
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Figure 3. 
Left: a multi-pass procedure contains at least two runs with identical samples of external 

noise added to corresponding trial stimuli within each pass. Corresponding trials need not be 

presented according to the same stimulus schedule for each pass, but we match external 

noise samples with trial order here for the purpose of illustration. Right: Measures of 

agreement (percent agreement, covariance, correlation) between responses to corresponding 

trials across passes provide additional behavioral measure to help constrain observer models.
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Figure 4. 
Left: Two overlapping ROCs generated using a decision rule described by Rosner and 

Kochanski (2009; see decision rules below) and assuming two different underlying 

parameter sets. Parameters 1 (circles): encoding noise is 1 for both signal absent and signal 

present trials; the mean of the signal distribution is 1; criteria are located at −0.62, 0, 0.5, 1 

with criterion noise at 0.1 for all criteria. Parameters 2 (+’s): encoding noise is 0.8 for signal 

absent trials, 0.4 for signal present trials; the signal mean is 0.92; the criteria are located at 

−0.15, 0, 0.5, 0.77 with corresponding criteria noise of 0.125, 1, 0.3, 0.2. All quantities 

given in units of the consistent noise, σext. Right: covariance outcomes using the same two 

underlying parameter sets result in discriminably different data patterns. Within-category 

covariances are denoted as [r,r] and lie within the gray bar. Between-category covariances 

lie outside the gray bar. Blue symbols mark within- and between-category covariances for 

response “2”; red for response “3”; black for response “4”; and magenta shows within-

category covariance for response “5”. For example, between-category covariance for 

response categories “3” and “5” across passes are shown as red circles and +’s at the 

position “r, r+2” along the abscissa.
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Figure 5. 
Left-top: decision space for classical confidence rating signal detection task with no decision 

noise. Criterion locations lie at the means of the signal-absent and signal-present 

distributions. Left-center and bottom: decision space showing joint distributions when 

decision noise equal to the representational noise is selectively added to the more lax 

criterion. The center of the concentric circles represents the mean position of the lax 

criterion along the ordinate, and the mean position of the signal-absent distribution (center) 

and signal-present distribution (bottom) along the abscissa. Straight blue lines represent 

mean criterion positions. Numbers overlaying joint distributions denote expected response 

category for trial-sampled criteria and representations falling in these regions. Right: zROC 

(top) and covariance data (bottom) for classical signal detection task without decision noise 

(circles) and with decision noise equal to representational noise at the more lax criterion 

(crosses). Within-category covariance data lie within the gray bar, between-category 

covariance data lie outside the gray bar. Covariance data indicating a response of “2” in at 

least one pass are blue; withing-category covariance for response “3” in both passes labeled 

with red. See main text for more details.
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Figure 6. 
Criterion overlap and stimulus-response mapping for three different decision rules. Random 

trial-by-trial sampling may lead to ordinal rearrangement of criteria (C1 and C2). The 

encircled red letters A, B, C, and D denote different positions of trial sampled stimulus 

representations falling along the decision axis. An observer requires an explicit decision rule 

to map the internal representation to a response. Under each stimulus representation, the 

columns of the Observer Response shows how an observer operating under the LCJ, LCJc, 

and LCJsym decision rules classifies each stimulus representation above. See main text for 

response mapping protocols.
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Figure 7. 
Probability density functions for six representative parameter configurations underlying 

response behavior for simulated observers. Black density functions represent signal-absent 

trials, red for signal-present trials, and blue for criterion noise. DN: decision noise; EN: 

encoding noise.

Cabrera et al. Page 51

Psychol Rev. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Standard error (SE) of parameter fits to data from simulated experiments for different pass-

trial and parameter configurations. Decision noise: DN; Encoding noise: EN. Average SE 

across all parameters given as circles connected by solid lines. Maximum SE among 

parameters given as blue diamonds (4 passes/experiment) and red asterisks (6 passes/

experiment). All parameter configurations show less variability in parameter fits with 

increasing trials and passes.
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Figure 9. 
Average mean squared error (MSE) of parameter fits to simulated data for various pass-trial 

and parameter configurations. Average MSE across all parameters given as circles 

connected by solid lines for 4 pass and 6 pass experiments. Maximum MSE among 

parameters given as blue diamonds and red asterisks. (Maximum for DN-asc EN-equ at 250 

trials, 4 passes is 0.465; not shown in order to preserve scale).
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Figure 10. 
Top and middle rows: average log mean-squared error (MSE) for model fits vs trials/pass 

(assuming six passes/experiment) for the LCJ, LCJc, and LCJsym matched to data simulated 

using the LCJ decision rule. Bottom: average (MSE) for model fits to simulations when 

decision noise and encoding noise are equal across criteria and stimulus classes. Bottom left: 

LCJ, LCJc, and LCJsym modeled to data simulated using the LCJc decision rule. Bottom 

right: LCJ, LCJc, and LCJsym modeled to data simulated using the LCJsym decision rule.
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Figure 11. 
Top and middle rows: average log χ2 for model fits vs trials/pass (assuming six passes/

experiment) for the LCJ, LCJc, and LCJsym matched to data simulated using the LCJ 

decision rule. Bottom: log χ2 for model fits to simulations when decision noise and encoding 

noise are equal across criteria and stimulus classes. Bottom left: LCJ, LCJc, and LCJsym 

modeled to data simulated using the LCJc decision rule. Bottom right: LCJ, LCJc, and 

LCJsym modeled to data simulated using the LCJsym decision rule.
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Figure 12. 
z-score plots for three and five rating categories. Points on the zROC from experiments with 

three rating categories lie above the best fitting line to points estimated from experiments 

with five rating categories. This result may reflect increasing decision noise with the use of 

additional response criteria.
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Figure 13. 
Model fits for zROC and covariance data for three and five response categories. Covariance 

graphs: point [r,r] corresponds to within-category covariance, while all other points 

correspond to between-category covariance.
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Table 1

Degrees of freedom in rating procedure tasks

Data Points Free parameters

Rating procedure 2M < 2M + 3

MCR procedure 2×2M > 2M + 3

Psychol Rev. Author manuscript; available in PMC 2016 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cabrera et al. Page 59

Table 2

Parameter Configurations for Simulation Study

Encoding Noise

Equal Ascending

Decision Noise

0 ✓

Equal ✓ ✓

Ascending ✓ ✓

Descending ✓
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