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Abstract

We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and
a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much
faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm
is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of
interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that
would otherwise affect the physics in a standard PIC algorithm – including the zero-order numerical Cherenkov
effect.

Keywords: particle-in-cell, pseudo-spectral, Hankel transform, cylindrical geometry

Introduction

Particle-In-Cell (PIC) algorithms [1, 2] are extensively used in several areas of physics, including the study of
astrophysical plasmas, fusion plasmas, laser-plasma interactions and accelerator physics. Yet, despite their wide
use, PIC algorithms can be very computationally demanding, especially in three-dimensions, and are still subject
to a range of numerical artifacts. These shortcomings can be particularly significant when simulating accelerated
particle beams, or laser-plasma interactions (such as laser-wakefield acceleration) for two reasons:

• these systems often have close-to-cylindrical symmetry (e.g. particle beams and laser pulses are often
cylindrically symmetric). This prevents the use of 2D Cartesian or 2D cylindrical PIC algorithms (which
are only well-suited for slab-like and azimuthal symmetry), and is instead often dealt with by using 3D
Cartesian PIC algorithms, which can be very computationally expensive;

• the physical objects of interest (e.g. the laser, or the accelerated particle beam) often propagate close to
the speed of light. This makes them very sensitive to spurious numerical dispersion, i.e. the fact that the
electromagnetic waves do not propagate exactly at the physical speed of light in a standard PIC code, but
travel instead at a spuriously-altered, resolution-dependent velocity. In the above-mentioned cases, spurious
numerical dispersion can lead to substantial numerical artifacts which can mask or disrupt the physics at
stake in the simulation. This includes, for instance, numerical Cherenkov effects in general [3], but also
more specific artifacts, such as e.g. the erroneous prediction of the dephasing length in laser-wakefield
acceleration [4].

Yet several modifications can be made to the PIC algorithm, in order to mitigate these difficulties and increase the
speed and accuracy of the simulations in these physical situations:

• one of these modifications is the development of cylindrical PIC algorithms with azimuthal Fourier decom-
position [5, 6, 7] of the electromagnetic field components (sometimes referred to as quasi-3D algorithms,
or as quasi-cylindrical algorithms as we do here). By taking into account the symmetry of the system, these
algorithms can typically reduce the cost of the simulation to a few times that of a 2D Cartesian simulation,
instead of that of a full 3D Cartesian simulation. Moreover, unlike 2D Cartesian algorithms, these algo-
rithms are well adapted to close-to-cylindrical physical systems and can accurately capture physical effects
that are intrinsically 3D (such as e.g. the non-linear self-focusing of an intense laser in a plasma [8]);
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• a second, separate modification was introduced by the development of spectral Cartesian PIC algorithms
[9, 10, 11, 12, 13] i.e. algorithms that solve the Maxwell equations in Fourier space. (These algorithm are
also sometimes referred to as pseudo-spectral algorithms when they make use of an intermediate interpo-
lation grid in real space, and this term then also applies to the algorithm presented here.) These algorithms
contrast with finite-difference algorithms, which solve the Maxwell equations by approximating the deriva-
tives as finite differences on a discrete spatial grid. Importantly, while finite-difference algorithms suffer
from spurious numerical dispersion, there is a class of spectral algorithms – often referred to as Pseudo-
Spectral Analytical Time Domain (PSATD) algorithms [10, 11] – which exhibits no spurious numerical
dispersion in vacuum. As a consequence, these algorithms are free from the associated numerical artifacts.
Moreover, it was shown recently [14, 15, 16, 17] that spectral PIC algorithms have better stability properties
when performing PIC simulations in a Lorentz-boosted frame [18, 19, 20]. These stability properties are
very promising, since boosted-frame simulations can be faster than their laboratory-frame counterparts by
several orders of magnitude [18].

Even though these two improvements are both very valuable, they cannot be combined with each other in
their present formulation. Fundamentally, this is because the quasi-cylindrical algorithm uses a cylindrical system
of coordinates, whereas most spectral algorithms (and in particular the PSATD algorithms) were developed in a
Cartesian system of coordinates. This incompatibility is however not definitive, and the aim of this article is to
overcome these differences by developing a spectral quasi-cylindrical formalism. In this document, we derive this
formalism, and we show that it can be used to build a PIC algorithm that combines the speed of quasi-cylindrical
algorithms with the accuracy and lack of spurious numerical dispersion of the PSATD algorithms.

Although the algorithm described here is, to our knowledge, unique in its capabilities, there are several other
existing codes which have some similarities with it. One such example is the hybrid, quasi-cylindrical version
of OSIRIS [21]. This algorithm involves a Fourier transform in the longitudinal direction, but retains a finite-
difference formulation in the transverse (radial) direction. As a consequence, this algorithm is not fully spectral,
nor fully dispersion-free. Another such example is the code PlaRes [22], which is designed to simulate the physics
of free-electron lasers (FEL). This code also uses a spectral quasi-cylindrical formalism, but it models the fields
in narrow spectral intervals around the resonant FEL frequencies, relies on the scalar and vector potentials φ and
A and uses no spatial grid. As a result, PlaRes differs significantly from the standard PIC formulation, and from
the algorithm described here.

In the present article, we start by deriving the equations of our spectral quasi-cylindrical formalism (Section 1).
We then explain how these equations were discretized and implemented in a fully working PIC code (Section 2),
and we report on the results of a number of benchmarks that were performed with this code (Section 3). Finally,
we describe two typical physical situations in which our spectral algorithm performs better than standard finite-
difference algorithms (Section 4).

1. Representation of the fields and continuous equations

1.1. A reminder on spectral Cartesian codes

It is well-known that the Maxwell equations in Cartesian coordinates

1
c2 ∂tEx = ∂yBz − ∂zBy − µ0 jx ∂tBx = −∂yEz + ∂zEy (1a)

1
c2 ∂tEy = ∂zBx − ∂xBz − µ0 jy ∂tBy = −∂zEx + ∂xEz (1b)

1
c2 ∂tEz = ∂xBy − ∂yBx − µ0 jz ∂tBz = −∂xEy + ∂yEx (1c)

can be solved by representing the fields as a sum of Fourier modes.

Fu(r) =
1

(2π)3

∫ ∞

−∞

dkx

∫ ∞

−∞

dky

∫ ∞

−∞

dkz Fu(k) ei(kx x+kyy+kzz) (2)

with

Fu(k) =

∫ ∞

−∞

dx
∫ ∞

−∞

dy
∫ ∞

−∞

dz Fu(r) e−i(kx x+kyy+kzz) (3)

where F is any of the fields E, B or j, and where u is either x, y or z. F represents the Fourier components of
F, which will be denoted E, B or J depending on whether F represents E, B or j. With this representation, the
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different Fourier modes decouple and the equations Eqs. (1a) to (1c) become

1
c2 ∂tEx = ikyBz − ikzBy − µ0Jx ∂tBx = −ikyEz + ikzEy (4a)

1
c2 ∂tEy = ikzBx − ikxBz − µ0Jy ∂tBy = −ikzEx + ikxEz (4b)

1
c2 ∂tEz = ikxBy − ikyBx − µ0Jz ∂tBz = −ikxEy + ikyEx (4c)

The Fourier coefficients E andB can be then integrated in time, and transformed back into real space using Eq. (2).
This is the core principle of spectral Cartesian algorithms, including the PSATD algorithms.

1.2. Spectral quasi-cylindrical representation

The Fourier representation Eq. (2) is no longer the appropriate representation when the Maxwell equations are
written in cylindrical coordinates.

1
c2 ∂tEr =

1
r
∂θBz − ∂zBθ − µ0 jr ∂tBr = −

1
r
∂θEz + ∂zEθ (5a)

1
c2 ∂tEθ = ∂zBr − ∂rBz − µ0 jθ ∂tBθ = −∂zEr + ∂rEz (5b)

1
c2 ∂tEz =

1
r
∂rrBθ −

1
r
∂θBr − µ0 jz ∂tBz = −

1
r
∂rrEθ +

1
r
∂θEr (5c)

When replacing the representation Eq. (2) into the Eqs. (5a) to (5c), the Fourier modes do not decouple. Instead
one has to use the Fourier-Hankel representation:

Fz(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥ F̂z,m(kz, k⊥) Jm(k⊥r) e−imθ+ikzz (6a)

Fr(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

(
F̂+,m(kz, k⊥) Jm+1(k⊥r) + F̂−,m(kz, k⊥) Jm−1(k⊥r)

)
e−imθ+ikzz (6b)

Fθ(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥ i

(
F̂+,m(kz, k⊥) Jm+1(k⊥r) − F̂−,m(kz, k⊥) Jm−1(k⊥r)

)
e−imθ+ikzz (6c)

where F is either E, B or j, where Jm denotes the Bessel function of order m, and where F̂z,m, F̂+,m and F̂−,m
represent the spectral components of F. (See Appendix A for a derivation of the above equations.) Conversely,
the spectral components F̂z,m, F̂+,m and F̂−,m are related to the real-space fields Fr, Fθ and Fz by:

F̂z,m(kz, k⊥) =

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ 2π

0
dθ Fz(r) Jm(k⊥r)eimθ−ikzz (7a)

F̂+,m(kz, k⊥) =

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ 2π

0
dθ

Fr(r) − iFθ(r)
2

Jm+1(k⊥r)eimθ−ikzz (7b)

F̂−,m(kz, k⊥) =

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ 2π

0
dθ

Fr(r) + iFθ(r)
2

Jm−1(k⊥r)eimθ−ikzz (7c)

In the above equations, notice here that the Cartesian component Fz and cylindrical components Fr, Fθ do not
transform in the same manner, which is due to their different behavior close to the axis. (Again, see Appendix A
for a more detailed explanation.) Note also that scalar fields (like ρ) transform in the same way as the Cartesian
component Fz.

When replacing Eqs. (6a) to (6c) into the Maxwell equations in cylindrical coordinates Eqs. (5a) to (5c), the
different modes decouple, and the equations for the spectral coefficients become:

1
c2 ∂tÊ+,m = −

ik⊥
2
B̂z,m + kzB̂+,m − µ0Ĵ+,m ∂tB̂+,m =

ik⊥
2
Êz,m − kzÊ+,m (8a)

1
c2 ∂tÊ−,m = −

ik⊥
2
B̂z,m − kzB̂−,m − µ0Ĵ−,m ∂tB̂−,m =

ik⊥
2
Êz,m + kzÊ−,m (8b)

1
c2 ∂tÊz,m = ik⊥B̂+,m + ik⊥B̂−,m − µ0Ĵz,m ∂tB̂z,m = −ik⊥Ê+,m − ik⊥Ê−,m (8c)
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(See Appendix B for a derivation of these equations.) Notice that these equations have a similar structure as the
spectral Cartesian equations Eqs. (4a) to (4c), as they also involve the product of the fields with the components
of k, in their right-hand side. They do differ however in their details, as evidenced by the signs, the factors 1/2 and
the presence or absence of the complex number i in some terms.

Similarly, in this formalism, the conservation equations ∇ · E = ρ/ε0 and ∇ · B = 0 become

k⊥(Ê+,m − Ê−,m) + ikzÊz,m =
ρ̂m

ε0
k⊥(B̂+,m − B̂−,m) + ikzB̂z,m = 0 (9)

As expected, the above conservation equations Eq. (9) are preserved by the Maxwell equations Eqs. (8a) to (8c),
provided that the current satisfies ∂tρ + ∇ · j = 0, i.e. in spectral space:

∂tρ̂m + k⊥(Ĵ+,m − Ĵ−,m) + ikzĴz,m = 0 (10)

(This can be checked, for instance, by differentiating Eq. (9) in time and by using Eqs. (8a) to (8c) to re-express
the time derivatives.)

As in a spectral Cartesian PIC codes, the equations Eqs. (8a) to (8c) can be integrated in time, and the fields
can then be transformed back into real space, using Eqs. (6a) to (6c). Therefore, the methods used to integrate the
fields in time in a spectral Cartesian code (e.g. PSATD) should be transposable to this spectral quasi-cylindrical
formalism.

However, the advantage of this formalism over its Cartesian counterpart is that the sum over m in Eqs. (6a)
to (6c) can generally be truncated to only a few terms, for physical situations that have close-to-cylindrical sym-
metry. (A similar truncation is done in [6].) This is because the different values of m correspond to different
azimuthal modes of the form e−imθ, and because these modes are typically zero for large values of |m|, in situations
with close-to-cylindrical symmetry. As a result, the representation of the fields is reduced to a few 2D arrays
F̂m(kz, k⊥) instead of the Cartesian 3D arrays F (kx, ky, kz). This reduction makes the manipulation of the fields
much more computationally efficient.

2. Numerical implementation

2.1. Overview of the algorithm

The PIC algorithm described here uses the above-mentioned representation of the fields, in order to solve the
Maxwell equations and the motion of charged particles in a finite-size simulation box.

Note that, when using spectral algorithms in a finite box, it is often necessary to arbitrarily adopt specific
boundary conditions (which may not match the physics at stake), in order to be able to conveniently represent the
fields. For instance, in Cartesian spectral codes, periodic boundaries are arbitrarily chosen in order to be able to
represent the fields as a discrete sum of Fourier modes. However, this is mostly for mathematical convenience
and it does not preclude the application, at each timestep, of another type of boundary condition in real space
and within the finite box (e.g. Perfectly Matched Layers), before transforming the fields to spectral space (see
e.g. [23, 24]). In the same spirit, here we arbitrarily impose periodic boundary conditions along z, and Dirichlet
boundary conditions along r (more specifically E(rmax) = 0 and B(rmax) = 0), since in this case the fields can
be decomposed into a discrete Fourier-Bessel series (see e.g. [25]). Yet again, this does not prevent the practical
application of other boundary conditions in real space.

Although, as explained in Section 1.2, the fields are represented by a few 2D arrays, the particles are still
distributed in 3D and their motion is integrated in 3D Cartesian coordinates. As in a spectral Cartesian code, we
do not perform the current deposition and field gathering directly from the macroparticles to the spectral space.
(This is inefficient since the deposition and gathering are local operations in real space – i.e. affect only the few
cells next to the macroparticle – but global operations in spectral space – i.e. they affect all the spectral modes
simultaneously.) Instead we use an intermediate grid where these operations can be performed locally, and where
the fields F̂u,m are defined by

Fu(r) =

∞∑
m=−∞

F̂u,m(r, z)e−imθ (11)

F̂u,m(r, z) =
1

2π

∫ 2π

0
dθ Fu(r)eimθ (12)

where F is either E, B or j and u is either z, r or θ. Notice that this representation is the same as that of [6, 7]. In
this representation, the spectral decomposition in the azimuthal direction is preserved, since the factors eimθ can
be efficiently computed from the particle Cartesian positions x, y, z by using the relation eimθ = (x + iy)m/rm [6].
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After the particles deposit their charge and current onto this intermediate grid, the fields of the grid are trans-
formed into spectral space where, as mentioned in Section 1, the Maxwell equations can be easily integrated.
From Eqs. (11) and (12) and Eqs. (6a) to (6c) and (7a) to (7c), the transformation between the intermediate grid
F̂m(r, z) and the spectral grid F̂m(k⊥, kz) is:

F̂z,m(k⊥, kz) = HTm[ FT[ F̂z,m(r, z) ] ] (13a)

F̂+,m(k⊥, kz) = HTm+1

[
FT

[
F̂r,m − iF̂θ,m

2

] ]
(13b)

F̂−,m(k⊥, kz) = HTm−1

[
FT

[
F̂r,m + iF̂θ,m

2

] ]
(13c)

and

F̂z,m(r, z) = IFT[ IHTm[F̂z,m(k⊥, kz)] ] (14a)

F̂r,m(r, z) = IFT
[

IHTm+1[F̂+,m(k⊥, kz)] + IHTm−1[F̂−,m(k⊥, kz)]
]

(14b)

F̂θ,m(r, z) = i IFT
[

IHTm+1[F̂+,m(k⊥, kz)] − IHTm−1[F̂−,m(k⊥, kz)]
]

(14c)

where FT represents a Fourier Transform along the z axis and HTn represents a Hankel Transform of order n along
the transverse r axis, and where IFT and IHTn represent the corresponding inverse transformations:

FT[ f ] (kz) ≡
∫ ∞

−∞

dz e−ikzz f (z) IFT[g] (z) ≡
1

2π

∫ ∞

−∞

dkz eikzz g(kz) (15)

HTn[ f ] (k⊥) ≡ 2π
∫ ∞

0
rdr Jn(k⊥r) f (r) IHTn[g] (r) ≡

1
2π

∫ ∞

0
k⊥dk⊥ Jn(k⊥r) g(k⊥) (16)

The above equations show that the transformation from the intermediate grid (F̂u,m) to the spectral grid (F̂u,m)
is the combination of a Fourier transform (in z) and a Hankel transform (in r). The Fourier transform in z can
be discretized through a Fast Fourier Transform (FFT) algorithm, which requires an evenly-spaced grid in z and
in kz. On the other hand, there is more freedom of choice for the Discrete Hankel Transform (DHT), and the
implementation that we chose is described in the next section (Section 2.2) and in the Appendix D.

Figure 1 gives an overview of the successive steps involved in one PIC cycle, including the respective role of
the intermediate grid (F̂u,m) and spectral grid (F̂u,m). Note that, in the PSATD scheme that we chose (and which
is described in more details in Section 2.6), all the fields are defined at integer timesteps, except for the currents,
which are defined at half timesteps. Sections 2.3 to 2.6 describe the successive steps of the PIC cycle in more
details.

2.2. Transverse discretization of the intermediate grid, of the spectral grid and of the Hankel Transform
When transforming from the intermediate to the spectral grid, the FFT algorithm is the natural way to discretize

the Fourier transform along z, due to its favorable computational scaling (∝ Nz log(Nz)). On the other hand, there
are a variety of existing algorithms (that are not mathematically equivalent) to discretize the Hankel transform
(e.g. [26, 27, 28, 25, 29]), and the use of one or the other is very dependent on the application pursued. Broadly
speaking, choosing an algorithm for the Discrete Hankel Transform (DHT) algorithms consists in:

• choosing a discrete grid in r and k⊥ space, on which to sample the functions to be transformed. In some
algorithms, these grids may not be evenly-spaced, and can be for instance logarithmically spaced [28] or
can correspond to the zeros of Bessel functions [27, 25, 29],

• once a grid is chosen, the DHT amounts to a linear operation on a finite set of points (the points of the
grid) and can thus be represented by a matrix. Thus the second choice is that of a matrix that represents, as
closely as possible, the exact Hankel Transform.

Here, we choose to discretize the algorithm on an evenly-spaced grid in r (for the intermediate grid) :

r j = ∆r
(

j +
1
2

)
j ∈ {0, ...,Nr − 1} where ∆r =

rmax

Nr
(17)

but on an irregular grid in k⊥ (for the spectral grid). This is because, for the chosen boundary condition (E(rmax) =

0, B(rmax) = 0), the fields can be expressed as a discrete sum of Bessel modes Jm with

km
⊥, j =

αm
j

rmax
j ∈ {0, ...,Nr − 1} (18)
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c) Current and charge deposition
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n
m

xn
k

Current correction

Ĵ
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m , Ên+1
m

xn+1
k

d) Maxwell equations

t

Spectral grid
(k⊥, kz)

Intermediate
grid (r, z)

Macroparticles

FFT, DHT IFFT, IDHT

PSATD

Ĵ
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Ĵ
n+1/2
m
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Figure 1: Schematic description of the 4 steps of a PIC cycle. At any given time, the quantities that are known
are shown in color (red and blue), while the quantities that are unknown or have been erased from memory are
shown in gray. The quantities that are being calculated at a given step are displayed with a colored background,
and arrows indicate which quantities are used for this calculation.
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where αm
j is the jth positive zero of the Bessel function of order m Jm (including the trivial value αm

0 = 0 for m > 0;
see e.g. [25]). These values are represented in figure 2. Notice that it is not an issue that the spectral components
F̂m for different azimuthal modes m are discretized on different k⊥ grids, since each azimuthal mode m evolves
separately in Eqs. (8a) to (8c).
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Figure 2: Position of the grid points in k⊥ space (blue dots) for the azimuthal modes m = 0, m = 1 and m = 2 for
Nr = 10 and rmax = 1. These values are compared with those of an evenly-spaced grid used in spectral Cartesian
codes (grey dots, k j = jπ/rmax).

As mentioned above, once this grid is set up, the Discrete Hankel Transform is simply a linear operation on a
finite set of points, and can thus be represented by a matrix operation.

DHTm
n [ f ] (km

⊥, j) =

Nr−1∑
p=0

(Mn,m) j,p f (rp) IDHTm
n [g] (r j) =

Nr−1∑
p=0

(M′n,m) j,p g(km
⊥,p) (19)

Notice that the Nr × Nr transformation matrices Mn,m and M′n,m depend on n (order of the Hankel transform,
i.e. order of the Bessel function Jn in the integrand of Eq. (16)) and m (index of the azimuthal mode, and thus
index of the spectral grid km

⊥, j on which the Hankel transform is performed). In practice, n and m are either equal
or they differ by ±1 (e.g. in Eqs. (14b) and (14c), when the azimuthal mode m is transformed using the Hankel
transform of order m + 1 or m − 1.)

The expressions of Mn,m and M′n,m, for the DHT algorithm that we chose, are given in Appendix D. In practice,
these matrices need to be computed only once (at the beginning of the simulation) and can then be used at each
iteration. Notice also that the computational time for this matrix multiplication is proportional to N2

r , which is
slow compared to a 1D FFT (∝ Nr log(Nr)), but still faster than the 2D FFT (∝ NxNy log(Nx) + NxNy log(Ny))
which is typically used in the transverse plane of a spectral 3D Cartesian code.

2.3. Field gathering
In the following, we describe the four successive steps of a PIC cycle with our algorithm in detail, starting

with the field gathering. When gathering the fields from the intermediate grid to the macroparticles (see Fig. 1),
we use the standard linear shape factors :

Fu(rk) =
∑
p,q

S z,p(zk)S r,q(rk)

 Nm∑
m=−Nm

F̂u,m(zp, rq)e−imθk


=

∑
p,q

S z,p(zk)S r,q(rk)

F̂u,0(zp, rq) + 2<

 Nm∑
m=1

F̂u,m(zp, rq)e−imθk


 (20)

where F is either E or B, u is either r, θ or z, k is the index of the macroparticle, and p and q are the indices of
the two nearest cells in z and r respectively. Nm is the total number of azimuthal modes used, and < denotes the
real part of a complex quantity. Notice that, in Eq. (20), we used the fact that F̂u,−m(z, r) = F̂∗u,m(z, r), which can be
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inferred from Eq. (12). Incidentally, Eq. (20) shows that only the modes with m ≥ 0 need to be taken into account
in the code, as they are sufficient to retrieve the force on the macroparticles.

Finally, in Eq. (20), S z,p and S z,q are the linear shape factors in z and r :

S z,p(z) =
zp+1 − z

∆z
S z,p+1(z) =

z − zp

∆z
with zp ≤ z < zp+1 (21a)

S r,q(r) =
rq+1 − r

∆r
S r,q+1(r) =

r − rq

∆r
with rq ≤ r < rq+1 (21b)

For particles that are in the lower half of the first radial cell (r < r0 = ∆r/2), Eqs. (20) and (21b) require the value
F̂u,m(zp, r−1) although r−1 = −∆r/2 is not actually part of the grid. In order to still apply Eqs. (20) and (21b), we
explicitly set F̂u,m(zp,−∆r/2) = ±F̂u,m(zp,∆r/2), where the − sign is chosen whenever the considered field F̂u,m is
by definition zero on the axis, and the + sign is chosen otherwise. (e.g. Êr,0 is by definition zero on the axis ; see
[6] for more details, and for a similar method.)

Note that we use linear shape factors here only for the sake of simplicity, and that higher-order shape factors
(e.g. quadratic or cubic) could also be used in principle, with a similar mirroring of the field values across the axis.

2.4. Equations of motion
Since the macroparticles evolve in 3D, we first compute the Cartesian components Ex, Ey, Ez, Bx, By and

Bz, from the fields Er, Eθ, Ez, Br, Bθ and Bz that were gathered at the positions of each macroparticle. We then
advance the equations of motion

d p
dt

= qE + qv × B
dx
dt

=
p
γm

(22)

in standard 3D Cartesian coordinates by using the leap-frog pusher described in [30].

2.5. Current deposition
As in [6], the charge density is calculated on the intermediate grid in the following way:

ρ̂m(zp, rq) =

∑
k S z,p(zk)S r,q(rk)Qkeimθk

Vq
(23)

where Qk is the charge of the macroparticle with index k, and where Vq is the volume of a cell, which is for our
grid

Vq = π[ (q + 1)2 − q2 ]∆r2∆z (24)

Similarly, the current deposition is given by

ĵu,m(zp, rq) =

∑
k S z,p(zk)S r,q(rk)Qkvu,keimθk

Vq
(25)

where u = z, r, θ and the vu,k are the cylindrical components of the velocity of the macroparticle k. As mentioned
previously, once the macroparticles have deposited their charge and current on the intermediate grid, we transform
them to the spectral grid, using an FFT and a DHT (see Fig. 1).

Note that, when a macroparticle travels through the grid, the factor Vq in the above formulas decreases as the
macroparticle comes closer to the axis. Therefore, close to the axis, the impact of a single macroparticle on an
individual grid cell can be substantial and this generally translates into higher levels of noise. (This is a general
problem with cylindrical and quasi-cylindrical codes, and thus it is not specific to the present spectral version.) In
order to mitigate this problem, and more generally in order to avoid the accumulation of noise at high frequency,
smoothing is typically applied on the charge and currents, after they have been deposited (but no smoothing is
applied on the fields E and B directly). This smoothing is performed directly in spectral space, by multiplying the
charge and currents by a transfer function T̂ (kz, k⊥) which damps the high frequencies k, and whose mathematical
form is identical to the spectral Cartesian representation of a single-pass binomial filter [1].

T̂ (kz, kr) = cos2
(

kz

kz,max

π

2

)
cos2

(
k⊥

k⊥,max

π

2

)
(26)

where kz,max and k⊥,max are the highest wavevectors that the discrete spectral grid supports, in the longitudinal and
transverse direction.

Notice also that, in the above deposition scheme, we do not attempt to reproduce the Esirkepov charge-
conserving current deposition [31], and instead use a simple direct current deposition. It is well-known that
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this simple deposition does not necessarily satisfy the relation ∂tρ + ∇ · j = 0, but that this can be corrected, by
slightly modifying the currents without modifying their curl (e.g. [32]):

j′ = j − ∇G (27)

where G satisfies the Poisson-like equation

∇
2G = ∂tρ + ∇ · j (28)

The above equation is typically expensive to solve on a spatial grid, but very easy to solve in spectral space.
In spectral space and with the notations of Fig. 1, these equations become

Ĵ
′ n+1/2
+,m = Ĵ

n+1/2
+,m +

k⊥
2
Ĝn+1/2

m Ĵ
′ n+1/2
−,m = Ĵ

n+1/2
−,m −

k⊥
2
Ĝn+1/2

m Ĵ ′ n+1/2
z,m = Ĵn+1/2

z,m − ikzĜ
n+1/2
m (29)

with

Ĝn+1/2
m = −

1
k2
⊥ + k2

z

(
ρ̂n+1

m − ρ̂n
m

∆t
+ k⊥(Ĵn+1/2

+,m − Ĵ
n+1/2
−,m ) + ikzĴ

n+1/2
z,m

)
(30)

With this correction, the new currents Ĵ ′n+1/2 do satisfy the charge conservation equation Eq. (10). Therefore we
apply this correction in spectral space, at the end of the current deposition at each timestep.

2.6. Integration of the Maxwell equation using the PSATD scheme
The Maxwell equations Eqs. (8a) to (8c) could in principle be integrated by using a finite-difference scheme

in time, which would be an adaptation of the Cartesian PSTD scheme [13].

B̂
n+1/2
+,m = B̂n

+,m −
∆t
2

(
−

ik⊥
2
Ên

z,m + kzÊ
n
+,m

)
(31a)

B̂
n+1/2
−,m = B̂n

−,m −
∆t
2

(
−

ik⊥
2
Ên

z,m − kzÊ
n
−,m

)
(31b)

B̂n+1/2
z,m = B̂n

z,m −
∆t
2

(
ik⊥Ên

+,m + ik⊥Ên
−,m

)
(31c)

Ên+1
+,m = Ên

+,m + c2∆t
(
−

ik⊥
2
B̂n+1/2

z,m + kzB̂
n+1/2
+,m − µ0Ĵ

n+1/2
+,m

)
(32a)

Ên+1
−,m = Ên

−,m + c2∆t
(
−

ik⊥
2
B̂n+1/2

z,m − kzB̂
n+1/2
−,m − µ0Ĵ

n+1/2
−,m

)
(32b)

Ên+1
z,m = Ên

z,m + c2∆t
(
ik⊥B̂

n+1/2
+,m + ik⊥B̂

n+1/2
−,m − µ0Ĵ

n+1/2
z,m

)
(32c)

B̂n+1
+,m = B̂

n+1/2
+,m −

∆t
2

(
−

ik⊥
2
Ên+1

z,m + kzÊ
n+1
+,m

)
(33a)

B̂n+1
−,m = B̂

n+1/2
−,m −

∆t
2

(
−

ik⊥
2
Ên+1

z,m − kzÊ
n+1
−,m

)
(33b)

B̂n+1
z,m = B̂n+1/2

z,m −
∆t
2

(
ik⊥Ên+1

+,m + ik⊥Ên+1
−,m

)
(33c)

However, this type of scheme retains some amount of spurious numerical dispersion, and can thus affect the
simulated physics.

Instead, here we use an adaptation of the Cartesian PSATD scheme [10] for our spectral quasi-cylindrical
representation. As in the case of the standard PSATD, we assume that the currents are constant over one timestep
and that the charge density is linear in time over the same timestep. Under these assumptions, the Maxwell
equations Eqs. (8a) to (8c) can be integrated analytically over that timestep, and they lead to:

Ên+1
+,m = CÊn

+,m + c2 S
ω

(
−

ik⊥
2
B̂n

z,m + kzB̂
n
+,m − µ0Ĵ

n+1/2
+,m

)
+

c2

ε0

k⊥
2

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(34a)

Ên+1
−,m = CÊn

−,m + c2 S
ω

(
−

ik⊥
2
B̂n

z,m − kzB̂
n
−,m − µ0Ĵ

n+1/2
−,m

)
−

c2

ε0

k⊥
2

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(34b)

Ên+1
z,m = CÊn

z,m + c2 S
ω

(
ik⊥B̂n

+,m + ik⊥B̂n
−,m − µ0Ĵ

n+1/2
z,m

)
−

c2

ε0
ikz

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(34c)
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B̂n+1
+,m = CB̂n

+,m −
S
ω

(
−

ik⊥
2
Ên

z,m + kzÊ
n
+,m

)
+ µ0c2 1 −C

ω2

(
−

ik⊥
2
Ĵn+1/2

z,m + kzĴ
n+1/2
+,m

)
(35a)

B̂n+1
−,m = CB̂n

−,m −
S
ω

(
−

ik⊥
2
Ên

z,m − kzÊ
n
−,m

)
+ µ0c2 1 −C

ω2

(
−

ik⊥
2
Ĵn+1/2

z,m − kzĴ
n+1/2
−,m

)
(35b)

B̂n+1
z,m = CB̂n

z,m −
S
ω

(
ik⊥Ên

+,m + ik⊥Ên
−,m

)
+ µ0c2 1 −C

ω2

(
ik⊥Ĵ

n+1/2
+,m + ik⊥Ĵ

n+1/2
−,m

)
(35c)

where ω ≡ c
√

k2
z + k2

⊥, C ≡ cos(ω∆t) and S ≡ sin(ω∆t). (See Appendix C for a derivation of these equations.)

2.7. Practical implementation
The full PIC algorithm described in this section was implemented in the code FBPIC (Fourier-Bessel Particle-

In-Cell), which is written in Python. For performance, this implementation makes use of the pre-compiled libraries
FFTW [33] and BLAS [34] (for the matrix multiplication in the DHT), and utilizes the Numba just-in-time com-
piler [35] for the computationally-intensive parts of the code (current deposition and field gathering). In addition,
the code was developed for both single-CPU and single-GPU architectures (with the GPU runs being typically
more than 40 times faster than the equivalent CPU runs, on modern hardware). Importantly, a precise timing of
the different routines showed that, although the time taken by the spectral transforms (FFT and DHT) is not entirely
negligible, it does not usually dominate the PIC cycle. For instance, on a K20 GPU and for a grid with Nz = 4096,
Nr = 256 and 16 particles per cell, the FFTs and DHTs take up 6% and 14% of the PIC cycle respectively, while
the rest of the time is dominated by the field gathering and current deposition.

Notice that, even though parallelization is generally challenging for spectral algorithms, a multi-CPU/multi-
GPU version could still be developped in the future by using the method of [32]. For the present algorithm,
this would involve a domain decomposition along the z axis, whereby FFTs would be performed locally within
each subdomain and whereby a large number of guard cells would be used in order to mitigate the errors at the
border between subdomains. This method based on local FFTs has been studied in the Cartesian context [23], and
is now rather well understood. By contrast, performing domain decomposition in the r direction would be more
challenging, due to the absence of previous work on local Hankel transforms. At any rate, the above considerations
for parallel implementation are out of the scope of the present article, and will be the subject of future work. The
benchmarks described in the following section use a single-CPU/single-GPU version of the algorithm.

3. Benchmarks

We tested the above algorithm in a number of physical situations. These tests included standard problems,
such as e.g. a periodic plasma wave, and involved comparing simulated results to analytical solution, as well as
verifying that the algorithm conserves the energy to a satisfying level. For the sake of conciseness, in the present
article, we restrict the discussion to the tests of the dispersion relation, since the absence of spurious numerical
dispersion was one of the original goals of this algorithm.

3.1. Propagation in vacuum
A first test consisted in letting a laser pulse propagate in vacuum and in measuring its group velocity in the

simulation. These simulations were run with the PSATD quasi-cylindrical algorithm presented in Section 2 (see
esp. Eqs. (34) and (35)), but also, for comparison, with a PSTD version of this same algorithm (see Eqs. (31)
to (33)), as well as with a finite-difference quasi-cylindrical algorithm equivalent to that of [6, 7] and which had
been previously implemented in the PIC code Warp [36].

The simulations were run with a moving window, in a box with a longitudinal size of 40 µm and a transverse
size of 48 µm. (In the case of the spectral algorithm, the fields were damped at the back of the moving window, in
a similar way as in [37], in order to prevent periodic wrapping of the fields). The laser pulse itself was initialized
at focus, with a waist w0 = 16 µm, a length L = 10 µm, a wavelength λ = 0.8 µm and a dimensionless potential
vector a0 = 10−2. The resolution was varied while keeping the same cell aspect ratio (∆r = 5∆z). The timestep
was set to c∆t = ∆z in the case of the PSATD algorithm, to c∆t = 0.9 × 2/π

√
1/∆z2 + 1/∆r2 in the case of the

PSTD algorithm, and to c∆t = 1/
√

1/∆z2 + 2/∆r2 in the case of the finite-difference algorithm (for the PSTD and
finite-difference algorithms, the chosen ∆t is close to the Courant limit).

Physically, the on-axis group velocity of the pulse should be slightly lower than c due to the finite waist of the
pulse (see e.g. [38]). The analytical expression for the corresponding relative difference in on-axis group velocity
is

c − vg

c
= 2

(
λ

2πw0

)2

(36)

10



In the case at hand (w0 = 16 µm, λ = 0.8 µm), this relative difference is extremely small ((c−vg)/c = 1.27×10−4),
and it may be difficult for PIC codes to capture this small physical difference.

To assess the capacities of the finite-difference and spectral codes in this regard, Fig. 3 displays the relative
difference in group velocity, as measured in the simulations. As can be observed, in the finite-difference simula-
tions and PSTD simulations, the group velocity of the laser depends on the resolution, due to spurious numerical
dispersion. Moreover, in these cases, the group velocity is considerably different than the analytical prediction,
even for a relatively high resolution. (Since Fig. 3 does not display the sign of c−vg, it is worth noting here that the
PSTD algorithm leads to vg > c while the finite-difference algorithm has vg < c. It is also important to realize here
that, although the finite-difference algorithm performs better than the PSTD algorithm in this particular example,
this is not generalizable to other cases, as e.g. the numerical dispersion of both algorithms behave differently when
∆t or the ratio ∆z/∆r is changed.)

5 10 15 20 25 30 35 40 45
Number of gridpoints per laser wavelength (along z)

10-4

10-3

10-2

|c
−
v g
|/
c

Analytical solution
Spectral (PSATD)
Spectral (PSTD)
Finite difference

Figure 3: Relative difference between c and the group velocity of a laser pulse in vacuum, for different resolutions.
The dashed black line represents the analytical prediction given by Eq. (36), while the blue and red points represent
the results of PIC simulation, with the PSATD, PSTD and finite-difference algorithm.

On the other hand, with the PSATD algorithm, the group velocity is practically independent of the resolution,
and displays very good agreement with the analytical prediction. This corroborates the fact that the PSATD quasi-
cylindrical algorithm described here has no spurious numerical dispersion in vacuum.

Since the PSTD algorithm is less acurate than the PSATD algorithm, while not providing any substantial
advantage in terms of speed or practical implementation, we do not consider it further here and perform the rest
of the tests with the PSATD algorithm.

3.2. Linear propagation in a plasma

In order to confirm that the spectral algorithm also performs well in the presence of a plasma, we ran the same
type of simulations with a uniform, pre-ionized plasma. The numerical parameters of the simulations, as well as
the physical parameters of the laser, were the same as in the previous subsection (Section 3.1). The plasma was
represented by 16 macroparticles per cell, and had a density ne = 1.75 × 1018 cm−3 = 10−3 nc, where nc is the
critical density for λ = 0.8 µm.

Since the intensity of the laser is very low here (a0 = 10−2), the propagation is linear, and the on-axis group
velocity is given by (e.g. [38])

c − vg

c
=

ne

2nc
+ 2

(
λ

2πw0

)2

(37)

In Fig. 4, we compare this analytical prediction with the group velocity in the finite-difference and spectral
simulations. Again, the group velocity is resolution-dependent in the finite-difference algorithm, and it is sub-
stantially different than the analytical prediction even at high resolution. In the spectral code, the group velocity
velocity exhibits a very weak dependence on resolution (which is likely due to the errors of current deposition and
field gathering on the finite grid). However, its value remains always very close to the analytical prediction at all
resolutions.

We emphasize that, although the difference between c and vg is small here and may thus seem unimportant, it
is this difference which determines the dephasing length and thus the maximum beam energy, in a laser-wakefield
simulation. It is therefore paramount to obtain its correct value in the simulation codes. This problem is well-
known in the case of standard finite-difference codes. For Cartesian finite-difference codes, a common solution
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Figure 4: Relative difference between c and the group velocity of a laser pulse in a plasma at 10−3 nc, for different
resolutions. The dashed line represents the analytical prediction given by Eq. (37), while the blue and red points
represent the results of PIC simulations.

is to use a scheme which is dispersion-free along the z axis (e.g. [39, 40, 41]), but no such scheme has been
developed for quasi-cylindrical codes. Alternatively, spurious numerical dispersion is often dealt with in finite-
difference codes by either using an even finer grid in z (which is very computationally expensive) or a coarser
grid in r. (Recall that, in the simulations shown here, ∆r = 5∆z. A coarser resolution in r allows to use a
slightly larger timestep ∆t that approaches c∆z, the limit at which spurious numerical dispersion vanishes in the
z-direction.) However, a coarser resolution in r may not always be adapted to resolve the physics of interest, while
a finer resolution in z is expensive. It is therefore remarkable that, with the spectral quasi-cylindrical algorithm,
the correct group velocity is obtained independently of the cell aspect ratio, without having to specifically adapt
the resolution in r or z.

3.3. Linear laser-wakefield
In order to further ascertain that the spectral algorithm described here gives appropriate results beyond simple

dispersion tests, we ran a simulation of a laser-wakefield, and compared the amplitude of the wakefield with the
corresponding analytical predictions.

In these simulations, the laser was linearly polarized along the transverse x direction, and had an amplitude
a0 = 10−2, a wavelength λ = 0.8 µm, a length L = 10 µm and a waist w0 = 20 µm. The plasma was preionized,
with a uniform electron density ne = 1.75 × 1018 cm−3 = 10−3 nc. As is often the case for simulations of intense
laser-plasma interaction (where thermal effects are generally assumed to be negligible), the initial temperature of
the plasma is set to 0. The simulation was run in a moving window whose longitudinal and transverse sizes were
80 µm and 60 µm. The spatial and temporal resolutions were ∆z = 0.05 µm, ∆r = 0.5 µm and ∆t = ∆z/c.
Since here a0 = 10−2, the analytical wakefield is given by the linear and quasistatic theory. For a laser of the form
a(z, r, t) = a`(z, t)e−r2/w2

0 cos(k0z − ω0t) – where a`(z, t) is the longitudinal envelope of the laser – the longitudinal
and transverse fields Ez and Ey are given by (e.g. [8])

Ez(z, r, t) =
mc2

e

k2
p

4

∫ ∞

z
a2
` (z
′, t)e−r2/w2

0 cos[kp(z − z′)]dz′ (38a)

Ey(z, r, t) = −
mc2

e
kpy

w2
0

∫ ∞

z
a2
` (z
′, t)e−r2/w2

0 sin[kp(z − z′)]dz′ (38b)

where kp is the plasma wavevector.
Here, the longitudinal laser envelope a` was extracted directly from the simulation, and the above analytical

integrals where carried out numerically. The resulting predicted fields Ez and Ey are plotted in dashed lines in
the left and right lower panels respectively of Fig. 5. These predicted curves are compared with the fields Ez and
Ey extracted directly from the simulation (red lines in the lower panels). These fields from the simulation are
also displayed as colormaps in the upper panels of Fig. 5, and these colormaps include the line along which the
quantities in the lower panels are plotted (dashed line).

As can be seen on the lower panels of Fig. 5, the analytical and simulated curves overlap very precisely, which
confirms the validity of our PIC algorithm. This agreement is all the more remarkable as the Ez field has been
extracted from the cells that are closest to the axis, a region where quasi-cylindrical algorithms are typically very
noisy.
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Figure 5: Upper panels: Colormaps of the fields Ez and Ey as extracted from the simulation (blue and red), along
with the laser envelope (orange contour lines). (The laser propagates to the right and is polarized along x.) The
dashed lines indicate the position where the curves of the lower panels have been extracted. Lower panels: profile
of the fields at a given radial position, as given by Eqs. (38a) and (38b) (dashed line) or as given by the simulation
(red line).

4. Advantages over finite-difference algorithms

Since finite-difference algorithms and spectral algorithms are considerably different, each of them has its own
advantages and shortcomings.

For instance, spectral algorithms – including the one described here – are generally more difficult to parallelize
than finite-difference codes. Similarly, the implementation of specific boundary conditions, and of a moving
window, is usually more challenging in a spectral algorithm. On the other hand, due to their high accuracy, spectral
algorithms can avoid a number of numerical artifacts that are typically present in finite-difference algorithms. This
is quite important as, in a finite-difference simulation, these artifacts may remain unnoticed unless additional care
is taken in their analysis, and yet they may affect the physics at stake in an important way.

One example of such an artifact is spurious numerical dispersion, which, as mentioned in [4] and in Section 3.2,
can modify the dephasing length of a laser-wakefield accelerator – a spurious effect which may be difficult to
discern, especially in the cases where there is no analytical formula for this length. As shown in Section 3.2, the
algorithm described here would not suffer from this effect, as it is free of spurious numerical dispersion. Similarly,
in this section we describe two other typical situations in which our spectral quasi-cylindrical algorithm avoids
important artifacts, that would otherwise arise in a finite-difference code.

4.1. Suppression of zero-order numerical Cherenkov effect
A first artifact which is avoided is the zero-order numerical Cherenkov effect. To zero order, the numerical

Cherenkov effect is a consequence of the spurious numerical dispersion [3], and arises because some relativistic
particles can travel faster than the numerically-altered velocity of the electromagnetic waves, in the simulations.
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This typically causes these relativistic particles to emit a characteristic spurious radiation. Recently, it was shown
that this spurious radiation can have a very substantial impact in lab-frame simulations of laser-wakefield accel-
eration, in particular by spuriously increasing the emittance of the accelerated beam [42]. It was also shown that,
by modifying the PIC algorithm and its numerical dispersion relation, the zero-order Cherenkov radiation can be
suppressed. (Notice that there exists also a set of higher-order, aliased numerical Cherenkov effects, which are
not as easily suppressed [43, 44, 14, 15, 16, 17, 45]. These high-order effects can lead to disruptive instabilities in
boosted-frame simulations, but on the other hand no such instability was observed in typical lab-frame simulations
of laser-plasma acceleration. It is in fact likely that these instabilities may not have enough time to develop in the
case of typical lab-frame simulations.)

Since the spectral quasi-cylindrical algorithm described here is dispersion-free, it should not exhibit the zero-
order numerical Cherenkov effect. In order to confirm this prediction, we ran a simulation of laser-wakefield
acceleration with our spectral quasi-cylindrical algorithm, and compared it with an equivalent simulation that uses
the finite-difference quasi-cylindrical algorithm of Warp.

In these simulations, a laser pulse with a waist w0 = 16 µm, a length L = 10 µm, an amplitude a0 = 4 and
a wavelength λ = 0.8 µm is sent into a longitudinally-shaped pre-ionized gas jet. The gas jet has a 100 µm-long
rising density gradient at its entrance, followed by a 200 µm plateau at a density ne = 1 × 1018 cm−3 and then by
a 100 µm-long downramp, so as to finally reach a density ne = 0.5 × 1018 cm−3. Again, the initial temperature
of the plasma is set to 0. The downramp causes the injection of an electron beam, which is then accelerated in
the subsequent density plateau at ne = 0.5 × 1018 cm−3. Both the spectral and the finite-difference simulations
were run in a moving window whose longitudinal and transverse dimensions were 160 µm and 48 µm, and both
simulations used a resolution ∆z = 0.032 µm and ∆r = 0.19 µm. Again, the finite-difference simulation was run
with a timestep c∆t = 1/

√
1/∆z2 + 2/∆r2 while the spectral simulation was run with c∆t = ∆z. Importantly, the

charge and currents are smoothed in both simulations. The spectral algorithms performs smoothing in spectral
space as described in Section 2.5, while the finite-difference algorithm applies a single-pass binomial filter on the
spatial grid, in both the z and r directions.

Figure 6 shows a snapshot of the two simulations, at a similar physical time. The red colormap represents the
quantity |Ey + cBx|, while the superimposed shades of blue represent the electron density. (The quantity Ey + cBx

is chosen because it corresponds to the y component of the Lorentz force F = qE + qv × B felt by a relativistic
electron having v = cez.) As can be seen in the top panels, the global aspect of the bubble and of the injected
bunch is similar in both simulations. In particular, the injected charge was found to be almost the same (766 pC
with the finite-difference algorithm and 750 pC with the spectral algorithm). However, a closer look at the bunch
in the finite-difference algorithm (see the middle left panel in Fig. 6) reveals that the bunch emits a high-frequency
radiation. This radiation seems to be due to the zero-order numerical Cherenkov effect – an interpretation which
is confirmed by the observation of the corresponding characteristic double-parabola in k space [42, 43, 44] on
the lower left panel of Fig. 6. Importantly, the amplitude of this unphysical field, in the middle panel of Fig. 6,
happens to be comparable to the focusing fields inside the bubble, and it can thus potentially affect the bunch in
a substantial manner. On the other hand, the spectral algorithm does not exhibit this unphysical radiation in real
space (see the middle right panel in Fig. 6), nor does it exhibit the corresponding characteristic pattern in k space
(see the lower right panel). This was indeed expected from its dispersion-free property, and it confirms the fact that
our spectral quasi-cylindrical algorithm is free of the unphysical artifacts associated with the zero-order numerical
numerical Cherenkov effect.

For completeness, we remark that a similar suppression of the numerical Cherenkov radiation was obtained in
[42, 4], by using modified finite-difference algorithms. However, it is important to note that these algorithms were
applicable to a Cartesian PIC code, but not to a quasi-cylindrical code. An adaptation to cylindrical geometry is
proposed in [46], and was shown to efficiently suppress zero-order numerical Cherenkov effect. However, this
adaptation is not, strictly speaking, dispersion-free.

4.2. Accurate force of a laser on a copropagating electron

Another case in which our spectral algorithm performs better than finite-difference algorithms is whenever a
relativistic electron bunch overlaps with a copropagating laser. This situation occurs for instance in laser-wakefield
acceleration, when the accelerated electron bunch progressively catches up with the laser pulse and may eventually
overlap with it (e.g. [47, 48]). It is also the typical configuration for simulations of free-electron lasers, where
the overlap of the electron bunch and the copropagating laser radiation, inside an undulator, leads to a growing
instability.

Despite the practical importance of this physical configuration, it was recently shown that standard finite-
difference PIC codes tend to largely overestimate the force felt by the electrons inside a copropagating laser (see
the appendix of [49]). This overestimation was shown to be mainly due to the staggering in time of the E and B
fields in a standard finite-difference code. This staggering indeed results in an improper numerical compensation
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Figure 6: Snapshot of a finite-difference simulation (left) and of a spectral simulation (right), at a similar physical
time. Upper panels: Representation of the bubble in real space; the superimposed blue shades represent the
electron density. Middle panels: More detailed view of the region surrounding the bunch. Lower panels: two-
dimensional Fourier transform of the quantity Ey +cBx ; the central spot around kz = 0 corresponds to the physical
fields, while the double-parabola in the left panel is a signature of the zero-order Cherenkov effect.

of the two terms of the Lorentz force F = qE + qv × B. However, in our spectral quasi-cylindrical algorithm, the
fields E and B are not staggered in time, and thus the force on a copropagating electron bunch should be correct.

To confirm this prediction, we ran a test simulation in which a single relativistic macroparticle copropagates
with a laser pulse. The initial configuration of the simulation is represented in Fig. 7. The laser pulse is polarized
along x and is characterized by a waist w0 = 25 µm, a length L = 7 µm, an amplitude a0 = 0.2 and a wavelength
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λ = 0.8 µm, while the macroparticle represents a relativistic electron having an initial Lorentz factor γe = 25.
For comparison, the simulation was run, again, with both our spectral quasi-cylindrical algorithm and the finite-
difference quasi-cylindrical algorithm of Warp. In order to study numerical convergence, the simulations were
run with various longitudinal resolution ∆z, but with a fixed cell aspect ratio ∆r = 10∆z. The timestep was again
c∆t = 1/

√
1/∆z2 + 2/∆r2 for the finite-difference simulation and c∆t = ∆z for the spectral simulation. Finally, the

simulations were run in a moving window with a longitudinal and transverse size of 40 µm and 60 µm respectively.
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Figure 7: Representation of the situation which is simulated in Section 4.2. The red and blue colormap corresponds
to the electric field of the laser pulse, while the black dot corresponds to the electron considered. The laser
propagates to the right, and is polarized along x.

In order to assess the correctness of the force felt by the electron, we analyze the evolution of its transverse
momentum in time. Analytically, it can be shown from the Lagrangian L = −

√
1 − β2 mc2 − ev · A that the

equation of motion along the x axis (i.e. the axis of laser polarization) is

1
c

d
dt

(
px

mec
− ax

)
= −

px

γmec
∂ax

∂x
∼

a2
0

γw0
(39)

where ax is the normalized vector potential of the laser pulse. The right-hand side corresponds to the ponderomo-
tive force, and, for the parameters and timescale considered here, it is in fact negligible. The canonical momentum
of the electron is thus approximately conserved.

px

mec
− ax = const. (40)

Since, inside the laser pulse, ax oscillates between the values −a0 and a0, the quantity px/mec is predicted to also
also oscillate between −a0 and a0, as the electron progressively dephases with the laser.

Keeping in mind that here initially a0 = 0.2, one can observe on Fig. 8 that the oscillation amplitude of
px/mec is much higher than analytically predicted in the finite-difference simulation. In addition, these oscillations
strongly depend on the resolution of the simulation, which confirms their spurious nature. These observations are
consistent with those of [49], and they are due to the above-mentioned erroneous calculation of the Lorentz force.
On the other hand, in the spectral simulations, the oscillations of px/mec exhibits virtually no dependence on the
resolution. In addition, the oscillations of px/mec have a realistic amplitude. (The fact that these oscillations do
not reach exactly the value 0.2 may be due to the fact that a0 decreases as the laser propagates, as a consequence
of diffraction.) These observations confirm that the spectral quasi-cylindrical algorithm properly calculates the
Lorentz force on the electron. This is also consistent with our expectations, which were based on the fact that E
and B fields are not staggered in time, in this algorithm.
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Figure 8: Evolution of the transverse normalized momentum of a macroparticle, as it copropagates with a laser
pulse having a0 = 0.2 (see Fig. 7 for a schematic representation of the situation simulated). The left and right
plots correspond to the finite-difference and spectral algorithms respectively (note the different vertical scales on
the two plots). The colored curves correspond to different resolutions for the simulations.

Conclusion

In this article, we derived the equations of a spectral quasi-cylindrical PIC algorithm, and discussed its numer-
ical implementation. As explained in the text, because this algorithm is quasi-cylindrical, it requires much less
computational time and memory than a full 3D algorithm. In addition, the fact that it is spectral (and uses the
PSATD algorithm) prevents a certain number of artifacts, that are usually present in a finite-difference algorithm.

This second aspect was tested in detail in this article, through several benchmarks. By comparing simulations
with analytical results, we showed that our spectral quasi-cylindrical code is free of spurious numerical dispersion,
that it does not exhibit zero-order numerical Cherenkov effect in typical lab-frame simulations, and that it can
accurately calculate the force of a laser on a copropagating electron. By running the same benchmarks with a
finite-difference quasi-cylindrical algorithm, we showed that these numerical artifacts can, on the contrary, be
present in finite-difference PIC algorithms.

However, it must not be forgotten that finite-difference algorithms have advantages of their own, including
easier parallelization and application of boundary conditions. In the case of our spectral quasi-cylindrical algo-
rithm, parallelization to several nodes could nonetheless be achieved by following for instance the method of [32].
This will be the subject of future work.
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Appendix A. Derivation of the spectral quasi-cylindrical representation

In order to derive the representation Eqs. (6a) to (6c), we have to distinguish the Cartesian components (e.g.
Ex, Ey, Ez, Bx, By, Bz), which are well-defined everywhere in space and thus have a regular Fourier representation,
from the cylindrical components (e.g. Er, Eθ, Br, Bθ), which are ill-defined at r = 0. (For instance, for a field of
the form E = E0ex, the expression of Er is Er = E0 cos(θ), which ill-defined at r = 0, as θ itself is ill-defined at
this position.)

Appendix A.1. Cartesian components

Let Fu be the Cartesian component of a field F (typically F is E, B or J and u is x, y or z). Its Fourier
representation is thus given by Eqs. (2) and (3):

Fu(r) =
1

(2π)3

∫ ∞

−∞

dkx

∫ ∞

−∞

dky

∫ ∞

−∞

dkz Fu(k)ei(kx x+kyy+kzz) (A.1)

Fu(k) =

∫ ∞

−∞

dx
∫ ∞

−∞

dy
∫ ∞

−∞

dz Fu(r)e−i(kx x+kyy+kzz) (A.2)

Using the change of variable kx = k⊥ cos(φ), ky = k⊥ sin(φ), x = r cos(θ), y = r sin(θ), this becomes

Fu(r) =
1

(2π)3

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

∫ 2π

0
dφ Fu(k)ei(k⊥r cos(θ−φ)+kzz) (A.3)

Fu(k) =

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ ∞

−∞

dθ Fu(r)e−i(k⊥r cos(θ−φ)+kzz) (A.4)

Let us now use the relation eik⊥r cos(θ−φ) =
∑∞

m=−∞ imJm(k⊥r)eim(φ−θ) (which is simply another way of writing the
well-known relation eiα sinψ =

∑∞
m=−∞ Jm(α)eimψ). The above equations become:

Fu(r) =

∞∑
m=−∞

1
(2π)3

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

∫ 2π

0
dφ imFu(k) Jm(k⊥r)e−im(θ−φ)+ikzz (A.5)

Fu(k) =

∞∑
m=−∞

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ 2π

0
dθ (−i)mFu(r) Jm(k⊥r)e−im(φ−θ)−ikzz (A.6)

We now define F̂u,m(kz, k⊥) = 1
2π

∫ 2π
0 dφ imFu(k)eimφ. This results in the following equations :

Fu(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥ F̂u,m(kz, k⊥) Jm(k⊥r)e−imθ+ikzz (A.7)

F̂u,m(kz, k⊥) =

∫ ∞

−∞

dz
∫ ∞

0
rdr

∫ 2π

0
dθ Fu(r) Jm(k⊥r)e−imθ−ikzz (A.8)

These equations correspond to Eqs. (6a) and (7a).

Appendix A.2. Cylindrical components

Let us now consider fields of the type Er, Br or Jr, which we denote generally by Fr. We have :

Fr = cos(θ)Fx + sin(θ)Fy =
Fx − iFy

2
eiθ +

Fx + iFy

2
e−iθ (A.9)

Using Eq. (A.8) leads to

Fr =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

Jm(k⊥r)
F̂x,m − iF̂y,m

2
e−i(m−1)θ+ikzz + Jm(k⊥r)

F̂x,m + iF̂y,m

2
e−i(m+1)θ+ikzz

 (A.10)

Fr =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

Jm+1(k⊥r)
F̂x,m+1 − iF̂y,m+1

2
e−imθ+ikzz + Jm−1(k⊥r)

F̂x,m−1 + iF̂y,m−1

2
e−imθ+ikzz


(A.11)
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where we relabeled the dummy variable m in the above sums. Let us thus define F̂−,m = (F̂x,m−1 + iF̂y,m−1)/2 and
F̂+,m = (F̂x,m+1 − iF̂y,m+1)/2. This results in:

Fr(r) =
1

(2π)2

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥

(
F̂+,m Jm+1(k⊥r) + F̂−,m Jm−1(k⊥r)

)
e−imθ+ikzz (A.12)

With the same definitions and the same method, it is also easy to show that:

Fθ(r) =

∞∑
m=−∞

∫ ∞

−∞

dkz

∫ ∞

0
k⊥dk⊥ i

(
F̂+,m Jm+1(k⊥r) − F̂−,m Jm−1(k⊥r)

)
e−imθ+ikzz (A.13)

Appendix B. Maxwell equations for the spectral coefficients

In this section, let us derive the Maxwell equations for the spectral coefficients Eqs. (8a) to (8c) from the
Maxwell equations written in cylindrical coordinates Eqs. (5a) to (5c).

When replacing the Fourier-Hankel decomposition (Eqs. (6b), (6c) and (A.8)) in the Maxwell equations
Eqs. (5a) to (5c), we first notice that the modes proportional to e−imθ+ikzz for different values of m and kz are
not coupled. These different modes can thus be treated separately. The same cannot be said of the modes cor-
responding to different values of k⊥, since they may be coupled through the Bessel functions Jm(k⊥r) and their
derivatives. In the following, we write only the equations corresponding to ∂t B = −∇ × E, since the equation
c−2∂t E = ∇ × B − µ0 j can be treated very similarly. These equations become∫ ∞

0
k⊥dk⊥

[
∂tB̂+,mJm+1(k⊥r) + ∂tB̂−,mJm−1(k⊥r)

]
=∫ ∞

0
k⊥dk⊥

[
Êz,m

im
r

Jm(k⊥r) − kzÊ+,mJm+1(k⊥r) + kzÊ−,mJm−1(k⊥r)
]

(B.1a)∫ ∞

0
k⊥dk⊥

[
∂tB̂+,mJm+1(k⊥r) − ∂tB̂−,mJm−1(k⊥r)

]
=∫ ∞

0
k⊥dk⊥

[
−kzÊ+,mJm+1(k⊥r) − kzÊ−,mJm−1(k⊥r) − ik⊥Êz,mJ′m(k⊥r)

]
(B.1b)∫ ∞

0
k⊥dk⊥ ∂tB̂z,mJm(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
−ik⊥Ê+,m

(
Jm+1(k⊥r)

k⊥r
+ J′m+1(k⊥r)

)
+

ik⊥Ê−,m

(
Jm−1(k⊥r)

k⊥r
+ J′m−1(k⊥r)

)
−

im
r

(
E+,mJm+1(k⊥r) + E−,mJm−1(k⊥r)

) ]
(B.1c)

By taking the sum and difference of the first two equations, and by rearranging the third equation, we obtain:∫ ∞

0
k⊥dk⊥ 2 ∂tB̂+,mJm+1(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
ik⊥Êz,m

(
m

k⊥r
Jm(k⊥r) − J′m(k⊥r)

)
− 2kzÊ+,mJm+1(k⊥r)

]
(B.2a)∫ ∞

0
k⊥dk⊥ 2 ∂tB̂−,mJm−1(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
ik⊥Êz,m

(
m

k⊥r
Jm(k⊥r) + J′m(k⊥r)

)
+ 2kzÊ−,mJm−1(k⊥r)

]
(B.2b)∫ ∞

0
k⊥dk⊥ ∂tB̂z,mJm(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
−ik⊥Ê+,m

(
m + 1
k⊥r

Jm+1(k⊥r) + J′m+1(k⊥r)
)

−ik⊥Ê−,m

(
m − 1
k⊥r

Jm−1(k⊥r) − J′m−1(k⊥r)
)]

(B.2c)

We can now use the relations m
k⊥r Jm(k⊥r)+J′m(k⊥r) = Jm−1(k⊥r) and m

k⊥r Jm(k⊥r)−J′m(k⊥r) = Jm+1(k⊥r) (see relation
9.1.27 in [51]), and obtain :∫ ∞

0
k⊥dk⊥ 2 ∂tB̂+,mJm+1(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
ik⊥Êz,m Jm+1(k⊥r) − 2kzÊ+,mJm+1(k⊥r)

]
(B.3a)∫ ∞

0
k⊥dk⊥ 2 ∂tB̂−,mJm−1(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
ik⊥Êz,m Jm−1(k⊥r) + 2kzÊ−,mJm−1(k⊥r)

]
(B.3b)∫ ∞

0
k⊥dk⊥ ∂tB̂z,mJm(k⊥r) =

∫ ∞

0
k⊥dk⊥

[
−ik⊥Ê+,mJm(k⊥r) − ik⊥Ê−,m Jm(k⊥r)

]
(B.3c)
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Each equation of the above system contains Bessel functions of only one given order (m + 1, m − 1 or m). This
allows the different k⊥ components to be separated, since the functions Jn(k⊥r), for a fixed n and different values
of k⊥, form a basis of the set of real functions:

2 ∂tB̂+,m = ik⊥Êz,m − 2kzÊ+,m (B.4a)

2 ∂tB̂−,m = ik⊥Êz,m + 2kzÊ−,m (B.4b)

∂tB̂z,m = −ik⊥Ê+,m − ik⊥Ê−,m (B.4c)

Appendix C. PSATD scheme, in the Fourier-Hankel representation

We use a scheme very similar to that of [10]. In this scheme the currents are considered constant over one
timestep, and the charge density is considered linear in time.

Appendix C.1. Expressions for B̂m

By combining Eqs. (8a) to (8c) and Eq. (9), one can find the propagation equations for B.

∂2
t B̂+,m + c2(k2

⊥ + k2
z )B̂+,m = µ0c2

(
−

ik⊥
2
Ĵz,m + kzĴ+,m

)
(C.1a)

∂2
t B̂−,m + c2(k2

⊥ + k2
z )B̂−,m = µ0c2

(
−

ik⊥
2
Ĵz,m − kzĴ−,m

)
(C.1b)

∂2
t B̂z,m + c2(k2

⊥ + k2
z )B̂z,m = µ0c2(ik⊥Ĵ+,m + ik⊥Ĵ−,m) (C.1c)

Let us integrate these equations for t ∈ [n∆t, (n + 1)∆t]. In this interval, Ĵm(t) is constant and equal to Ĵ
n+1/2
m ,

and thus the right-hand side of the above equations is constant. Using Green functions, the general solution of a
differential equation of the form ∂2

t f + ω2 f = g0, where g0 is a constant, is

f (t) = f (t0) cos[ω(t − t0) ] + ∂t f (t0)
sin[ω(t − t0) ]

ω
+

g0

ω2 (1 − cos[ω(t − t0) ]) (C.2)

We thus use the above expression, with ω2 = c2(k2
⊥ + k2

z ), to integrate the fields from t0 = n∆t to t = (n + 1)∆t. In
particular, we use again the Maxwell equations Eqs. (8a) to (8c) to obtain the expression of ∂tB̂m(t0). This yields:

B̂n+1
+,m = CB̂n

+,m −
S
ω

(
−

ik⊥
2
Ên

z,m + kzÊ
n
+,m

)
+ µ0c2 1 −C

ω2

(
−

ik⊥
2
Ĵn+1/2

z,m + kzĴ
n+1/2
+,m

)
(C.3a)

B̂n+1
−,m = CB̂n

−,m −
S
ω

(
−

ik⊥
2
Ên

z,m − kzÊ
n
−,m

)
+ µ0c2 1 −C

ω2

(
−

ik⊥
2
Ĵn+1/2

z,m − kzĴ
n+1/2
−,m

)
(C.3b)

B̂n+1
z,m = CB̂n

z,m −
S
ω

(
ik⊥Ên

+,m + ik⊥Ên
−,m

)
+ µ0c2 1 −C

ω2

(
ik⊥Ĵ

n+1/2
+,m + ik⊥Ĵ

n+1/2
−,m

)
(C.3c)

where C = cos(ω∆t) and S = sin(ω∆t).

Appendix C.2. Expressions for Êm

Similarly, when combining Eqs. (8a) to (8c) and Eq. (9), the propagation equations for E are:

∂2
t Ê+,m + c2(k2

⊥ + k2
z )Ê+,m =

c2

ε0

k⊥
2
ρ̂m − µ0c2∂tĴ+,m (C.4a)

∂2
t Ê−,m + c2(k2

⊥ + k2
z )Ê−,m = −

c2

ε0

k⊥
2
ρ̂m − µ0c2∂tĴ−,m (C.4b)

∂2
t Êz,m + c2(k2

⊥ + k2
z )Êz,m = −

c2

ε0
ikzρ̂m − µ0c2∂tĴz,m (C.4c)

Let us again integrate these equations for t ∈ [n∆t, (n + 1)∆t]. In this interval, Ĵm(t) is constant (thus its time
derivatives drop), and ρ̂m is linear in time. As a consequence the right hand side is proportional to ρ̂n

m + (ρ̂n+1
m −

ρ̂n
m)(t − t0)/∆t. Using Green functions, the solution of ∂2

t f + ω2 f = ρ̂n
m + (ρ̂n+1

m − ρ̂n
m)(t − t0)/∆t is

f (t) = f (t0) cos[ω(t − t0) ] + ∂t f (t0)
sin[ω(t − t0) ]

ω
+ ρ̂n

m
1 − cos[ω(t − t0) ]

ω2 +
ρ̂n+1

m − ρ̂n
m

ω2

(
t − t0

∆t
−

sin[ω(t − t0) ]
ω∆t

)
(C.5)
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which, for t = t0 + ∆t, reduces to

f (t0 + ∆t) = f (t0)C + ∂t f (t0)
S
ω

+
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)
(C.6)

Using the above expression, we obtain

Ên+1
+,m = CÊn

+,m + c2 S
ω

(
−

ik⊥
2
B̂n

z,m + kzB̂
n
+,m − µ0Ĵ

n+1/2
+,m

)
+

c2

ε0

k⊥
2

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(C.7a)

Ên+1
−,m = CÊn

−,m + c2 S
ω

(
−

ik⊥
2
B̂n

z,m − kzB̂
n
−,m − µ0Ĵ

n+1/2
−,m

)
−

c2

ε0

k⊥
2

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(C.7b)

Ên+1
z,m = CÊn

z,m + c2 S
ω

(
ik⊥B̂n

+,m + ik⊥B̂n
−,m − µ0Ĵ

n+1/2
z,m

)
−

c2

ε0
ikz

[
ρ̂n+1

m

ω2

(
1 −

S
ω∆t

)
−
ρ̂n

m

ω2

(
C −

S
ω∆t

)]
(C.7c)

Appendix D. Discrete Hankel Transform

Appendix D.1. Calculation of the transformation matrices Mn,m and M′n,m
Here, for the Discrete Hankel Transform, we use a transformation similar to that of [27, 25, 29], but we extend

it to the case of an evenly-spaced grid in real space (as opposed to one that is distributed according to the zeros of
the Bessel function, which would have been inconvenient for current deposition and field gathering). Moreover,
we impose, as much as possible, that the succession of a Discrete Hankel Transform (DHT) and an Inverse Discrete
Hankel Transform (IDHT) retrieves the initial function. As explained in the text of the article, we use a matrix
formalism for the DHT:

DHTm
n [ f ] (km

⊥, j) =

Nr−1∑
p=0

(Mn,m) j,p f (rp) IDHTm
n [g] (r j) =

Nr−1∑
p=0

(M′n,m) j,p g(km
⊥,p) (D.1)

where n is the order of the Hankel transform, and where m is the index of the spectral grid km
⊥, j on which the

Hankel transform is evaluated. In practice, as mentioned in the text, these transforms are only used in the cases
n = m − 1, n = m or n = m + 1.

The Nr × Nr matrices Mn,m and M′n,m can be entirely determined by a set of N2
r constraints. These constraints

can be found, for instance, by imposing the value of the DHT for a set of Nr different functions, whose exact
analytical Hankel transforms are known. In our case, we impose that the DHT be equal to the exact analytical
Hankel transform for the eigenmodes of a cavity with perfectly conducting boundary at rmax (E(rmax, z) = 0), since
these physical eigenmodes should also be eigenmodes of our PIC cycle. These eigenmodes have the following
form:

Ez ∝ Jm(km
⊥,` r) eikzz−imθΘ(rmax − r) (D.2a)

Er − iEθ ∝ Jm+1(km
⊥,` r) eikzz−imθΘ(rmax − r) (D.2b)

Er + iEθ ∝ Jm−1(km
⊥,` r) eikzz−imθΘ(rmax − r) (D.2c)

where Θ is the Heaviside function and where km
⊥,` = αm

` /rmax, with αm
` the `th positive zero of the Bessel function

of order m. The exact Hankel transform of these modes, evaluated on the discrete set {km
⊥, j} reads (see Appendix

D.2 for a derivation)

HTn[ Jn(km
⊥,` r)Θ(rmax − r) ] (km

⊥, j) ≡ 2π
∫ rmax

0
rdr Jn(km

⊥, jr)Jn(km
⊥,`r) = π r2

max [Jn+δn,m (αm
` )]2 δ j,` (D.3)

where n is either m − 1, m or m + 1. Note that the above relation is valid for any value of m, j, ` and n (provided
that n ∈ {m − 1,m,m + 1}), except when n , 0, m , 0 and ` = 0 simultaneously (again, see Appendix D.2 for an
explanation). Here we impose that the DHT is consistent with Eq. (D.3), where applicable

DHTm
n [ Jn(km

⊥,` r)Θ(rmax − r) ] (km
⊥, j) ≡

Nr−1∑
p=0

(Mn,m) j,pJn(km
⊥,` rp) = π r2

max [Jn+δn,m (αm
` )]2 δ j,` (D.4)

and we use the constraints given by Eq. (D.4) to obtain the matrix Mn,m.
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Case where n = 0 or m = 0. In this case, Eq. (D.4) is applicable for any j and ` in {0, ...,Nr − 1}, and thus this
provides N2

r constraints on the matrix Mn,m, which allow one to completely determine it. In fact, a closer look at
Eq. (D.4) shows that the inverse matrix M−1

n,m can be directly extracted from the above relations, since this inverse
matrices is defined by the relation

∑
p(Mn,m) j,p(M−1

n,m)p,` = δ j,`. Thus, from the above relations, one can directly
infer:

(M−1
n,m)p,` =

Jn(km
⊥,` rp)

π r2
max [Jn+δn,m (αm

`
)]2 (D.5)

The matrix Mn,m can then be extracted, by numerically inverting the matrices M−1
n,m given by the above expression.

In addition, we impose that M′n,m be exactly equal to M−1
n,m, so that the succession of a DHT and IDHT retrieves

exactly the initial function.

Case where n , 0 and m , 0. In this case, the equation Eq. (D.4) is not valid for ` = 0, and thus it provides only
Nr(Nr − 1) constraints on the matrix Mn,m, which is not enough to completely determine it. In this case, we use an
empirical method in which we impose the additional constraints

(Mn,m)0,p = 0 for p ∈ {0, ...,Nr − 1} (D.6)

This constraint is imposed because we choose the amplitude of the Hankel mode proportional to Jn(km
0 r) to be 0 in

the simulation. (For n , 0 and m , 0, Jn(km
0 r) = 0 for any r, so that the amplitude of the corresponding mode has

no physical meaning whatsoever.) This allows the matrix Mn,m to be entirely determined. In addition, to obtain
M′n,m, we impose (M′n,m)p,` =

Jn(km
⊥,` rp)

π r2
max [Jn+δn,m (αm

`
)]2 for any ` ∈ {1, ...,Nr − 1} (as in the case n = 0 or m = 0), but also

(M′n,m)p,` = 0 for ` = 0. This is done again for consistency with the fact that Jn(km
0 r) = 0. We note that the above

method gives satisfying results for m = 1 but not for m = 2. In the future, further work will be done towards a
better Hankel transform representation.

Appendix D.2. Derivation of Eq. (D.3)
Let us first remark that, through a change of variable where r = rmaxt, Eq. (D.3) is equivalent to∫ 1

0
tdt Jn(αm

` t)Jn(αm
j t) =

1
2

[Jn+δn,m (αm
` )]2 δ j,` (D.7)

and let us prove this equation for different cases, excluding the case where n , 0, m , 0 and ` = 0 and in which it
is not valid.

Case where n = m and ` , 0. In this case, we use the relation 11.4.5 of [51]. Since n = m, and since by definition
αm

j is the zero of the Bessel function of order m, we have Jn(αm
j ) = Jn(αm

` ) = 0, and the relation 11.4.5 is thus used
in the case b = 0 and a = 1 (see relation 11.4.5 in [51] for the definition of the a and b coefficients). This yields∫ 1

0
tdt Jn(αm

` t)Jn(αm
j t) =

1
2

[J′n(αm
` )]2δ j,` =

1
2

[Jn+1(αm
` )]2δ j,` (D.8)

where we further used the relation 9.1.27 in [51], which reads J′n(αm
` ) = −Jn+1(αm

` ) + n
αm
`

Jn(αm
` ), and took into

account the fact that Jn(αm
` ) = 0 in our case.

Case where n , m and ` , 0. In this case, n is either m + 1 or m − 1, since we restricted ourselves to n ∈
{m − 1,m,m + 1}. Let us prove the equation Eq. (D.7) in the case n = m + 1 (the proof for n = m − 1 being very
similar). By definition, we have Jm(αm

` ) = 0, and thus from the relation 9.1.27 in [51] J′m+1(αm
` )+ m+1

αm
`

Jm+1(αm
` ) = 0.

We can thus apply the relation 11.4.5 in [51] with a = m + 1 and b = 1, and find∫ 1

0
tdt Jn(αm

` t)Jn(αm
j t) =

1
2(αm

`
)2

(
(m + 1)2 + (αm

` )2 − n2
)

[Jn(αm
` )]2δ j,` =

1
2

[Jn(αm
` )]2δ j,` (D.9)

Case where m = 0 and ` = 0. The proof of the two above cases used the relation 11.4.5 from [51], which is
applicable as long as αm

` > 0. This is the case for ` , 0 (i.e. the two above cases) but also for m = 0 and ` = 0 (i.e.
J0(0) , 0 and thus α0

0 > 0). As a consequence, the above proofs are also valid for m = 0 and ` = 0.
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Case where n = 0, m , 0 and ` = 0. In this case, αm
` = 0 and thus the relation 11.4.5 from [51] does not apply.

However, for j , 0, the left-hand side of equation Eq. (D.7) reduces to∫ 1

0
tdt Jn(αm

` t)Jn(αm
j t) = J0(0)

∫ 1

0
tdtJn(αm

j t) =
J0(0)
(αm

j )2

∫ αm
`

0
tdtJn(t) = 0 (D.10)

where we used relation 11.1.1 in [51]. On the other hand, for j = 0, one has αm
j = αm

` = 0 and thus∫ 1

0
tdt Jn(αm

` t)Jn(αm
j t) = [J0(0)]2

∫ 1

0
tdt =

1
2

[J0(0)]2 (D.11)
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