
Lawrence Berkeley National Laboratory
LBL Publications

Title
A parallel hierarchical blocked adaptive cross approximation algorithm

Permalink
https://escholarship.org/uc/item/2df365sj

Journal
The International Journal of High Performance Computing Applications, 34(4)

ISSN
1094-3420

Authors
Liu, Yang
Sid-Lakhdar, Wissam
Rebrova, Elizaveta
et al.

Publication Date
2020-07-01

DOI
10.1177/1094342020918305

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2df365sj
https://escholarship.org/uc/item/2df365sj#author
https://escholarship.org
http://www.cdlib.org/

ð Þ

ð

2ð

A parallel hierarchical blocked
adaptive cross approximation
algorithm

Yang Liu1 , Wissam Sid-Lakhdar1, Elizaveta
Rebrova2, Pieter Ghysels1 and Xiaoye Sherry Li1

Abstract
This article presents a low-rank decomposition algorithm based on subsampling of matrix
entries. The proposed algo- rithm first computes rank-revealing decompositions of submatrices
with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical
merge operation via truncated singular value decompositions (H-BACA). The proposed
algorithm significantly improves the convergence of the baseline ACA algorithm and achieves
reduced com- putational complexity compared to the traditional decompositions such as rank-
revealing QR. Numerical results demonstrate the efficiency, accuracy, and parallel scalability of
the proposed algorithm.

Keywords
Adaptive cross approximation, singular value decomposition, rank-revealing decomposition,
parallelization, multilevel algorithms

1. Introduction
Rank-revealing decomposition algorithms are
important numerical linear algebra tools for
compressing high- dimensional data,
accelerating solution of integral and par- tial
differential equations, constructing efficient
machine learning algorithms, analyzing
numerical algorithms, and so on, as matrices
arising from many science and engineer- ing
applications oftentimes exhibit numerical
rank- deficiency. Despite the favorable O nr
memory footprint of such decompositions with
n and r, respectively, denoting the matrix
dimension (assuming a square matrix) and the
numerical rank, the computational cost can be
expensive. Existing rank-revealing
decompositions such as truncated singular
value decomposition (SVD), column-pivoted
QR (QRCP), CUR decomposition, interpolative
decomposition (ID), and rank-revealing LU
typically require at least O n2r operations
(Cheng et al., 2005; Gu and Eisenstat, 1996;
Mahoney and Drineas, 2009; Voronin and
Martins- son, 2017). This complexity can be
reduced to

cross approximation (ACA) (Bebendorf,
2000; Bebendorf and Grzhibovskis, 2006;
Zhao et al., 2005) algorithms can
achieve O nr complexity. However, the
robustness of these algorithms relies
heavily on matrix properties that are not
always present in practice.

2. When the matrix can be rapidly applied
to arbitrary vectors, algorithms such as
randomized SVD, QR, and UTV (T lower
or upper triangular) (Feng et al., 2019;
Liberty et al., 2007; Martinsson et al.,
2019; Xiao et al., 2017) can be utilized to
achieve quasi- linear complexity.

3. Finally, given a matrix with missing
entries, the low- rank decomposition can
be constructed via matrix completion
algorithms (Balzano et al., 2010;
Cande`s and Recht, 2009) in quasi-linear
time assuming inco- herence properties
of the matrices (i.e. projection of natural
basis vectors onto the space spanned by
sin- gular vectors of the matrix should
not be very sparse).

Oðn2log r þ nr2Þ by structured random matrix projection-

ð Þ

based algorithms (Liberty et al., 2007; Voronin
and Mar- tinsson, 2017). In addition, faster
algorithms are available in the following three
scenarios.

1. When each element entry can be
computed in O 1 CPU time with prior
knowledge (i.e. smoothness, sparsity, or
leverage scores) about the matrix, faster
algorithms such as randomized CUR
and adaptive

1 Computational Research Division, Lawrence Berkeley
National Laboratory, Berkeley, CA, USA
2 Department of Mathematics, University of California, Los
Angeles, CA,
USA

Corresponding author:
Yang Liu, Computational Research Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA.
Email: liuyangzhuan@lbl.gov

ð Þ

This work concerns the development of a
practical algo- rithm, in application scenario 1,
that improves the robust- ness of ACA
algorithms while maintaining reduced
complexity for broad classes of matrices.

The partially pivoted ACA algorithm, closely
related to LU with rook pivoting (Foster, 1997;
Neal and Poole, 1992; Poole and Neal, 1992,
1991), constructs an LU-type decomposition
upon accessing one row and column per
iteration. For matrices resulting from
asymptotically smooth kernels, ACA is a
rank-revealing and optimal- complexity
algorithm that converges in O r iterations
(Bebendorf, 2000). Despite its favorable
computational complexity, it is well-known
that the ACA algorithm suf- fers from
deteriorated convergence and/or premature
ter- mination for non-smooth, sparse, and/or
coherent matrices (Heldring et al., 2014).
Hybrid methods or improved con- vergence
criteria (e.g. hybrid ACA-CUR, averaging,
statis- tical norm estimation) have been
proposed to partially alleviate the problem
(Grasedyck and Hackbusch, 2005; Heldring et
al., 2015). The main difficulty of leveraging
ACA as robust algebraic tools for general
low-rank matrices results from ACA’s partial
pivot-search strategy to attain low
complexity. In addition to the above-
mentioned remedies, another possibility to
improve ACA’s robustness is to search for
pivots in a wider range of rows/ columns
without sacrificing too much computational
effi- ciency. Here we consider two different
strategies:

1. Instead of searching one row/column per
iteration as in ACA, it is possible to
search a block of rows/ columns to find
multiple pivots together.

2. Instead of applying ACA directly on the
entire matrix, it is possible to start with
compressing sub- matrices via ACA and
then merge the results as one low-rank
product.

In extreme cases (e.g. when block size
equals matrix dimension or submatrix
dimension equals one), these stra- tegies lead
to quadratic computational costs. Therefore, it
is valuable to address the question: for what
matrix kernels and under what
block/submatrix sizes will these strategies
retain low complexity.

For the first strategy, this work proposes a
blocked ACA algorithm (BACA) that extracts a
block row/column per iteration to significantly
improve convergence of the base- line ACA

algorithms. The blocked version also enjoys
higher flop performance as it involves mainly
BLAS-3 operations. Compared to the
aforementioned remedies, the proposed
algorithm provides a unified framework to bal-

ffiffiffiffi
Þð

ð Þ ð Þ ð
Þ

2

2

¼ ð
Þ

2 ¼ ð Þ
o

½] ½
]

x

½] ¼ ð
Þ

½]¼ ð Þ ½] ¼ ð
Þ

¼ f 2
g

X
A � UV ¼

u vk

k

F 2jj jj jj
jj

ð Þ ð Þ

H-BACA algorithm is at most O
p

nbnr2

assuming the block size in BACA is less
than the rank. In other words, the proposed
H-BACA algorithm is a general numerical
linear algebra tool as an alternative to ACA,
SVD, QR, and so on. In addition, the overall
algorithm can be parallelized using
distributed-memory linear algebra
packages such as ScaLAPACK (Blackford et
al., 1997) which avoids the dif- ficulty of
efficient parallelization of plain ACA
algorithms. Numerical results illustrate
good accuracy, efficiency, and parallel
performance. In addition, the proposed
algorithm can be used as a general low-
rank compression tool for constructing
hierarchical matrices (Rebrova et al.,
2018).

2. Notation
Throughout this article, we adopt the
Matlab notation of matrices and vectors.
Submatrices of a matrix A are denoted A I ;
J , A :; J , or A I ; : where I and J are index
sets. Similarly, subvectors of a column
vector u are denoted u I . An index set I
permuted by J reads I J . Transpose,
inverse, pseudo-inverse of A are At, A-1, Ay.
A and u denote Frobenius norm and 2-
norm. Note that u refers to a n 1
column vector. Vertical and horizontal

concatenations of A, B are A; B and A; B .
Element-wise multiplication of A and B is A B.
All matrices are real-valued unless other- wise
stated. It is assumed for A Rmxn, m O n , but
the proposed algorithms also apply to
complex-valued and tall- skinny/short-fat
matrices. We denote truncated SVD as
½U ; S; V ; r] ¼ SVDðA; eÞ with U 2 Rmxr , V t 2
Rnxr col- umn orthogonal, S 2 Rrxr diagonal,
and r being e-rank
defined by rmin k N : Skþ1;kþ1 < eS1;1 . We
denote QRCP as Q; T ; J QR A; r or Q; T ;
J QR A; e with Q Rmxr column
orthogonal, T Rrxn upper triangular, J being
column pivots, and e and r being the
prescribed accuracy and rank, respectively.
QR without column- pivoting is simply
written as Q; T QR A . Cholesky
decomposition without pivoting is written as T

Chol A with T upper triangular. log n
means logarithm of n to the base 2.

3. Algorithm description
3.1. Adaptive cross approximation
Before describing the proposed algorithm, we
first briefly summarize the baseline ACA
algorithm (Zhao et al., 2005). Consider a
matrix A Rmxn of e-rank r, the ACA algorithm
approximates A by a sequence of rank-1 outer
products as

r

ance robustness and efficiency. Upon
increasing the block size (i.e. the number of
rows/columns per iteration), the algorithm
gradually changes from ACA to ID. For the sec-

t
k

k¼1

Define the residual matrix
Ek as

ð1Þ

ond strategy, the proposed algorithm further
subdivides the matrix into nb submatrices
compressed via BACA, followed by a
hierarchical merge algorithm leveraging

E0 ¼ A; Ek ¼ Ek-1 - uk vt : ð2Þ

At each iteration k, the algorithm selects
column uk

low-rank arithmetic (Grasedyck and
Hackbusch, 2003;

(pivot jk from remaining columns) and
row vt

(pivot ik

Hackbusch et al., 2002). The overall cost of
this

from remaining rows) from the residual
matrix Ek-1

k

2

¼ j ð Þj ð
Þ

¼ j ð Þj ð
Þ

�

c t

r

ð

ð Þ
ð

ð Þ

k k k k

k

k k

Algorithm 1. Adaptive cross approximation
algorithm (ACA).

been developed but they do not generalize to
a broad range of applications.

3.2.Blocked adaptive cross
approximation

Instead of selecting only one column and row
from the residual matrix in each ACA iteration,
we can select a fixed-size block of columns
and rows per iteration to improve the
convergence and accuracy of ACA. In addi-
tion, many BLAS-1 and BLAS-2 operations of
ACA become BLAS-3 operations and hence
higher flop perfor- mance can be achieved.

Specifically, the proposed BACA algorithm
factorizes A

X
ndA

� UV
¼

 k¼
1U

k Vk

 where Uk Rmxdk and Vk Rdk xn. In principle, the
algo-

rithm selects a block of d rows and columns via
cross approximations in the residual matrix and
then dk S d ones

corresponding to an element denoted by Ek-

1ðik; jk Þ with sufficiently large magnitude. Note
that uk and vk are m x 1 and n x 1 vectors.
The partially pivoted ACA algorithm (ACA for
short), selecting jk ; ik by only looking at
previously selected rows and columns, is
described as Algorithm 1. Specifically, each
iteration k selects pivot ik used in the current
iteration and pivot jkþ1 for the next iteration
(via lines 4 and 7) as

ik arg max Ek-1 :; jk 3
i6¼i1 ; ... ;ik-1

jkþ1 arg max Ek-1 ik ; : 4
j6¼j1 ;:::;jk

and j1 is a random initial column index.
Note that

via rank-revealing algorithms to form a low-
rank update at iteration k. The total number of
iterations is approximately nd r=d if dk d.
Instead of selecting row/column pivots via
lines 4 and 7 of Algorithm 1, the proposed
algorithm selects row and column index sets Ik
and Jk by performing QRCP on d columns
(more precisely their transpose) and rows of
the residual matrices. This proposed strategy
is described in Algorithm 2.

Each BACA iteration is composed of three
steps.

• Find block row Ik and block column Jkþ1 by
QRCP. Starting with a random column index
set J1, the block row Ik and the next
iteration’s block column Jkþ1 are selected by
(lines 4 and 7)

ik 6¼ i1; . . . ; ik-1
and jk

j1; . . . ; jk-1 are
enforced. The ½Q ; T ; I] ¼

QRðE
ð:; J Þ ; dÞ ð7Þ

n ¼ jjuk vt jjF � jjEk jjF ; ¼ jjUV jjF � jjAjjF

ð5Þ

½Q þ1; T þ1; Ikþ1] ¼ QRðEk-1ðIk ; :Þ; dÞ ð8Þ

and e is the prescribed tolerance. Note that
each iteration requires only O nrk flop
operations with rk denoting cur- rently
revealed numerical rank. The overall
complexity of partially pivoted ACA scales as
O nr2 when the algorithm converges in O r
iterations. Despite the favorable com- plexity,
the convergence of ACA for general rank-

deficient matrices is unsatisfactory. For
many rank-deficient matrices arising from
the numerical solution of PDEs, sig- nal
processing and data science, ACA oftentimes
either requires O n iterations or exhibits
premature termination. First, as ACA does not
search the full residual matrices for the
largest element, it cannot avoid selection of

iteration is terminated when n <
e with

k-
1

ð

ð

þ
ð

smaller pivots for general rank-deficient
matrices and may require
OðnÞ iterations. Second, the approximation
jjukvt jjF in (5)

Here the algorithm first selects d skeleton
rows from the submatrix Ek-1 :; J k (i.e. d
columns from its transpose) and then selects
d skeleton columns from the submatrix Ek-1 Ik;
: by leveraging the LAPACK implementation
of QRCP as it provides a simple way of
greedily selecting well- conditioned columns
by examining column norms in the R factor at
each iteration. Note that many other subset
selection algorithms exist in both the machine
learning and numerical linear algebra
communities (e.g. strong rank-revealing QR
(Gu and Eisenstat, 1996), spectrum-revealing
QR (Feng et al., 2019), and column subset
selection problems (Boutsi- dis et al., 2009)),
which ideally pick d matrix columns with
maximum volumes. Note that Ik excludes rows
selected in
previous iterations. To efficiently enforce such
condition, the

t
k

often causes the premature termination with
the selection of

QRCP is performed on the submatrix of E k-
1

ð:; JkÞ

smaller pivots. Remedies such as averaged
stopping criteria
(Zhou et al., 2017), stochastic error estimation
(Heldring et al., 2015), ACA (Grasedyck and
Hackbusch, 2005), and hybrid ACA
(Grasedyck and Hackbusch, 2005) have

excluding previously selected rows rather than
directly on
Ek-1 :; J k t. Similarly, Jk excludes columns
selected in pre- vious iterations. See Figure
1(a) for an illustration of the procedure. Ik
and Jkþ1 are selected by QRCP on the column

∈

≈

−−

{
}

[
Q

,T

−−

← ←

←

≈ ∈ ∈

/1 /1

x

S ð
Þ

¯
¯

k k−
1

k k k

k k k k k

r

.

(a) Jk+1 Jk

Ik

Vk T 1Qt Rk

 UkCk (:, J)

(b)
U

1 1 1 1 1 11 2 1 2 1 2
VUV

Combine SVD

U
2 1 2 1 2 12 2 2 2 2 2

VUV

U UV
1 1 1

Combine

V

SVD

U
2 2 2

V

Algorithm 2. Blocked adaptive cross approximation
(BACA) algorithm.

input : Matrix A R m×n, block
size d, relative tolerance

output: Low-rank approximation of A
UV

with rank r
1 U = 0, V = 0, r0 = 0, μ = 0, J¯1 is a random

index set of cardinality d;
2 for k = 1 to min m, n do
3 Ck = Ek 1(:, Jk) = A(:, Jk) UV (:, Jk);
4 [Qc ,T c, Ik] = QR(Ct , d), Ik denotes selected

k k k

skeleton rows;
5 R = E (I , :) = A(I , :) − U (I , :)V ;
6

k+1

rk+1
, Jk+1] = QR(Rk, d), Jk+1

denotes selected skeleton columns;
7 Wk=Ek 1(Ik,Jk)=A(Ik,Jk) U (Ik,:)V (:,Jk);
8 [Uk, Vk, dk, J¯] = LRID(Ck, Wk, Rk,);
9 I ← I ([1 : d]),J ← J (J¯);

10 rk = rk−1 + dk;
11 ν = LRnorm(Uk, Vk);
12 μ LRnormUp(U, V, μ, Uk, Vk,
ν);
13 U [U, Uk],V [V ; Vk];
14 Terminate if ν < μ.

Figure 1. (a) Selection of Ik/Jk and form the low-rank
update
UkVk. (b) Low-rank merge operation.

Ek-1 � CkW y
k Rk ¼ U kV k (Voronin and

Martinsson,
15 Function LRID (C,W ,R,)

input : C = A(:,J), R = A(I, :),
W = A(I, J) with I, J of
same cardinality

output: AUV with U Rm×r,V Rr×n

16 [Q, T, J¯, r] = QR(W,);
17 U = C(:, J¯);
18 V = T −1QtR;
19 return U, V, r, J¯

20 Function LRnorm
(U ,V) input : A
= UV output: A
F

21 T1 = Chol(U tU);
22 T2 = Chol(VV t);

2017) by (9) and (10). Note that the pseudo
inverse is
computed via rank-revealing QR (also see
the LRID algo- rithm at line 8). The rank-
revealing algorithm is needed as the d x
d block Wk can be further compressed
with rank dk. Particularly for matrices
where the ACA algorithm tends to fail,
the corresponding d d matrices Wk in
BACA are often rank-deficient. In this
case, BACA becomes more robust than
ACA as the effective dk pivots can still be
used to generate d columns Jkþ1 for the
next iteration (as long as dk > 0).
Consequently, the effective
rank increase is dk d and the pivot pair Ik ;
Jk is updated in (11) by the column pivots J-
of QRCP in (9).

½Q; T ; J-] ¼ QRðW k ; eÞ with Q 2 Rdxdk ð9Þ
23 return /1T1T t /1 ;

2 F ¯ ¯
Uk

¼ Ck ð:; J-Þ;
Vk

¼ T -1QtRk
ð10Þ

24 Function LRnormUp (U, V, ν, U, V ,
ν¯)

input : U ∈ Rm×r, V ∈ Rr×n, U¯ ∈
Rm×r¯,

I I ð½1; d]Þ; J J ðJ-Þ ð11Þ

V¯ ∈ Rr¯×n, ν = /1UV /1 , ν¯ =
1U V 1

U,

U

 V ¯
F

˜

k k k k k

C
k

Rk Kk

V
• Compute n ¼

jjUkVkjj
and update ¼ jjUV
jj

output:1[
¯
][

F F
;]1

25 s = ν2 + ν¯2 + 2r

r¯

V (i, j) with F F

i=1
V˜ = (V V¯ t) ◦
(U tU¯);

j=1 Assuming constant block size d, the norm

of the low-
rank update can be computed in Oðnd2Þ

operations (line
26 return √

s

k

11) via
TU ¼ CholðU Uk Þ; TV ¼ CholðV k V Þ ð12Þ

and transpose of the row marked in yellow,

respectively. The

k k k k

column marked in grey is used to select Ikþ1 in

the next

n ¼ jjT U Tt

jj

ð13Þ

iteration. For illustration purpose, index sets in Figure 1(a)

t t

consist of contiguous indices.

• Form the factors of the low-rank product

UkVk. Let Ck ¼

k VkF

Once n is computed, the norm of UV can be
updated efficiently in OðnrkdkÞ operations (line
12) as

Xrk-
1 Xdk

Ek-1ð:; JkÞ, Rk ¼ Ek-1ðIk; :Þ, and W k ¼ Ek-1ðIk; J kÞ,
E k-1 can be

approximated by an ID-type decomposition

 2 2 þ n2 þ 2

i¼1 j¼1

*V ði; jÞ

k

½
]

¼¼ ð ð¼ f
g

½] ½
]

where
rk

V~ ¼ ðVVt Þo ðUtUk Þ

ð14Þ

represents the column dimension of U
at iteration

The BACA algorithm oftentimes exhibits
overestimated ranks compared to those
revealed by truncated SVD. Therefore, an
SVD re-compression step of U and V may be
needed via first computing a QR of U and V
as

k. Note that the matrix multiplications in (12) and (14) t
involvingV and V (and similarly for those

involving U
½QU ; TU] ¼ QRðU Þ, ½QV ; TV] ¼ QRðV Þ, and
then a trun-k

t
k cated SVD of

TU Tt (Heldring et al., 2015). The
result can

and U) can be performed as V ; Vk Vk to
further improve the computational efficiency.
Then the algorithm updates U, V as U ; Uk , V
; Vk and tests the stopping criterion n < e .
Note that n; with larger d provides better
approximations
to the exact stop criterion compared to those
in (5) hence can significantly reduce the
chance of premature termination.

We would like to highlight the difference
between the proposed BACA algorithm and
existing ACA algorithms. First, as BACA selects
a block of rows and columns per iteration as
opposed to a single row and column in the
base- line ACA algorithm, the convergence
behavior and flop per- formance can be
significantly improved. In the existing ACA
algorithms, convergence can also be improved
by leveraging averaged stopping criteria
(Zhou et al., 2017) or searching a single pivot
in a broader range of rows and columns (e.g.
fully pivoted ACA). However, they still find one
row or column at a time in each iteration and
hence suffer from poor flop performance.
Moreover, they cannot utilize strong rank-
revealing algorithms to select skeleton rows
and columns with better volume (determinant
in mod- ulus) qualities. Second, BACA also has
important connec- tions to the hybrid ACA
algorithm (Grasedyck and Hackbusch, 2005).
The hybrid ACA algorithm assumes prior
knowledge about the skeleton rows and
columns to leverage interpolation algorithms
(e.g. ID and CUR) on a skeleton submatrix and
use ACA to refine the skeletons. In contrast,
BACA uses cross approximations with QRCP to
select skeleton rows and columns and uses
interpolation algorithms (LRID at line 8) to
form the low-rank update in each iteration. In
other words, hybrid ACA can be treated as
embedding ACA into interpolation algorithms
while BACA can be thought of as embedding
interpolation algorithms into ACA iterations. In
addition, BACA is purely algebraic and
requires no prior knowledge of the row/column
skeletons or geometrical information about
the rows/columns.

It is worth mentioning that the choice of d
affects the trade-off between efficiency and

robustness of the BACA algorithm. When d <
r, the algorithm requires Oðnr2Þ operations
assuming convergence in Oðr=dÞ iterations
as each iteration requires O nrkd operations.
For example, BACA (Algorithm 2) precisely
reduces to ACA (Algo- rithm 1) when d 1. In
what follows we refer to the base- line ACA
algorithm as BACA with d 1. On the other
hand, BACA converges in a constant number
of iterations when d r. In the extreme case,
BACA reduces to QRCP- based ID when d min
m; n (note that the LRID algo- rithm at line 8
remains the only nontrivial operation). In this
case, the algorithm requires O n2r operations
but enjoys the provable convergence of
QRCP. Detailed com- plexity analysis of the
BACA algorithm will be provided in Section 4.

¼

2

¼

¼

¼ ð Þ

½] ¼ ð
Þ

¼ ð
¼

1

V
be viewed as an approximate truncated SVD of
A and we
assume this is the output of the BACA
algorithm in the rest of this article.

3.3. Parallel hierarchical low-rank merge
The distributed-memory implementations of
the proposed BACA algorithm and the baseline
ACA algorithm can pose performance
challenges as straightforward parallelization of
all operations in Algorithm 2 and 1 involves
many col- lective communications. To see this,
assuming the U and V factors in Algorithm 1
follow 1-D block row and column data layouts,
then every operation from line 3 to line 9
requires one or more collective
communications. Instead, one can assign one
process to perform BACA/ACA on submatrices
without any communication and then leverage
parallel low-rank arithmetic to merge the
results into one single low-rank product. To
elucidate the proposed algo- rithm, we first
describe the hierarchical low-rank merge
algorithm, then outline its parallel
implementation.

Given a matrix A 2 Rmxn with m � n, the
algorithm first

creates L-level binary trees for index vectors
½1; m] and

½1; n] with index set I t and J n for nodes t
and n at each level, upon recursively dividing
each index set into I ti /J nj of approximately
equal sizes, i 1; 2, j 1; 2. Here, ti and nj are
children of t and n, respectively. The leaf and
root levels are denoted 0 and L, respectively.
This process generates nb leaf-level
submatrices of similar sizes. For
simplicity, it is assumed nb 4L. We denote
submatrices associated with t; n as Atn A I t; J n

and their truncated SVD as U tn; Stn; V tn; rtn

SVD Atn; e . Here rtn is the e-rank of Atn. As
submatrices Atn have significantly smaller
dimensions than A (e.g. when nb O n2 as an
extreme case), both BACA and ACA algorithms
become more robust to attain the truncated
SVD. Following com- pression of nb submatrices
Atn by BACA or ACA at step l 0, there are
multiple approaches to combine them into one
low-rank product including randomized
algorithms via applying A to random matrices,
and deterministic algo- rithms via recursively
pair-wise re-compressing the blocks using low-
rank arithmetic. Here we choose the
determinis- tic algorithm for simplicity of
rank estimation and parallelization. Here, we
deploy truncated SVD as the re-compression
tool but other tools such as ID, QR, UTV can
also be applied. Figure 1(b) illustrates one
re-compression operation for transforming

SVDs of Ati nj ; i ¼ 1; 2; j ¼ 1; 2 into that of Atn.
The operation first horizontally compresses
SVDs of Ati nj ; i ¼ 1; 2; j ¼ 1; 2 at step l - and
then vertically compresses the results, that is,
SVDs of Ati n; i 1; 2 at step l, l 1; ::; L.
Specifically, the horizontal compression
step is composed of one

∈

t
n

¼

¼
¼

¼

i i 1 i 1 i 2 i
2

¼

i

←i i i

i

i i 1 i
2

l = 0
77
l = 0.5 l = 1 l = 1.5 l = 2

0 0 1 1
2 2 3 3

4 4 5 5

6 6 7 7

0 0 1 1

2 2 3 3
4 4 5 5

6 6

0 0 1 1
2 2 3 3

4 4 5 5
6 6 7 7

0 1 0 1
2 3 2 3

4 5 4 5
6 7 6 7

0 1 0 1
2 3 2 3

4 5 4 5
6 7 6 7

Figure 2. Parallel hierarchical merge with eight processes. Blocks surrounded by solid lines represent Atn after
compression at each step l. Blocks surrounded by dashed lines represent ScaLAPACK blocks.

concatenation operation in (15) and one
compression oper- ation in (16):

U-
ti n ¼ ½U ti n1

Sti n 1
;U ti n2

Sti n 2
]; V-

ti n ¼ diagðV ti n 1

;V ti n 2
Þ ð15Þ

½U ti n;Sti n ;V ti n;rti n] SVDðU-tin; eÞ; V ti n V ti n

V- ti n ð16Þ

with i ¼ 1; 2. Let U-t n V- t n and U t nSt nV t n denote the

Algorithm 3. Hierarchical low-rank merge algorithm
with BACA (H-BACA).

input : Matrix A Rm×n, number of
leaf-level subblocks nb, block
size d of leaf-level BACA,
relative tolerance output: with rank

i i i i i Truncated SVD of A ≈ U ΣV r
submatrix before and after the SVD
truncation, respec-
tively. Similarly, the vertical compression step
can be per-

1 Create L-level trees on index vectors [1, m]
and

[1, n] with index set Iτ and Jν for nodes τ
and ν

formed via horizontal merge of
At

i

; i ¼ 1; 2. Let
sl

at each
level, L

=
log

√
nb

, the leaf and root levels

represent the maximum rank rtn among all
blocks at steps
l 0; 1; . . . ; L. Note that the algorithm returns
an approx- imate truncated SVD after L steps.
As an example, the hierarchical merge
algorithm with the level count of the
hierarchical merge L ¼ 2 and nb ¼ 16 is
illustrated in Figure 2. At step l 0, the
algorithm compresses all nb submatrices with
BACA; at step l 0:5; 1:5, the algorithm merges
every horizontal pair of blocks; similarly at
level l 1; 2, the algorithm merges every
vertical pair of blocks. Note that blocks
surrounded by solid lines represent results
after compression at each step l.

are denoted 0 and L, respectively;
2 for l = 0 to L do
3 foreach Aτν = A(Iτ , Jν) at level l do
4 if leaf-level then
5 [Uτν , Στν , Vτν , rτν] =

BACA(Aτν , d,);

6 else
7 Let τ1, τ2 and ν1, ν2 denote children
of

τ and ν;
8 for i = 1 to 2 do

The above-described hierarchical algorithm
with 9

BACA for leaf-level compressions is dubbed H-
BACA 10

(Algorithm 3). In the following, a distributed-memory
imple- 11

mentation of the H-BACA algorithm is described.
Without
loss of generality, it is assumed that m n2i and
p 2j.

12

The proposed parallel implementation first
creates two 13

log
pffi

p
ffi
-level binary trees with p denoting the total

number 14

U¯
τ ν = [Uτ ν Στ ν , Uτ ν Στ ν];

V¯τ ν = diag(Vτ ν , Vτ ν

); [Uτ ν , Στ ν , Vτ ν , rτ ν

] SVD(U¯τ ν ,);
Vτiν ← Vτiν V¯

τiν

; U¯τν = diag(Uτ1 ν ,
Uτ2 ν);
V¯

τν = [Στ1 ν Vτ1 ν ; Στ2 ν Vτ2 ν];¯

of MPI processes. One process performs BACA
compression 15

of one or two leaf-level submatrices and low-rank

merge
operations from the bottom up until
it reaches a submatrix

¼

¼

x

¼

[Uτν , Στν , Vτν , rτν] ← SVD(Vτν ,); Uτν ← U¯
τν

Uτν ;

shared by more than one process. Then, all
such blocks are handled by PBLAS and
ScaLAPACK with BLACS process grids that
aggregate those in corresponding
submatrices. Con- sider the example in Figure
2 with process count p 8. The workload of
each process is labeled with its process rank
and highlighted with one color. The dashed
lines represent the ScaLAPACK blocks. First,
BACA compressions and merge operations at l
0; 0:5 are handled locally by one process
without any communication. Next, merge
operations at l ¼ 1; 1:5; 2 are handled by
BLACS grids of 2 x 1, 2 x 2, and 4 x 2,
respectively. For illustration purposes, we
select the ScaLAPACK block size in Figure 2 as
n0 n0 where n0 is the dimension of the finest-
level submatrices in the hierarch-

ical merge algorithm and n ¼
pffi

n
ffiffi

b
ffi
n0. In this

case, the only

17 return U = Uτν , V = Vτν , Σ = Στν , r = rτν ;

required data redistribution is from step l 1 to l
1:5. However, the ScaLAPACK block size may
be set to much smaller numbers in practice,
requiring data redistribution at each
row/column re-compression step. Similarly, the
require- ment of m ¼ n¼ 2i and p¼ 2j is not
needed in practice.

4. Cost analysis
In this section, the costs for computation and
communica- tion of the proposed BACA and H-
BACA algorithms are analyzed.

ð

ffiffiffiffi ffiffiffiffiS ð
Þ ð Þb

b

X
2

2

ð

2

pffiffiffi ffil l L

¼

¼ ð
 ¼ ð Þ

S

ffiffiffi
ffi
b

ffiffiffi
ffi

S

ffiffiffiffi
ffi

�

¼

l l b

2 2

4.1. Computational cost
First, the costs for BACA can be summarized
as follows. Assuming BACA converges in O r=d
iterations, each itera- tion performs entry
evaluation from the residual matrices,

QRCP for pivot selection, LRID for forming the
LR product,

Table 1. Flop counts and communication costs for
the leaf-level compression and hierarchical merge
operations in Algorithm 3 for two classes of low-
rank matrices.a

Constant rank Increasing rank

s � r s � r=
pffi

n
ffiffiffi

x 2l

and estimation of matrix norms. The entry
evaluation com- putes OðndÞ entries each
requiring Oðrk Þ operations; QRCP

BACA d s0 O nr2
p

n O nr2

=
p

n
Merge compute Oðnr2pffi

n
ffiffi

b
ffi
Þ Oðnr2Þ

pffiffiffi

on block rows requires Oðnd2Þ operations; the
LRID algo- rithm requires Oðnddk þ dk d2Þ
operations; norm estimation

Merge
communic
ate

½Oðrlog2pÞ; Oðnrlog2p=
pffi

p
ffiffi

Þ] ½OðrlogpÞ;
Oðnrlogp=

pÞ]

requires O nrkdk operations. Summing up
these costs, the overall cost for the BACA
algorithm is

Oðr=d
Þ

cBACA ¼ ðnd þ nrk d þ dk d Þ
k¼1

S Oðnd þ rd þ nrdÞOðr=dÞ ¼ Oðnr Þ

ð17Þ

an and r denote matrix dimension and rank. d denotes the
block size in BACA. p and nb denote number of processes
and leaf-level submatrices. sl denotes maximum ranks
among all level-l submatrices.

summarized in Table 1. Note that the costs of
the BACA algorithm can also be extracted
from Table 1 upon setting nb ¼ 1. Not
surprisingly, the hierarchical merge algorithm

Here we assume the block size d r. Note
that when d r (e.g. d O n), it follows that the
worst-case com- plexity is cBACA O n2r by
bypassing the pivot selection step that causes
the nd2 term. In practice, one would always
avoid the case of d r.

Next, the computational costs of the H-
BACA algorithm are analyzed. The costs are
analyzed for two cases of dis- tributions of the
maximum ranks sl at each level, that is, sl ¼
r (ranks stay constant during the merge)
and sl � 2 r= nb¼ 2 - r (rank increases by a
factor of 2 per level), l 0; 1; .. . ; L. The
constant rank case is often valid for matrices
with their numerical ranks independent of
matrix dimensions (e.g. random low-rank
matrices, matrices representing well-
separated interactions from low-frequency and
static wave equations and certain quantum
chemistry matrices); the increasing-rank case
holds true for matrices whose ranks depend
polynomially (with order no bigger than 1) on
the matrix dimensions (e.g. those arising
from

high-frequency wave equations, matrices
representing
near-field interactions from low-frequency and

induces a computational overhead of at most
p
nb when

ranks stay constant; the leaf-level
compression can have a 1=

p
n reduction

factor for the increasing rank case and
p
nb

overhead for the constant rank case.
For completeness, the comparison between
the proposed

BACA, H-BACA algorithms (assuming d r0) and
exist- ing ACA algorithms are given in Table 2.
In contrast to existing ACA algorithms that
select one pivot at a time, BACA and H-BACA
select d and nbd pivots simultane- ously. As
such, H-BACA is the most robust algorithm
among all listed here. Not surprisingly, H-
BACA can

induce a computational overhead of
pffi

n
ffiffi

b
ffi
.

4.2. Communication cost
As the leaf-level BACA compression requires
no commu- nication, only the communication
costs for the hierarchical merge operations are
analyzed here. Since the merge oper-

ations may introduce an Oð
pffi

n
ffiffi

b
ffi
Þ

computational overhead,

equations, and certain classes of kernel
methods on high dimensional data sets). Note
that these rank distributions often follow from
a proper hierarchical partitioning tree and
may not be valid using an arbitrary
partitioning tree. From the aforementioned
analysis of BACA, the computational

the process count p nb. Consider theparallelization of
one level l merge operation, that is,
transformation of the SVDs of Ati nj ; i ¼ 1; 2; j
¼ 1; 2 into that of Atn shown in Figure 1(b). Let
pl ¼ 4l denote the number of processes
sharing one level l block Atn, l 0; . . . ; L. The
horizontal compression step in (15, 16)
requires redistribution from

costs for the leaf-level compression cb ¼
cBACAnb are:

n
the process grids of si ze p

one would only
increase n

b to create more
parallelism, i.e.

pffiffiffi ffilLet n 2 n= n

denote the size of submatrices A at

n
b

0

l-1 sharing Ati nj ; i ¼ 1; 2; j ¼ 1; 2
cb ¼ Oðpffiffiffiffiffi s2nbÞ; if d S s0

ð18Þ

to the process grids of size 2pl-1 sharing
Ati n; i ¼ 1; 2.

After redistribution, each process grid involves
a

which represent the complexity with ACA
when nb ¼ 1.

l ¼ b t;n

level l. The computational costs cm of
hierarchical merge operations can be
estimated as

X
L

l

PDGESVD function in ScaLAPACK (see (16)) to
compute the new rank after the
combination in (15), and a PDGEMM function
in PBLAS to multiply factors V ti n with
V- ti n (see 16). Similarly, the vertical
compression step
requires redistribution from the process
grids of size
2pl-1 sharing At n; i ¼ 1; 2 to the process grids
of size plcm ¼

l¼
1

Oð4L-lnls2Þ

ð19Þ
isharing Atn, and calling PDGESVD and PDGEMMfunc-

tions in the new grids. Let the pair
[#messages, volume]

Accounting for the two cases of rank distributions, the
computational costs for the leaf-level BACA
and hierarch- ical merge operations of the
H-BACA algorithm are

denote the communication cost including thenumber of
messages and the number of words transferred
along the critical path. Then the
communication costs for each

ffiffiffi
ffi

ð Þ ð Þ ð Þ ð
Þ

½ ð Þ ð
Þ]l l l

ffiffiffiffi

ffiffiffiffi

X2

4

@ A5

¼ �l

l
ffi ffi

¼ ½ ð Þ ð

Þ]m

¼ ð þ
Þ

2h
2

t 2

at level l and note that nl sl. Therefore the
communica-

4Oðsl logpl Þ;
O@

pffi
p

ffiffi
l

ffi
l

A5

Table 2. Comparisons between proposed BACA, H-BACA algorithms and existing ACA algorithms.a

Cost (constant rank) Oðnr2Þ Oðnr2Þ Oðnr2Þ

Oðnr2
p

nbÞ Cost (increasing rank) O nr2 O nr2 O
nr2 O nr2 Preselection of submatrices No Yes

No No
a Note that the algorithms show increasing robustness from left to right.

(BLACS) grid redistribution, PDGEMM and
PDGESVD during the hierarchical merge
are O 1 ; O n s =p ,

½OðslÞ; Oðnlsl=
p

pl Þ], and ½Oðsl logpl Þ; Oðnlsl

logpl =
p

pl Þ],
respectively (Blackford et al., 1997).
Recall that
nl¼ 2ln=

pffi
p

ffi
and sl denote the size and rank of

submatrices

4. Frontal3D kernel: A is a dense frontal
matrix that arises from the multifrontal
sparse elimination for the finite-
difference frequency-domain solution of
the homogeneous-coefficient Helmholtz
equation inside a unit cube.

5. Polynomial kernel: Ai;j ¼ ðxixj þ hÞ .
Here

tion cost vm of the hierarchical merge (and H-
BACA) can

xi; xj 2 R50x1 are points from a randomly generated

be
estimated
as XL

2

l¼
1

0

nlsl logp
13

data set, and h is a regularization
parameter.

6. Product-of-random kernel: A ¼ UV with
U 2 Rnxr

and V 2 Rrxn being random matrices with
i.i.d.

entrie
s.L

¼ OðlslÞ;
O

l¼1

0
lnsl

13
pffi

p
ffi

ð20Þ
Note that the EFIE2D, EFIE3D, and

Frontal3D kernels result in complex-valued
matrices. Throughout this section, we refer to
ACA as a special case of BACA when d ¼ 1. In

Consider the two cases of rank
distributions, that is,
s r and s 2l-Lr, the overall
communication costs of H-BACA are v O
rlog2p ; O nrlog2p=

p
p and vm ¼ ½OðrlogpÞ;

Oðnrlogp=
pffi

p
ffi
Þ], respectively (see

Table
1).

5. Numerical results
This section presents several numerical
results to demon- strate the accuracy and
efficiency of the proposed H-BACA algorithm.
The matrices in all numerical examples are
gen- erated from the following kernels:

2

all examples except for the product-of-random
kernel, the algorithm is applied to the
offdiagonal submatrix A12 A 1 : n; 1 n : 2n
assuming rows/columns of A have been
properly permuted (e.g. by a KD-tree
partitioning scheme). Note that the
permutation may yield a hierarchical matrix
representation of A, but in this article we only
use the permutation to define the partition
trees for H-BACA com- pression of one off-
diagonal subblock of A with H-BACA. All
experiments are performed on the Cori
Haswell machine at NERSC, which is a Cray
XC40 system and consists of 2388 dual-socket
nodes with Intel Xeon E5-2698v3 proces- sors
running 16 cores per socket. The nodes are
configured with 128 GB of DDR4 memory at
2133 MHz.

1. Gaussian
kernel: A

i;
j

¼ expð -jjxi -xj jj Þ, i; j ¼
1; . . . ;

5.1. Convergence

2n. Here h is the Gaussian width, and xi

2 R8x1 and R784x1 are feature vectors in
one subset of the SUSY and MNIST Data
Sets from the UCI Machine Learn- ing

Repository (Dheeru and Karra Taniskidou,
2017), respectively. Note that the Gaussian
kernel permits low-rank compression as
shown in (Bach, 2013; Musco and Musco,
2017; Wang et al., 2018).

vm
¼

Algorithm ACA/ACAþ Hybrid-
ACA

BACA H-BACA

Pivot count per iteration 1 1 d nbd

0¼ ð jj - jjÞ

¼
¼

0

2

¼

½]¼ ð
Þ

ð Þ ð
Þ

jj jj jj
jj

2. EFIE2D kernel: Ai;j H ð2Þ k xi xj resulting
from the Nystro¨m discretization of the
electric field integral equation (EFIE) for
electromagnetic scat- tering from 2-D
curves. Here H ð2Þ is the second kind
Hankel function of order 0, k is the free-
space wave- number, xi; xj R2x1 are
discretization points (15 points per
wavelength) of two 2-D parallel strips of
length 1 and distance 1.

3. EFIE3D kernel: A is obtained by the
Galerkin method for EFIE to analyze
electromagnetic scatter- ing from 3-D
surfaces.

First, the convergence of the proposed BACA
algorithm is investigated using several
matrices: Gaussian-SUSY matrices with n
5000, h 1:0; 0:2, an EFIE3D matrix for a
unit sphere with n 21788 and
approximately 20 points per wavelength,
and a Frontal3D matrix with n ¼ 1250 and
10 points per wavelength. The corresponding
e-ranks are r ¼ 4683; 1723; 1488; 718 for e
¼ 10-6. The residual histories versus revealed
ranks rk, at each iteration k of BACA with 1 S d
S 256 are plotted in Figure 3. The
residual error is defined as UkVk F = UV F
from (13). As a reference, the singular value
spectra S k; k =S 1; 1 computed from U ; S; V
; r SVD A; e are also
plotted.

For the Gaussian-SUSY matrices, the
baseline ACA algorithm (d 1) behaves poorly
with smaller h due to the exponential decay of
the Gaussian kernel. As a result, the matrix
becomes increasingly sparse and coherent for
small h particularly for high dimensional data
sets. In fact, ACA

¼

¼

¼
¼

(a) (b)

(c) (d)

Figure 3. Convergence history of BACA for the (a) Gaussian-SUSY kernel with h ¼ 1:0, n ¼ 5000, e¼ 10-6, r
¼ 4683, (b) Gaussian- SUSY kernel with h ¼ 0:2, n ¼ 5000, e¼ 10-6, r ¼ 1723, (c) EFIE3D kernel for a unit
sphere with n ¼ 21; 788, e¼ 10-6, r ¼ 1488, and
(d) Frontal3D kernel with n ¼ 1250, e¼ 10-6, r ¼ 718.

constantly selects smaller pivots and the
residual exhibits wild oscillations particularly
for smaller h (e.g. when h 0:2 in Figure
3(b)). Similarly, the analytical and numerical
Green’s functions respectively for the EFIE3D
(Figure 3(c)) and Frontal3D (Figure 3(d))
matrices are not asymptotically smooth for
ACA to converge rapidly. For all examples in
Figure 3, significant portions of the residual
curves lie below the singular value spectra
which causes premature iteration termination
for certain given residual errors. In stark
contrast, the proposed BACA algorithm (d 32;
64; 100; 128; 256) shows increasingly
smooth residual histories residing above the
singular value spectra as the block size d
increases. Although BACA may over- estimate
the matrix ranks particularly for larger d, the
SVD re-compression step mentioned in
Section 3.2 can effec- tively reduce the ranks.

5.2. Accuracy
Next, the accuracy of the H-BACA algorithm is
demon- strated using the following matrices:
two Gaussian-SUSY matrices with n 5000, h

1:0; 0:2, one EFIE3D matrix for a unit sphere
with n 1707 and approximately 20 points per
wavelength, and a Frontal3D matrix with
n ¼ 1250 and 10 points per wavelength. The
relative

¼

¼

¼
¼

¼
¼

¼
¼

¼

¼ ¼
¼

Frobenius-norm error jjA - UV jjF =jjAjjF is
computed for changing number of leaf-level
submatrices nb and block size d. When h 1:0
for the Gaussian-SUSY matrix (Figure 4(a)),
the H-BACA algorithms achieve desired
accuracies (e ¼ 10-2; 10-6; 10-10) using the
baseline ACA (d 1), and BACA (d 32) when nb

1 and the hier- archical merge operation only
causes slight error increases as nb increases.
However when h 0:2 for the Gaussian- SUSY
matrix (Figure 4(b)), all data points for H-BACA
with d 1 fail due to the wildly oscillating
residual his- tories. In contrast, H-BACA with d
32 achieves signifi- cantly better accuracies for
most data points particularly as nb increases.
For the EFIE3D (Figure 4(c)) and Frontal3D
(Figure 4(d)) matrices, H-BACA with d 32
achieves comparable accuracies as H-BACA
with d 1 for most data points. Note that d 32
is significantly better than d 1 when the
prescribed residual error is large (e 10-2).
This agrees with the residual histories in
Figure 3(c) and (d) as they lie below the
singular value spectra when iteration count k is
small.

5.3. Efficiency
This subsection provides six examples to verify
the computational complexity estimates in
Table 1. H-BACA

ffiffiffiffi

ffiffiffiffi

¼

¼

(d)(c)

(b)(a)

Figure 4. Measured error of H-BACA with e¼ 10-2; 10-6; 10-10 for the (a) Gaussian-SUSY kernel with h ¼
1:0, n ¼ 5000, (b) Gaussian-SUSY kernel with h ¼ 0:2, n ¼ 5000, (c) EFIE3D kernel for a unit sphere with
n ¼ 1707, and (d) Frontal3D kernel with n ¼ 1250.

with leaf-level ACA (d 1) and BACA (d 8;
16; 32; 64; 128) is tested for the following
matrices: one Gaussian-SUSY matrix with
n ¼ 50; 000, h ¼ 1:0, e ¼ 10-2, one
Gaussian-MNIST matrix with n ¼ 5000, h ¼
3:0, e ¼ 10-2, one EFIE3D matrix for a unit
sphere with n ¼ 26268, e ¼ 10-6 and 20
points per wavelength, one Frontal3D
matrix with n ¼ 1250, e¼ 10-6 and 10
points per wavelength, one polynomial
matrix with n ¼ 10; 000, h ¼ 0:2, e ¼ 10-4,
and one product-of-random matrix with n
2500, e 10-4. The corresponding e-ranks
are 298,
137, 1488, 788, 450, and 1000, respectively. It
can be vali- dated that the hierarchical merge
operation attains increas- ing ranks for the
Gaussian, EFIE3D and Frontal3D matrices,
and relatively constant ranks for the
polynomial, and product-of-random matrices.
All examples use one pro- cess except that the
Gaussian-SUSY example uses 16 pro-
cesses. The CPU times are measured and

plotted in Figure 5.
Table 1 predicts that H-BACA exhibits

increasing (with a factor of
p

nb) and constant

time when sl stays constant
and increases, respectively. Note that the rank
assumption
sl � r leading to the Oð

p
nbÞ computational

overhead may
not be fully observed for practical values of nb

and n. Given one matrix, sl may stay
approximately constant for a

ffiffiffiffi

ffiffiffi
ffi

¼ ¼
¼

limited number of subdivision levels l. For
example, sl stay constant for bottom
levels of EFIE3D and Frontal3D matrices,
and top levels of Polynomial and
product-of-
random matrices. This agrees with the
observed scalings (w.r.t nb) in Figure 5(c)
to (f). As a reference, the Oð

p
nbÞ

curves are plotted and only small ranges of nb
exhibit the
Oð

p
nbÞ overhead. For the Gaussian

matrices, we even
observe nonincreasing CPU time w.r.t. nb

when nb is not too big (see Figure 5(a) and
(b)).

The effects of varying block size d also
deserve further discussions. First, larger
block size d can significantly improve the
robustness of H-BACA for the Gaussian
matrices. For example, H-BACA does not
achieve desired accuracies due to
premature termination for all data points
on the d 1 curve in Figure 5(a) and d 1
and d 8 curves in Figure 5(b). In contrast,
H-BACA with larger d attains desired
accuracies. Second, larger block size d
results in reduced CPU time for the
Polynomial and Fron- tal3D matrices due
to better BLAS performance (see Figure
5(d) and (e)). For the other tested matrices,
no sig- nificant performance differences
have been observed by changing block size
d. However, for matrices with ranks s0 S d,
larger d and nb can introduce significant
overheads.

¼ ¼
¼

¼ ¼ ¼ ¼ ¼ ¼ ¼
¼

¼
¼

¼
¼

¼
¼

¼

64256102416416425610241641
20

150
40

200

80

300
250

(f)
160

(e)

25610246416416425610241641
100

10
150

15200

(d)
20

300
250

(c)

2561024641641

(b)
16

8
4
2
1

(a)

Figure 5. Computation time of H-BACA with varying nb and d for the (a) Gaussian-SUSY kernel with h ¼ 1:0,
n ¼ 50; 000, e¼ 10-2, r ¼ 298, (b) Gaussian-MNIST kernel with h ¼ 3:0, n ¼ 5000, e¼ 10-2, r ¼ 137, (c)
EFIE3D kernel for a unit sphere with n ¼ 26; 268, e 10-6, r 1488, (d) Frontal3D kernel with n 1250, e
10-6, r 788, (e) polynomial kernel with h 0:2, n 10; 000, e 10-4, r 450, and (f) product-of-random
kernel with n 2500, r 1000. Note that the data points where the algorithm fails are shown as triangular
markers without lines.

5.4. Parallel performance
Finally, the parallel performance of the H-
BACA algorithm is demonstrated via strong
scaling studies with the EFIE2D, EFIE3D,
product-of-random and Gaussian matrices
with process counts p 8; . . . ; 1024. For the
EFIE2D matrices, n 160; 000 and the
wavenumbers are chosen such that the e-
ranks with e 10-4 are 937 and 107,
respectively. For the EFIE3D matrices for a
unit square, n 21; 788 and the wavenumbers
are chosen such that the e-ranks with e 10-6

are 1007 and 598, respectively. For the
product- of-random matrices, n 10; 000 and
the inner dimension of the product is set to r

2000 and 800, respectively. For the Gaussian
matrices with a randomly generated data
set of

pffiffiffi ffi pffi ffi
and . The ScaLAPACK block

size is set tox
¼

¼

dimension 50 and n ¼ 10; 000, we choose h ¼
1:0 and h 1:6 such that the e-ranks with e
10-3 are 2106 and 191, respectively. In all
examples, the block size and num- ber of leaf-
level subblocks in H-BACA are chosen as d ¼ 8

nb p
64 64. As the reference, we compare to a
straightforward parallel implementation of the
baseline ACA algorithm which essentially
parallelize every operation in ACA with
collective MPI communications.

For all examples, the parallel ACA algorithm
stops scal- ing when p is sufficiently large (see
Figure 6). In contrast, the proposed parallel H-
BACA algorithm scales up to p ¼ 1024. In
most examples, H-BACA achieves better

ffiffiffi ffi
ð

Þ

ð Þ

16326412825651210241024512256128643216

10
101

8

1

102

102

(d)

103

(c)

101

16326412825651210248163264128256512 1024

101

102

(b)
102

(a)

Figure 6. Computation time of H-BACA with varying process counts for the (a) EFIE2D kernel with n ¼ 160; 000,
e¼ 10-4,
r ¼ 107 and 937, (b) EFIE3D kernel for a unit square with n ¼ 21; 788, e¼ 10-6, r ¼ 598 and 1007, (c) product-
of-random kernel with
n ¼ 10; 000, r ¼ 800 and 2000, and (d) Gaussian kernel for a randomly generated data set with h ¼ 1:0; 1:6,
e¼ 10-3,
r ¼ 2106 and 191. Note that for the Gaussian matrix with r ¼ 191, ACA fails to provide accurate results and is
not plotted.

parallel efficiencies with larger ranks due to
better process utilization during the
hierarchical merge operation. We also note
that ACA outperforms H-BACA for the
Product-of-
random matrices with small process count p
(and nb). This is partially attributed to the Op

nb overhead observed in
Figure 5(f).

Overall, the parallel H-BACA algorithm can
achieve reasonably good parallel
performances for rank-deficient matrices with
modest to large numerical ranks. Not surpris-
ingly, the parallel runtime is dominated by
that of ScaLA- PACK computation and possible
redistributions between each re-compression
step as analyzed in Section 4. Also note that
the leaf-level BACA compression is embarrass-
ingly parallel for all test cases.

6. Conclusion

This article presents a parallel and algebraic ACA-
type matrix decomposition algorithm given that
any matrix entry can be evaluated in O 1 time.
Two proposed strate- gies, BACA and H-BACA, are
leveraged to improve the robustness and parallel
efficiency of the (baseline) ACA algorithm for
general rank-deficient matrices.

ffiffiffi ffi
ð

Þb

ffiffiffi ffi
ð
Þ

ð Þ
ð

First, the BACA algorithm searches for
blocks of row/ column pivots via QRCP on
the column/row submatrices at each
iteration. The blocking nature of BACA
provides a closer estimation of the true
residual error and reduces the chance of
selecting smaller pivots when compared to
ACA. Therefore, BACA exhibits a much
smoother and more reli- able convergence
history. Moreover, blocked operations also
benefit from higher flop performance
compared to non- blocked ones. For a rank-
deficient matrix with dimension n and e-
rank r, the computational cost of BACA is O
nr2 assuming the block size constant and
iteration count O r .

Second, the H-BACA algorithm divides
the matrix into nb similar-sized submatrices
each compressed with BACA and then
hierarchically merges the results using low-
rank arithmetic. Depending on the rank
behaviors of subma-
trices during the merge, the H-BACA may
have a compu- tational overhead of O

p
n

yielding the overall computational cost
at most O nr2pnb . The H-BACA
algorithm can be parallelized with
distributed-memory
machines by assigning each process to one
submatrix and leveraging PBLAS and
ScaLAPACK for the hierarchical merge
operation. Such parallelization strategy
yields a much more favorable
communication cost when compared to the
straightforward parallelization of
ACA/BACA with

collective MPI routines. Not surprisingly, good
parallel performance can be achieved for
matrices with modest to large numerical ranks
which increases process utilization for each
merge operation.

In contrast to the baseline ACA algorithm,
the proposed algorithms exhibit improved
robustness and favorable par- allel
performance with low computational
overheads for broad ranges of matrices arising
from many science and engineering
applications.

Authors’ note

This research used resources of the National
Energy Research Scientific Computing Center
(NERSC), a US Department of Energy Office of
Science User Facility operated under contract
no. DE-AC02-05CH11231.

Declaration of conflicting interests

The author(s) declared no potential conflicts of
interest with respect to the research,
authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following
financial support for the research, authorship,
and/or publication of this article: This research
was supported in part by the Exascale
Computing Project (17-SC-20-SC), a collabora-
tive effort of the US Department of Energy
Office of Sci- ence and the National Nuclear
Security Administration, and in part by the US
Department of Energy, Office of Science,
Office of Advanced Scientific Computing
Research, Scientific Discovery through
Advanced Comput- ing (SciDAC) program
through the FASTMath Institute under contract
no. DE-AC02-05CH11231 at Lawrence
Berkeley National Laboratory.

ORCID iD

Yang Liu https://orcid.org/0000-0003-3750-
1178

References

Bach F (2013) Sharp analysis of low-rank kernel
matrix approx- imations. In: Proceedings of the
26th annual conference on learning theory,
Proceedings of machine learning research, vol.
30. Princeton, USA: PMLR, 12–14 June 2013, pp.
185–209.

Balzano L, Nowak R and Recht B (2010) Online
identification and tracking of subspaces from
highly incomplete information. In: 2010 48th
annual Allerton conference on communication,

control, and computing (Allerton), pp. 704–711.
DOI: 10. 1109/ALLERTON.2010.5706976.

Bebendorf M (2000) Approximation of boundary
element matrices. Numerische Mathematik
86(4): 565–589.

Bebendorf M and Grzhibovskis R (2006)
Accelerating Galerkin BEM for linear elasticity
using adaptive cross approximation.
Mathematical Methods in the Applied Sciences
29(14): 1721–1747.

Blackford LS, Choi J, Cleary A, et al. (1997)
ScaLAPACK Users’ Guide. Philadelphia: Society
for Industrial and Applied Mathematics.

Boutsidis C, Mahoney MW and Drineas P (2009) An
improved approximation algorithm for the column
subset selection prob- lem. In: Proceedings of the
twentieth annual ACM-SIAM sym- posium on
discrete algorithms, SODA ‘09, Philadelphia:
Society for Industrial and Applied Mathematics,
New York, New York, USA, 4–6 January 2009, pp.
968–977.

Cande`s EJ and Recht B (2009) Exact matrix
completion via con- vex optimization. Foundations
of Computational Mathematics 9(6): 717.

Cheng H, Gimbutas Z, Martinsson P, et al. (2005) On
the com- pression of low rank matrices. SIAM
Journal on Scientific Computing 26(4): 1389–
1404.

Dheeru D and Karra Taniskidou E (2017) UCI
machine learn- ing repository. Available at:
http://archive.ics.uci.edu/ml (accessed 2
December 2014).

Feng Y, Xiao J and Gu M (2019) Flip-flop spectrum-
revealing QR factorization and its applications to
singular value decomposi- tion. Electronic
Transactions on Numerical Analysis 51: 469–494.

Foster LV (1997) The growth factor and efficiency of
Gaussian elimination with rook pivoting. Journal of
Computational and Applied Mathematics 86(1):
177–194.

Grasedyck L and Hackbusch W (2003) Construction
and Arith- metics of H-matrices. Computing 70(4):
295–334.

Grasedyck L and Hackbusch W (2005) Hybrid cross
approxima- tion of integral operators. Numerische
Mathematik 101(2): 221–249.

Gu M and Eisenstat S (1996) Efficient algorithms for
computing a strong rank-revealing QR
factorization. SIAM Journal on Sci- entific
Computing 17(4): 848–869.

Hackbusch W, Grasedyck L and Bo¨rm S (2002) An
introduction to hierarchical matrices.
Mathematica Bohemica 127(2): 229–241.

Heldring A, Ubeda E and Rius JM (2014) On the
convergence of the ACA algorithm for radiation
and scattering problems. IEEE Transactions on
Antennas and Propagation 62(7): 3806–3809.
Heldring A, Ubeda E and Rius JM (2015) Stochastic

estimation of the Frobenius norm in the ACA
convergence criterion. IEEE Transactions on Antennas
and Propagation 63(3): 1155–1158. Liberty E, Woolfe

F, Martinsson PG, et al. (2007) Randomized algorithms
for the low-rank approximation of matrices. Pro-

ceedings of the National Academy of Sciences
104(51): 20167–20172.

Mahoney MW and Drineas P (2009) CUR matrix
decompositions for improved data analysis.
Proceedings of the National Acad- emy of

Sciences 106(3): 697–702.
Martinsson PG, Quintana-Ort´ı and Heavner N

(2019) randUTV: a blocked randomized algorithm
for computing a rank-revealing UTV factorization.
ACM Transactions on Mathematical Soft- ware
45(1): 1–26.

Musco C and Musco C (2017) Recursive sampling
for the Nystro¨ m method. In: Advances in
Neural Information

Processing Systems 30. New York: Curran
Associates, Inc., pp. 3833–3845.

Neal L and Poole G (1992) A geometric analysis of
Gaussian elimination. II. Linear Algebra and its
Applications 173: 239–264.

Poole G and Neal L (1991) A geometric analysis of
Gaussian elim- ination. I. Linear Algebra and its
Applications 149: 249–272.

Poole G and Neal L (1992) Gaussian elimination:
When is scaling beneficial? Linear Algebra and
its Applications 162–164: 309–324.

Rebrova E, Chavez G, Liu Y, et al. (2018) A study of
clustering techniques and hierarchical matrix
formats for kernel ridge regression. 2018 IEEE
international parallel and distributed processing
symposium workshops (IPDPSW), Vancouver,
Canada, 21–25 May 2018, pp. 883–892.

Voronin S and Martinsson PG (2017) Efficient
algorithms for CUR and interpolative matrix
decompositions. Advances in Computational
Mathematics 43(3): 495–516.

Wang R, Li Y and Darve E (2018) On the numerical
rank of radial basis function kernels in high
dimensions. SIAM Journal on Matrix Analysis and
Applications 39(4): 1810–1835.

Xiao J, Gu M and Langou J (2017) Fast parallel
randomized QR with column pivoting algorithms
for reliable low-rank matrix approximations. In:
2017 IEEE 24th international conference on high
performance computing (HiPC), pp. 233–242.
DOI: 10.1109/HiPC.2017.00035.

Zhao K, Vouvakis MN and Lee JF (2005) The
adaptive cross approximation algorithm for
accelerated method of moments computations of
EMC problems. IEEE Transactions on Elec-
tromagnetic Compatibility 47(4): 763–773.

Zhou H, Zhu G and Kong W, et al. (2017) An
upgraded ACA algorithm in complex field and its
statistical analysis. IEEE

Transactions on Antennas and Propagation 65(5): 2734–2739.

	Yang Liu1 , Wissam Sid-Lakhdar1, Elizaveta Rebrova2, Pieter Ghysels1 and Xiaoye Sherry Li1
	1. Introduction
	2. Notation
	3. Algorithm description
	3.1. Adaptive cross approximation
	3.2. Blocked adaptive cross approximation
	3.3. Parallel hierarchical low-rank merge

	4. Cost analysis
	4.1. Computational cost
	4.2. Communication cost

	5. Numerical results
	5.1. Convergence
	5.2. Accuracy
	5.3. Efficiency
	5.4. Parallel performance

	6. Conclusion

