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Abstract

We advance here our neoclassical theory of elementary charges by integrating into
it the concept of spin of 1/2. The developed spinorial version of our theory has many
important features identical to those of the Dirac theory such as the gyromagnetic ratio,
expressions for currents including the spin current, and antimatter states. In our theory
the concepts of charge and anticharge relate naturally to their ”spin” in its rest frame
in two opposite directions. An important difference with the Dirac theory is that both
the charge and anticharge energies are positive whereas their frequencies have opposite
signs.

1 Introduction

In a series of papers including [BF6]-[BF9] we have developed a neoclassical theory of elec-
tromagnetic (EM) interactions between elementary charges without spin. One of our key
motivations for introducing such a theory was a desire to account for particle properties as
well as for wave phenomena in a single mathematically sound Lagrangian relativistic field
theory. In this theory all particle properties come out naturally from the field equations
as approximations. We have shown that the theory implies in the non-relativistic limit: (i)
the non-relativistic particle mechanics governed by the Newton equations with the Lorentz
forces and (ii) the frequency spectrum for hydrogenic atoms. We have studied also in [BF8],
[BF9] relativistic aspects of the theory and have demonstrated that the relativistic point
mass equation is an approximation of the field equations when the charge wave function is
well localized, and derived the Einstein energy-mass relation E = Mc2 for the accelerated
motion.

A primary goal of this paper is to integrate into our neoclassical theory of elementary
charges the concept of spin of 1/2. As in the cited above papers, an elementary charge is not
a charged mass point, but it is described by a field distribution, and now we want to add to
its properties an intrinsic magnetic moment and a spin. We have accomplished that goal by
constructing a spinorial version of the mentioned above neoclassical theory. When developing
this theory we kept in mind that it has to incorporate in one form or another some features of
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the Dirac theory of spin 1/2 particles that are verified experimentally. To integrate the spin
into our Lagrangian relativistic field theory we used methods developed by D. Hestenes and
other authors, see [Hes2-03], [HesNF], [DeSDat], [DorLas], [Sny] and references therein. In
particular, we used D. Hestenes’s ”real” form of the Dirac equation based on the spacetime
algebra (STA), that is the Clifford algebra of the Minkowski vector space. The geometric
transparency of the STA combined with a rich multivector algebraic structure was a decisive
incentive for using it instead of the Dirac γ-matrices.

Since the spinorial version of our neoclassical theory is obtained by a modification of
its original spinless version it is useful to take a look at its basic features. In our original
spinless theory a single elementary charge is described by a pair (ψ,Aµ), where ψ is its
complex valued wave function and Aµ = (ϕ,A) is its 4-vector elementary potential with the
corresponding elementary EM field defined by the familiar formula F µν = ∂µAν − ∂νAµ.
An elementary charge does not interact with itself electromagnetically. Its wave function ψ

represents its matter properties and the elementary potential Aµ mediates its EM interactions
with all other elementary charges. Importantly, (i) all internal forces of an elementary charge
are exclusively of non-electromagnetic origin; (ii) every elementary charge is a source of its
elementary EM field which represents force exerted by this charge on any other charge but
not upon itself.

A system of any number of elementary charges is furnished with a relativistic Lagrangian
that yields EM interactions with the following features: (i) elementary charges interact only
through their elementary EM potentials and fields; (ii) the field equations for the elemen-
tary EM fields are exactly the Maxwell equations with proper conserved currents; (iii) the
wave functions evolution is governed by nonlinear Klein-Gordon equations; (iv) EM force
density is described exactly by its well known Lorentz expression; (v) the Newton equations
with the Lorentz forces hold approximately when charges are well separated and move with
non-relativistic velocities; (vi) a free charge moves uniformly preserving up to the Lorentz
contraction its shape. Since an overwhelming number of EM phenomena are explained within
the classical EM theory by the Maxwell equations and the Lorentz forces our neoclassical
EM theory is equally successful in explaining the same phenomena.

Particle-like states of elementary charges are recovered in our theory from the original field
concepts as localized states. A possibility for an elementary charge to localize is facilitated by
internal forces of non-electromagnetic origin. These forces are introduced in the Lagrangian
in the form of a nonlinear term G

(
|ψ|2

)
defined by the following expression

G (s) = Ga (s) = −a
−2s

[
ln
(
a3 |s|

)
+ ln π3/2 + 2

]
, −∞ < s <∞, (1)

where a > 0 is the size parameter. The free charge then has Gaussian shape and is of the
size a. As we have shown in [BF6] the specific expression (1) for the nonlinearity G (s) is
derived from a physically sound requirement that the Planck-Einstein relation E = ~ω holds
exactly in the non-relativistic approximation to our fully relativistic theory.

To give a flavor of the proposed here spinorial version of our neoclassical theory, we
can state that the Euler-Lagrange field equation governing the motion of a free charge is a
spinorial version of the nonlinear Klein-Gordon equation, namely

P2ψ −
[
κ20 +G′

(〈
ψψ̃

〉)]
ψ = 0, κ0 =

mc

χ
, (2)

where P is a certain spinorial version of the momentum operator similar to the same in the
Dirac theory, G is a nonlinearity defined by (1) χ is a constant which is equal approximately
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to the Planck constant. We show that the spinorial version of our theory developed here
has many important features identical to those of the Dirac theory such as the gyromagnetic
ratio, expressions for currents including the spin current, and antimatter states. We treat
here mostly the case of a free charge, since the difference with the spinless scalar case shows
itself already in this case. Detailed analysis of more complex cases including charge in external
electromagnetic field or systems of interacting charges is left for future work.

While our theory has many features identical to the Dirac theory as pointed out above,
it differs significantly from the Dirac theory. The first significant difference is that, by
its very design, our neoclassical theory is a consistent relativistic Lagrangian field theory.
This difference is manifest in the treatment of the energy. The Dirac theory following to
the quantum mechanics (QM) framework essentially identifies the energy with the frequency
through the Planck-Einstein relation E = ~ω considered to be fundamentally exact. In our
neoclassical Lagrangian field theory the energy-momentum density is constructed based on
the system Lagrangian and the Noether theorem and its relation to frequencies in relevant
regimes is non-trivial. In particular, in our theory the Planck-Einstein relation holds only
approximately as a non-relativistic approximation for time harmonic states taking the form
E ≈ ~ |ω|. Observe that it is the compliance of the Dirac theory with the foundations of QM
requires the identity E = ~ω resulting in unbounded negative energy problem. Indeed, the
QM evolution equation ~i∂tψ = Hψ with H being the energy operator is just an operator
form of the Planck-Einstein relation E = ~ω. This evolution equation requires naturally
negative frequencies which then according to E = ~ω have to be interpreted as negative
energies.

The second significant difference is that our Lagrangian theory is free from any ”infinities”
which constitute a known problem for the QM and the quantum electrodynamics.

The third difference is that in our theory an elementary charge is an extended object
which can be localized whereas in the QM it is a point-like object. As R. Feynman put
it, [Feynman III, p. 21-6] : ”The wave function ψ (r) for an electron in an atom does not,
then, describe a smeared-out electron with a smooth charge density. The electron is either
here, or there, or somewhere else, but wherever it is, it is a point charge.” In our theory the
localization property of an elementary charge in relevant situations is provided by a nonlinear
non-electromagnetic self-interaction G defined by (1). As a result the free charge spinor wave
function in our theory is a plane wave modulated by a Gaussian amplitude factor compared
to a plane wave free charge solution in the Dirac theory. In particular, the localization
property of the neoclassical free charge solutions allows to evaluate the conserved quantities
by integration whereas that is not possible in the case of plane waves. The presence of the
nonlinearity in our theory also invalidates to some degree the linear superposition principle,
whereas it is of fundamental importance in the QM.

The fourth important difference is that in our theory there is no electromagnetic self-
interaction for an elementary charge.

The paper is organized as follows. In Section 2 we provide basic information on the STA
needed to carry out computations. In Section 3 we discuss important properties of the STA
version of the Dirac theory. In Section 4 we develop the spinorial version of our neoclassical
theory and in Section 5 we study properties of a free charge. In Section 6 we consider the
interpretation of the neoclassical solutions and compare main features of the developed here
theory with those of the Dirac theory.
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2 Basics of Spacetime Algebra (STA)

In this section we formulate the basic properties of the Spacetime Algebra (STA), for it is
perfectly suited for our conceptual purposes as well the computation. The spacetime algebra
is a particular case of the Clifford algebra. A general Clifford algebra , also called Geometric
Algebra (GA), is an associative algebra generated by an n-dimensional vector space V over
the set of real scalars R furnished with a symmetric quadratic form g. We denote such a
Clifford algebra by Cl (V, g) and call its elements multivectors referring to elements of the
generating linear space V as vectors. The Clifford product, also called geometric product, of
any two multivectors A and B is denoted by juxtaposition, that is AB. The Clifford product
is fundamentally determined by the requirement to satisfy the following identity for any two
vectors a and b from the generating vector space V :

ab+ ba = 2g (a, b) 1, (3)

where 1 is the multiplicative identity which we often skip in notation. The Clifford algebra
is naturally furnished with inner ”·” (interior, dot) product and outer (exterior, Grassmann)
product ”∧” so that for any two vectors a and b in V

a · b =
ab+ ba

2
= g (a, b) , a ∧ b = −b ∧ a =

ab− ba

2
, (4)

implying
ab = a · b+ a ∧ b. (5)

According to (4), the orthogonality of two vectors a and b in the Clifford algebra, that is
a · b = 0, has an equivalent algebraic representation as the anticommutativity of a and b.

The Spacetime Algebra is the Clifford algebra based on the real 4-dimensional Minkowski
space M4 and it is denoted by Cl (1, 3), where (1, 3) is the signature of the Minkowski space
metric. The 3-dimensional Euclidian space is denoted by R3 and the corresponding to it
Clifford Algebra is Cl (3, 0). In setting up the STA we follow to [Hes2-03], [DorLas] and [Sny].
Though many properties of Clifford Algebras hold universally across different dimensions
and signatures, we formulate them mostly for the case of our primary interest which is the
Spacetime Algebra Cl (1, 3). We want to stress that the concise review of the STA presented
here is not meant to be complete and/or systematic presentation of the Clifford Algebras
theory, but rather it is a selection of important for our purposes properties of the STA.
We want to acknowledge the work done by D. Hestenes who pioneered and developed many
aspects of the STA and its applications to physics. There is number of excellent presentations
of Clifford Algebras and their applications to physics written by D. Hestenes and his followers,
see, for instance, [HesSob], [HesNF], [Hes2-03], [DorLas], [Sny], [DorFonMan].

The standard model for the spacetime is the real Minkowski vector space M4 with the
standard metric gµν defined by

{gµν} = {g
µν} , g00 = 1, gjj = −1, j = 1, 2, 3, gµν = 0, µ 6= ν. (6)

A basis for the STA can be generated by a standard frame
{
γµ : µ = 0, 1, 2, 3

}
of orthonormal

vectors, with a timelike vector γ0 in the forward light cone, and γµ are assumed to satisfy
the following relations:

γµγν + γνγµ = 2γµ · γν = 2gµν , (7)
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γ20 = 1, γ2i = −1, γ0 · γi = 0, γi · γj = −δij , i, j = 1, 2, 3. (8)

Notice that (7)-(8) are the defining relations of the Dirac matrix algebra. That explains our
choice to denote an orthonormal frame by

{
γµ

}
, but it must be remembered that the

{
γµ

}

are basis vectors and not a set of matrices in ”isospace”.
To facilitate algebraic manipulations, it is convenient to introduce the reciprocal frame

{γµ} defined by the equations

γµ = gµνγν , γµ · γ
ν = δνµ, (9)

with the summation convention understood. Observe that two different vectors γµ anticom-

mute. Since we are in a space of mixed signature, we distinguish between a frame
{
γµ

}
and

its reciprocal {γµ}, namely

γ0 = γ0, γi = −γi, i = 1, 2, 3. (10)

Notice that, following to the common practice, we use Greek letters µ, ν, . . . for indices taking
values 0, 1, 2, 3 and Latin letter i, j, . . . for indices taking values 1, 2, 3. The γµ determine a
unique right-handed unit pseudoscalar

I = γ0γ1γ2γ3, I2 = −1, (11)

that anticommutes with vectors γµ

Iγµ = −γµI, µ = 0, 1, 2, 3. (12)

For any vector a a frame
{
γµ

}
determines a set of rectangular coordinates

a = aµγµ = a0γ0 + aiγi, {aµ} =
{
a0, a

}
. (13)

In particular, for any spacetime point x

x = xµγµ = ctγ0 + xiγi, {xµ} =
{
x0,x

}
= {ct,x} . (14)

The frame
{
γµ

}
defines also an explicit basis for this algebra as follows:

1
1 scalar

,
{
γµ

}
4 vectors

,
{
γµ ∧ γν

}
6 bivectors

,
{
Iγµ

}
4 trivectors

, {I}
1 pseudoscalar

, (15)

where ”∧” is the external (Grassman) product. This is the spacetime algebra Cl (1, 3). The
structure of this algebra tells us practically all one needs to know about (flat) spacetime and
the Lorentz transformation group. A general element M of the spacetime algebra is called
multivector and can be written as

M = α + a+B + Ib+ Iβ, (16)

where α and β are scalars, a and b are vectors, and B is a bivector. The representation (16)
is a decomposition of M into its k-vector parts (grades), and that can be expressed more
explicitly by putting it in the form

M =
∑

0≤k≤4

〈M〉k , where 〈M〉0 = 〈M〉 = α, (17)

〈M〉1 = a, 〈M〉2 = B, 〈M〉3 = Ib, 〈M〉4 = Iβ,
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where the subscript (k) means “k-vector part”. Notice the special notation 〈M〉 = 〈M〉0 for
the scalar part for the multivector M . The space of k-vectors, that is multivectors of the
grade k, is denoted by Λk.

It is instructive to see the grade decomposition for the geometric product of two multi-
vectors Ar ∈ Λr and Bs ∈ Λs, [HesSob, 1.1], [HesZie, 2.2], [RodOli, 2.4.2]

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + · · ·+ 〈ArBs〉r+s = (18)

=
∑m

k=0
〈ArBs〉|r−s|+2k , where m =

1

2
(r + s− |r − s|) ,

where it is understood that for any multivector M

〈M〉k ≡ 0 for any k > 4. (19)

The inner (dot) ”·” and outer (Grassman) ”∧” products are defined first for homogeneous
multivectors Ar ∈ Λr and Bs ∈ Λs by, [HesSob, 1.1],

Ar · Bs = 〈ArBs〉|r−s| , if r, s > 0; (20)

Ar · As = 0, if r = 0 or s = 0;

Ar · Bs = (−1)r(s−r)
Bs ·Ar for s ≥ r; (21)

Ar ∧ Bs = 〈ArBs〉r+s = (−1)rsBs ∧ Ar; (22)

with consequent extension by linearity to arbitrary multivectors A and B. In particular, if a
is a vector and Ar is multivector of the grade r, we have, [HesSob, 1-1], [DorLas, 4.1.2]

aAr = a ·Ar + a ∧ Ar, Ara = Ar · a+ Ar ∧ a, (23)

where

a · Ar = (−1)r−1
Ar · a =

1

2
(aAr − (−1)r Ara) , (24)

a ∧ Ar = (−1)r Ar ∧ a =
1

2
(aAr + (−1)r Ara) .

The STA has a much richer structure than the algebra of complex numbers, and it can
be furnished with several natural conjugations (involutions) operations, [DeSDat, 5.3], [Bay,
1.4.8], [Perw, 3.1, 3.2]. The most important of those is called reversion (principal anti-
automorphism), and the reverse M̃ of a general multivector M is defined by

M̃ = α + a−B − Ib+ Iβ, (25)
〈
M̃

〉
k
= 〈̃M〉k = (−1)

k(k−1)
2 〈M〉k , 0 ≤ k ≤ 4. (26)

The reversion operation justifies its name since it reverses the order of the multipliers:

(MN)˜ = ÑM̃ . (27)

Grade involution is a conjugation defined by
〈
M̂

〉
k
= (−1)k 〈M〉k , 0 ≤ k ≤ 4. (28)
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There is yet another Hermitian conjugation also called relative reversion M † of a multivector
M defined by

M † = γ0M̃γ0, (29)

and it corresponds to the Hermitian conjugation in the Dirac Algebra. Every multivector
then can be decomposed into γ0-even and γ0-odd components

M =Me +Mo, where Me =
1

2

(
M † +M

)
, Mo =

1

2

(
M † −M

)
, (30)

and evidently

M †
e =Me, M †

o = −Mo, M̃ † = M̃ †. (31)

The grade structure (16) of STA and the grade involution operator defined by (28) provide
for a natural decomposition of any multivector M into the sum of an even part M+ and an
odd part M− as follows:

M+ = α +B + Iβ, M− = a + Ib, M± =
1

2

(
M ± M̂

)
=

1

2
(M ∓ IMI) . (32)

Notice that the even and odd parts respectively commute and anticommute with I, that is

M+I = IM+, M−I = −M−I. (33)

Importantly, the set of all even elements M+ of the STA Cl (1, 3) forms a Clifford algebra
on its own, we denote it by Cl+ (1, 3). This even subalgebra Cl+ (1, 3) is isomorphic to the
geometric algebra (GA) Cl (3, 0) of the three-dimensional Euclidean space with multivectors
of the form, [Hes-96, 1], [Hes1-03, VI],

N = α + Iβ + a + Ib ∈ Cl (3, 0) , (34)

where α and β are scalars, a and b are vectors and I is the unit pseudoscalar in Cl (3, 0). The
even subalgebra Cl+ (1, 3) is very important to the STA version of the Dirac electron theory
where it is the space of values of the Dirac spinorial wave function.

Notice that the scalar part of 〈M〉 has the following properties

〈M〉 =
〈
M̃

〉
, 〈MN〉 = 〈NM〉 , 〈〈M〉k 〈N〉s〉 = 0, if k 6= s, (35)

whereM andN are multivectors. The above equalities imply the following identities involving
Hermitian conjugation 〈

MN †
〉
=

〈
N †M

〉
=

〈
NM †

〉
. (36)

Based on the above we define first a scalar-valued ∗-product for any two arbitrary multivectors
A and B by, [HesSob, 1.1], [DorLas, 4.1.3], [DorstIP], [DorFonMan, 3.1.2], [Perw, 3.2.3]

A ∗B = 〈AB〉 =
∑

0≤k≤4

〈
A(k)B(k)

〉
. (37)

The above scalar ∗-product is symmetrical and reversible

A ∗B = B ∗ A = Ã ∗ B̃ = B̃ ∗ Ã. (38)
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Another (fiducial) scalar product A � B = 〈A,B〉 of two arbitrary multivectors A and B is
defined by, [Sny, 3.4], [Moya, 4.2.4]

A � B = 〈A,B〉 = Ã ∗B =
〈
ÃB

〉
=

〈
AB̃

〉
(39)

=
∑

0≤k≤4

〈
〈̃A〉k 〈B〉k

〉
=

∑

0≤k≤4

(−1)
k(k−1)

2
〈
A(k)B(k)

〉
.

Notice that we use the symbol ”�” for the scalar product since the ”normal” dot symbol ”·”
is already taken for the inner product. Unfortunately, the symbols ”∗” and ”·” are used
differently in different texts and one has to pay attention when using those symbols. For
detailed and insightful analysis of relations between different products and their geometric
meaning see [DorstIP]. The relations (35)-(42) readily imply the following useful properties
of the scalar products

(AB) ∗ C = A ∗ (BC) = 〈ABC〉 (40)

(AB) � C = B �

(
ÃC

)
= A �

(
CB̃

)
, (41)

A � (BC) =
(
B̃A

)
� C =

(
AC̃

)
� B.

A grade-r multivector A is called simple or a blade if it is a product of r anticommuting
vectors, that is

A = a1 ∧ a2 · · · ∧ ar, where akaj = −akaj for k 6= j. (42)

Blades naturally correspond to subspaces, and they are instrumental to establishing relations
between geometric and algebraic properties. An important property of every grade-r blade
Ar is that it has the inverse, [HesSob, 1-1], [DorFonMan, 3.5.2]

A−1
r =

Ãr

Ar ∗ Ãr

= (−1)r(r−1)/2 Ar

Ar ∗ Ãr

. (43)

In the case where Ar and Br are simple r-vectors, the scalar products (38), (39) have the
following representations via the determinant, [DorFonMan, 3.1.2]

Ar ∗Br = 〈ArBr〉 = Ar ·Br = det



〈a1, br〉 · · · 〈a1, b1〉

...
. . .

...
〈ar, br〉 · · · 〈ar, b1〉


 , r > 0, (44)

Ar � Br = Ar ∗ B̃r = det



〈a1, b1〉 · · · 〈a1, br〉

...
. . .

...
〈ar, b1〉 · · · 〈ar, br〉


 , r > 0, (45)

and
Ar ∗Bs = 0, r 6= s; a ∗ b = ab, if a and b are scalars. (46)

Observe that in the case of the Clifford Algebra Cl (3, 0) of 3-dimensional Euclidian space,

for any multivector A ∈ Cl (3, 0) the scalar product is positive, A � A =
〈
ÃA

〉
≥ 0; and
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that is the primary motivation to define the scalar product by the formula (35). The scalar
product allows also to define a positive definite magnitude |M | for any multivector M by

|M |2 =
∣∣∣
〈
M̃M

〉∣∣∣ =
∣∣∣
〈
MM̃

〉∣∣∣ . (47)

Notice that in the case of vectors we always have

A · B = A � B = A ∗B if A,B ∈ Λ1. (48)

Being given a basis
{
γµ

}
forM4, we define a basis {σk} for the 3-dimensional Euclidean

space P3 by

σk = γk ∧ γ0 = γkγ0 = −σ̃k = −σ
k, σ

2
k = 1, k = 1, 2, 3, (49)

σiσj = −γiγj = −γi ∧ γj = ǫijkIσk, i 6= j, σ1σ2σ3 = I, (Iσk)
2 = −1, (50)

where ǫijk is the alternating tensor, also called Levi-Civita symbol, defined by

ǫijk =





1 if ijk is a cyclic permutation of 123,
−1 if ijk is a anticyclic permutation of 123,
0 if otherwise.

. (51)

Notice also that the following identities hold

γ0σk = −σkγ0, γ0I = −Iγ0, γ0Iσk = Iσkγ0, σkI = Iσk, k = 1, 2, 3. (52)

σi · σj = δij,
1

2
(σiσj − σiσj) = ǫijkIσk,

1

2
(IσiIσj − IσiIσj) = ǫijkIσk. (53)

The bivectors σk are called relative vectors and they correspond to timelike planes. The
relative vectors σk generate the even subalgebra Cl+ (1, 3) which is isomorphic to the geometric
algebra (GA) Cl (3, 0) of the three-dimensional Euclidean space, [Hes-86, 3], [Hes-96, 1].
Relative bivectors Iσk according to (50) are spacelike bivectors.

Observe that using I2 = −1, we can recast the relations (50) as

IσiIσj = −σiσj = γiγj = γi ∧ γj = −ǫijkIσk, i 6= j, (54)

implying that the span 〈1, Iσ1, Iσ2, Iσ3〉 is a subalgebra Q which is isomorphic to the even
subalgebra Cl+ (3, 0) of the geometric algebra Cl (3, 0) of the three-dimensional Euclidian
space. Since Cl+ (3, 0) is isomorphic to the quaternion algebra, [HesNF, 2.3], [DorLas, 2.4.2],
[DeSDat, 6.1], the subalgebra Q is also isomorphic to the quaternion algebra and we refer to
it by that name, that is

Q = 〈1, Iσ1, Iσ2, Iσ3〉 is the quaternion subalgebra. (55)

Notice that the quaternion subalgebra Q can also be characterized as the one consisting of
even multivectors which are also γ0-even, that is

Q =
{
M ∈ Cl+ (3, 0) :M † = γ0M̃γ0 =M

}
. (56)

The quaternion subalgebra Q is very important to the STA version of the Pauli electron
theory where it is the space of values of the Pauli spinorial wave function.
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3 The Dirac equation in STA

Since the Dirac theory has been very thoroughly analyzed and tested experimentally, we
would like to consider its STA version in sufficient detail and compare it with developed
here neoclassical theory. In addition to that, the Dirac equation in the STA and its analysis
provides us with a number of valuable tools useful for our own constructions, and we consider
its important features in this section.

The STA version of Dirac spinor Ψ is the wave function ψ taking values in the even
subalgebra Cl+ (1, 3) of the Clifford algebra Cl (1, 3), and we refer to it as Dirac spinor or

just spinor. Notice that for any ψ from Cl+ (1, 3) we have ψψ̃ = ψ̃ψ̃ implying that this
product is a linear combination of the scalar and the pseudoscalar I, that is

ψψ̃ = ψ̃ψ = ̺eIβ = ̺ (cos β + I sin β) , where ̺ ≥ 0 and β are scalars. (57)

This leads to the following canonical Lorentz invariant decomposition which holds for every
even multivector ψ, [Hes-75], [Hes2-03, VII.D], [DorLas, 8.2], [DeSDat, 9.3],

ψ = ̺
1
2 e

Iβ
2 R = R̺

1
2 e

Iβ
2 , RR̃ = RR̃ = 1, (58)

where ̺ > 0 and β are scalars, and R is the Lorentz rotor, that is x′ = RxR̃ is the Lorentz
transformation. According to D. Hestenes, the canonical decomposition (57) can be regarded
as an invariant decomposition of the Dirac wave function into a 2-parameter statistical factor

̺
1
2 e

Iβ
2 and a 6-parameter kinematical factor R.
It is worth to point out that the identity (57) clearly shows that though the reversion op-

eration ψ̃ is analogous to the complex conjugation for complex numbers, the even subalgebra
Cl+ (1, 3) is a richer entity than the set of complex numbers allowing ψψ̃ to be negative and
not scalar valued.

To introduce an STA form of the Dirac equation, we define first an STA version of the
Dirac operator denoted sometimes by nabla dagger, [ItzZub, 2-1-2], [GreRQM, 3]. We denote
this STA version of the Dirac operator by ∂ = ∂x. It is often called vector derivative with
respect to vector x and defined by, [Hes1-03], [Hes2-03, II], [HesSob], [DorLas],

∂ = ∂x = γµ∂µ, where ∂µ =
∂

∂xµ
. (59)

Notice that since ∂ is a vector, it may not commute with other multivectors.
In the case of the Clifford algebra Cl (3, 0) of the 3-dimensional Euclidian space, the vector

derivative ∇ is defined by

∇ =

3∑

j=1

σj∂j , where ∂j =
∂

∂xj
, and σj is a basis of Cl (3, 0) . (60)

The covariant Dirac equation in STA, known also as the real Dirac equation, was obtained
by D. Hestenes [Hes2-03, VII], [DorLas, 13.3.3, 13.3.3.4], [RodOli, 6.7, 6.8] and it is

~∂ψIσ3 −
e

c
Aψ = mcψγ0, where Iσ3 = γ1γ2. (61)

The real Dirac equation (61) is equivalent to the original Dirac equation. The equation (61)
can be recast also as

(P −mc←−γ 0)ψ = 0, or Pψ = mcψγ0, (62)

10



where the momentum operator P and the operator ←−γ 0 are defined by

Pψ = ~∂ψIσ3 −
e

c
Aψ, ←−γ 0ψ = ψγ0. (63)

The momentum operator P can be alternatively represented by

Pψ = γµPµψ, where Pµψ = ~∂µψIσ3 −
e

c
Aµψ. (64)

We refer to the equations (61), (62) as the Dirac-Hestenes equations. Observe that P and
←−γ 0 commute since the multivectors Iσ3 = γ1γ2 and γ0 commute, that is

(Iσ3) γ0 = γ0 (Iσ3) ,
←−γ 0P = P←−γ 0. (65)

The free electron canonical momentum operator P̊ is obtained as a particular case of P in
(63) when A = 0, that is

P̊ψ = ~∂ψIσ3, and Pψ = P̊ψ −
e

c
Aψ = ~∂ψIσ3 −

e

c
Aψ. (66)

One can also introduce for spinor valued ψ the covariant derivative operator D:

Dψ = ∂ψ +
e

~c
AψIσ3, implying P = ~∂ψIσ3 −

e

c
Aψ~ = DψIσ3. (67)

Conserved quantities of interest, including the electric current and the energy-momentum
tensor (EnMT), can be obtained from the following real Dirac-Hestenes Lagrangian density
for electron in external electromagnetic field, [LDG, 4.4], [Hes-96, Ap. B], [Hes-STC, App.
B]

L = c
〈
~∂ψIγ3ψ̃ −

e

c
Aψγ0ψ̃ −mcψψ̃

〉
. (68)

Using expressions (67) for the canonical momentum P and the covariant derivative D, we
can transform the Dirac-Hestenes Lagrangian into the following form

L = c
〈
[(P −mc←−γ 0)ψ] γ0ψ̃

〉
= c

〈
[(~DψIσ3 −mc←−γ 0)ψ] γ0ψ̃

〉
. (69)

The Lagrangian representation (69) implies

L = 0 for any ψ satisfying the Dirac equation (62), (70)

and that is typical for the first order systems, [DorLas, 13.3]. One can also verify that the
corresponding Euler-Lagrange field equation is equivalent to the Dirac-Hestenes equation
(61).

The free electron Dirac-Hestenes Lagrangian L̊ (when A = 0) equals

L̊ = c
〈
~∂ψIγ3ψ̃ −mcψψ̃

〉
= c

〈[(
P̊ −mc←−γ 0ψ

)]
γ0ψ̃

〉
= (71)

= c
〈
[(~∂ψIσ3 −mc←−γ 0ψ)] γ0ψ̃

〉
, where P̊µψ = ~∂µψIσ3.

3.1 Conservation laws

Our treatment of the charge and energy-momentum conservation laws is based on the Dirac-
Hestenes Lagrangian and the Noether theorem.

11



3.1.1 Electric charge conservation

We introduce the so-called global electromagnetic gauge transformation as follows, [Hes-73,
3], [LDG, 3.2],

x′ = x, ψ′ (x′) = ψ (x) eIσ3ǫ, ǫ is any real number. (72)

Consequently, the global electromagnetic gauge transformation preserves the vector derivative
∂ψ, that is

∂′ = ∂, ∂′ψ′ (x′) = ∂ψ (x) eIσ3ǫ. (73)

The infinitesimal form of (72) for for small ǫ is

δx′ = 0, δ̄ψ = ψIσ3ǫ. (74)

The local electromagnetic gauge transformation is conceived to keep the covariant derivative
Dψ defined by (67) invariant. It involves both the ψ and A and is of the form

x′ = x, ψ′ (x) = ψ (x) eIσ3
e
~c

ǫ(x), A′ (x) = A (x)− ∂ǫ, (75)

where ǫ (x) is real valued function of x is . Then, since ∂ = γµ∂µ, we consequently obtain

∂′ = ∂, ∂′ψ′ (x′) =
[
∂ψ (x) +

e

~c
∂ǫψ (x) Iσ3

]
eIσ3

e
~c

ǫ(x), (76)

D′ψ′ (x′) = Dψ (x) . (77)

The infinitesimal form of (75) for for small ǫ (x) is

δx′ = 0, δ̄ψ = ψIσ3
e

~c
ǫ, δ̄∂ψ = ∂ψ +

e

~c
∂ǫψIσ3, δ̄A = −∂ǫ. (78)

The last equality in (78) indicates that to have the local gauge invariance, we have to couple
the spinor field ψ with a vector field to ”compensate” for the term e

~c
∂ǫψIσ3. And this

exactly what the electromagnetic potential A does yielding the well known minimal coupling.
One readily verifies that the Dirac-Hestenes Lagrangian (68) is invariant with respect to

electromagnetic gauge transformation (72). Then, according to Noether’s theorem, there is
a conserved electric current Jµ defined by

πµ =
∂L

∂ψ,µ

= c~Iγ3ψ̃γ
µ, (79)

Jµ = πµ ∗ δ̄ψ = c
〈
~Iγ3ψ̃γ

µψIσ3ǫ
〉
= c

〈
~ψ̃γµψγ0ǫ

〉
.

Multiplying the current expression in (79) by a proper constant and using the STA properties
(27), (35)-(38) together with momentum P representation (67), we obtain the following
expression for the electric current

Jµ = ec
〈
γµψγ0ψ̃

〉
, J = ecψγ0ψ̃, Jµ = (cρ,J) . (80)

Assuming that ψ satisfies the Dirac equation (62), (63), we can recast the above expression
into

Jµ =
e

m

〈
γµ (Pψ) ψ̃

〉
, J = Jµγµ =

e

m
(Pψ) ψ̃ =

e

m

(
χ∂ψIσ3 −

e

c
Aψ

)
ψ̃. (81)
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The expression cψγ0ψ̃ is known as the Dirac probability current in the QM, [Hes2-03, VII.D],
[Hes-STC, 10], whereas the expression e

m
(Pψ) ψ̃ is known as the Gordon current [Hes-75,

5], [Hes2-03, VII.H]. We want to stress that the current J expressions (80) and (81) are
evidently two very different expressions which are equal only because ψ satisfies the Dirac
equation (62), (63). Consequently, one may interpret the Dirac equation as a requirement
that two generally different currents defined by (80) and (81) must be the same. In addition
to that, notice that the expression e

m

(
χ∂ψIσ3 −

e
c
Aψ

)
ψ̃ in (81) for a general even ψ, that is

ψ not necessarily satisfying the Dirac equation, can take multivector values. So in the case
of general even ψ the proper Gordon current expression based on its components Jµ is

J = Jµγµ =
〈 e
m

(Pψ) ψ̃
〉
1
=

e

m

〈(
χ∂ψIσ3 −

e

c
Aψ

)
ψ̃
〉
1
, (82)

and in the special case when ψ satisfies the Dirac equation, the projection operation 〈〉1 on

the vector space can be naturally omitted since
(
χ∂ψIσ3 −

e
c
Aψ

)
ψ̃ has to be a vector in this

case. The current J satisfies the conservation law

∂ · J = 0 or ∂µJ
µ = 0, Jµ = (cρ,J) , (83)

where ρ is the charge density and J is the charge current.
The Gordon current expression (81) satisfies the following Gordon decomposition law,

[Hes-96, 3]

Jµ = Jµ
c + Jµ

s , Jµ
c =

e

m

〈
(Pµψ) ψ̃

〉
, Jµ

s =
~e

m

〈
[γµ, γν ] ∂νψIσ3ψ̃

〉
, (84)

where Jµ
c and Jµ

s are respectively the convection and magnetization (spin) currents. To justify
the use of magnetization and spin terms, let us recall that the magnetization bivector M and
intimately related to it spin angular momentum bivector S are defined in the STA by the
following expressions, [Hes-75, 4], [Hes-96, 2, 3], [Hes2-03, VII.C]

S =
~

2
RIσ3R̃ =

~

2
Rγ2γ1R̃, ψ = ̺

1
2 e

Iβ
2 R = R̺

1
2 e

Iβ
2 , (85)

M =
~e

2mc
ψIσ3ψ̃ =

~e

2mc
ψγ2γ1ψ̃ =

e

mc
̺eIβS, (86)

where ψ satisfies the canonical relations (57), (58). Then the following relations between
components Jµ

s (81) and magnetization bivector M hold:

Js = Jµ
s γµ = c∂ ·M, Jµ

s = cγµ · (∂ ·M) = cγµ · (γν · ∂νM) = (87)

= c (γµ ∧ γν) · ∂νM =
~e

m

〈
(γµ ∧ γν) ∂νψIσ3ψ̃

〉
.

It is instructive to see that the STA Gordon current decomposition representation (84)per-
fectly matches a similar formula in the conventional Dirac theory, [GreRQM, 8.1], [Sny, 8.1],
[Wach, p. 148]:

Jµ = ecΨ̄γµΨ = Jµ
c + Jµ

s =
e

2m

[
Ψ̄P̂ µΨ−

(
P̂ µΨ

)
Ψ

]
−

ie

2m
∂ν

(
Ψ̄σµ

νΨ
)
, (88)

where σµ
ν is defined by

σµν =
i

2

(
γµγν − γνγµ

)
, (89)
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and

Jµ
c =

e

2m

[
Ψ̄P̂ µΨ−

(
P̂ µΨ

)
Ψ

]
is the convection current density, (90)

Jµ
s = −

ie

2m
P̂ ν

(
Ψ̄σµ

νΨ
)
is the spin current density.

Notice that the spin (magnetization) current Js in view of the representation Js = ∂ ·M in
(87) is conserved since

∂ · Js = c∂ · (∂ ·M) = c (∂ ∧ ∂) ·M = 0. (91)

Combining (83) and (84), we obtain also the conservation law for the convection current Jµ
c :

∂µJ
µ
c = 0. (92)

Notice also that, assuming that J is the Dirac probability current defined by (80), we can
recast the Lagrangian in (69)

L = L̊−
1

c
〈AJ〉 = c

〈
[(~∂ψIσ3 −mc←−γ 0ψ)] γ0ψ̃

〉
−

1

c
〈AJ〉 , (93)

indicating that the current J definition by (80) is in accord with the classical theory. Indeed,
in the classical theory the EM interaction between the EM field four-potential A and the
current J is described by the expression 1

c
〈AJ〉.

3.1.2 Energy-momentum conservation

Applying the Noether theorem to the Dirac Lagrangian (68), (69) and using relations (66),
(70), we consequently obtain for the canonical EnMT T̊ µν

πµ =
∂L

∂ψ,µ

= c~Iγ3ψ̃γ
µ, T̊ µν = πµ ∗ ∂νψ = c

〈
~Iγ3ψ̃γ

µ∂νψ
〉
. (94)

The above expression for EnMT T̊ µν after an elementary transformation turns into

T̊ µν = c
〈
~Iγ3ψ̃γ

µ∂νψ
〉
= c

〈
γ0ψ̃γ

µ
~∂νψIσ3

〉
= c

〈
γµ

(
P̊νψ

)
γ0ψ̃

〉
. (95)

Then the EnMT conservation law takes the form

∂µT̊
µν = −∂νL =

1

c
(∂νAµ)Jµ. (96)

Observe that the canonical EnMT T̊ µν involves P̊ν and evidently is not gauge invariant. To
find its gauge invariant modification T µν we use the charge conservation law ∂µJµ = 0 to
obtain the following identity

(∂νAµ)Jµ = (∂νAµ − ∂µAν)Jµ + (∂µAν)Jµ = (97)

= F νµJµ + ∂µ (AνJµ) = F νµJµ + ∂µ (A
νJµ) ,

14



where F νµ = ∂νAµ − ∂µAν are components of the EM field bivector F = 1
2
Fνµγ

ν ∧ γµ. The
above identity allows to recast the conservation law (96) as

∂µ

(
T̊ µν −

1

c
AνJµ

)
=

1

c
F νµJµ. (98)

The equality (98) in turn suggests to introduce the following gauge invariant modification
T µν of the canonical EnMT T̊ µν :

T µν = T̊ µν −
1

c
AνJµ = c

〈
γµ (Pνψ) γ0ψ̃

〉
. (99)

Then (98) can be recast into the conservation law

∂µT
µν =

1

c
F νµJµ, (100)

where 1
c
F νµJµ are the components of the Lorentz force. Using the identity

F νµJµ = (γν ∧ γµ) · FJµ = γν · (γµ · F )Jµ = γν · (J · F ) , (101)

and introducing the vectors
T µ = T µνγν , (102)

we can recast the EnMT conservation (99) into a concise vector form

∂µT
µ =

1

c
J · F, where J · F is the Lorentz force vector. (103)

The properties of the gauge invariant EnMT T µν and related to T µ are thoroughly studied
in [Hes-96, 3].

3.2 Free electron solutions to the Dirac equation

This section provides basic information on the plane wave solutions to the Dirac-Hestenes
equations following to [Hes-81, 6], [Hes-96, 4], [Hes2-03, VIII.B], [DorLas, 8.3.2]. Free electron
satisfies the Dirac equation (61) with A = 0, that is

~∂ψIσ3 = mcψγ0, where Iσ3 = γ1γ2. (104)

A positive energy plane-wave solution ψ− to the Dirac equation (104) for electron is defined
to be of the form

positive energy solution: ψ− = ψ0e
−Iσ3k·x, where γ0 · k > 0, (105)

and ψ0 is a constant spinor. Notice that in ψ− the subindex ”−” signfies the sign of the
electron charge. Recall that the wave vector k is related to the momentum vector p by
p = ~k, and we obtain the following spacetime split representations in terms of relative
vectors:

kγ0 =
ω

c
+ k, pγ0 = ~kγ0 =

~ω

c
+ ~k =

E

c
+ p. (106)
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If the charge is at rest in the γ0-frame interpreted as p = 0 then according the above formula

p = p · γ0 = p0 =
~ω0

c
= mc. (107)

Since ∂ = γµ∂µ we have

∂ψ = ∂ψ0e
−Iσ3k·x = −kψ0e

−Iσ3k·xIσ3 = −kψIσ3, (108)

implying that ψ = ψ0e
−Iσ3k·x is a solution to the Dirac equation (104) if and only if ψ0

satisfies
pψ0 = mcψ0γ0. (109)

Multiplying the above equation from the right by ψ̃0 we obtain

pψ0ψ̃0 = mcψ0γ0ψ̃0. (110)

We assume the constant spinor ψ0 to be normalized with the following canonical representa-
tion (58):

ψ0 = e
Iβ0
2 R0, ψ0ψ̃0 = eβ0I, where β0 is real, (111)

R0 is the Lorentz rotor: R0R̃0 = R̃0R0 = 1.

Then it follows from (110) and (111) that

peβ0I = mcR0γ0R̃0, (112)

and since both the p and R0γ0R̃0 are vectors, we must have

ψ0ψ̃0 = eβ0I = ±1, that is β0 = 0, π. (113)

Since γ0 · p > 0 and γ0 ·R0γ0R̃0 > 0 as it follows from (105), we must have eβ0I = 1 in (112),
that is

p = mcR0γ0R̃0. (114)

The rotor R0 solving the problem (114) is the product

R0 = LU, (115)

where the boost L is defined by

L =
1 + vγ0

[2 (1 + v · γ0)]
1/2
, v =

p

mc
= γ

(
1 +

v

c

)
γ0 =

1

mc

(
E

c
+ p

)
γ0, (116)

or in view of (105)

L = L (p) =
E0 + E (p) + cp

[2E0 (E0 + E (p))]1/2
, (117)

where E (p) = E0

√
p2

c2
+ 1, E0 = mc2 = p0c = ~k0c = ~ω, (118)

and the rotor U is a pure rotation in γ0-frame, that is Uγ0 = γ0U .
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A negative energy plane-wave solution ψ+ to the Dirac equation (104) is defined by a
formula similar to (104) but with the phase factor e+Iσ3k·x, namely

negative energy solution: ψ+ = ψ0e
Iσ3k·x, where k · γ0 > 0, (119)

Notice that in ψ+ the subindex ”+” signifies that the sign of the positron charge is opposite
to the negative sign of the electron charge. For negative energy solutions in place of (112)
we have

− peβ0I = mcR0γ0R̃0, (120)

and, consequently, eβ0I = −1, implying

for negative energy: p = mcR0γ0R̃0, ψ0ψ̃0 = eβ0I = −1. (121)

Positive and negative energy plane wave states are commonly interpreted as respectively
electron state and positron (antiparticle) state with positive energy, [Wach, 2.1.6]. Their
representations can be summarized by

positive energy (electron): ψ0ψ̃0 = eβ0I = 1: ψ− = L (p)Ure
−Iσ3k·x, (122)

negative energy (positron): ψ0ψ̃0 = eβ0I = −1: ψ+ = L (p)UrIe
Iσ3k·x, (123)

where p = ~k and the subscript r at the spatial rotor Ur labels the spin state with

U0 = 1, U1 = −Iσ2 = γ1γ3, U1γ3Ũ1 = −γ3. (124)

Electron and positron states in (122)-(123) can be related to each other by the so-called
charge conjugation transformation, [Hes2-03, VII.C, VIII.B], [Wach, 2.1.6], defined by

ψC = ψσ2, where σ2 = γ2γ0. (125)

Namely, σ2 anticommutes with γ0 and Iσ3, therefore if ψ solves the Dirac equation (61) with
chage e its congjugate ψC solves the Dirac equation with the charge −e, that is

~∂ψCIσ3 +
e

c
AψC = mcψCγ0, where Iσ3 = γ1γ2. (126)

Notice also that the following identity holds for any real α

e−Iσ3α
σ2 = σ2e

Iσ3α, (127)

implying together with (11), (52) and (122)-(123) that

ψC
− = L (p)U ′

rIe
−Iσ3k·x, U ′

r = Ur (−Iσ2) . (128)

Observe that ψC
− in the above equation is a state similar to ψ+ in (123) indicating that

the charge conjugation transforms an electron state into an antiparticle (positron) state with
positive energy. Note that in view of the last equality in (124) the factor−Iσ2 = U1 represents
a spatial rotation that “flips” the direction of the spin vector, [Hes2-03, VIII.B]. In fact, the
charge conjugation ψ → ψC reverses the charge, energy, momentum, and spin of an electron
state transfering it into a positron state describing the antiparticle with opposite charge −e
in the same potential Aµ, [Wach, 2.1.6].
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4 Basics of neoclassical theory of charges with spin of

1/2

We develop in this section a spinorial version of our neoclassical field Lagrangian theory of
elementary charges. The initial step in this development is to assume that the wave function
ψ of a single charge such as electron takes values in the even algebra Cl+ (1, 3) just as in the
Dirac theory. We focus here on the theory of a single charge in an external electromagnetic
field. Extension of this theory to the case of many elementary charges is similar to the same
for spinless charges constructed and studied in [BF7]-[BF8].

The Lagrangian of a single elementary charge in an external electromagnetic field described
by the 4-potential Ă is

L =
1

2m

{〈
Pψ (Pψ)˜

〉
− χ2

[
κ20

〈
ψψ̃

〉
+G

(〈
ψψ̃

〉)]}
, κ0 =

mc

χ
, (129)

where (i) m is the electron mass; (ii) χ is a constant approximately equal to the Planck
constant ~; (iii) G is a nonlinear self-interaction term of not electromagnetic origin, and (iv)

Pψ = χ∂ψIσ3 −
e

c
Ăψ (130)

is the momentum operator which is identical to the same in the Dirac-Hestenes equation
(62). Notice that we have somewhat departed from the common notations of the Dirac
theory denoting the external EM 4-potential by Ă instead of A. The reason for such an
alteration is that there is no electromagnetic self-interaction for an elementary charge in our
theory, and every charge is associated with its individual wave function ψ and elementary
EM four potential A. So, to avoid any confusion and to distinguish the external 4-potential
from the elementary 4-potential A, we use Ă for the external one.

The nonlinearity G (s) in (129) is defined by the formula (1). We readily obtain from it

G′ (s) = G′
a (s) = −a

−2
[
ln
(
a3 |s|

)
+ lnπ3/2 + 3

]
, −∞ < s <∞. (131)

Notice that (1) and (131) imply the following identity

sG′
a (s)−Ga (s) = −a

−2s. (132)

As it is already explained the nonlinear self-interaction term G of non-electromagnetic origin
and its role in theory is to provide for the localization property of the elementary charge in
relevant situations.

Just as in the Dirac theory, it is useful to single out the ”free” part P̊ of P, namely

Pψ = P̊ψ −
e

c
Ăψ, where P̊ψ = χ∂ψIσ3. (133)

The coordinate forms Pµ and P̊µ of the above momenta operators are

Pµψ = χ∂µψIσ3 −
e

c
Ăµψ, Pψ = (γµPµ)ψ, (134)

P̊µψ = χ∂µψIσ3, P̊ψ =
(
γµP̊µ

)
ψ.
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When transforming expressions involving reversion operation, we often use the following
elementary identities:

σ̃3 = −σ3, Ĩ = I, Ĩσ3 = −Iσ3 = −σ3I. (135)

Lagrangian treatment of the conservation laws based on a multivector Noether’s theorem
has been developed in [LDG, 4-6], [DorLas, 12.4, 13], and we adopt most of that approach
here. For more details of mathematical aspects of the Lagrangian field theory for multivector-
valued fields, we refer the reader to [RodOli, 7]. To obtain the Euler-Lagrange equations for
the Lagrangian L defined by (129), we find first its derivatives

∂L

∂ψ
= −

1

m

{
(Pψ)˜

e

c
Ă+ χ2

[
κ20 +G′

(〈
ψψ̃

〉)]
ψ̃
}
, (136)

πµ =
∂L

∂ψ,µ

=
χ

m
Iσ3 (Pψ)

˜
γµ. (137)

Notice that we have dropped the projection operation 〈∗〉X in the right-hand sides of (136),
(137) since their expressions take values in the even subalgebra. Using expressions (136),
(137), we obtain the Euler-Lagrange equation

− (Pψ)˜
e

c
Ă− χ2

[
κ20 +G′

(〈
ψψ̃

〉)]
ψ̃ − ∂µχIσ3 (Pψ)

˜
γµ = 0. (138)

Application of the reversion operation to the above equation yields

−
e

c
ĂPψ −

[
κ20 +G′

(〈
ψψ̃

〉)]
ψ + χ∂ (Pψ) Iσ3 = 0, (139)

which, in turn, in view of the expression (130) for P, can be transformed into a more concise
form of the field equation

P2ψ −
[
κ20 +G′

(〈
ψψ̃

〉)]
ψ = 0. (140)

Hence, the field equation (140) is the master evolution equation for the wave function in
our theory based on the Lagrangian (129). The expression P2ψ in equation (140) can be
transformed into the following form showing the external EM field

P2ψ = P̊2ψ −
χe

c

[
F + 2Ă · ∂

]
ψIσ3 +

e2

c2
Ă2ψ, (141)

where F = ∂ ∧ Ă is the bivector of the electromagnetic field.
Using the commutativity (65) of the operator ←−γ 0 and the momentum operator P, one

can factorize the expression P2ψ − κ20ψ in the equation (140) yielding

(P +mc←−γ 0) (P −mc←−γ 0)ψ − χ
2G′

(〈
ψψ̃

〉)
ψ = 0. (142)

It is instructive to compare the above field equation (140) with the Dirac-Hestenes equation
(62), (63). Just by looking at the two equations, one can see two significant differences. First

of all, the field equation (140) contains a nonlinear self-interaction term G′
(〈
ψψ̃

〉)
, that
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is a concept not present in the Dirac theory. For comparison purposes it is instructive to
eliminate this nonlinear term from the field equation (140) resulting in

the truncated field equation:
(
P2 −m2c2

)
ψ = 0. (143)

Now one can see another significant difference between the truncated field equation (143)
and the Dirac-Hestenes equation (62). Indeed, the Dirac-Hestenes equation (62) is linear in
P whereas the truncated field equation (143) is quadratic in P. In spite of this difference
it is possible to establish an intimate relation between the two equations by factorizing the
truncated field equation (143). To do that we use the commutativity (65) of the operator
←−γ 0 and the momentum operator P and factorize equation (140) into the following form

(P +mc←−γ 0) (P −mc←−γ 0)ψ = 0, truncated field equation factorized. (144)

The above factorization of the truncated field equation is not unique. In fact, one can drop
the operator ←−γ 0 from it, and what is left is still a correct representation of the original field
equation (140). An important justification for the factorization (144) with the operator ←−γ 0

is as follows. For even ψ both the vectors Pψ and mc←−γ 0ψ are odd and hence each of the
equation

(P −mc←−γ 0)ψ = 0, (P +mc←−γ 0)ψ = 0 (145)

can have even solutions. On the other hand, the equations

(P −mc)ψ = 0, (P +mc)ψ = 0 (146)

can not have a nontrivial even solution since for even ψ the multivector Pψ is always odd.
Observe now that any linear combination of solutions to equations (145) is a solution to

the truncated field equations (144). Hence any solution to the Dirac-Hestenes equation (61)-
(63) solves also the truncated form (144) of the neoclassical field equation. In particular, let

us take the external potential Â to be the Coulomb potential, that is Â = Âµ
c =

(
−Ze2

|x|
, 0
)

where Z is the nucleus charge. Then solutions to the Dirac-Hestenes equation for the Coulomb
potential

~∂ψIσ3 −
e

c
Âcψ = mcψγ0, Âµ

c =

(
−
Ze2

|x|
, 0

)
, (147)

are solutions to the truncated field equation (144) and, consequently, are approximate so-
lutions to the neoclassical field equation (140) with neglected nonlinearity G. Notice that
the typical spatial scale of electron states in the Coulomb potential is the Bohr radius, and
if the size parameter a is much larger than the Bohr radius, then the nonlinearity can be
neglected, see [BF7]. Since the Dirac-Hestenes equation for the Coulomb potential (147) is
exactly equivalent to the original Dirac equation for the same potential, [Hes2-03, VII], we
can claim the that frequency spectrum of the neoclassical field equation (140) includes as an
approximation the well known frequency spectrum of the Dirac equation, [Schwabl, 8.2].

Interestingly, in [SanMar] the equation (143) (called the ”square of the Dirac equation”)
is derived by conformal differential geometry. The general setup in [SanMar] , though very
different from our neoclassical approach, has some common features including the underlying
continuum and that the QM is not a starting point but rather an approximation.
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4.1 Conservation laws

Our treatment of the charge and energy-momentum conservation is based on the Noether
theorem and consequently requires the knowledge of relevant groups of transformations which
leave the Lagrangian invariant.

4.1.1 Charge and current densities

The neoclassical Lagrangian (136) is invariant with respect to the global charge gauge trans-
formation (74) as in the case of the Dirac theory. Consequently, Noether’s current reduces
in this case to the following expression for the electric current

Jµ = πµ ∗ δ̄ψ =
∂L

∂ψ,µ

∗ δ̄ψ =
χ

m

〈
Iσ3 (Pψ)

˜
γµψIσ3ǫ

〉
= (148)

= −
χ

m

〈
(Pψ)˜ γµψ

〉
ǫ = −

χ

m

〈
γµ (Pψ) ψ̃

〉
ǫ,

where we have used expressions (137) and (74) for πµ and δ̄ψ respectively. Multiplication of
the above expression for Jµ by a suitable constant and consequent transformations yield the
following expressions for the current components

Jµ =
e

m

〈
γµ (Pψ) ψ̃

〉
=

e

m
γµ ·

〈
(Pψ) ψ̃

〉
1
= (149)

=
e

m

〈
γµ

(
χ∂ψIσ3 −

e

c
Ăψ

)
ψ̃
〉
=

e

m
γµ ·

〈(
χ∂ψIσ3 −

e

c
Ăψ

)
ψ̃
〉
1
,

implying the following concise form for the current vector

J =
e

m
γµJ

µ =
e

m

〈
(Pψ) ψ̃

〉
1
=

e

m

〈(
χ∂ψIσ3 −

e

c
Ăψ

)
ψ̃
〉
1
. (150)

Observe that our expressions (149) and (150) for the current J are exactly the same as the
current expressions (81) and (82) in the Dirac theory

Notice that any even ψ according to (57) satisfies ψψ̃ = ψ̃ψ = ̺eβI. Consequently, for
any vector Ă we have

〈
ψ̃γµĂψ

〉
=

〈
γµĂψψ̃

〉
=

〈(
γµ · Ă+ γµ ∧ Ă

)
ρeβI

〉
= (151)

=
〈
γµ · ĂρeβI

〉
= Ăµ

〈
ρeβI

〉
= Ăµ

〈
ψ̃ψ

〉
.

Using the above identity we can transform the current components Jµ in (149) as follows:
〈
γµ (Pψ) ψ̃

〉
=

〈
γµ

(
χ∂ψIσ3 −

e

c
Ăψ

)
ψ̃
〉
= χ

〈
γµγν∂νψIσ3ψ̃

〉
−
〈e
c
Ăµψψ̃

〉
= (152)

=
χ

2

〈
(γµγν + γνγµ) ∂νψIσ3ψ̃

〉
+
χ

2

〈
(γµγν − γνγµ) ∂νψIσ3ψ̃

〉
−

〈
ψ̃
e

c
Ăµψ

〉
=

=
χ

2

〈
2gµν∂νψIσ3ψ̃

〉
+ χ

〈
(γµ ∧ γν) ∂νψIσ3ψ̃

〉
−

〈e
c
Ăµψψ̃

〉
=

=
〈
(Pµψ) ψ̃

〉
+ χ

〈
(γµ ∧ γν) ∂νψIσ3ψ̃

〉
,

yielding

Jµ =
e

m

〈
(Pµψ) ψ̃

〉
+
χe

m

〈
[γµ, γν ] ∂νψIσ3ψ̃

〉
, where Pµψ = χ∂µψIσ3 −

e

c
Ăµψ, (153)
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where we used the commutator product [γµ, γν ] notation. Observe that the current expression
(153) is exactly the same as the Gordon current decomposition (84) for the current in the
Dirac theory if we substitute ~ with χ, namely

Jµ = Jµ
c + Jµ

s , Jµ
c =

e

m

〈
(Pµψ) ψ̃

〉
, Jµ

s =
χe

m

〈
[γµ, γν ] ∂νψIσ3ψ̃

〉
, (154)

where Jµ
c and Jµ

s are respectively the convection and magnetization (spin) currents. Conse-
quently, just as in the case of the Dirac theory as indicated by conservation laws (91), (92),
these currents are conserved individually

∂µJ
µ
c = 0, ∂ · Js = 0. (155)

Notice that the representation (85)-(87) for the magnetization/spin current in the Dirac
theory holds in the neoclassical case as well, namely

Js = Jµ
s γµ = c∂ ·M, Jµ

s = cγµ · (∂ ·M) = cγµ · (γν · ∂νM) = (156)

= c (γµ ∧ γν) · ∂νM =
~e

m

〈
(γµ ∧ γν) ∂νψIσ3ψ̃

〉
.

Observe also that the magnetization bivector M defined in (181) can be related to the spin
angular momentum bivector S as follows, [Hes-75, 4], [Hes-96, 2, 3], [Hes2-03, VII.C]

S =
~

2
RIσ3R̃ =

~

2
Rγ2γ1R̃, ψ = ̺

1
2 e

Iβ
2 R = R̺

1
2 e

Iβ
2 , (157)

M =
~e

2mc
ψIσ3ψ̃ =

~e

2mc
ψγ2γ1ψ̃ =

e

mc
eIβ̺S. (158)

4.1.2 Gauge invariant energy-momentum tensor

In the case of the neoclassical Lagrangian (136), the general expression for the canonical
EnMT T̊ µν with the help of (137) reduces to

T̊ µν = πµ ∗ ∂νψ − δµνL, where πµ =
∂L

∂ψ,µ

=
χ

m
Iσ3 (Pψ)

˜
γµ, (159)

implying

T̊ µν =
χ

m

〈
γµ∂νψIσ3 (Pψ)

˜
〉
− δµνL, where Pψ = χ∂ψIσ3 −

e

c
Ăψ. (160)

The corresponding conservation law takes then the form

∂µT̊
µν = −∂νL, where ∂νL =

∂L

∂xν
. (161)

Since the explicit dependence on xν in L comes only through the EM potential Ă, we find
that

∂νL = ∂ν
1

2m

〈
(Pψ) (Pψ)˜

〉
=

1

m

〈
[∂ν (Pψ)] (Pψ)˜

〉
= (162)

= −
1

m

e

c

〈(
∂νĂ

)
ψ (Pψ)˜

〉
= −

1

m

e

c

(
∂νĂµ

)〈
γµψ (Pψ)˜

〉
=

= −
1

c

e

m

(
∂νĂµ

)〈
γµ (Pψ) ψ̃

〉
= −

1

c

(
∂νĂµ

)
Jµ.
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The canonical EnMT T̊ µν defined by (160) is evidently not gauge invariant. To modify it
into a gauge invariant form, we use the expression (149) for the current components Jµ and
transform EnMT T̊ µν as follows:

T̊ µν + δµνL =
χ

m

〈
γµ∂νψIσ3 (Pψ)

˜
〉
=

1

m

〈
γµχ∂νψIσ3 (Pψ)

˜
〉
= (163)

=
1

m

〈
γµ (Pνψ) (Pψ)˜

〉
+

1

m

〈
γµ
e

c
Ăνψ (Pψ)˜

〉
=

=
1

m

〈
γµ (Pνψ) (Pψ)˜

〉
+

1

c
Ăν e

m

〈
γµ (Pψ) ψ̃

〉
=

=
1

m

〈
γµ (Pνψ) (Pψ)˜

〉
+

1

c
ĂνJµ.

The above equality suggests to introduce the following expression for a gauge invariant EnMT
T µν :

T µν = T̊ µν −
1

c
ĂνJµ =

1

m

〈
γµ (Pνψ) (Pψ)˜

〉
− δµνL. (164)

Indeed, using the conservation law ∂µJ
µ = 0 and the canonical EnMT T̊ µν conservation law

(161), we obtain

∂µT
µν = ∂µT̊

µν −
1

c

(
∂µĂ

ν
)
Jµ = −∂νL−

1

c

(
∂µĂ

ν
)
Jµ = (165)

=
1

c

(
∂νĂµ

)
Jµ −

1

c

(
∂µĂν

)
Jµ =

1

c
F νµJµ,

where 1
c
F νµJµ is the Lorentz force.

5 Neoclassical free charge with spin

In this section we carry out a rather detailed analysis of the basic case of the free charge
when Ă = 0. The charge Lagrangian (129) in the case of the free charge takes the form

L =
χ2

2m

{〈
γβγα (∂αψ)

(
∂βψ̃

)〉
−
[
κ20

〈
ψψ̃

〉
+G

(〈
ψψ̃

〉)]}
, κ0 =

mc

χ
. (166)

The field equation (140) when Ă = 0 after straightforward transformations turns into free
charge spinor field equation

− χ2∂µ∂
µψ −

[
κ20 +G′

(〈
ψψ̃

〉)]
ψ = 0. (167)

The above equation is similar to a scalar nonlinear Klein-Gordon (NKG) equation that arises
in our neoclassical scalar theory, [BF8], namely

−
1

c2
∂2t ψ +∇2ψ − κ20ψ −G

′
(
|ψ|2

)
ψ = 0, (168)

where ψ is complex-valued. The scalar equation (168) and its solutions are relevant to the
analysis of the spinor field equation (167) and its basic properties are considered in the
following section.
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5.1 Scalar equation

Equation (168) is the Euler-Lagrange equation associated with the Lagrangian

L =
χ2

2m

{
∂µψ

∗∂µψ −
[
κ20ψ

∗ψ +G (ψ∗ψ)
]}
, (169)

where the nonlinearity G = Ga is defined be equation (1) for s ≥ 0. The fundamental rest
solution to the scalar NKG equation (168) is of the form, [BF8]

ψ± (t,x) = e∓iω0tů (|x|) , where ω0 =
mc2

χ
= κ0c, (170)

ů (s) = ůa (s) = a−3/2π−3/4 exp

(
−
s2

2a2

)
, s ≥ 0, (171)

where ů (|x|) satisfies the equation

∇2ů (|x|)−G′
(
ů2 (|x|)

)
ů (|x|) = 0. (172)

Observe that the solution ψ± is the product of a time-harmonic factor e∓iω0t and the Gaussian
factor ů (|x|) describing the localized shape of the wave. An STA representation of the above
solution which is manifestly coordinate free is as follows:

ψ (x) = ψ∓ (v, x) = e∓iκ0x·vů

(√
(x · v)2 − x2

)
, κ0 =

ω0

c
, (173)

where v is proper velocity of the free electron, and one can think of v as describing the rest
frame of the electron.

It is instructive to find a representation of the solution ψ (v, x) in (173) in the frame
of an arbitrary inertial observer γ0 by relating it to the inertial observer v = γ′0. Such
a representation can be effectively obtained by introducing a subspace of the vector space
Span {v, γ0} and the corresponding orthogonal decomposition as in [PauRT, p. 10], [Hes-74,
1]

x = x‖ + x⊥, where x‖ ∈ Span {v, γ0} and x⊥ is orthogonal to Span {v, γ0} . (174)

We will need also the corresponding relative velocity v which is defined by

v

c
=
v ∧ γ0
v · γ0

, v = γ
(
1 +

v

c

)
γ0 = γγ0

(
1−

v

c

)
, (175)

where γ = v · γ0 =

(
1−

v2

c2

)−1/2

is the Lorentz factor.

Then we obtain the following identities:

x · v = γ
[
x0 − x‖ ·

v

c

]
where x‖ = x‖ ∧ γ0, (176)

√
(x · v)2 − x2 =

∣∣∣γ
(
x‖ − x0

v

c

)
+ x⊥

∣∣∣ , where x⊥ = x⊥ ∧ γ0. (177)

Observe that the right-hand sides correspond to standard Lorentz boost transformations for
respectively time and space components of the vector x, [PauRT, p. 10].

24



Consequently, we get the following representation of the scalar solution (173) in the frame
of an arbitrary observer γ0:

ψ (x) = exp
{
∓iκ0γ

[
x0 − x‖ ·

v

c

]}
ů
(∣∣∣γ

(
x‖ − x0

v

c

)
+ x⊥

∣∣∣
)
. (178)

The charge and current densities in the scalar case are given by the expressions

ρ = −
χq

mc2
Im

∂tψ

ψ
|ψ|2 , J =

χq

m
Im
∇ψ

ψ
|ψ|2 , (179)

implying for the solutions ψ± in (170) the following representation for the total conserved
charge

q± =

∫

R3

ρ± (t,x) dx = ±
χqω0

mc2
= ±q. (180)

The conserved energy E and momentum p densities are

E =
χ2

2m

[
1

c2
∂̃tψ∂̃

∗
t ψ

∗ + ∇̃ψ∇̃
∗
ψ∗ +G (ψ∗ψ) + κ20ψψ

∗

]
, (181)

p =
(
p1, p2, p3

)
= −

χ2

2mc2

(
∂̃tψ∇̃

∗
ψ∗ + ∂̃∗t ψ

∗∇̃ψ
)
. (182)

In particular, the expression (181) for the energy density E implies the following representa-
tion for the total conserved energy E± for the wave function ψ± defined by (173)

E± = χω0

(
1 +

a2C
2a2

)
> 0. (183)

A very detailed theory of the scalar Klein-Gordon equation including the Lagrangian treat-
ment can be found in [GreRQM, 1.5], [Wach, 1.1, p. 20]. In particular one can find there
studies of EnMT T µν showing that the energy of solutions for both the positive and negative
frequencies is always positive.

5.2 Solutions to the spinor field equation

We seek a solution to the free charge spinor equation (167) which is expected to incorporate
the features of the scalar solution as in (173) and the plane-wave solution (105) to the Dirac
equation. We find that such a spinor solution does exist and is of the form ψ (x) = ψ∓ (v, x)

ψ∓ (v, x) = ψ0e
∓Iσ3κ0x·vů

(√
(x · v)2 − x2

)
, κ0 =

ω0

c
, (184)

where the Gaussian factor ů is defined by (171) and ψ0 is a normalized constant spinor from
the even subalgebra Cl+ (1, 3) satisfying the canonical representation (111) and the following
special conditions 〈

ψ0ψ̃0

〉
= 1 or

〈
ψ0ψ̃0

〉
= −1, (185)

that is β0 = 0 or β0 = π. One can readily see a distinct feature of the spinor solution (184)
compared to the plane-wave solution (105) to the Dirac equation. It is the amplitude factor
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ů

(√
(x · v)2 − x2

)
which can be attributed to the nonlinearity G

(〈
ψψ̃

〉)
in the spinor

equation (167). The origin of the special constraints (185) can be traced to the particular

way ψ enters the nonlinearity, namely as G
(〈
ψψ̃

〉)
. For ψ of the form (184) to be a

solution to the free charge spinor equation (167), there has to be an effective reduction to
the scalar equation (168) with the nonlinearity G′ (̊u2). The constraint (185) is essential for
such a reduction. Indeed, if the spinor wave function ψ is defined by (184) and satisfies the
condition (185) then

〈
ψψ̃

〉
=

〈
ψ0ψ̃0

〉
ů2 implying G′

(〈
ψψ̃

〉)
= G′

(
±ů2

)
= G′

(
ů2
)
. (186)

When establishing identities (186) we used the identity (135) and that G′ (s) defined by (131)
is an even function. The identities (186) allow to reduce the spinor equation (167) to the
scalar equation (168).

5.3 Charge and current densities

Let us consider the solution ψ∓ (x) as in (184) with v = γ0, that is

ψ∓ (x) = ψ∓ (γ0, x) = ψ0e
∓Iσ3κ0x0u (x) , where (187)

x0 = x · γ0, u (x) = ů
(
(x · γ0)

2 − x2
)
,

where the Gaussian factor ů is defined by (171) and ψ0 satisfies the condition (185), that is〈
ψ0ψ̃0

〉
= ±1. Then the current component Jµ defined by (149) for the free charge with

Ă = 0 takes the following form:

Jµ =
q

m

〈
γµχ∂ψIσ3ψ̃

〉
=

q

m

〈
γµχ∂ψIσ3ψ̃

〉
. (188)

Since for the rest solution ψ∓ defined by (187) ∂0u = 0, the following relations hold:

∂0ψ∓ = ψ0 (∓Iσ3κ0) e
∓Iσ3κ0x0u = ψ0e

∓Iσ3κ0x0 (∓Iσ3κ0) u = ψ∓ (∓Iσ3κ0)u, (189)

∂jψ∓ = ψ0e
∓Iσ3κ0x0∂ju = ψ∓∂j ln u,

∂ψ∓ = γµ∂µψ0e
∓Iσ3κ0x0u =

[
γ0ψ0 (∓Iσ3κ0)u+

∑

1≤j≤3

γjψ0∂ju

]
e∓Iσ3κ0x0. (190)

Notice that in view of the identity (135) we have

ψ̃∓ = e±Iσ3κ0x0ψ̃0u (x) . (191)

The above relation combined with the equality (190) yields
〈
γ0∂ψ∓Iσ3ψ̃∓

〉
=

〈
ψ0 (∓Iσ3κ0) e

∓Iσ3κ0x0uIσ3e
±Iσ3κ0x0ψ̃0u

〉
+ (192)

+
∑

1≤j≤3

u∂ju
〈
γ0γjψ0Iσ3ψ̃0

〉

= ±u2κ0

〈
ψ0ψ̃0

〉
+

1

2

∑

1≤j≤3

(
∂ju

2
) 〈
γ0γjψ0Iσ3ψ̃0

〉
.
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Hence, based on (190) and the above equality, we obtain

J0
∓ = cρ∓ =

χq

m

〈
γ0

(
∂ψ∓

)
Iσ3ψ̃∓

〉
= (193)

=
χq

m

[
±u2κ0

〈
ψ0ψ̃0

〉
+

∑

1≤j≤3

1

2

(
∂ju

2
) 〈
γ0γjψ0Iσ3ψ̃0

〉]
,

implying the following expressions for the total charge

q∓ =

∫
ρ∓ dx = ±

χκ0

mc
q
〈
ψ0ψ̃0

〉
= ±q

〈
ψ0ψ̃0

〉
. (194)

Observe that the different signs ± of the charge q∓ above can be traced to the different signs
of the frequencies in expressions (187) for ψ∓ (x).

5.4 Energy-momentum density

Let us find the energy-momentum density for the solutions of the spinorial field equations
ψ∓ (x) defined by (187). To facilitate efficient computation, we use the following identities.
Suppose pα, cα and ϕ are multivectors satisfying

pα = ϕcα, cαcβ = cβcα, c̃α = cα. (195)

Then
pαp̃β = pβ p̃α = ϕcαcβϕ̃. (196)

Observe now that if we consider the derivatives ∂αψ∓ defined by (189) and set

pα = ∂αψ∓, c0 = ∓Iσ3κ0u, cj = ∂j ln u, ϕ = ψ∓, (197)

then the relations (196) are satisfied, that is

(
∂αψ∓

) (
∂βψ̃∓

)
=

(
∂βψ∓

) (
∂αψ̃∓

)
. (198)

Notice that the following relations hold for the solutions ψ∓ defined by (187)
〈
ψ∓ψ̃∓

〉
=

〈
ψ0ψ̃0

〉
u2, (199)

∂0ψ∓ = ∓ψ0Iσ3κ0e
∓Iσ3κ0x0u, ∂0ψ̃∓ = ±uIσ3κ0e

±Iσ3κ0x0ψ̃0, (200)
(
∂0ψ∓

) (
∂0ψ̃∓

)
= −u2ψ0Iσ3κ0e

∓Iσ3κ0x0Iσ3κ0e
±Iσ3κ0x0ψ̃0 = u2κ20ψ0ψ̃0, (201)

∂jψ∓ = ψ0e
∓Iσ3κ0x0∂ju, ∂jψ̃∓ = e±Iσ3κ0x0ψ̃0∂ju, (202)

(
∂jψ∓

) (
∂jψ̃∓

)
= ψ0ψ̃0 (∂ju)

2
. (203)

Using then the expression (166) for the Lagrangian L and the identities (198), we find its
value on the filed fields ψ∓ to be

L =
χ2

2m

{〈
γβγα

(
∂αψ∓

) (
∂βψ̃∓

)〉
−
[
κ20

〈
ψ∓ψ̃∓

〉
+G

(〈
ψ∓ψ̃∓

〉)]}
= (204)

=
χ2

2m

{〈(
∂αψ∓

) (
∂αψ̃∓

)〉
−
[
κ20

〈
ψ∓ψ̃∓

〉
+G

(〈
ψ∓ψ̃∓

〉)]}
.
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The canonical EnMT T̊ µν defined by (160) takes the following form for the free charge with
Ă = 0

T̊ µν =
χ

m

〈
γµ∂νψIσ3 (χ∂ψIσ3)

˜
〉
− δµνL =

χ2

m

〈
γµ∂νψ (∂ψ)˜

〉
− δµνL = (205)

=
χ2

m

〈
γµ∂νψ∂αψ̃γ

α
〉
− δµνL =

χ2

m

〈
γαγµ∂νψ∂αψ̃

〉
− δµνL,

where we used the identity (135). The above formula yields the following representation for
the energy density E

E = T̊ 00 =
χ2

m

〈
γαγ0∂0ψ∂αψ̃

〉
− L. (206)

In particular, for ψ = ψ∓, we use (206) and (204) to obtain

E∓ =
χ2

m

〈
γαγ0∂0ψ∓∂αψ̃∓

〉
− L = (207)

=
χ2

m

〈
γαγ0∂0ψ∓∂αψ̃∓

〉
−

χ2

2m

〈(
∂αψ∓

) (
∂αψ̃∓

)〉
+
χ2

2m

[
κ20

〈
ψ∓ψ̃∓

〉
+G

(〈
ψ∓ψ̃∓

〉)]
.

The expression above can be transformed into

E∓ =
χ2

2m

{〈(
∂0ψ∓

) (
∂0ψ̃∓

)〉
+

∑

1≤j≤3

〈(
∂jψ∓

) (
∂jψ̃∓

)〉
+
[
κ20

〈
ψψ̃

〉
+G

(〈
ψψ̃

〉)]}
−

(208)

−
∑

1≤j≤3

χ2

m

〈
γjγ0∂0ψ∓∂jψ̃∓

〉
.

Using the identities (199)-(203) we transform the above representation further into

E∓ =
χ2

〈
ψ0ψ̃0

〉

2m

[
2u2κ20 +

∑

1≤j≤3

(∂ju)
2 +G

(
u2
)
]
±
χ2

2m
κ0

∑

1≤j≤3

〈
γjγ0ψ0Iσ3ψ̃0

〉
∂ju

2. (209)

Then, using the above formula and relations (172), (132), we obtain the following represen-
tation for the total energy E∓ of the free charge solutions ψ∓:

E∓ =

∫
E∓ dx =

χ2
〈
ψ0ψ̃0

〉

2m

∫ [
2u2κ20 −

∑

1≤j≤3

(
∂2ju

)
u+G

(
u2
)
]
dx = (210)

=
χ2

〈
ψ0ψ̃0

〉

2m

∫ [
2u2κ20 −G

′
(
u2
)
u2 +G

(
u2
)]

dx =

=
χ2

〈
ψ0ψ̃0

〉

2m

∫ (
2κ20 +

1

a2

)
u2 dx =

χ2
〈
ψ0ψ̃0

〉

2m

(
2κ20 +

1

a2

)
=

=
〈
ψ0ψ̃0

〉
χω0

(
1 +

c2

2ω2
0a

2

)
=

〈
ψ0ψ̃0

〉
χω0

(
1 +

a2C
2a2

)
, aC = κ−1

0 =
χ

mc
.

Observe now that if we want the energy E± defined by (210) to be positive, and we do, then
according to the canonical spinor representation (111) for ψ0 and constraints (185) we require
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〈
ψ0ψ̃0

〉
= cos β0 = 1, that is β0 = 0. This requirement in view of (111) is equivalent to the

following constraint for free charge solutions

ψ0ψ̃0 = 1, that is ψ0 is the Lorentz rotor. (211)

Consequently, under the above constraint the formula (210) turns into

E∓ = χω0

(
1 +

a2C
2a2

)
, aC = κ−1

0 =
χ

mc
. (212)

Let us take a closer look at the origin of the factor
〈
ψ0ψ̃0

〉
in expressions (210) and (194)

for E∓ and q∓. The similar dependence on this factor of evidently spinorial nature occurs
in the quadratic part of the charge Lagrangian L (without the nonlinear term G) defined by
(129). Observe that multiplication of the Lagrangian by any constant positive or negative
does not change the Euler-Lagrange equation but it does alter the energy and the charge
densities defined canonically by the Lagrangian. To summarize, the presence of the factor〈
ψ0ψ̃0

〉
, which can be positive or negative altering the sign of the Lagrangian, the energy

and the charge, is special to the spinorial wave functions since for complex-valued ones the
similar factor ψ0ψ

∗
0 is always positive.

6 Neoclassical solutions interpretation and comparison

with the Dirac theory

As to general aspects of the interpretation of the wave function and observables in the STA
settings we rely mostly on works of D. Hestenes, see [Hes-75, 4], [Hes-96, 2], [Hes2-03, VII.D]
and references therein. The key of those aspects are as follows. First of all, based on the
general canonical representation (57) for the wave function ψ = ψ (x), we assign at each
spacetime point x the local rotor R = R(x). This rotor determines the Lorentz rotation of a
given fixed frame of vectors {γµ} into the local rest frame of vectors {eµ = eµ(x)} given by

eµ = eµ(x) = RγµR̃, R = R(x). (213)

Importantly, in view of the canonical representation (57) we have

ψγµψ̃ = ̺RγµR̃ = ̺eµ. (214)

The interpretation of the above fields in the Dirac theory is as follows. The vector field

ψγ0ψ̃ = ̺e0 = ̺v (215)

is the Dirac current (probability current in the standard Born interpretation) that determines
the local rest frame v. The local spin vector density is defined by

s =
1

2
~ψγ3ψ̃ =

1

2
~̺e3. (216)

The spin angular momentum S = S(x) (proper spin) is a bivector field related to the spin
vector field s = s(x) by, [Hes-75, 4], [Hes-96, 2]

S =
1

2
~e2e1 =

1

2
~RIσ3R̃ =

1

2
~Rγ2γ1R̃ =

1

2
~RIσ3R̃ = Ise0 = I (s ∧ e0) . (217)
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Notice that according to (157), (158) that the proper spin density is ̺S and themagnetization
or magnetic moment density M of the charge is defined by the following expression,

M =
~e

2mc
ψγ2γ1ψ̃ = eIβ

q

mc
̺S. (218)

Let us turn now to our neoclassical free charge solutions (187) satisfying energy positivity
constraint (211), that is

ψ∓ (x) = ψ0e
∓Iσ3κ0x0u (x) , where u (x) = ů

(
(x · γ0)

2 − x2
)
, ψ0ψ̃0 = 1, (219)

ů (s) = a−3/2π−3/4 exp

(
−
s2

2a2

)
, s ≥ 0, (220)

where the time-like vector unit vector γ0 describes the constant rest frame v = γ0 of charge
for every x. Then formulas (194) and (212) yield the following ultimate expressions for the
total charge q∓ and the total energy E∓ of the solutions ψ∓

q∓ =

∫
ρ∓ dx = ±q, for the total charge, (221)

E∓ =

∫
E∓ dx = χω0

(
1 +

a2C
2a2

)
, for the total energy, (222)

where

κ0 =
mc

χ
, ω0 = κ0c =

mc2

χ
, aC = κ−1

0 =
χ

mc
, (223)

and χ is a constant approximately equal to the Planck constant ~. Notice that subindices ∓
in q∓ and E∓ are picked so that if the charge is electron then its index is ”−” to match the
sign of the charge.

Observe that formula (221) demands the total charges q∓ associated with the wave func-
tions ψ− and ψ+ to have opposite signs. Following to the established tradition we call them
charge and anticharge (for instance, electron and positron). To see ”spinning” of the local
rest frame as a defining basis for charge and anticharge as two different states of the same
single charge we introduce the following representation of ψ∓ (x) based on (219) and (211)

ψ∓ (x) = R∓ (x) u (x) , where R∓ = ψ0e
∓Iσ3κ0x0 , ψ0ψ̃0 = 1 R∓R̃∓ = 1. (224)

Then following to D. Hestenes, [Hes-81, 6, 9] and using the above representation we obtain
a formula involving the rotational velocities Ω∓:

dψ∓

dt
=

cdψ∓

dx0
= c

1

2
Ω∓ψ∓, Ω∓ = ∓2κ0cR∓ (Iσ3) R̃∓. (225)

In other words, the local rest frame rotates ”about the spin axis” s = R∓ (γ3) R̃∓ with the
angular speed |Ω∓| = 2κ0c = 2ω0 equal to twice the frequency ω0 corresponding the rest
energy mc2 = χω0. Observe that according to relations (225) the charge and ”anticharge”
(for instance, electron and positron) wave functions ψ− and ψ+ differ only by ascribing
opposite sense to the rotation described by the factor e∓Iσ3κ0x0 in (224).

Let consider now the magnetization M and the proper spin ̺S bivector densities defined
by (217),(218) for the neoclassical free charge solutions ψ∓ described by formulas (219) and
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(224). Notice that for the free charge at rest we have ̺ = u2 (x) and the following relation
holds for the magnetization and proper spin densities

M∓ =
~e

2mc
ψ∓γ2γ1ψ̃∓ =

q

mc
u2 (x)S∓, where S∓ =

1

2
~ψ0Iσ3ψ̃0, (226)

where we took into account that β = 0 since ψ0ψ̃0 = 1. Observe also that the above formula
shows that the both states ψ∓ have the same and constant M∓ and S∓. Integrating then the
magnetization density of the free charge at rest M∓ in (226) we obtain the total generalized
magnetic momentum bivector

M∓ =

∫

R3

M∓ dx =
q

mc
S∓. (227)

For general issues of the STA treatment of localized charge distributions and the proper
momentum bivector M see [Hes2-74, 1].

Let us compare now the neoclassical free charge solutions (219) with the Dirac free charge
solutions (104). First of all, the spinorial aspect of the proposed here neoclassical theory is
identical to that in the Dirac theory since in the both cases the wave function ψ takes
values in the even algebra Cl+ (1, 3). The governing field equation for the neoclassical spinor
field is (167) and the Dirac spinor field satisfies the Dirac equation (61). Structurally the
neoclassical field equation (167) can be viewed as a spinorial version of the Klein-Gordon
equation with added nonlinearity and consequently it is related to the Dirac equation. In
particular, solutions to the Dirac equations are also solutions to our field equations if the
nonlinearity there is neglected. But when it comes to the structure of solutions the first
significant difference of the neoclassical free charge solution (219) compare to the Dirac free
charge plane wave solution is the Gaussian factor u (x). In other words, the neoclassical free
charge solution is a localized soliton-like wave whereas the Dirac free charge solution is a
plane wave.

In what follows we compare other features of the neoclassical free charge wave function
and the Dirac free charge plane wave function.

6.1 The gyromagnetic ratio and currents

Recall that the gyromagnetic ratio g is defined as a coefficient that relates the magnetic
dipole moment m and the angular momentum L for a system of localized currents, namely

m =
gq

2mc
L. (228)

Comparing the above relation (228) with (227) we conclude that in our theory the gyromag-
netic ratio g = 2 just as in the Dirac theory. The expressions (154)-(158) for the current and
its Gordon decomposition which includes the magnetization (spin) current in the neoclassical
are identical to the same in the Dirac theory (84)-(87). This identity of the above mentioned
currents is very important since they were extensively analyzed and thoroughly tested exper-
imentally. The value of the gyromagnetic ratio g = 2 in our theory is in fact not so surprising
since the minimal coupling as in (130) implies that g = 2, [ItzZub, 2-2-3]. Interestingly, there
is an example of a classical particle with the gyromagnetic ratio g = 2, [Hes2-03, V].
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6.2 The energies and frequencies

The issue of negative energies in the Dirac theory constitutes a well known serious problem
discussed extensively in the literature, see for instance [GreRQM, 12], [ItzZub, 2.4.2], [Wach,
2.1.6] and references therein. One of the proposed ways to deal with it is to reinterpret
an electron state of negative energy/frequency as a positron state of positive energy/frequency
using the charge conjugation transformation (125). This operation in the conventional setting
involves complex conjugation of the Dirac wave function and reverses the sign of the charge,
its frequency, energy, momentum, and spin, [HalMar, 5.4], [Wach, 2.1.6, p. 109]. Effectively,
the charge conjugation operation changes the sign of the frequency of the wave function which
satisfies then a complex conjugate version of the original Dirac equation with the opposite
sign of the charge there.

In quantum mechanics and in the Dirac theory in particular, the energy is identified with
the frequency via the Planck-Einstein relation E = ~ω. In contrast, in our neoclassical theory
the energy and the frequency are two distinct though closely related concepts, see [BF7]. The
relation between them in the relativistic case by no means is as explicit as the Planck-Einstein
relation E = ~ω. Importantly, in our theory the frequencies may be positive or negative when
the energy is positive. The positivity of the energies of the free charge in our theory was
obtained by simply limiting the values of the spinor constant ψ0 for the free charge solutions
ψ∓ in (219) to be a Lorentz rotor, that is to satisfy the energy positivity constraint (211), i.e.

ψ0ψ̃0 = 1. Consequenty, in our theory a positron state differs from the quantum mechanical
positron state and, importantly, it is not obtained by applying the charge conjugation (125)
to an electron state. Also there were no changes of frequencies or any transformation of
the evolution equation. If the energy positivity constraint (211) is satisfied, then according
to (222) the energies E∓ of the free charge at rest satisfy approximately E∓ ≈ ~ |ω0|, and
they stay positive whereas the corresponding frequencies ∓κ0c = ∓ω0 of the solutions ψ∓

in (219) can be positive or negative. The above analysis indicates a significant difference in
the treatment of negative energies in our theory compare to the Dirac theory or the QM.
One may notice though that we analyzed this far only energies of free charges. We expect
the treatment of a charge in external field to be more complex, but this study is left for the
future work.

6.3 Antimatter states

Similarly to the Dirac theory our theory naturally integrates into it the concept of an an-
tiparticle. According to (224) there are two directions of ”spinning” in the rest frame and
that naturally leads to the concepts of charge and anticharge with the frequencies of the
opposite signs. Note that since the value of a charge is preserved even in external EM field
the charge can not turn into the anti-charge as a result of electromagnetic interactions. All
the properties of the charge and anticharge are exactly the same except for the difference in
sign. We would like stress once again a noticebale difference between the antimatter states
in our theory and the same in the Dirac theory. In our theory the matter and antimatter

states correspond to
〈
ψ0ψ̃0

〉
= 1, whereas in the Dirac theory the usual way to intro-

duce the antimatter state (positron) is by applying charge conjugation (125) that requires〈
ψ0ψ̃0

〉
=

〈
eβ0I

〉
= cos β0 = −1 as in (111), (123). Consequently, in order to introduce

the antimatter state in the Dirac theory one has to invoke the parameter β of the canonical
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spinor representation (58), but the interpretation of the parameter β has known difficulties,
[Hes-96, 3], [Hes2-03, VII.D, G].
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