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Abstract

PHASE-DOPPLER INTERFEROMETRY: CHARACTERIZATION AND

EMERGING APPLICATIONS

by

Mason Douglas Leandro

Clouds play a critical role in regulating Earth’s climate. Despite their importance,

cloud representation in climate models remains a challenge and the response of clouds

to warming is a primary factor governing our estimates of climate sensitivity (Bony

et al. 2017; Medeiros et al. 2014; Medeiros et al. 2008; Vial et al. 2013; Webb et al.

2006). This is partly because cloud drops can not be represented explicitly so param-

eterization schemes are used to represent clouds statistically. These schemes are often

poorly constrained due to the complexity of cloud microphysical processes and a lack

of observational measurements (see Morrison et al. 2020). Detailed and precise mea-

surements of cloud properties are needed to better constrain parameterization schemes

and improve our understanding of cloud microphysical processes.

A phase-Doppler interferometer (PDI) is an optical instrument (Bachalo 1980)

used to measure individual cloud drop size and velocity from airborne platforms (see

Chuang et al. 2008 for development of flight probe). Due to the measurement principle,

this instrument overcomes many of the issues facing other existing cloud probes. In

order to generate the drop concentrations and integrated quantities needed to better

constrain models, the sample volume of a PDI must be accurately characterized. The

xviii



goal of Chapters 2 and 3 is to develop new methods of characterizing PDI sample

volume. In Chapter 2, we characterize probe volume diameter empirically from in situ

measurements and present algorithms which account for deviations from theoretical

behavior. We show that our methods may be successfully applied to aircraft observation

and, using artificially-generated data, show that our methods are accurate to within 1%.

In Chapter 3 we characterize probe volume width, which has typically been assumed to

be a fixed known value, using laboratory measurements. We show that probe volume

width is not a fixed value but depends on drop size. We apply our methods to recently

collected aircraft measurements using a dual-range PDI. To our knowledge, this is the

first time dual-range PDI flight data has been analyzed to assess agreement between

each channel. We show good number concentration agreement in the overlap region

between the two channels, providing confidence that our characterization methods are

accurate.

Finally, in Chapter 4, we show the versatility of the PDI by introducing a new

emerging application in which the instrument is used to measure particulate matter

(PM) emissions from drift droplets at two cooling towers. We measure drift droplet

emissions by suspended the PDI over each cooling tower and collecting measurements

at various locations across each tower. From our measurements, we generate a size

distributions representative of total tower emissions and convert these distributions to

PM emissions rates. We find that methods outlined by the EPA (EPA 1995) to estimate

PM emissions grossly overestimates true emissions. We also find that the majority of

drift droplet emissions generate particles that have a diameter < 2.5 µm (PM2.5), which

xix



are currently unregulated by the EPA. These findings suggest that EPA methods may

require revision to both reflect for lower total emissions and account for unregulated

PM2.5 emissions.

xx
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Chapter 1

Introduction

Earth’s climate is a complex system consisting of a myriad of interconnected

components. Of the numerous factors that regulate the Earth’s climate, clouds play a

critical role. Clouds redistribute water across the planet through precipitation and thus

are a crucial link in the hydrological cycle. They alter Earth’s energy budget through

interactions with solar and terrestrial radiation and through the release of latent heat

of condensation, which redistributes thermal energy and contributes to atmospheric

circulation.

Despite their importance to Earth’s climate, the representation of clouds in

even the most sophisticated models remains a challenge, and this impedes our ability

to accurately predict future climate. Global climate models attempting to forecast

how clouds respond to warming yield different predictions (Bony and Dufresne 2005;

Webb et al. 2006) and this response is a primary factor governing variations in our

estimates of climate sensitivity (Bony et al. 2017; Medeiros et al. 2014; Medeiros et al.
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2008; Vial et al. 2013; Webb et al. 2006). Even high spatial resolution models yield

varying predictions for the same initial conditions (vanZanten et al. 2011; Matheou

et al. 2011). This is partly due to the fact that individual drops cannot be represented

explicitly due to the sheer number of drops present in a cloud. A small cloud can

contain more that 1017 drops. Even with massive advances in computational processing

power, it would be impossible to represent all drops explicitly in any climate or weather

model. Therefore, such models must rely on microphysical parameterization schemes

to represent cloud properties statistically. These schemes are often poorly constrained

due to the complexity of cloud microphysical processes and a lack of observational

measurements (see Morrison et al. 2020). Therefore, detailed and precise measurements

of cloud properties are needed in order to better constrain parameterization schemes

and improve our understanding of cloud microphysical processes.

There are a variety of instruments which are commonly used to obtain mea-

surements of cloud properties from airborne platforms, each with their own set of lim-

itations and issues. Many instruments are prone to drop shattering, in which particles

shatter on the housing of the instrument which then pass through the measurement re-

gion, biasing results (e.g., Baker et al. 2009a; Baker et al. 2009b; Gardiner and Hallett

1985; Korolev et al. 2011; Korolev and Isaac 2005; Lawson 2011). Many probes have

large uncertainty in their sample volume (e.g., Baumgardner and Korolev 1997; Baum-

gardner and Spowart 1990; Dye and Baumgardner 1984; Korolev 2007; Lance et al.

2010) or can experience significant sizing errors due to coincident events (e.g., Coelho

et al. 2005; Brenguier 1989; Brenguier et al. 1994; Lance 2012). Additionally, many
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instruments have a limited range of drop sizes in which they are capable of measuring

(see Chapter 5, Table 5.1 in Wendisch and Brenguier 2013). One instrument that over-

comes many of the issues facing other instruments is the phase-Doppler interferometer

(Fig 1.1).

Figure 1.1: Image of a phase-Doppler interferometer.

A phase-Doppler interferometer (PDI) is an optical instrument based on the

technique of phase-Doppler interferometry (Bachalo 1980; Bachalo and Houser 1987;

Bachalo and Houser 1984; Bachalo and Houser 1987; Sankar et al. 1993; Sankar et al.

1991; Jackson 1990; Albrecht et al. 2013).It is used to measure the drop size and velocity

of individual drops in a variety of applications including spray sciences, pollution and

aerosol sciences, and atmospheric sciences. The measurement region is established by
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two identical lasers, each with a Gaussian intensity profile, which intersect each other

at a known angle (Fig. 1.2). Constructive and destructive interference between the

two intersecting beams causes a fringe pattern to form perpendicular to the beam

axis (middle panel in Fig. 1.2). Drops passing through the fringe pattern scatter light

towards multiple detectors where each detector records the time-varying intensity of

the scattered signal (bottom panel in Fig. 1.2). The signal has Gaussian envelope,

due to the Gaussian intensity profile of each beam, overlaid with a high-frequency

sinusoidal signal, due to the fringe pattern. Velocity is measured from the frequency

of the signal from any one of the detectors using the same technique as Laser Doppler

Velocimetry (Wang 1988). Drop size is measured using the phase shift between each

pair of detectors, which has a nearly monotonic, linear relationship with drop size

(Bachalo and Houser 1984). Due to the measurement principle, a PDI instrument

overcomes many of the issues facing other instruments. Because measurements are

collected where beams intersect at a significant distance from the instrument housing

(Fig 1.1), drop shattering is not a concern (Chuang et al. 2008). The technique also

produces a well-defined sample volume, as will be discussed in great detail in Chapters 2

and 3, and is capable of measuring drops between 1 µm to 2 mm (or larger if the

drops remain sufficiently spherical), a much larger range than most other instruments.

Additionally, due to the unique signal generated when a drop transits the probe volume,

issues in sizing error due to coincident events are less problematic and can be resolved

with additional signal processing.

In order to derive integrated quantities from PDI measurements, accurate
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Figure 1.2: Diagram of the signal measured by a detector when a drop transits the
measurement region. Top panel shows the intersection of the two beams, middle panel
shows a cross-section of the intersecting beams, and bottom panel shows the time-
varying intensity measured by a single detector.

estimates of the volume of space sampled by a PDI is required. The effective volume

of space sampled by a PDI is determined by the instrument velocity relative to the

atmosphere (i.e., true air speed of the aircraft) multiplied by the effective sample area

of the instrument. The effective sample area of the instrument is composed of: (i) the
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diameter of the intersecting beams, referred to as the probe volume diameter, Dbeam;

and (ii) the probe volume width, Wc, which is determined by the optical configuration

of the instrument (Fig. 1.3) and depends on drop size.

Figure 1.3: PDI effective sample area. Angle in the vertical axis is due to the collection
angle in the receiver.

In this work, we first focus on characterizing each dimension of the PDI probe

volume. In Chapter 2, we develop automated algorithms for probe volume diameter

characterization using laboratory and aircraft measurements and assess variability in

probe volume diameter for three field campaigns. In Chapter 3, we develop a novel

technique to characterize probe volume width from laboratory measurements. We

use a newer dual-range PDI, consisting of two channels which, when merged allow for

accurate measurements across a large size range. We apply methods from Chapter 2 and

Chapter 3 to recently collected flight data and assess number concentrations collected

by each channel of the PDI, with particular emphasis on the overlap region. To our

knowledge, this is the first time dual-range PDI flight data has been analyzed to assess

agreement between each channel. Flight data used for Chapters 2 and 3 is briefly

described in Section 1.1. In Chapter 4 we present a new PDI application in which drift
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droplet measurements are collected from cooling towers located at two separate power

plants. We use our measurements to estimate particulate matter emissions from drift

droplets and compare the results against emissions calculated using methods outlined

by the United States Environmental Protection Agency.

1.1 Aircraft Observations Used in this Study

In Chapter 2, we apply our methods to data collected during three field cam-

paigns: Marine Stratus Experiment (MASE), Physics of Stratocumulus Top (POST),

and VAMOS (Variability of the American Monsoons) Ocean-Cloud-Atmosphere-Land

Study (VOCALS-REx). MASE took place in July of 2005 off the coast of Monterey,

CA. The overarching goal of the campaign was to better understand aerosol-cloud in-

teractions in clean and perturbed marine stratocumulus (Lu et al. 2007). Of the 13

research flights that took place during MASE, we analyze PDI data from 8 flights in

this work. The POST campaign took place in July and August of 2008 in the same

vicinity as MASE. One goal of the campaign was to understand processes which take

place at the interface between the stratocumulus-topped boundary layer and the free

troposphere (Malinowski et al. 2013). Of the 20 research flights that took place during

POST, we analyze PDI data from 16 flights in this work. VOCALS-REx took place

in October and November of 2008, shortly after the conclusion of POST, off the coast

of northern Chile in the Southeastern Pacific. VOCALS-REx had two main goals: (1)

improve understanding of aerosol-cloud-drizzle interactions in the boundary layer and

(2) improve simulation and predictive modeling capability in the Southeastern Pacific
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(Wood et al. 2011). Of the 18 research flights that took place, PDI data from 15 flights

are analyzed in this study.

In Chapter 3 we apply our methods to data recently collected during the

Southern California Interactions of Low Cloud and Land Aerosol (SCILLA) campaign.

The goal of this campaign gain a better understanding of the interactions between

horizontal circulation, vertical mixing, aerosols and clouds in the Southern California

Bight. We apply our methods to one flight from this campaign.

A brief description of the campaigns is given in Table 1.1.

Campaign Time Period Location # of Flights Analyzed Cloud Type

MASE Jul 2005 Monterey, CA 8 Marine stratocumulus

POST Jul-Aug 2008 Monterey, CA 16 Marine stratocumulus

VOCALS-REx Oct-Nov 2008 Northern Chile 15 Marine stratocumulus

SCILLA Jun 2023 San Diego, CA 1 Marine stratocumulus

Table 1.1: Field campaigns in which PDI data were acquired to be used for this work.
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Chapter 2

An automated method for probe

volume diameter characterization in

phase-Doppler interferometry

Abstract

A phase-Doppler interferometer (PDI) is an instrument used to measure liquid

water content, number concentration and drop size distribution in liquid water clouds.

In order to derive these quantities, an accurate estimate of the volume of space sampled

by a PDI must be acquired. Here we present an automated method of characterizing

probe volume diameter, Dbeam, which varies with drop size, d, empirically from in

situ measurements. The method accounts for any changes in prevailing conditions

as well as the presence of gate chop and short gate events. Applying our methods

to laboratory measurements and various field campaigns yields confidence as results
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align with theoretical prediction and suggests that our algorithms can be successfully

implemented to aircraft observations. Our results indicate that the PDI exhibits very

low day-to-day Dbeam(d) variability during flight acquisition. Using an artificially-

generated data set, we find that our methods are robust and accurate to within 1%.

2.1 Introduction

2.1.1 Theoretical Framework

In this chapter, we will focus on one dimension of the instrument measurement

region, Dbeam (Fig. 1.3). Dbeam is smaller for small drops and larger for large drops and

thus is a function of drop size (d), varying by approximately an order of magnitude

between small and large drops over the measurement range of a PDI (Bachalo and

Houser 1984; Chuang et al. 2008). This is because: (i) the beam has a Gaussian

intensity profile in which the greatest intensity is in the center of the beam; (ii) drop

scattering intensity is proportional to d2; and (iii) for a drop to be detected there is

some minimum signal-to-noise ratio (SNR) that must be achieved. Thus a large drop

can pass through the measurement region further from the center of the beam than a

small drop and still be detected. Let us consider two scenarios: a) a population of large

drops and b) a population of small drops, both with the same trajectories through the

measurement region. These two scenarios are depicted in Fig. 2.1. Drops that have

a trajectory further from the center of the beam will scatter less light (Bachalo and

Sankar 1996). Because large drops scatter more light than small drops, a large drop
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passing far from the center of the beam will register a large enough SNR to be detected

by the PDI whereas a small drop with the same trajectory will not be detected. This

results in a functional dependence of Dbeam on d.

Figure 2.1: Vertical cross section of the intersecting lasers taken parallel to the direction
of travel (i.e., an end view of the measurement region). The beam is most intense in the
center and decreases in intensity moving radially away from the center. A population
of a) large drops and b) small drops passes through the measurement region from left
to right with different trajectories (blue dotted lines). A red ”X” depicts a situation in
with a drop is not detected and the red dashed line represents the detectable diameter
of the laser for each drop size, illustrating the functional dependence of Dbeam on d.

We can determine Dbeam for a single drop size empirically by analyzing the

distribution of transit lengths (ltransit) (Fig. 2.2). In practice, this analysis is done

for a narrow range of drop sizes. For each individual drop, we calculate ltransit as

tgud, where tg and ud are the measured gate time and velocity of an individual drop,

respectively. Consider a population of monodisperse drops transiting through the mea-

surement region (Fig. 2.2). The maximum transit distance (Dtransit) for this drop

size can be determined empirically by fitting the theoretical probability distribution

function (PDF) Pt of transit lengths (Chuang et al. 2008):

Pt(x) =
x√

1− x2
where x =

ltransit
Dtransit

, x ∈ [0, 1] (2.1)
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Because we know that the beam is circular in cross section, the best fit value of Dtransit

yields Dbeam for a single drop size. For the remainder of this chapter, we consider

Dtransit and Dbeam to be equivalent.

Figure 2.2: Cross section of the measurement region with six drops transiting the probe
volume from left to right at different locations. The schematic illustrates that the
ltransit distribution will be strongly weighted in favor of ltransit close to the maximum
possible value, Dtransit. The theoretical probability distribution is given by Eq. 2.1.
Dbeam is the desired dimension of the measurement region, and is obtained assuming
Dtransit = Dbeam.

However, Eq. 2.1 goes to∞ atDtransit (Fig. 2.3), making curve-fitting routines

problematic (i.e., the fitting process may not converge with a poor guess). To avoid

issues with automated routines, curve-fitting has been previously done manually, a

tedious and time-consuming process. We pose a new approach which is more suitable for

automated curve-fitting. Instead of fitting to the PDF, we fit the theoretical cumulative
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distribution function (CDF) Ct (Fig. 2.3) which is simply the integral of Eq. 2.1.

Ct(x) = 1−
√

1− x2 where x =
ltransit
Dtransit

, x ∈ [0, 1] (2.2)

Figure 2.3: Theoretical a) PDF and b) CDF of ltransit given by Eqs. 2.1 and 2.2,
respectively, plotted as solid line, where the specified view volume diameter is 100 µm
(dashed vertical line).

Once we have computed Dbeam for each size bin, we use the theoretical pre-

diction for the dependence of Dbeam on d outlined in [Chuang2008] to ensure that our

estimates are consistent with theory:

Dbeam(d) =
√
K0 +K1 ln d (2.3)

where K0 and K1 are constants. The theoretical underpinning of this relationship are

that: (1) laser intensity has a Gaussian distribution and (2) the minimum SNR required

for a drop to be detected is the same across all drop sizes.

By automating the PDI sample volume processing method, we are able to

obtain a more accurate estimate of Dbeam(d) and explore this relationship in further
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detail and over different time scales.

2.1.2 Deviations from Theoretical Behavior

Equation 2.2 is used for an idealized situation. However, conditions may exist

which result in a faulty measured gate time record, altering the distribution of ltransit

and resulting in a poor Dbeam estimate. Here, we describe the conditions which may

cause a faulty gate time record.

Let us consider a situation in which three drops traverse the probe volume

at slightly different times (Fig. 2.4). The idealized situation is displayed in Fig. 2.4a.

As each drop traverses the probe volume, the time-varying scattered signal is sent to

the detector (top panel in Fig. 2.4a). As each drop enters the probe volume, SNR and

signal amplitude increases above a threshold and the gate opens, triggering the start

of an event (bottom panel in Fig. 2.4a). As each drop exits the probe volume, SNR

decreases below the threshold and the gate closes, which ends the event. Gate time tg

is the duration of time the gate is open for each event and inter-occurrence time (IOT)

is the duration of time the gate is closed between events.

However, there are events which deviate from this ideal scenario. One example

occurs when signal intensity is relatively low near the edges of the scattered signal. The

signal may be masked by noise, causing a momentary decrease in SNR to just below the

threshold. This triggers the gate to close prematurely, only to reopen again when SNR

increases again above the threshold. This causes the same drop to be recorded multiple

times, with each event registering a shorter gate time and an uncharacteristically short
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Figure 2.4: Time-varying intensity and gate state for three drops traversing the probe
volume for a) an idealized case and b) a case with gate chop and short gate events. Each
top panel represents the time-varying intensity as measured by and individual detector
and each bottom panel represents the gate state, with a value of 0 corresponding to the
gate being closed and a value of 1 corresponding to the gate being open. The gate time
of each event is annotated in blue and the inter-occurrence time between each event is
annotated in red.

IOT between events (second drop in Fig. 2.4b). This situation is referred to as a gate

chop event. Alternatively, the gate may not reopen or the recording with the shorter

gate time may not be validated, causing the drop to be recorded only once but with

an artificially short gate time (third drop in Fig. 2.4b). This situation is referred to as
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a short gate event.

One can determine the presence of frequent gate chop or short gate events by

generating a PDF of ltransit for a narrow drop size range. If frequent gate chop or short

gate occurs, then the PDF will be bimodal, with the first mode due to shorter gate

times associated with gate chop and short gate events (Fig. 2.5). If our algorithm does

not account for these events, drop concentrations will be inflated, due to overcounting

in gate chop events, and Dbeam will be underestimated.

Figure 2.5: Probability distribution of transit lengths which displays bimodality due
to gate chop and/or short gate for 16.9 µm ≤ d < 18.9 µm. Data displayed is from the
Nov-10 2008 flight of the VOCALS-REx field campaign.

To our knowledge, no research has been published describing methods to

account for gate chop and short gate events. In Sections 2.3.1 and 2.3.2 we describe

algorithms which account for the presence of gate chop and short gate events. A flow

chart is provided describing the pathway for determining Dbeam(d) (Fig. 2.6).

16



Figure 2.6: Flowchart describing our recommended pathway for determining Dbeam(d).
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2.2 Applications of Standard Algorithm

In the absence of gate chop and short gates, we use our ”Standard algorithm”

to process PDI measurements (Fig. 2.6). Here, we present results from this algorithm

applied to laboratory and flight data. Data is first binned by drop size into narrow

size ranges. We require that each bin contains at least 100 events over a given time

interval in order to acquire adequate statistics. Equation 2.2 is used to compute Dbeam

for each bin which meet the criteria. Eq. 2.3 is then fitted to our Dbeam(di) estimates

to determine if the computed values are consistent with the theory.

2.2.1 Examples from Laboratory Data

We first present results for our Standard algorithm applied to data collected

in a controlled laboratory setting. Figure 2.7 shows the determination of Dbeam for

each d bin through fitting the CDF (Eq. 2.2). Overall, the fitted curves exhibit good

agreement with the measurements. Some deviation from the fit is expected and are

likely due to measurement error. For example, there are ltransit values which are larger

than the computed Dbeam value in each bin. This could be due to error in ltransit

or error in d, causing drops to be categorized into the wrong d bins. Fig. 2.8 shows

the fitted Dbeam(d) function (Eq. 2.3). The excellent fit in Fig. 2.8 implies that the

instrument is performing as theory predicts and provides confidence that our methods

produce accurate results.
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Figure 2.7: Cumulative distribution of ltransit for each d bin used to determineDbeam(d).
Data was collected in a laboratory setting using a conical spray. Drop size bins increase
from left-to-right and top-to-bottom. Black dots represent the measured cumulative
distribution of ltransit for each bin. Solid white line represents fitted curve and dashed
white line represents Dbeam for each d bin. Colored background in each plot represents
relative frequency of drops for each bin. Of the ∼ 4.3× 104 drops measured, ∼ 95.4%
were used for Dbeam(d) characterization.
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Figure 2.8: Determined Dbeam(d) relationship for data collected in a laboratory setting
using a conical spray. Each point is derived from a single panel in Fig 2.7. Symbol colors
represent relative frequency of drops for each bin. Of the ∼ 4.3× 104 drops measured,
∼ 95.4% were used for Dbeam(d) characterization. Black dashed line represents the
theoretical fit to data.

2.2.2 Examples from Flight Data

Next, we present results of our Standard algorithm applied to data collected

in-flight (Figs. 2.9 and 2.10). There are a number of differences between laboratory

and aircraft conditions that make aircraft acquisition potentially more challenging.

Relative velocity is approximately an order of magnitude higher on an aircraft. This is

easily accommodated by implementing the appropriate signal processor settings. More

importantly, the environment is much more noisy on an aircraft due to the various

instrumentation present. This makes the PDI more prone to trigger on noise spikes

and more likely to exhibit gate chop. Therefore, careful consideration must be taken

when processing flight data.
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Figure 2.9: Cumulative distribution of ltransit for each d bin used to determine Dbeam.
Data was collected on July-21, 2008, during the POST field campaign. Drop size
bins increase from left-to-right and top-to-bottom. Black dots represent the measured
cumulative distribution of ltransit for each bin. Solid white line represents fitted curve
and dashed white line represents Dbeam for each bin. Colored background in each plot
represents relative frequency of drops for each bin. Of the ∼ 1.5× 106 drops measured,
∼ 97.5% were used for Dbeam(d) characterization.
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Figure 2.10: Determined Dbeam(d) relationship for data collected on July-17, 2008,
during the POST field campaign. Each point is derived from a single panel in Fig 2.9.
Symbol colors represent relative frequency of drops for each bin. Of the ∼ 1.5 × 106

drops measured, ∼ 97.5% were used for Dbeam(d) characterization. Black dashed line
represents the theoretical fit to data.

Figures 2.9 and 2.10 show our methods applied to data collected on July-

21 2008 during the POST field campaign. For this case, there was no evidence of

frequent gate chop or short gate. Results displayed in Figs. 2.9 and 2.10 show very

good agreement with theoretical prediction and even exhibit better agreement than

the laboratory results previously presented (Figs. 2.7 and 2.8). This is likely because

much more data were used for the aircraft case, providing a higher level of statistical

robustness. These results suggest that our Standard algorithm works well for aircraft

observations when frequent gate chop or short gate events are not present.
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2.3 Algorithm with Gate Chop and Short Gate Events

2.3.1 Accounting for Gate Chop

Let us first consider the impact of gate chop on the acquired data. Referring

to Fig. 2.4, IOT is the duration of time in which the gate is closed between recorded

events. The second drop in Fig. 2.4b experiences gate chop. It is recorded twice and

generates an additional IOT (IOTGC in Fig. 2.4)b which is uncharacteristically short.

Therefore, if frequent gate chop occurs, a PDF of IOT will reveal two distinct modes,

with the first mode attributed to gate chop events. We can therefore identify gate chop

events by setting an IOT threshold at the upper end of the first mode and identify any

events with an IOT less than the threshold as a gate chop event.

An example of a data set with frequent gate chop events can be seen in

Fig. 2.11. A threshold for IOT is set at the upper end of first mode (denoted as the

vertical dashed line in Fig. 2.11) and any observations with an IOT less than this value

are identified as gate chop events.

After gate chop events have been identified, we reconstruct the event using

information contained in each of the recorded observations that make up the drop. The

arrival time of the reconstructed event is the arrival time of the first recorded event.

The transit time is the duration between the gate initially opening and finally closing

(i.e., tg2a + IOT1.5 + tg2b in Fig. 2.4b). Lastly, we use the drop size and velocity of the

recording with the longest gate time as a longer interrogation time provides a more

accurate measurement of these values.
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Figure 2.11: Probability distribution of inter-occurrence time for various narrow drop
size ranges. Vertical black dashed line represents the threshold to identify gate chop
events. Data displayed is from the Nov-10 2008 flight of the VOCALS-REx field
campaign.

2.3.2 Accounting for Short Gates

Frequent short gate events generate a second mode in the distribution of

transit lengths for a given drop size. The reason for this can be seen in Fig. 2.4

where the third drop registers an artificially short gate time, resulting in an artificially

short transit length. This causes Eq. 2.2 to converge on a value of Dtransit which

underestimates the true value. In this case, Eq. 2.2 must be augmented to account

for the second mode, which becomes more prominent as short gate events become

more frequent. This augmentation is performed by treating short gate events as a

separate population. The Standard algorithm (Section 2.1.1) is augmented by fitting

to a function which that is the sum of two separate populations, one representing short

gate events and a second representing standard events (see Fig. 2.12 for examples).
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Assuming that the distribution of transit lengths for short gate events is nor-

mally distributed, the CDF of transit lengths for short gate events, Csg, is:

Csg(ltransit) =
1

2
[1 + erf(

ltransit − µsg

σsg
√
2

)] (2.4)

where µsg and σsg are the mean and standard deviation of transit lengths for the

population of short gate events. The CDF of transit lengths in the presence of short

gate events, C, can then be approximated as the sum of Eqs. 2.2 and 2.4, multiplied

by their respective fractional contributions:

C(ltransit) = (1− α)Ct + αCsg (2.5)

where α is the fraction of Csg contributed to C. Figure 2.12 displays the PDF and CDF

of transit lengths with varying levels of α. The value of α allows us to estimate the

relative frequency of short gate events in a given data set from a statistical standpoint.

α is constrained to a value between 0 and 1.

To prevent the fitting routine from converging on a value of µsg which is

greater than Dtransit, which would contradict the physical process which generates

short gate events, we can scale µsg with Dtransit through the equation:

µsg = βDtransit (2.6)

where β is the fractional magnitude of µsg relative to Dtransit, constrained to a value

between 0 and 1.

To prevent fitting routines from converging on an unreasonably high value of

σsg, we can scale σsg with µsg through the equation:

σsg = γµsg (2.7)
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Figure 2.12: Theoretical a) PDF and b) CDF of ltransit with varying levels of α, plotted
as solid line, where the specified view volume diameter is 100 µm (dashed vertical line).

where γ is the fractional magnitude of σsg relative to µsg, constrained to a value between

0 and 1. This results in:

C(ltransit) = (1− α)(1−

√
1− ltransit

Dtransit

2

) +
α

2
[1 + erf(

ltransit − βDtransit

γβDtransit

√
2

)] (2.8)

We then solve Eq. 2.8 for Dtransit, α, β, and γ in a least-squares sense and use the best-

fit value ofDtransit to determineDbeam for each drop size bin. From here, Eq. 2.3 is then

fitted to our Dbeam(di) estimates to determine if the computed values are consistent

with the theory.

2.3.3 Examples from Flight data

For the VOCALS-REx campaign, the PDI instrument experienced frequent

gate chop and short gates events (see Figs. 2.5 and 2.11). Therefore, the augmented

algorithm which accounts for gate chop and short gate events was implemented. Here
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we analyze results from the November-10, 2008, flight of the VOCALS-REx campaign.

Using the described methods, 17.5% of events were identified as gate chop

events, with gate chop events occurring more frequently for smaller drop sizes. This

result makes physical sense as smaller drops scatter less light than larger drops. There-

fore, there is a higher probability that the scattered signal falls below the detection

limit for smaller drops. Figure 2.13 shows the results of our method for determining

Dbeam for each d bin, displaying a very good fit between data and the least-squares

solution obtained by applying Eq. 2.8. We find that short gate events occur more

frequently in smaller d bins. We believe this happens for the same reason gate chop

events occur more frequent in smaller d bins. Using the fitted values for α in Eq. 2.8,

we estimate that ∼ 42% of drops experienced short gate.

Figure 2.14 displays the fitted Dbeam(d) function using the computed values

for each bin, exhibiting very good agreement with theory. This suggests that our

method of determining Dbeam for each d bin works well and that frequent short gate

events do not significantly impact our ability to determine Dbeam(d).
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Figure 2.13: Cumulative distribution of ltransit for each d bin used to determine Dbeam.
Data was collected on November-10, 2008, during the VOCALS-REx field campaign.
Instrument encountered frequent gate chop and short gate events during this campaign.
Drop size bins increase from left-to-right and top-to-bottom. Black dots represent the
measured cumulative distribution of ltransit for each bin. Solid white line represents
fitted curve and dashed white line represents Dbeam for each bin. Colored background
in each plot represents relative frequency of drops for each bin. ∼ 2.9× 106 drops were
recorded, with 95.5% of data used for Dbeam(d) characterization.
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Figure 2.14: Determined Dbeam(d) relationship for data collected on November-10,
2008, during the VOCALS-REx field campaign. Each point is derived from a single
panel in Fig 2.13. Symbol colors points represent relative frequency of drops for each
bin. ∼ 2.9× 106 drops were recorded, with 95.5% of data used for Dbeam(d) character-
ization. Black dashed line represents the theoretical fit to data.

2.4 Variability in Probe Volume Diameter

Dbeam(d) variability can be due to a variety of factors. Changes in the envi-

ronmental electronic and optical noise level can impact SNR. Optical contamination on

exterior windows can cause beam attenuation and decrease the intensity of the signal.

For older lasers, temperature may impact beam output intensity. Additionally, it is

possible for older lasers to not function properly and vary in output intensity over the

course of a campaign. Finally, failure to optimize the signal processing settings, espe-

cially the detector gain setting, greatly impacts Dbeam(d). While significant advances

have been made to resolve issues relating to contamination and beam quality in newer

PDI models, data collected by older models are more prone to variability from these
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factors and can still occur in newer models if there are changes in the noise level of the

environment or if signal processing settings are changed. Therefore, it is important to

assess Dbeam(d) variability over time when re-processing the data.

The automation of the Dbeam(d) characterization of the sampled data allows

us to assess variability over shorter timescales than was previously practical. Prior to

this work, PDI data were processed using only one or two estimates of Dbeam(d) over

the course of a campaign. Here we present day-to-day variability in Dbeam(d) for three

field campaigns. When assessed over hourly timescales, we observed no evidence of

Dbeam(d) variability, suggesting that Dbeam(d) does not vary over the course of any one

individual flight (typically 4 to 5 hours in duration) in any of the campaigns analyzed.

Figure 2.15 displays Dbeam(d) variability during the VOCALS-REx campaign.

The PDI laser was replaced immediately prior to this campaign. Figure 2.15 exhibits

very little day-to-day variability over the course of the campaign, suggesting that the

new laser was operating exceptionally well.

Figure 2.16 displays day-to-day variability in Dbeam(d) during the MASE field

campaign. While Dbeam(d) variability was quite low, varying by ∼ 10% for drops

> 20 µm over the course of the campaign, variability is considered non-negligible. This

highlights the importance of our ability to process PDI data on daily timescales. Vari-

ability exhibits no obvious temporal pattern, suggesting variability is due to unidentified

causes, such as electronic noise in the aircraft environment or optical contamination.

Figure 2.17 displays day-to-day variability in Dbeam(d) during the POST field

campaign which exhibited very high Dbeam(d) variability as well as a temporal pattern.
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Figure 2.15: Daily variability in Dbeam(d) during the VOCALS-REx field campaign.
Cooler colors represent days earlier in the campaign and warmer colors represent days
later in the campaign.

Figure 2.16: Daily variability in Dbeam(d) during the MASE field campaign. Cooler
colors represent days earlier in the campaign and warmer colors represent days later in
the campaign.
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Figure 2.17: Daily variability in Dbeam(d) during the POST field campaign. Cooler
colors represent days earlier in the campaign and warmer colors represent days later in
the campaign.

While results from the first five flights look very similar to each other, exhibiting low

variability, results change drastically through the remainder of the campaign. It was

noted in flight reports that the laser was malfunctioning by the end of the campaign

and needed replacement. Though it is difficult to determine when the laser began

malfunctioning in in the field, our analysis provides details on instrument capability

that allow us to determine when the malfunction began. Not only does variability

in probe volume diameter increase drastically following the July-28, 2008 flight, but

the Dbeam(d) fit also deteriorates substantially. While all flights preceding this one

exhibited a similar level of agreement with theory as the results shown in Fig. 2.10,

subsequent days exhibited a much poorer fit. This suggests that the laser likely began

malfunctioning after the July-28, 2008 flight and data collected in subsequent flights
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should be treated with a greater level of uncertainty.

2.5 Error Analysis

2.5.1 Artificially-generated Data

To quantify the accuracy of our methods, we generate an artificial data set

of drop observations in which Dbeam(d) is known and random error, ϵ, is applied to

d, ud, and tg. The size distribution and inter-arrival times for the artificial data were

chosen to approximate in-cloud observations. Transit length is determined by randomly

distributing each drop across a probe volume with a known probe volume diameter,

Dtarget(d). Dtarget(d) (Fig. 2.18) represents measurement specifications common in

PDI flight probes. Gate time is then calculated from the transit length of each drop

assuming a velocity of 55 m/s, a common aircraft velocity.

To test our methodology under conditions which allow gate chop to occur,

a subset of the artificial data set is randomly selected to be simulated as gate chop

events. Each of the selected events is fragmented into two observations separated in

time. The gate time of each of the fragmented events as well as IOT between the two

events is selected to reproduce observed gate chop events.

To test our methodology under conditions which allow short gate to occur,

a subset of the artificial data set is randomly selected to be simulated as short gate

events. The process of simulating short gate events is similar to that of gate chop but

with one of the fragmented events removed and IOT recalculated accordingly.
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Figure 2.18: Target function chosen to generate artificial data set used to evaluate
robustness and accuracy of methodology. K0 and K1 (Eq. 2.3) were chosen such that
the minimum detectable drop size is 2 µm and Dbeam reaches a value of 500 µm at a
drop size of 100 µm.

We then apply random error to d and ltransit. Each error combination is

simulated 100 times to determine the distribution and mean tendency of our results

compared to the target.

2.5.2 Accuracy of Methods

We first assess the robustness of our Standard algorithm with unrealistically

large error introduced to each variable. We consider the upper limit of realistic error

to be 10% for d and 2% for ltransit. Therefore, to test the robustness of our Standard

algorithm, these values are doubled to 20% error in d and 4% error in ltransit. Fig-

ure 2.19 displays percent error from the target function under these conditions with
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Figure 2.19: Results of methodology for determining probe volume diameter with ran-
dom error introduced to each variable, displayed as % error from the target, Dtarget.
Beige line and envelope represents the case where 4% error is introduced in ltransit,
blue line and envelope represents the case where 20% error is introduced in d, and red
line and envelope represents the case where 4% is introduced in ltransit and 20% error
is introduced in d. Solid lines represent the mean from all 100 simulations and the
envelope surrounding each line displays the range of outcomes for the 100 simulations.

positive percent error representing an overestimate of Dtarget(d). Figure 2.19 suggests

that our ability to reproduce Dtarget(d) is dominated by error in d as opposed to error

in ltransit. This is evidenced by the fact that percent error is much higher when error is

introduced to d measurements only and that these results are nearly indistinguishable

to the case where error is introduced to both variables. Even with unrealistic error

introduced to both variables, our method produces results that are within ∼ 3% error

for all drops greater than 4 µm, suggesting that the method is quite robust.

Next, we assess the accuracy of our algorithms with varying levels of error

applied to both variables and with gate chop and short gates simulated (Fig. 2.20). In
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Figure 2.20: Percent error from the target function with various levels of proportional
error applied to d and ltransit for a) no gate chop or short gate events, b) 25% gate
chop events and 25% short gate events. Red represents an overestimate of Dbeam and
blue represents an underestimate of Dbeam. Black contour lines represent percent error
from the target in 1% intervals and grey contour lines represent percent error from the
target in 0.2% intervals for values < 0% and 0.5% intervals for values > 0%.

order to visualize the results, we apply a combination of error to ltransit and d where

error applied to d is 5× the error applied to ltransit. Error in ltransit ranges from
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0%-4% and proportional error applied to d ranges from 0%-20%. Figure 2.20 displays

percent error from the target as a function of drop size for a) no gate chop or short

gate events and b) 25% gate chop events and 25% short gate events. Results suggests

that our algorithms are highly accurate in estimating Dbeam(d), regardless of error

applied to variables or in the presence of gate chop and short gate events. While error

is slightly larger in the case with gate chop and short gate events simulated, results

are very similar to the case without gate chop and short gate events, suggests that

gate chop and short gate events do not significantly impact our ability to determine

Dbeam(d). If we consider the upper limit of realistic error to be 10% for d and 2% for

ltransit, the result of our algorithms are within 1% of the target for all d. Experiments

conducted internally by Artium Technologies, Inc., suggest accuracy in d measurements

is 2% or lower and a fraction of a percent in ltransit. For these values, our algorithms

generate results which are nearly indistinguishable from the target. This suggests that

our methods are highly accurate under realistic sampling conditions, regardless of the

presence of gate chop and short gate events.

2.6 Conclusions

We present a new empirical method in which the determination of Dbeam(d)

is automated using in situ PDI measurements. Methods to identify and reconstruct

gate chop events are described and an augmented algorithm is presented to characterize

Dbeam(d) in the presence of frequent short gate events.

Applying our methods to measurements collected in a controlled laboratory
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setting suggests that our methods produce favorable results and instrumentation is

performing as theory predicts. When applied to aircraft observations, our results imply

that the results of our methods align with theory and can be successfully implemented

to aircraft measurements.

Our methods are applied to three field campaigns and suggest small day-to-

day variability in Dbeam(d), likely due to variations in the electromagnetic noise in the

environment. Using our methods, we are able to identify circumstances in which the

PDI is not performing adequately due to laser malfunction. Our technique accounts

for any prevailing conditions and can be used to accurately characterize Dbeam(d) in a

variety of conditions.

The robustness and accuracy of the methodology are tested using an

artificially-generated data set in which Dbeam(d) is known and random error is ap-

plied to each of the measured variables. We find that our methods are highly robust,

even with unrealistic levels of error introduced to the measurements and the accuracy

of our method is dominated by error in d measurements, as opposed to error in ltransit.

Our method produces the most accurate results in the absence of gate chop and short

gate events but exhibits a similar level of accuracy when these events are simulated.

Under realistic conditions, we find that our method is accurate to within 1% or less.
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Chapter 3

A Novel Technique to Characterize

Phase-Doppler Interferometer Probe

Volume Width from Laboratory

Measurements

Abstract

To obtain accurate estimates of cloud properties from PDI measurements,

probe volume width, W , characterization is essential. W has typically been assumed

to be a known fixed value based on the optical configuration of the instrument. We seek

to assess the validity of this assumption using theoretical calculations and laboratory

measurements. Our theoretical calculations suggest a functional dependency of W

on d. To explore this relationship, we constructed a device which can be used to
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directly measure W in a laboratory setting. In order to account for any changes made

to detector gain, we use the maximum intensity registered as a drop passes through

the most intense region of the probe volume, Imax, as a metric for W . Our results

suggest a well-constrained relationship between Imax and W and suggest that W is not

a fixed value. When applying our methods to aircraft observations, we observe good

agreement between each channel of a dual-range PDI, yielding confidence that our W

characterization is accurate.

3.1 Introduction

While techniques have been developed to characterize Dbeam empirically from

in situ measurements (see Chapter 2), W has typically been assumed to be a known

fixed value based on the optical configuration of the instrument (Chuang et al. 2008).

Due to the use of a slit aperture, only drops that pass near the center of the beam

intersection, along the beam axis, are detected by the PDI (Fig. 3.1). Drops transiting

near the center of the intersecting beams scatter light which passes through the aperture

(Fig. 3.1a) but drops passing further from the center of the beam intersection scatter

light which is blocked by the aperture (Fig. 3.1b). The length of the aperture, Laper,

and detection angle, θ, therefore determine the distance along the beam axis in which

drops may be detected. In practice, there is also a magnification factor which must

be accounted for due to the ratio of the front and back focal lengths in the receiver,

Ff and Fb, respectively. Therefore, the theoretical probe volume width, Wc, typically
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Figure 3.1: Diagram illustrating how a slit aperture is used to limit the spatial extent at
which drops may be detected. The drop in a) transits the probe volume near the center
of the intersecting beams and scattered light is allowed to pass through the aperture
and the drop is detected. The drop in b) transits the probe volume further from the
center of the intersecting beams and scattered light is blocked by the aperture and the
drop is not detected.
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used in data processing is:

Wc =
Laper

sin θ
×

Ff

Fb
(3.1)

To our knowledge, research has not been published to confirm the accuracy of Wc.

A second assumption made is that W does not vary as a function of d. How-

ever, this is only the case if illumination is constant along the beam axis (i.e., intensity

contours are parallel to the beam axis). As described in the next section, theory sug-

gests that, for sufficiently small drops, this assumption may not be valid, suggesting

that W may have a functional dependence on d for small drops. In this work, we test

if W varies as a function of d through theoretical calculations and laboratory measure-

ments.

3.2 Theoretical Calculations

Here, we establish a theoretical framework for understanding the relationship

between W and d. Our goal is to determine theoretically the relevance of W variations

with d for drop sizes relevant to the PDI.

We first construct a mathematical model which describes the three-

dimensional distribution of intensity for two intersecting beams where each beam has

a Gaussian intensity profile. The defined coordinate system used for our model is

depicted in Fig. 3.2.

The irradiance profile of a single Gaussian beam is calculated as:

E(r) = E0e
−2r2/w(z)2 (3.2)
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Figure 3.2: Intersection of two beams in the defined coordinate system. Two identical
beams intersect each other at the origin of the coordinate system. Each beam axis is
on the x-z plane with each respective beam intersecting the x-axis at an angle of φ
and −φ. Using this coordinate system, the fringe plane is parallel to the x-y plane and
drops transit the probe volume in the z-dimension.

where E is irradiance, E0 is the peak irradiance located at the center of the beam,

r is the perpendicular distance from the beam axis, and w(z) is the radius at which

beam irradiance decreases to 1/e2 of E0. While w(z) changes as the beam propagates

through space, converging to a minimum value of w0 referred to as the beam waist,

here we assume w(z) = w0 as lasers used in PDI are highly collimated, producing very

low beam divergence. Additionally, due to the use of a collimated laser, we may assume

irradiance is equal to intensity, I, and replace E(r) and E0 in Eq. 3.2 with I(r) and I0:

I(r) = I0e
−2r2/w2

0 (3.3)

The intensity at any point near the intersection is the sum of intensities contributed

from each beam at that point. From Eq. 3.3, we can calculate the spatial distribution
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of intensity as:

Ip(r1, r2) = I0(e
−2r12/w0

2
+ e−2r22/w0

2
) (3.4)

where Ip is the intensity at point p(x, y, z) and r1 and r2 is the perpendicular distance

from point p(x, y, z) to Beams 1 and 2, respectively. The model neglects to account for

the fringe pattern produced by the two beams. For our purposes, this is permissible

as the cross-sectional sample area of the measurement volume and the fringe plane are

parallel to each other so sample area is unaffected by the fringe pattern.

The size of the effective sample volume is larger for large drops and smaller for

small drops. This is because large drops scatter more light than small drops so they are

able to transit less intense portions of the probe volume and still be detected, whereas

a small drop with the same trajectory would not be detected. Therefore, contours of

intensity reveal the geometry of the effective sample volume for different drops sizes.

However, because we are only interested in the effective sample area, represented by

the x-y plane in the defined coordinate system, and relative intensity peaks for the x-y

plane where z = 0, taking a cross-section of the probe volume at z = 0 represents the

intensity distribution of the sample area.

Figure 3.3 displays the normalized intensity distribution of the sample area.

Larger contours represent the effective sample area for larger drops. We see that the

horizontal length of each contour, representingW , does indeed decrease with decreasing

d. If we include an aperture in the receiver of some arbitrary width (red dashed

line in Fig 3.3), we see that Wc is a very good approximation of W for large drops,

assuming drops are not detected outside of the aperture boundaries. However, for
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smaller drops, W becomes smaller thanWc andWc is no longer a good approximation of

W . This implies that, for drops smaller than some threshold value, W has a functional

dependence on d.

Figure 3.3: Intensity distribution of the effect sample area of a PDI. Black dashed lines
represent contours of intensity in 10% intervals. Red dashed lines represent arbitrary
aperture boundaries.

3.3 Experimental Methods

3.3.1 Overall Approach

Next, we seek to characterize W through laboratory measurements and apply

the characterization to flight data. While Dbeam(d) may be characterized by analyzing

the distribution of transit lengths, as was discussed in Chapter 2, there is currently no

way to determine the location at which a drop passes through the sample volume in the

dimension along the beam axis (i.e., the x direction in Fig. 3.2). Thus, new methods

must be developed to characterize W .

One issue that arises in characterizing W as a function of d is that the rela-
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tionship is not the same for all detector gain settings. Detector gain is a setting which

amplifies or dampens the incoming signal. If the detector gain is increased then the

effective sample area for all drop sizes increases, which changes the W (d) relationship.

Therefore, we introduce a new variable which can be used as a metric for W that is

applicable across all gain settings, and exhibits a well-constrained relationship with W

independent of detector gain and d.

We propose using the maximum intensity detected as a drop transits through

the most intense portion of the measurement region, Imax, as our independent variable.

Imax is a function of both detector gain and d. If well-constrained relationship exists

between W and Imax, the relationship should remain the same independent of both

detector gain and d. Additionally, Imax can be easily estimated from both laboratory

and aircraft measurements and conveniently, we can characterize W (Imax) over a large

range of Imax simply by varying either the detector gain or d.

In order to determine the relationship between W and Imax in controlled

laboratory setting, we:

1. Transit a stream of monodisperse drops along the beam axis to directly measure

W and Imax at a single detector gain setting.

2. Repeat over a range of drop sizes and detector gain settings to obtain W over a

range of Imax.

Next, to apply the laboratory-measured relationship between W and Imax to aircraft

measurements, we:
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1. Determine Imax for each d bin by analyzing the distribution of aircraft-measured

intensities.

2. Insert aircraft-measured Imax for each d bin into the laboratory-measured

W (Imax) relationship to determine W for each d bin.

3.3.2 Measurement Technique

In order to obtain accurate W measurements, we designed and constructed a

system which is capable of obtaining multiple W measurements at varying locations

across the beam axis. The Probe Volume Scanner (hereafter ”Scanner,” Fig. 3.4) is

composed of two one-dimensional stage micrometers which are fixed to each other at

a 90° angle so that two-dimensional travel is achieved. Each stage is driven by an

individual step motor which is controlled by a microcontroller programmed to perform

a predefined pattern. A monodisperse drop generator (MDG), which projects a stable

stream of monodisperse drops of known size, is connected to the 2-D stage setup. The

MDG pumps water at an adjustable flow rate to a metal plate orifice. The metal plate

orifice is connected to a piezoelectric transducer controlled by a frequency generator to

initiate drop breakup at a known frequency (see Wu et al. 2007 for more information

on MDGs). The known MDG frequency, fMDG, and flow rate, QMDG, are then used

to calculate drop size, dMDG as:

dMDG = 3

√
6QMDG

πfMDGρw
(3.5)

where ρw is the density of water.

47



Figure 3.4: Probe Volume Scanner schematic displaying key components.

There are multiple advantages to using the Scanner as opposed to measuring

W manually with a single stage micrometer. First, the Scanner allows for faster mea-

surement of each dimension. Because the MDG is less stable over longer time periods,

faster measurements result in more accurate characterization. This method also allows

us to collect multiple measurements of W at varying location across the probe volume

which can then be averaged to provide a more accurate estimate of W .

Once the Scanner is appropriately aligned with the PDI, the stages are pro-

grammed to perform a raster pattern which allows the stream to enter and exit the

probe volume at different locations across the beam axis and collect multiple measure-

ments across the entire probe volume (Fig. 3.5).

Lastly, we calculate W for each leg by analyzing the time-resolved data rate

measured by the PDI. The edges of detectability are defined as the timestamps in which

the data rate increases above a threshold value and then decreases below at the other

end. We define this threshold as being 50% of the fMDG frequency. We then multiply

the difference in time between the stream entering and exiting the probe volume by

the translational velocity of the Scanner to get an estimate of W for each leg.
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Figure 3.5: Diagram showing the raster pattern performed by the Scanner relative to
the PDI sample area. Blue dotted line and arrows represent the pathway taken by the
Scanner.

3.4 Results and Discussion

3.4.1 Laboratory measurements

We first analyze laboratory results of probe volume scans collected by the

Scanner. Table 3.1 displays the relevant optical properties of the dual-range PDI in-

strument used for this analysis.

We first analyze the results of one leg from an individual scan collected on

Channel 2 of the described instrument. Figure 3.6 displays the time-resolved data rate

measured by the PDI as a percentage of fMDG for one leg of the scan. As seen in

Fig. 3.6, the measured PDI data rate rapidly increases to near 100% of fMDG as the

stream enters the probe volume, stabilizes at this value, and rapidly decreases to 0%

as the stream exits the probe volume. Using a threshold of 50% of fMDG, we identify

the time stamps associated with the stream entering and exiting the probe volume.

However, because edges are well defined, we estimate that W measurements are quite
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Channel 1 Channel 2

Slit Aperture, Laper 400 µm 400 µm

Collection Angle, θ 30° 30°

Receiver Front Focal Length, Ff 100 mm 121 mm

Receiver Back Focal Length, Fb 75 mm 65 mm

Theoretical Probe Volume Width, Wc 1067 µm 1489 µm

Table 3.1: Relevant optical properties of the dual-range PDI instrument used in this
study.

Figure 3.6: Time series of data rate measured by a PDI instrument as a percentage
of MDG frequency for one scan leg. For this scan, the MDG was projecting a stable
stream of 191 µm drops. Red points represent times when the measured data rate of
the PDI was below 50% of fMDG and green points represent times when the measured
data rate of the PDI was above 50% of fMDG. Vertical dotted lines represent the time
stamps associated with the stream entering and exiting the probe volume according to
our methods.
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insensitive to this threshold.

Next we present results for our determination of Imax for the same scan.

Figure 3.7 displays the time series of retrieved drop intensities. As expected, the time

series of intensity for the scan exhibits a Gaussian envelope. This is because the beams

have a Gaussian intensity profile. Legs which take place earlier or later in the scan will

be near the edges of the Gaussian profile and register a lower intensity, with intensity

peaking in the middle of the profile along the beam axis. We estimate Imax by taking

the 99th percentile of the intensity distribution for the centermost leg.

Figure 3.7: Time series of retrieved drop intensities from a single scan on Channel 2.
Each ”spike” is a single transit across the view volume, i.e., the width of each spike is
a separate determination of W .

Here, we present Channel 1 scan results, varying both drop size and detector

gain values so that we may determine W (Imax) (Fig. 3.8). As seen in Fig. 3.8, for

values of Imax greater than 150 mV, W stabilizes to the theoretical value Wc. This

is the expected result and implies that the aperture is very effective in blocking the
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scattered signal of drops that transit further from the center of the beam intersection,

as intended. W < Wc was measured for 0 mV < Imax < 150 mV. This result confirms

the prediction of our theoretical calculations (Section 3.2) that Wc is not constant for

all d. In theory, however, W should decrease to a value 0 for Imax of the smallest

detectable drop. More measurements are needed for Imax < 150 mV in order to more

accurately determine W in this region.

Figure 3.8: Measured and fitted relationship betweenW and Imax for Channel 1. Fitted
relationship was obtained by performing piecewise linear regression with the boundary
point set to 150 mV.

In order to use the laboratory-measured relationship between W and Imax to

process flight data, we must estimate W for all values of Imax from the measurements.

To estimate W (Imax), we perform a piecewise linear regression with the boundary

point set to 150 mV. We believe this to be a good representation of W (Imax) for

Imax > 150mV as very little W variability occurs. However, for Imax < 150mV very

few measurements were acquired and the line of best fit does not reach a value of 0
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as theory predicts. This may be because a linear relationship is not appropriate for

W < Wc. More measurements are needed in this region to investigate the relationship

in further detail. Until we can do so, our plan is to not report measurements at low

values of Imax where W is highly uncertain.

Next, we present results from tests performed on Channel 2 (Fig. 3.9). The

results are surprising as all measured values of W are larger than the theoretical value,

Wc. While it is possible that this is the result of error in the values used to calculate

Wc, this is unlikely as each variable is known with high accuracy and our measurements

suggest a larger discrepancy than realistic error analyses could predict. Furthermore,

our measurements suggest a nonlinear relationship between W and Imax. If the dis-

crepancy were due to error in the estimate of Wc, one would expect W to plateau at a

constant value.

Figure 3.9: Measured and fitted relationship between W and Imax for Channel 2. Red
dashed line represents the best fit to observations using Eq. 3.6. Blue points and dashed
line represents interpolated values based on the red fitting and Imax for the smallest
detectable drop.
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These results imply that drops are being detected outside of aperture bound-

aries. This is a possibility if the image of the scattered signal is in poor focus or if

the lens resolution is inadequate. Image blur is determined by the resolution of the

receiving optics and if the resolution is less-than-ideal, the edges of the sample area will

be ill-defined. This results in a so-called ”circle of confusion”, or ”blur circle,” which

allows light scattered by drops that traverse the probe volume outside aperture bound-

aries to pass to the detector. While blur circles have been well documented in imaging

applications (e.g., Lee 1990; Miks and Novak 2012; Sezan et al. 1991; Vivirito et al.

2002), the effect of a blur circle on the scattered signal for a PDI is unclear. However,

we suspect a blur circle to be the cause of the discrepancy observed in Channel 2. This

further highlights the need for direct W measurement.

Next, we attempt to establish the W (Imax) relationship using the acquired

data. The interplay between the aperture and the blur circle and their effects on the

scattered signal and W is not well-understood. However, the problem appears to be

analogous to the relationship between Dbeam and d as the it concerns the growth rate of

a circle as a function of Imax, which is closely related to d. Therefore, we attempt to fit

a function closely resembling Eq. 2.3, with a few modifications. We replace Dbeam with

W and d with
√
Imax, as Imax is proportional to d2, and sum the result with Wc, as

we must include the distance at which drops are detected within aperture boundaries.

This yields:

W (Imax) =

√
k0 + k1 ln

√
Imax +Wc (3.6)

where k0 and k1 are constants. While more work is needed to determine if this is an
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accurate representation, applying this function yields good agreement with measured

values (red dashed line in Fig 3.9). Because data was not collected for Imax < 100 mV,

we must interpolate W (Imax) in this region. Theory predicts W should decrease to a

value of 0 for Imax of the smallest detectable drop size. From analysis of the distribution

of measured intensities, we estimate this value to be 20 mV. We then assume a linear fit

between this value and the point where the fitting acquired using Eq. 3.6 intersects Wc

(blue points and dotted line in Fig. 3.9). While additional measurements are required to

confirm that the interpolation is accurate, we believe this to be a reasonable approach

as the fitting provides very good agreement in the overlap region between the two

channels, as will be discussed in the next section.

3.4.2 Application to Aircraft Measurements

Once W (Imax) is established by laboratory measurements, W (d) may be de-

termined by quantifying Imax for each d bin from in-flight data and applying the

W (Imax) relationship. Here we apply our methods to data collected during the South-

ern California Interactions of Low Clouds and Land Aerosol (SCILLA) experiment

which took place in June of 2023. Figures 3.10 and 3.11 show bivariate histograms

of drop counts for the June 15, 2023, flight in drop size-scattering intensity space for

Channels 1 and 2, respectively. To determine Imax for each bin, adequate statistics

must be acquired. Therefore, only bins which recorded > 1000 drops for Channel 1

and > 100 drops in Channel 2 are included in the analysis. Imax is then computed

for each drop size bin which meet the criteria as the 99th percentile of measured in-
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tensities for that bin (red points in Figs. 3.10 and 3.11). A 2nd-degree polynomial is

fitted to the data to determine Imax(d). A 2nd-degree polynomial is appropriate here

as scattering intensity is proportional to d2. The fitted function displays as the dashed

red lines in Figs. 3.10 and 3.11 which show very good agreement with the measured

values, suggesting that the obtained measurements are performing as theory predicts.

After Imax(d) has been established from in-flight measurements, the laboratory-derived

W (Imax) relationship is used to determine W (d).

Figure 3.10: Bivariate histogram of drop counts in drop size-scattering intensity space
for Channel 1 for data collected of the June 15, 2023, flight of the SCILLA field cam-
paign. Red points represent the 99th percentile for each d bin and red dashed line
represent the best fit 2nd degree polynomial to the points.

Using W (d) and Dbeam(d), determined using methods outlined in Chapter 2,

drop size distributions were then calculated. Here we focus on size distributions mea-

sured by each individual channel, with particular emphasis on the overlap region be-

tween channels to validate our methods. We would like to emphasize that, although

each channel is contained within the same housing, the only similarity between the two
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Figure 3.11: Bivariate histogram of drop counts in drop size-scattering intensity space
for Channel 2 for data collected of the June 15, 2023, flight of the SCILLA field cam-
paign. Red points represent the 99th percentile for each d bin and red dashed line
represent the best fit 2nd degree polynomial to the points.

channels is that they use the same laser. However, after the laser is split, each channel

contains its own transmitting optics, receiving optics, aperture, set of detectors, and

signal processor and each channel is calibrated separately. Therefore, the two chan-

nels may be regarded as two separate instruments nearly independent of each other

and comparison between the two channels may be regarded as comparison between

separate instruments.

Figure 3.12 displays number concentration as a function of drop size calculated

for each respective channel averaged over the June 15, 2023, flight. Results show

very good agreement in the overlap region between the two channels (shaded area in

Fig. 3.12). This yields confidence that our methods of determining W in each of the

channels are valid. Small discrepancies do exist between the two channels in which

Channel 2 slightly overestimates drop concentration relative to Channel 1 in the drop
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Figure 3.12: PDI-measured number concentration for each respective channel averaged
over the June 15, 2023, flight of the SCILLA field campaign. Vertical dashed lines
represent the upper and lower bounds for each respective channel and the shaded area
represents the overlap region. Upper boundaries were determined as the drop size in
which Imax reaches saturation at 1000 mV in Figs. 3.10 and 3.11. Lower boundaries
were determined estimated as 4 µm and 35µm for Channels 1 and 2, respectively, from
Dbeam(d) analysis.

size range of 45 µm to 63 µm. However, these discrepancies are quite small, peaking

at 29% overestimation in Channel 2 relative to Channel 1 at a drop size of 56 µm.

This is likely due to the interpolation performed in the W (Imax) analysis for Channel 2

(Fig. 3.9). Our findings also suggest that the upper boundary and lower boundary

of Channels 1 and 2, respectively, may be extended as agreement between the two

channels extends outside of the determined overlap region, down to 32 µm at the lower

end and up to 80 µm at the upper end. Lastly, we emphasize that measurements

obtained for Channel 1 in the overlap region are considered highly accurate as Dbeam

and W experience very small deviations over this range. While Channel 2 Dbeam and

W is confronted with much larger variability over the same range, concurrence with
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Channel 1 yields confidence that our methods of determining W (Imax) are justified and

produce accurate results.

3.5 Conclusions

In this work, we explore the relationship between W and d through theoretical

calculations and laboratory measurements. WhileW has typically been assumed to be a

known fixed value based on the optical configuration of the instrument, we hypothesize

that W is a function of d. To test this hypothesis from a theoretical standpoint, we

generate a simple mathematical model which describes the distribution of intensity for

two intersecting beams and find that theory predicts a functional dependency of W on

d. To investigate this relationship further, we designed and constructed a device which,

when used in conjunction with a PDI, allows for direct W measurement in a controlled

laboratory setting. The device is composed of two stage micrometers anchored to a

MDG which projects a stream of monodisperse drops that transit each dimension of the

probe volume. As the stream passes through the probe volume, PDI data is collected

and the time-varying data rate is analyzed to determine the edges of detectability,

allowing for direct W measurement.

To account for any changes made to detector gain and allow laboratory-

measured data to be applied to aircraft measurements, we introduce a new variable,

Imax, which is used as a metric for W in place of d. We determine the relationship

between W and Imax for each channel of a dual-range PDI through laboratory mea-

surements and present our results. For Channel 1, our measurements suggest that W
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is less than Wc at lower values of Imax. This result is consistent with the findings of

our theoretical calculations and implies a functional dependence of W on d. For values

of Imax greater than 150 mV, W plateaus to the theoretical value, suggesting that

the aperture is effective in blocking the scattered signals of drops not intended to be

measured. For Channel 2, all measurements of W were greater than Wc. We interpret

this as the result of less-than-ideal resolution in the receiving optics which generates

a blur circle and allows drops to be detected outside the spatial range dictated by the

aperture. These results further highlight the need for direct W measurement.

Lastly, we apply the laboratory-measured W (Imax) relationship to aircraft

data collected during the SCILLA field campaign. When comparing drop number

concentration measured by each respective channel, we find very good agreement in

the overlap region between the two channels. Measurements obtained by Channel 1 in

the overlap region are considered highly accurate as variability in both W and Dbeam

is very low in this region. While Channel 2 is confronted with much higher variability

over the same region, concurrence with Channel 1 suggests that W characterization in

Channel 2 is accurate, yielding confidence in our methods.
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Chapter 4

Particulate Matter Emissions from

Cooling Tower Drift Droplets

Abstract

Wet cooling towers are used in industrial processes, power plants, and heating,

ventilation, and air conditioning systems. Their purpose is to reject waste heat from

a system through evaporative cooling of process water. Due to their design, a small

fraction of process water is emitted from the tower exit, termed “spray drift.” Dissolved

solids contained within spray drift droplets are regulated as particulate matter emissions

by the US EPA via AP-42. Here, we use a novel instrumentation package to measure

particulate emissions from drift droplets at two cooling towers located at separate power

plants. We find that drift droplet properties depend on the sampling position over the

tower so multiple positions need to be sampled to accurately estimate emissions. We

estimate 11 and 3.3 grams of particulate matter (PM) with a diameter < 10 µm
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(PM10) are emitted from each tower per hour, with 78% and 87% of PM10 emissions

also qualifying as PM with a diameter < 2.5 µm (PM2.5). AP-42 overestimates PM10

emissions by a factor of 2.4 for one tower and nearly 300 for the other. These results

suggest that AP-42 may require revision to both accurately reflect lower PM10 emissions

and account for unregulated PM2.5, which constitute the majority of emissions.

4.1 Introduction

A wet cooling tower is a specialized heat exchanger in which warm water

comes into contact with air, causing evaporative cooling of the water. Their primary

function is to cool water used in industrial processes, power plants, and in heating,

ventilation, and air conditioning systems. High demand for waste heat rejection has

resulted in the extensive use of cooling towers across the globe, with more than two

million cooling towers estimated to be operational in the United States alone (National

Academies of Sciences Engineering and Medicine 2020). In order to maximize the

rate of evaporation, the water is dispersed into the air within the tower as a spray.

Ideally, cooling tower emissions only comprise warmed, humidified air. However, in

reality a number of mechanisms lead to a small fraction of the spray droplets also

being emitted from the tower, termed “spray drift”. These drift droplets can impact

local and regional air quality, and so the EPA regulates their emissions via AP-42

(EPA 1995). The California Emission Inventory and Reporting System, overseen by

the California Air Resources Board, estimates that 2017 emissions of PM10 from cooling

towers in California were on the order of 2.9 tons/day. This is roughly equivalent to
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exhaust emissions from approximately 18 million passenger vehicles (Hellstrom and

Ivarson 2008).

In this study, measurements are conducted at induced-draft counterflow wet

cooling towers (Fig. 4.1), although our methodology could be applied to all types of

wet cooling towers. An axial fan located at the top of the tower pulls ambient air into

the tower through slots located near the bottom. The air then flows through the rain

zone, the fill zone, and the spray zone. Warm water is pumped to the top of the tower

and distributed by a system of spray nozzles to a lattice-structured fill material. The

fill material increases the surface area of the water to allow for maximum contact with

the passing air. The water then falls from the bottom of the fill zone into the rain zone

and is deposited into a basin. When the water comes into contact with air in all three

zones, there is mass and heat transfer which cools the water via evaporation, while

warming and moistening the air. Approximately 10-20% of heat transfer takes place in

the rain zone, while the remainder occurs in the fill zone (Kröger 2004).

For small droplets, the updraft velocity may exceed the terminal settling ve-

locity in which case these droplets will be entrained into the air stream and potentially

exit the top of the tower as a drift droplet. To minimize this loss, drift eliminators

between the axial fan and the spray nozzles reduce the number of droplets exiting the

tower with the air stream, mainly through inertial impaction. However, drift elim-

inators are not 100% effective and some droplets still exit the tower. Modern drift

eliminators are rated to have an efficiency of 5 × 10−4%, defined as the percentage of

circulating water which leaves the system as spray drift. Drift droplets typically evap-
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Figure 4.1: Schematic of an induced-draft counter flow cooling tower.

orate upon leaving the tower and any impurities present in the droplets remain in the

atmosphere as suspended PM.

Despite the small fraction of recirculating water that is lost as drift, PM emis-

sions may be considerable and cooling tower operators may need to purchase emission

reduction credits to offset emissions. In the United States, the emission of PM10 from

cooling towers is calculated using the methodology described by the EPA in AP-42

(EPA 1995). This regulation does not distinguish between PM10 and PM2.5. This

method of estimating PM10 emissions is based on decades old measurements (Kinsey

1991), considered “conservatively high” and is given the lowest level of acceptable con-

64



fidence by the EPA (EPA 1995). AP-42 estimates PM10 emissions from wet cooling

towers as the product of the total liquid drift factor and the total dissolved solid (TDS)

concentration in recirculating water. It assumes that all droplets evaporate before be-

ing deposited onto the ground and that all drift droplets produce particles that can be

classified as PM10, regardless of droplet size and TDS concentration. EPA (1995) also

neglects the potential scrubbing effect of cooling towers, which is the process by which

PM suspended in the ambient air passing through the tower is washed out in the rain

and fill zones and thereby removed from the ambient air.

PM emissions from wet cooling towers depend on the size distribution of drift

droplets and the concentration of TDS in the water. Studies seeking to characterize the

size distribution of drift droplets have found inconsistent results (Meroney 2006), likely

due to diversity in cooling tower design and/or uncertainty in measurement techniques.

Large drift droplets with high TDS concentrations may produce particles with diam-

eters greater than 10 µm upon evaporating and therefore do not qualify for emission

regulation. Two previous studies (Reisman and Frisbie 2002; Micheletti 2006) both

conclude that EPA (1995) neglected to account for this effect, potentially overestimat-

ing PM10 emissions by 85% or more. Ruiz et al. (2013) measured the size distribution

of drift droplets exiting an experimental forced draft cooling tower using a sensitive

paper technique. They found that the methods outlined in EPA (1995) overestimate

PM10 emissions by about an order of magnitude. In this study, we seek to quantify

PM10 and PM2.5 emissions by collecting in situ measurements of drift droplets as they

exit wet cooling towers using high-accuracy, modern instrumentation.
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4.2 Methods

4.2.1 Instrumentation and Deployment

In order to directly measure PM emissions, we constructed an instrument

package designed to be lifted and held in place by crane about a meter above a cooling

tower. The instrumentation package is capable of sampling wet and dry emissions in

the plume above the tower. Wallis et al. (2022) describe in detail the entire instrument

package. We describe next specific aspects of this package most relevant to this study.

Wet emissions, i.e. drift droplets, were sampled in situ using a phase-Doppler

interferometer (PDI). This instrument relies on phase-Doppler interferometry, a well-

established technique which has been described in great detail in the literature (e.g.,

Bachalo 1980; Bachalo and Houser 1984; Davis and Schweiger 2002; Chuang et al. 2008)

and used extensively in the spray sciences and cloud microphysics communities. A PDI

measures the size and velocity of liquid water droplets between 0.5 and 2500 µm in

diameter. Droplets passing through the instrument’s detection region, consisting of two

intersecting laser beams, act as a lens and project an image of the interference pattern

produced by the two beams. A small droplet will act as a lens with large curvature and

project a larger image than a large drop. Multiple detectors measure the phase shift

of the projected image which has a linear relationship to droplet size. Droplet velocity

is derived with high accuracy from the frequency of the scattered signal from any one

of the detectors. For more information on how a PDI derives these values, see Chuang

et al. (2008). To generate droplet size distributions, the volume of air sampled by the
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PDI must be accurately determined. For this, we follow methods outlined in Chapter 2

in determining probe volume diameter and use the theoretical probe volume width

as instrument probe volume width was not characterized prior to this study. Plume

updraft velocity, Vup, is determined by averaging the velocities of all droplets for each

position sampled. Our estimate for Vup does not account for the terminal velocity of the

droplets, but this contributes at most a 1% bias. Once droplet size distributions have

been generated, various population level statistics can be calculated, such as median

volume diameter (MVD), the median droplet size of the volume distribution, droplet

number concentration (Nd), the number of droplets in a given volume of air, and liquid

water content (LWC), the integrated mass of drift droplets in a given volume of air.

Temperature and relative humidity probes were installed alongside the PDI to measure

plume conditions in situ and a standard meteorological package measuring temperature,

relative humidity, wind speed and direction was used to measure ambient conditions

at a nearby location uninfluenced by the cooling tower.

The described instrumentation package was deployed above cooling towers

located at two separate California power plants; “Tower 1,” located in Northern Cali-

fornia, and “Tower 2,” located in Southern California. Table 4.1 provides a summary

of some of the properties relevant to drift emissions for each tower. The described

sampling unit was deployed above each tower at a height of ∼ 1 meter above the tower

exit.
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Tower 1 Tower 2

Construction year 2004 1957

Fan diameter 10 m 4 m

Nominal outlet diameter 11.5 m 4 m

Specified nominal air flow rate 800 m3/s 220 m3/s

Measured air flow rate 570 m3/s 45 m3/s

Specified circulating water flow rate 1.1 m3/s 0.32 m3/s

Specified drift eliminator efficiency 0.0005% 0.2%

Measured water TDS 1230 ppm 433 ppm

Table 4.1: Summary table of cooling tower properties relevant to drift emissions.

4.2.2 Estimation of PM Emissions

To estimate PM10 and PM2.5 emissions from drift droplets at each tower, we

(a) measure the drift droplet size distribution at various locations across the tower

outlet; (b) convert the wet droplet size distribution to a dry PM emission rate at

each location; and (c) integrate PM emissions over all locations to generate a total

emissions rate from the tower. Characterization of recirculating tower water is critical

to prediction of tower emissions. To determine the TDS concentration of recirculating

water, we collected samples of recirculating water from each tower for later chemical

analysis. An estimated 1-2% of recirculating water is lost to evaporation as it cycles
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through the tower and must be replenished with makeup water that is supplied by a

variety of sources. This evaporation results in constantly increasing TDS concentration

in the recirculating water since dissolved solids are not lost during evaporation and only

a relatively small amount is lost in spray drift. To manage TDS, towers must undergo

blowdown, where recirculating water is purged and replaced with makeup water. High

TDS may result in increased emissions as well as precipitation and buildup of minerals

inside the tower.

To convert wet droplet sizes to dried particle sizes, we make the following

assumptions:

1. Drift droplets contain the same TDS concentration as source water.

2. Each drift droplet produces a single dry, spherical particle upon evaporating.

3. The density of the resultant dry particle is 2.6 g/cm3, which was determined by

averaging salt densities from the major anions and cations in the TDS analysis.

We estimate that this value is within ±0.2 g/cm3.

4. Drift droplets evaporate entirely before leaving the facility fence line.

To generate a representative size distribution for the entire tower, we sampled

at positions transiting from one edge of the stack to the other, crossing over the center.

Figure 4.2 shows an example of the positions sampled across the top of the tower. We

assume that droplet measurements at each location are representative of half of the

annulus in which that position is located or, in the case of the center position, the
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entire center circle. We then generate a size distribution representative of emissions

from the entire tower by averaging measurements at each position, weighting for both

area and Vup. The total flowrate Qtot of the tower is computed as:

Qtot =
m∑
j=1

AjVup,j (4.1)

where j represents each position (all of which are half-annular in shape except for the

middle position), and Aj is the area of that position.

P1 P2 P3 P7P5 P9P6P4 P8

Figure 4.2: Bird’s-eye view of idealized positions sampled over a cooling tower. Each
position, denoted P1-P9, is assumed to represent the emissions for the area in which
that position is bounded by dashed lines.

To compute a tower-averaged wet drift droplet size distribution n(Dp), we

weight the size distributions measured at each position nj(Dp) by the flowrate at that

position:

n(Dp) =
1

Qtot

m∑
j=1

AjVup,jnj(Dp) (4.2)
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We note that we use n(Dp) interchangeably with dN/dlogDp in the text and figures.

From the wet droplet size distribution, we can calculate a dry PM10 mass emission rate

E10 (in units of mass per unit time) as:

E10 = Qtot ·
∫ 10µm

0

π

6
D3

pcTDSn(Dp)dDp (4.3)

where cTDS is the TDS concentration (units of mass of TDS per volume of water). A

similar equation with different integration limits is used for dry PM2.5 emission rates.

For Tower 1, we sampled at nine positions, as shown in Fig. 4.2, sampling

at each position for 3 minutes in the north to south direction. We also sampled at

two additional positions, slightly outside of the stack and equidistant from P1 and P9,

but recorded no drift droplets in these positions. For Tower 2, we employed a similar

sampling technique as shown in Fig. 4.2, but with seven positions instead of nine,

due to the smaller size of the stack and in the east-by-northeast to west-by-southwest

direction. Each position at Tower 2 was sampled for 5 minutes. Localized regions of

both uncharacteristically high and uncharacteristically low drift emissions likely occur

at tower outlets. Because only a limited number of samples were collected at each

tower, the described sampling technique likely neglects to account for these localized

regions. For future studies, we plan to refine the sampling strategy to obtain drift

droplet size distributions which account for these localized regions and more closely

represent cooling tower emissions.
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4.3 Results and Discussion

4.3.1 Plume Measurements

In collecting measurements during transits across each tower, we observed a

strong radial dependence on the measured drift droplet properties. Figures 4.3 and 4.4

show how Vup, MVD, LWC, and Nd varied radially for Towers 1 and 2, respectively.

Tower radius was nondimensionalized for better comparison between the two towers.
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Figure 4.3: Radial dependence of measured properties for Tower 1. Color bars and
corresponding colored points represent the frequency of droplets encountered at each
position, for each tower, with N total droplets observed at each tower. Error bars in
the first row represent ± one standard deviation in Vup and the solid line represents
a 4th-degree polynomial fit to the points. Error bars in the second row represent the
25th and 75th percentiles of median volume diameter at each position. Error bars in the
third and fourth rows represent error in liquid water content and number concentration,
respectively, relating to Poisson counting uncertainty for each position.
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Figure 4.4: Radial dependence of measured properties for Tower 2. Color bars and
corresponding colored points represent the frequency of droplets encountered at each
position, for each tower, with N total droplets observed at each tower. Error bars in
the first row represent ± one standard deviation in Vup and the solid line represents
a 4th-degree polynomial fit to the points. Error bars in the second row represent the
25th and 75th percentiles of median volume diameter at each position. Error bars in the
third and fourth rows represent error in liquid water content and number concentration,
respectively, relating to Poisson counting uncertainty for each position.

One feature in Figs. 4.3 and 4.4 is that the updraft velocity at each tower

becomes negative (i.e. air flows downwards) near the center of the tower. This is a

known feature of axial fans, and results in negative PM emissions towards the center of

the tower, i.e. particles enter rather than exit the tower. We also noticed an asymmetry

in all other properties across the tower where one might expect symmetry in these

properties. These asymmetries are more notable in Tower 2 compared to Tower 1.

Because Tower 2 is much older than Tower 1, these asymmetries may be the result
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of inadequacy in tower design and/or poor maintenance of drift eliminators causing

buildup of mineral and regions of localized emissions.

From a droplet emissions perspective, the two towers look very different from

each other. Both the liquid water content and number concentration are approximately

an order of magnitude larger in the second tower compared to the first. This can

likely be attributed to differences in tower design such as the type of drift eliminators

installed, spray nozzle design, number and orientation of fan blades, fan speed, and

water recirculation rate. Also, mineral buildup in the internal components of the tower

can impact the size distribution of drift droplets and thus drift eliminator efficiency.

Environmental factors such as relative humidity, wind speed, and wind direction may

also impact these properties, as will be discussed in Section 4.3.2.

4.3.2 Environmental Conditions During Sampling

Environmental conditions at the time of sampling have the potential to impact

measurements and compromise assumptions. Table 4.2 summarizes the environmental

conditions averaged over the sampling period for each tower. Reported error represents

± one standard deviation for each of the described values. Mean and standard deviation

of the ambient wind azimuth angle was calculated using methods outlined in Yamartino

(1984). Large standard deviation reported in the plume updraft velocity is due to

the strong radial dependence of this property. Due to a malfunction in the ambient

relative humidity and temperature sensors during sampling of Tower 1, values reported

represent meteorological data from the nearest weather station. We would like to

74



note that the ambient temperature reported here is higher than the measured plume

temperature. This is not consistent with the physical processes by which cooling towers

operate and is likely due to temperature discrepancies between the site location and

weather station.

Tower 1 Tower 2

Ambient temperature 28.9°C* 22.8±0.4°C

Ambient relative humidity 19%* 75.5±1.2%

Wind Speed 2.5±0.9 m/s 2.0±1.0 m/s

Wind azimuth angle 218±29° 188±39°

Plume temperature 27.9±0.3°C 28.4±0.3°C

Plume relative humidity 98.9±2.7% 100.7±0.2%

Plume updraft velocity 5.5±4.2 m/s 3.6±4.4 m/s

Table 4.2: Summary table of environmental and plume conditions averaged over the
sampling period for each tower.
*data reported by nearest weather station

We first examine the potential for wind speed and direction to influence the

measurements. Wind speed and direction can influence the trajectory of the plume

to a degree that increases with distance from the tower exit. Figure 4.5 shows wind

roses from data acquired during the sampling period as well as the direction of transit

across each tower, as indicated by the circled arrows in the lower right corner of each

plot. Wind conditions were relatively calm during sampling at each tower, averaging
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2.5 m/s and 2.0 m/s for Towers 1 and 2, respectively, with gusts never exceeding 4 m/s

and 5 m/s for each respective tower. Mean wind speed was 45% of updraft velocity

for Tower 1 and 55% of updraft velocity for Tower 2. Because measurements were

taken very near to the tower outlet, ∼ 1 meter above, ambient wind likely influenced

the trajectory of the plume by approximately 0.5 m relative to the tower outlet. Thus

wind likely did not play a large role in the uncertainty of measurements obtained.

Furthermore, two additional positions were sampled outside of the Tower 1 outlet,

approximately 1.4 m from the north and south edges. No droplets were detected

in either position, supporting the claim that wind did not significantly influence the

trajectory of the plume prior to samples being collected. In Tower 2, we observed an

asymmetry in LWC and Nd (Fig. 4.4) that could potentially be attributed to wind.

However, increases in both LWC and Nd were observed on the west-by-southwest side

of the tower and prevailing winds had a strong southwesterly component, especially

during sampling where these higher values were observed. Therefore, if winds were to

cause the asymmetry in these properties, one would expect a pattern opposite of the

observations. This further supports the claim that asymmetries observed in Tower 2

are due to tower design and upkeep rather than environmental factors.

Differences in temperature and relative humidity between the plume and en-

vironment also have the potential to influence the measurements as they may cause

droplets to change size. As a moist plume rises and cools, water vapor will condense

onto existing droplets causing them to grow. However, because samples were collected

approximately 1 m above the tower outlet and cooling is very small over this distance,
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Figure 4.5: Wind roses during sampling for each tower. Wind direction is indicating
where the wind originates, concentric circles indicate the frequency of wind, and the
color scale on the left-hand side indicates wind speed. The direction of transit across
each tower is indicated by the circled arrow in the lower right of each plot.
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condensational growth of droplets due to adiabatic cooling is considered negligible.

Growth of droplets due to collision-coalescence is unlikely to impact our measurements

considering the low droplet number concentrations observed and proximity of the sam-

pling unit to the tower outlet. If droplet growth by collision-coalescence does occur

however, parent droplets would contain the same concentration of TDS and would

produce a droplet with an identical TDS concentration, which is not of concern. En-

trainment near the edges of the plume will bring ambient, typically drier air into the

plume causing evaporation and a decrease in droplet size. However, if evaporation of

droplets due to entrainment significantly impacted the measurements, one would expect

a decrease in LWC near the edges of the towers. There is no evidence of entrainment

in Tower 1 as Fig. 4.3 shows an increase in LWC near the edges of the tower. As

previously noted, Tower 2 exhibits an asymmetry in LWC so the same case cannot be

made here. However, environmental conditions at Tower 2 were likely less favorable

for entrainment (e.g., slower plume updraft velocity and wind speed) and evaporation

(e.g., higher relative humidity) so it is unlikely that evaporation due to entrainment

significantly impacted the measurements obtained.

4.3.3 Comparison with Previous Studies

A representative size distribution of drift droplets was estimated for each tower

from our measurements, and then compared to size distributions presented in previ-

ous studies (Fig. 4.6). The solid black line in Fig. 4.6 represents test data presented

in Reisman and Frisbie (2002) provided by Brentwood Industries, a drift eliminator
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Figure 4.6: Representative size distribution for drift droplets at each tower compared
to size distributions reported in previous studies.

manufacturer. Colored dotted lines were reconstructed using mean droplet diameters

and shape parameters for Rossen-Rammler mass distributions as reported by Meroney

(2006). These parameters were fitted to data collected at seven mechanical draft cool-

ing towers, one natural draft cooling tower, and one idealized case. Colored dashed

lines were reconstructed using mean droplet diameters and standard deviations for log-

normal mass distributions as reported by Ruiz et al. (2013). These parameters were

fitted to experimental data from five repeated tests on a mechanical draft cooling tower

using the sensitive paper technique for measuring droplet size distributions. Ruiz et al.

(2013) found the log-normal function to be the most suitable fit to the experimental

data collected, hence it is shown here. For better comparison, each distribution has

been normalized by bin width and to a dN/dlogDp value of 1 at a droplet diameter of

20 µm. This normalization permits easier comparison of the shapes of the size distribu-

79



tions. Our measurements for Towers 1 and 2 are presented with different size bin widths

because the lower number of droplets measured in Tower 1 requires larger bins to have

the same counting statistics. The gray area in the background of Fig. 4.6 represents

the size range in which assumptions inherent to the PDI begin to break down, thus

decreasing our confidence in the measurements obtained. The size distribution repre-

sentative of each tower closely resembles certain ones described by Meroney (2006) and

Ruiz et al. (2013), but with distributions peaking at slightly different sizes. The distri-

bution reported by Reisman and Frisbie (2002) exhibits a second mode in the droplet

size range of 70-80 µm, a feature not observed in any other distribution. This feature

led Reisman and Frisbie (2002) to suggest that PM10 emissions could be decreased by

increasing TDS concentrations in order to generate PM larger than 10 µm. This finding

is not consistent with our measurements. Meroney (2006) suggests that drift droplet

size distributions may be bimodal, with the second peak occurring at larger droplet

sizes, due to “inadequacies in design or subsequent maintenance of drift eliminators.”

We did not see any evidence of bimodality in either of the towers surveyed.

4.3.4 Drift Eliminator Efficiency

From our measurements, we can compute the drift eliminator efficiency of each

tower and compare these values to manufacturer specifications. We use the representa-

tive size distributions derived by our measurements along with the water recirculation

rate for each tower as specified by the manufacturer (refer to Table 4.1 for water re-

circulation rate). For Tower 1, our measurements suggest a drift eliminator efficiency
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of 0.00021%, roughly a factor of 2.4 better than the reported nominal efficiency of

0.0005%. For Tower 2, we estimate a drift eliminator efficiency of 0.00068%, an esti-

mate more consistent with values reported for modern drift eliminators and roughly

300 times better than the reported value of 0.2%. These calculations assume that

the water recirculation rate is that from the tower specifications. If the actual flow

rate is lower than specified, then our estimates of drift eliminator efficiency should be

increased proportionally.

4.3.5 PM Emissions from Drift

We estimate PM10 and PM2.5 emission rates for each tower using the derived

size distributions along with measured TDS concentrations (Fig. 4.7). Vertical dashed

lines represent the drift droplet size threshold in which droplets smaller than this value

would produce PM2.5 upon evaporating. All drift droplets produce PM10 upon evap-

orating, as the threshold for producing PM with a diameter greater than 10 µm is

∼ 128 µm and ∼ 182 µm for Towers 1 and 2, respectively, and no droplets greater

than these sizes were observed. Our measurements suggest that the large majority of

drift droplets produce PM2.5 upon evaporating, with 78% and 87% of the total PM10

emissions qualifying as PM2.5 emissions for Towers 1 and 2, respectively. Assuming

that the towers are operated continuously at the capacity measured, emissions of PM10

at Towers 1 and 2 are estimated as 11 and 3.3 g/hr, respectively, and emissions of

PM2.5 are 8.3 and 2.9 g/hr, respectively. These emission rates are for a single cooling

tower cell only. Typical power plants will have a number of cooling tower cells. If we
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normalize emissions by the concentration of TDS in recirculating water, emissions for

each of the two towers look remarkably similar. Towers 1 and 2 have emission rates of

8.6×10−3 and 7.7×10−3 grams of PM10 per hour per unit TDS, respectively. Because

these two towers have major design and operational differences, more measurements

are needed to determine if this similarity is meaningful or coincidental.
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Figure 4.7: PM emission rate from drift droplets for each tower as a function of drift
droplet diameter. Vertical dashed lines represent the threshold for drift droplets which
would produce PM2.5 upon evaporating based on measured TDS concentration at each
respective tower. Total PM10 and PM2.5 emission rates are summarized in text.

Currently the EPA only regulates PM10 emissions from cooling towers but

our measurements show that the majority of these emissions count as PM2.5. This

suggests that both PM10 and PM2.5 emissions should be considered when regulating

cooling tower emissions.

Some assumptions are made in estimating these emissions. These calculations
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use the estimated dry particle density of 2.6 g/cm3. Based on the species comprising

TDS, this estimated density is likely to be within ±10% of the actual value. Also,

EPA regulations specify that emissions are counted at the fence line and therefore any

droplets that settle to the ground before reaching the boundary of the property are

not considered emissions. From our measured drift droplet diameters, the maximum

realistic settling velocities are a few centimeters per second. Given typical wind speeds

and distances to the fence line, these drift droplets will fall at most a few meters before

exiting the property. Since typical wet cooling towers are at least 10 meters tall and

the drift emissions have an initial upward velocity, it is safe to assume that almost all

droplets should be considered emissions.

Next, we compare the PM10 emissions rates estimated for each tower to that

which would be calculated using methods outlined in EPA (1995). For Tower 1, we find

that EPA (1995) overestimates the PM10 emission rate by 140%. This overestimate is

similar in magnitude to previous studies (Reisman and Frisbie 2002; Micheletti 2006).

For Tower 2, the emission rate calculated using methods outlined in EPA (1995) would

represent an overestimate of approximately 29,000% - a value many orders of magnitude

larger than what’s been reported in previous studies. The main reason for the large

discrepancy between measurements and the EPA estimate for Tower 2 emissions is the

large value for the drift efficiency of Tower 2. Tower 1 has a value of 0.0005%, which

is typical of modern drift eliminators. In contrast, the drift efficiency of Tower 2 was

specified as 400 times larger, 0.2%, a value typical of drift eliminators during the time

of tower construction. However, our estimate for drift eliminator efficiency for Tower 2
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suggests drift eliminators at this tower are performing much better than specified and

are operating with a similar efficiency as modern drift eliminators. This implies the

possibility that other drift eliminators are also performing much better than specified,

with commensurate discrepancies in the estimated emissions. While our findings agree

with previous research that EPA (1995) grossly overestimates PM10 emissions, we find

that the reason for that overestimation differs from previous studies. Reisman and

Frisbie (2002) and Micheletti (2006) argue that EPA (1995) overestimates emissions

due to the false assumption that all drift droplets produce PM10 upon evaporating.

Their hypothesis is not consistent with our results as our measurements suggest that

nearly all droplets would produce PM10 upon evaporating. Instead, we find that EPA

(1995) overestimates emissions because they overestimate the mass flux of droplets

exiting the tower.

Reisman and Frisbie (2002) suggests that increasing the TDS of recirculating

water could result in PM emissions larger than 10 µm upon drift droplet evaporation,

producing PM emissions that would not qualify as PM10. TDS concentrations would

need to increase ∼ 30 fold and ∼ 4 fold in each respective tower before even the largest

droplets observed would produce particles larger than 10 µm. However, increasing

TDS concentrations to these values would proportionally increase PM10 emissions for

all other droplets. In order to ultimately decrease PM10 emissions, TDS concentrations

would need to be increased to unreasonably high values (∼ 103 increase to near equal

parts TDS and water) so that the increase in PM10 due to higher TDS is offset by the

a decrease in PM10 due to particles exceeding this size range. Therefore, increasing
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TDS is not an effective strategy for decreasing PM10 emissions in either of the towers

sampled.

4.4 Summary and Conclusions

In this study, we report particulate emissions from two cooling towers using

measurements from a novel instrument package (Wallis et al. 2022). The most relevant

instrument for this study is the phase-Doppler interferometer (Chuang et al. 2008),

which measures the ambient wet diameter of drift droplets, as well as their velocity.

By locating the PDI at different positions across the cooling tower outlet, total tower

drift emissions can be computed. There is strong radial dependence of spray drift

droplet properties so it is important to sample at various places across the tower outlet

for accurate emission estimates.

We find that the measured drift droplet emissions for Tower 1 suggests that

drift eliminator efficiency is roughly a factor of 2.4 better than the drift eliminator

specifications, while for Tower 2, this value is 300 fold better than specifications. Water

TDS values are combined with the measured size distribution to estimate PM10 and

PM2.5 emissions (which, by definition, are dried particles), which for Tower 1 are 11 and

8.3 g/hr, respectively, while for Tower 2 are 3.3 and 2.9 g/hr, respectively. EPA AP-42

overestimates PM10 emissions by 140% for Tower 1 and nearly 29,000% for Tower 2.

The large discrepancy for Tower 2 is due to drift eliminators performing much more

efficiently than specified. This implies the possibility that emissions estimates from

other cooling towers experience a similar degree of overestimation, further highlighting
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the need for direct measurements. Cooling tower PM2.5 emissions are not regulated,

but our measurements suggest that they can be a large fraction of total particulate

emissions, suggesting that regulation may be needed. Previous research has suggested

that purposefully increasing TDS may result in the particulate emissions to be larger

than PM10, and thus be outside the regulated size range. The results from these

two towers imply that this strategy would require ∼ 103 increases in TDS which is

unrealistic.
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Chapter 5

Summary and Conclusions

The research presented in this dissertation first focuses on improving probe

volume characterization techniques through simulations, laboratory and aircraft mea-

surements. We then present an emerging PDI application in which the instrument is

used to estimate particulate matter (PM) emissions from drift droplets at two cooling

towers.

In Chapter 2, we develop an automated method for characterizing PDI probe

volume diameter, Dbeam, which varies with drop size, d, empirically from in situ mea-

surements. Our method of determining Dbeam(d) relies on fitting the cumulative dis-

tribution function (CDF) of transit lengths, ltransit, for each d bin. We first present a

”Standard algorithm” used to characterize Dbeam(d) when the PDI is operating as the-

ory predicts. Next, we describe situations in which PDI behavior deviates from theory,

resulting in gate chop and short gate events, and present an alternative algorithm to

account for these occurrences. We apply the Standard algorithm to data collected in a

87



controlled laboratory setting and to flight measurements and find very good agreement

between the results of our methods and theoretical prediction, providing confidence

that our Standard algorithm produces accurate results and can be successfully applied

to aircraft observations. Next we apply the alternative algorithm, which accounts for

the presence of gate chop and short gate events, to flight data which exhibited devia-

tions from theoretical behavior. We find that our methods work well and that frequent

gate chop and short gate events do not significantly impact our ability to character-

ize Dbeam(d). We then assess Dbeam(d) variability for three field campaigns. Our

results suggest that modest daily variability can occur, highlighting the importance

of automated Dbeam(d) characterization. Lastly, we test the robustness and accuracy

of our methods using artificially-generated, noisy data. These tests suggest that our

algorithms are very robust and accurate to within 1%.

In Chapter 3, our focus shifts towards characterizing PDI probe volume width,

W , which has typically been assumed to be a known fixed value based on the optical

configuration of the system, which we denote as Wc. Theoretical calculations are

performed and suggest that W is not a fixed value but exhibits a dependence on d

for small drops. Inspired to explore this in further detail, we design and construct an

instrument which traverses a stream of monodisperse drops along the probe volume so

that direct measurements may be obtained. We present a new independent variable,

the maximum intensity as a drop passes through the most intense portion of the probe

volume, Imax, to be used as a metric for W and accounts for changes in detector gain.

We then measure W directly in a controlled laboratory setting for each channel of a
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dual-range PDI. We find the Imax provides a well-constrained relationship with W and

that W is not a fixed value, confirming the prediction of our theoretical calculations.

We also measure W greater than Wc in Channel 2 and attribute this to the existence

of a blur circle due to poor focus of the receiving optics which allows drops to be

detected outside the spatial range dictated by the aperture. This further highlights

the importance of direct W measurement. Lastly, we process data from one flight of

a recent field campaign and find very good agreement in the overlap region between

the two channels. Because the only similarity shared between the two channels is the

housing unit and the laser, each channel may be regarded as a separate instruments.

Agreement between channels provides confidence the our methods for characterizing

W yield accurate results. Furthermore, measurements collected in the overlap region

of Channel 1 are considered highly accurate so the fact that Channel 2 concurs with

Channel 1 in this region further increases our confidence in the methods.

Lastly, we present a new emerging PDI application in Chapter 4 in which

the instrument is used to measure PM emissions from drift droplets at two separate

cooling towers. In this work, we suspend the PDI above each cooling tower and collect

measurements of drift droplets emissions at discrete locations across the top of each

tower to obtain representative size distributions of drift droplets. We find that the

location at which samples are collected greatly impact our measurements so careful

consideration must be given to sampling locations. We then use the total dissolved

concentration (TDS) of source water and volumetric flow of each tower to convert the

measured distributions to PM emission rates. While the EPA only regulates emissions
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of PM with diameter of < 10 µm (PM10), we find that the majority of PM emissions

have a diameter of < 2.5 µm (PM2.5) in both towers. When comparing our measured

emission rates to what would be estimated using methods outlined by the EPA, we

find that the EPA grossly overestimates PM10 emissions. Our findings suggest that

the EPA estimates of PM emissions may require revision to both reflect lower PM10

emission and account for unregulated PM2.5 emissions.
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Kröger, D. G. (2004). Air-cooled heat exchangers and cooling towers. Vol. 1. PennWell

Books.

Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon (2010). “Water droplet calibra-

tion of the Cloud Droplet Probe (CDP) and in-flight performance in liquid,

ice and mixed-phase clouds during ARCPAC”. In: Atmospheric Measurement

Techniques 3.6, pp. 1683–1706.

Lance, S. (2012). “Coincidence Errors in a Cloud Droplet Probe (CDP) and a Cloud and

Aerosol Spectrometer (CAS), and the Improved Performance of a Modified

CDP”. In: Journal of Atmospheric and Oceanic Technology 29.10, pp. 1532–

1541.

94



Lawson, R. P. (2011). “Effects of ice particles shattering on the 2D-S probe”. In: At-

mospheric Measurement Techniques 4.7, pp. 1361–1381.

Lee, H.-C. (1990). “Review of image-blur models in a photographic system using the

principles of optics”. In: Optical Engineering 29.5, pp. 405 –421.

Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H.

Seinfeld (2007). “The Marine Stratus/Stratocumulus Experiment (MASE):

Aerosol-cloud relationships in marine stratocumulus”. In: Journal of Geo-

physical Research: Atmospheres 112.D10.

Malinowski, S. P., H. Gerber, I. J.-L. Plante, M. K. Kopec, W. Kumala, K. Nurowska,

P. Y. Chuang, D. Khelif, and K. E. Haman (2013). “Physics of Stratocumulus

Top (POST): turbulent mixing across capping inversion”. In: Atmospheric

Chemistry and Physics 13.24, pp. 12171–12186.

Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira (2011). “On the Fidelity

of Large-Eddy Simulation of Shallow Precipitating Cumulus Convection”. In:

Monthly Weather Review 139.9, pp. 2918–2939.

Medeiros, B., B. Stevens, and S. Bony (2014). “Using aquaplanets to understand the

robust responses of comprehensive climate models to forcing”. In: Climate

Dynamics 44.7-8, pp. 1957–1977.

Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S.

Bretherton (2008). “Aquaplanets, Climate Sensitivity, and Low Clouds”. In:

Journal of Climate 21.19, pp. 4974–4991.

95



Meroney, R. N. (2006). “CFD prediction of cooling tower drift”. In: Journal of Wind

Engineering and Industrial Aerodynamics 94.6, pp. 463–490.

Micheletti, W (2006). “Atmospheric emissions from evaporative cooling towers”. In:

CTI JOURNAL 27.1, p. 60.

Miks, A. and J. Novak (2012). “Dependence of camera lens induced radial distortion

and circle of confusion on object position”. In: Optics Laser Technology 44.4,

pp. 1043–1049. issn: 0030-3992.

Morrison, H. et al. (2020). “Confronting the Challenge of Modeling Cloud and Pre-

cipitation Microphysics”. In: Journal of Advances in Modeling Earth Systems

12.8.

National Academies of Sciences Engineering and Medicine (2020). Management of Le-

gionella in Water Systems. Washington, DC: The National Academies Press.

isbn: 978-0-309-49947-7.

Reisman, J. and G. Frisbie (2002). “Calculating realistic PM10 emissions from cooling

towers”. In: Environmental Progress 21.2, pp. 127–130.

Ruiz, J., A. Kaiser, M. Ballesta, A. Gil, and M. Lucas (2013). “Experimental measure-

ment of cooling tower emissions using image processing of sensitive papers”.

In: Atmospheric Environment 69, pp. 170–181.

Sankar, S., A. Inenaga, and W. Bachalo (1993). “Trajectory dependent scattering in

phase Doppler interferometry: minimizing and eliminating sizing errors”. In:

Laser Techniques and Applications in Fluid Mechanics, pp. 75–89.

96



Sankar, S., B. Weber, D. Kamemoto, and W. Bachalo (1991). “Sizing fine particles

with the phase Doppler interferometric technique”. In: Applied Optics 30.33,

pp. 4914–4920.

Sezan, M. I., G. Pavlovic, A. M. Tekalp, and A. T. Erdem (1991). “On modeling the

focus blur in image restoration.” In: ICASSP. Vol. 91, pp. 2485–2488.

vanZanten, M. C. et al. (2011). “Controls on precipitation and cloudiness in simulations

of trade-wind cumulus as observed during RICO”. In: Journal of Advances in

Modeling Earth Systems 3.2, n/a–n/a.

Vial, J., J.-L. Dufresne, and S. Bony (2013). “On the interpretation of inter-model

spread in CMIP5 climate sensitivity estimates”. In: Climate Dynamics 41.11-

12, pp. 3339–3362.

Vivirito, P., S. Battiato, S. Curti, M. L. Cascia, and R. Pirrone (2002). “Restoration of

out-of-focus images based on circle of confusion estimate”. In: Applications of

Digital Image Processing XXV. Ed. by A. G. Tescher. Vol. 4790. International

Society for Optics and Photonics. SPIE, pp. 408 –416.

Wallis, C. D., M. D. Leandro, P. Y. Chuang, and A. S. Wexler (2022). “An instrument

for direct measurement of emissions: cooling tower example”. In: Atmospheric

Measurement Techniques 15.8, pp. 2547–2556.

Wang, C. (1988). “Laser Doppler velocimetry”. In: Journal of Quantitative Spectroscopy

and Radiative Transfer 40.3. Special Issue on Quantitative Spectroscopy and

Laser Diagnostics, pp. 309–319. issn: 0022-4073.

97



Webb, M. J. et al. (2006). “On the contribution of local feedback mechanisms to the

range of climate sensitivity in two GCM ensembles”. In: Climate Dynamics

27.1, pp. 17–38.

Wendisch, M. and J.-L. Brenguier, eds. (2013). Airborne Measurements for Environ-

mental Research. Wiley.

Wood, R, C. Mechoso, C. Bretherton, R. Weller, B Huebert, F Straneo, B. Albrecht,

H Coe, G Allen, G Vaughan, et al. (2011). “The VAMOS ocean-cloud-

atmosphere-land study regional experiment (VOCALS-REx): Goals, plat-

forms, and field operations”. In: Atmospheric Chemistry and Physics 11.2,

pp. 627–654.

Wu, W. D., K. C. Patel, S. Rogers, and X. D. Chen (2007). “Monodisperse Droplet

Generators as Potential Atomizers for Spray Drying Technology”. In: Dry-

ing Technology 25.12, pp. 1907–1916. eprint: https://doi.org/10.1080/

07373930701727176.

Yamartino, R. J. (1984). “A Comparison of Several “Single-Pass” Estimators of the

Standard Deviation of Wind Direction”. In: Journal of Climate and Applied

Meteorology 23.9, pp. 1362–1366.

98




