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Abstract

A method previously developed for constructing field theories
of solitons is exﬁended to‘nonFAbelian vortex models in (2+41)
dimensions and to both,Abelién and non-Abelian models in (3+1)
dimensions. In‘&2+l) dimensions, a local field theéry |
is obtained, and in (3#1) dimensions, string‘theories with local
interaction émerge. Variousvfeé;ures of these models are inves-

tigated.
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~I. Introduction

In a previous.paper,(l).refefred.tb_as (l), a ﬁethod_for constructing:.
local field theéries forvsolitoné was de?eloped and applied to the Abelian
Higgs model in (2+1) dimenSibnsfahdﬁto the_Geérgi-Glasth model in (3+1) )
.dimensions. The present paper is a continuation and extension ofv(l) in - '
two different directioné: - | | |

a) In (2+1) dimensions, a local soliton Lagrangian is constructed
for a class of non-Abelian gauge theories, knowh to have classical soliton

(2)

solu£ions; . These models have a sufficient number of Higgs scalars
belonging_to the adjoint representation, so.that.after spoﬁtaneéus symmetry
breaking, all.vector mesons acquire‘finite masses. There has beeﬁ some
interest recently in the soliton solutions of'theseimodels, especially in
connection with their tfansfbrmation prOperties under the center Z(N) of
the gauge group SU(N) and their role in charge confinement.(3) Sections 2
~and 3 are devoted to the consfruction of the soliton Lagrangian and to the
discussion of some of its features. |

b) In section L, both the Abelian Higgs model of (1) and the nbn-
Abelian Higgs model of section 2 are extended to (3+l)»dimén$ions, and
the solitons of one lower dimension afe shown to turn into closed strings.

(2)

Although this result has been known for some timé, ~even in the Abelian
caéé the string interaction ié not the standard.one,«aﬁd in the non;’
Abelian case, the string possesséé additional interhal quantum numbers
as well. We.aiso point out the well known.probléms(h) of tgchyénic mass
aﬁd unphysical diménsion associated with string theories, and offer‘some

speculative remedies.
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(5-7)

Recently; a series pf papers have appeared, dealing with the
soliton contént of Qarious gauge thebries, and we would like to compare
6ur approach to the same problem with theirs. These papers.all tréat
field theories‘on a lattice,,and they use standard duality transfor—
maﬁions(s) of statistical meéhﬁnics to transform the original action into
a "dual" soliton action. Topological considerations do rot seem to play
a direct role, since it isbdifficult ﬁo do topology on a lattice. In
coﬁtrast, from the beginning, we work in the.continuum;limit and single
out fields on non-trivial topological configuration. ‘Also, our treat-
ment is exact at each stage, and therevis_no need for ény approximation
such as the Villain _trick.(8) Our method is also able to handle models

based on non-Abelian gauge groups, such as the Georgi-Glashow model dis-

cussed in reference (1), whereas in the lattice approach, only abelian

models‘have béen considered so far. However, the Abelian ahalogue of

the Georgi-Glashow model, compact Q.E.D. on a lattice, has a structure

(9) On the other hand, to our best

very similar to the non-Abelian model.
knowledge, the lattice version of the non-Abelian Higgs model treated in

this paper has not yet been investigated.



4

in (2+1) Dimensions:

Topology of Higgs Fields

II. Solitons in Non-Abelian Higgs Model

For the ease of exposition, a model based on the gauge group SU(2)

will be treated
be given at: the

a
gauge boson.Au,
a =1,2,3 and u

that the #acuum

first, and thé generaiization to an arbitrary gfoup wiil
end of the section. The model is built éut of aﬁ éU(2).
and two Higgs scalar isoﬁriplets ¢a and wd, where

runs from 0 fo 2. ’The.Higgs potential is so adjusted

expectation values of ¢%, v® and their vector product

form a non-degenerate coordinate system in the SU(2) space, and all the

vector mesons acquire non-vanishing masses. The Lagrangian density is

given by
1 o 42 1 a2
L = - + = +.
T (guv) > (Du¢ )
where,
_ 2 ,.2.2 1 .2
vie,p) = Ay (e7-hp) + g A
1.2 a.a 2
*3 A3 (¢ ¢ -h3) ,
and .
Q% = g A% = 5 A% + e BY pBpY
uv VIR VIRTE UV
D ¢% = 3 ¢% + e ®BY aByY,
u® u? ¢ u?

(

'w2—h

2

27

o2
(Duw )T = v(

)

o>¥) o (2.1)
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The ihdicesu;v;x refer to space, and a,8,y to isospin [SU(2)]. It is

also convenient to express the field variables in matrix notation:

. 1 oa.a ; 1l a,
¢ = ) o T ’ A‘J : - 2 T Aua
6 = L0 - A —pA -ie (A ,A)
@ “uv 2 v TRV vV u o ’ ’
D ¢ = Zie (A | 2 2.2)

where 1* are the Pauli matrices. In this notation;jthe gauge trans-

formations that leave (2.1) invariant are given by
o » Se57T, p > sys™H

-1 i -1
A ~B8AST --=(38)8 2.
T SA) - (3,8) K | . (2.3)

where S is a unitary two by two matrix. The standard generating functional

is
25) = DA [Ds [Dy  (88)
., et fak [£(0) ¢ 30 oD . 2
where J is thé source coupled to some field or combination of fields

denoted by C, and (8A) is a suitable gauge fixing term with its proper

measure.
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We are intofested iﬁ the contribution to the functional intégral ffom-_
unusual topological configurations of the fields ¢a and ¢a calied kinks.
. The definition of a kinﬁ is as follows: The isovectoré ¢g and ¢*
along with their vector product, in general define a unique coordinate
systém in the SU(2) space. For the tiﬁe being, we assume that,¢.and Y
are_oevef parallel, Atleach point on a given path in space-time, one
can define a unique groﬁ? element of SU(2) by the paraile; transport of
the coordinate sjsteﬁ established by ¢nand . .if.the coordinate system
is traosported around a closed path;.arriving,at-the starting point,
the_corfeSpondiﬁg group element most be a fotation,by 2mn around some
- axis, where nlio an integer. Allteven n are toéologioally équivélent

(lO) . The case n=0 is trivial and

to the case n=0 and all odd n to. n=1.
n=1 corresponds to a kink. ‘From the foregoing-discussion,,it'1s-clear
tﬁat kinks carry a conserved multiplicative'quahtum oumber (-1), and that
kinks and antikinks are equivalent. Wﬁeﬁ this anolyéis io extended to-
SU(N), 1t turns out that there are as many distinct klnks as the number
of non-trivial elements of,Z(N); the center of the group, and that kinks
carry a correspondlng multlpllcatlve quantun number.(3)

If a closed path of non-tr1v1al topology is shrunk to a point,
veventually it must cross 31ngular p01nt(s), where a unique coordlnate
system cannot be definedt_ These points are defined to be the locations
of pointlike (oaré) solitons; The possibility of defining such point-
like objects is what makes a local field-thoery of solitoné possible.

A kink can be "straightened out” by means of a singular gauge trans-

formation,'which‘maps it into a trivial configuration of the fields

¢ and ¢.. A simple example of such a transformation is the following:
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_Ss = exp (_;_ 6 nara)' . o v v (2-5)

where Sé is defined by eq. (2.3), 8 is the polar»aﬁgle-defined by

tan(g) ='22 , and n is a vector of unit mégnitude in SU(2) space whose

1 . : .
direction is a smooth function of space coordinates. It is clear that

the singular gauge.trahsformation defined by eq. (2.5) maps an ordinary

configuration of fields ¢ and ¢ into a static kink located at the origin,

‘and vice versa. Strictly épeaking, singular gauge transformations are

not gauge transformations; they carry flux,and they do not leave the

action invariant. Defining

= i oo ._... _ _1_ : -1 . )
BU ) T B]J e (3uss) sS s ‘ . | (2.68.)
and,
_ 01l o _ :
F = 2 = aqu - BvBu - ie (Bu,Bv),

UV 2. " v

one finds, using Stokes' thedrem for a closed path around the origin,

the following result:

R, o= ot sfx), . ~ (2.6Dp)
o - . o -
FOl = F02_ 0.

In this special case;,the kink has the time independent trajectory

= 0 for all x,; however, it is easy to generalize eq. (2.6b) to

0;
an arbitrary number of trajectories of general form.'_Defining the dual

vector to F by
IRV



-8-

o _ 1 VA0 - | S
e = e | |  (2.7a)

eq. (2.6b) can be generalized to

L

o0 = BT fary ) £ L6 SR ) e

In this eéuafion, xu = ig(rz) defines~the trajectofy of the g'th kink?
the 1's afe internal variaﬁles péfdmetrizing the trajectories, iu is
the tangent to the trajectory, and nz is a unit vector that specifies
the direction of‘the flux in tﬁe su(2). space. _Thié»result is similar
to eq. (é.l2) of (1), except for the.appearance of the isovector n; and
the necessity of using the ﬁon-abeliaﬁ?definition of the field stfength
Fuv in eq. (2.6a). If the vector n of eq. (2.5)}15 constant over space,
the problem becomes Abelian, aﬁd the commutator term iﬁ thé'definifion.
of Fuv can be dropped. If n depends on poéition,.hbwever, the non-Abelian
definition of F V.is needed.b

Another important difference»betﬁeen the Abelian and non-Abelian
theories is the manner in whicﬁ Bianchi idenfiﬁies are satisfied. These

identities follow from the definition (2.6a):

s B0 h e OBY BB o | (2.8a)
u H v ' ' '

The Bianchi identities, together with the exptession for Fﬁ given by
eq. (2.7b), yield the following equatiqhs of motion for n®:

A%(c) + e eBY Bf[z(r)'] (o) V(1) = 0, (2.80)



Ll

-9~

where the dot impiies differentiation with respect to 1. In the Abelian

case, n = t1 and the second term in eq. (2.8b) is absent, and the equation

truly becomes an identity. In the non-Abelian case, howevef, (2.8b) is

a non-trivial equation of motion governing the rate of precession_of-the

isospin vector n around the external field B.
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III. Lagrangian fof'Non-Abéliﬁn Soiitons.v

?The functional integratidn-ovef the_fieids ) and.w in eq. (2;h)
includes arbitrary number of7kinks with all.possible trajectories.‘ Thege  ,
kinks can be elimihated byvmeans of a singular trahsfofmation similar to
the one given by (2;5), and the remaining integration over ¢ and ¢ is then
restricted to kink free coﬁfiéuratiohé;v The éinguiar transformation induceé
new terms in the Lagréngian; ﬁhiéﬁ'cgn be compﬁted'through eq. (é.Tb).
"Letﬂing . | |

¢ +S

-1 -1
s .¢Sssb ‘l"*ss st,_

l( 1( .

-1 i - , - v

| -t — = - . .
A+ SA S+ ss auss) 55 (A Bu) S.» (3.1a)
in the Lagrangian of eq. (2.1), the following transformed Lagrangian is
obtained:

v _ 1 (o1
L ——T(Gu

S a2 1 a2
-F* + =
Vv uv) 2_‘Du¢ )

+ -%- .(Duw"‘)e,-.v:(mw), . - (3.1b)

where qu, defined by eq} (2.6a),’is expressible as a sum over trajec-
" tories of kinks through eq. (2.Tb). This new Lagrangian has to be supple-
mented by the constraints expressed by eq.'s (2.7b) and (2.8b), and the

most convenient way of imposing these constraints is'through'Lagrange

multipliers. The functional integral of (2.4) can then be rewritten as
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an integral over the kink trajectories and over fields free of kinks.
In.the naive form of the integral over the trajectorieé, however,
there isva_di#ergence due .to the.feparametrization invgriance of eq. (2.7b)
under the-trahéfofmations' o | |

T, > £y(Ty)- | . | | N (3.2)
This is véry similar to tﬁe_infinity in the functional integral resﬁlting
from gauge invafiance.of the action in a gauge theory, and it can be cured
by adding a parameter fixing term, similar to.a-gaugé fixing term, to
the Lagrangian. In the appendix of reference (1), the following was
shown to be‘avsuiﬁdble parémeter fiking térm:

Cf&x 0Ly = § far, [ - 3% (). | (3.3)
iy = |

An identicai result is obtained in the continuum limit of lattice field

(6)

theories.
Multiplying the constraints (2.7b), (2.8b) and the constraint that
n” has unit length by Lagrange multipliers Hz,<s: and Xg respectively, and

adding the sum to L'+ AL yields the following action:
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3 . .; -\ _ 1.3 1 a a2
Id X. ‘C(xaxl’ '._._’x-N) = Id X {- T (GUV—FU\))

1 a2 1 ay2 |

t 5 (Du¢ )T+ > (Duw )" - Vie,w)

o H(x) Po%x)) + Izv farx L2
u 2 2 ‘Ma

=1

. a2 area aBy LB(= a =y
+ - + +
AQ[(nz) 1] sllnz e e Bu(xz) nz xz]

'gl Q= o &y : o I
< Hu(*l) ng X b (3.4a)
"In terms of this new action, the fﬁnctidnal integral (2.4) can be written
as foliows:

23 = wr Joafou[De[Dy[oB

He~18

b}
==

. [ff[niznnznxlns2 6(a)

expl 1 [3xI(x)C(x) * £ (xsEp,eemni)])s (3.4p)

where the barsvo#er'the'¢ and'w integrations restrict the function space
to fields free df kinks. AThié condition can be implemented either by

lining up ffelds ¢ aﬁd ¥ té form a fixed coordinate system by a suitable
choice of gauge, or alternatively, expanding.fields pértﬁrbafiyeiy around

a constant. configuration.
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Our next task is to convert the summation over particle trajectories
in eq. (3.k4Db) info a functional integral over a field. This problem is
_similar to the'gne encountered in réferehce (1); however, the non-Abélian
intefnal symmetry groﬁb introduces.additionﬁl complications. ‘The first
step is to suspend the'integrations over A,B,H,¢ and Y, as well as the
Summation'over.N. Eq. (3.ha) can then be considered to be the action of

N relativistic particles in fixed extefnal‘fields B and H. The crucial

idea is to pass from the action formulation of particle dynamics to the

Hamiltonian formulation in terms of quantized canonical variables.(ll)’(le)

Since there is no direct interaction between the particles, it is sufficient
to consider the single particle action given by
' Y ' g 2
T = fdr { - 5 X () + al7) [[na(r)] -1)
- T M) 0 R ) e Y BR) R 0Tl (3.5e)

The momenta conjugate to x" and n® are

X) + e cOBY sOpH B (%) nY,

m 81 T %f_naHu,a (

s¢ = 8L | o (3.5b)

These candnical variables are not all independent.
n can be used to eliminate n3 in favor of the other components:

_1/2
nd = [1-(a1)? = (n2)?]
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e

We also note that the action is invariéht'ﬁnder the transformation -

b

5%+ s® + 0% (1),

s, . (3.6)

where f is an arbitrary function. By a suitable choice of f, one can set

and remain with the independent'éanonical variables iu, pu, nl, n2, sl and
52. -The system is quantized by imposing the commutation relations(l3)
[n*(1), sB(x)] = 1 &%, (a,8 = 1,2),
and
[¥(1), p"(1)] = 1ig"7Y, : . (3:7a)
in addition to specifying the Hamiltonian to be
H = P, " + 5% n® - Lagrangian
-1 27 0=y O aBy vu‘B Y(=y12
= - = +=— Hi(x)n +e s n- B'(x)]°. 3.7b)
> [p, + T E(R € Y()1° (

It is easily verified that the Hamiltonian equatiOns of motion derived
from (3.7a) and (3.7b) are identical to the Lagrangian equations that

follow from (3.5a), estéblishing'consistency. It is also helpful to
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recognize that the operator

Taﬂ - ; eaBY SBna | i' o o _ | , - (5.8&)
. | is the“su(é).angulér mOmentum'opéfafér, with the.éogmutation relations
. _(.Ta',Ts) : 1 cOhY oY,

(T%nB) = 1 (°FY an.‘ (3.8b)

The restriétion of the variable n% to the Surfﬁce:of the unit sphére'is
ﬁovproblem, and in fact becomes irrélevantﬂif Ta is expressed in terms of
angular variables. |

Finally;.the éassage to fieid theory is accomplished via the féliowing

set of rules:(lh) The irajectory dependent part of the action of eq. (3.4a)

is replaced by

[a3x [ai x*(x,n) (<2H) x(x,n), |  (3.9a)

where X is a complex écalar field that depends on na, and the integral is .
over all directions of n® with equal weight (group invariant integration).
The operator H is givén by eq. (3.7b), with the following indentification

of the canonical variables:
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x +x,

L R | eaBY'nB -

8 (3.9b)
énY i

Putting eq.'s (3.4) and (3.9) together, the following action for solitons’

(kinks) is obtained:
z(J) = [DA[DB[DH[D¢[Dy 6(a)

exp {i fd3x [J(x)C(x) + rx(x)]},. . | (3.10a)

where,

ENCIE T T "%"“52 + 3 M
- Vi) + 5 u F MY
+ fdﬁ | vau.xv'+ ?-Z—le n® x - ie} B: ﬁ‘“ x|Z,
.Tax'=v -1 e&BY‘nS ;D%- . | f : o (3.ldb)

on

Eq. (3.10) is the main result of this section. It has the unusual
feature that the soliton field y depends on the unit vector'na, which can

be viewed as a continuous isospin'[SU(Q)] variable_that fixes the direction
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o the flux of the soliton iﬁ the SU(2) space through eq. (2.7b).
Alternatively, the“fiéld x can be expanded into irréducible represen-
tations of SU(2) (sphericél harmonics) as a function of the angles of n,
‘and x can be reﬁlaced by an infinite componeﬁt'field labeled by eigenvaiues
of (T)2 and T3, Since SU(2) symmetry is (spontaneously) broken, the
multiplet is not degenerate and presﬁmably forms an ihfinite toﬁer of
iﬁcreasihg masé. | ‘
The appearance pf an infinite multiplet is perhaps not so surprising,

if the Abelian Higgs model treated in (l)‘is reconsidered. The solitons
of that model are labeled by an integer n that‘specifies the number of
flux units. In reference (1), since only the solitons with n = +1 were
vconsidéred; only a'sinéle complex field was neéded{ However, if solitons
with all possible values of n are .taken into acgount, it is then necessary .
to introduce an infinite number of fields, one for each vélue of n. However,
in this case, one has the option of restricting n to the values t1l, whereas
in the non-Abelian model, Bianchi identities require an infinite componeht
soliton field. This will be shown in the next section.

| Some simple properties of X follow from particle-antiparticle symmetry
ﬁnd from invariance under Z(2), the center of SU(2). It is natural to
identify a soliton tfaveling forward in time»with an antisoliton traveling
backward in time, wiﬁh the direction of the flux vector, na, reversed.

This is expressed by the following relation:

x (x,n%) x*(x,-n%). | : : (3.11)
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Invariance under Z(2) means that solitons carry a conserved, multi--
plicative isoparity quantum number. This requires invariance under the

transformation
X > =X- o : (3.12)

So far, our treatment has been semi-classical and probleﬁs of
renormalization, operator ordering and possible (infinite) mass éounter
terms for the soliton field héve been ignored. We hope to return to
fhese pfoblems in the near future. There is also a quéstion-of'the
existence of lxlu type self coupling term. No such term is present in
the Lagfangian; however, it was pointed out in reference (6) that such
a téfmvmay bé needed in lattiqetheories to bvercome the overcounting
of intersecting trajectories._ This éuestidn seems difficult tq settle .

in a continuum theory.
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IV. Discussion ‘and Extension of the

Non-Abelian Soliton Lagrangian.

The éoliton Légrangian of.eq.-(3.10b)‘p038e5ses se?eral invariances.

‘. One such‘invarianceris related to the,non-uniqﬁeness of the singular'tranée
formation Ss needed to straightgn out a kihk.. de singular transformations
that differ by é regﬁlar fransfbrmation S are topologically equivqlent,
which impliés invariance under

's_ > 55, - R | (4.1)
If S isvtransforméd accérding to (h.l) in the fedéfinition'of fields.
given by.(3.la) and in-eq. (2.7b), the following set of transformations
are obtained:

b > S¢s’l, v > sps~t,

H - SH s'l,
9] : U

A s>sAstoio(5s) s,
M u - e u ‘

1

B »>sB st -2 (5s)s?,
T T

. _
X(X,n) -+ X(X,n' )9
where,

n' = snS,n = ??-f n?, » o (k.2)
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The invariance of the so1it§n Lagrangian under these transformations
can also be directly established. fhiS'new invariance should not be
confused with the géuge invariance of the original Lagrangian given by
{2.3). The gauge transformations of eq. (2.3) can be reexpressed in

terms of the fields defined by eq. (3.la) as follows:
6 > WU, y > Upu T,

A >uaut o uut, - (L.3)
u T e Ty E
where

l, and the fields Bu,'Hu and y: remain unchanged.

U = 8.8S_
s s

- In order to express these transformations in terms of the basic fields

that appeaf in the Lagrangian, it is necessary to solve for SS in terms

of Bu'through eq. (2.6a). Since the resulting expression is a complicated

non-linear and non-local - function of Bu’ we see no point in writing it out

explicitly.

Another symmeﬁry_of the soliton Lagrangian is invariance under what

we shall call the Bianchi transformations:
H* > B + 3 A% + e ¢®BY BByY
H H H H
' .. 2ri a,o . . g
x > x exp{- = A s _ (b.b)
where A% is an arbitrary function of the coordinates.

Invariance under the transformations (4.2) and (L4.3) ensures that

the vector fields Bﬁ and-As are coupled to conserfed currents, and that
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the equatiohs,of motion are therefore consistent, whereas invariance under
(4.2) secures the consistency of the equations of motion with Bianchi
identities;v The equation of motion obtained by varying the Lagrangian

with respect to Hﬁ is

- 21 a
Fa - &= * - *
- i [x (Bux) x(aux )
+ e Bﬁ‘x*(TBx) - ie Bﬁ x(TBx*)]- ' (k.5)

Since the left hand side of this equation satisfies the Bianchi identity
of eq. (2.8a), so must the right hand side, and consistency demands that

this identity should follow from the equation of motion for yx: .
(5 + 28 popo _ 4o g%7%)2 = 0. ' (4.6)
e H H

Multiplying the equation by X*na and subtracting from its complex con-
Jugate, the desired Bianchi identity is easily established.

In arriving at this result, use is made of the commutativity of the

components of n®:
(n®,nf) = o. - | (4.7)

This innocent looking relation is the reason behind the infinite component
soliton field. In fact, if eq. (4.7) is added to eq.'s (3.8b), a non-
compact group, whose only unitary representations are infinite dimensional,

is obtained. One attempt at avoiding this is to replace n®'s by finite
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dimensional_(and necessarilj nOn—commuting) Hermitian-matrices, and let

x belong to the finite dimensional carrier space. This approach, however,
runs into'trouble with Bianchi identities, since the non—eommuting compo-
nents of n® then introduce additional terms into the equations of motion|
which violate these identities. At a more fundameﬁtal level, the only
ﬁay we knew of avoidiﬁé an infinite component soliton field_is to replace
the eommutation relations betweenina and s® b& anticommutation relations.
Fermi statistics then forbids the build up of arbitrarily large isospih
by repeated applications of n and s. The canonical variables n and s must

then be Hermitian conjugates of each other, which means that the term
o . | o (4.8)

in the.Haﬁiltonian (3.7) is non;Hermitian, which is aisastrous. Therefore,
an infinite component field theory seems inescapable.

By virtue of the gauge'inVariances expressea by eq.'s (4.2), (4.3)
and (Lk.b4), it is possibie (and necessary) to impose geuge‘conditions on

the vector fields Aﬁ, Bﬁ and Hﬁ. A simple choice is the Landau gauge
3 .AU9G = 3 BUaa =‘*~‘» é_HUQG = 0. ) o ) (h.g)
u ‘ gt _ u _ '

The transformation (4.4) has a Faddeev-Popov factor one, and (4.2) and (4.3)

have the usual factors:

A(A) = det{s®P vGu(X;y) - e *BY A: aﬁy) bplx=y)}, (4.10)

and a similar expression for A(B).
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Once the gauge conditions (4.9) are imposed, the bilinear (free)
part of thé;Lagrangian (3.10b) becomes non-singular, and it is possible
ﬁo quaﬁtizé it in the traditipnél ménner.' Unfortuhately, unlike inv
the Abeiiﬁn casé, it does'not seemkpdssible to eliminate any of the
‘auxiliary fields Hz éhd Bﬁ by‘explicit functional integration.

It remains.to extend our results to a general group of the form
SU(N). Only the case N=3 wili be treated in detail, and largér vélues
- of N will be left as an exercise for the reader. . In the case of SU(3),
the indices a,B and vy in eq.s (2;1) andj(2.2) range from 1 to 8, and the
vwell-known A matrices replace the Pauli matrices. Also, the antisymmetric
symbol quY gets replaced by quY. ‘Instead‘of a single singular trans-
formation given by (2.5), there are now four distinct singular transfor-

mations:

Sétl) g oxp | + i (3%%) 8 |,
A ]
(+2) . [ o4 . 1 _ .
Ss‘- = exp| t 2 ()\%%) s . _ (b.11)
. 3 )

where 2%n% = s A8 S-l, and S is a three by three unitary matrix. The
space spanned by the eight-vector n® can be characterized by
1 2

det (k f naAa) = (k + = (¢ -

2 , . (4.12)
3 /3

where ¢ is an arbitrary constant. ZEach singular transformation corresponds

to a distinct soliton, whose flux is given by an expression similar to (2.7b):
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), (h.13a)

E; _

Fi(x) = ) Jas, nry) X, , (r,) 67lx - X

3

e

where J = +1 or +2 depending on the type of soliton. Egs. (3.5a) through

(3.9b) are still valid with obvious modifications, such as

™ = -1 87 B —9; - o C (h.13D)

It is now necessary to introduce four scalar fields-xj(x,na);

J = 11; +2, with relations between them analogous to eq. (3.11):

x; (x,n%) = x_J(x,né), | )

and the Lagrangian of eq. (3.10b) is now replaced by

» 1 a 0t 2 1 a 2 1 a 2 -
e = - @G -R) rz ) v (D)
v 1 oo v
- V(¢,w) + 5 Hu va e "
' 2ri o a o mQ .
oy ) + == - i :
+ fai § Iauxj - Hun xy - ie ?u T Xj >

where the n integration is a suitable group invariant integration over
‘the manifold defined by (4.12). The transformation properties of ¥

under the Z(3) subgroup is given by

',XJ N Xy S - C(h.16)

where w is a cube root of unit.
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V. Gauge Theories in (3+1) Dimensions: Strings

In this sectidn, the results}of both (1) and of seéction 3vwill be
extended to (3+41) dimensions,vand'the solitqns of one lower dimension
will become strings. The AbelianiHiggs ﬁodel, which ﬁillvbe treatéd
first, has fhe following Lagrangian:

_ 1 uv 4 s 2 '
L= -G F F +[3,0+1e4p0] | (5.1)

- V(¢) 3

where'¢ is complex scalar field,

F_ = 3A -3A,and
uv R Y vV u

2 o 2
V(e) = % (16|12 - n®)

Notice that the symbols have different meanings compared to the ones

used in the previous sectionms.
The topologically non-trivial configurations of field ¢ are discussed

(15)

extensively in literature and also in (1). They are most elegantly

described in terms of an antisymmetric tensor current ku :

*
a

V) =1 eV (3 8) (3,8 )y | (5.1)

where ¢ ='¢/|¢|."This tensor is invariant under non-singular gauge trans-

formations
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o >e g | o | (5.2)
Atf+ Au +_AAu’v AAU._ H

and it is also conserved:

v o ' - _ . .
3k = 0. B _ : , (5.3)
Another important property of k"V is that it vanishes excepﬁ at the
locations of topolgoical singularities, and so it can be written as a

sum over surfaces traced by topological singularities, which form strings

in (3+1) dimensions:

kMY (x)=
; (e | [ aiz» ai; ai; aiz
2r n_ {dt. [do, - | - (5.4)
2 A £ aoR aTl ‘arz .302

where n, are integers and 9 and T, are two internal variables that para-

metrize the surface traced by the kink, and the sum extends over all surfaces.

N~

The conservation eq. (5.3) is automatically satisfied for closed surfaces,
and it can also easily be shown that the integral in eq. (5.4) is invariant

) . . . . [ %
under a general parametfization .

o' = f(o,r)i, ' = glo,t). ’ : ' (5.5)
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From now on, to avoid end point problems, only closéd strings Qill
be consideréd.

The basic idea is égain to reﬁove the topoloéiéal‘singﬁlarities by
ﬁeans.of a singﬁlar-gauge transformation. Geheralizing the_reéult ob-
tained in (l).to'(3+l)'dimensions; one can showifhat the singular gauge

transformation carries an amount of flux given by the following equation:

AF =3 (MA ) -3 (AA) - (5.6)
uv pot T N | |
. —a -
. ' X X
. 2n . e TR -
= - e ; euvaB % nl fdrg fdog 802 312 § [x XQ(UQ,TR)],

where AAu is defined by eq. (5.2). To prove this rélation,vitris easiest

. first to considér a speCiél singular gauge-transformation

A = n tan ™ (;1) , PR - (5.7)
_ 5 |

and to chbose o=X =Xqs reducing the problem to the simple case dis-

1t
cussed in (1). Lorentz and reparametrization invariances can then be

used to establish the general result. Notice that the Bianchi identity
= 0 . : (5.8)

is automatically satisfied for closed surfaces.
After eliminating the kinks by a singular gauge transformation and
after taking into account the extra terms_induced in the action through

eq. (5.6), the generating functioﬁal can be written as,
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2(3) = § g5 /oafBp m DX, (88) | (5.9)
N=0 =1 v o
exp {1 fa'x [3(x) Clx) + £ (xsk), e+ ,%y)]
where o . : | - ' - -t
- P o 2
L (x;xl,-.-,xN) = l8u¢ + le Au¢, ‘ - V(¢) |
i 2m : ¥y
 ,- TT; Fuv(x) T e . EuvdB 221 nQ ffdoldTZ
o o8 z
x ?—J-{—R'- E‘Q— " Gu[x -x,(0,,7,)]
3o, 3T, AN A

Again, since the contribution of the kinks is explicitly taken into
account, the ¢ int'egration is over configurations free of kinks.
It is convenient to separate this Lagrangian into several terms:

Elefrnfy) = Le £ v L, v Ly ()

vhere £ is given by (5.1) and

£ = _T_T_ FHV | g . - .
1 e EuvozB Fo(x) % nfl i : (5 .9a). hd
. %> axt o T “
[far, do, —% =% &'[x =%, (5,1,)],
278 Be, 3Ty ARS8 T
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. 2 : ' ' '
_ 2n :
L, = =5 ) _-;‘ n, n, ffdrz do, ffdrz, do,, (5.9p)
e” 2 AL - :
n=H =V . azH Vv z X
ax2 ‘axl ) axl 8x2 sz,Jy axl,,v
3o, dT, - 9t, 30 302; 7812,

2 3 L L

| 1x = %0001, 6°0x - X, (0,037,001,

o= 1 |, stk - ®
3 2 L™ ffdfz»d°2 5_[x xyog7,)]
.. _Q ' -u -V 2
( 'axz axz ~ axl axz ) |
ao2 812 BTR 802

Clearly strings inferact either diféctly or through the exchange of the

vector meson represented by the fiéld Au. The string-vector meson interaction
is described byvﬂl and the difect string-string ipteraction by £2. The

two delta fuﬁctionS'that éppear in the expression for the direct interaction
imply that this int;raction takes place at the poiﬁt of.the intersection

of two strings when they cross. Finally,.the last-férm, 53, represents

the self-interaction of a string and'it is proportional to the area of

the surface traced byvit. Unfortunately, the constant of proportionality

is infinite, and although this infinity is expected to be renormalized to

a finite value, we are unable to carry out such a renormalization program
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in this paper. Instead, we provisionally replace this infinite constant
by a finite one:

5 1/2

| b - - \2 = \2
. 9x 9X 90X 90X
L 1 : 2 2 '8 2
L - — N . 28 1) — X N
jd x 3 7T orat % ffdoﬂ dTR (BGQ arz ' BTK 302

(5.10)

This is the standard action for the free string model, whére a' is
to be identified with the slope of the particle trajectory; The standard
striﬁg interaction, however, takes place by the joining and splitting of
strings. In contrast, field theoretic strings interact through the ex-
change of a vector meson and through a direct contact interaction. Inter-

(16)

actions of this type were already proposed by Kalb and Ramond , and
by Nambu.(l7)
In the strong coupling limit e2>i, the string interaction, having
coupling constant proportional to 1l/e, becomes weak, and it should be
possible to treat the system as a collection of weakly interacting strings.
The standard approach is then to quantize the free action given 5y (5.10)
first, and then treét tﬁe interaction perturbatively. It is weli-knbwn
that quantized free string theory suffers from several diseases, y) and
we make some speculative suggestions about their possible cure. The
first disease is the presence of a tachyon at mass m2=—2a' in the spectrum
of the string. This need not be a serious problem if energy is bounded
from below; it simply means that the perturbative vacuum is unstable and

there will be transition to another stable vacuum, just as in the case of

spontaneous symmetry breakdown. The second disease is the absence of

>
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Lorentz invariance except in 26 dimensional space-time. This difficulty

can be circumvented by using a covariant quantization scheme, which amounts

to replacing eq. (5.10) by

: - zH\ 2
b 1 ) -
Ja'x £y > - e % [lao, ar, (-372-) . | - (5.11)

This neﬁ action .implies that the time coordinate §0 is‘quantized along
with space coordinafes, introducing negative metric in the theory.
Nevertheless, states with negative‘metric can.in general be eliminated
by means of Ward identities that follow from reparametrization_invariance.(h)
For these identities to be valid, hOWeQer, the following conditions must
hold:

.a) The lowest string state must be at n® = - 20'. This is the
tachyon discussed earlier.

b) The dimensions of sPace—fime must be less than or equal to 26.
Therefore, there is no necessity for the unphysical condition 4 = 26.

c). Any external field that interacts with strings must have the
same mess and coﬁpling as one of the string states. .In the present
case, the vector meson coupling given by £l of eq. (5.9b) coincides
with the coupling ef a vector ‘state at mass zero, and so, for consistency,
the vector meson mass must be zero. This implies h = 0 in eq. (5.1)
end no spontanéous‘symmetry breaking. We have therefore arrived at the
surprising conclusioh that only in the absence of spontaneous symmetry
breaking in the original action given by (5.1), can one hope to have

a consistent string theory.“Of course, even in this case, there may

be other hidden difficulties present.
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.Fihally, we briefly describe the extension of the non-Abelian model

of section 3 to (3+1) dimensions. The solitons of (2+1) dimensions. again

. . . . a .
turn into strings in one higher dimension, and .now the unit vector n~ defines

-the direction of flux in the SU(2) space at each point on the strihg.

Eq.'s-(2;7a) and (2.7b) are replaced by

[x - x (

~a - _l_ }J'\)',(’.
Fuv T2 €uvu'v' -0
~0 _ 2en . ‘ o :
Fv & T % [fa, at, nm(qz’rn)-é
X 3X 3x%
x ( 2, 2,V — f,u 2,V
' 802 Z)_TQ arQ Q-

and the Bianchi identities require that.

-y

o}

+ e EGBY Bﬁ(i)

3x'  an” 3% n

30 a1 3T 30
ax” 9%’ ox" 9%
%90 91 3T o]

which replaces replaces eq. (2.8b).

. . ) o ' :
térm given by eq. (3.3) has to be replaced by (5.11). With these

'modifications,'the analogue of eq. (3.ka) is

In addition, the "gdguge fixing"

(5.12)

(5.13)

-
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b = - b a 1V :
[d'x £(x;x15."’XN) = fda'x {L'(x) +.Huv(x) F*V%(x)} (5.1k4)
N 1 Bi; ° oL\ 2
+ - — -
Z ffdol dTQ 2ro’ 9T + xﬁ [ 2) 1]
=1 2
U .=V U4 .=V
on o - 8x2 axl ax2 ax& o
- o X))\ w7 % )
H p T v %% |
-t a —-u a
. a ax2 8nl B axl an2
UL 301 BTQ 811 802
= =V -4 .=V
 aBy B= ¥ axl axl axl ax2
*ee TBIx) 0 \ 5 5 T T 3 g
g T Ty 99

where £' is given by (3.1b). The functional integral can now- be éxpressed

in terms of the action of (5.1&) by means of a formula similar to eq. (3.4b).
" The next step; which will not be attempted here, is the quantization

of the string variables that appear in eq. (5.14). If it is carried out

successfully, this would yield a new string model.
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VI. Concluding‘Remarks'

In the preceding sections, we»have'eitended'the construction given
in reference (1) to non-Abelian gaﬁgé_groups‘andbté physicallspace-time
dimensions.  The method éréducés localjriéld theories for solitoﬁs in
(2+1) dimensions and';tring théérie;_with loéal inﬁeraction in (3+1)
dimensions. ‘ | | |

An interesting problem for futufe,research'is'tO‘investigate the
classical solutions oflihese new field theories. One sﬁould then be abié
to recover the well-known soliton_éolutidns’in some approximation, énd
hopefully,'some new and unexpected classical solutions may emérge. This
approach may also shed some iight on the confinement problem. On the
other hand, severe difficulties are encountered if'oné tries to go beyond
the classical equations of motion, and they.are,connected with the absence
of a cqnsistent renormalizafion scheme. This problem remains a serious

obstacle to further progress.

'Acknowledgements

I would like to thank S. Samuel for his helpful comments and
criticism. i ﬁave also bene?ited from conversﬁtions with S. Maﬁdelstam,
N. Papanicolaou, J. Polchinski'and-E;_Rabinovici.‘ This.work was supported
by the National Science Foundation under grant number PHY77—23512 and

by the High Energy Division of the U.S. Department of Energy.

1



h

Iy

10.
11.
12.

13.

1k,

16.

1.

L =35-

References

‘K. Bafdakci énd S. Samuel, Local Field Theory for Solitons, Phys.
Rev. D, Oct§ber.15; 1978. | | |
fl. B. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973).

G. 't Hooft, Nucl. Phys. B138, 1 (1978).
For a review of strings, see S. Mandelstam, Physics Reports 13C,
259 (197h). | '

T. Banks, R. Myersoﬁ and J. Kogut, Nucl. Phys. B129, 493 (1977).

M. Stone and P. R. Thomas, Phys. Rev. Letters 41, 351 (1978).

M. Peskin, Mandelstam-'t Hooft Duality in Abelian Lattice Models,

" Harvard preprint.

J. Jose, L. Kadanoff, S. Kirkpatrick and D.‘Nelson, Phys. Rev. Eié,
1217 (1977).

T. Banks and E. Raﬁinovici, to be published.

S. Mandelstam, Physics Letters 53B, 476 (1975).

R. P; Feynman, Phys. Rev. 80, Lho (1950).

M. B. Halpern and P. Senjanovic, Phys. Rev. D15, 1655 (1977).

For semi-classical quantization of spin, see A. Jevicki and

N. Papanicolaou, Semi-Classical Spectrum of the Continous Heisenberg

. Spin Chain, Institute for Advanced Study preprint.

M. B..Halpern, A. Jevicki and P. Senjanovic, Phys. Rev. D16, 2476 (1977).
See, for example, S. Coleman, Erice Summer School.
M. Kalb and P. Ramond, Phys..Rev. D9, 2273 (197h).

Y. Nambu, Physics Reports 23C, 250 (1975).



This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.




pE AR~
h

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





