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A parallel hierarchical blocked 
adaptive cross approximation 
algorithm

Yang Liu1 , Wissam Sid-Lakhdar1, Elizaveta 
Rebrova2, Pieter Ghysels1 and Xiaoye Sherry Li1

Abstract
This  article  presents  a  low-rank  decomposition  algorithm  based  on  subsampling  of  matrix
entries. The proposed algo- rithm first computes rank-revealing decompositions of submatrices
with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical
merge  operation  via  truncated  singular  value  decompositions  (H-BACA).  The  proposed
algorithm significantly improves the convergence of the baseline ACA algorithm and achieves
reduced com- putational complexity compared to the traditional decompositions such as rank-
revealing QR. Numerical results demonstrate the efficiency, accuracy, and parallel scalability of
the proposed algorithm.

Keywords
Adaptive  cross  approximation,  singular  value  decomposition,  rank-revealing  decomposition,
parallelization, multilevel algorithms

1. Introduction
Rank-revealing decomposition  algorithms are
important  numerical  linear  algebra  tools  for
compressing  high-  dimensional  data,
accelerating solution of integral  and par- tial
differential  equations,  constructing  efficient
machine  learning  algorithms,  analyzing
numerical algorithms, and so on, as matrices
arising from many science and engineer-  ing
applications  oftentimes  exhibit  numerical
rank-  deficiency. Despite the favorable  O nr
memory footprint of such decompositions with
n and r, respectively, denoting  the  matrix
dimension (assuming a square matrix) and the
numerical rank, the computational cost can be
expensive.  Existing  rank-revealing
decompositions  such  as  truncated  singular
value  decomposition  (SVD),  column-pivoted
QR (QRCP), CUR decomposition,  interpolative
decomposition  (ID),  and  rank-revealing  LU
typically  require  at   least   O  n2r  operations
(Cheng et al., 2005; Gu and Eisenstat, 1996;
Mahoney  and  Drineas,  2009;  Voronin  and
Martins- son, 2017). This complexity can be
reduced to

cross  approximation  (ACA)  (Bebendorf,
2000; Bebendorf and Grzhibovskis, 2006;
Zhao  et  al.,  2005)  algorithms  can
achieve  O nr  complexity.  However,  the
robustness  of  these  algorithms  relies
heavily on matrix properties that are not
always present in practice.

2. When the matrix can be rapidly applied
to arbitrary vectors,  algorithms such as
randomized SVD,  QR,  and UTV (T lower
or  upper  triangular)  (Feng et  al.,  2019;
Liberty  et  al.,  2007;  Martinsson  et  al.,
2019; Xiao et al., 2017) can be utilized to
achieve quasi- linear complexity.

3. Finally, given a matrix with missing
entries, the low- rank decomposition can
be  constructed  via  matrix  completion
algorithms (Balzano et al., 2010;
Cande`s and Recht, 2009) in quasi-linear
time assuming inco- herence properties
of the matrices (i.e. projection of natural
basis vectors onto the space spanned by
sin-  gular vectors of the matrix should
not be very sparse).

Oðn2log r þ nr2Þ by structured random matrix projection-                 
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based algorithms (Liberty et al., 2007; Voronin
and  Mar-  tinsson,  2017).  In  addition,  faster
algorithms are available in the following three
scenarios.

1. When each element entry can be 
computed in O 1 CPU time with prior 
knowledge (i.e. smoothness, sparsity, or 
leverage scores) about the matrix, faster 
algorithms such as randomized CUR 
and adaptive
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This work concerns the development of a
practical algo- rithm, in application scenario 1,
that  improves  the  robust-  ness  of  ACA
algorithms  while  maintaining  reduced
complexity for broad classes of matrices.

The partially pivoted ACA algorithm, closely
related to LU with rook pivoting (Foster, 1997;
Neal and Poole, 1992; Poole  and  Neal, 1992,
1991), constructs  an  LU-type  decomposition
upon  accessing  one  row  and  column  per
iteration.  For  matrices  resulting  from
asymptotically  smooth  kernels,  ACA  is  a
rank-revealing  and  optimal-  complexity
algorithm  that  converges  in  O  r  iterations
(Bebendorf,  2000).  Despite  its  favorable
computational  complexity,  it  is  well-known
that  the  ACA  algorithm  suf-  fers  from
deteriorated  convergence  and/or  premature
ter-  mination  for  non-smooth,  sparse,  and/or
coherent  matrices  (Heldring  et  al.,  2014).
Hybrid  methods  or  improved  con-  vergence
criteria  (e.g.  hybrid  ACA-CUR,  averaging,
statis-  tical  norm  estimation)  have  been
proposed  to  partially  alleviate  the  problem
(Grasedyck and Hackbusch, 2005; Heldring et
al.,  2015).  The  main  difficulty  of  leveraging
ACA  as  robust  algebraic  tools  for  general
low-rank  matrices results  from ACA’s partial
pivot-search  strategy  to  attain  low
complexity.  In  addition  to  the  above-
mentioned  remedies,  another  possibility  to
improve ACA’s  robustness  is  to  search  for
pivots  in  a  wider  range  of  rows/  columns
without  sacrificing  too  much  computational
effi-  ciency.  Here  we  consider  two  different
strategies:

1. Instead of searching one row/column per
iteration as  in  ACA,  it  is  possible  to
search a block of rows/ columns to find
multiple pivots together.

2. Instead  of  applying  ACA directly  on  the
entire  matrix, it is possible to start with
compressing sub- matrices via ACA and
then merge the results as one low-rank
product.

In  extreme  cases  (e.g.  when  block  size
equals  matrix  dimension  or  submatrix
dimension equals one), these stra- tegies lead
to quadratic computational costs. Therefore, it
is  valuable to address the question: for what
matrix  kernels  and  under  what
block/submatrix  sizes  will  these  strategies
retain low complexity.

For the first strategy, this work proposes a
blocked ACA algorithm (BACA) that extracts a
block row/column per iteration to significantly
improve  convergence  of  the  base-  line  ACA

algorithms.  The  blocked  version  also  enjoys
higher  flop  performance  as  it  involves  mainly
BLAS-3  operations.  Compared  to  the
aforementioned  remedies,  the  proposed
algorithm provides a unified framework to bal-
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H-BACA  algorithm  is  at  most  O  
p

nbnr2

assuming  the  block  size  in  BACA  is  less
than the rank. In other words, the proposed
H-BACA  algorithm is  a  general  numerical
linear algebra tool as an alternative to ACA,
SVD, QR, and so on. In addition, the overall
algorithm  can  be parallelized  using
distributed-memory  linear  algebra
packages such as ScaLAPACK (Blackford et
al., 1997) which avoids the dif-  ficulty of
efficient parallelization of plain ACA
algorithms.  Numerical  results  illustrate
good  accuracy,  efficiency,  and  parallel
performance.  In  addition,  the  proposed
algorithm can be used as  a  general  low-
rank  compression  tool  for  constructing
hierarchical  matrices  (Rebrova  et  al.,
2018).

2. Notation
Throughout this article, we adopt the 
Matlab notation of matrices and vectors. 
Submatrices of a matrix A are denoted A I ; 
J , A :; J , or A I ; : where I and J are index 
sets. Similarly, subvectors of a column 
vector u are denoted     u I . An index set I 
permuted by J reads I J . Transpose, 
inverse, pseudo-inverse of A are At, A-1, Ay. 
A and   u denote Frobenius norm and 2-
norm. Note that u refers to a n 1 
column vector. Vertical and horizontal 

concatenations of A, B are A; B and A; B . 
Element-wise multiplication of A and B is A B. 
All matrices are real-valued unless other- wise 
stated. It is assumed for A Rmxn, m O n , but 
the proposed algorithms also apply to 
complex-valued and tall- skinny/short-fat  
matrices.  We  denote  truncated  SVD as
½U ; S; V ; r] ¼ SVDðA; eÞ  with  U  2 Rmxr ,  V t 2 
Rnxr   col- umn  orthogonal,  S 2 Rrxr   diagonal,  
and  r  being e-rank
defined by rmin k N : Skþ1;kþ1 < eS1;1 . We 
denote QRCP as Q; T ; J QR A; r  or  Q; T ; 
J QR A; e with Q Rmxr   column 
orthogonal, T Rrxn upper triangular, J being 
column pivots, and e and r being the 
prescribed accuracy and rank, respectively. 
QR without column- pivoting  is  simply  
written  as Q; T QR A . Cholesky 
decomposition without pivoting is written as T

Chol A with T upper triangular. log n 
means logarithm of n to the base 2.

3. Algorithm description
3.1. Adaptive cross approximation
Before describing the proposed algorithm, we
first  briefly  summarize the baseline ACA
algorithm (Zhao et al., 2005).  Consider  a
matrix  A  Rmxn  of  e-rank  r,  the ACA  algorithm
approximates A by a sequence of rank-1 outer
products as

r

ance  robustness  and  efficiency.  Upon
increasing the block size (i.e.  the number of
rows/columns  per  iteration),  the  algorithm
gradually changes from ACA to ID. For the sec-

t
k

k¼1

Define the residual matrix
Ek as

ð1Þ

ond strategy, the proposed algorithm further
subdivides the  matrix  into  nb submatrices
compressed  via  BACA,  followed  by  a
hierarchical merge algorithm leveraging

E0 ¼ A;    Ek ¼ Ek-1 - uk vt : ð2Þ

At  each  iteration k,  the  algorithm selects 
column  uk

low-rank arithmetic (Grasedyck and 
Hackbusch, 2003;

(pivot jk from remaining columns) and 
row vt

(pivot ik

Hackbusch et al., 2002). The overall cost of 
this

from  remaining  rows)  from  the  residual  
matrix  Ek-1

k
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Algorithm 1. Adaptive cross approximation 
algorithm (ACA).

been developed but they do not generalize to
a broad range of applications.

3.2.Blocked adaptive cross 
approximation

Instead of selecting only one column and row
from the residual matrix in each ACA iteration,
we  can select  a  fixed-size  block  of  columns
and  rows  per  iteration  to  improve  the
convergence  and  accuracy  of  ACA.  In  addi-
tion, many BLAS-1 and BLAS-2 operations of
ACA  become  BLAS-3  operations  and  hence
higher flop perfor- mance can be achieved.

Specifically,  the  proposed  BACA  algorithm
factorizes A

X
ndA 

� UV 
¼

 k¼
1U

k Vk

                                                                            where Uk Rmxdk   and Vk Rdk xn. In principle, the 
algo-

rithm selects a block of d rows and columns via
cross approximations in the residual matrix and
then dk S d ones

corresponding  to an element  denoted by  Ek-

1ðik; jk Þ with sufficiently large magnitude. Note
that  uk and  vk are  m  x  1 and  n  x 1 vectors.
The partially pivoted ACA algorithm  (ACA for
short), selecting jk ; ik by only looking at
previously  selected  rows  and  columns,  is
described  as  Algorithm  1.  Specifically,  each
iteration  k selects pivot  ik used in the current
iteration and pivot  jkþ1  for  the  next iteration
(via lines 4 and 7) as

ik arg max  Ek-1  :;  jk 3
i6¼i1 ; ... ;ik-1

jkþ1 arg max  Ek-1  ik ; : 4
j6¼j1 ;:::;jk

and  j1 is  a  random  initial  column  index.
Note that

via  rank-revealing  algorithms  to  form a  low-
rank update at iteration k. The total number of
iterations is approximately  nd  r=d  if  dk   d.
Instead  of  selecting  row/column  pivots  via
lines  4  and  7  of  Algorithm  1,  the  proposed
algorithm selects row and column index sets Ik
and  Jk by  performing  QRCP  on  d  columns
(more precisely their transpose)  and  rows of
the residual matrices. This proposed strategy
is described in Algorithm 2.

Each  BACA  iteration  is  composed  of  three
steps.

• Find block row  Ik and block column  Jkþ1 by
QRCP. Starting with a random column index
set  J1,  the  block  row  Ik and  the  next
iteration’s block column Jkþ1 are selected by
(lines 4 and 7)

ik 6¼ i1;  . . . ; ik-1 
and jk

j1;  . . . ; jk-1  are 
enforced. The ½Q  ; T  ; I  ] ¼ 

QRðE
ð:; J  Þ ; dÞ ð7Þ

n ¼ jjuk vt jjF  � jjEk jjF ; ¼ jjUV jjF  � jjAjjF

ð5Þ

½Q þ1; T  þ1; Ikþ1] ¼ QRðEk-1ðIk ; :Þ; dÞ ð8Þ

and  e  is  the prescribed tolerance.  Note that
each  iteration  requires  only  O  nrk flop
operations  with  rk denoting  cur-  rently
revealed  numerical  rank.  The  overall
complexity of partially pivoted ACA scales as
O  nr2 when  the  algorithm converges  in  O r
iterations. Despite the favorable com- plexity,
the  convergence  of  ACA  for  general rank-

deficient  matrices  is  unsatisfactory.  For
many  rank-deficient  matrices  arising  from
the  numerical  solution  of  PDEs,  sig-  nal
processing and data science, ACA oftentimes
either  requires  O  n  iterations  or  exhibits
premature termination. First, as ACA does not
search  the  full  residual  matrices  for  the
largest element, it cannot avoid selection of

iteration is terminated when n <
e with

k-
1
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smaller  pivots  for  general  rank-deficient
matrices and may require
OðnÞ  iterations.  Second,  the  approximation
jjukvt jjF in (5)

Here the algorithm first selects d skeleton
rows from the  submatrix  Ek-1  :;  J k   (i.e.  d
columns  from  its  transpose) and then selects
d skeleton columns from the submatrix Ek-1  Ik;
:  by leveraging the LAPACK implementation
of  QRCP as it provides a simple way of
greedily selecting well-  conditioned  columns
by examining column norms in the R factor at
each iteration. Note that many other subset
selection algorithms exist in both the machine
learning and numerical  linear  algebra
communities  (e.g.  strong  rank-revealing  QR
(Gu and Eisenstat, 1996), spectrum-revealing
QR  (Feng  et al., 2019), and column subset
selection problems (Boutsi- dis et al., 2009)),
which  ideally  pick  d  matrix  columns with
maximum volumes. Note that Ik excludes rows
selected  in
previous iterations. To efficiently enforce such
condition, the

t
k

often causes the premature termination with 
the selection of

QRCP is performed on the submatrix of E k-
1

ð:; JkÞ

smaller pivots. Remedies such as averaged
stopping criteria
(Zhou et al., 2017), stochastic error estimation
(Heldring  et  al.,  2015),  ACA (Grasedyck  and
Hackbusch,  2005),  and hybrid ACA
(Grasedyck and Hackbusch, 2005) have

excluding previously selected rows rather than
directly  on
Ek-1  :;  J k  t. Similarly, Jk excludes columns
selected in pre-  vious iterations. See Figure
1(a)  for  an illustration of the procedure. Ik
and Jkþ1 are selected by QRCP on the column
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VUV  

Combine SVD

U
2  1         2  1       2  12 2 2 2 2 2   

VUV

U UV
1           1          1  

Combine

V
  

SVD

U
2 2 2

V

Algorithm 2. Blocked adaptive cross approximation 
(BACA) algorithm.

input  : Matrix A R m×n, block 
size d, relative tolerance  

output: Low-rank approximation of A
UV 

with rank r
1   U = 0, V  = 0, r0 = 0, μ = 0, J¯1 is a random

index set of cardinality d;
2 for k = 1 to min m, n do
3 Ck = Ek  1(:, Jk) = A(:, Jk) UV (:, Jk);
4 [Qc ,T c, Ik] = QR(Ct , d), Ik denotes selected

k k k

skeleton rows;
5 R  = E (I , :) = A(I , :) − U (I , :)V ;
6

k+1

rk+1
, Jk+1] = QR(Rk, d), Jk+1

denotes selected skeleton columns;
7 Wk=Ek 1(Ik,Jk)=A(Ik,Jk) U (Ik,:)V (:,Jk);
8 [Uk, Vk, dk, J¯] = LRID(Ck, Wk, Rk, );
9 I ← I ([1 : d ]),J ← J (J¯);

10 rk = rk−1 + dk;
11 ν = LRnorm(Uk, Vk);
12 μ LRnormUp(U, V, μ, Uk, Vk,
ν);
13 U [U, Uk],V [V ; Vk];
14 Terminate if ν < μ.

Figure 1. (a) Selection of Ik/Jk and form the low-rank 
update
UkVk. (b) Low-rank merge operation.

Ek-1 � CkW y
k Rk ¼ U kV k  (Voronin  and  

Martinsson,
15 Function LRID (C,W ,R, )

input : C = A(:,J ), R = A(I, :),
W = A(I, J ) with I, J of 
same cardinality

output: AUV with U Rm×r,V Rr×n

16 [Q, T, J¯, r] = QR(W, );
17 U = C(:, J¯);
18 V = T −1QtR;
19 return U, V, r, J¯

20 Function LRnorm 
(U ,V ) input : A 
= UV output: A 
F

21 T1 = Chol(U tU );
22 T2 = Chol(VV t);

2017) by (9) and (10). Note that the pseudo
inverse is
computed via rank-revealing QR (also see
the LRID algo-  rithm at line 8). The rank-
revealing algorithm is needed as the d x
d block Wk can be further compressed
with rank  dk. Particularly for matrices
where the ACA algorithm tends  to  fail,
the  corresponding  d  d  matrices  Wk in
BACA  are  often  rank-deficient.  In  this
case,  BACA  becomes more robust than
ACA as the effective dk pivots can still be
used to generate d columns Jkþ1 for the
next  iteration (as long as dk > 0).
Consequently, the effective
rank increase is dk d and the pivot pair Ik ;
Jk is updated in (11) by the column pivots J-
of QRCP in (9).

½Q; T ; J-] ¼ QRðW k ; eÞ with Q 2 Rdxdk ð9Þ
23 return /1T1T t /1 ;

2 F ¯  ¯
Uk

¼ Ck ð:; J-Þ;  
Vk

¼ T -1QtRk
ð10Þ

24   Function LRnormUp (U, V, ν, U, V , 
ν¯)

input  : U ∈ Rm×r, V  ∈ Rr×n, U¯  ∈ 
Rm×r¯,

I     I  ð½1; d  ]Þ; J     J  ðJ-Þ ð11Þ

V¯  ∈ Rr¯×n, ν = /1UV /1 , ν¯ = 
1U V 1

U,
 

U

 V  ¯  
F

˜

k k k k k

C
k

Rk Kk



V
• Compute n ¼ 

jjUkVkjj
and update ¼ jjUV 
jj

output:1[
¯ 
][

F F
; ]1

25 s = ν2 + ν¯2 + 2r  

r¯

V (i, j) with F F

i=1
V˜  = (V V¯ t) ◦ 
(U tU¯ );

j=1 Assuming constant block size d, the norm

of the low-
rank update can be computed in Oðnd2Þ

operations (line
26 return √

s

k

11) via
TU ¼ CholðU Uk Þ; TV ¼ CholðV k V Þ ð12Þ

and transpose of the row marked in yellow, 

respectively. The

k k k k

column marked in grey is used to select Ikþ1 in 

the next

n ¼ jjT U Tt 

jj

ð13Þ

iteration. For illustration purpose, index sets in Figure 1(a)

t t



consist of contiguous indices.

• Form the factors of the low-rank product 

UkVk. Let Ck ¼

k      VkF

Once n is computed, the norm of UV can be 
updated efficiently in OðnrkdkÞ operations (line
12) as

Xrk-
1 Xdk



Ek-1ð:;  JkÞ, Rk ¼ Ek-1ðIk; :Þ, and W k ¼ Ek-1ðIk; J kÞ,
E k-1 can be 



approximated by an ID-type decomposition

 2 2 þ n2 þ 2

i¼1 j¼1



*V ði; jÞ



k

½
]

¼¼ ð ð¼ f
g

 

½ ] ½
]

where
rk

V~ ¼ ðVVt Þo ðUtUk Þ

ð14Þ

represents the column dimension of U 
at iteration

The  BACA  algorithm  oftentimes  exhibits
overestimated  ranks  compared  to  those
revealed  by  truncated  SVD.  Therefore,  an
SVD re-compression step of  U  and  V  may  be
needed via first  computing  a QR of U and V
as

k. Note that the matrix multiplications in (12) and (14) t
involvingV and V (and similarly for those 

involving U
½QU ; TU ] ¼ QRðU Þ, ½QV ; TV ] ¼ QRðV Þ, and 
then a trun-k

t
k cated SVD of 

TU Tt (Heldring et al., 2015). The 
result can

and U) can be performed as V ; Vk Vk to
further improve the computational efficiency.
Then the algorithm updates U, V as U ; Uk , V
; Vk and tests the stopping criterion n < e .
Note that n; with larger d provides better
approximations
to the exact stop criterion compared to those
in (5) hence can  significantly  reduce  the
chance of premature termination.

We  would  like  to  highlight  the  difference
between  the  proposed  BACA  algorithm  and
existing ACA algorithms. First, as BACA selects
a block of rows and columns per iteration as
opposed to a single row and column in the
base-  line ACA algorithm, the convergence
behavior and flop per-  formance  can  be
significantly  improved.  In  the  existing  ACA
algorithms, convergence can also be improved
by  leveraging  averaged  stopping  criteria
(Zhou et al., 2017) or searching a single pivot
in a broader range of rows and columns (e.g.
fully pivoted ACA). However, they still find one
row or column at a time in each iteration and
hence  suffer  from  poor  flop  performance.
Moreover,  they  cannot  utilize  strong  rank-
revealing  algorithms  to  select  skeleton  rows
and columns with better volume (determinant
in mod- ulus) qualities. Second, BACA also has
important  connec-  tions  to  the  hybrid  ACA
algorithm (Grasedyck and Hackbusch, 2005).
The  hybrid  ACA  algorithm  assumes  prior
knowledge  about  the  skeleton  rows  and
columns  to  leverage  interpolation  algorithms
(e.g. ID and CUR) on a skeleton submatrix and
use ACA to refine the skeletons. In contrast,
BACA uses cross approximations with QRCP to
select  skeleton  rows  and  columns  and  uses
interpolation  algorithms  (LRID  at  line  8)  to
form the low-rank update in each iteration. In
other words, hybrid ACA can be treated as
embedding ACA into interpolation algorithms
while BACA can be thought of as embedding
interpolation algorithms into ACA iterations. In
addition,  BACA  is  purely  algebraic  and
requires no prior knowledge of the row/column
skeletons or  geometrical  information  about
the rows/columns.

It is worth mentioning that the choice of  d
affects  the  trade-off  between  efficiency  and

robustness of the BACA algorithm. When d <
r,  the  algorithm requires  Oðnr2Þ  operations
assuming  convergence  in  Oðr=dÞ  iterations
as each iteration requires  O nrkd  operations.
For  example,  BACA  (Algorithm  2)  precisely
reduces to ACA (Algo- rithm 1) when  d  1. In
what follows we refer to the base- line ACA
algorithm  as  BACA  with  d  1.  On  the  other
hand, BACA converges in a constant number
of iterations when  d r. In the extreme case,
BACA reduces to QRCP- based ID when d min
m; n (note that the LRID algo-  rithm at line 8
remains the only nontrivial operation). In this
case, the algorithm requires O n2r operations
but  enjoys  the  provable  convergence  of
QRCP.  Detailed com- plexity analysis of the
BACA algorithm will be provided in Section 4.
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be viewed as an approximate truncated SVD of
A and we
assume this is the output of the BACA
algorithm in the rest of this article.

3.3. Parallel hierarchical low-rank merge
The  distributed-memory  implementations  of
the proposed BACA algorithm and the baseline
ACA algorithm can pose  performance
challenges as straightforward parallelization of
all  operations  in  Algorithm 2  and  1  involves
many col- lective communications. To see this,
assuming the  U  and  V  factors in Algorithm 1
follow 1-D block row and column data layouts,
then  every  operation  from  line  3  to  line  9
requires  one  or  more  collective
communications.  Instead,  one can assign one
process to perform BACA/ACA on submatrices
without any communication and then leverage
parallel  low-rank  arithmetic  to  merge  the
results  into  one  single  low-rank  product.  To
elucidate  the  proposed  algo-  rithm,  we  first
describe  the  hierarchical  low-rank  merge
algorithm,  then  outline  its  parallel
implementation.

Given a matrix A 2 Rmxn  with m � n, the
algorithm first

creates  L-level  binary  trees  for  index  vectors
½1; m] and

½1; n] with  index set I t   and J n   for nodes t
and n at each level, upon recursively dividing
each index set into  I  ti  /J  nj  of  approximately
equal  sizes, i  1; 2,  j  1; 2.  Here,  ti and nj are
children of  t  and  n,  respectively. The leaf and
root levels are denoted 0 and  L, respectively.
This  process  generates nb leaf-level
submatrices of similar sizes. For
simplicity,  it  is  assumed  nb 4L.  We  denote
submatrices associated with t; n as Atn A I t;  J n

and their truncated SVD as  U  tn;  Stn;  V  tn;  rtn

SVD  Atn;  e  .  Here  rtn is the  e-rank  of  Atn.  As
submatrices  Atn have  significantly  smaller
dimensions than  A  (e.g.  when  nb O  n2 as  an
extreme case), both BACA and ACA algorithms
become  more  robust  to  attain  the  truncated
SVD. Following com- pression of nb submatrices
Atn  by  BACA or  ACA at  step  l  0,  there  are
multiple approaches to combine them into one
low-rank  product  including  randomized
algorithms via applying A to random matrices,
and deterministic  algo-  rithms via  recursively
pair-wise re-compressing the blocks using low-
rank  arithmetic.  Here  we  choose  the
determinis-  tic  algorithm  for  simplicity  of
rank estimation  and parallelization. Here, we
deploy truncated  SVD as  the  re-compression
tool  but  other tools such  as  ID,  QR,  UTV can
also  be  applied.  Figure  1(b)  illustrates  one
re-compression  operation  for  transforming

SVDs of  Ati nj ; i ¼ 1; 2; j ¼ 1; 2 into that of Atn.
The  operation  first  horizontally compresses
SVDs of Ati nj ; i ¼ 1; 2; j ¼ 1; 2 at step l - and
then vertically compresses the results, that is,
SVDs of  Ati  n;  i    1;  2 at  step  l,  l    1;  ::;  L.
Specifically,    the   horizontal   compression
step  is  composed of one
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Figure 2. Parallel hierarchical merge with eight processes. Blocks surrounded by solid lines represent Atn after
compression at each step l. Blocks surrounded by dashed lines represent ScaLAPACK blocks.

concatenation operation in (15) and one 
compression oper- ation in (16):

U-
ti n  ¼ ½U ti n1 

Sti n 1 
;U ti n2 

Sti n 2 
];  V-

ti n  ¼ diagðV ti n 1

;V ti n 2 
Þ   ð15Þ

½U ti n;Sti n ;V ti n;rti n ]   SVDðU-tin; eÞ;  V ti n    V ti n 

V- ti n      ð16Þ

with  i ¼ 1; 2.  Let  U-t n V- t n   and  U t nSt nV t n denote  the

Algorithm 3. Hierarchical low-rank merge algorithm
with BACA (H-BACA).

input  : Matrix A Rm×n, number of 
leaf-level subblocks nb, block 
size d of leaf-level BACA, 
relative tolerance  output: with rank

i i i i i Truncated SVD of A ≈ U ΣV r
submatrix  before  and  after  the  SVD  
truncation, respec-
tively. Similarly, the vertical compression step 
can be per-

1 Create L-level trees on index vectors [1, m] 
and

[1, n] with index set Iτ and Jν for nodes τ 
and ν

formed via horizontal merge of 
At

i

; i ¼ 1; 2. Let 
sl

at each 
level, L

= 
log

√
nb

, the leaf and root levels

represent  the  maximum  rank  rtn among  all
blocks at  steps
l  0; 1;  . . .  ;  L. Note that the algorithm returns
an approx- imate truncated SVD after L steps.
As  an  example,  the  hierarchical  merge
algorithm  with  the  level  count  of  the
hierarchical  merge  L  ¼  2  and  nb ¼  16  is
illustrated  in  Figure  2.  At  step  l  0,  the
algorithm compresses all  nb submatrices with
BACA; at step l 0:5; 1:5, the algorithm merges
every  horizontal  pair  of  blocks;  similarly  at
level     l 1;  2,  the  algorithm merges every
vertical  pair  of  blocks.  Note  that  blocks
surrounded by solid lines represent results
after compression at each step l.

are denoted 0 and L, respectively;
2 for l = 0 to L do
3 foreach Aτν = A(Iτ , Jν ) at level l do
4 if leaf-level then
5 [Uτν , Στν , Vτν , rτν ] = 

BACA(Aτν , d, );

6 else
7 Let τ1, τ2 and ν1, ν2 denote children 
of

τ and ν;
8 for i = 1 to 2 do

The  above-described  hierarchical  algorithm  
with 9

BACA for leaf-level compressions  is  dubbed H-
BACA 10

(Algorithm 3). In the following, a distributed-memory 
imple- 11

mentation of the H-BACA algorithm is described. 
Without
loss of generality, it is assumed that m n2i and 
p 2j.

12

The  proposed parallel implementation first  
creates two 13

log
pffi

p
ffi
-level binary trees with p denoting the total 

number 14

U¯
τ  ν  = [Uτ  ν  Στ  ν  , Uτ  ν  Στ  ν  ];

V¯τ  ν  = diag(Vτ ν  , Vτ ν

); [Uτ ν , Στ ν , Vτ ν , rτ ν

] SVD(U¯τ  ν ,  );
Vτiν  ← Vτiν V¯

τiν

; U¯τν  = diag(Uτ1 ν , 
Uτ2 ν );
V¯

τν  = [Στ1 ν Vτ1 ν ; Στ2 ν Vτ2 ν ];¯

of MPI processes. One process performs BACA 
compression 15

of one or two leaf-level submatrices and low-rank 

merge
operations from the bottom up until 
it reaches a submatrix



¼

¼

x

¼

[Uτν , Στν , Vτν , rτν ] ← SVD(Vτν , ); Uτν  ← U¯
τν 

Uτν ;

shared by more than one process.  Then,  all
such  blocks  are  handled by PBLAS and
ScaLAPACK with BLACS process  grids that
aggregate those in corresponding
submatrices. Con- sider the example in Figure
2  with  process  count  p 8.  The  workload of
each process is labeled with its process rank
and  highlighted  with  one  color.  The  dashed
lines  represent  the  ScaLAPACK blocks. First,
BACA compressions and merge operations at l
0;  0:5  are  handled  locally  by  one  process
without  any  communication.  Next,  merge
operations  at   l  ¼  1;  1:5;  2 are handled by
BLACS  grids  of  2  x  1,  2  x  2,  and  4  x 2,
respectively.  For  illustration  purposes,  we
select the ScaLAPACK block size in Figure 2 as
n0 n0 where n0 is  the dimension of the finest-
level submatrices in the hierarch-

ical merge algorithm and n ¼ 
pffi

n
ffiffi

b
ffi
n0. In this

case, the only

17 return U = Uτν , V = Vτν , Σ = Στν , r = rτν ;

required data redistribution is from step l 1 to l
1:5. However, the ScaLAPACK block size may
be set to much smaller numbers in practice,
requiring data redistribution at  each
row/column re-compression step. Similarly, the
require- ment of m ¼ n¼ 2i and p¼ 2j is not
needed in practice.

4. Cost analysis
In this section, the costs for computation and
communica- tion of the proposed BACA and H-
BACA algorithms are analyzed.
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4.1. Computational cost
First, the costs for BACA can be summarized
as follows. Assuming BACA converges in O r=d
iterations,  each  itera-  tion  performs  entry
evaluation from the residual matrices,

QRCP for pivot selection, LRID for forming the
LR product,

Table 1.  Flop counts and communication costs for
the leaf-level compression and hierarchical merge
operations in Algorithm 3 for  two classes  of  low-
rank matrices.a

Constant rank Increasing rank

s  � r s  � r=
pffi

n
ffiffiffi 

x 2l

and estimation of matrix norms. The entry 
evaluation com- putes OðndÞ entries each 
requiring Oðrk Þ operations; QRCP

BACA d s0 O nr2
p

n O nr2 

=
p

n
Merge compute   Oðnr2pffi

n
ffiffi

b
ffi
Þ Oðnr2Þ

pffiffiffi

on block rows requires Oðnd2Þ operations; the
LRID algo- rithm requires Oðnddk þ dk d2Þ 
operations; norm estimation

Merge
communic
ate

½Oðrlog2pÞ; Oðnrlog2p=
pffi

p
ffiffi

Þ]   ½OðrlogpÞ; 
Oðnrlogp=

pÞ]

requires O nrkdk operations. Summing up 
these costs, the overall cost for the BACA 
algorithm is

Oðr=d
Þ

cBACA ¼ ðnd þ nrk d þ dk d Þ
k¼1

S Oðnd þ rd þ nrdÞOðr=dÞ ¼ Oðnr Þ

ð17Þ

an and r denote matrix dimension and rank. d denotes the 
block size in BACA. p and nb denote number of processes 
and leaf-level submatrices. sl denotes maximum ranks 
among all level-l submatrices.

summarized in Table 1. Note that the costs of
the  BACA  algorithm  can  also  be  extracted
from  Table  1  upon  setting  nb ¼  1.  Not
surprisingly, the hierarchical merge algorithm

Here we assume the block size d    r. Note
that when    d r (e.g. d O n ), it follows that the
worst-case  com-  plexity  is  cBACA O  n2r   by
bypassing the pivot selection step that causes
the nd2 term. In practice, one would always
avoid the case of d r.

Next, the computational costs of the H-
BACA algorithm are  analyzed.  The costs  are
analyzed for two cases of dis- tributions of the
maximum ranks sl at each level, that is,   sl ¼
r (ranks  stay  constant  during  the  merge)
and  sl � 2 r= nb¼ 2 - r (rank increases by a
factor  of  2  per  level),  l 0;  1;  .. .  ;  L.  The
constant rank case is often valid for matrices
with  their  numerical  ranks  independent  of
matrix dimensions (e.g. random low-rank
matrices, matrices  representing well-
separated interactions from low-frequency and
static  wave  equations  and  certain  quantum
chemistry matrices); the increasing-rank case
holds  true  for  matrices whose ranks  depend
polynomially (with order no bigger than 1) on
the matrix dimensions (e.g. those arising
from

high-frequency  wave  equations,  matrices 
representing
near-field interactions from low-frequency and

induces a computational  overhead of at  most
p
nb when

ranks  stay  constant;  the  leaf-level
compression  can  have  a 1=

p
n  reduction

factor for the increasing rank case  and  
p
nb

overhead for the constant rank case.
For completeness, the comparison between
the proposed

BACA, H-BACA algorithms (assuming d r0) and
exist- ing ACA algorithms are given in Table 2.
In  contrast  to  existing  ACA  algorithms  that
select one pivot at a time, BACA and H-BACA
select  d  and  nbd  pivots  simultane-  ously.  As
such,  H-BACA  is  the  most  robust  algorithm
among all listed here. Not surprisingly, H-
BACA can

induce a computational overhead of 
pffi

n
ffiffi

b
ffi
.

4.2. Communication cost
As the  leaf-level  BACA compression  requires
no  commu-  nication, only the communication
costs for the hierarchical merge operations are
analyzed here. Since the merge oper-

ations may introduce an Oð
pffi

n
ffiffi

b
ffi
Þ

computational overhead,

equations,  and  certain  classes  of  kernel
methods on high dimensional data sets). Note
that these rank distributions often follow from
a proper hierarchical partitioning tree and
may  not  be  valid  using  an  arbitrary
partitioning  tree.  From  the aforementioned
analysis of BACA, the computational

the   process   count   p   nb.   Consider   theparallelization  of
one  level  l  merge  operation,  that  is,
transformation of the SVDs of Ati  nj  ; i ¼ 1; 2; j
¼ 1; 2 into that of Atn shown in Figure 1(b). Let
pl  ¼  4l denote  the  number  of  processes
sharing one level  l  block  Atn,  l  0;  . . .  ;  L. The
horizontal  compression  step   in  (15,  16)
requires  redistribution  from

costs for the leaf-level compression cb ¼ 
cBACAnb are:

n
the process grids of si ze p

one would only 
increase n

b to create more 
parallelism, i.e.



pffiffiffi ffilLet n 2 n=   n   

denote the size of submatrices A at

n
b

0

l-1 sharing Ati nj ; i ¼ 1; 2; j ¼  1; 2
cb ¼ Oðpffiffiffiffiffi s2nbÞ;   if  d S s0

ð18Þ

to  the  process  grids  of  size  2pl-1   sharing  
Ati n; i ¼ 1; 2.

After redistribution, each process grid involves
a

which represent the complexity with ACA 
when nb ¼ 1.

l ¼ b t;n

level l. The computational costs cm of 
hierarchical merge operations can be 
estimated as

X
L

l

PDGESVD function in ScaLAPACK (see (16)) to
compute  the  new  rank  after  the
combination in (15), and a PDGEMM function
in PBLAS to multiply factors V ti n with
V- ti n   (see  16).  Similarly,   the  vertical
compression  step
requires  redistribution  from   the   process
grids  of   size
2pl-1  sharing At n; i ¼ 1; 2 to the process grids
of size plcm ¼

l¼
1

Oð4L-lnls2Þ

ð19Þ
isharing Atn, and calling PDGESVD and PDGEMMfunc-

tions in the new grids. Let the pair 
[#messages, volume]

Accounting for the two cases  of rank distributions,  the
computational costs for the leaf-level BACA 
and hierarch- ical  merge  operations of  the  
H-BACA  algorithm are

denote  the  communication  cost  including thenumber of
messages and the number of words transferred
along the critical path. Then the 
communication costs for each
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at level l and note that nl sl. Therefore the 
communica-

4Oðsl logpl Þ; 
O@

pffi
p

ffiffi
l

ffi
l 

A5

Table 2. Comparisons between proposed BACA, H-BACA algorithms and existing ACA algorithms.a

Cost (constant rank) Oðnr2Þ Oðnr2Þ Oðnr2Þ

Oðnr2
p

nbÞ Cost (increasing rank) O nr2 O nr2 O 
nr2 O nr2 Preselection of submatrices No Yes

No No
a Note that the algorithms show increasing robustness from left to right.

(BLACS) grid redistribution, PDGEMM and 
PDGESVD during  the  hierarchical  merge  
are  O  1  ; O n s =p ,

½OðslÞ; Oðnlsl=
p

pl Þ],   and   ½Oðsl logpl Þ; Oðnlsl 

logpl =
p

pl Þ],
respectively  (Blackford  et   al.,   1997).  
Recall  that
nl¼ 2ln=

pffi
p

ffi 
and sl denote the size and rank of

submatrices

4.  Frontal3D  kernel:  A  is  a  dense  frontal
matrix  that  arises from the multifrontal
sparse  elimination  for  the  finite-
difference frequency-domain  solution  of
the  homogeneous-coefficient  Helmholtz
equation inside a unit cube.

5. Polynomial kernel: Ai;j ¼ ðxixj þ hÞ .
Here

tion cost vm of the hierarchical merge (and H-
BACA) can

xi; xj 2 R50x1 are points from a randomly generated

be 
estimated 
as XL  

2

l¼
1

0 

nlsl logp
13

data set, and h is a regularization 
parameter.

6.     Product-of-random kernel: A ¼ UV with
U  2 Rnxr

and  V  2 Rrxn   being  random  matrices  with
i.i.d.

entrie
s.L

¼ OðlslÞ; 
O

l¼1

0 
lnsl 

13
pffi

p
ffi

ð20Þ
Note  that  the  EFIE2D,  EFIE3D,  and

Frontal3D  kernels  result  in  complex-valued
matrices.  Throughout  this section, we refer to
ACA as a special case of BACA when d ¼ 1. In

Consider the two cases of rank 
distributions, that is,
s      r and s      2l-Lr, the overall
communication costs of  H-BACA  are v  O
rlog2p  ;  O  nrlog2p=

p
p  and  vm ¼ ½OðrlogpÞ;

Oðnrlogp=
pffi

p
ffi
Þ],      respectively      (see

Table 
1).

5. Numerical results
This  section  presents  several  numerical
results  to  demon-  strate the accuracy and
efficiency of the proposed H-BACA  algorithm.
The  matrices  in  all  numerical  examples  are
gen- erated from the following kernels:

2

all examples except for the product-of-random
kernel,  the  algorithm  is  applied to the
offdiagonal submatrix  A12 A 1 :  n;  1  n :  2n
assuming   rows/columns   of   A  have been
properly permuted (e.g. by a KD-tree
partitioning  scheme). Note that the
permutation may yield a hierarchical  matrix
representation of A, but in this article we only
use the  permutation  to  define  the  partition
trees  for  H-BACA  com-  pression  of  one  off-
diagonal  subblock  of  A  with  H-BACA.  All
experiments are performed on the Cori
Haswell machine  at  NERSC,  which  is  a  Cray
XC40 system and consists of 2388 dual-socket
nodes with Intel Xeon E5-2698v3 proces- sors
running 16 cores  per socket.  The nodes are
configured with 128 GB of  DDR4 memory at
2133 MHz.

1. Gaussian 
kernel: A

i;
j

¼ expð -jjxi -xj jj  Þ, i; j ¼ 
1; . . . ;

5.1. Convergence

2n. Here h is the Gaussian width, and xi

2  R8x1  and  R784x1  are feature vectors in
one subset of the SUSY and MNIST Data
Sets from the UCI Machine Learn-  ing

Repository  (Dheeru  and  Karra  Taniskidou,
2017),  respectively.  Note that  the Gaussian
kernel  permits  low-rank  compression  as
shown  in  (Bach,  2013;  Musco  and  Musco,
2017; Wang et al., 2018).

vm 
¼

Algorithm ACA/ACAþ Hybrid-
ACA

BACA H-BACA

Pivot count per iteration 1 1 d nbd
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jj jj jj
jj

2. EFIE2D kernel:  Ai;j H  ð2Þ k xi xj resulting
from the Nystro¨m discretization of the
electric field  integral equation (EFIE) for
electromagnetic  scat-  tering from 2-D
curves. Here H ð2Þ is the second kind
Hankel function of order 0, k is the free-
space wave-  number,  xi;  xj R2x1  are
discretization  points  (15  points  per
wavelength) of two 2-D parallel strips   of
length 1 and distance 1.

3. EFIE3D  kernel:  A  is  obtained  by  the
Galerkin  method for EFIE to analyze
electromagnetic scatter-  ing  from  3-D
surfaces.

First, the convergence of the proposed BACA
algorithm  is  investigated  using  several
matrices:  Gaussian-SUSY  matrices  with  n
5000,  h   1:0;  0:2, an EFIE3D matrix   for  a
unit  sphere  with   n   21788   and
approximately  20  points   per  wavelength,
and a  Frontal3D  matrix with  n ¼ 1250 and
10 points per wavelength. The corresponding
e-ranks  are  r ¼ 4683; 1723; 1488; 718  for  e
¼ 10-6.  The residual histories versus revealed
ranks rk, at each iteration k of BACA with 1 S d
S 256 are plotted in Figure 3. The
residual error is defined as UkVk  F =  UV  F  
from (13). As a reference, the singular value 
spectra S k; k =S 1; 1 computed from U ; S; V
; r SVD A; e are also 
plotted.

For  the  Gaussian-SUSY  matrices,  the
baseline ACA algorithm (d  1) behaves poorly
with smaller h due to the exponential decay of
the  Gaussian  kernel.  As  a  result,  the  matrix
becomes increasingly sparse and coherent for
small  h  particularly for high dimensional data
sets. In fact, ACA
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Figure 3. Convergence history of BACA for the (a) Gaussian-SUSY kernel with h ¼ 1:0, n ¼ 5000, e¼ 10-6, r 
¼ 4683, (b) Gaussian- SUSY kernel with h ¼ 0:2, n ¼ 5000, e¼ 10-6, r ¼ 1723, (c) EFIE3D kernel for a unit 
sphere with n ¼ 21; 788, e¼ 10-6, r ¼ 1488, and
(d) Frontal3D kernel with n ¼ 1250, e¼ 10-6, r ¼ 718.

constantly  selects  smaller  pivots  and  the
residual exhibits  wild  oscillations particularly
for   smaller  h  (e.g.   when  h  0:2  in  Figure
3(b)). Similarly, the analytical and numerical
Green’s functions respectively for the EFIE3D
(Figure  3(c))  and  Frontal3D  (Figure  3(d))
matrices  are  not  asymptotically  smooth  for
ACA to converge rapidly. For all examples in
Figure 3, significant portions of the residual
curves  lie  below  the  singular  value  spectra
which causes premature iteration termination
for  certain  given  residual  errors.  In  stark
contrast, the proposed BACA algorithm   (d 32;
64;  100;  128;  256)  shows  increasingly
smooth  residual  histories residing above the
singular  value  spectra  as  the  block  size  d
increases. Although BACA may over- estimate
the matrix ranks particularly for larger  d, the
SVD  re-compression  step  mentioned  in
Section 3.2 can effec- tively reduce the ranks.

5.2. Accuracy
Next, the accuracy of the H-BACA algorithm is
demon- strated using the following matrices:
two Gaussian-SUSY matrices with  n   5000,  h

1:0; 0:2, one EFIE3D matrix for a unit sphere
with n 1707 and approximately 20 points per
wavelength,  and  a  Frontal3D  matrix  with
n ¼ 1250 and 10 points per wavelength. The
relative
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Frobenius-norm  error  jjA  -  UV  jjF =jjAjjF is
computed  for  changing  number  of  leaf-level
submatrices  nb and block  size  d.  When  h  1:0
for  the  Gaussian-SUSY  matrix  (Figure  4(a)),
the  H-BACA  algorithms  achieve  desired
accuracies (e ¼ 10-2; 10-6; 10-10) using the
baseline ACA (d  1), and BACA (d  32) when nb

1 and the hier-   archical merge operation only
causes slight  error  increases as  nb increases.
However  when  h  0:2 for  the  Gaussian-  SUSY
matrix (Figure 4(b)), all data points for H-BACA
with  d  1  fail  due  to  the  wildly  oscillating
residual his- tories. In contrast, H-BACA with d
32 achieves signifi- cantly better accuracies for
most data points  particularly as  nb increases.
For  the  EFIE3D  (Figure  4(c))  and  Frontal3D
(Figure  4(d))  matrices,  H-BACA  with  d  32
achieves  comparable  accuracies  as  H-BACA
with d  1 for most  data points. Note that d    32
is significantly better  than     d  1  when  the
prescribed residual error is large (e     10-2).
This  agrees  with  the  residual  histories  in
Figure  3(c)  and  (d)  as  they  lie  below  the
singular value spectra when iteration count k is
small.

5.3. Efficiency
This subsection provides six examples to verify
the  computational  complexity  estimates  in
Table 1. H-BACA
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Figure 4. Measured error of H-BACA with e¼ 10-2; 10-6; 10-10 for the (a) Gaussian-SUSY kernel with h ¼ 
1:0, n ¼ 5000, (b) Gaussian-SUSY kernel with h ¼ 0:2, n ¼ 5000, (c) EFIE3D kernel for a unit sphere with 
n ¼ 1707, and (d) Frontal3D kernel with   n ¼ 1250.

with leaf-level ACA (d  1)  and BACA (d   8;
16;   32; 64; 128) is tested for the following
matrices:  one  Gaussian-SUSY matrix with
n ¼ 50; 000, h ¼ 1:0, e ¼  10-2,  one
Gaussian-MNIST  matrix  with  n ¼ 5000,  h ¼
3:0, e ¼ 10-2, one EFIE3D matrix for a unit
sphere with  n ¼ 26268,  e ¼ 10-6  and  20
points  per  wavelength,  one  Frontal3D
matrix  with  n ¼ 1250,  e¼ 10-6  and  10
points  per wavelength, one polynomial
matrix with n ¼ 10; 000, h ¼ 0:2, e ¼ 10-4,
and one product-of-random matrix with  n
2500,  e     10-4.  The  corresponding  e-ranks
are  298,
137, 1488, 788, 450, and 1000, respectively. It
can be vali- dated that the hierarchical merge
operation  attains  increas-  ing  ranks  for  the
Gaussian,  EFIE3D  and  Frontal3D  matrices,
and  relatively  constant  ranks  for  the
polynomial,  and product-of-random matrices.
All examples use one pro- cess except that the
Gaussian-SUSY example uses 16 pro-
cesses. The CPU times are measured and

plotted in Figure 5.
Table 1 predicts that H-BACA exhibits 

increasing (with a factor of 
p

nb) and constant 

time when sl stays constant
and increases, respectively. Note that the rank
assumption
sl � r leading to the Oð

p
nbÞ computational

overhead may
not be fully observed for practical values of nb

and n. Given  one matrix, sl may stay
approximately constant for a
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limited number of subdivision levels  l. For
example,  sl stay  constant  for  bottom
levels  of  EFIE3D  and  Frontal3D  matrices,
and   top   levels   of   Polynomial   and
product-of-
random  matrices.  This  agrees  with  the
observed scalings  (w.r.t nb) in Figure 5(c)
to (f). As a reference, the Oð

p
nbÞ

curves are plotted and only small ranges of nb
exhibit the
Oð

p
nbÞ overhead.  For  the  Gaussian

matrices,  we  even
observe  nonincreasing  CPU  time  w.r.t.  nb

when nb is not too big (see Figure 5(a) and
(b)).

The effects of varying block size  d  also
deserve  further  discussions.  First,  larger
block size  d can  significantly  improve  the
robustness  of  H-BACA  for  the  Gaussian
matrices.  For  example,  H-BACA  does  not
achieve  desired  accuracies  due  to
premature  termination  for  all  data  points
on the  d  1 curve  in Figure  5(a)  and  d  1
and d  8  curves in Figure 5(b). In contrast,
H-BACA  with  larger  d  attains  desired
accuracies.  Second,  larger  block  size  d
results  in  reduced  CPU  time  for  the
Polynomial  and Fron-  tal3D  matrices  due
to  better  BLAS  performance  (see  Figure
5(d) and (e)). For the other tested matrices,
no  sig-  nificant  performance  differences
have been observed by changing block size
d. However, for matrices with ranks  s0 S d,
larger  d  and  nb can  introduce  significant
overheads.
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Figure 5. Computation time of H-BACA with varying nb and d for the (a) Gaussian-SUSY kernel with h ¼ 1:0,
n ¼ 50; 000, e¼ 10-2,  r ¼ 298, (b) Gaussian-MNIST kernel with h ¼ 3:0, n ¼ 5000, e¼ 10-2, r ¼ 137, (c)
EFIE3D kernel for a unit sphere with n ¼ 26; 268, e    10-6, r     1488, (d) Frontal3D kernel with n     1250, e
10-6, r     788, (e) polynomial kernel with h     0:2, n     10; 000, e    10-4,  r 450, and (f) product-of-random
kernel with n 2500,  r  1000. Note that the data points where the algorithm fails are shown as triangular
markers without lines.

5.4. Parallel performance
Finally, the parallel performance of the H-
BACA algorithm  is demonstrated via strong
scaling studies with the EFIE2D,  EFIE3D,
product-of-random  and  Gaussian  matrices
with process counts  p 8;  . . .  ;  1024. For the
EFIE2D  matrices,  n  160;  000  and  the
wavenumbers  are  chosen  such  that  the e-
ranks with e     10-4  are  937 and  107,
respectively.  For  the  EFIE3D  matrices  for  a
unit square,  n 21; 788 and the wavenumbers
are chosen such that the e-ranks with e     10-6

are 1007 and 598, respectively. For the
product-  of-random matrices,  n 10;  000 and
the inner dimension of the product is set to  r

2000 and 800, respectively. For the Gaussian
matrices with a randomly generated data
set of
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and .  The  ScaLAPACK  block

size  is  set  tox
¼

¼

dimension 50 and n ¼ 10; 000, we choose h ¼
1:0 and h     1:6 such that the e-ranks with e
10-3 are 2106 and  191,  respectively.  In  all
examples, the block size and num- ber of leaf-
level subblocks in H-BACA are chosen as d ¼ 8

nb p
64  64.  As  the  reference,  we  compare  to  a
straightforward parallel implementation of the
baseline  ACA  algorithm  which  essentially
parallelize  every  operation  in  ACA  with
collective MPI communications.

For all examples, the parallel ACA algorithm
stops scal- ing when p is sufficiently large (see
Figure 6). In contrast, the  proposed parallel H-
BACA algorithm scales  up to  p ¼ 1024. In
most examples, H-BACA achieves better
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Figure 6. Computation time of H-BACA with varying process counts for the (a) EFIE2D kernel with n ¼ 160; 000,
e¼ 10-4,
r ¼ 107 and 937, (b) EFIE3D kernel for a unit square with n ¼ 21; 788, e¼ 10-6, r ¼ 598 and 1007, (c) product-
of-random kernel with
n ¼ 10; 000, r ¼ 800 and 2000, and (d) Gaussian kernel for a randomly generated data set with h ¼ 1:0; 1:6, 
e¼ 10-3,
r ¼ 2106 and 191. Note that for the Gaussian matrix with r ¼ 191, ACA fails to provide accurate results and is 
not plotted.

parallel  efficiencies  with  larger  ranks due to
better  process  utilization during the
hierarchical merge operation. We also  note
that ACA outperforms H-BACA for the
Product-of-
random matrices with small  process count  p
(and  nb).  This  is partially attributed to the Op

nb   overhead observed in
Figure 5(f).

Overall,  the parallel  H-BACA algorithm can
achieve  reasonably  good  parallel
performances for rank-deficient matrices with
modest to large numerical ranks. Not surpris-
ingly,  the  parallel  runtime  is  dominated  by
that of ScaLA- PACK computation and possible
redistributions  between  each re-compression
step as analyzed in Section 4.  Also  note that
the leaf-level BACA compression is embarrass-
ingly parallel for all test cases.

6. Conclusion

This article presents a parallel and algebraic ACA-
type matrix  decomposition algorithm given that
any matrix entry can be evaluated in  O  1 time.
Two proposed strate- gies, BACA and H-BACA, are
leveraged to improve the robustness and parallel
efficiency  of  the  (baseline)  ACA  algorithm  for
general rank-deficient matrices.
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First, the BACA algorithm searches for 
blocks of row/ column pivots via QRCP on 
the column/row submatrices at each 
iteration. The blocking nature of BACA 
provides a closer estimation of the true 
residual error and reduces the chance of 
selecting smaller pivots when compared to 
ACA. Therefore, BACA exhibits a much 
smoother and more reli- able convergence 
history. Moreover, blocked operations also 
benefit from higher flop performance 
compared to non- blocked ones. For a rank-
deficient matrix with dimension n and e-
rank r, the computational cost of BACA is O 
nr2 assuming the block size constant and 
iteration count O r .

Second,  the  H-BACA  algorithm  divides
the matrix into nb similar-sized submatrices
each  compressed  with  BACA  and  then
hierarchically merges the results using low-
rank  arithmetic. Depending on the rank
behaviors of subma-
trices during the merge, the H-BACA may
have a compu- tational overhead of O 

p
n

yielding  the overall  computational  cost
at  most  O nr2pnb  .  The H-BACA
algorithm   can   be   parallelized   with
distributed-memory
machines by assigning each process to one
submatrix  and  leveraging  PBLAS  and
ScaLAPACK  for  the  hierarchical  merge
operation.  Such  parallelization  strategy
yields  a  much  more  favorable
communication cost when compared to the
straightforward parallelization of
ACA/BACA with



collective MPI routines. Not surprisingly, good
parallel  performance  can  be  achieved  for
matrices with modest to large numerical ranks
which  increases  process  utilization  for  each
merge operation.

In contrast  to the baseline ACA algorithm,
the proposed  algorithms  exhibit  improved
robustness  and  favorable  par-  allel
performance  with  low  computational
overheads for broad ranges of matrices arising
from  many  science  and  engineering
applications.
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