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Rapid note 
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In UBe13 magnetoacoustic quantum oscillations 
(MAQO) are observed for the attenuation- and the 
sound velocity-changes in the superconducting and nor- 
mal state. The observed extremal areas and the effective 
masses are small. 

The investigation of the heavy fermion superconducting 
state using ultrasonic methods by our group has given 
pronounced strain-order parameter coupling effects for 
longitudinal waves in UPt3 [1, 2], URuzSiz [2] and 
CeCu/Si 2 [3]. Shear waves for the same compounds 
have exhibited Lorentz force effects in magnetic fields, 
especially for U R n z S i  2 with its large critical field Bc2 
[2]. 

An analogous investigation in UBe13 has produced 
quite unexpected results: the attenuation and velocity 
change for the shear c44-mode exhibits magnetoacoustic 
quantum oscillations in the normal and superconducting 
region as shown in Fig. 1 a, b. 

The superconducting transition temperature T~ and 
the critical fields were determined by susceptibility mea- 
surements. The values of T~=0.85 K and Be/=9.5 T at 
45 mK agree with literature values [4]. Figure la  gives 
results for relative attenuation and velocity at 45 mK 
with magnetic field B parallel to the propagation axis 
[100] up to 11 T. One can clearly distinguish several 
oscillations which start at B = 2 T < Bcz. In Fig. ] b anal- 
ogous results are shown for the same geometry at T 
= 3 K > T~. The results of Fig. 1 a, b demonstrate already 
qualitatively that the oscillation frequencies are practi- 
cally the same for the normal and superconducting phase 
and that the effective masses for the observed orbits are 
very small. A preliminary analysis for the 305 T fre- 
quency gives m*/me~-0.2 with a Dingle temperature 
TD~-3 K. 

The UBei3 single crystal was prepared in a way de- 
scribed elsewhere [4]. We took a lot of care to select 
and polish the material to obtain a sample which is free 
of inclusions, especially of aluminium. Inclusions of this 

material are easily visible, ac-susceptibility measure- 
ments with our single crystal exhibited no superconduct- 
ing transition around the temperature T~ of A1. Micro- 
probe analysis and X-ray fluorescence investigations 
show that our sample is free from A1 inclusions. 

In Fig. 2 we show the Fourier transform of the results 
of Fig. 1 a indicating four clearly resolved frequencies F 
(from cos(2~zF/B)) at 33, 59, 305 and 384T. Both the 
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Fig. I a, b. Ultrasonic attenuation change A c~ and relative velocity 
A v/v o for the c44-mode at 30 MHz as a function of magnetic field 
in propagation direction, a T=45 inK; b T = 3  K 
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Fig. 2, Fourier transform of the data of Fig. 1 a for the sound veloci- 
ty data 

attenuation and relative velocity change give the same 
Fourierspectrum. These frequencies give Fermi surface 
areas which correspond to rather small pieces (for 
305 T = 0.08 (2 ~/a)2). MAQO can probe only small Fermi 
surface orbits [5]. In UPt3 frequencies up to 5950 T have 
been measured using conventional dHvA techniques for 
B>B~2 [6]. We have also investigated the angular de- 
pendence of these oscillations for B varying from the 
[100]- to the [010]-direction. We find for example a 
splitting of the 305 T frequency and a slight shift. A1 
gives strong acoustic oscillations with a fequency of 
F~400  T [-7] compared to 305 T in UBet3. The angular 
dependence of these frequencies are quite different in 
these materials. 

The significance of this experiment can be summar- 
ised as follows: 

�9 For the first time dHvA type quantum oscillations 
have been observed in the superconducting phase of a 
heavy fermion compound. In the superconducting layer 
compound NbS% dHvA-oscillations have been found 
in the normal and superconducting region [8]. The rea- 
sons that one can observe it in UBe~3 are the rather 
large critical field B~2 so that the oscillations can develop 
already in the superconducting state, the large Ginzburg- 
Landau parameter tc and the use of acoustic waves which 
circumvent the problem of penetration depths. 
�9 The important question now is: which electrons parti- 
cipate in MAQO? Are they from Fermi-surface pieces 
which remain normal or are they normal electrons in 
the vortices developing as B approaches Bc2? The char- 
acteristic lengths for this problem are the following: cy- 
clotron radius r~=vF/co~=I020~ for B = 6 T  and the 
305 T orbit, coherence length [4] ~ = 96 ~ for low tem- 
peratures and the mean free path I from the quoted Din- 

gle temperature is t = 2070 ]L These figures point to Fer- 
mi surface regions remaining normal for T< T~ and small 
masses. We do not yet consider the exotic possibility 
of observing orbits of nodal lines or induced nodal lines 
in the superconducting phase. 
�9 The fact that we observe Fermi surface pieces with 
small effective masses (in the normal and superconduct- 
ing phase) indicates that not all electrons in UBet3 hy- 
bridise to form the heavy electron state. This is detrimen- 
tal to common belief and it has been proposed before 
from experiments [9]. Small masses have also been ob- 
served in CeRu2Si2 another heavy fermion compound, 
above the metamagnetic transition [10]. 

These experiments are to be continued also with other 
elastic modes and with other field directions in order 
to compare the results with existing band structure cal- 
culations [111. A further investigation of the deformation 
potential coupling effects in the normal and supercon- 
ducting phases will also be persued in a similar way 
as has been done for LaAg [12]. 
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sample quality. This research was supported in part by SFB 252. 
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