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The Riemann Zeta distribution is one of many ways to sample a positive integer at random.

Many properties of such a random integer X, like the number of distinct prime factors it

has, are of concern. The zeta distribution facilitates the calculation of the probability of X

having such and such property. For example, for any distinct primes p and q, the events

{p divides X} and {q divides X} are independent. One cannot say this if instead, X were

chosen randomly according to a geometric, poisson, or uniform distribution on the discrete

interval [n] = {1, ...n} for some n. Taking advantage of such facilities, we find a formula

for the moment generating function of ω(X), and Ω(X), where ω(n) and Ω(n) are the usual

prime counting functions in number theory. We use this to prove an Erdos-Kac like CLT for

the number of distinct and total prime factors of such a random variable. Furthermore, we

obtain Large Deviation results for these random variables, as well as a CLT for the number of

prime factors in any arithmetic progression. We also investigate some divisibility properties

of a Poisson random variable, as the rate parameter λ goes to infinity. We see that the

limiting behavior of these divisibility properties is the same as in the case of a uniformly

chosen positive integer from {1, .., n}, as n→∞.

x



Chapter 1

Introduction

The reader familiar with fundamental concepts in probability and number theory may skip

directly to Section 1.3.

1.1 Background in Probability

Suppose you have an experiment you can repeat as often as you like. Suppose further that

each outcome has a certain value, a real number, attached to it (e.g. measurement of some

length, or counting number of items). For example, you go fish everyday for one year in

Alaska and count the number of catches per day. If you observe the experiment n times

and let X1 be the value on the first day, X2 that on the second, and so on, then you have a

sequence X1, ..., Xn of random variables.

Suppose that every trial is independent and identically distributed (you catch the same

number of fish in January and September). Suppose, furthermore, the expectation, µ, and

the standard deviation, σ, of a given Xi are known. Let
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X =
1

n

n∑
i=1

Xi

be the sample mean, or average, of your observed data. The expected value of X must also

be µ. In fact, X should fall closer to µ than any one data point Xi. It should also get better

as n gets larger.

By independence, it is easy to see that the variance is

var(X) = (
1

n
)2var(

n∑
i=1

Xi) = (
1

n
)2nvar(X1) =

σ2

n
. (1.1)

If we standardize X, we get a new random variable Z = X−EX√
varX

= X−µ
σ/
√
n
. This random vari-

able now has mean 0 and variance 1.

So we have the average, X, the expected value, µ, and variance, σ2/n, of X, and a rescaled

version of it, Z = X−µ
σ/
√
n
.

The (strong) law of large numbers simply states that the average, X, converges to the mean,

µ, with probability 1 (see Theorem 1.1). The Central Limit Theorem (see Theorem 1.2), on

the other hand, states that Z tends to be normally distributed with mean 0 and variance 1.

A key point is that we assume we know the underlying mean and standard deviation of our

data. Otherwise, we’d have to use statistical methods to estimate them. Figure 1.1 shows

the density function of Z.
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Figure 1.1: The standard Bell Curve

This is the density function f(z) = 1√
2π
e−z

2/2. A well known property of f(z) is that about 68%
of the area under the curve lies between −1 and 1, and about 95% lies between −2 and 2, or

within two standard deviations of the mean.

1.1.1 Basic Definitions

We review here some basic definitions. Most of the definitions will follow those found in

Durrett ([6]). We assume the reader has some background in probability. Let X be any

random variable in any probability space. Then the expected value of X is defined as

EX =
∑

i iP (X = i)

if X takes on only countably many values, and

EX =
∫∞
−∞ xf(x)dx

if X is continuous with density function f(x). The variance of X is

varX = E(X − EX)2 = EX2 − (EX)2.

3



The nth moment of X is EXn. The moment generating function (MGF) of X is defined as

M(t) = EetX , t ∈ R.

It is called “moment generating” because it generates its moments. It is the exponential

generating function for the sequence an = EXn:

EetX =
∞∑
n=0

EXn t
n

n!
.

If M(t) exists for some interval (a, b) in R, then it completely characterizes the distribution

of X. We also mention two commonly used random variables throughout this paper.

Definition 1.1. Let λ > 0. Then X is said to be Poisson distributed with parameter λ, if

P (X = k) = e−λ
λk

k!
, k = 0, 1, 2, ...

Definition 1.2. Suppose that N ∼ Poisson (λ), and that X1, X2, ... are identically dis-

tributed random variables that are mutually independent and also independent of N . Let Y

denote the sum

Y =
N∑
i=1

Xi.

Then Y is said to follow a compound Poisson distribution.

1.1.2 Classical Theorems

We state a version of the weak law of large numbers given in [6], Theorem 2.2.3.

4



Theorem 1.1. (Weak Law of Large Numbers) Let X1, X2, ... be uncorrelated random vari-

ables with EXi = µ and var(Xi) ≤ C < ∞. If Sn = X1 + ... + Xn then as n → ∞,

P{|Sn/n− µ| ≥ ε} → 0 for every ε > 0.

We state a version of the Central Limit Theorem which allows for the random variables Xi

to have different distributions (see [6], Theorem 3.4.5).

Theorem 1.2 (Lindeberg-Feller). For each n, let Xn,m, 1 ≤ m ≤ n, be independent random

variables with EXn,m = 0. Suppose

(i)
n∑

m=1

EX2
n,m → σ2 > 0

(ii) For all ε > 0, lim
n→∞

n∑
m=1

E(|Xn,m|2; |Xn,m| > ε) = 0.

Then Sn = Xn,1 + ...+Xn,n → σχ as n→∞. Here, χ ∼ N(0, 1).

One common approach to proving the central limit theorem is Levy’s Continuity Theorem

(see, for example [6], Theorem 3.3.6), which relates the convergence of the characteristic

functions of the distributions to the convergence of the random variables themselves. It

states the following:

Theorem 1.3. Let {Xn}∞n=1 be a sequence of random variables. Define φn(t) = EeitXn

to be their corresponding characteristic functions. If the characteristic functions converge

point-wise to a function φ, that is

φn(t)→ φ(t) ∀ t ∈ R

then Xn converges in distribution to X, a random variable with φ as its characteristic func-

tion.
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The normal distribution has characteristic function φ(t) = e−t
2/2. In a more general sense of

the word, a central limit theorem is a theorem that identifes the limiting distribution of the

running average of a sequence of random variables. The limiting distribution isn’t always

normal.

1.1.3 Large Deviations and Cramér’s Theorem

Suppose {X1, X2, ...} are taken to be independent mean 0, variance 1 normal random vari-

ables. Then X is also normal, with mean 0 and by (1.1), the variance is 1/n. This implies,

for any x > 0,

P (|X| ≥ x)→ 0

as n→∞.

Since X ∼ N (0, 1/n), we can standardize it
√
nX ∼ N (0, 1). Therefore,

P (
√
nX ∈ A) =

1√
2π

∫
A

e−t
2/2dt (1.2)

for any measurable set A ⊆ R.

6



Note now that

P (|X| ≥ x) = 1− 1√
2π

∫ x
√
n

−x
√
n

e−t
2/2dt; (1.3)

therefore, by taking limits and using l’hopital’s rule,

1

n
logP (|X| ≥ x)→ −x2/2. (1.4)

Equation (1.4) is an example of a large deviations statement: The “typical” value of X is,

by (1.2), of the order 1/
√
n, but the probability it is bigger than any x > 0 is of the order

e−nx
2/2.

(1.2) and (1.3) above hold for any underlying distribution of the Xi, not necessarily normal,

but with the equality in (1.2) replaced by→n→∞. This is what leads to the notion of a large

deviation principle.

Definition 1.3. We say that a sequence of random variables (Xn) with state space X

satisfies a large deviation principle (LDP) with speed an and rate function I : X → R+ if

(1) I is lower semi-continuous and has compact level sets NL := {x ∈ X : I(x) ≤ L} for

every L ∈ R+

(2) for every open set G ⊆ X,
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lim infn→∞
1

an
logP (Xn ∈ G) ≤ − inf

x∈G
I(x)

(3) for every closed set A ⊆ X,

lim supn→∞
1

an
logP (Xn ∈ G) ≥ − inf

x∈G
I(x)

Example 1.1. Let {X1, X2, ...} be iid Poisson random variables with parameter 1. If we

take the speed an = 1/n, the corresponding rate function is I(x) = x lnx+ 1− x.

Let x > 1 and Sn =
∑n

i=1Xi. Then for any t > 0.

P (Sn ≥ nx) = P (etSn ≥ etnx) ≤Ee
tSn

etnx

=e−tnx(ee
t−1)n

since the Xi have mgf eet−1 and are indepedent. Taking logarithms and dividing by n yields

1

n
logP (Sn ≥ nx) ≤ −tx+ et − 1

which is true for all t > 0. Taking derivative to minimize the right hand side over t yields

0 = −x+ et and so

1

n
logP (Sn ≥ nx) ≤ −x lnx+ x− 1.

One can then show that both

8



limn→∞
1

n
logP (Sn ≥ nx) = limn→∞

1

n
logP (Sn ≥ nx) = −x lnx+ x− 1

and so

lim
n→∞

1

n
logP (Sn ≥ nx) = −x lnx+ x− 1 (1.5)

So the rate function is thus I(x) = x lnx+ 1− x.

1.1.4 Moderate Deviations

A moderate deviations principle (MDP) is a LDP with the following conditions:

1

bn

n∑
i=1

(Xi − EXi)
bn
n
↓ 0,

bn√
n
↑ ∞

limn→∞
n

b2
n

log(nP (|X1| > bn)) = −∞

I(t) =
1

2EX2
1

t2

A moderate deviation is a large deviation where the speed function an is of the form an ∼ nα

for some 1/2 < α < 1. Formally, there is no distinction between a MDP and a large deviation

principle. Usually a large deviation principle gives a sort of rate for which the average of

a sequence of iid random variables converges to its mean. This is done by providing a

9



probability of the form e−nI(x) for the deviation from the mean Mn. MDPs, on the other

hand, describe the probabilities on a scale between a law of large numbers and some sort

of central limit theorem. For both, large deviations principles and MDPs the three points

listed under the bullets serve as a definition. However, there are differences.

Typically, the rate function in a large deviation principle will depend on the distribution of

the underlying random variables, while an MDP inherits properties of both the central limit

behavior as well as of the large deviation principle.

For example, one often sees the exponential decay of moderate deviation probabilities which

is typical of the large deviations. On the other hand the rate function in an MDP quite often

is “non-parametric” in the sense that it only depends on the limiting density in the CLT for

these variables but not on individual characteristics of their distributions.

Often even the rate function of an MDP interpolates between the logarithmic probabilities

that can be expected from the central limit theorem and the large deviations rate function

- even if the limit is not normal.

The large deviation principle is more intuitively explained in the following simple setting.

SupposeX1, X2, ... are iid random variables with mean µ. LetMn = 1
n

∑n
i=1Xi. The (strong)

law of large numbers tells us that P (limn→∞Mn = µ) = 1, but does not tell us how fast this

rate of convergence occurs. Now suppose the sequence X1, X2, ... satisfies a LDP with speed

an = n and rate function I(x). By Cramér’s theorem, this rate function always exists and

equals the lengendre transform of the logarithm of the moment generating function of X1.

The LDP

lim
n→∞

1

n
lnP (Mn > x) = −I(x)

means essentially that, for large n,

10



P (Mn > x) ≈ e−nI(x)

for all x > µ.

So it gives a rate at which P (limMn = µ) goes to 1, in a sense. Let us move on to Cramér’s

Theorem.

Theorem 1.4. (Cramér). Suppose X1, X2, ... are independent and identically distributed

random variables with common mean µ. Suppose also that the logarithm of the moment

generating function for the Xi is finite for all t ∈ R. That is,

Λ(t) := logEetX1 <∞ for all t.

Let Λ∗ be the Legendre transform of Λ:

Λ∗(x) = sup
t∈R

(tx− Λ(t))

Then

lim
n→∞

1

n
log(P (

∑
Xi ≥ nx)) = −Λ∗(x).

In other words, the random variables satisfy a LDP with speed an = n and rate function

I(x) = Λ∗(x). This result was discovered by Harald Cramér in 1938.

11



1.2 Background in Number Theory

1.2.1 The counting functions ω(n) and Ω(n)

On average, how many distinct prime factors does a positive integer have? This amounts to

calculating the average, or normal order of the counting function ω(n).

Definition 1.4. Let n be a positive integer. Then we define Ω(n) as the number of total

prime factors of n, and ω(n) the number of distinct prime factors.

For example, n = 12 = 22 ∗ 3 gives Ω(12) = 3 and ω(12) = 2, whereas for n = 23, a prime,

both equal 1.

Definition 1.5. Let f : N → C. The average, or normal order of f(n) is an elementary

function g(n) such that, as n→∞, g(n) ∼ 1
n

n∑
i=1

f(i).

Example 1.2. The average order of ω(Xs) is log log n ([11], Theorem 431). That is,

1

x

∑
n≤x

ω(n) ∼ log log x.

This is what is meant by the normal order of the counting function ω(n). It means that,

a number on the order of ee3 ≈ 5.28 ∗ 108 usually has 3 distinct prime factors. This as-

tonishing result means that numbers like 26 ∗ 34 ∗ 104707 ≈ 5.42 ∗ 108 are “normal”, in the

sense that it is on the same order as ee3 , and has exactly 3 distinct prime divisors (Side

note: ee
3

= 528, 491, 311.485.... The two nearest integers are 528491311 and 528491312.

They have three and five distinct prime divisors respectively. This was checked using sage’s

integer factorization function).
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Figure 1.2: Plot of ω(n) and the cumulative average of ω(n)

The scatterplot shows values of ω(n) for n = 2, ..., 2400. The single point at the top right is for
n = 2× 3× 5× 7× 11 = 2310. The green plot is the cumulative average of the function:

1
n

∑
k≤n ω(k). It is asymptotic to log logn.

Since there are infinitely many prime numbers, Ω(n) = ω(n) = 1 infinitely often. On the

other hand, every time we pass a new primorial number (numbers of the form 2, 2∗3, 2∗3∗5,

2 ∗ 3 ∗ 5 ∗ 7, ... see http://oeis.org/A002110 ) the function ω(n) attains a new running

maximum. That is, for such a number n in this list, ω(k) < ω(n) for all k < n. Both func-

tions ω(n) and Ω(n) are oscillatory and slowly growing. In fact, they grow asymptotically at

the order of log log n. Plots of the first few values of the two counting functions are shown

in Figure 1.3.

1.2.2 Hardy-Ramunajan Theorem

In 1917, Hardy and Ramunajan proved in a precise way the statement

13
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Figure 1.3: Plot of Ω(n) and the cumulative average Ω(n)

The scatterplot shows values of Ω(n) for n = 2, ..., 2400. The maximum of these values occurs at
n = 211 = 2048, with Ω(211) = 11. The next best is Ω(n) = 10, which occurs at three places:

n = 1024, 1536, and 2304 (respectively 210, 29 × 3, and 28 × 32). The green plot is the cumulative
average of the function: 1

n

∑
k≤n Ω(k)

“Almost every integer m has approximately log logm prime divisors” ([12], Section 4.4)

In direct analogue to the law of large numbers, they proved the following

Theorem 1.5. Let gn be any sequence of real numbers such that limn→∞ gn = ∞, and let

ln denote the number of integers, 1 ≤ m ≤ n, for which either

ω(m) < log logm− gm
√

log logm

or

ω(m) > log logm+ gm
√

log logm.

Then

lim
m→∞

lm
m

= 0.

14



This is an analogue of the law of large numbers because it says that the asymptotic, or

relative density of the set {ln : n ∈ N}, those numbers that deviate from the mean, is zero.

The complement of {ln : n ∈ N} in N has relative density 1(see definition 1.9).

1.2.3 Erdős-Kac Theorem

Just as the Hardy-Ramunajan is the analogue of the weak law of large numbers, the Erdős-

Kac theorem plays the role of Central Limit Theorem. In fact, it was what led Kac to believe

a central limit theorem should hold for the number of prime factors of a large positive integer.

Specifically, this theorem states that the average, or normal order of the counting function

ω(n) converges to a normal distribution (See [7] for the original paper).

Theorem 1.6. Let a, b be real numbers with a < b, then as x→∞,

1

x
#{n ≤ x : a ≤ ω(n)− log log n√

log log n
≤ b} → φ(b)− φ(a),

where φ is the standard normal distribution.

Note that Theorem 1.6 implies Theorem 1.5, since, if gn →∞ as n→∞, then

n− log n

n
=

1

n
#{m ≤ n : |ω(m)− log logm√

log logm
| < gn} →

∞∫
−∞

1√
2π
e−z

2/2 dz = 1.

1.2.4 The Prime Number Theorem

The prime number theorem states that, if π(x) counts the number of primes less than or

equal to x, then as x→∞,

15



π(x) ∼ x

log x
.

This theorem was first proved in 1896 by Jacques Hadamard and Charles Jean de la Vallee

Poussin, both of whom made use of the Riemann Zeta function ζ(s) (see https://en.

wikipedia.org/wiki/Prime_number_theorem). Many mathematicians had previously con-

jectured this asymptotic growth rate, including Peter Gustav Dirichlet. During the 20th

century, several different proofs were found, including some that relied only on “elementary”

methods, such as those given by Selberg and Erdős in 1949 [1].

The prime number theorem is equivalent to the statement that

pn ∼ n log n,

as n→∞, where pn is the nth largest prime number [11].

1.2.5 Dirichlet’s Theorem on Primes in Arithmetic Progressions

An arithmetic progression with first term h and common difference k consists of numbers of

the form

h+ nk, n = 0, 1, 2, ...

If h and k are not coprime, then the corresponding arithmetic progession will consist of at

most one prime, depending on whether h is prime or not. Therefore, we restrict our attention

to the case where the greatest common divisor, (h, k) = 1. In this case, Dirichlet proved

16
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that the set {h+ nk | n = 0, 1, 2, ...} contains infinitely many primes (see [1], Theorem 7.3).

Theorem 1.7. If k > 0 and (h, k) = 1, then for all x > 1,

∑
p≤x, p≡h mod k

log p

p
=

1

φ(k)
log x+O(1),

where φ(k) is Euler’s phi function. The sum is taken over all primes less than or equal to x

that are congruent to h mod k.

The first thing to note (trivially) is that this implies there are infinitely many primes in this

general congruence class {h + nk | n = 0, 1, 2, ...}. For if there were a finite number, then

the series would converge and hence not go to infinity with log x. The other thing to note

is the right hand side is independent of h. That is, for any h relatively prime to k, the sum

is asymptotic to 1
φ(k)

log x as x → ∞. Since there are exactly φ(k) such numbers h, this

theorem tells us the prime numbers are equidistributed among the φ(k) congruence classes.

They all contain the same proportion of prime numbers. A more probabilistic interpretation

of this result would be the following. Pick a prime number p “at random”. What is the

probability it is congruent to 1, 3, or 5 mod 6? The answer would be 1/3 in each case. That

is, p is uniformly distributed over the φ(6) = 3 (reduced) congruence classes mod 6.

1.2.6 Dirichlet Series and the Riemann Zeta function

A Dirichlet series is a series of the form

∞∑
n=1

f(n)

ns
,
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where f(n) is any arithmetical function, and s is any comlex number. The simplest example

of a Dirichlet series is

ζ(s) =
∞∑
n=1

1

ns
.

This is the Riemann Zeta function. It is convergent for s > 1. In particular,

ζ(2) =
∞∑
n=1

1

n2
=
π2

6
,

a result due to Euler in 1735. The Riemann Zeta function has been studied in great detail

because of its close connection with the distribution of prime numbers. A remarkable identity

due to Euler is

ζ(s) =
∏
p

1

1− p−s
(1.6)

for all s > 1.

Let us determine the behavior of ζ(s) as s approaches 1 from the right. We can write it in

the form

ζ(s) =
∞∑
1

n−s =

∫ ∞
1

x−sdx+
∞∑
1

∫ n+1

n

(n−s − x−s)dx.

Here,
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∫ ∞
1

x−sdx =
1

s− 1
,

since s > 1. Also

0 < n−s − x−s =

∫ x

n

st−s−1dt <
s

n2
,

if n < x < n+ 1, and so

0 <

∫ n+1

n

(n−s − x−s)dx < s

n2
.

This shows

ζ(s) =
1

s− 1
+O(1), (1.7)

as s ↓ 1.

1.2.7 The Prime Zeta function

Definition 1.6. The prime zeta function is defined as

P (s) =
∑
p

1

ps
, s > 1.

Certain values of P (s) are
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s Approximate value for P(s)

1 1
2

+ 1
3

+ 1
5

+ 1
7

+ 1
11

+ · · · → ∞.

2 0.45224 74200 41065 49850 . . .

3 0.17476 26392 99443 53642 . . .

4 0.07699 31397 64246 84494 . . .

5 0.03575 50174 83924 25713 . . .

9 0.00200 44675 74962 45066 . . .

Even though there are far fewer terms in the sum for P (s) (for every n terms in the sum for

the riemann zeta function, there are approximately 1/ log n terms in the sum for the Prime

zeta function, by the prime number theorem), the series is still divergent for s = 1. Using

equation 1.6, we can write the log of ζ(s) as

log ζ(s) =
∑
p

∞∑
m=1

p−ms

m
(1.8)

In terms of the Prime Zeta function, this gives the relation

log ζ(s) =
∑
j≥1

P (js)

j
, (1.9)

and by mobius inversion

P (s) =
∑
j≥1

µ(j)
log ζ(js)

j
. (1.10)
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We also define a useful function below.

Definition 1.7. The Von Mangoldt function is defined as ∆(n) = log p if n = pm for

some m, and 0 otherwise.

We can rewrite equation (1.9) in terms of the Von Mangoldt function. When n = pm, we

have 1
ns

= p−ms and ∆(n)
logn

= log p
log pm

= 1
m
. When n is not a prime power, ∆(n) = 0. These

details imply

log ζ(s) =
∞∑
n=2

∆(n)

ns log n
(1.11)

We will use the above in Section 1.4.1. For now, we move onto an important part of the

thesis. Below, I describe the main reasons for studying these number theoretic functions in

a probabilistic setting.

1.3 Distributions defined on the natural numbers

How can one sample a positive integer at random so that all outcomes are equally likely? In

general, there is no way to do this, because, if it were possible, there would be a common

probability c of each outcome. But
∞∑
n=1

c =∞ doesn’t allow for that. We must deal with the

divergence of the series somehow. In general, any convergent series
∑
ai whose coefficients

satisfy 0 ≤ ai ≤ 1 defines a probability distribution on N, given by

P (X = i) =
1
∞∑
i=1

ai

ai, i = 1, 2, ...
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Definition 1.8. Let n be a positive integer and define Xn such that

P (Xn = i) =
1

n
, i = 1, ..., n.

Then Xn is said to follow a uniform distribution.

The uniform distribution allows for equally likely outcomes, but cannot be extended to be

supported on all of the natural numbers. For that reason, one main way of studying the

distribution of numbers in a probabilistic way is to take a uniform distribution up to n, and

let n go to infinity. Done in this way, the definition of natural density of a set (defined below)

transfers directly to the limit of the probability of an event.

Definition 1.9. Let A be a subset of the natural numbers. We say A has natural density

δ(A), 0 ≤ δ ≤ 1, if
1

n
|A ∩ [n]| → δ(A)

as n→∞.

With this definition in place, it is immediately clear that the set of positive even integers

has natural density 1/2, or the set of positive integers not divisible by 3 has natural density

2/3.

The notion of natural density is very important because, one, it is intuitive, and, two, it

gives us a measure of how often a number has such and such property. It also gives merit to

studying uniformly distributed integers from 1 to n and letting n→∞. This is because for

any A with natural density δ(A),

P (Xn ∈ A)→ δ(A)
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as n→∞. Another distribution defined on the natural numbers is the harmonic distribution.

Definition 1.10. Let Yn be a random variable such that

P (Yn = i) =
1

hni
,

where hn =
n∑
i=1

1
i
. Then Yn is said to follow a harmonic distribution.

The harmonic distribution differs from the uniform in that it does not have equally likely

outcomes, and puts more weight on smaller values. Also, for any subset of the natural num-

bers A, sending n→∞ and looking at the limiting probability lim
n→∞

P (Yn ∈ A) gives rise to,

not the natural density of A, but the logarithmic density.

Definition 1.11. We say that A ⊆ N has logarithmic density δ(A) if the limit lim
n→∞

1
logn

∑
i≤n: i∈A

1
i

exists and equals δ(A).

If the natural density of a set A exists, then so does it’s logarithmic density and both

are the same. The converse is not necessarily true. Depending on the set of numbers in

question, logarithmic density may be more practical to calculate than natural density. One

example of this is the density of primitive subsets of N (see Behrend’s Theorem https://

en.wikipedia.org/wiki/Behrend%27s_theorem). Finally, we define another distribution

on the natural numbers, this time with the property that each natural number occurs with

positive probability.

Definition 1.12. Let s > 1 be a real parameter. The random variable Xs follows a zeta

distribution if the probability mass function is given by

P (Xs = n) =
1

ζ(s)

1

ns
, n = 1, 2, ...
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This distribution doesn’t have a cutoff. Every n ∈ N has positive probability. However, it

is not uniformly distributed. As in the harmonic case, smaller numbers are weighted more

heavily.

An overarching theme in this thesis is that, in each of these three cases, Xn uniform, Yn

harmonic, and Xs zeta, limiting probabilities seem always converge to the same value.

1.3.1 Some properties of the zeta distribution

The Riemann Zeta function ζ(s) is a meromorphic function on the complex plane with a

simple pole at s = 1. It can be analyzed using techniques in complex analysis and also

give us theorems about the integers. It is a highly scrutinized function, due in part to the

elusiveness of the Riemann Hypothesis. However, in this thesis we only concern ourselves

with ζ(s) on the open interval s ∈ (1,∞). It is for this reason that we don’t discuss such

extraordinary topics as the Riemann Hypothesis, and integral formulas for ζ(s). We don’t

make use of it here. Several authors have made use of the Riemann Zeta Distribution. Lin

and Hu [15] show more generally that any dirichlet series corresponding to a completely

multiplicative function defines an infinitely divisible distribution. The main articles we are

concerned about in this thesis are those of Arratia, Lloyd, and Gut discussed shortly. First,

let us mention and prove some basic properties of the Riemann Zeta Distribution.

1.3.2 The prime exponents are geometrically distributed

Lemma 1.3.1. For any n, the probability of the event {n|Xs} (this is the event {n divides

Xs}, not to be confused with conditional probability) is given by summing over all multiples
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of n:

P (n|Xs) = ζ−1(s)
∞∑
k=1

1

(nk)s
= ζ−1(s)

1

ns

∞∑
k=1

1

ks
=

1

ns
.

Furthermore, for m and n coprime, the events {m|Xs} and {n|Xs} are independent.

Lemma 1.3.2. Let m, n be positive integers such that gcd(m,n) = 1. Then

P (m|Xs, n|Xs) = P (m|Xs)P (n|Xs).

Proof. For m and n coprime, {m|Xs and n|Xs} if and only if {mn|Xs}. Therefore, by lemma

1.3.1,

P ({m|Xs} ∩ {n|Xs}) = P ({mn|Xs}) =
1

(mn)s
=

1

ms

1

ns
= P ({m|Xs})P ({n|Xs})

Theorem 1.8. Denote the exponents in the prime factorization of Xs by cp(Xs), so that

Xs =
∏
p

pcp(Xs). Then the exponents are independent and geometrically distributed, with

P{cp(Xs) ≥ k} =
1

pks
, k = 0, 1, 2, ... (1.12)

Proof. Let n be a positive integer. Denote the exponents in its prime factorization by

n =
∏
p

pcp(n), where all but finitely many of the cp(n) are nonzero. Using equation (1.6),

P{cp(Xs) = cp(n) for all p} = P{Xs = n} =
∏
p

(1− 1

ps
)(

1∏
p

pcp(n)s
)

=
∏
p|n

(1− 1

ps
)

1

pcp(n)s

∏
p-n

(1− 1

ps
)

=
∏
p

hp(n),
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where hp(n) = (1− 1
ps

) 1
pcp(n)s

. We have written the joint probability P{cp(Xs) = cp(n) for all p}

in factored form
∏
p

P{cp(Xs) = cp(n)}. Therefore, the exponents {cp(Xs)} form an indepen-

dent set, and have respective probability mass functions given by

P{cp(Xs) = k} = (1− 1

ps
)

1

pks
, k = 0, 1, 2, ... (1.13)

Remark 1.3.1. The fact that the exponents of Xs are independent and geometrically dis-

tributed is no surprise. It is kind of “baked in” due to the euler product formula (1.6) for the

zeta function.

1.3.3 Examples using a Theorem by Diaconis

The Theorem below due gives us a direct route to connect harmonic limits with zeta limits.

Theorem 1.9. (Diaconis, [4], Theorem 1). Let x = (x1, x2, ...) be any bounded sequence of

numbers. Then

lim
n

1

log n

n∑
i=1

xi
i

= c ⇐⇒ lim
s→1+

(s− 1)
∞∑
i=1

xi
is

= c.

Corollary 1.3.1. Let A be a subset of the natural numbers whose logarithmic density exists

and equals δ(A). Define the sequence x = (x1, x2, ...) such that xi = 1 when i ∈ A, zero

otherwise. Then,

lim
s↓1

P{Xs ∈ A} = δ(A).

Let us look at some examples.

Definition 1.13. An integer n is said to be squarefree if its prime factorization consists
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only of distinct primes. That is, no square number divides n.

Example 1.3. The probability Xn is squarefree converges to 6
π2 (See [11], Theorem 333).

This limit also holds for Xs as s→ 1+.

Proof. By Theorem 1.8 below, we have

P{Xs squarefree } =
∏
p

P{cp(Xs) = 0 or 1}

=
∏
p

(1− P{cp(Xs) ≥ 2})

=
∏
p

(1− 1

p2s
)

=
1

ζ(2s)

→ 1

ζ(2)
=

6

π2

as s ↓ 1.

Remark 1.3.2. In view of Theorem 1.9, we get the same limit for Yn.

Definition 1.14. (Eulers’ Totient function) Let n be any positive integer. Define φ(n) to

be the number of positive integers k ≤ n that are relatively prime to n.

Example 1.4. The average value of φ(Xn)/n also converges to 6/π2. We review a proof of

this in the appendix in Section A.2. Here, we show this holds for the zeta distribution Xs as

s→ 1+.

Proof. Using a well known equation φ(n) = n
∏
p|n

(1− 1
p
) ([1], Theorem 2.4), we have

φ(Xs) = Xs

∏
p|Xs

(1− 1

p
) = Xs

∏
p

(1−
1cp(Xs)>0

p
)
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Taking expected value and using Theorem 1.8 ,

E
φ(Xs)

Xs

=
∏
p

E(1−
1cp(Xs)>0

p
)

=
∏
p

(1− P (cp(Xs) > 0)

p
)

=
∏
p

(1− 1

ps+1
)

→ 1

ζ(2)
=

6

π2

as s ↓ 1.

Remark 1.3.3. In view of Theorem 1.9, we get the same limit for Yn.

We generalize definition 1.13 and the corresponding example 1.3.

Definition 1.15. We say the n is k-th power free if no prime power of the form pk divides

n.

Example 1.5. Let k be any positive integer greater than 1. Then as s→ 1+ the probability

Xs is not divisible by any k-th power converges to 1
ζ(k)

.

Proof. By Theorem 1.8,

P{Xs is k-th power free } =
∏
p

P{cp(Xs) < k}

=
∏
p

(1− P{cp(Xs) ≥ k})

=
∏
p

(1− 1

pks
)

→ 1

ζ(k)

28



as s ↓ 1.

Now let xi = 1 if i is k-th power free and zero otherwise. Then the sequence x = (x1, x2, ...)

is clearly uniformly bounded (by M = 1). We apply Corollary 1.3.1 and see that

lim
n→∞

1

log n

∑
i≤n: pk-i ∀p

1

i
=

1

ζ(k)
.

Example 1.6. Let k ≥ 0. For each i ≥ 1, set xi = 1 if Ω(i) − ω(i) = k. Otherwise,

set xi equal to 0. By Corollary 1.3.1, we see that the logarithmic density, dk, of the set

{i ∈ N : Ω(i)− ω(i) = k} is the same as lim
s↓1

P{Ω(Xs)− ω(Xs) = k}, if the limit exists. We

will show that the limit dk exists in Section 3.1.1.

1.4 The Poisson approximation to the count of prime fac-

tors

It is clear that a Poisson approximation to the number of prime factors of Xs is available.

For the uniform case Xn, the following theorem already hints at Poisson (see [11], Theorem

437 or [18], Section 6.1).

Theorem 1.10. (Landau) Let k be a positive integer, and let πk(x) denote the number of

integers n ≤ x with exactly k prime factors. Then

πk(x) ∼ e− log log x (log log x)k−1

(k − 1)!

A Poisson random variable with parameter log log x fits nicely as an approximation (at least

for an approximation to the first order) of the number of prime factors of an integer. We can

29



also see this in the case for Xs (see Theorem 2.1). Furthermore, several authors, including

Lloyd, Arratia, and Gut, make use of a Poisson approximation to Xs to simplify calculations.

We shall now mention how they do so.

Both Arratia ([2], Section 3.4.2.) and Lloyd ([16], equation (4)) use some form of the Poisson

distribution to approximate the prime exponents in the random variable Xs. In the case of

Arratia, he looks at geometric random variables Zp with parameter 1/p. Arratia uses that

each geometric random variable cp(Xs) (with s = 1) can be written in the form
∑

k≥1 kAp,k,

where the Ak are independent Poisson random variables with expectation EAk = 1
kpk

. This

shows stochastic domination of the geometric Zp ≥d A1. That is, Zp = A1 + R, where

Zp ∼ Geo(1
p
), A1 ∼ Poisson(1

p
), and R is a non-negative random remainder term

∑
k≥2

kAk

which is much smaller (in expectation) than A1. Notice that P (R = 0) = P (Ak = 0 ∀ k ≥ 2).

Notice also that P (R = 1) = 0 since 2A2 = 0 or is greater than or equal to 2. We will explain

a connection with Lloyd’s decomposition in Section 1.4.2.

Gut notices that the log of Xs is compound Poisson [10] .

1.4.1 The logarithm is compound Poisson

In [10], Gut defines a random variable V , taking values in the set of prime powers, such that

P (V = pm) =
1

log ζ(s)

1

mpms
(1.14)

He then shows that
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logXs
d
=

N∑
i=1

log Vi,

the random variables log Vi being iid with common distribution that of log V , and N , in-

dependent of the log Vi’s, is Poisson with parameter λ = log ζ(s). That is, Gut shows that

logXs is compound poisson (see definition 1.2).

1.4.2 A useful factorization of the zeta distribution (Xs = X ′sX
′′
s )

Let Yn follow a harmonic distribution as in 1.10. Lloyd uses an approximation of Yn by the

zeta random variable Xs. If we write Yn = q1(Yn)q2(Yn)... ,where qr(Yn) is the rth largest

prime factor of Yn, then Lloyd showed that the random variable log qr(Yn)
log Yn

converges to a

random variable with distribution Fr, whose moments are given by

∫ 1/r

0

xmdFr(x) =

∫ ∞
0

[ξ(t)]m

m!
e−t

tr−1

(r − 1)!
dt,

where ξ(t) is the functional inverse of the exponential integral E(x) =
∫∞
x

e−y

y
dy.

This Fr is exactly the marginal of the rth component in the Poisson-Dirichlet distribution

discussed in Section 1.4.4 below. In proving this, Lloyd used an approximation of the ge-

ometric random variable by a Poisson with the same parameter. He takes the quotient of

the probability generating function of a geometric with parameter ρ, f(x) = 1−ρ
1−ρx , with

the probability generating function of a Poisson random variable with the same parameter,

g(x) = eρ(x−1). The quotient equals
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(1− ρ)e−(x−1)ρ

1− ρx
= (1− ρ)eρ

∞∑
m=0

ρmσ(m)xm

where σ(m) =
∑m

j=0
(−1)j

j!
. If α is geometric rnadom variable with parameter ρ, then so

is α′ + α′′, where α′ is Poisson distributed with the same parameter ρ, and α′′ has the

distribution given by the above generating function. That is,

P (α′′ = m) = (1− ρ)eρρmσ(m), m = 0, 1, 2, ... (1.15)

The utility of this decomposition is that, as ρ → 0, P{α′′ > 0} = P{α′′ ≥ 2} = O(ρ2),

stemming from σ(1) = 0. We state Lloyd’s decomposition as a theorem.

Theorem 1.11. (Lloyd) Let N denote a zeta random variable with parameter s, and write

N =
∏
p

pαp. Define two independent variables X ′s and X ′′s such that if X ′s =
∏
p

pα
′
p, and

X ′′s =
∏
p

pα
′′
p , then for each prime p,

P{α′p = k} =e−1/ps p
−sk

k!
, k = 0, 1, 2, ...

P{α′′p = m} =(1− 1

ps
)e1/psp−smσ(m), m = 0, 1, 2, ...

where σ(m) is defined as in (1.15).

Then Xs = X ′sX
′′
s in distribution.

If X ′′s =
∏
p

pα
′′
p , where the α′′p have the distribution in Theorem 1.11, then X ′′s will be finite

as s→ 1+. Essentially this means that divergence of the zeta random variable Xs is carried
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by the random variable X ′s, whose exponents α′p are Poisson distributed. Once again, we see

the connection with Poisson.

1.4.3 Lloyd and Arratia use the same decomposition

Lloyd’s decomposition of the geometric random variable α = α′ + α′′ is similar to Arratia’s.

The only difference is that Lloyd’s α′′ equals
∑
j≥2

jAj. He only decomposes the geometric into

a sum of two variables, one Poisson and one remainder term. This suffices for first order

approximation of a geometric with parameter ρ = 1
ps

as s → 1+. But if we want a better

approximation, we should analyze the behavior of the variables jAj, as well.

1.4.4 The Poisson-Dirichlet Distribution

Let C = [0, 1]∞ be the infinite-dimensional unit cube, and let Ui be i.i.d. uniform random

variables in the interval [0, 1]. Then the vector (U1, U2, ...) is uniformly distributed on C. If

we make the transformation

X1 = U1, X2 = (1− U1)U2, X3 = (1− U1)(1− U2)U3, ...

(the general term is Xi = Ui
∏

j<i(1−Uj)) then
∑

iXi = 1 almost surely [5] (see Figure 1.4)

, and so the vector (X1, X2, ...) lives on the infinite dimensional simplex ∆ = {x ∈ C|
∑
xi =

1}. The probability measure on ∆ induced by this transformation of uniform measure on C is

called the GEM distribution. If we order the X ′is, namely we write X = (X(1), X(2), X(3), ...)

where X(i) ≥ X(i+1) for each i, then we get what is called the Poisson-Dirichlet distribution

on T = {x ∈ ∆|x1 ≥ x2 ≥ x3...}.

The result that the whole sequence ( log q1(Yn)
log Yn

, log q2(Yn)
log Yn

, log q3(Yn)
log Yn

, ...) converges to the Poisson
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Figure 1.4: The sum of the variables Xi

This explains intuitively why
∑

iXi = 1 a.s.

Dirichlet distribution was proven for the zeta, harmonic, and uniform case (in the appropriate

limits). Many authors worked on this, including Billingsley, Lloyd, Knuth and Pardo, and

Grimmett and Donnelly, and Arratia ([5],[14],[13]). This distribution also shows up as the

limiting distribution for the fractional lengths of the cycles, in a uniformly random chosen

permutation of n. In fact, there is more of a universality result at play. The component sizes

of logarithmic combinatorial structures converge to the Poisson Dirichlet limit.
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Chapter 2

Main Results

In this chapter, we derive formulas for the moment generating functions of ω(Xs) and Ω(Xs).

We proceed to prove an Erdős-Kac like Central Limit Theorem for the number of prime

factors of Xs as s→ 1+, followed by a large deviations result for ω(Xs).

2.1 The moment generating functions of Ω(Xs) and ω(Xs)

Theorem 2.1. Let Aj, j = 1, 2, ... be independent and Poisson distributed with expectation

EAj = P (js)/j, where P (s) is as in (1.6). Then Ω(Xs) is equal in distribution to
∑
j≥1

jAj.

Furthermore, for all s > 1, the moment generating functions of ω(Xs) and Ω(Xs) exist and

are given by
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EetΩ(Xs) = exp{
∞∑
j=1

P (js)
j

(etj − 1)} (2.1)

Eetω(Xs) = exp{
∞∑
j=1

(−1)j+1 P (js)
j

(et − 1)j} (2.2)

Proof. Note that ω(Xs) is a sum of bernoulli random variables
∑
p

1cp(X)>0. Write Xs =∏
p

pcp(Xs) in its prime factorization, and define P (s) as in (1.6).

Then

Eetω(Xs) =
∏
p

Eet1cp(X)>0

=
∏
p

(et 1
ps

+ (1− 1
ps

))

=
∏
p

(1 + (et − 1)/ps)

= exp{
∑
p

log(1 + (et − 1)/ps)}

= exp{
∑
p

−
∞∑
j=1

(−1)j (et−1)j

jpjs
}

= exp{
∞∑
j=1

(−1)j+1 P (js)
j

(et − 1)j},

So we have (2.2). Equation (2.1) is derived similarly. Note that Ω(Xs) is a sum of independent

geometric random variables
∑
p

cp(Xs), whose resepctive moment generating functions are

Eetcp(X) = 1−1/ps

1−et/ps . Using these and Theorem 1.8, we get

36



EetΩ(Xs) =
∏
p

1−1/ps

1−et/ps

= exp{
∑
p

log(1− 1/ps)− log(1− et/ps)}

= exp{
∑
p

−
∞∑
j=1

1
jpjs

+
∞∑
j=1

etj

jpjs
}

= exp{
∑
p

∞∑
j=1

1
jpjs

(etj − 1)}

= exp{
∞∑
j=1

P (js)
j

(etj − 1)}.

This proves (2.1). We proceed to show that Ω(Xs)
d
=
∑
j≥1

jAj. Using Arratia’s fact that “every

baby should know...” ([2], Section 3.4.2.), we show that Ω(Xs) is compound Poisson. This

follows from the fact that (2.1) can be written in factored form

∞∏
j=1

exp{P (js)

j
(etj − 1)}

and noticing that, if Aj ∼ Poisson(P (js)/j), then EetjAj = e
P (js)
j

(etj−1).

Let us comment on a result from Theorem 2.1. Factoring the j = 1 term out in (2.1), we

have that

EetΩ(Xs) = eP (s)(et−1) exp{
∑
j≥2

P (js)

j
(etj − 1)}. (2.3)

The first exponent on the right hand side corresponds to the moment generating function
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of a Poisson distribution with parameter P (s), whereas the second exponent is the moment

generating function of a random variable that stays finite as s ↓ 1. So it is clear that Ω(Xs)

is well approximated by a Poisson distribution with parameter P (s) as s ↓ 1.

Corollary 2.1.1. Let s > 1. We can decompose Ω(Xs) = As +Bs into sums of independent

random variables, where As is Poisson distributed with parameter P (s), while Bs stays finite

as s→ 1+. The divergence of Ω(Xs) is carried by the Poisson variable As.

Remark 2.1.1. The decomposition in Corollary 2.1.1 is essentially the same as the one

exhibited by Lloyd in Theorem 1.11. This is why Poissonian statistics arise in the results

about Ω(Xs).

The next section derives a normal law in the limiting behavior of the number of prime factors

of Xs. Due to the similarities between equations (2.1),(2.2) and those in Flajolet (equations

(1.2a),(1.2b) in [9]), it may be possible to deduce the gaussian limit from one of his theorems.

There seems to be a more universal gaussian limit law for component counts of combinatorial

structures, the number of “components” in the prime factorization of an integer just being a

special case. We do not investigate the matter.

2.2 A Central Limit Theorem for the number of prime

factors

Theorem 2.2. Let ω̂(Xs) = ω(Xs)−P (s)√
P (s)−P (2s)

. Then

ω̂(Xs)
d−→ Z ∼ N (0, 1),

as s→ 1+. Here, ω̂(Xs) is rescaled to have mean 0 and variance 1.
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Proof. One first calculates that Eω(Xs) =
∑
p

E1cp(Xs)>0 =
∑
p

P{p|Xs} =
∑
p

1/ps = P (s).

Also, by independence of the cp(Xs)’s, we have var{ω(Xs)} =
∑
p

var{1cp(Xs)} =
∑
p

1/ps(1−

1/ps) = P (s)− P (2s).

Define ω̂(Xs) = ω(Xs)−P (s)√
P (s)−P (2s)

. Then

Ee
t(

ω(Xs)−P (s)√
P (s)−P (2s)

)
=e
− P (s)√

P (s)−P (2s)
t
Ee

t√
P (s)−P (2s)

ω(Xs)

=e
− P (s)√

P (s)−P (2s)
t
exp{−

∑
j≥1

P (js)

j
(1− e

t√
P (s)−P (2s) )j}

= exp{− P (s)√
P (s)− P (2s)

t− P (s)(1− e
t√

P (s)−P (2s) )−
∑
j≥2

P (js)

j
(1− e

t√
P (s)−P (2s) )j}

= exp{P (s)(e
t√

P (s)−P (2s) − (1 +
t√

P (s)− P (2s)
))−

∑
j≥2

P (js)

j
(1− e

t√
P (s)−P (2s) )j}

Now let us take the limit as s→ 1+ of the above.

The first two terms of the power series for e
t√

P (s)−P (2s) are (1 + t√
P (s)−P (2s)

). The next

term is the leading term, t2

2(P (s)−P (2s))
. With the extra factor of P (s) on the outside, that

goes to t2

2
as s→ 1+, or P (s)→∞. The following terms all vanish. This shows that

Eetω̂(Xs) → et
2/2,

the moment generating function of a standard normal random variable. By Levy’s continuity

theorem (Theorem 1.3) , we have ω̂(Xs)
d−→ Z ∼ N (0, 1).
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We use a different method of proof for the number of total prime factors.

Theorem 2.3. Let Ω̂(Xs) = ω(Xs)−P (s)√
Q(s)

, where Q(s) = var{Ω(Xs)} =
∑
p

ps

(ps−1)2
. Then

Ω̂(Xs)
d−→ Z ∼ N (0, 1),

as s→ 1+. Here, Ω̂(Xs) is rescaled to have mean 0 and variance 1.

Proof. Using Corollary 2.1.1, write Ω(Xs) = As +Bs. Then

Ω̂(Xs) =
As − P (s)√

Q(s)
+
Bs − P (s)√

Q(s)
.

Since As is Poisson with parameter P (s), its variance is P (s). Using that P (s) ∼ Q(s) as

s → 1+, the first part in the sum converges to a standard normal distribution by Theorem

1.2. The second sum goes to zero, since Bs stays finite as s→ 1+.

Once again, we see similarities between the limiting distribution of the zeta random variable

Xs, and the uniform case Xn as n→∞. Theorem 2.2 is the analog of Theorem 1.6.

2.3 On the number of prime factors of Xs in an arithmetic

progression

What if we consider only the number of prime factors of Xs in a given congruence class

mod k for any k? Do we still get a central limit theorem for this new random variable? A

corollary to Theorem 1.7 tells us that the primes are equidistributed among the φ(k) con-

gruence classes {n : n ≡ h mod k }, where gcd(h, k) = 1. Since the total number of prime
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factors, properly rescaled, converges to a standard normal random variable, the sum of the

total prime factors in each congruence class converges to a standard normal. As the sum of

normals is normal, we should expect that the limiting law of the rescaled ω(Xs) is a sum of

φ(k) iid mean 0 variance 1/φ(k) normals.

Let h, k be any coprime positive integers, and let Ah = {h+ nk : n ∈ Z+}. Let

PAh(s) =
∑

p≡h mod k

1

ps

be the restriction of the prime zeta function to the sum over primes congruent to h mod k.

Notice that if we enumerate the φ(k) numbers less than k relatively prime to k by h1, ..hφ(k),

then

P (s) = PAh1 (s) + ...+ PAhφ(k) (s).

It is reasonable to suspect that the prime counting function which counts the number of

distinct prime divisors of n that are congruent to h mod k (let us denote this by ωAh(n))

should also converge to a normal distribution.

Theorem 2.4. Let ωAh(Xs) be the number of (distinct) primes congruent to h mod k that

divide Xs. Then

ω̂Ah(Xs) =
ωAh(Xs)− PAh(s)√
PAh(s)− PAh(2s)
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converges to a normal random variable with mean 0 and variance 1
φ(k)

. Furthermore, the

random variables ω̂Ahi (Xs) are iid, and ω̂(Xs) = ω̂Ah1 (Xs) + ...+ ω̂Ahφ(k) (Xs).

Proof. This falls out directly from the formula for the moment generating function Eetω(Xs) =

exp{
∑∞

m=1(−1)m+1P (ms) (et−1)m

m
}. Split the sum up as follows.

Eetω(Xs) = exp{
∞∑
m=1

(−1)m+1

φ(k)∑
i=1

PAhi (ms)
(et − 1)m

m
}.

Then the exponential turns the sum into a product of mgf’s,

Eetω(Xs) =

φ(k)∏
i=1

exp{
∞∑
m=1

(−1)m+1PAhi (ms)
(et − 1)m

m
},

so we see that the ωAhi (Xs)’s are independent with respective moment generating functions

given as the terms of the product above. Now by Dirichlet (Theorem 1.7), the primes are

equidistributed among the φ(k) congruence classes corresponding to the h with gcd(h, k) = 1.

Therefore,

P (s) =
∑

h: (h,k)=1

PAh(s) = φ(k)PA1(s)

as s ↓ 1. So we have, for any h relatively prime to k, the expected value of EωAh(Xs) ∼
1

φ(k)
P (s). And since the variance of the sum of independent random variables is the sum of

the variances,

P (s)− P (2s) =
∑

h:(h,k)=1

PAh(s)− PAh(2s).
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By Theorem 2.2,

ω(Xs)− P (s)√
P (s)− P (2s)

=

∑
h: (h,k)=1

ωAh(Xs)− PAh(s)√
φ(k)[PA1(s)− PA1(2s)]

=
1√
φ(k)

∑
h: (h,k)=1

ω̂Ah(Xs)→ Z ∼ N (0, 1).

Z is a sum of φ(k) identically distributed random variables Z1, ..., Zφ(k) which are the limiting

distributions of 1√
φ(k)

ω̂Ah(Xs). This implies for each h relatively prime to k,

ω̂Ah(Xs)→ Zh ∼ N (0,
1

φ(k)
).

Remark 2.3.1. A similar theorem to Theorem 2.4 but for Ω(Xs) should also be provable

using the same methods as in the proof above.

2.4 Large Deviations

From the formulas for the moment generating functions for ω(Xs) and Ω(Xs), we also obtain

a large deviation principle. Recall the definition of a Large Deviation Principle (1.3). We

will identify the rate function I(x) for the ω(Xs) when our speed is P (s).

In the classical definition, we have a sequence of iid random variables X1, X2, .... Here,

the X ′is will instead be indicators 1cp(Xs)>0, since ω(Xs) is a sum of these indicators. The

expected value of the sum
∑
p

1cp(Xs)>0 is just P (s). So we want to find a rate function I(x)

such that for each x ≥ 1,
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lim
s↓1

1

P (s)
lnP{ω(Xs)

P (s)
≥ x} = −I(x).

We find that the rate function exactly matches the rate function in Example 1.1.

Theorem 2.5. Let x > 1. Then

lim
s↓1

1

P (s)
lnP (

ω(Xs)

P (s)
≥ x) = x lnx+ 1− x.

Proof. We start with the upper bound.

By Chebyshev’s inequality, we have

P{ω(Xs)

P (s)
≥ x} = P{ω(Xs) ≥ xP (s)}

≤ e−txP (s)Eetω(Xs)

= e−(txP (s)+
∑∞
j=1 P (js)

(1−et)j
j

)

= e−P (s)(tx+1−et+
∑∞
j=2

P (js)
P (s)

(1−et)j
j

)

This is true for all t. The max
t

(tx+ 1− et) occurs when d
dt

(tx+ 1− et) = x− et = 0, so when

lnx = t.

Therefore,
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P (
ω(Xs)

P (s)
≥ x) ≤ exp{−P (s)(x lnx+ 1− x+

∞∑
j=2

P (js)

P (s)

(1− x)j

j
)}

Which implies

1

P (s)
lnP{ω(Xs)

P (s)
≥ x) ≤ −(x lnx+ 1− x) +

∞∑
j=2

P (js)

P (s)

(1− x)j

j

Therefore

lims↓1
1

P (s)
lnP (

ω(Xs)

P (s)
≥ x) ≤ −(x lnx+ 1− x)

One should then have equality, with lims↓1 replaced by lims↓1 using Cramér’s Theorem (The-

orem 1.4). We proceed to show the lower bound is the same.

Let Ys = ω(Xs)
P (s)

. Then

P (Ys ≥ x− δ) ≥ E[eλYs ;Ys ≥ x− δ]e−λ(x−δ), (2.4)

where λ solves Λ′s(λ) = x,Λs(λ) = −
∑∞

j=1 P (js) (1−eλ/P (s))j

j
(Here, Λs(λ) is just the log of

the moment generating function evaluated at λ/P (s)).

Define µs(A) = P (Ys ∈ A), µ̃s(A) = E[eλYs ;A]
E[eλYs ]

. Then
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∫
yµ̃s(dy) =

∫
yeλyµs(dy)∫
eλyµs(dy)

=
d
dλ
eΛs(λ)

eΛs(λ)
= Λ′s(λ) = x,

and

∫
y2µ̃s(dy) =

∫
y2eλyµs(dy)∫
eλyµs(dy)

=
d2

dλ2
eΛs(λ)

eΛs(λ)
= Λ′′s(λ) + Λ′2s (λ).

Also,

var(Ỹs) = Λ′′s(λ) =
1

P (s)
eλ/P (s)[1−

∞∑
j=2

P (js)

j − 1
(1− eλ/P (s))j−1].

From this last expression we see that Λ′′s(λ)→ 0. As this is true for any measurable A,

µ̃s((x− δ, x+ δ)) = 1− P (|Ỹs − x| ≥ δ) ≥ 1− var(Ỹs)

δ2
→ 1

Following from (2.4) with Ys = ω(Xs)
P (s)

,

P (Ys ≥ x− δ) ≥ E[eλYs ;Ys≥x−δ]e−λ(x−δ)
E[eλYs ]

E[eλYs ]

≥ µ̃s((x− δ, x+ δ))e−λ(x−δ)+Λs(λ)

Now
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lim
s↓1

1

P (s)
ln µ̃s((x− δ, x+ δ)) = 0

since µ̃s((x− δ, x+ δ))→ 1 as s ↓ 1. So we have

lims↓1
1

P (s)
lnP (Ys ≥ x− δ) ≥ lims↓1

−λ(x−δ)+Λs(λ)
P (s)

≥ lims↓1
infλ(−λ(x−δ)+Λs(λ))

P (s)

= (x− δ) ln(x− δ) + 1− (x− δ)

Now this is true for all δ > 0. So we have

lims↓1
1

P (s)
lnP (Ys ≥ x) = x lnx+ 1− x.

We have shown both lim and lim converge to the same value. Thus,

lim
s↓1

1

P (s)
lnP (

ω(Xs)

P (s)
≥ x) = x lnx+ 1− x.

This result shows the relationship between ω(Xs) and the Poisson distribution Z ∼ Po(λ),

λ = P (s), as s ↓ 1.
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2.4.1 Moderate Deviations

We follow the notation in Section 1.1.4. In our case, n ∼ P (s), bn ∼ P (s)α, 0 < α < 1/2,

and bn/n = P (s)α−1. Then using (2.2), we have

logEetω(Xs) = −
∞∑
j=1

P (js)
(1− et)j

j

P (s)1−2α logEe
t

P (s)1−α
ω(Xs) = −P (s)1−2α

∑∞
j=1 P (js) (1−et/P (s)1−2α

)j

j

= −P (s)1−2α(P (s)(1− et/P (s)1−α) + 1
2
P (2s)(1− et/P (s)1−α)2 + ...

= −P (s)1−2α(tP (s)α + t2

2
P (s)2α + ...)→ t2

2

This suggests that for any α between 0 and 1/2, the random variable ω(Xs) satisfies a LDP

with speed as = P (s)α and rate function I(t) = t2/2. This result should be expected from

the central limit theorem, as the ω(Xs) converge to a normal distribution, and this is the

rate function for a sequence of iid N (0, 1) rv’s. We conclude with a summary of the main

results.

2.5 Summary

We have exhibited formulas for the moment generating functions of ω(Xs),Ω(Xs), and used

them to prove respective central limit theorems for both of these counting functions. These

results show the similarity between the zeta random variable Xs as s→ 1+, and the uniform

48



random variable Xn, as n → ∞. In Theorem 2.1, we decompose Ω(Xs) =
∑
j≥1

jAj into a

sum of independent random variables where Aj ∼ Poisson(P (js)/j). We see the utility of

this in the proof of Theorem 2.3, using Corollary 2.1.1. Furthermore, if we want a more

accurate approximation of Ω(Xs), we can peel off more factors 2A2, 3A3, and measure their

contribution. Finally, the large deviations results once again displays the Poissonian nature

of the limiting distribution. Theorem 2.5 exhibits the same rate function I(x) as we would

get with a sequence of iid Poisson random variables.
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Chapter 3

Other work

3.1 The probability generating function of Ω(Xs)− ω(Xs)

3.1.1 Rényi’s formula for Xs

Let us recover an elegant result by Rényi (see [17], Pg.65). Rényi showed the natural density

(see definition 1.9) of the sets {n ∈ N : Ω(n)− ω(n) = k} are given by the coefficients dk of

the generating function

∞∑
k=0

dkz
k =

∏
p

(1− 1

p
)(1 +

1

p− z
).

Theorem 3.1. The random variable Ω(Xs) − ω(Xs) has probability generating function

given by the infinite product
∏
p

(1 − 1
ps

)(1 + 1
ps−z ). Moreover, this generating fuction exists

for s = 1.

Proof. The random variable Ω(Xs)−ω(Xs) is equal to a sum of independent random variables
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Ω(Xs)− ω(Xs) =
∑
p

(cp(Xs)− 1)+,

where f+ = max{f, 0}. That is,

(cp(Xs)− 1)+ =


0 if cp(Xs) = 0 or 1

cp(Xs)− 1 if cp(Xs) > 1.

Writing p(i) for P (cp(Xs) = i), we have the probability generating function of any one of

them is

Ez(cp(Xs)−1)+ = p(0) + p(1) +
∑∞

k=1 P{(cp(Xs)− 1)+ = k}zk

= (1− 1
ps

) + 1
ps

(1− 1
ps

) +
∑∞

k=1 P{cp(Xs) = k + 1}zk

= (1− 1
ps

)(1 + 1
ps

) + z−1
∑∞

k=2 P{cp(Xs) = k}zk

= (1− 1
ps

)(1 + 1
ps

) + z−1[Ezcp(Xs) − p(0)− p(1)z].

Using that Ezcp(Xs) = 1−1/ps

1−z/ps , and simplifying, one arises at

Ez(cp(Xs)−1)+ = (1− 1

ps
)(1 +

1

ps − z
)

By Theorem 1.8, we get
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EzΩ(Xs)−ω(Xs) =
∏
p

Ez(cp(Xs)−1)+ =
∏
p

(1− 1

ps
)(1 +

1

ps − z
).

Taking the limit as s→ 1+, we arrive at the same infinite product as Rényi for the generating

function of the dk.

Once again, we see that the random variables Xs and Xn behave similarly in their respective

limits. In lieu of Theorem 1.9, the same limit arises in the harmonic case Yn (see example

1.6).

3.1.2 Some probabilities involving EzΩ(Xs)−ω(Xs)

One can then use the above generating function to calculate dk = lims↓1 P{Ω(Xs)−ω(Xs) =

k} for any k. Let us rewrite the probability generating function as

EzΩ(X)−ω(X) =
∏
p

(1− 1
ps

)(1 + 1
ps

1
1−z/ps )

=
∏
p

(1− 1
ps

)(1 + 1
ps

+
∑∞

k=1
zk

ps(k+1) ).

Let us denote the coefficient of zk in the above as ds,k = P{Ω(Xs)− ω(Xs) = k}. Then we

see that ds,0 =
∏
p

(1− 1
ps

)(1 + 1
ps

) = ζ−1(2s), and that
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ds,1 =
∑
p

(1− 1
ps

) 1
p2s

∏
q 6=p(1−

1
q2s

)

=
∑
p

1
1+ 1

ps

1
p2s

∏
q(1−

1
q2s

)

= 1
ζ(2s)

∑
p

1
ps(ps+1)

Using these results, we get d0 ≈ .6079.., and d1 = 1
ζ(2)

(
∑

1
p(p+1)

) ≈ .2007... This gives

approximately

lim
s→1

P{Ω(Xs)− ω(Xs) > 1} ≈ .1915...

It is also interesting to note that

lim
s→1

E[Ω(Xs)− ω(Xs)] =
∑
p

1

p(p− 1)
≈ .73...

(Note: the above sum involving reciprocals of primes was calculated using sage)

The asymptotic density of “nth-power free” numbers is 1
ζ(n)

(see example 1.5). That is, the

density of square free numbers is 1
ζ(2)

, cube free is 1
ζ(3)

, and so on... Since 1− 1
ζ(3)
≈ .16809..,

we have that most numbers ( .168
.192

= .875) that have Ω(n)− ω(n) > 1 also are not cube free.
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3.2 Some calculations

3.2.1 Probability n iid zeta random variables are pairwise coprime

What is the probability that n iid zeta random variables are pairwise coprime? For the

natural density of these coordinates in Zn, the answer was given by Cai & Bach 2003 ([3],

Theorem 3.3 or [17], pg. 69) and is

∏
p

[(1− 1

p
)n +

n

p
(1− 1

p
)n−1]

Now in our case, we calculate P (X1, ..., Xn pairwise coprime ) as follows.

P (∩i<j{gcd(Xi, Xj) = 1}) =
∏
p

P (∩i<j{p 6 |Xi or p 6 |Xj})

where the intersections is over all pairs.

But this is the same as “at most one of the XI can be divisible by p”. For if two of them are

divisible by p, then {p 6 |Xi ∪ p 6 |Xj} does not occur, and so the intersection doesn’t either.

Therefore,

∩i<j{p 6 |Xi ∪ p 6 |Xj} = {p 6 |Xj, j = 1, .., n} t (tni=1{p|Xi, p 6 |Xj ∀j 6= i})

so by independence and mutual-exclusivity,

∏
p

P (∩i<j{p 6 |Xi ∪ p 6 |Xj}) =
∏
p

[(1− 1

ps
)n +

n

ps
(1− 1

ps
)n−1].

We see in the limit s→ 1 that the same formula as the one found by Cai and Bach follows.
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3.2.2 The distribution of the gcd of k iid zeta random variables

In this section, we show that the distribution of the gcd of k independent zeta random

variables with common parameter s is the same as the distribution of one zeta random

variable with parameter ks.

Theorem 3.2. Let Z1, ..., Zk be iid zeta random variables with common parameter s. Let

n be any positive integer, and write n =
∏
pap where all but finitely many of the exponents

ap are nonzero. Let cp(Zi) denote the p-th exponent in the prime factorization of Zi as in

(1.13). Then gcd(Z1, ...Zk)
d
= Xks ∼ Zeta(ks).

Proof. By the definition of gcd, the independence of the Zi’s, and the principle of inclusion-

exclusion, we have

P{gcd(Z1, ...Zk) = n} =
∏
p

P (min{cp(Z1), ..., cp(Zk)} = ap)

=
∏
p

P (∪ki=1{cp(Zi) = ap, cp(Zj) ≥ ap ∀j 6= i})

=
∏
p

∑k
l=1(−1)l+1

(
k
l

)
P (cp(Z1) = ap)

lP (cp(Z1) ≥ ap)
k−l

=
∏
p

∑k
l=1(−1)l+1

(
k
l

)
[ 1
paps

(1− 1
ps

)]l[ 1
paps

]k−l

=
∏
p

1
pkaps

∑k
l=1(−1)l+1

(
k
l

)
(1− 1

ps
)l

Using the binomial theorem,

55



k∑
l=1

(−1)l+1

(
k

l

)
(1− 1

ps
)l = −

∑k
l=1

(
k
l

)
(−1 + 1

ps
)l

= −[(1− 1 + 1
ps

)k − 1] = (1− 1
pks

).

Plugging this in to the above, we see that

P{gcd(Z1, ...Zk) = n} =
∏
p

1

pkaps
(1− 1

pks
) =

1

ζ(ks)

1

nks
.

We notice this is exactly the probability P (Xks = n), where Xks is zeta with parameter ks.

Since this is true for any n, the random variable gcd(Z1, ...Zk) must be zeta distributed with

parameter ks.

Several distributions (e.g. Poisson, gamma, etc) have the property that the sum of two inde-

pendent versions is again in that same family of distributions, where the location parameter

is shifted. Here, the location parameter may be regarded as s, and instead of adding two

random variables X and Y , we take the greatest common divisor of X and Y . The location

parameter is shifted to the left, in the sense that gcd{X, Y } is always smaller or equal to X

or Y . This begs the question, does the lcm operator shift to the right? One can show that

for any positive integer n =
∏
pap ,

P (lcm{Z1, ..., Zk} = n) =
∏
p

[(1− 1

p(ap+1)s
)k − (1− 1

paps
)k].

Unfortunately, this does not seem to factor nicely in terms of n, k and s, as in the gcd case.
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3.2.3 Working with Gut’s remarks

As noted in the outline, Gut ([10]) shows that logXs is compound poisson where the number

of terms N is poisson distributed with parameter λ = log ζ(s), and the terms are independent

and distributed according to log V as in (1.14). How can we use this decomposition of the log

of the zeta random variable in a useful way? One approach to this is the following theorem.

Theorem 3.3. Define V as in (1.14), and let m(n) = P (Ω(V ) = m), where Ω(V ) is the

number of prime factors of V . Then

P (Ω(Xs) = n) = e− log ζ(s)

n∑
k=1

(log ζ(s))k

k!
m∗k(n),

where m∗k is the k-fold convolution of m.

Proof. Using that logXs is compound poisson, we can rewrite

Xs
d
=

N∏
i=1

pmii

where Vi = pmii is a random prime power. If we fix a positive integer k, we attain

P (Ω(V ) = k) = P (V = pk for some prime p) =
1

log ζ(s)

∑
p

1

kpks
=

1

log ζ(s)

P (ks)

k
.

Conditioning on the value of N gives
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P (Ω(Xs) = n) =
∑n

k=0 P (Ω(Xs) = n|N = k)P (N = k)

=
∑n

k=0 P (Ω(V1) + ...+ Ω(Vk) = n)P (N = k)

= e− log ζ(s)
∑n

k=1
(log ζ(s))k

k!
m∗k(n)

See ([8], VI.4) for a more general account of compound poisson processes.

3.3 Sampling non-negative integers using the Poisson dis-

tribution

The Poisson Distribution is another way we can sample a non-negative integer at random.

Just as the harmonic Yn, zeta Xs, and the uniform variable Xn behave similarly in their

respective limits, probabilities involving a Poisson variable X with parameter λ also seem

to converge to that of the other three cases, as its rate parameter λ→∞. In the following

section, we study one of these probabilities. Namely, if we take m independent copies of the

Poisson distribution with a common rate parameter, we show that as λ→∞, the probability

these m variables are relatively prime converges to 1
ζ(m)

.

We start with a lemma involving roots of unity.
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Lemma 3.3.1. Let n ∈ N, and X be Poisson distributed with parameter λ. Then

P{n|X} =
e−λ

n
(eλ + eωλ + ...+ eω

n−1λ),

where ω is a primitive n-th root of unity.

Proof. We use the maclaurin series for the eλ, and classify each term in the series into the n

residue classes mod n. This gives

eλ + eωλ + eω
2λ + ...+ eω

n−1λ =
∞∑
k=0

n−1∑
r=0

λnk+r

(nk + r)!
(1 + ωnk+r + (ω2)nk+r + ...+ (ωn−1)nk+r)

=
∞∑
k=0

n−1∑
r=0

λnk+r

(nk + r)!
(1 + ωr + (ω2)r + ...+ (ωn−1)r).

using that ωnk = 1. Now if r 6= 0,

1 + ωr + (ω2)r + ...+ (ωn−1)r = 1 + ωr + (ωr)2 + ...+ (ωr)n−1

=
(ωr)n − 1

ωr − 1
=

0

ωr − 1

since ωr is an nth root of unity. If r = 0, we have instead 1 + 1 + ...+ 1 n times. Therefore,

eλ + eωλ + eω
2λ + ...+ eω

n−1λ = n
∞∑
k=0

λnk

(nk)!
.

The lemma follows from multiplying both sides by e−λ

n
.
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From the above lemma, we can deduce a formula for P (gcd(X, Y ) = 1). We note that

P (gcd(X, Y ) = 1) = 1− P (gcd(X, Y ) > 1) = 1− P (∪p{p|X, p|Y }).

By Inclusion-Exclusion and independence,

P (gcd(X, Y ) = 1) =1−
∑
p

P ({p|X, p|Y }) +
∑
p 6=q

P ({p|X, p|Y } ∩ {q|X, q|Y })− ...

=1−
∑
p

P (p|X)2 +
∑
p 6=q

P (pq|X)2 − ...+ (−1)n
∑

p1,...,pn

P (p1p2...pn|X)2 + ...

where the general term in the equation is a sum over all sets of n distinct primes.

Using the mobius function µ(n), where

µ(n) =


1 n = 1

(−1)t n is a product of t distinct primes

0 otherwise

and noting that P (1|X) = 1, we write the above equation as

P (gcd(X, Y ) = 1) =
∞∑
n=1

µ(n)P (n|X)2.

This immediately generalizes to a sum of m iid random variables.
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Theorem 3.4. Let n be any integer, and X1, ...Xm be a sequence of m iid Poisson random

variables with common parameter λ. Then

P{gcd(X1, ..., Xm) = 1} =
∞∑
n=1

µ(n)P{n|X}m.

Putting Lemma 3.3.1 and Theorem 3.4 together, we get

Corollary 3.3.1.

P{gcd(X1, ..., Xm) = 1} =
∞∑
n=1

µ(n)

nm
(
n−1∑
k=0

φ(
2kπ

n
))m.

where φ(t) = eλ(eit−1) is the characteristic function of X.

3.3.1 Taking the limit as λ→∞

If we analyze the probability in Theorem 3.4 as λ goes to infinity, we get the following

theorem.

Theorem 3.5. Let X1, ..., Xm be independent poisson random variables with common pa-

rameter λ. If we send λ→∞, then

P{gcd(X1, ..., Xm) = 1} → 1

ζ(m)
.

Proof. We use Lemma 3.3.1. Apart from ±1, roots of unity have nonzero imaginary part. If

we pair these roots of unity into complex conjugate pairs, we see that
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|eλ + eωλ + ...+ eω
n−1λ| ≤ |eλ + e−λ +

∑bn
2
c−1

k=1 (eω
kλ + eω

kλ)|

≤ eλ + e−λ +
∑bn

2
c−1

k=1 2ecos( 2kπ
n

)λ cos(sin(2kπ
n

)λ)

≤ eλ + e−λ + 2(bn
2
c − 1) max

k
{ecos( 2kπ

n
)λ cos(sin(2kπ

n
)λ)}

≤ eλ + e−λ + necos( 2π
n

)λ.

The first inequality is an equality if n is even. If n is odd, −1 is not an n-th root of unity,

but adding e−λ to the sum only makes it bigger. Multiplying by e−λ

n
, we see that

P{n|X} ≤ 1

n
+
e−2λ

n
+ e−λ(1−cos( 2π

n
)).

For the lower bound, by a similar argument, but with the reverse triangle inequality, we can

show that

P{n|X} ≥ 1

n
− e−2λ

n
− e−λ(1−cos( 2π

n
)).

These two together imply the probability n divides X converges exponentially in λ to that

of the uniform distribution. That is,

P{n|X} =
1

n
+ o(e−λ)

as λ→∞. Plugging into Theorem 3.4, we get that
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Figure 3.1: Different pmfs of the Poisson Distribution

These are four different probability mass functions of poisson variables with expected value
λ = 1, 5, 10, 20. As the rate parameter λ increases, the mass becomes more evenly distributed

among all non-negative integers.

P{gcd(X1, ..., Xm) = 1} =
∑
n≥1

µ(n)(
1

n
+ o(e−λ))m,

so that as λ→∞,

P{gcd(X1, ..., Xm) = 1} →
∑
n≥1

µ(n)

nm
=

1

ζ(m)
.

We see that, as λ → ∞, the probability that m Poisson random variables are relatively

prime converges to the same limit as when the m random variables are uniformly distributed

from {1, 2, ..., n} and n→∞. This is intuitively clear; the probability mass function of the

Poisson “flattens out” as λ → ∞, and becomes more and more uniform across the set of

non-negative integers.
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Appendix A

Appendix

A.1 The same decompositon as Lloyd’s

Our factorization of the moment generating function for Ω(X) is exactly the same result

as Lloyd’s. As noted earlier, the moment generating function of Ω(X) can be factored as a

product of moment generating functions

EetΩ(X) = eP (s)(et−1) exp{
∞∑
m=2

P (ms)

m
(etm − 1)}.

This rightmost exponent corresponds to the moment generating function of Ω(N”), where

N” is as in Lloyd’s paper. Let us verify this claim.
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exp{
∞∑
m=2

P (ms)

m
(etm − 1)} = exp{

∑
p

∑∞
m=2

1
mpms

(etm − 1)}

=
∏

p exp{
∑

m≥2
1

mpms
(etm − 1)}

=
∏

p exp{
∑∞

m=1
(et/ps)m

m
−
∑∞

m=1
1

mpms
+ 1

ps
− et

ps
}

=
∏

p exp{− log(1− et/ps)} exp{log(1− 1/ps)}e1/ps exp{−et/ps}

=
∏

p(1−
1
ps

)e1/ps exp{−et/ps}
1−et/ps .

Let us simplify the notation and write ρ for 1/ps (note that ρ still depends on p). Using the

power series for ea and 1/(1− a) and convolution, we see that

∏
p

(1− ρ)eρ
exp{−ρet}

1− ρet
=

∏
p(1− ρ)eρ

∑∞
m=0 ρ

metm
∑∞

m=0(−1)mρmetm

m!

=
∏

p(1− ρ)eρ
∑∞

m=0(
∑m

j=0
(−1)j

j!
ρjsρ(m−j)s)etm

=
∏

p(1− ρ)eρ
∑∞

m=0 ρ
mσ(m)etm,

where σ(m) =
∑m

j=0
(−1)j

j!
is as before.

If we substitute z = et to turn the moment generating function into an ordinary generating

function, we recover Lloyd’s result.

Thus we have seen that the argument behind Lloyd’s factorization N = N ′N” of the zeta

random variable N into a product of random variables N ′ and N” corresponds to the same
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decomposition we have made of Ω(Xs) = Ω(X ′s) + Ω(Xs”), where Ω(X ′s) is a poisson random

variable with parameter P (s), and Ω(Xs”) is a random variable with moment generating

function given by the residue above.
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A.2 The statistics of Euler’s φ function

The average value of euler’s totient function converges to 6/π2 for a randomly chosen inte-

ger. We prove here the case where the random integer is chosen uniformly from {1, .., N},

following Mark Kac’s argument in ([12], Section 4.2).

Theorem A.1. Suppose XN is chosen uniformly from {1, ..., N}. Then

lim
N→∞

E
ϕ(XN)

XN

=
6

π2

Proof. For any n, we have ϕ(n)
n

=
∏

p|n(1− 1
p
). From this, one easiliy deduces that

ϕ(n)

n
=
∑
d|n

µ(d)

d
,

where µ(n) is the mobius function.

It follows that

E
ϕ(XN)

XN

=
1

N

N∑
n=1

ϕ(n)

n

=
1

N

N∑
d=1

µ(d)

d
bN
d
c,

where bxc denotes the greatest integer less than or equal to x.

Writing bN
d
c = N

d
− rN,d, where 0 ≤ rN,d < 1, we see that
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lim
N→∞

E
ϕ(XN)

XN

= lim
N→∞

N∑
d=1

µ(d)

d
{1

d
− rN,d

N
}

= lim
N→∞

N∑
d=1

µ(d)

d2
− lim

N→∞

1

N

N∑
d=1

µ(d)

d
rN,d

=
1

ζ(2)
.
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