
Lawrence Berkeley National Laboratory
Recent Work

Title
AN EXTENDED SET OF FORTRAN INPUT/OUTPUT ROUTINES

Permalink
https://escholarship.org/uc/item/2df515cv

Author
Close, E.

Publication Date
1971-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2df515cv
https://escholarship.org
http://www.cdlib.org/

To be submitted for
publication

AN EXTENDED SET OF FORTRAN
INPUT/OUTPUT ROUTINES

E. Close

February 16, 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Dioision, Ext. 5545

UCRL-19463
Preprint

c::
()

~
~

LAWRENCE RADIATION LABORATORY ~
H:>-
0'

UNIVERSITY of CALIFORNIA BERKELEY ~
.()

.JJ

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. ,

'.;..

UCRL-19463

tOWARDS A MORE GENERAL SET OF FORTRAN I/O
SUBROUTINES

1. INTRODUC TION

Over the past numbe~ of years there has evolved in ALGOL

a style of input..., output that has no direct equivalent in FOR TRAN. In

particular, the FOR TRAN READ/WRITE routines read/write one or

more cards/lines for each call and, as usually used, there is a closely

associated format statement for each such operation. In ALGOL, however,

it'is pos sible' to read and write item- by- item [1, 2] and the formating

of these operations can be preset in a rather convenient fashion [3,4] .

This difference in input/ output is, in general, not because of the

difference in the languages; but, instead, seems to be one of style and

standardizatlon of the earlie r FOR TRAN approach. In certain applications,

it is advantageous to have the item- by-item control that these routines

provide. Below is presented a set of basic FOR TRAN subroutines that

have been derived from (1,2,3,4]. They have, in so far as possible,

the same names, calling sequences, and effect as their ALGOL equivalents.

The routines naturally divide themselves into classes. The first

(Tablet) is a basic set of input- output routines that provide a small self-

contained system containing most of the feature s of the I/O package. Next

(Table 2), is an additional set of subroutines that allow the user to set

input- output parameters and, thus, gain greater control over the data

transmission. A third set (Table 3) are derived routines that follow, to

-2- UCRL-19463

a certain degree, the Berkeley style [3, 4] of input-output.

A few elen1entary charact~r handling routine s are furnished

as a separate clas s of subroutines, (Table 4).

'In so far as is possible, the routines have the same names, calling

sequences,and effect as their ALGOL equivalents [1,2,3,4] :

The use'r- oriented subroutine s (Tables 1, 2, 3, 4) are all based

. . .
on a lower level set of subroutines (Table5) that actually carry out much

of ' the wo'rk. These, too, have been isolated separately and written in

FOR TRAN. It is these routines that are most system dependent and for

the purpose' of unde r standing, the input- output package can be considered

to be black boxes. Once it is understood what the overall picture is and

how the user-oriented routines work, then these lower level subroutines

naturally fall into place and are rather easy to understand since they

actually implement the package.

While; at first glance, it may appear that such a set of input-output

routines is expensive. in coding and time, it should be remembered that

it is the ove raIl style and structure that is being presented and that the

ideas and structure are simple. Thus, a properly rewritten FOR TRAN

I/O package could easily, I 'believe, contain the usual FOR TRAN routines

•
and also an expanded set of routines such as are presented here. For

. the pre'sent, h~wever, this is presented as an, essentially, stand alone

package of FOR TRAN subroutines.

Sections 2 through 7 that follow describe; in general. the ideas

,
'.,..

- 3- UCRL-19463

assocfp.tedwith the various classes of routines. Appendix A has a more

detailed descript~on of some selected lower level routines that will help

understandkey points; thus, easing the task of modifying these routines.

Appendix B gives some examples to illustrate the size of this subroutine

package and some pertinent comments on their use. For the person who

wants to simply use the routines, Tables 1 ~ 4, Table 6, and Appendix

B should suffice ..

·2. BASIC USER-ORIENTED SUBROUTINES

Tlie basic user- oriented subroutines are tabulated in Table 1 along

. .

with a comment that should help in understanding their proper use.

The first two are INMODE, OUTMODE that select the mode of

input, output. The following convention has been decided upon. There

. .

shall be two input and two output modes. One of these is a standard mode,

selected by calling by calling INMODE or OUTMODE with the hollerith

constant iHS. The other is a FOR TRAN input- out mode in which standard

FORTRAN read/write routines are used for all input-output and this is

selected by calling inmode ox. outmode with the hollerith constant 1 HF.

The original selection at compile time is standard input and standard

output via .adata statement.

There is complete compatibility between the standard and FOR TRAN

moder however, a certain amount of care must be taken when switching

modes since the same I/O routine called in two different modes will, in

-4- UCRL-19463

general, produce two different output actions. More will be said about

this later.

, Thene~t threeioutines,FNDUNIT, DRPUNIT, CNTUNIT, are

used, . respectively, to find, drop, and connect the unit that appears as

their integer argument. A more complete discus sion of how the input-

output channels are arranged can be found in Section 6 where some of the

ideas connected with the lower level routines are discussed. The following

short summary will prove sufficient to use the I/O package.

All the input/ output done using the user level routines works

through one inputloutput channel that is designated the current input/

: . .
output channel. Initially, the input channel is selected as 60 and the

output channel as 61 via a data statement. However, another choice can

be made hy a call to the subroutine CNTUNIT. For example, I:; CNTUNIT

(2, 2HIN) will set I = 2, the name of the unit connected, and will connect

unit 2 as the current input unit. The previously connected input unit, 60,

is stored. In general, this routine will suffice for the user. However,

since storage space is finite, the number of units that can be stored is set

to six. Thus; the subroutine FNDUNIT can be used to find a unit. For

example, I = FNDUNIT(~} will establish whether more storage space exists

for storing units since I = -1 implies that there is no unit with name zero;

that is ,no empty place to put another unit. And, similarly, DRPUNI T

can be used to purge a unit from the storage area if more space is needed.

It should be noted that a unit can always be connected, even if there

;...5- UCRL-19463

is' no place t'o put the currently active one that it is replacing. If there

is no storage available. the currently active unit is dropped and the new

one connected. It can be reconnected; it will. however, be treated as a

. . .
new unit and thus the channel characteristics will be reset. This dropping

of a unit does not necessarily imply that the one line of information is lost.

The exact effect of this unit switching depends on the implementation of the

lowe r level rciutine s .

the two basic input-output routines are IN and OUT. All other

routines that transmit data. such as INREAL. OUTREAL. ~re based on

calls to IN/OUT. This has been deliberately done s·) that the exact code

that constitutes their body can be written as is most suitable. The input

. .

routine IN(N~ UNIT .FMT. A) transmits from the input channel - UNIT-

the N items A(1) •..• A(N) according to the format -FMT-. The output

routine OUT(N. UNIT,FMT.A) behaves similarly when writing on the out-

put channel- UNIT- .

. These two routines were principally designed to work in the standard

input-output mode. As implemented .in the lower level FOR TRAN sub-

routines, the subroutine IN does a simple formated READ(UNIT. FMT)

(A(i), i = 1.N) in the FOR TRAN mode and completely ignores the format

in the standard mode. fmt = 1HS. In the character mode. fmt == tHA, n

characters are packed into Aleft justified. The output routine OUT does a

simple formatedWRITE(UNIT. FMT) (A(i). I = 1. N) in the FOR TRAN !TIode

and in the standard mode it also does a formated write. The result is,

- 6- UCRL-19463

essentially, the same formated write except in the FOR TRAN mode the

next call to OUT will start on a new line in the usual FOR TRAN fashion;

whereas, ~n the. standard mode, the wr.ite will start in the next column

. after the last printed character of the preceding output transmission.

I might note in pas sing that the simple expediency of being able to

use a FOR TRAN WRITE statement or a READ statement in a mode similar

to the here defined standard mode wouldeHmiIiate "the need for IN and OUT •.

And, aswili be seen shortly, keeping track of print and read positions in

a user-a.ddressable manner would also be quite useful. I point these out

becaus~ it is not easy to directly modify some of the existing systems

input/butput routines, even by people who know the system. The five
. .

subroutlnes CARDS, LINES, SPACES, PAGE, S complete this basic list.

CAi.L CARDS (N) skips N-1 cards on the currently active input unit, the

n":th card is then the current data ·card for standard input and is in the one

line holding buffer. CALL LINES (N)", producesN line feed carriage re-

turns on the currently active output unit, w.hile CALL SPACES (NT:pririts

N blanks on the currently active output unit. This illustrates two things:

.oneis that such routines should not need the CALL associated with FORTRAN

programs and the other is that whenever a unit is not specified in the

argument list, the routine operates on the currently active unit. This unit
II.

is the last unit set up by some definite actipn; for example, the compiler

via a d~ta.statement assigns 60, 61 as input/output units. Likewise, any

call to a routine with a unit argument will make that unit the currently

active. unit.

';'", .

i~

(.. /

-7- UCRL-19463

Subroutine PAGE performs a page eject followed by a carriage

return. The top and left margins are set to the ,current system values.

Subroutine S outputs the string STRING. In ALGOL, a string

is well defined. Thus, a nice convenient way of outputing text is to say

OUTSTRING(TEXT). This can be done here by defining STRING to be

. any valid hollerith constant that is itself a valid FOR TRAN format.

This, then, completes the basic set of routines. The simple

subroutine belowillustra te s their use :

SUBROUTINE TEST

END

CALL OUT MODE (1HS)

CALL pAGE

CALL OUT (1,2., 7H(3F6. 2),10.21)

CALL S(19 H(* THIS IS A TES T':<))

RETURN

'A call to TEST would produce on unit 2 starting on a new page

10.2.1 THIS IS A TEST

On the other hand, if we call OUTMODE with 1HF, the re sults

are 10.21.

THIS IS A TEST.

3. ADDITIONAL SUBROUTINES FOR SETTING I/O PARAMETERS

The subroutine s discus sed here and tabulated in Table 2 all
.1

deal in some way with the current input! output unit depending on whether they

- 8- UCRL-19463

,
are input or output action. The current unit is defined to be the last

referep.ced unit. The compiler, via a data statement, initially sets the

current input unit to 60 and the current output unit to ,6.1. ;"

The two subroutines H LIM and V LIM are margin setting

routin,es~ , Initially, the left margin is set to 1 and the right margin to 132,

the top margin to 5 and the bottom margin to 60. This gives a line length

of 13Zcharacters with 56 lines per page. The first character is printed

in print position 1, usually a carriage control column in FOR TRAN, and

the first line of print starts on line 5. The actual spacing on the output

printer depends on the printer overflow characteristics. These margins

can easily be reset. For example, CALL H LIM (5,110) causes the left

margin to be column 5 and the right column (10).

The two routines READP, PRINTP return as values, the current

value~f,the r~ad position/print position pointer .. These values are the

nextcolurhn that will be read/printed. The only reason they have an

argument i~ because CDC FOR TRAN [6] requires that function sub-

routines have one or more arguments.

The two routines IN TAB, OUT TAB are somewhat similar to the

tab operation on a typewriter. CALL IN TAB(N) will cause the read
,II

poirit~<r. to be s'et to N and the next character read will be from column N.

Similarly, for OUT TAB.Obvi.ously, one can easily set a number of

tabulation positions by presetting an array in the calling program.

The subroutine IOPARAM can be used to set almost all the

- 9- UCRL-19463

input/output variables that the I/O package uses. The first argument

is the number of values that are in the arrays MODES, NAMES, VALUES.

The variables are contained in the common block with name 10. Their

compiled values and definitions are given in Table s 6 and 7.

The next four subroutines PRINTER, PUNCH, INUNIT, OUTUNIT

are used to set the currently active input/output units to the requested

value. The punch has been selected as 14 and the printed as 61.

The four format routines IFORMAT, RFORMAT, BFORMAT,

OFORMAT are used to preset the formats that are used for the outputting

of integer, real, logical (Boolean), and octal values when routines are

used thaf have no format specification. In the next section, we shall

discuss derived routines and it will be seen that many of these have no

format specification. When this is the case, the appropriate pre set

, . .

format is used. These print formats are initially set by the compiler

via da'ta statements to standard values which are 123,' E23. 14, L10, 023.

They can be reset at any time by calling the appropriate format routine.

Once set to some value, they retain that value until reset by another call

''\ '
to the format routine. The routines that furnish the forma t along with

the it~ms to be transmitted do not disturb these preset formats.

The field width of the output quantity: is specified by the variable

FIELD. The quantities will be right justified with zero fill in this fielc1

width. The number of decimal digits in a real number are specified

by the variable DEC. The logical variable FIXED selects between fixed

-.10- UCRL-19463

and floatit;l,g point representation. Thus, CALL RFORMAT (.FALSE., 23,14)

will setthe above standard format for the output of real numbers.

The subroutine EFILE is used to write an end"-of-file on the

named unit. It is necessary to use this routine when in the standard

(partial line) outptit modeilsince its· use ensures that the one line output

buffer will be emptied.

4;.. DERIVED INPUT- OUTPUT ROUTINES

The routines discussed here are all based on the input- output

rO'lltinesIN, OUT. They obtain their preset values from the common

block 19 and are essentially independent of one another and of all the

odler user-orlented subroutines that have been discussed in Sections 2

and 3. These routines include routines similar to those used by CDC

ALG'OL[Z]and those presented by DeVogelaere [3] , and also some of

the logical variants. Their action is approximately the same as their

ALGOL equivalents. However, there are some noticible changes. For

example, the CDC ALGOL procedure OUT REAL outputs quantitie s using

i:heir standard format, whereas, the OUT REAL here presented uses a

preset format. Also, in the Berkeley style output presented by DeVogelaere,

a call to the procedure OUTE(Rl,FIXED. FIELD, DEC) followed by a call

OU'rREAL«(UNIT, RZ) will cause both R1 and R2 to be output with the format

set by FIXED, FIELD, DEC. In other words, the variable format that

appears in the argument list resets the preset fotnlat. The routines

\.1

~,

-11- UCRL- 19463

presented here have complete independence of the preset and variable

format.

The subroutin~s can be found in Table 3. We shall limit ourselves

here to a few general remarks that will make their use obvious. The

idea behind their grouping is the following. To input/ output quantitie s,

we must specify a unit from which it will be read/ written, a list of

quantities to be transmitted, and a corre sponding format for that

transmission.

Ifall of these items appear in the argument list, then those values

are used. For example, CALL OUTR 3(N, R, . TRUE., 5,2) outputs on

unit N the value of the real variable R using the fixed point format F 5.2.

The current output unit has now been set to the value of N. If any of

the items are mis sing, then a standard choice is made for the mis sing

item. A missing unit causes the current unit to be used. A mis sing

format causes the appropriate pre set format to be used. On output,

these are the formats that are set using these routines: IFORMAT,

RFORMAT, BFORMAT, OFORMAT. On input, the format selected

is the standard (field free) format. For example, CALL OUTR1(R)

cause s the value of R to be output on the currently active output unit

using the preset real format that was set either by the compiler vi.a a

data statement or bya subsequent call to RFORMA T.

The function subroutines that appear in Table 3 assume the value

of the item read. Since these routine s are used in arithmetic c'xpre s sions,

. -12- UCRL-19463

it is.'irigeneral, not sufficient to have one routine. For example,

J ;: READ'does not wo.rk too well because of the implicit mixed mode

arithmetic that a FORTRAN such as CDC FORTRAN [6]allows. Thus,
. .

they as:'ea,ll explicitly typed. Again, the redundancy in argument for the
. .

fl.lnctions READ I, etc., is becatuse of the requirement that a function

subroutine have at least one argument.

The naming of the subroutines is somewhat arbitrary; but, we

have tried to adhere to short names. (less than seven characters), for

user convenien~e and word size limitations on identifiers, that identify

the type Of routine and~ at the same time, preserve the names of

previously defined input/outputroutines [2,4] that perform similarly.

Logical variants of the same routine have been sequentially numbered .

. The subroutines OTI, 101, and their variants have a STRING

argument associated with them that can prove useful in some application.

As was previously mentioned, STRING is a hollerith constant which is

itself a suitable variable format including left and right parenthesis.

A call such as CALL OTI(S, SH(*B':<), 3) will produce the output of

B= S. Thus, the string is assigned the value of the output quantity.

Similarly, a call such as J = 101(1, SH(*B*), 3) will assign to I and J the

value of the next item read from the currently active input unit and also

it will write B = N on the currently active output unit; we assume that

N was the value just read in. Since there is some disagreement in

FOR T,RAN about the use of multiple statements per line of coding, these

OJ

-13- UCRL-19463

routines are in a sense limited to one output action per line. In CDC

" FOR TRAN, one could add the $ delimiter and write multiple statements

.,. per line, but the last statement cannot have a $; . thus, it is better to

leave .it out tompletely.

The next two sets of routims aTTAr, INAI and their variants can

be used to output-input arrays. The array element a(i) is the first

element input and the element a(u) is the last element iriput. Multiple

dimension arrays can; of course, be handled by simply considering the

array as a large one-dimensional array.

The routines INPUT and OUTPUT are formated routines and can

be used in either the FOR TRAN or standard mode~ Since the se routines

are defined using FOR TRAN, they are separately written as INPUT 1,

INPUT 2, •.• ; but, if they were written as system routines, it would

seem natural to do as CDC [2] has done and have one routine in which

the number. of arguments is arbitrary. It is worth pointing out that the se

routines are very closely related to the READ, WRITE routines of

FORTRAN, but have the added feature of being able to have any legal

I' ~,

actual parameter as an <;trgument. Thus, for example, the argument

Ai could be a function subprogram, or arithmetic expre s sion, as well

as a simple variable.

-14- UCRL-19463

5. CHARAC T;ER- ORIENTED SUBROUTINES

The manipulation of characters using FOR TRAN subroutines is

usually expensive. Also, there always seems to be an infinite number
i

of routin~s that can be found useful to have. The routines given here

are patterned a:fter' similar ALGOL routines [1,2] that have been set

forth as basic character-oriented routines.

The :first such routine is CLENGTH which has as its value the

- .
lerigth in characters of the argument which is a STRING. A STRING is

defined to be a hollerith constant of the form NH(*ANY VALID TEXT*)

whew. the delimiters have been chosen to be (~:, and ~:,). The delimiters

ar'e not counted and, as implemented here, a right delimiter cannot appear

in the text.

The routines INCHAR'.~, OTCHAR0 transmit data from the array

SOURCE arid to the array DESTINATION. A more precise definition is

given in Table 4. The action of the routines INCHAR and OUTCHAR are

similar to INCHAR0 and OTCHAR0, but read/write their results from/to

the specified unit. These routines contain the argument LENGTH, the

length of the string. This was done because the simp] e definition of

th~' STRING that is used here requires the actual counting of the

Ii'

characters to obtain its length. This is too expensive to do for every

call to these routines, thus, it is furnished as a separate argument.

The subroutineC. LENGTH furnishes the appropriate length.

-15- UCRL-19463

The routine EQUIV allows one to obtain the internal representation

<I'

of an element in an essentially machine-independent manner.

,The two routines CHARF, CHARS are character fetching and

charac:ter storing routines. They are basic routines and are prese:nted

here since they are extensively used in the lower level subroutine

package and are convenient routines to have available. A transfer of

characters can easily be performed by the call such as CALL CHARS

(:bEST; 'Ni, CHARF(SOURCE, N2)).

6. LOWER LEVEL SUBROUTINE

This set of subroutines exists solely for the purpose of

implementing the previously discus sed user level subroutine. How they

are written, their names, and their coding is largely dependent on the

computer ns,ed and the computing facilities available. A particular set

of these routines suitable for the CDC 6000- series computers has been

written in FOR TRAN and they are listed in Table 5. The action taken

by them isirtdicated there.

Afew comments on that set of routines is given here. There is a

data initialization routine INIODAT which initializes all common areas that

contain i/o parameters. This would logically be a block data routine.

,
!tis presented here as a subroutine to insure its loading when using a

system loader to satisfy the unsatisfied externals.

There a,re two format setting routines. One is for logical values

.:.{ 6- UCRL- 19463

and'one ~orrealvalues. Connected with this is a rot tine DGINTL that

converts the integer N to an internal represention, ir this case CDC

display code [6] with blank fill, that is suitable for .UEe in a FOR TRAN

, .

FORMA Tstatement.

The routine CHNSF actually connects the input/ output channels

.as currently active units and also stcres the channel cbaracteristics

and is thus. quite dependent on the channel organizaticn.

'There are two specialized routines READ N a,ad WRITE N that

do field-free reading and partial line writing. Connected with the

partial line writing are two routines STORE and WRT.

A more detailed description of some of these routines can be

found in AppEmdix A.

7. FIELD-FREE FORTRANINPUT

The standard input, as defined here, is field- free input. By

this is meant that the data input is recongized by the manner in which it

, is written and a FORMAT specification need not be specified. The

following conventions have been chosen.

An integer will be of the form + NN .•.. N where N are decimal

digits. A real menlber will be of the form + NN ... N. NN ... NEt NNN.

The distinction betw~en the integers and reals is made by supplying the

decimal point for real numbers. If the E is supplied, the re.al number

, will be read in an appropriate E format; otherwise,it:will be read using

-17- UCRL-19463

an appropriate F format. An octal number can be either O+NN ... N

• or else +NN ..• NB where N are octal digits. A logical value is specified

by T, TRUE, F , FALSE. Any number (integer, real, octal) value can

be followed by RNN ... N when N are decimal digits. This will cause

that quantity to be read NN ... N times. Thus, 5R3 causes the number 5

to be irtput three times; that is,the next three iriput requests assign 5

to the input quantity. A comment can be inserted anywhere as >:'/text/-J.<

and it will be skipped during input. A string can be input as (':'TEXT>:')

and the array into which it is input will contain (-J.'TEXT':'); thus, one

can input and then subsequently output a string. Items to be input are

sep..,rated by a deliminator. This has been chosen to be either a comma

or else k or more blanks where k is initially set to 2.

A field may be skipped by inclosing an empty field with two

commas· such, , • Such fields cause the field to be skipped and the cor-

responding location to which the value would be assigned is also skipped.

The card width has no significance on field free format. The quantitie s

.are read as they are encountered.

The following example will illustrate some valid data:

+ 5.2, 3 ':'/THIS IS AN EXAMPLE/':'

(*A STRING IS READ*) -6.3E-1R5, +6R2, 0-777, +11BR2.

Thirteen items are read. The first is a real number, the secund

ail integer, the third a string, then five real numbers, two integers, and

finally, three. octal numbers. . These can be placed anywhere on any

...• '.

.' ~,

, 'UCRL-1. 9463

. r
" .;

~U:B1We:r;6ic~:r'cis~ 'Noh~',h~~e~err; th~t it is pos sible to delimit the
. '.'

input 1ine,(~ard) length by setting the 'input left and right margins with
' .. ~. :. ~; "

suh"r8utlh'eiOPARAM.' See Table U and Table 7.
:. ,

b~uble pr~cisionnurhbersa:re ~i-itten thesame as asiI:J,gle

preci~ion<nUrribei e~~eptth~tthe E is replaced by a D. 'Thus, 6. 3D - IRS

would dellote five double ,precision numbers. One double precision number

isco~sideredasone itetnin ~heinpu't lists; however, it occupiestwo

,", cons'et~tivelocati<:ms internally_ Presently, double precision miinber s '

cannot be skipped~ith an er:pptyfie1ci_

'.',.

•

v

..

-19- UCRL-19463

APPENDIX A

Subroutine Descriptions

The information presented here pertains to selected subroutines

from the Input- Output Package.· It is primarily m ant to serve as a

guide iIi under standi ng the operation of the se rout.ne s and to point out

some of the system type deperidencies.

SUBROUTINE INIODAT

This routine is used exclusively as a data s ;tting routine. To

insure that it will be loaded when loading programs using a system loader

such as"the Lawrence Radiation Laboratory's load,~r, LODE, it has

been made a subroutine. The variables appearin~ in this routine are,

essentially, all of the pertinent I/O variables andlre defined in Table 7.

SUBROUTINE DCINTL (N, RESULT)

Since this routine converts integer nuinberE to an internal

representation suitable for use in a FORMA T statE ment, it is machine

dependent. The characters per word, CHARPW, j s set to 10 and the

internal code is assumed to be CDC 6000- series di splay code [6] •

INTEGER TUNC TION CHARF (SPURCE, N)

This routine fetches a character from an array and thus is machine

dependent. The characters per word, CHAPWOR, is set to ten and the

-20- UCRL-19463

bits per character,BITPWOR, is set to six. M1 assumes a 60- bit

word.<,The two shift functions LEF Tand RIGHT are used. This routine

is pr~sently written' in CDC FOR TRAN and CDC COMPASS. The two

routines perform identically. Because of the frequentuse made of this

routine', the COMPASS version is to bepl"eferred'.

SU Bl(OU TINE CHARS (DEST, N, ITEM)

This is, essentially, the inverse of CHARF.aridtheabove comments

applytoth~s routine also.

SUBROUTINE ST'ORE (ITEM, UNIT)

. STORE is not machine dependent. It is used only in WRITEN
, , '

, and perfo~ms:~he specifiC task of filling the one li~e output buffer

BUFFER3. To do this it uses subroutine CHARS. As it fills this one

line binfer,it keeps track of the right margin, R TMARG, and if the

curr~nt po~;it:lon of the write pointer, COLCNT3, exceeds the right

inargfn.it then writes out the one line of data, advances the line counter,

LNCT,and resets the write pointer to the left margin~ LFTMARG. If

,the line count is larger than the number of lines allowed on a page, RP,

then it writes a line with a 1 in column one to cause a page eject, and

then spaces the correct number of lines to establish the top margin.

The actually emptying of the buffer is done by subroutine WR T.

SUBROUTINE, WR T (UNIT, L, U, A)

This routine empties the array A by using a standard FOR TRAN

WRITE statement. It also reinit~alize s A to all blanks thus rea stablishing

•

..

.",

'.

-21- UCRL-19463

A a s a blank" line.

SUBROUTINE WRITEN (N, UNIT, FMT, A)

This subroutine, and the two subroutines STORE and WRT that

it utilizes,could be replaced by the standard FORTRAN routine WRITE

if only there were an option that would let WRITE output less than a

re~otd. As presently written, the system routine OUTPUTC associated

with the CDC FORTRAN WRITE statement finishes by writing an end

of record zero byte thus making it unsuitable for the writing of partial

lines since it always writes at least one record.

In order to overcome this diff iculty, the following, rather expensive,

approach was taken. The CDC FOR TRAN [6] routine ENCODE is

used to make all formatted writes when in the standard (partial line

writing) output mode. These writes are written as 140 character lines

into the output buffer BUFFERi. Thus, any formatted write with

records (line lengths) less than or equal to 140 characters can be

written using the standard FOR TRAN formats. This wrjteis done at

statement 312.

In this mode of output, there are three formats that are considered

special. These are the (/), (), (IH1) that represent a new record (new

line carriage return), the writing of a blanl< into the output line (actually

BUFFER3), and the page eject operation. Because of the way that

WRITEN is cnnstructed, the only way that these operations can be

performed is to call the subroutine WRITEN with these special formats.

, ' ,

-22- UCRL-19463

Thus, the 1, the repetition ofpa~enthesis, and the page eject will not

'.,

produce the desired. results if they appear in a FOR TRAN style format.

They will be oorrectly handled by ENCODE, but our s~bsequent action

will des;troy'this effect. The f will be ignored, as will the repetition

6f parenthesis or repetition of Format. The page eject symbol in

Column 1 may or may not end up in Column 1.

After the write operation by ENCODE, the rest of the code is

devoted to fetching the written characters out of BUFFER 1 and storing

them into the one line output buffer, BUFFER3. Initially, BUFFER1

is set to all zeros. The ENCODE write will fill one 140 character line

with data. Starting with character 1 in BUFFER3, the characters are

fetchedorie-by-one. The end of the write is signified by obtaining

the • ~ characters. As the characters are obtained, they are stored

by the routine STORE.

Restrictions: The format must be exausted in anyone write

staterp.ent~ Also, repetition of format or record slashes are illegal.

Anyone write must be ~ 138 characters. Thus, the write statements

CALL WRITEN(24, UNIT, 13H(12A10/12A10), A) or

CALL WRITEN(24, UNIT, 7H(12A10), A)

are illegal.

.,

'-

-23- UCRL-19463

. Again, all this expensive effort arises because ENCODE has a

limit on the number of characters that can be written into a record,

and because it is not presently possible to know how many characters

. were written per record. If this were not the ca se, one could simply

fetch from BUFFER1 and store in BUFFER3 until a zero character

008 was obtained.

SUBR OUTINE READN (A)

This is a basic field free input routine. If the FOR TRAN READ

routine had a suitablernode that allowed the reading of partial lines

of data in a field free format, then this routine could be replaced by

that routine.

The actual data to be read is input via a FOR TRAN READ state­

ment at statement 1600. The left margin, INL, and right margins,

COLMAX are observed when using READN, data to the left or right of

these :q1argins will not be input. The right margin check is made after

statement 300. Once the one line input buffer BUFFER3 is filled, the

characters are fetched, statement 304, from this array one at a time

and are identified in the next statement by checking their position In

the array ALPHBT. The character table ALPHBT is taken from

Appendix A [7 J sequentially starting at letter A and ending at ;. The

-24- UCRL-19463

v due of the j-th po~ition in array ALBHBT identifie s in octal the j- th

character of that Appendix. For example, TYPE = CHARF(ALBHBT, 2)

returns TYpE = 128; thus recbgnl.zing B in the octal numbers written

as NN. ~ ~ NB.

Upon entryinto READN, the pointersP(I) are set to -1, the

buffer NUMBUF(I) to a blank card, and FORMAT 2 to all blanks. If the

number being read has just previously been read under a repeat option;

t:lat is, the RNN ••• N was appended to the number, then the read operation

consists of a simple assignment and the repeat counter NUMRPT is

decreased by one.· This happens until the requested number of repetitions

has been satisfied. This action is ·controlled by the logical variable

F EPEAT just before statement 204.

Each call to READN reads N ite~s before returning. In the case

of numbers, this is N numbers requiring N words of A, but in the case

of a string,'this would be N strings each taking up the space that is .

required to store (*TEXT*) and in the case of characters, it would be N

characters. That is, an item may be a number or a string and the actual

storage required to input N dtheaeinto A depends on the items. The

appropriate counting for this operation is done by settin.g Nt, N2, N3, N4

at statement 200. The 10 assumes that there are ten characters per word.

The re st of READN is broken into small sections that deal with

tho quantities that are labled in the program. Thus, the section BLANK

counts blanks to recognize the delimiter made up of NUMBKS of blanks,

I·
I

t \

- 25- UCRL-19463

currently set to 2 ..

The section ASTRIK will recognize and skip >!</TEXT/>!<. The

section LEFTPARANTHESIS will recognize (>!<TEXT>!<) and store this

string starting at the next available A(I). The section COMMA recognize s

. the delimiter,. The next two sections TRUE and FALSE recognize the

logical values. Any valid display code character, [7] Appendix A, that

does not direct the program to a labled section will go to section ALPHABET

and be skipped. Any +, -, ~, digit will go to the section PLUS, MINUS,

POINT, DIGIT. The B, 0, E, R options are recognized in the sections

BAND OHO, E,REPEAT .

.. When a deliminat(()r ha.s been encountered, NUMBKS or more

blanks or a comma, a tra~sfer is made to READNUMBER, If the field

between deliminators was empty P(1) < 0, then that item is skipped,

statement 1500, and it causes the next item to be stored in the next A

position; that is, a word is skipped in A. Presently, logic-al values are

excluded from the repeat option. P(1)::: 0 shows a logical value was

read. Iia number was encountered, P(1) > 0, then the numerical field

widths are appropriately set into FORMAT2, and the number is read

using the CDC routine DECODE, [6] from the number buffer NUMBUF.

Thus, to summarize, the read operation consists of filling a line

buffer BUFFER and then recognizing and constructing a number in NTJMBUFF,

At the same time, the appropriate format is built in FORMA T2. A

reference to Figure 1 will explain the significance of the pointers

- 26-

P(1), ••• ,P(S) which are all initialized to-1.

Figure 1 : Number constructed in NUMBUF •

. Real 'Pi.

I
P 2
I

p
I 4

±NN ••• N • NN ••• N E ± NN ••• N RNN ••• N

Octal Pi Ps
I I

Pi Ps
I . I

< 0 ±NN ••• N U ±NN ••• N B LJ

Ps
I
u

UCRL-19463

t· Omitted from count
since it is skipped and not
stc)red in NUMBUFF

Integer. Pi Ps
/ I I

:J:NN •.•• N U

SUBROUTINE CNTUNIT(lJNIT, . MODE)

CNTUNIT connects UNIT either as an input, MODE;: 2HIN •

. ,." .. ."

or output, MODE == 3HOUT, unit. The last connected units are LSTIN .

and LSTOUT for input and output. If the UNIT to be connected is already

connected, nothing is done. Otherwise, the current unit is stored and

UNIT is connected. When UNIT is connected as a new unit, it is placed

in the 10 buffer area, IOBUFF, and also it is activated as the current

unit~If there is no storagell!P8=eavailable in IOBUFF,· then it is simply

connected as a currently active unit and the next request for another unit

will cause it to be dropped. Thus, UNIT will always be connected, but

may not always be stored.

-27- UCRL-19463

The actual finding of the units is done by subroutine FNDUNIT

. .

which returns a value NAME such that IOBUFF(NAME) contains the

name of the unit it was supposed to find. A value < 0 means it was not

found •

. The actual setting, storing, and fetching of the parameters is

done by CHNSF.

SUBROUTINE GHNSF(SF, UNIT, NAME, MODE)

The easiest way to understand CHNSF is to look at the channel

structure given in Figure 2. The definitions of the common variables are

given in Table 7 .

. Whenever a new unit is connected, the current value of the channel

'. .
characteristics residing in the common block 10 are used. These can

eas:i.lY be set using HLIM and VLIM for output, or else IOPARAM. T~ese

characteristic s plus the blank filled 1 line buffer BUFFER are stored,

21 words, in the first available location in IOBUFF. There is room for

six units (6x 21 :: 126).

The currently active units are defined by common blocks/IO/

and I BUFFERS/ as indicated in Figure s 2 and 3. CHNSF fetche s from

IOBUFFand stores in these commons, or fetches from these commons'

and stores in IOBUFF, to establish different channels. The use of the se

small temporary working areas enables the multiple switching of channels

without loosing the channel characteristics or the partially constructed line.

This structure is patterned somewhat after the CDC ALGOL [2J

- 28- UCRL-19463

channelstructure~ These channel characteristics and buffers can be

set up inte'rnally in the internal buffer areas as has been done for the

CDC ALGOL, ,but .theabove one line channel structure was chosen in

order to have a machine independent FORTRAN code.

Figure 3 shows schematically how the input channels are arrayed.

Figure 2. Channel Structure

.Word t 2 3 4 5 6 '7 8 . . . 21

Input name INL INR INLP INRP INRHO INRHOP II, TNord 1 line buff(7r

Common 1 15 16 18 19 21 22 COMMON /BUYF'ER/
/10/ BUFFER (1) , ... ,BUFFER(14)
location

Output, name OTL OTR OTLP OTRP OUTRHO OUTRHOP 14 word 1 line buffer

Common 2 9 10 12 13 2') 24 COMMON /BUFFER/ . ,)

/10/ BUFFER (52) , ... ,BUf'F'ER(65)
location

Figure 3. C,"hanne1 organization of the array rOBUFF in common IOBill'F

1 . 22
Iname I characteristics 11 line bufferl It-=n:'::a~m-e''l-c-:-h-a-r-a-c-:-t-e-r:';-i-st-:-:-i-cs-'-17i--:1~l~' n-e-""7b-u-:r::-:f::-e-rl .W

106
Iname I characteristics Ii line buffeij

.currently active units in common 10
lIst inl characteristics 11 line bufferl I1st out I characteristics 11 line bufferl

- 29-
UCRL-19463

APPENDIX B

Use of Routines by LRL Users

The use of these routines is quite sirripleand is illustrated by

an example given here. The'information presented in Tables 4.- 7

should prove sufficient to use them correctly.

,Afew comments should, however, be made:

1. The standard input and output units are 60 and 61,

respectively. If these are suitable, then no units

need ever be referenced.

2.' The routines compile and execute under RUNF and

FTN ,(2.3).

3. The best use of these routines is made using the

library feature of LODE.

4. The subroutine organization is given in Table 3 and

Table 8. If a loader is not used to load the routine s by

satisfying unsatisfied externals, then these subdivision

will prove useful. Deck Ais required. Essentially, all

the se routines are used. Deck I is required. to set the

formats for those routines of Table 3 that do not have a

format. The rest of the decks are independent and can

be used as desired. The numbers in Table 3 refer to

decks; for example, deck 1. 1, etc.

Subroutine

.! inmode (nlode)
s outmode (mode)

~ fnd unit (unit)

~ drp unit (unit)

if cnt unit (unit, mode)

r ~,-,

Table 1

Basic 10 Subroutines

Commerit

'For input, ifmode=1HF, then normalFQR TRAN
formatted reading is performed. ~ mod~=' 1HS,
then the standard field free input is used.

For output, if mode = 1HF, then normal FOR TRAN
formatted writing is assumed. If mode:: 1HS,
then the standard partial line writing routine is'

. used.

The IO buffer area is searched for the channel·
with name -unit-. If unit is found, then fnd
unit = name where rOBUFF (name) contains the
name -unit-. If the channel -unit- is not found,
then fnd unit = ,. L Note, an empty IOBUFFER
area channel ha s unit 0 as signed to it.

The 10 buffer area is searched. If the channel
with name -unit- is found, then it is dropped
from the 10 buffer area. If it is not found, then
drp unit =-1.

The channel with name -unit- is coimected to the
standard input/ output channel area. If mode = ZHIN"
then it is connected asan input channel; if mode = .
3HOUT, then it is connected as an output channel.
The value of cnt unit is the name of the unit
connected.

I
VJ
o
I'

c::
(')
~
t"' ,
.....
'" *"
"" VJ

.. - ~-..,

Subroutine

~ in (n, unit, fmt, a)
s out (n, unit, fmt, a)

s cards (n)

s line s (n)

s spaces (n)

~ page

S8 (string)

s nlcr

Table 1 - contd.

Comment

The n quantities a(1), •.. , a(n) are transmitted
from or to -unit- using tpe format -fmt-. When
in the FOR TRAN writing mode, fmt is any valid
FOR TRAN variable FORMAT including left'and
right parenthesis. If the standard input/output
mode is used, then for input fmt is field free
input and fmt = 1HA is character input. That is,
n character s, six bits /character are packed in a
left j ustified. Whereas~ for output, fmt can be
a valid FOR TRAN variable FORMAT; provided /
and repetition of parenthesis, without repetition
factor, and repetition of the FORMAT before the
a(i) are transmitted, are excluded. That is, the
line feed carriage return and/or paging operations
are not done by the format while transmitting the
items a(1), . 0 • ,a(n). A standard output format
can be invoked by setting fmt = 1HR,1HI, or 1HL
for real, integer, and logical values.

n - 1 cards are skipped, the n-th card is the Current
data card for standard input.

n new line carriage returns are performed on the
current output unit.

n blank spaces are written on the current output
unit.

A page eject is performed along with a carriage
return.

The string - string- is output on the current out­
put unit.

A new line carriage return is performed on the
current out unit. Forces write on teletype.

I
W
.....
I

c
(')

::0
l'
I ---0
..p.
0'
W

Subroutine

~ h lim (left. right)

5 v lim (top. bot)

if readp(p)

if printp(p)

~ in tab(colm)

~ out tab(colm)

, s ioparam(num, mOdes,
names, value)

-.

Table 2

Additional Subroutines for Setting 10 Parameters

Comment.

The left and right margins are set orithe curr;ent output unit •. Left = 1
and right = 132 gives afull CDC printlinE1. ' ..

The top and bottom margins are set on the c,urrentoutput unit.
Top =-1 in the first line the printer prints, bot = 60 would thus give
60 line.s/page. The actual margins obtained is dependent on the
local printer margins.

The present value of the reading position pointer is returned. This is
the next position that will be read by a standard (field free) read on
the current input unit.

The present value of the print position pointer is returned. This is
the next position that will be printed on the current output unit in
standard (partial line writing) output mode.

The reading position pointer is set to the value of colm •• Thus, the
next position read from the current input unit will be colm.

The print position pointer is set to colm. Thus, the next position
printed on the current output unit will be colm.

Num values of the input/output variables can be changed using ioparatn.
Modes[i] = 0, (i = 1, ... , num), causes iov[name[i]] =: valuer i] .
Mode[i J = 1 causes value[i] = iov[name[i]]. For the input/ output
variables iov, we have the following:

•

'. W
N

•

c:::
()
~
t"'
I

'-'l

*'" 0'-
W

~">~;::..~....,-,.-,,..----

Subroutine

~ printer
s punch

~ inunit(unit)
~ outunit(unit)

~ iformat(field)
s normat(fixed, field, dec)
s bformat(field)
6 oformat(field)

'"

Table 2 - contd.

Comment

Names items in common block 10

1 - 8 inunit, ,outtlnit, ifield, bfield, rfield, rde~, rfixed, ofield,

9 -- 14 otl, otr, otp, otlp, otrp, otpp,

15 - 20 inl, inr, inp; inlp, inrop, inpp,

21 - 24 "inrho, inrhop, outrho, outrhop,

25 26 std, fortrn,

27 44 ifmt(3), rfmt(6), lfmt(3)., ofmt(3), stdfmt(3),

45 59 psifmt(3), psrfmt(6), pslfmt(3), psofrrlt(3), .

60 67 lefts, rights, lefts 1, rights 1, f 1, r1, f 2, r2

Their definitions are given in Table 7.

The current output unit becomes 61 for the printer or 14 for the punch.

The current input/output channels are unit.

The format can be preset for those routines that are a preset format.
The formats are:

integer
real

(I field)
fixed = • true.
fixed = • false.

(F field. dec)
(E field. dec)

I
\.>.l
\.>.l
I

c
()
~
r
.....
--.0
0'­
IN

,

Table 2 - contd.

Subroutine Comment
':::"':~"":"':::';;';:'::':"::"---'-""------":-=":''';'';';:'';:':''::''~'''''''''''''"'''-~~~~,---~~,---~.,....;-,.~...,..,....,..----,.,.....,.,.,...,..,...,-...,....,.,...-.....,........,..,...,....,.;.~-.,..-" ... :, '

~,'efile(unit)

'r'

logical
,octal

(Lfield)
(0 field)

The formats are sep~rately set and are,not..de~tr.oyeq whenro~ti.n~~s:"
using a variable format are called. " ,

. .

When using this set of input/output procedure s", it is nece,s sary~to
use this subroutine to write an end. file.,.

t

I
W
~
I

c::
(')
~
t-
I
.....
'-'>
~
0'
W

Table 3

Derived 10 Subroutines

Note: See Table 6 for argument definitions.
Current Unit Current Unit Variabre Unit
Variable Format Preset Format L Preset X_ormat

CI0):~--~

if readi(i) if readi1(unit)
H readr(r) rf readrHtmit)
li. readb(b) li. readb1 (unit)
if readio(o) if readi01(unit)
.E£ readro(o) .E£ readr01(unit)

Variable Unit
Variable Format

r?()\----~--- - ---~------ ---

~ ~ -G:9 ~. 3)
~ outi(i, field)
~ outr(r, fixed~ field, dec)
~ outb(b, field)
~ outo(0, field)

~ outi.1 (i)
~ outr1 (r)
~ outb1 (b)
~ out01(0)

~ outi2(unit, i)
~ outr2(unit, r)
~ outb2(unit, b)
~ out02(unit, 0)

(z.Z}J
~ outint(unit, i)
~ outreal(unit, r)
~ outbool(unit, b)
~ outoct(unit, 0)

~ otarray(type, n; unit)
s outstr(unit, s)

C~D -eL2?)
~ ini.1 (i) s inint(unit, i)
~ inr1(r)
~ inbi(b)
~ inoi (0)

s inreal(unit, r)
s inbool(unit, b)
s inoct(unit,o)
s ina r ray(n, unit, a)
s instr(unit, string)

\

~ outi3(unit, i, field)
~ outr3(unit, r, fixed, field, dec)
~ outb3(unit, b;field)
~ out03(unit, 0, field)

I
v-.>
U1
I

c::
.()

!:d
t"" -'-.0
~
0'
VJ

Table 3 - contd.

Current Unit Current Unit , Variable Unit Variable Unit
Variable Format _ ~r~e~fo_rI'l!aL J _ Pre~e! Format i . Variable Format

(4.0J--- ~ (hD. n._.~ ~'--'~.CL]J

S oti(i, string, field) ! s oti(i, string) soti2(unit, i, strirlg) s oti3(unit, i, string, field)
-; otr(r, string, fixed, field, i -; otri(r, string) -; otr2(unit, r, string)-;-otr3(unit, r, string, fixed,
- dec)' j s".otbffp, string)- S otb2tunit,h,smng)" - field,dec)
~ ot b(b, string, field) ~ otoi (0, string) ~- ot02(urtit, 0, string) '~otb3{unit, b, string, field) ... '
~ oto(o, string, field) ~ ot03(unit, o,string, field)

([.-0) ~

ii ioi(i, string, field) if ioii(string)
rf ior(r, string, fixed, field if iori (string)

dec)
lf iob(b, string, field)
2:L ioo(o, string, field)

],f iobi (string)
if. io01 (string)

CLQ)' - -- _m -- ~--ChD- _.- ~ ~ -- --- ~~6. i}- -------- --(6.3)

s outai(ia,1 ,u, field) 8 outai1(ia, 1, u) s outai2(unit, ia, 1 ,u) .8 outai3(unit, ia, 1, u, field)
~ outar(ra, 1, u, fixed, field, - - "S outar3(unit, ra, 1 ,u, fixed

dec) ~ outar1(ra,1 ,u) ~ outab2(unit, ba, 1 ,u) field, dec)
s outab(ba, 1 ,u, field) ~ outab1(ba, 1 ,u) ~ outab2(unit, ba, 1 ,u,), ~ outab3(unit, ba, 1 ,u, field)
S outao(oa, i. ,u, field) ~outaoi(oa, 1 ,u) ~ outa02(unit, oa, 1, u) ~ outa03(unit, oa, 1 ,u, field)

Cf!l? . " (7. 2).. ..
I ~ mali (la, 1 , u) ~ Ina12(unlt,.la, .(, \1)
! s inar1(ra, 1 ,u) s inar2(unit, ra, 1, u)
I -; inab1 (ba, 1 , u) -; inab2(unit, ba, 1 , u)
1 ~ inao1(oa, £ ,u) ~ inao2(unit, oa, 1 ,u)

- --- ~ .. -~-.-

.\ j.

"

I
VJ
0'
I

~
()

:::0
t"'
I

J-A
-.0
~
C'
VJ

~.

Table 3 - contd.

Current Unit , Current Uni~ Variable Unit
Variable Format Preset Format Preset Format

'<---'

~:

Variable Unit
Variable Format

(S.3)

{
~ input! (unit, fmt, a i)

·
·
·

~ input5(unit, fmt, ai, •.. a5)
~ inputn(n. unit, fmt, a 1, 00 • , an)

(Q ?,)

~ outputt (unit, fmt, a i)

·
·
·

~ output5(unit, fmt, at, 0 •• , a:
~ outputn(n, unit, fmt, ai, .. 0 • , an)

I
W
-J
I

e
()

~
L<
I

'.()

*"-
0'
VJ

Table 4

Character Oriented Subroutines

Subroutine

ifc1ength(string)

..! inchar<j>(source, colct, string, i, length)
~ otchar<j>(dest, colct, string, i,length)

~ inchar(unit, string, i, length)

,~ outchar(unit, string. i, length)

if equiv(string)

.,

, Comment

The length (number 'of characters) of the string - string:­
is returned as the value of c length •

If the character in position -colct- of array - source-
is found in the string - string- of length -length-, then i
is the position count(from the left) of that character in
string with the first character having position 1. If the
character is not found in string, then i = O. If 008 is in
position,colct, then i = - 1.

The i ... th character of the string - string- withlength
-length- is stored in position -colct- of the array -dest-.
If i > '-1, then 008 is stored.

The next character is read from the input channel ,-unit-.
The string - string- with length -length- .is searched; if
the character is found, then i is its position in string with
the first character having position 1. If the character is
not found, then i = O. If the internal representation
of the character input is 008' then i = ... 1.

The i- th character of the string - string- with length
-length- is output on the channel - unit-. If i = -1,
then 008 is output. If i > length, then nothing happens.

The value of equiv is the internal representation of the
string - string-. Thus, if string (without the delimiters)
was read using an A format into the variable x, x =
equiv(string) would be true. Restriction, only on word
is tranferred by equiv.

'1 t

"

w
00 ,

c::
()

~
l'
I

.....
-.0,
,j:>.
0'
W

t, ."

. Subroutine

if charf(source, n)

schar s (dest, n, item)

Table 4 - contd.

Comment

The internal representation of the n-th character,·
right justified zero fiU~ is fetched from source and
returned as the value of charf.

The integer item is stored as then-th character in
dest.. Item is assumed to be right justified zero

fill. This routine is the inverse of the routine charf.

I
W
-.0
I

c:::
()

~
l'
....
-.0
,j:>.
0"­
W

Subroutine

's iniodat

.~ set lfmt(b, field, lfmt)
s set rfmt(fixed;field, dec, rfmt)

~ dcintl(n, result)

if chnsf(sf, unit, name, Ipode)

s store(item, unit)

~ wrt(unit, P. , u, a)

t: 4:1

Table 5

Lower Level Subroutines

Comment
';.

This subroutine defines and unitialize sthe input/ out­
put variables in the common block 10.

A true or false logical format is set in lfmt with field
width .. £ield-. A fixed (F) or flaating(E) format is set
in rfmt with field width -field-. There are dec digits
after the decimal point.

The integer n is converted to CDC display code and
stored left shifted with blank fill in - result-. This
converts numbers to an internal representation suitable
for use in a FOR TRAN variable FORMAT.

Chnsf establishes the characteristics for the input
(mode = Z hin) / output (mode :::: 3hout) channel with
name -unit-. If unit already exists, an exchange is
performed with the iobuffer area. lithe unit does not
exist, it is established either as a new or temporary unit.

The integer - item-, right justified zero fill, is stored in
the OIE line output buffer, h11fff'r ~ ()f romm()nblock
buffers. Carriage return, line feed, and paging operation
are performed as required. Item is assumed to be the
internal representation of a valid character.

The array a(p.), ... ,a(u) is written. via a FOR TRAN
WRITE statement, on the output unit -unit-. After
the completion of the write, the array elements a(p'), "',
a(u) are reset to blank characters.

I

*'" o
I

c::::
(')
:::0
t""
I

--.0

*'" 0"-
W

.,

Subroutine

s readn(h, unit, a)

s writen(n, unit, fmt, a)

' .

Table 5 - contd.

Comment

This is the field free input routine. The data is identified
and the appropriate format is established. Then the
incore formatted read routine DECODE reads the data.

An incore formatted write is performed using the sub­
routine ENCODE. It uses the subroutine store to
transfer toa one line holding buffer.

Appropriate action is taken for the special formats (/) j
(), (1H1) representing a line feed carriage return,
blank character, page eject. It is as sUrned that not
more than two 140 character lines are written for one,
call to writen. I

~
~
I

c:::
()
;:lJ
t""'
I ...

--D
,j:>.
0"­
W

Name

mode

unit

n

fmt

string

I

-42- UCRL-19463 .

Table 6

Definitions

Comment

A hollerith constant specifying a mode of operation.
For example, INMODE (1HS) gives standard field
free input. While CNTUNI1.(2, 2HIN) connects unit 2
as an input unit •

. An integer specifying an input/output unit.

An integer representing how many. For example,
LINES(N) gives n line feed carriage returns,
OUTPUT(N, ••.) outputs N items.

A FOR TRAN hollerith constant of the form nH(••.)
where .•• is any legal FOR TRAN FORMAT. When
in standard (partial line) output mode, /, repetion of

. parenthesis, and repetition of the format before
exhaustion of the list ~re not permitted. In addition,
the following are permitted for output forrria1 s:

tHR standard format real E23.14
1HI standard format integer 123
1HL standard format logical L23

If the string is to be printed, for example OUTSTR
(STRING), then a hollerith constant of the form nH(••.)
where •.• is the usual FOR TRAN text such as ':<TEXT':<
or else nHTEXT. If the string is used in a character
routine such as C LENGTH(STRING), then a hollerith
constant of the form nH(':< ... ,:<) where ..• consists of
any valid alphanumeric characters. Note that (':' ... 'n
is also a valid CDC FOR TRAN [6] format string so
that there need be no conflict if all strings are written
as (,:< ••• >!<). If the string is read in, then it is of the
form (':<TEXT':<). INSTR(STRING), OUTSTR(STRING)

- will input and then output, but the delimiters are missing
from the printed string and must be supplied to again
input the strfng. Note: The characters >:<), asteri.sk
right parenthe sis with no blank, cannot appear within
the string.. In partial lirie writing mode, the string must
be of the form (*TEXT>!<); The length of the string is
unlimited.

Name

a

left

right

top

bot

p

field

dec

fixed

i

r

b

o

ia

ra

-43- UCRL-19463

. Table 6 - contd.

Comment

An array

An integer specifying the left Dlargin. The first
character printed appears in c.llumn left.

An integer specifying the right margin. The last
character printed on a line wit always be in a
column less than or equal to right. Overflow is
printed on the next line startin;~ at the left rnargin~

An integer specifying the top rrargin of the page.
The actual position of the margins depends on the
printer overflow margins. A rage eject is performed
by writing a1 in Column 1 and CHling that line with
blanks. The next print line hat; top = 1.

An integer specifying the bottom margin of the page.
Counting from top = 1, bot is be last line printed
before a page eject is performl,d.

The column position of the nex1 item to be read/
printed.

The total field width that the pr inted item will occupy.
The number, or logical value, is right justified in the
field.

The number of digits to the right of the decimal point.

The value .TRUE. means F format. The value
• FALSE. meansE format.

integer

real

logical (Boolean)

octal

integer array

real array

Name

ha

oa

type

source

dest

if

rf

if

s

,r

· ... '-4.4- UCRL-19463

Comment

logical (Boolean) array

octal array

Integer specifying the lowerb'otJ.nd, first element'
aLAI.

Integer specifying the u'pper bound, last element
a[u] ..

real array
integer array

tHR
1HI
tHL
tHO

logical(Boolean)arra y
octal array

An argument of an arbitrary type. Obvii)usly, it
must agree with the format specification.

An array from which quantities are read.

An array into which quantities are stored.

integer funCtion

, real function

·logical function

subroutine

I .

Common
/10/ .

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

-45- UCRL-19463

Table 7

Common Input! Output Variable s

Variable
Name

inunit

outullit

ifield

bfield

rfield

rdec

rfixed

ofield

otl

otr

otp

otlp

otrp

otpp.

inl

inr

inp

Preset
Value

60

61

23

10

23

14

.false.

23

1

132

132

5

60

60

1

73

80

Variable
Definition

The current input unit. Sometimes
called lstin.

The present output unit. Son1e­
times called lstout.

Preset integer field width.

Preset logical field width.

Pre set real field width.

Preset number of decimals m the
pre set real field.

Preset selection of fixed(. true.)
or floating (. false.) point r.epre­
sentation of real number s.

Preset value of the octal field width.

left margin - output

right margin -: output

number of character s per line -
output.

top margin - output

bottom margin -output

number of line s pe r page - output

left margin - input

right margin - input

Number of characters per card
(line)- input

Common
/10/

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Variable
Name

inlp

inrp

inrpp

inrho

inrhop

out rho

outrhop

std

fortrn

ifrnt(1)

ifmt(2)

ifmt(3)

rfmt(t)

rfrrit(2)

rfmt(3)

rfmt(4)

rfmt(5)

rfmt(6) .

lfmt(t)

lfmt(2)

\
\

..,46.., UCRL- 19463

Table 7 - contd.

Preset
Value

1

1,000,000

1,000,000

81

o

1

5

tHS

tHF

2H(I

tH)

tH(

tH.

1H)

2U(L
2H23

Variable
Definition

first card(line) - input

last card (line) - input

Next character read is in
colUInn inrho

The number of cards (lines) that
have been read.

The next character output is in
column outrho

The current output line is outrhop.

The variable integer format is
ifmt. The field width is placed
in ifmt(2).

The variable real format is ifmt

E or F is placed in rfmt(2)

The field width is placed in rfmt(3)

The number of decimal digits goes
in ifmt(5).

The variable logical format is lfmt.
The field width is placed in lfmt(2)

-47- UCRL-19463

Table 7 - contd.

~

Common Variable Pre set Variable

/10/ Name Value Defin,ition

38 lfmt(3) 1H)

39 ofmt(1) 2H(0 The variable octal format is ofmt.
40 ofmt(2) 2H23 The field width is placed in ofmt(2).

41 ofmt(3) iH)

42 stdfmt(1) 2H(0 A standard octal format is furnished
43 stdfrnt(2) 2H(23 by stdfmt.
44 stdfrnt(3) 1H)

45 psifrnt(1) 2H(I The preset integer forITlat is psifmt.
46 psifITlt(2) 2H23 The field width goes in psifmt(2).
47 ps ifITlt(3) 1H)

·48 psrfmt(1) 1H(Pre set real format.

49 psrfmt(2) 1HE E or F is placed in psrfITlt(2).

50 psrfmt(3) 2H23 The field width is placed in psrfITlt(3).

51 psrfmt(4) 1H.

52 .. psrfmt(5) 2H14 The number of deciITlal digits is
placed in psrfITlt(5)

53 psrfmt(6) 1H)

54 pslfmt(1) 2H(L Pre set logical forITlat.

55 ·pslfmt(2) 2H10 The. field width is placed in psl£mt(2).

56 pslfmtO) 1H)

57 psofmt(1) 2H(0 Pre set octal Forlnat. The field
width is placed inpsofITlt(2).

58 psofmt(2) 2H23

59 psofITlt(3) 1H)

60 lefts 2H(':< Left string delimiter - internal.

Common

110/

61

62

63

64

65

66

6?

Common
/BUFFERS/

Buffer(1)

Buffer(14)

Buffer2(1)

Variable
Name

right s

lefts 1

rights 1

L1

R1

L2

R2

10H

10H

o

Buffer2(3?) 0

Buffer3(1) 10H

Buffer3(14) 10H

-48- UCRL-19463

Table? - contd.

Preset
Value

2H*)

2H('!<

2H'!<)

2

2

2

Variable
Definition

Right string delimiter - internal.

Left ,string delimiter - external

Right string delimiter - external

The number of characters in lefts.

The number of characters in rights.

The number of characters in lefts 1.

The number of character s in rights 1.

A one line input buffer into which data
is read by a standard FOR TRAN
READ statement.

It is initially set to all blanks.

The incode formatted write using
ENCODE writes into this buffer.

Output liries are coristructed in
buffer 3 which is then written using
a standard FOR TRAN WRITE
statement.

Q

Common
Iro BUFF/ . .

1

2

3

4

5

6-131

-49- UCRL.,.19463

Table 7--- contd.

Variable Preset
Name Value

Name.

Max Name ·106

Bufflth 14

Chlth 7

Chnpbuf 21

robuff

Variable
Definition

A variable that is used to loca te
the name s of the units in the input/
output channels stored in the array
iobuff. The name of the unit is in
iobuff[na.me] •

The maximum location in which
an input I output name can be found
in array iobuff.

The length of the one line buffe r
associated with a channel.

The length of the channels In
which are stored the unit character­
istics.

The total length of the channel and
one line buffer. Thus, Chnpbuf =
ChI th + buffl tho

Unit 60 for input and unit 61 for
output are originally set. This
array is used to store up to six
input/ output channels with their
associated characteristics.

'.0. ' •. ",

. \)

*de_ck'A'
LIliodat

" , set lfrnt
"setrf~t
, dcintl

st6re '. '
wrt
fnrno'de

, ,'outi:node

fndunlt
., drpunit

~iltunit
iIi'" ,"
readn

"6ut , '

w:riten
cha;f
chars
c'h~ngth

ilCdeckAA
in
read 1

" datai
rdnurTI

*deck :i3
'cards

lines
spaces,
page

's

*deck C
hlirn
vlirn "

*deckD'
read p
print p

-50-

I'· "

Table 8

Subro\ltine' Origination

~<d~cI(E '
intab
outtab

>:~deckF "
iopararn

*deck G
pr'int~r,

"punch
>:<deck H

'illunit '
outunit

>~deck I
inforrnat
rfol"rnat

, bforrnat
oformat

*deckJ
e£ile

;:<deckK
inchar~
otchar~

~<deck L,
inchar
outchar'

~<deck M
equiv

, UCRL-19463

- 51- UCRL-19463

EXAMPLES

See the following page s.

PR0GQAM TEST(TNPUT=1"no.OUTPUT=lnnn.TAPE6n=lNPUT,TAPE~1=OUTPUT,
upn = I ~P'JT • T AP~ ;?=OUTPUT)

o Rr;:r,yr...J
~fin9n02 ··I~Tr:GER I,J,READI
~!)OM';: I~TF"GF"R C~!TI.INlT
~O~~02 Lnr,ICAL 8~~EADP
~D~"02 pCftL ft,R~AnR
~~o~n2 J=C~TUNIT(?,3~OUT)
~OI'r.1)4 J= CNT(JNIT(l.~HrN)
i\Ol'ltllCl ' .. - .. _--.. CilLL OUTMODF.(l!-'F)

'~nnrl1 CALL HLIM(2.!301
i\n~tl13 00 lnJ=].2
~(\~~15 CALLnUTSTR(~,19H(. THIS IS OUTSTRO»
~nt\nl1 CALL S(15H(0 T~IS ISS 0»
;;n,M'?l C~LL (')!JTPI.IT(2.19H('II THT5 IS OUTPUTO»

-in"~~3 C~LL LJNE~(?)
i'~Olln?5 G= • rPIIE.
hi\I)(\~26 A= l.~
~nll~?7 J= ~

i ~(lOI\31 CALL "!ITPIITl (2,llH(O A=oFf,.?) .A)
r~~nI\33 C~Ll ~UTPUTl(?, 9H(O 1=015),1)
. "1\(11\36 Cl}tL L!"JES (?)

~nnr~o CALL nUTI(I.2)
;;On"42 CftLl nUTI(I~ln)
~nOI\4' C~LL 0UTR(A •• TPUE.,3,1)
~(lon&7 CALL nUTR(a •• TRuE •• 1n.3)
~nnn52 CALL nUTR(A •• F"ALSE •• lo,31
;(101'55 --- - .. --- CALL Uf\JE<; (2)
1\(11\1\57 CALL I"IJTR (R.B)
')(1,)1\1'] I=PEAr)!(l)

~non~3 A= REaOQ(l)
~(ln~6S R= REn08(1)
~nnn70 C~LL TFnR~AT(5)
i\tI'i) 1\ 71 ... ----. -.- -.. _--.--" CALl. cF"npMAT (• TpIJ!=: .. 6 f 3)
~nn"74 CALL RF0R~ftT(lr)
~~O~76 CALL nUTINT(2.T)
~nOl00 C~Ll nUTRFAL(~.A)
''(It)' n? C~'-L nllTRl"nl. (?'.~)
~nnln~ CftLL LINFS(?)

!- ii t) n I 06 _. ___ .. ___ .
~(l(l1l0 In
I\rn~.?

~!I'13
00114 ENrl

C·\LL nllTrM)I"lF (1 ~S)
cnrHIM!F
C'ILL PAGE
ChLL PUH

.P.ROr.QAM LF.:\:GTH INr:LUOlf\!G I/o gUFFFPS
~C\??62

~l!Nt:'TIOI\I AS5IGI'It-A.E'NTS

STATF:I'~FNT ~~c;TGf.!·~n'TS

RLOC~ ~AME~ AND LF~GTHS

VARTARLE A~c;1~NvF~T5

" '"1

MAIN.2
I1,A.IN.3
~AIN.4

~AP".S
MAIN.6
H ~ I ~{. 7
MAIN.~

MAIN.9
~AIN.I0

:-4I1IN.l1
I-1AIN.12
.'JO.ID.
MAIN.13
MAIN.14
MAIN.15
..,,. IN.16
MAtN.l7
ho1AIN.lf1
MAIN.19
..,A1N.20
"'Al"I.21
MAIN.22
MAIN.23
"'oIlIN.24
.... IIIN.25
."'AIN.2~
MAIN.?7
Io.1AIN.2A
MAIN.29
MAIN.3"
Io.1AIN.3}
MAIN.3?
'-IAIN.33
Io.1AIN.34
MA IN. 3'; -... -..
MAIN.3fo
"'IIIN.37
M'A IN. 3A
Mil IN.]q
MAIN.4n
Mt. IN. 4 , ..

MAIN.4~

MAIN.lt3
MAIN.44
MAIN.45

1
.---------_ ... _-----

I
\J1
N
I

c::
()

... ~.

~
I
~

-..0 _. ---... ---------.-----. ~- '" --~----- -..

~ ;J

'0'
W

,...

i'lI\(\I~ 0 1
1'1(1" '\/)1

.... "'(11'1111) 1
fi(lM03
1'·r.OI\()5
"n1l11116
"0(1111~
;\11(\1''12

;;(1('1(114
r."on16
;;'0 M,? (\
;;'('101\72

iillr,"~4
li(lllll?7

;;'/'11\1\13

;;(\(1":"5

"00"137
~(l"MI

;onl\6.3
;;O(l1'l4n
;<01')1\51

""0055

"n()/'I~n

"(l""~?
"011"64
011 (1"65
fI!H)I1F-.7

"non7}
~I') rll'~7~
;;1)0"7(',

"1'1'111'1n

""Olr11
",)11103
,;;''1('.' :15
i\n rl1 07
~ ()", 1 1
O""'?!)
;;11"1:;>3
"1'('12'<'
1'\/\ (11 311

. /inn1 12
"0"134
"(1,,136

il00142
"0"144
""014f
"":110;0

,,(''''51

,. ;1;
SU~Q0IJT!NE Pl'H

It RF:GPJ
INTEG".Q J.T
R"'~L PI.f)ELTAX.X
PI: 3.141<;93
CdLL V lIMI1t611
ClIlL PAGE
C!'ILL LP~ES(1)
C ~d_L SP ~ C:ES I 5n 1
C~LL Slt9HIlt(SIN(X)002)OIOOlt»

-.... - ---. - CALL LIIIIES(3)
CIILL S?ACF5(tj)
CALL TF()Rt-'"q(3)
Of) In J:l,110.1(1

~ RFAIN
C"LL :1UTT1(J-ll

·1 0 . - -.' C liL L S P II C r:: 5 (7)
.,.. E:t\l~

caLLUNfS I 11
. CfllL SPAC(S (9)

Cflll ·S(5H(04oO»

DO 20 J= 1.100.1
o .. - QfGIN

o

o

l>

I. .

2"

3"

END

PIT)

I=(,JIlO)UlO
I"'II.r::Q.J) CALL S(SH(04oOl)
IF(T.NE.J) CAll S(5H(O~O)1
CONTI NUF.

n"'lTAX: «?uPT)/SO.)O?
X= DF.LTAX
C4LL LINES(l)

C~LI SPACES(9)
CALL S(SHio4oo»
CALL Ll~fS(l)
CAll RF nRMAT(.TRUE •• 3.1)
n0 30 J= 1,?5.1
qr::GIN

ENn

CALL SP~C::S(2)

CALL S(7~(ltX= 0»
C~Ll. l")un~l (X)
CALl. SPAC~S (1)
C"lL S (e;", (<i,.l-*»

1= (SIN(X) •• 2 It 100n.O)/10.0 + .00001
CALL SPACES(I-l)
IF(I.~E.n) CAll S(SH(o.lt»
Cli U L I r, F <; (1)

Ctd_I' Sp"C:::S (I.J)

CnL 5(",,",(040 0 »
C~LI. LJ!\IE'S(l)
x= ~ +f)EI. T <1. X

C6LL LINFS!')
C~LL S(?q~(lt THE ARnVE IS A TEST PLOTo»
CALL 1. T'JES(l)
RIO T:JR~"

MAIN.46
"'1IQN.4'1
r~A IN. 4H
MAIN.49
MAIN.50
~16IN.51

'14 IN. 52
"'!AIN.53
MAIN.54
..,AIN·.55
"1AIN.S'"
..,AIN.:';
MAIN.5~

"1AIN.S9
"'1ATN.50
",61N.61
MDIN.6::>
MAIN.63
V,A1N.64
I~AIN.6e;.

t.AAIN.6'i
t..1ATN.67
MAIN.,<,q
MAJN.hQ
"AIN.7n
r~AIN. 71
MAIN.72
MAIN.73
MAIN.74
/.IAIN.75
~A Pl. 7'-,
"'1AIN.77
MAIN.7P,
MAII\I.79
MAIN.ao
MAIN.l:ll
MAIN.!:!?
MAIN.R:"
"1AIN.A4
...,AIN.85
MAIN.8f>
..,AIN.S7
MAIN.8~

"1AIN.b9
...,AIN.'11')
MIIIN.91
MA I I~." 2
"1AIN.Y3
"'/lIN.94
MAIN.9S
MAlllI.yr,
MAIN.97
MArN.Y'­
"'11111\1.99
MA1N.100
"1AIN.l!)l

'J

._---_:-_---_._-

-I
U1
(j.)
1

.--.~-..... -
()

?:J
l'
I

.....,.
--0,
~
0!­
W

c·

00
.00
C.' +
•. 1&}

c.
c
c.

I ,
I
I'

W
In

.. -l
::> ..
a c::u:.
~ r-' C-.
. 11".

.-'

)..
'.~'

I
).

j

I ,

I
I

I
I

i
I

:' '",I

I
.1
I

I r
t

I
I
t

;.

!

.,

i
I

,i
I
! .

I
I
I
!
!

I
. 1
I.

.;

i

i
I
I
I
!
I

,-!

I

'i
!

"
i

-54-

,
I
L
i
i
I·

I
I .,

I
; . ,

i
i ,

,
!
bckL-191!63
j i

, .,

;

I I I
I

.1
I

i I 'I i

! i' I

:dJCRL~ 19463 -55- 1

I
'I !

I
1 I ,
I

I

i i
-I
I

I " !

I ,

~ I I
~\ I ,

j. ,

j.

- 57- UCRL-19463

The program TEST on the next page will echo what is input as

(~:<text):<)and will stop on (*(S TOP)~:<).

When run as

. LODE(I= LGO, L= RLIB)

XEQ(TEST, TAPETTY, TAPE TTY)

it !will talk with a teletype.

-58- UCRL-19463

PROG~~ AM TES T (1 NPUT=)O O. ou TPl.IT=3o I). TAPEl= INPUT.. T APE2=OU T PUT)
, .. ,~EGIN

INTFGER STR (10)' 000002
000002
000002
000004
000006
OOOOIO
000012
000013
000015
000017
000021
(,00023

INTEGER I,J,CONTROL,RFADI.EQUIV
'CALL INIINITCl)
CI\LL OUTUNIT(2)
CALL S('9H(~ START PROGRAM,"»
CALL S(?5HC" TO STOP ENTER (STOP)~»
C~LL NLCR'

1 CALL IN~TR(l,STR)
CALL SPACES(7)
CALL SC~H("II ~»
C~ll OUTSTR(2,STR)
CALL "JL r R

000024
000030
(:00031
000032
()00034

IF(EQlJI\I(STR) .NE.('H(SrOP» GOTO 1
CAl.L 5 C }9H (~ E"IO OF PROGRAMi))

.END

CALL. NlCR
STOP

PROGRAIv\ LENGTH INCLUDING 1/0 BUFFERS
000756

FUNCTION ASSIGNMENTS

STATF,MFNT A~SIr,NMENTS

1 000014

ALOCK NAMES AND LENGTHS

VAPJAAlf ASSIGNMENTS
CONTROl- oooli~ EQlJIV 000113 I 000107 . J

START OF CONSTANTS-000037

ROUTINE COMPILFS IN 041000

TfMPS--OOOf'71 INDIRECTS"000075

000110

I}

I,{,'

1.

2.

-59- UCRL-19463

References

Kauth, D. E., et aI, A Proposal for Input- Output Conventions

in ALGOL 60. Comm. ACM 1(1964) 273- 2.83.

JOOO/6000 ALGOL Generic Reference Manual, Pub. No. 60214900,

Control Data Corp. ,3145 Porter Drive, Palo 'Alto, Calif.

3. BCALGOL Manual. University of California, Computer Center,

Berkeley, Oct. 1966 (third ed).

4. DeVogelaere,R., Algorithm 335, A Set of Basic Input- Output

Procedures, Comm. ACM !...!. (Aug., 1968), 567-573.

5. Naur, P. (Ed.), Revised Report on the Algorithmic Langu~ge

ALGOL 60. Comm. ACM~, 1 (Jan. 1963), 1.

6. 6400/6500/6600 Computer' Systems FOR TRAN Refe rence Manual.

Pub. No. 60174900B, Rev., Nov. 1967, Control Data Corp.,

3145 Porter Drive, Palo Alto,Calif.

7. 6400/6500/6600 Computer System SCOPE Reference Manual,

Pub. No. 60189400, April, 1967, Control Data Corp., 3145

Porter Drive, Palo Alto, Calif.

~\

r-----------------LEGALNOTICE--~--------------~

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

o

-........-:'
TECHNICAL INFORMATION DIVISION

LAWRENCE RADIATION LABORATORY
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

<..

~ ~

..

