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Probability Density Functions in the Analysis
of Hydraulic Conductivity Data

Hugo A. Loáiciga, M.ASCE1; William W.-G. Yeh, Hon.M.ASCE2; and Marcos Adrián Ortega-Guerrero3

Abstract: This paper reviews the role of probability density function �PDF� choice on: �1� the statistical characterization of hydraulic
conductivity; and �2� the estimation of the local-scale effective hydraulic conductivity. The most widely used skewed PDFs, namely, the
lognormal, gamma, and log-gamma PDFs are included in this study. It is shown that the gamma and log-gamma PDFs possess statistical
features that render them competitive, if not advantageous, to the more commonly used and better-known lognormal PDF in: �1� the
statistical description of hydraulic conductivity; and �2� the estimation of the effective hydraulic conductivity in local-scale groundwater
flow. The effective hydraulic conductivity is the parameter relating the average specific discharge to the average hydraulic gradient.
Several examples dealing with the statistical analysis of hydraulic conductivity and the estimation of the effective hydraulic conductivity
are presented, including a sample of 201 slug-test measurements of hydraulic conductivity in the main clay aquitard underlying Mexico
City.

DOI: 10.1061/�ASCE�1084-0699�2006�11:5�442�

CE Database subject headings: Probability; Hydraulic conductivity; Data processing; Measurement.
Introduction and Objectives

Hydraulic conductivity plays a fundamental role in the analysis of
groundwater flow. This is best exemplified by the ubiquitous use
of Darcy’s law in the study of groundwater flow. Hydraulic con-
ductivity was originally introduced as a deterministic, empirical,
coefficient relating the groundwater specific discharge and the
hydraulic gradient �Darcy 1856�. Detailed measurements of hy-
draulic conductivity have shown that—even in apparently homo-
geneous formations—it commonly exhibits substantial spatial
variability �Vargas and Ortega-Guerrero 2004�. That trait renders
it suitable for statistical, rather than deterministic, characteriza-
tion, a fact realized in an early work by Freeze �1975�. This real-
ization was quickly followed by the rapid development of the
field of stochastic groundwater hydrology �see, in this respect, the
works by Bakr et al. 1978; Gutjahr et al. 1978; Gelhar and Axness
1983; Dagan 1989; Gelhar 1993�, which enriched our understand-
ing of flow and transport phenomena in porous media alongside
with simultaneous advances made in numerical groundwater hy-
drology �see Willis and Yeh 1987; McDonald and Harbaugh
1988�.
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The effective hydraulic conductivity is an important
groundwater-flow parameter. This work focuses on effective hy-
draulic conductivity in local-scale groundwater flow. Ground-
water flow is generally of a three-dimensional nature at the local
scale. The flow system caused by a partially penetrating well is
illustrative of a local-scale disturbance in hydraulic head. Other
examples are given in Dagan �1989�. Under certain simplifying
conditions �see the section “Lognormal Hydraulic Conductivity
and its Relation to Effective Hydraulic Conductivity in Small-
Perturbations Approach”�, the effective hydraulic conductivity is
a parameter linking average groundwater specific discharge to
average hydraulic gradient, and it has received a fair amount of
attention in the stochastic groundwater literature �see Dagan
1989; Loáiciga et al. 1993, 1994, 1996�. It is also useful in the
calibration of three-dimensional groundwater flow models be-
cause it can serve as prior information in Bayesian and other
parameter estimation approaches �Yeh 1986; Loáiciga and Marino
1987; Doherty et al. 1999�.

This paper investigates the comparative advantages of prob-
ability density functions �PDFs� that are widely used in the sta-
tistical characterization of local-scale hydraulic conductivity and
in the estimation of the effective hydraulic conductivity. The
gamma and log-gamma PDFs, specifically, are proposed as sound
alternatives to the more commonly used lognormal PDF in the
statistical description of the hydraulic conductivity. Moreover,
this work includes several examples dealing with the statistical
analysis of hydraulic conductivity and the estimation of the effec-
tive hydraulic conductivity. One example relies on a sample of
201 slug-test measurements of hydraulic conductivity in the main
clay aquitard underlying Mexico City.

Properties of Lognormally Distributed Hydraulic
Conductivity

The assumption of lognormal hydraulic conductivity has been

widely adopted in stochastic groundwater hydrology. Research by
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Freeze �1975� provided early impetus within the groundwater
community for using the lognormal PDF as a statistical model to
fit hydraulic conductivity data. Over time, the lognormal PDF has
been accepted by many groundwater hydrologists as a general
tenet for describing hydraulic conductivity data �see e.g., Dagan
1989, p. 160�. Attractive features of the lognormal PDF in the
modeling of hydraulic conductivity are: �1� it can fit positively
skewed data �a common trait of hydraulic conductivity�; �2� the
parameters of the normally distributed log conductivity �symboli-

cally Y �N�Ȳ ,�Y
2�� are the mean Ȳ and the variance �Y

2, which are
easily estimable using the standard sample estimators for the
mean and variance. Moreover, the quantiles of Y can be obtained
straightforwardly from tabulated quantiles of the standard normal
PDF N�0,1� or from ubiquitous statistical software. The lognor-
mal PDF, on the other hand, cannot be used to model either
skewed log conductivity—which, by definition of the lognormal
PDF must be normally distributed, and, thus, symmetric—or
negatively skewed hydraulic conductivity. Although the lognor-
mal PDF allows positive lower bounds on hydraulic conductivity,
it does not allow upper bounds on it. In contrast, the gamma PDF
�reviewed in the section “Properties of Gamma-Distributed Hy-
draulic Conductivity”� or its extension, the log-gamma PDF �re-
viewed in the section “Extensions of Gamma PDF: Log-Gamma
Distributed Hydraulic Conductivity”�, can accomplish essentially
anything that the lognormal PDF can, plus it allows lower or
upper bounds on hydraulic conductivity. In addition, the gamma
PDF is mathematically more tractable than the lognormal PDF in
carrying out calculations of the effective hydraulic conductivity
developed with a methodology that circumvents the small-
perturbations assumption. The latter assumption requires that the
variance of the log-hydraulic conductivity be much less than one
�mathematically, �Y

2 �1, in which Y denotes log-hydraulic con-
ductivity; see the section “Lognormal Hydraulic Conductivity and
its Relation to Effective Hydraulic Conductivity in Small-
Perturbations Approach” for pertinent details�.

Lognormal PDF

Let K and � denote the hydraulic conductivity and its lower
bound, respectively, and Y =ln�K−�� be the log-hydraulic con-
ductivity �or, henceforth, log conductivity for simplicity�. Evi-
dently, K=exp�Y�+�. The lognormal PDF, in its greatest general-
ity, is given by the following formula:

fK�s� =
1

�s − ���Y
�2�

exp�−
1

2
� ln�s − �� − Ȳ

�Y
�2� s � �

�1�

in which the hydraulic conductivity’s lower bound � is, from,
physical feasibility, nonnegative. Several important characteristics
of the lognormally distributed hydraulic conductivity can be ob-
tained from the PDF of K in Eq. �1�, and from the fact that the log

conductivity Y is normally distributed with mean Ȳ and variance

�Y
2 or, symbolically, Y �N�Ȳ ,�Y

2�. These are presented next.
JOURNAL OF HYDROL
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Statistics of Lognormal PDF
The statistics of the lognormal PDF are as follows:

Expected value �mean, K̄�

K̄ = E�K� = E	eY
 + � = eȲ+��Y
2/2� + � �2�

Recall that when the lower bound �=0, the geometric mean of the

hydraulic conductivity is defined by KG=exp�Ȳ�. The geometric
mean is widely used as an average or “effective” hydraulic
conductivity in groundwater hydrology. An estimator of the geo-

metric mean, denoted by K̂G, is formed from sample values of

hydraulic conductivity K̂1 , K̂2 , . . . , K̂n that are log transformed

to Ŷ j =ln�K̂j�, j=1,2 , . . . ,n. The arithmetic mean of the log con-

ductivities is then Ŷ
¯

= �Ŷ1+ Ŷ2+ ¯ + Ŷn� /n, and the geometric

mean is estimated by K̂G=exp�Ŷ¯ � or by the alternative equation

K�G= �K̂1 · K̂2 · ¯ · K̂n�1/n.
Median �K0.50�

K0.50 = eȲ + � �3�

Mode �the most likely value, KM�

KM = eȲ−�Y
2

+ � �4�

Eqs. �2�–�4� show that KM �K0.50� K̄.
Variance ��K

2 �

�K
2 = e2Ȳ+�Y

2
· �e�Y

2
− 1� �5�

Coefficient of variation �CvK�

CvK �
�K

K̄
= �e�Y

2
− 1�1/2 �6�

Coefficient of skew �CsK�

CsK �
E�K − K̄�3

�K
3 =

�e3�Y
2

− 3e�Y
2

+ 2�
CvK

3 �7�

in which CvK is given by Eq. �6�. The CsK in Eq. �7� is always
positive.

Bias of the sample estimator of the geometric mean,

K̂G=exp�Ŷ¯ �, for uncorrelated log-conductivity observations

Ŷ j, j=1,2 , . . . ,3 �with lower bound �=0�

E	K̂G
 = E	eŶ
¯


 = E�exp
1

n
j=1

n

Ŷ j� = eȲ+��Y
2/2n� � eȲ �8�

Eq. �8� shows that the sample estimator of the geometric mean is
biased. Yet, it is a consistent estimator of KG

lim
n→�

E	K̂G
 = eȲ = KG �9�

that is, the bias of the sample estimator vanishes for large sample
size.

Bias of the sample estimator of the geometric mean,

K̂G=exp�Ŷ¯ �, for correlated observations �with �=0, Loáiciga and

Hudak 1989�

OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2006 / 443
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E�K̂G� = E�eŶ
¯

� = E�exp
1

n
j=1

n

Ŷ j�
= exp�Ȳ + �1/2n2�

i=1

n


j=1

n

CY�rij�� � eȲ �10�

in which CY �rij� denotes the correlation between the ith and
jth log-conductivity observations, i, j=1,2 , . . . ,n. It is evident
in Eq. �10� that the sample estimator of the geometric mean is
biased in the correlated case. Yet, it is consistent, that is, it
converges to KG as the sample size becomes very large, or

E	K̂G
→exp�Ȳ��KG when n→�.
Quantiles of K: for 0� p�1, P�K�Kp�= p defines the pth

quantile �Kp� of the hydraulic conductivity. Kp is given by

Kp = exp�Ȳ + zp�Y� + � �11�

In Eq. �11� zp= pth quantile of the standard normal variate
with zero mean and unit variance, which is readily obtained
with ubiquitous software such as EXCEL, using the function
zp=normsin v�p�.

Lognormal Hydraulic Conductivity and Its Relation
to Effective Hydraulic Conductivity in
Small-Perturbations Approach

This section reviews the centrality of the lognormal PDF in
the small-perturbations approach to deriving the effective hy-
draulic conductivity. The stochastic analysis of groundwater

flow assumes that the log conductivity Y =ln�K��N�Ȳ ,�Y
2�, with

�Y
2 �1 �see, e.g., Matheron 1967; Bakr et al. 1978; or Gutjahr et

al. 1978, for pioneering papers in this field�. The lower bound of
hydraulic conductivity is �=0 in this approach. The log conduc-

tivity is written as the sum of a constant mean Ȳ and a zero-mean

residual y, that is, Y = Ȳ +y, and has �stationary� covariance CY�r�.
Evidently, K=exp�Ȳ +y�=KGexp�y�, in which exp�y� can be re-
placed by a Taylor-series expansion about y=0. The specific
discharge qu in the direction u �where u can equal any of the
principal directions x, y, or z� can be written as follows �letting
the hydraulic head 	=H+
, where H and 
=mean hydraulic
head and zero-mean head residual, respectively�

qu = − K
�	

�u
= − KGey �	

�u

= − KG�1 + y +
y2

2!
+

y3

3!
+

y4

4!
+ ¯ �� �H

�u
+

�


�u
� �12�

The expected values of odd powers of the residual y �i.e., y, y3,
etc.� in the Taylor series of Eq. �12� are zero. The expected values
of even powers y2, y4, y6 , . . ., are of order �Y

2, �Y
4, �Y

6 , . . ., respec-
tively. Considering that �Y

2 �1, by assumption, it is evident that
terms containing yn, where n�2, are negligible compared with
�Y

2 and can be dropped from the series. Using this simplification,
the expected value of both sides of Eq. �12� produces the follow-
ing result �letting Ju=�H /�u denote the average hydraulic gradi-

ent in the direction u�

444 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER/
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q̄u � − KG · �1 +
�Y

2

2
�Ju − KG · E�y

�


�u
� u = x,y,z �13�

in which the cross moment, E	�y2 /2���
 /�u�
, was neglected in
the right-hand side term of Eq. �13� because it is of order �Y

3.
Several authors �see, e.g., Gutjahr et al. 1978; Dagan 1989;

Loáiciga et al. 1996� have simplified Eq. �13� assuming: �1� con-
stant average hydraulic gradient Ju, and �2� axisymmetric and
anisotropic log-conductivity covariance functions. In these cova-
riance functions the separation vector r=r1−r2 is resolved in
terms of components rh and rz on the horizontal and vertical
planes, respectively, and the axis of symmetry is parallel to the
vertical direction. Specifically, let IYh and IYz be the horizontal
�in the x, y plane� and vertical correlation scales of the log
conductivity, respectively, and �Y be the log-conductivity correla-
tion function. As before, �Y

2 denotes the variance of the log
conductivity. An axisymmetric �anisotropic� covariance is of the
form CY�r�=�Y

2�Y�r� , r= 	�rh / IYh�2+ �rz / IYz�2
1/2. The simplified
Eq. �13� takes the following form, in which the effective hydrau-

lic conductivity �K̃eu� is a coefficient relating the average specific
discharge and the average hydraulic gradient

q̄u � − K̃eu · Ju u = x,y,z �14�

The horizontal and vertical effective hydraulic conductivities

�K̃eh and K̃ez, respectively� are as follows:

K̃eh = KG · �1 + �Y
2�1

2
−



2
�� �15�

K̃ez = KG · �1 + �Y
2� −

1

2
�� �16�

in which the factor  is defined by

 =
�2

1 − �2� 1

��1 − �2
tan−1�� 1

�2 − 1� − 1� �17�

where �= IYz / IYh=ratio of log-conductivity correlation scales. The
inverse tangent function is expressed in radians in Eq. �17�. In the
isotropic case, i.e., �=1, =2/3, and, therefore

K̃eh = K̃ez = K̃e = KG · �1 +
�Y

2

6
� �isotropic case� �18�

The results presented in this section—which apply to lognor-
mally distributed hydraulic conductivity with �Y

2 �1, among other
assumptions—indicate that the effective hydraulic conductivity
can be expressed by the generic equation

K̃eu = KG · 	1 + O��Y
2�
 �19�

in which O in Eq. �19� denotes a quantity of order �Y
2. Eq. �19�

shows that the effective hydraulic conductivity converges to the
geometric mean KG as �Y

2 →0. This lends theoretical—yet
conditional—support to the use of the geometric mean of the
hydraulic conductivity as an effective parameter in local-scale
groundwater models.

While the asymptotic convergence of the effective conductiv-
ity to the geometric mean of the hydraulic conductivity is laud-
able, the review presented in this section shows that the use of the
geometric mean as an effective groundwater parameter is appli-
cable under the restrictive condition �Y

2 �1 when the hydraulic
conductivity is lognormally distributed. The following sections

show that neither the small-perturbations assumption nor lognor-
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mality are necessary in either the statistical characterization of
hydraulic conductivity or in the derivation of the effective hy-
draulic conductivity.

Properties of Gamma-Distributed Hydraulic
Conductivity

Loáiciga �2004� proposed the gamma PDF as an alternative to the
lognormal PDF in an analysis of stochastic groundwater flow and
solute transport. In its greater generality, the PDF of gamma-
distributed hydraulic conductivity is

gK�s� =
� s − �

�
��

�s − ��−1e−�s−�/��

����
,

s � � if � � 0, s � � if � � 0 �20�

in which � and �=shape and scale parameters, respectively, and
��0; �=lower bound of the hydraulic conductivity when ��0,
and an upper bound when ��0; � denotes the gamma function

���� =�
0

�

e−���−1d� �21�

The gamma function is widely tabulated and programmed in com-
mercial software �EXCEL, MATLAB, MATHEMATICA, for ex-
ample�. It is noteworthy that when �=1 and ��0 the gamma
PDF in Eq. �20� becomes the exponential PDF with parameter
1 /�. The exponential PDF has been used in modeling hydraulic
conductivity �Gardner 1958; Philip 1969�.

The domain of the gamma PDF is 	−� ,�
 when ��0, which
contains negative numbers and, thus, violates the non-negativity
of the hydraulic conductivity. The next subsection presents a sum-
mary of the properties of the gamma PDF for positive or negative
scale parameter �. This sets the stage for the study of the log-
gamma PDF, which features positive or negative scale parameter
and is defined over nonnegative domains.

Statistics of Gamma PDF

The following properties for gamma-distributed hydraulic con-
ductivity are derivable from the PDF Eq. �20�:
Expected value �mean�

K̄ = �� + � �22�

Median

K0.50 = �0.50� + � �23�

in which �0.50 must be obtained from the integral equation

1

�����0

�0.50

e−���−1d� =
1

2
�24�

The integral on the left-hand side of Eq. �24� is called the incom-
plete gamma function ��� ,�0.50� �see, e.g., Gradshteyn and
Ryzhik 1994, Eq. 8.350.1��, so that Eq. �24� can be shortened to

1

����
���,�0.50� =

1

2
�25�

The left-hand side of Eq. �25� can be evaluated using the
GAMMAINV �probability, alpha, beta� function in the software

EXCEL, with probability�1/2, alpha=�, and beta=1, which re-

JOURNAL OF HYDROL
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turns the value of �0.50.
Mode, when ��1

KM = �� − 1� · � + � �26�

and it is equal to � when 0���1.
Variance

�K
2 = ��2 �27�

Coefficient of variation

CvK =
��1/2��

��� + ��
�28�

Coefficient of skew

CsK =
2��3

�K
3 �29�

in which the sign of the skew is determined by that of the shape
parameter �. CsK�0 when ��0, in which case the PDF is posi-
tively skewed with lower bound �. CsK�0 when ��0, in which
case the PDF is negatively skewed with upper bound �.

Moment estimators of the �, �, and � parameters are deduc-
ible from Eqs. �22�–�29�. They are

� =
4

CsK
2 �30�

� =
�KCsK

2
�31�

� = K̄ −
2�K

CsK
�32�

in which K̄, �K, and CsK are replaced in Eqs. �30�–�32� by the
standard sample estimators of the mean, variance, and coefficient
of skewness of the hydraulic conductivity, respectively. Quantiles:
for 0� p�1, P�K�Kp�= p defines the pth quantile. In particular,
K0.50 equals the median. In general, Kp is given by the following
equation:

Kp = K̄ + ��qCsK

2
−

2

CsK
��K �33�

in which �q must be obtained from the following integral equa-
tion �0� p�1�:

1

�����0

�q

e−���−1d� = p if CsK � 0 �i.e., � � 0� �34�

in which �=4/CsK
2 or from

1

�����0

�q

e−���−1d� = 1 − p if CsK � 0 �i.e., � � 0� �35�

in which �=4/CsK
2 . Eqs. �30�–�35� are sufficient to characterize

the gamma-distributed hydraulic conductivity. All the special
functions used in the previous equations are available in commer-
cial software and their calculation is expeditious. In particular, the
left-hand side of Eqs. �34� and �35� can be evaluated using the
GAMMAINV �probability, alpha, beta� function in the software
EXCEL, with probability q= p �if CsK�0� or 1− p �if CsK�0�,
alpha=�, and beta=1, which returns the value of �q. In the limit
CsK→0, the factor within brackets in Eq. �33� tends to the stan-

dard normal quantile zp. Specifically

OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2006 / 445

11(5): 442-450 



 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
29

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

lim
CsK→0

��qCsK

2
−

2

CsK
� → zp �36�

so that the quantile Kp in Eq. �33� becomes Kp= K̄+zp�K. In other
words, the gamma PDF approaches the normal PDF when the
coefficient of skew tends to zero.

Extensions of Gamma PDF: Log-Gamma Distributed
Hydraulic Conductivity

A variant of the gamma PDF is the log-gamma PDF �also called
log-Pearson Type III�, which is used by federal agencies in the
United States to fit annual streamflow peaks at gaged sites �see,
e.g., USGS 1982; Koutrouvelis and Canavos 1999�. When using
the log-gamma PDF it is assumed that the logarithm of the hy-
draulic conductivity K �i.e., Y =ln�K�� follows the gamma PDF in
Eq. �20� with the shape and scale parameters replaced by �Y and
�Y, respectively. In this instance, �=�Y in Eq. �20� denotes the
lower bound of Y when �Y �0, or its upper bound when �Y �0.
The log conductivity Y has the following PDF:

gY�s� =
� s − �Y

�Y
��Y

�s − �Y�−1exp�− � s − �Y

�Y
��

���Y�
,

s � �Y if �Y � 0, s � �Y if �Y � 0 �37�

Evidently, K=eY, which is positive with lower or upper bound e�Y

depending on whether �Y �0 or �Y �0, respectively. The PDF of
log-gamma distributed K is

hK�s� =
� ln�s� − �Y

�Y
��Y

�ln�s� − �Y�−1exp�− � ln�s� − �Y

�Y
��

s���Y�
�38�

in which s�e�Y if �Y �0, or 0�s�e�Y if �Y �0. Key properties
of the log-gamma-distributed hydraulic conductivity K are deriv-
able from its PDF Eq. �38�. These are presented next.

Statistics of Log-Gamma PDF

The following are statistics of the log-gamma PDF:
Expected value

K̄ =
e�Y

�1 − �Y��Y
�39�

Geometric mean

KG � eE�Y� = e�Y�Y+�Y �40�

The estimator of KG is exp	�1/n��Ŷ1+ Ŷ2+ ¯ + Ŷn�
, whose ex-
pected value can be shown to be exp��Y� / 	�1− ��Y /n�
n�Y when
the log-conductivity observations are mutually independent. This
result proves that the sample estimator of KG is biased in this
instance, that is, its expected value differs from exp	�Y�Y +�Y
.
On the other hand, the sample estimator is consistent, that is, its
expected value tends to exp	�Y�Y +�Y
 when n→�. The magni-
tude of the bias of the estimator of KG is unknown when the

log-conductivity observations are correlated.
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Median

K0.50 = e�0.50�Y+�Y �41�

in which �0.50 is obtained from the solution of the integral
Eq. �25�.
Mode, when ��1

K̄M = exp���Y − 1�
�Y

�Y + 1
+ �Y� �42�

the mode equals e�Y if 0��Y �1.
Variance

�K
2 = K̄2�� �1 − �Y�2

�1 − 2�Y���Y

− 1� �43�

in which K̄ �the expected value of K� is given by Eq. �39�.
Coefficient of variation

CvK = �� �1 − �Y�2

�1 − 2�Y���Y

− 1�1/2

�44�

Coefficient of skew

CsK =
� �1 − �Y�3

�1 − 3�Y���Y

− 3� �1 − �Y�2

�1 − 2�Y���Y

+ 2

CvK
3 �45�

in which CvK is given by Eq. �44�.
Moment estimators of the log-conductivity parameters �Y, �Y,

and �Y are obtained by resorting to the fact that Y =ln�K� is

gamma distributed. Letting Ȳ, �Y, and CsY be the mean, standard
deviation, and coefficient of skew of Y, respectively, one obtains

�Y =
4

CsY
2 �46�

�Y =
�YCsY

2
�47�

�Y = Ȳ −
2�Y

CsY
�48�

in which Ȳ, �Y, and CsY are replaced in Eqs. �46�–�48� by the
standard sample estimators of the mean, variance, and coefficient
of skew of the log conductivity Y, respectively.

Quantiles of the hydraulic conductivity: for 0� p�1,
P�K�Kp�= p defines the pth quantile �Kp�. In particular,
K0.50�the median. In general, Kp is given by the following
equation:

Kp = exp�Ȳ + ��qCsY

2
−

2

CsY
��Y� �49�

in which �q must be obtained from the following integral equa-
tions �0� p�1�:

1

���Y��0

�q

e−���Y−1d� = p if CsY
� 0 �i.e., �Y � 0� �50�

2
in which �Y =4/CsY, or
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1

���Y��0

�q

e−���Y−1d� = 1 − p if CsY � 0 �i.e., �Y � 0�

�51�

in which �Y =4/CsY
2 . The left-hand side of Eqs. �50� and �51�

can be evaluated using the GAMMAINV �probability, alpha,
beta� function in the software EXCEL, with probability q= p
�if CsY �0� or 1− p �if CsY �0�, alpha=�Y, and beta=1, which
returns the value of �q. In the limit CsY →0, the factor within
parentheses in Eqs. �50� and �51� tends to the standard normal
quantile zp.

Eqs. �46�–�51� are sufficient to characterize the log-gamma
distributed hydraulic conductivity. In the limit CsY →0, the factor
within brackets in Eq. �49� tends to the standard normal quantile
zp. Specifically

lim
CsY→0

��qCsY

2
−

2

CsY
� → zp �52�

so that the quantile Kp in Eq. �49� becomes

Kp = exp�Ȳ + zp�Y� �53�

In other words, the log-gamma PDF approaches the log-normal
PDF when the coefficient of skew tends to zero �compare Eq. �53�
with Eq. �11�, after setting �=0 in the latter�.

Fig. 1. Graphs of gamma and lognormal �LN� PDFs of hydraulic

conductivity �K�. lower bound ���, mean �K̄�, standard deviation
��K�, and coefficient of skewness �CsK� are 5, 10, 10, and 4,
respectively. The first three parameters are in meters day−1. Argument
s represents realization of hydraulic conductivity in Eqs. �1� and �20�.

Fig. 2. Graphs of gamma and lognormal �LN� CDFs of hydraulic

conductivity �K�. Lower bound ���, mean �K̄�, standard deviation
��K�, and coefficient of skewness �CsK� are 5, 10, 10, and 4,
respectively. First three parameters are in meter day−1. Argument s
represents realization of hydraulic conductivity in Eqs. �1� and �20�.
JOURNAL OF HYDROL
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Examples of Positively and Negatively Skewed
Hydraulic Conductivity

Fig. 1 shows two graphed PDFs. One is a gamma PDF �Eq. �20��

with properties �=5, K̄=10, �K=10 �these three in meter day−1�,
CsK=4 �and, therefore, �=1/4 and �=20�. The other is a log-
normal PDF �Eq. �1�� with properties identical to those of the

gamma PDF, i.e., �=5, K̄=10, �K=10, CsK=4 �and, therefore,

Ȳ =1.2629, �Y =�ln 2=0.8326�. A CsK=4 implies a high degree
of asymmetry for hydraulic conductivity. Therefore, the graphs in
Fig. 1 portray a graphical representation of PDFs with unusually
pronounced skew. The two PDFs in Fig. 1 have remarkably
different shapes in spite of sharing the same lower bound, mean,
variance, and coefficient of skew. Fig. 2 shows the cumulative
distribution functions �CDFs� corresponding to the PDFs of
Fig. 1. The graphs in Fig. 2 reveal that the gamma CDF is larger
than the lognormal CDF for most values of hydraulic conductivity
in this example.

Fig. 3 shows gamma and lognormal PDFs with �=0,

K̄=4, �K=2 �these three in meter day−1� , CsK=1. The values
of the skew coefficient �=1� and the coefficient of variation
�=2/4=0.5� are typical for hydraulic conductivity. In the case
of the gamma PDF, �=4 and �=1. For the lognormal PDF,

Ȳ =0.426 and �Y =0.731. In spite of the striking differences be-
tween the PDFs shown in Fig. 3, they have identical lower
bounds, means, variances, and coefficients of skew. Fig. 4 dis-
plays graphs of the CDFs of hydraulic conductivity corresponding

Fig. 3. Graphs of gamma and lognormal �LN� PDFs of hydraulic

conductivity �K�. Lower bound ���, mean �K̄�, standard deviation
��K�, and coefficient of skewness �CsK� are 0, 4, 2, and 1,
respectively. First three parameters are in meter day−1. Argument s
represents realization of hydraulic conductivity in Eqs. �1� and �20�.

Fig. 4. Graphs of gamma and lognormal �LN� CDFs of hydraulic

conductivity �K�. Lower bound ���, mean �K̄�, standard deviation
��K�, and coefficient of skewness �CsK� are 0, 4, 2, and 1,
respectively. First three parameters are in meter day−1. Argument s
represents realization of hydraulic conductivity in Eqs. �1� and �20�.
OGIC ENGINEERING © ASCE / SEPTEMBER/OCTOBER 2006 / 447
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to the PDFs of Fig. 3. In contrast to the CDFs of the previous
example �see Fig. 2�, the lognormal CDF is larger then the
gamma CDF in this instance.

The two previous examples demonstrate that the gamma PDF
is a flexible density that can fit positively skewed hydraulic con-
ductivity as well as the lognormal PDF can. It was remarked
earlier that the log-gamma PDF can fit positively or negatively
skewed log conductivity. The lognormal PDF, on the other hand,
can only fit symmetric �that is, nonskewed� log-conductivity.
Fig. 5 shows the gamma PDF of log conductivity Y �Eq. �37��

for which Ȳ =ln�20�−1=1.996, �Y =1/2, CsY =−1, and the upper
bound �Y =ln�20�=2.996. The corresponding log-gamma PDF of
hydraulic conductivity K �Eq. �38�� is also shown in Fig. 5, for

which the domain is K� 	0,20
 in meter day−1, with K̄=8.192,
�K=3.450, and CsK= +0.260.

Fig. 6 shows a plot of 201 rising-head slug-test measurements
of hydraulic conductivity made in the main clay aquitard that
underlies Mexico City �unit one in Vargas and Ortega-Guerrero
2004�. Slug-test measurement of the hydraulic conductivity aver-
ages K over a domain whose characteristic length is the size of
the screened interval in the test well �Vargas and Ortega-Guerrero
2004�, consistent with the local scale of groundwater flow. This
aquitard is important for the long-term management and protec-

Fig. 5. Gamma PDF of log conductivity Y for which Ȳ =ln�20�−1
=1.996, �Y =1/2, CsY =−1, and upper bound �Y =ln�20�=2.996.
Corresponding log-gamma PDF of hydraulic conductivity K is
also shown, for which domain is K� 	0,20
 in meter day−1, with

K̄=8.192, �K=3.450, and CsK= +0.260. Argument s appears in
Eqs. �37� and �38�.

Fig. 6. Hydraulic conductivity measurements made using rising-head
slug tests in main clay aquitard underlying Mexico City. Two hundred
one measurements were made. Minimum, maximum, average,
median, and standard deviation of hydraulic conductivity estimated
from measurements were 3.1�10−11, 5.2�10−6, 3.9�10−8,
1.5�10−9, and 3.7�10−7 cm/s, respectively. Coefficient of skew
=CsK=13.7, and lower bound of K=1.3�10−12 cm/s.
448 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER/
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tion of the water resources of Mexico City and its urban environs.
The aquitard’s effective hydraulic conductivity is central to as-
sessing the degree of connectedness of shallow groundwater
and groundwater in the aquifer underlying the aquitard. This de-
gree of hydraulic connection is the key to preventing pollution
of the aquifer’s groundwater. The spatial characterization of
the effective hydraulic conductivity, in particular, is considered
potentially valuable in calibrating groundwater-flow models of
the Mexico City aquifer system �Vargas and Ortega-Guerrero
2004�. The measurement of hydraulic conductivity in the Mexico
City aquitard range from 3.1�10−11 to 5.2�10−6 cm/s, as
seen in Fig. 6. Its average, median, and standard deviation are
3.9�10−8, 1.5�10−9, and 3.7�10−7 cm/s, respectively. The

coefficient of variation CvK��K / K̄=9.4, indicating inordinate
variability of K. Moreover, the K data in Fig. 6 exhibit very
large skew CsK=13.7, and an estimated lower bound of
1.3�10−12 cm/s. The log conductivity Y =ln K has minimum
and maximum measured observations equal to −24.2 and −12.2,
respectively. Its average, median, and standard deviation are
−20.3, −20.4, and 2.1, respectively. Notice that this particular
sample does not comply with the small-perturbation assumption
�Y

2 �1. In addition, the coefficient of skew CsY =0.59, and
the lower bound is �Y =−27.3. Evidently, the logarithmic trans-
formation does not normalize the data in this instance. The log-
gamma PDF is the appropriate model to fit the log conductivity
in this case. The estimated shape and scale parameters equaled
�Y =11.4 and �Y =0.62, respectively.

Fig. 7 shows the estimated gamma PDF of the log conductivity
of the data in Fig. 6, gY�s� �see Eq. �37��. Fig. 8 contains a graph

Fig. 7. Gamma PDF of log conductivity Y =ln K estimated from
hydraulic conductivity data shown in Fig. 6. Estimates of minimum,
maximum, average, median, and standard deviation of log
conductivity were −24.2, −12.2, −20.3, −20.4, and 2.1, respectively.
Coefficient of skew CsY =0.59, and lower bound �Y =−27.3.
Argument s appears in Eq. �37�.

Fig. 8. Log gamma PDF of hydraulic conductivity estimated from
data shown in Fig. 6. Main statistics of K are those written in legend
of Fig. 6. Notice substantial degree of asymmetry in PDF, whose
lower-bound estimate equals 1.3�10−12 cm/s. Argument s appears
in Eq. �38�.
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of the log-gamma PDF of the hydraulic conductivity, hK�s� �see
Eq. �38��. The asymmetry of the latter PDF is evident.

Effective Hydraulic Conductivity for Arbitrary PDF
of Hydraulic Conductivity

Dagan �1989� presented a self-consistent approach to obtain the
effective hydraulic conductivities in the horizontal plane �Keh�
and in the vertical direction �Kez� when the hydraulic conductivity
has an axisymmetric covariance. His results are applicable
for arbitrary PDF of the hydraulic conductivity and circumvents
the assumption of very small log-conductivity variance �i.e., that
�Y

2 �1� required in the small-perturbations approach reviewed in
a previous section. The results are

Keh =
1

2��s�D

fK�s�ds

�s − Keh�� + 2Keh
�−1

�54�

in which fK�s�=PDF of the hydraulic conductivity �lognormal,
gamma, exponential, log gamma, for example� whose domain,
D, may contain only non-negative values. In the case of a
log-gamma PDF with upper bound exp��Y�, for instance,
D= 	0,exp��Y�
. Other terms in Eq. �54� are

� =
�2

1 − �2� 1

��1 − �2
tan−1�� 1

�2 − 1� − 1� �55�

in which the inverse tangent function is expressed in radians, and

� =
IKz

IKh

�Keh

Kez
�56�

IKh= IYh and IKz= IYz=horizontal and vertical correlation scales
of the hydraulic conductivity �and of the log conductivity�,
respectively.

The vertical effective hydraulic conductivity is

Kez = ��
s�D

fK�s�ds

s + � · �Kez − s��−1

�57�

Eqs. �54� and �57� are coupled integral equations. This is so be-
cause the factor � in Eq. �56� contains the ratio Keh /Kez, which
appears in both equations via the term � �see Eq. �55��. Therefore,
Eqs. �54� and �57� must be solved jointly to obtain the horizontal
and vertical effective hydraulic conductivities. The calculations
are tedious but straightforward using mathematical-statistical
software such as EXCEL.

If the hydraulic conductivity is isotropic Keh=Kez=Ke

Ke =
1

3��s�D

fK�s�ds

s + 2Ke
�−1

�58�

Eqs. �54�, �57�, and �58� can be simplified when the PDF of
the hydraulic conductivity is the gamma density �see Eq. �20��. In
this instance, and provided that ��0 �that is, the coefficient of
skewness CsK is positive�, Eq. �54� becomes

2��1 − �,�� · e� · ��−1Keh

��
= 1 �59�

in which ��1−� ,����complementary� gamma function �see

Gradshteyn and Ryshik 1994, Eq. 8.350.2�
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��1 − �,�� =�
�

�

e−��−�dt �60�

and

� =
�� + �2 − �� · Keh

��
�61�

Using the gamma PDF �Eq. �20�� in Eq. �57� yields �with ��0,
that is, CsK�0�

��1 − �,�� · e� · ��−1Kez

� · �1 − ��
= 1 �62�

in which

� =
� · �1 − �� + �Kez

� · �1 − ��
�63�

Eq. �58� for isotropic hydraulic conductivity produces the fol-
lowing integral equation for the effective hydraulic conductivity
�Ke� when the gamma PDF Eq. �20� with ��0 �and thus with
CsK�0� is used

3��1 − �,� · e · �−1Ke

�
= 1 �64�

in which

 =
� + 2Ke

�
�65�

The isotropic solution Eq. �64� takes its simplest form when
�=1, that is, when the gamma PDF becomes the exponential PDF
with parameter 1 /��0. The isotropic effective hydraulic conduc-
tivity is then obtained by solving the following equation:

3��0,� · e · Ke

�
= 1 �66�

Fig. 9 shows solutions of the isotropic Ke �Eq. �64�� expressed
as the dimensionless variable Ke

*=Ke /� as a function of the coef-
ficient of skewness �CsK � =2/��, and for a lower bound �=0. All
calculations were performed with the software MATHEMATICA.
It is seen in Fig. 9 that the ratio Ke /� decreases with increasing
coefficient of skewness. Fig. 9 can be used to estimate the isotro-
pic Ke by first estimating the coefficient of skewness �CsK� and
the standard deviation ��K� of the hydraulic conductivity data to

Fig. 9. Dimensionless ratio Ke
*=Ke /� as function of coefficient

of skewness �CsK � =2/��, based on Eq. �64� for isotropic effective
hydraulic conductivity with gamma PDF, in which ��0 and lower
bound �=0. To obtain Ke, calculate standard deviation ��K� and
coefficient of skewness �CsK� from hydraulic conductivity data, enter
graph with CsK, and interpolate corresponding Ke /�. Solve for Ke

using Ke= �Ke /�� · ��KCsK /2�.
obtain �=�KCsK /2, then reading the Ke /� corresponding to CsK
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using the graph in Fig. 9, and, finally, solving for the effective
hydraulic conductivity: Ke= �Ke /�� · ��KCsK /2�. Notice that the
effective conductivity so obtained differs fundamentally from that
obtained in the small-perturbations approach �see Eq. �19�� in that
the former captures the first-, second-, and third-moment charac-
teristics of the hydraulic conductivity, whereas the latter is based
strictly on the first moment of the log conductivity. Although the
graph in Fig. 9 corresponds to isotropic effective hydraulic con-
ductivity, the same observation holds regarding the multimoment
characteristics of the anisotropic effective hydraulic conductivi-
ties presented in this section �see Eqs. �54� and �57��.

Choosing PDF

It can be construed from the previous sections that the log-gamma
PDF is a suitable probability model for hydraulic conductivity in
the cases of skewed and symmetric data sets. The goodness-of-fit
of the log-gamma PDF to a specific sample of hydraulic conduc-
tivity values can be investigated formally using the chi-squared
test, for example, as illustrated in the context of other hydrologic
data in Loáiciga et al. �1992�. It has been shown in this paper
that if the log conductivity has a negligible coefficient of skew,
then the lognormal PDF is an adequate, perhaps the simplest,
probability model to fit a sample.

Conclusion

The relative advantages/disadvantages of well-known, asymmet-
ric, PDFs for the statistical characterization of hydraulic conduc-
tivity were reviewed in this paper. It was shown that the gamma
and log-gamma PDFs possess statistical traits that render them
advantageous in comparison with the more commonly used log-
normal PDF. In addition, this work reviewed the effect that the
choice of hydraulic conductivity PDF has on the estimation of the
effective hydraulic conductivity in local-scale groundwater flow.
Theoretical results and computational examples using synthetic
and field hydraulic conductivity data demonstrated that the log-
gamma PDF possesses all the features necessary to model skewed
hydraulic conductivity data with lower or upper bounds. The as-
sumption of lognormally distributed hydraulic conductivity with
negligible log-conductivity variance was shown to be unnecessary
in the statistical characterization of hydraulic conductivity or in
the derivation of the effective hydraulic conductivity.
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