
UCLA
UCLA Previously Published Works

Title
Bayesian High-Dimensional Regression for Change Point Analysis.

Permalink
https://escholarship.org/uc/item/2dd461k5

Journal
Statistics and Its Interface, 12(2)

ISSN
1938-7989

Authors
Datta, Abhirup
Zou, Hui
Banerjee, Sudipto

Publication Date
2019

DOI
10.4310/sii.2019.v12.n2.a6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2dd461k5
https://escholarship.org
http://www.cdlib.org/


Bayesian High-Dimensional Regression for Change Point 
Analysis

Abhirup Datta,
Department of Biostatistics, Johns Hopkins University, abhidatta@jhu.edu

Hui Zou,
Department of Statistics, University of Minnesota, zouxx019@umn.edu
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Abstract

In many econometrics applications, the dataset under investigation spans heterogeneous regimes 

that are more appropriately modeled using piece-wise components for each of the data segments 

separated by change-points. We consider using Bayesian high-dimensional shrinkage priors in a 

change point setting to understand segment-specific relationship between the response and the 

covariates. Covariate selection before and after each change point can identify possibly different 

sets of relevant covariates, while the fully Bayesian approach ensures posterior inference for the 

change points is also available. We demonstrate the flexibility of the approach for imposing 

different variable selection constraints like grouping or partial selection and discuss strategies to 

detect an unknown number of change points. Simulation experiments reveal that this simple 

approach delivers accurate variable selection, and inference on location of the change points, and 

substantially outperforms a frequentist lasso-based approach, uniformly across a wide range of 

scenarios. Application of our model to Minnesota house price dataset reveals change in the 

relationship between house and stock prices around the sub-prime mortgage crisis.

Keywords

Bayesian Inference; Change Point Detection; High-dimensional Regression; Markov Chain Monte 
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1. INTRODUCTION

Modern statistical modeling and inference continue to evolve and be molded by the 

emergence of complex datasets, where the dimension of each observation in a dataset 

substantially exceeds the size of the dataset. Largely due to recent advances in technology, 

such high-dimensional datasets are now ubiquitous in fields as diverse as genetics, 

economics, neuroscience, public health, imaging, and so on. One important objective of 

SUPPLEMENTARY MATERIALS
Code to generate data and run the single and two change point high dimensional regression models are provided as supplementary 
materials.
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high-dimensional data analysis is to segregate a small set of regressors, associated with the 

response of interest, from the large number of redundant ones. Penalized least square 

approaches like lasso [46], SCAD [18], Elastic Net [51], adaptive lasso [50] etc. are widely 

employed for high-dimensional regression analysis. Bayesian alternatives typically proceed 

by using hierarchical priors for the regression coefficients aimed at achieving variable 

selection. Common approaches include the spike-and-slab prior [24] or its variants [29, 35] 

or, more generally, scale mixture of normal priors, like Bayesian lasso [39] and horseshoe 

prior [11] among others.

Most of the aforementioned approaches assume a single underlying model from which the 

data is generated. Such homogeneity assumptions are often violated for time series data 

spanning different economic regimes [14, 48]. Such examples of structural change in 

relationship between variables is also common in other fields like climate change [41], DNA 

micro-array analysis [3] and so on. Change point models provide a convenient depiction of 

such complex relationships by splitting the data based on a threshold variable and using a 

homogeneous model for each segment. There is a burgeoning literature on Bayesian 

methodology addressing various change point problems [see, e.g., 10, 5, 33, 1, 47].

Changing linear regression models are a subclass of change point problems, where the linear 

model relating the response to the predictors varies over different segments of the data. 

Segmentation of the dataset is typically based on unknown change points of a threshold 

variable like time or age or some other contextual variable observed along with the data. In a 

low dimensional setting, [10] used Gibbs’ sampling techniques for changing linear models 

to deliver fully Bayesian inference about the location of the change points and the regression 

coefficients for each segment.

When the set of possible predictors is large, an additional objective is to identify the 

(possibly different) sparse supports for each segment. Even when the sample size n is larger 

than the number of predictors p, in presence of one or more change points, the effective 

sample size for each segment may be much less than p, thereby necessitating shrinkage or 

variable selection based approaches.

This manuscript demonstrates how we can seamlessly exploit Bayesian variable selection 

techniques in a change point setup to simultaneously detect the location of the change points 

as well as to identify the true sparse support for each of the linear models. The Bayesian 

approach delivers full posterior inference on the change points, posterior selection 

probabilities for each variable for all segments and posterior predictive distributions for the 

response. Flexibility in the choice of variable selection priors offers the scope for structural 

variable selection tailored to specific data applications. For example, constraints like 

grouping the selection of a variable across all the segments can be easily achieved using 

group selection priors. Other constraints like partial selection within or between the 

segments can also be accommodated.

Classical penalized least square approaches mentioned earlier can also be used in a change 

point setup. By treating the unknown change points as additional tuning parameters, one can 

split the data using fixed values of these change points and use some penalized loss function 
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to achieve variable selection for each segment. For example, [30] uses lasso penalty to 

estimate the coefficients for each segment. Subsequent application of cross validation or 

model selection techniques will yield the optimal change points from a grid of possible 

values. However, a fully Bayesian approach has several advantages over this. Firstly, the grid 

search approach is computationally highly inefficient especially for more than one change 

points. On the other hand, a prior specification for the change points in the Bayesian model 

enables standard MCMC techniques to efficiently generate posterior samples. Moreover, in 

many real applications, change in association between variables can occur over a range of 

the threshold variable. Point estimates of change points obtained from classical approaches 

fail to accurately depict such scenarios. Bayesian credible intervals obtained from the 

posterior distributions provide a much more realistic quantification of the uncertainty 

associated with the location of the change points.

Numerical studies reveal that for a wide range of scenarios, our proposed methodology 

performs uniformly better than the frequentist approach both in terms of model selection and 

parameter estimation. We also demonstrate the applicability of our method for a macro-

economic analysis of Minnesota house price index data. The results strongly favor our 

change point model over a homogeneous high-dimensional regression model.

The rest of the manuscript is organized as follows. The motivating dataset of Minnesota 

house price index time series is presented in Section 2. In Section 3 we present our 

methodology in details including extensions to unknown number of change points and 

alternate prior choices. Results from several simulated numerical studies are provided in 

Section 4. In Section 5 we present the details of the house price index data analysis using 

our change point methodology. We conclude in Section 6 with a brief review and pointers to 

future research.

2. MOTIVATING DATA

Economic datasets constitute a major domain of application of change point models. Many 

economic time series datasets may be collected over different political and financial regimes, 

thereby containing several change points with respect to the association with the predictors. 

For example, the relationship between house prices and macro-economic variables is often 

observed to exhibit differential trends over time. As noted in [2], the US stock market crash 

in the ‘Internet bubble burst’ of 2001–2002 was not accompanied by declining house prices 

whereas in the sub-prime mortgage crisis in 2007–2009, stocks and house prices witnessed 

simultaneous collapse.

Multivariate regression models have been used to understand the relationship between house 

price index (hpi) and macro economic variables in Ukraine [32], Sweden [45] and Malaysia 

[37]. These analyses often assume a single underlying time-homogeneous relationship 

between hpi and the explanatory variables, which may not be always appropriate. To 

illustrate, in Figure 1, we present the quarterly hpi time-series of Minnesota for a 24-year 

period from first quarter of 1991 to first quarter of 2015. We observe that there are two 

possible change points (marked by red dots) with respect to time — one around 2006–2008 

where hpi starts to depreciate after reaching a peak and, later, one around 2012 where hpi 
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starts its revival. This only suggests possible change points in terms of the overall temporal 

trend for hpi and doesn’t necessarily imply concurrent change points in terms of association 

with macroeconomic variables like stocks. To understand how hpi co-varied with stock 

prices, we also added the quarterly Dow Jones Industrial Average on the secondary y-axis. 

We see that there are roughly three segments (separated by dotted gray vertical lines) with 

distinct relationships between house and stock prices. Both indices were upward moving till 

the early 2000s when the stock market crashed but hpi continued to appreciate and there 

seem to be little correlation among the two series. Finally after the sub-prime mortgage 

crisis both indices showed strong co-movement, plummeting for a while and subsequently 

rallying. Hence Figure 1, it seems that a change-point regression model would be more 

suited to analyze Minnesota hpi data.

While the impact of macroeconomic variables on US house prices has been analyzed in the 

literature [12, 13] any relevant literature focusing on similar analysis at state level has eluded 

us. As housing markets are local in nature [22], a state level macro-analysis may reveal 

trends not reflected in a similar nationwide study. The state of Minnesota is home to 18 

Fortune 500 companies and has the second highest number of Fortune 500 companies per 

capita. Furthermore, the Minneapolis-St. Paul metropolitan area hosts the highest number of 

Fortune 500 companies per capita among the 30 largest metropolitan areas in US. Our 

objective for this analysis was to understand association between real estate prices and local 

industries in Minnesota.

In this analysis, we use 22 macro-economic variables, including 16 Minnesota based stock 

prices, (detailed in Section 5) as covariates. Given the reach of modern high-dimensional 

methods to analyze datasets with million of covariates, this may not seem to be a high-

dimensional problem. However, as mentioned earlier, changing linear regression estimates 

the regression coefficient vector for each of the data segments separated by change points. 

Hence, the total sample size n need not be less than the number of covariates p for requiring 

high-dimensional techniques in change point analysis. For example, as discussed above, the 

trends of house and stock prices displayed in Figure 1 insinuates that there may be a change 

point near 2008–2009 (the right gray vertical line), implying that sample size of rightmost 

segment of the data will be close to or less than 22. Hence, the although the number of time 

points (n = 96) was larger than the number of covariates (p = 22), if there is indeed a change 

point around 2008–09 (as the analysis will confirm in Section 5), this becomes a p > n (or at 

least p ≈ n) problem, and, shrinkage is essential to obtain reliable inference. This points out 

a general issue in regression analysis with change points. A change point towards the very 

end or very beginning, or two very proximal change points in the middle will result in small 

data segments, thereby, necessitating highdimensional techniques like shrinkage and variable 

selection.

3. BAYESIAN HIGH-DIMENSIONAL CHANGING LINEAR REGRESSION

We consider a traditional high-dimensional setup with the n × 1 response vector y = (y1, y2, 

… , yn)’ and corresponding n × p covariate matrix X = (x1, x2, … , xn)’ where p can be 

larger than n. We further assume that for every observation yi, we observe another 

quantitative variable ti such that the association between yi and xi depends on the values of 
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ti. In a linear regression setup, this dynamic relationship between the response yi and the 

corresponding p × 1 vector of covariates xi can be expressed as E(yi | xi, ti) = xi′βk for all i 

such that τk−1 < ti < τk where τ0 < τ1 < … < τK < τK+1 where τ0 and τK+1 are two arbitrary 

constants such that τ0 < ti < τK+1 for all i. The change-points τ1,τ2, … ,τK are typically 

unknown while the number of change-points K may or may not be known depending on the 

application.

As the number of regressors (p) is large, our goal is to select the relevant variables for this 

regression. However, for this changing linear regression, the set of relevant regressors may 

depend on the value of the threshold variable t and variable selection procedures applied 

disregarding the dependence on t can lead to erroneous variable selection. Let Sk denotes the 

support of βk where sk = |Sk| is typically much less than p. We intend to simultaneously 

detect the change-points τk and estimate Sk for all k = 1, 2, … , K. We initially assume only 

one change-point τ i.e. K =1. Extensions to more than one change points are discussed later 

in Section 3.2.

3.1 One Change Point Model

We assume a changing linear regression model

yi =
xi′β1 + ϵi if ti ≤ τ

xi′β2 + ϵi if ti > τ
(1)

where β1, β2 are both sparse p × 1 vectors such that β1 ≠ β2 and ϵi ~ N(0,σ2) denotes the 

independent and identically distributed noise. In order to accomplish variable selection both 

before and after the change point, we use spike-and-slab type shrinkage priors [24] for β1 

and β2. To be specific, we assume βk |Zk, σ2 N(0, σ2diag(γ1kZk + γ0k(1 − Zk))) for k =1, 2 

where Zk = Zk1, Zk2, …, Zkp ′ is a p × 1 vector of zeros and ones. The hyper-parameters γ0k 

and γ1k are scalars chosen to be very small and very large, respectively. Under this prior 

specification, βkj —the jth component of βk —is assigned a shrinking (concentrated around 

zero) prior if Zkj equals 0 and a diffusion (flat) prior if Zkj = 1. Zkj’s are assumed to be 

apriori independent each following Bernoulli(qk). Hence qk controls the prior model size for 

the kth segment. The choices for the hyper-parameters γ0k, γ1k and qk are discussed in 

Section 4. We assume a uniform prior for the change-point τ and a conjugate Inverse 

Gamma prior for the noise variance σ2. The full Bayesian model is

∏
i: ti ≤ τ

N yi | xi′β1, σ2 × ∏
i: ti > τ

N yi | xi′β2, σ2 × Uni f (τ |aτ, bτ) × IG σ2 |aσ, bσ

× ∏
k = 1

2
N βk | 0, σ2diag γ1kZk + γ0k 1 − Zk × ∏

j = 1

p
Bernoulli Zk j | qk .

(2)
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We use Gibbs’ sampler to obtain posterior samples of all the parameters. Let τ | · denote the 

full-conditional distribution of τ in the Gibbs’ sampler. We use similar notation to denote the 

other full conditionals. Let U1 = i | ti ≤ τ  and U2 = i | ti > τ . For k = 1, 2, let Yk and Xk 

denote the response vector and covariate matrix obtained by stacking up the observations 

corresponding to Uk. From the full likelihood in (2), we have

βk | ⋅ N VkXk′ Yk, σ2Vk , where

Vk = (Xk′ Xk + diag(γ1kZk + γ0k( 1 − Zk))−1)−1,

σ2 | ⋅ IG(aσ + n/2, bσ + 1
2 ∑

k = 1

2
‖Yk − Xkβk‖2),

p(τ | ⋅ ) ∝ ∏
k = 1

2
∏

i ∈ Uk

N(yi | xi′βk, σ2) × Uni f (τ | aτ, bτ),

Zkj |⋅ ~ Bernoulli(πkj), where

πk j =
qk ϕ(βk j / σ2γ1k)

qk ϕ(βk j / σ2γ1k) + (1 − qk)ϕ(βk j/ σ2γ0k)

where ϕ(·) denotes the density of standard normal distribution. We observe that the full 

conditionals of βk, Zkj and σ2 follow conjugate distributions and are easily updated via the 

Gibbs’ sampler. Only p(τ | ·) does not correspond to any standard likelihood and we use a 

Metropolis-Hastings random walk step within the Gibbs’ sampler to update τ.

3.2 Multiple change points

A highlight of our approach is the ease with which the setup in Section 3.1 can be extended 

to multiple change points. This is important as although many methods exist for single 

change points, analyzing datasets with multiple change points are trickier and few methods 

generalize to this case. If we have K change points τ1 < … < τK, the joint likelihood in (2) 

can be generalized to

∏
k = 1

K + 1
∏

i:τk − 1 < ti ≤ τk

N(yi | xi′βk, σ2) ×N(βk | 0, σ2diag(γ1kZk + γ0k(1 − Zk)))

× ∏
j = 1

p
Bernoulli(Zk j | qk) × p τ1, τ2, …, τK × IG(σ2 | aσ, bσ) .

(3)

Datta et al. Page 6

Stat Interface. Author manuscript; available in PMC 2019 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To ensure identifiability of the change points, the prior p(τ1, τ2, … , τK) should be supported 

on τ1 < τ2 < … < τK. The Gibbs’ sampler remains essentially same as in Section 3 with the 

Metropolis random walk step now being used to update the entire change point vector (τ1, 

τ2, … , τK)’.

3.3 Determining the number of change points

Often in applications, the number of change points is unknown. In our fully Bayesian 

approach this can potentially be handled by adding a prior for the number of change points 

(K). Introducing this additional level of hierarchy comes with the caveat that different values 

of K yields parameter sub-spaces of different sizes and interpretations. [25] proposed the 

extremely general and powerful reversible jump MCMC (RJMCMC) sampler for sampling 

across multiple parameter spaces of variable dimensions. We can seamlessly adopt an 

RJMCMC joint sampler to obtain the posterior distribution for the number of change points. 

When naively implemented, RJMCMC experiences poor acceptance rates for transitions to 

parameter sub-spaces with different dimensionality. This leads to widely documented 

convergence issues [26, 19]. The problem will be exacerbated in our setup due to the high-

dimensionality of the parameter spaces.

Several improvements and alternatives to RJMCMC have been proposed over the years 

including efficient proposal strategies to effectuate frequent cross-dimensional jumps [42, 7, 

17, 20], product space search [9, 16] and parallel tempering [31]. All these approaches can 

be adapted in our setup to determine the number of change points. However, many of these 

approaches are accompanied by their own computational burden such as running several 

chains or apriori obtaining posterior distributions for each individual model before running 

the joint sampler. We concur with [27] and [28] that it is often expedient to use simpler 

model selection approaches based on individual models. Hence, popular Bayesian model 

comparison metrics like DIC [44] and posterior predictive loss [23] remains relevant to 

select the number of change points in our case. For example, if θ is the complete set of 

parameters associated with the model, for each K we can compute the DIC score

DIC = 2E (D(y | θ) | y) − D(y | E(θ | y)) = E(D(y | θ) | y) + pD (4)

where D(y | θ) is the deviance function and pD = E (D(y | θ) | y) − D (y | E(θ | y)) is 

interpreted as effective sample size. The DIC penalizes more complex models and is 

particularly appropriate for our change point problem, where higher number of change 

points will lead to overfitting. Parallel computing enables us to simultaneously run the 

MCMC sampler for different values of K. Subsequently, the optimal K is selected as the one 

yielding lowest DIC score.

All the methods for selecting the number of change points discussed here can be used in 

conjunction with our approach. It is prudent to predicate the choice on the nature of the 

application at hand and the computational resources available.
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3.4 Alternate prior choices

We observe from Equation 2 that, conditional on the value of the change point τ, the joint 

likelihood can be decomposed into individual likelihoods for the regression before and after 

the change point along with the corresponding priors for the regression coefficients. This 

allows for a lot of flexibility in the choice of priors for the regression coefficients. One can 

also use other priors to achieve variable selection. For example, using Laplace (double 

exponential) priors for the βk’s will yield a Bayesian lasso [39] with change point detection. 

However, unlike spike-and-slab priors, Bayesian lasso does not perform model selection.

Additional information regarding grouping or structuring of the variables is often available 

in the context of variable selection. In the presence of a change point, additional constraints 

can specify grouped selection both within and/or between the βk’s. For example, in a single 

change point setup, it may be plausible that the set of relevant variables remain unchanged 

before and after the change point, with change occurring only with respect to the strength of 

association between yi and xi. Such additional structural constraints both within and across 

βk’s can easily be accommodated in our setup via a suitable choice of prior. To elucidate, we 

can rewrite (1) as yi = zi(τ ′ζ + ϵi where zi = I ti ≤ τ xi′, I ti > τ xi′ ′ and ζ = β1′ , β2′ ′. To 

incorporate the constraint that β1 and β2 share the same support, one can use a Bayesian 

group lasso [40] with M-Laplace priors on the groups ζj = (β1j, β2j)′ for j = 1, 2, … ,p. The 

M-Laplace prior

p(ζ j | σ2, λ2) ∝ 2λ2

σ2 exp( − 2λ2

σ2 ‖ζ j‖2)

has a convenient two-step hierarchical specification:

ζ j | η j
indN(0, σ2η jI);

η j | λ2 ind Gamma 3/2, λ2 ; λ2 Gamma(r, s)
(5)

The full conditional distributions of the parameters provided in [40] can now be used to 

implement the Gibbs’ sampler with the additional Metropolis random walk step for updating 

the change point τ. Any other information like hierarchical selection or anti-hierarchical 

selection both within and between the βk’s can also be accommodated via suitable priors.

Often, in real data applications, prior knowledge dictates the inclusion of certain variables in 

the model and variable selection is sought only for the remaining variables. Such constraints 

can be easily achieved in our setup by using standard Gaussian prior for that specified subset 

and spike-and-slab prior for the remaining variables.

3.5 Variable selection after MCMC

When there are finitely many candidate models, Bayesian model selection typically proceeds 

by selecting the candidate model with the highest posterior probability. However, in our 

setup the regression coefficients are continuous. For variable selection, we use the median 
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probability model [4] which is computationally easy and is optimal in terms of prediction. 

To be specific, βkj is included in the model if the posterior probability of Zkj = 1 is greater 

than 0.5.

4. NUMERICAL STUDIES

We conducted numerical experiments to assess the performance of our method both for 

single and multiple change points. For assessing convergence and determining length of 

MCMC run for all the simulation scenarios, we generated data from one of the simulation 

settings in the single change point model and ran three MCMC chains of length 10,000 with 

different initial values. Satisfactory convergence was confirmed using a combination of trace 

plots, posterior density plots and Gelman-Rubin shrink factors. Similarly using three MCMC 

chains for the two change point model, satisfactory convergence was achieved in 30,000 

iterations. Nonetheless, for all the simulations we were more conservative and ran a single 

chain of 100, 000 iterations.We discarded the first 50,000 as burn-in and used the subsequent 

50, 000 samples for inference.

4.1 One change point

We assume ti = i and generate data from the model yi = N(xi′β1, σ2) for i ≤ τ and 

yi = N(xi′β2, σ2) for i > τ where β1 = (3, 1.5, 0, 0, 2, 0, … , 0) and β2 = −β1. The rows of X 

were independent and identically distributed normal random variables with zero mean and 

covariance ΣX. Two structures were used for ΣX — auto-regressive (AR) with ΣX,ij·= 0.5|i−j| 

and compound symmetry (CS) with ΣX,ij = 0.5 + 0.5I(i = j). The noise variance σ2 was fixed 

at 1 and the sample size was chosen to be 200. Two different model sizes, p = 250 and p = 

500, were used. The change point τ was chosen to vary among 50, 100 and 150. Since the 

sample size is 200, these three choices of τ correspond to a change point at the initial, 

middle or later portion of the data, respectively. For each combination of parameter choices, 

we generated 100 Monte Carlo replicates. We used three different models – the Bayesian 

change points models using the spike-and-slab prior (BSAS), the Bayesian Group lasso 

(BGL) prior [40], and a frequentist change point lasso (FL) which, for a given value of the 

change point, estimates the lasso-penalized regression coefficients for each segment. The 

optimal value of the change point for FL is selected using cross-validation. This is a variant 

of the method proposed in [30] and is much simpler to implement. The Bayesian group lasso 

model was used to investigate any possible benefits of using a grouped variable selection as 

it is known here that β1 and β2 has same support. The range of the uniform prior for τ was 

chosen to be (20,180) and a normal proposal density with tuning variance of 0.1 was used 

for the Metropolis update of τ. The prior for σ2 was chosen to be IG(2, 1). The hyper-

parameters γ0k, γ1k and qk were chosen as follows. Let τ0 denote the initial estimate for τ. 

Then n1 = [τ0] and n2 = n − n1 denotes the initial sample sizes for the two segments. We 

used γ0k =
σk

2

10nk
 and γ1k = σk

2max p2.1
100nk

, lognk  where σk
2 was the sample variance of Yk for k 

= 1, 2. The hyper-parameters qk were chosen such that the prior model sizes ∑ j = 1
p Zk j were 

greater than min(p−1, max(10, lognk)) with probability 0.1. These choices of γ0k, γ1k and qk 

were adapted from [35].
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Let Ck and ICk denote the number of true and false regressors respectively selected for the 

kth segment of the data for k = 1, 2. As discussed earlier, we used a cutoff of 0.5 for the 

posterior probability of the binary Zkj’s in the spike-and-slab model to select the variables. 

The Bayesian group lasso is devoid of such binary selection parameters and variable 

selection was based on the posterior credible intervals i.e βkj was not selected if its posterior 

credible interval covered zero. In addition to the variable selection metrics, we also assess 

the three methods based on the coefficient estimates for the true predictors. Let βk 𝒮k

denote the sub-vector of βk corresponding to the true support 𝒮k. We use the Mean Squared 

Error MSEk = ‖βk 𝒮k − βk 𝒮k ‖2
2 for k = 1, 2 where βk denote the posterior estimate of βk.

Table 1 presents the C, IC and MSE numbers along with estimates of τ for all the three 

models. The numbers are averages over 100 Monte Carlo simulations. We only present the 

numbers for the scenarios with p = 500. The analogous set of results for p = 250 were 

similar. Firstly, we observe that both Bayesian models estimate the change point τ with high 

accuracy while the frequentist lasso is slightly inaccurate in some instances. The C and IC 
numbers reveal that the spike-and-slab prior achieves perfect variable selection for all the 

scenarios while group lasso prior performs nearly as well. The selection accuracy for the 

group lasso was somewhat surprising given the crude variable selection technique used. The 

frequentist approach, although almost always accurately selecting the true set of regressors, 

tends to select a large number of uncorrelated regressors as indicated by the high IC 
numbers.

In terms of estimating the regression coefficients βk, once again we observe that spike-and-

slab prior stands out with uniformly lowest MSE numbers across all scenarios. The MSE for 

the frequentist method is significantly higher indicating that the estimates corresponding to 

the true predictors gets considerably shrunk. It is important to note that, for all models, 

MSE1 tends to be higher when τ = 50.5 while MSE2 is higher when τ = 150.5. This behavior 

is expected as for τ = 50.5, sample size for estimating β1 is effectively 50 while that for β2 is 

150. Overall, the spike-and-slab priors produced the most accurate variable selection, change 

point detection and estimation across all scenarios while the frequentist lasso consistently 

performs worst.

4.2 Two change points

We demonstrate the applicability of our method to multiple change points using a two 

change point setup. The three coefficient vectors are given by

β1 = (3, 0, 0, …, 0)′, β2 = (3, 1.5, 0, 0, …, 0)′,

β3 = (3, 1.5, 0, 0, 2, 0, 0, …, 0)′

The change in βk’s at each change point in this simulation study is much lesser than what 

was used in Section 4.1. Three pairs of values for the change points (τ1, τ2) are selected — 

(50,100), (50,150) and (100,150). Other specifications including sample size, model size and 

covariance of the predictors are kept unchanged from Section 4.1. We do not use the 

Bayesian group lasso here as the coefficient vectors for different segments do not share a 
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common support. Hence, we only present the results for the other two methods. Table 2 

presents the C, IC and MSE numbers along with estimates of τk’s for all the two models. 

The numbers are averages over 50 Monte Carlo simulations. Once again, we only present the 

numbers for the scenarios with p = 500 as the numbers for p = 250 were similar.

We observe from Table 2 that for the two change point model the frequentist approach 

becomes quite erratic in terms of estimating the change points. The Bayesian model remains 

much more accurate, except for the scenario with τ1 = 100 and τ2 = 150 where the estimates 

are slightly off. In general, the estimates of the change points are less accurate than those in 

Section 4.1. This is not surprising as the effective sample size per segment for the two-

change point model is smaller. Also, the change in the regression coefficients are also of 

smaller magnitude, thereby making it harder to detect the change points accurately. Turning 

to variable selection, the Bayesian model identified the exact set of predictors across all 

scenarios almost in all the Monte Carlo simulations. The frequentist lasso, once again 

accurately identified the true predictors but produced a high false discovery rate. The MSE 
numbers for were also an order of magnitude lower for the Bayesian model.

5. MINNESOTA HOUSE PRICE INDEX DATA

All the data used in the analysis were publicly available. We use quarterly Minnesota hpi 

data published by the Federal Housing Finance Agency (FHFA). The macro-economic 

indices used as explanatory variables include national unemployment rate (unemp) and 

national consumer price indices (cpi). Instead of including a national stock index in the 

model like the S&P 500 or the Dow Jones Industrial Average, we use the stock prices of 

Minnesota based Fortune 500 companies. 14 out of the 18 Minnesota-based Fortune 500 

companies were publicly traded since before 1991 and we include their stock prices in the 

regression model. Additionally, the list of top 10 employers in Minnesota include Wal-Mart 

Stores Inc. and Wells Fargo Bank Minnesota. Hence, the stock prices of these two 

companies are also included in the model. The 16 stocks used in total are listed in Table 3.

Financial indices often exhibit strong autocorrelation and consequently autoregressive 

components commonly feature in house price models [34]. Figure 2 plots the partial 

autocorrelation values of the hpi time series as a function of the lag. We observe that the 

index lagging one quarter behind (AR(1)) has very high correlation with the hpi time series 

but it quickly falls off beyond the first lag and all the subsequent lags have insignificant 

partial correlations. Hence, we include only the AR(1) term in the regression model.

Statistical analysis involving economic time series is often preceded by customary 

seasonality adjustment of the indices using standard techniques. It is well known that house 

price time series reveal a predictable and repetitive pattern with systematic highs in summer 

and lows in winter [36]. Consequently, publishers of popular house price indices like the 

FHFA or Standard and Poor’s (Case-Shiller index) produce a version of their indices 

discounting this effect [21]. However, Minnesota is a land of extreme climates experiencing 

one of the widest range of temperatures in U.S. It is of interest to investigate if the impact of 

weather in Minnesota on its house prices extends beyond the routine pattern. Hence, we 
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include the state level quarterly average temperatures (temp) and precipitation (precip) in the 

model.

Our model for the kth segment τk−1 ≤ t ≤ τk is given by:

hpit = βk
intercept + βk

ar(1)hpit − 1 + βk
cpicpit + βk

unempunempt + βk
temp tempt + βk

precipprecipt
+ βk

stocks′stockst + ϵt

(6)

Here stockst denote the 16 × 1 vector formed by stacking up the stock prices at time t of the 

companies listed in Table 3 and βk
stocks is the corresponding coefficient vector.

5.1 Results

We used data from the second quarter of 1991 to the second quarter to 2014 for model 

fitting. The first quarter data of 1991 was used for the AR(1) term, whereas the data for last 

two quarters of 2014 and first quarter of 2015 were held out for out-of-sample validation. 

Under the assumption of K change points, separate regression models are fit to each of the K 
+1 segments. Higher values of K (≥ 3) implies that average sample size for each segment 

(n/(K + 1)) becomes small and the estimates obtained may not be reliable. Hence, we restrict 

ourselves to K = 0, 1 and 2 and fit model (6) with spike-and-slab priors for the coefficient 

vectors in each segment. Note that for K = 0 i.e. no change point, the model is simply the 

traditional Bayesian high-dimensional regression model. The models for different values of 

K were assessed based on their in-sample DIC score and out-of-sample root mean square 

predictive error (RMSPE) [49]. Due to the presence of the autoregressive term, out-of-

sample forecasts were obtained using one-step-ahead predictions.

The models for K = 0, 1 and 2 are denoted by BSAS0, BSAS1 and BSAS2 respectively. For 

comparison, we also used the frequentist lasso with one change point, referred as FL1. 

Additionally, to elucidate why low dimensional analysis is not suitable for this data, we also 

used two low dimensional models — a low dimensional one change point linear model 

(LM1) which is similar to FL1 but uses classical least squares to estimate the coefficients for 

each τ1, and a low dimensional Bayesian linear model BLM1 with one change point [similar 

to 10] with normal Inverse gamma (NIG) priors for (β1, β2, σ2) and uniform prior for τ1. 

Since the size of this dataset was considerably smaller than what is considered in the 

simulation settings, it sufficed to run the MCMC for 10, 000 iterations discarding the first 5, 

000 as burn-in.

Table 4 contains the DIC scores (only for the Bayesian models), RMSPE values and 

estimated change points for all the models. Both the DIC score and the RMSPE score for K 
= 0 were significantly worse than the scores for K =1 and 2 justifying the use of a change 

point model. The single change point model detected change around late 2008- early 2009 

which coincides with the sub-prime mortgage crisis. The two change point model detected 
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change points in mid 2006 and early 2011. The DIC score for the single change point model 

was substantially better. RMSPE scores for change point models for time series data only 

validate the accuracy of the models after the last change point. We observed that the RMSPE 

score were similar for K = 1 and 2 with the former turning out to be marginally better. The 

FL1 model also estimated a change point around mid 2008 but the RMSPE score was higher 

than our Bayesian model.

The low dimensional models LM1 and BLM1 were also able to detect a change point in 

2008. However, their model evaluation metrics were significantly worse. This is not 

surprising as a change point in mid 2008 leaves less than 25 observations to estimate a 22-

dimensional vector β2. In a low dimension approach like linear least squares and, to a lesser 

extent, in Bayesian linear model, this will lead least to unstable estimates. This elucidates 

that in-spite of n = 93 being sufficiently larger than p = 22, in presence of a change point, the 

location of the change point may warrant a regularized approach to ensure numerically 

stable analysis. Table 4 also provides the credible intervals for the estimated change points 

for the Bayesian models. The frequentist approach does not provide credible intervals of the 

change points.

We present the subsequent analysis only for the single change point model BSAS1 as both 

in-sample and out-of-sample validations provide strongest evidence in favor of a single 

change point. Figure 3 plots the probability of selection for each of the regressors in model 

(6) before and after the change point. We observe that the set of variables selected by the 

median probability model differs across the two segments. The AR(1) index and 

precipitation are selected with high probabilities in both segments. However, the selection of 

stocks differ considerably on either side of the change point. We see that prior to change 

point in 2008, there was little correlation between hpi and stocks with only General Mills 

(GIS) having a posterior median probability close to 0.5 (0.498). Perhaps this is a reflection 

of the fact discussed earlier that stock prices and hpi did not exhibit comovements during the 

early 2000s. After the change point in 2008 the stocks of 3M (MMM), Medtronic (MDT) 

and Xcel Energy (XEL) are selected with high probability.

Table 5 presents the coefficient estimates for the variables selected either before or after the 

change point. We observe that the value for the coefficient corresponding to the AR(1) index 

drops significantly post change point indicating less autoregressive behavior after the change 

point. We also observe a positive association of hpi with precipitation. Since summer months 

witness significantly higher precipitation than winter, this merely corroborates the traditional 

‘hot season cold season’ trend of house prices. A more interesting observation from Table 5 

is the fact that this effect is much more pronounced after 2008 indicating more disparity 

between summer and winter house prices in the post-recession market.

Observe from Figure 3 that in presence of the stock prices of Minnesota based companies, 

national level macroeconomic indicators like the cpi or unemployment were not selected in 

the model. This perhaps provides evidence in support of the conjecture that hpi is strongly 

correlated with local macro-economics [22]. However, its worthwhile to point out that 

multivariate regression models, although a simple and powerful tool to determine 

correlation, rarely implies causality. Any confirmatory assessment of the change points 
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detected and the variables selected by our method would require further research. 

Nevertheless, the model evaluation metrics in Table 4 provide very strong evidence in favor 

of one or more change points thereby justifying the use of our methodology to analyze the 

data.

6. CONCLUSION

We have demonstrated the effectiveness of combining existing Bayesian shrinkage priors in 

a changing linear regression setup. The fully Bayesian approach offers several inferential 

advantages including quantifying uncertainty regarding the change points as well as variable 

selection for each segment. This framework is flexible to the choice of variable selection 

priors although the spike-and-slab prior empirically outperformed other competing choices. 

A wide range of constrained variable selections like grouping or partial selection can be 

seamlessly accomplished in this setup. The Bayesian method consistently and substantially 

outperformed the change point lasso for all the simulated and real data analyses. This, in 

fact, corroborates the findings by [35] in alternate settings not involving changing linear 

regression. The analysis of the Minnesota hpi data using our methodology revealed strong 

evidence for a potential change point with respect to the association of Minnesota house 

price with other macro-economic variables.

Many methods exist for detection of single change point in regression. These include long-

established control chart-based tests for change points using arithmetic sums of residuals 

(CUSUM) [38, 8] and geometric sums (EWMA) [43]. However, we are not aware of any 

literature that extends these testing procedures to a high-dimensional regression setting. 

Also, we believe that instead of tests for change points that predicate decision-making on 

single p-values, a Bayesian approach providing adequate uncertainty information about the 

location of change points is probably more useful and realistic. Furthermore, these control-

chart-based methods do not extend to multiple change points. Our method, as demonstrated 

through simulations and the hpi data analysis, works for both single and multiple change 

points, and outperforms the frequentist change point lasso [30] by significant margins for 

both these scenarios. The performance of our method for multiple change points is in 

particular very promising as few methodologies exist for multiple change points. If the 

number of change points is 3 or more, the cross-validation for the frequentist change point 

lasso will become exponentially more expensive. It will be much easier to use our Bayesian 

approach.

We have discussed several approaches for handling unknown number of change points. 

However, most of them comes with statutory warnings regarding computational 

requirements. More efficient models and algorithms for simultaneous detection of number of 

change points need to be researched. Other potential extensions include accommodating 

missing data, measurement errors or non-Gaussian responses in a high-dimensional 

changing regression setup. Extensions to change point detection in high-dimensional VAR 

models also need to be explored due to the extensive usage of VAR models in economics 

research [15, 6]. In a time series context, our work is restricted to detecting historical change 

points. Detecting future change points in high-dimensional time series is equally important 

to provide accurate predictions. We identify all these areas as directions for future research. 
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Also, implementing this methodology as a software package in a widely accessible platform 

like R would be a first priority.
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Figure 1. 
Minnesota hpi time series (left y-axis) and Dow Jones Industrial Average (right y-axis). Red 

dots indicate eyeballed change-points in terms of temporal trend of hpi. Grey lines indicate 

eyeballed change-points with respect to relationship of the two series.
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Figure 2. 
Partial autocorrelation function for Minnesota hpi time series
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Figure 3. 
Minnesota hpi analysis: Posterior median probabilities of variable selection using single 

change point model
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Table 5.

Minnesota hpi analysis: Posterior median for the selected coefficients. (* indicates that the variable was 

selected in that segment)

Before τ After τ Before τ After τ

AR(1) 1.034* 0.761* GIS −0.151* −0.002

precip 0.964* 1.952* MDT 0.071 1.214*

MMM 0.019 −0.573* XEL −0.005 1.279*
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