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Understanding SRAM Stability via Bifurcation Analysis: Analytical
Models and Scaling Trends

YENPO HO, GARNG M. HUANG, and PENG LI, Texas A&M University

In the past decades, aggressive scaling of transistor feature size has been a primary force driving higher
Static Random Access Memory (SRAM) integration density. Due to technology scaling, nanometer SRAM
designs become increasingly vulnerable to stability challenges. The traditional way of analyzing stability
is through the use of Static Noise Margins (SNMs). SNMs are not capable of capturing the key nonlinear
dynamics associated with memory operations, leading to imprecise characterization of stability. This work
rigorously develops dynamic stability concepts and, more importantly, captures them in physically based
analytical models. By leveraging nonlinear stability theory, we develop analytical models that characterize
the minimum required amplitude and duration of injected current noises that can flip the SRAM state.
These models, which are parameterized in key design, technology, and operating condition parameters,
provide important design insights and offer a basis for predicting scaling trends of SRAM dynamic stability.
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1. INTRODUCTION

SRAM provides indispensable on-chip data storage for an extremely wide variety of
electronic applications including microprocessor, ASICs, FPGAs, and DSPs. In today’s
chip designs, the silicon area occupied by SRAM-based caches dominates over other
logic devices, which may constitute more than 70% of chip area. In the past decades,
aggressive scaling of transistor feature size has been a primary force driving higher
SRAM integration density [Edenfeld et al. 2004; Angelov and Hristov 2004]. On the
other hand, the supply voltage is scaled down to meet device reliability constraints and
to reduce power consumption. However, the stability margin of SRAM has been signif-
icantly degraded by such aggressive scaling. As a result, nanometer SRAM designs are
getting increasingly susceptible to various noise problems and there is a growing con-
cern on readability and writeability. Increasing process variation also has a dramatic
impact on the stability of highly scaled SRAM designs.

Beginning with Section 2, we first start with the background on SRAM operations and
stability issues. In Section 3, we discuss the bifurcation study to demonstrate the SRAM
stability issues. We show that three equilibria are located in three different regions.
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Fig. 1. A 6-T SRAM cell.

Then we show the equilibria are two stable equilibria and a saddle (or metastable point).
From there, we show that the saddle-node bifurcation will happen at a certain injected
current magnitude called critical current or IC . From the phase portrait analysis,
when injected current amplitude reaches IC , we observed that two equilibria collide
and result in a saddle-node bifurcation. The collision location is called the bifurcation
point. When this happens, the two colliding equilibria disappear and only the other
remaining stable equilibrium point will survive. The cell state will traverse to that
equilibrium point and causes state flip.

In Section 4, we introduce the SRAM circuit and its corresponding nonlinear differen-
tial equations based on the Shichman-Hodges model. Next, in Section 5, we introduce
region analysis to derive the stability margin analytically for an SRAM. We partition
the state space into regions. The equilibrium point locations in terms of a noise injection
and system parameters are derived. Furthermore, we focus on the region of bifurca-
tion; we analytically derive the bifurcation point and IC . However, the outcome of the
analytical solution on the bifurcation point and IC is very complicated. For that, we
elaborate on the numerical property and propose a new method to derive an analytical
solution for IC that greatly simplifies the equation but keeps the accuracy.

In Section 6, we further derive the analytical formula for critical time (TC). We show
that a perturbed transient state trajectory will pass the stability boundary (called
separatrix) resulting in the state flip when the injected current has higher magnitude
than IC . For a perfectly symmetric SRAM, the stability boundary is a 45◦ line that
passes through the origin. However, the injected current greater than IC does not
necessarily imply that the cell will flip its state [Dong et al. 2008; Zhang et al. 2010].
The current must be greater than Ic for a certain period of time (defined as critical
time or TC) to cross the separatrix. Once the state of the cell crosses the separatrix,
the state will flip and even the noise disappears. However, it is still not clear how the
SRAM parameters physically influence the phenomena observed from phase portrait
analysis. Accordingly, we resort to analytical form solutions to find the relations. Lastly,
in Section 7, we investigate the IC and TC dependency on technology parameters for
design insights.

2. BACKGROUND

Consider the widely adopted six-transistor SRAM cell design shown in Figure 1. In
this section, focusing on the 6-T SRAM cell, we describe the traditional static SRAM
margins and show their limitations by discussing the dynamic nature of the standby,
read, and write operations of the 6-T cell.

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 4, Article 41, Pub. date: August 2014.
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Fig. 2. (a) Characterization of the tranditional SNMs; (b) SNM in standby; (c) SNM in write.

Fig. 3. An SRAM state flip caused by: (a) a current going away; (b) a current injection in standby mode.

2.1. Traditional Static Noise Margin (SNM)

The traditional static noise margin analysis characterizes the robustness of an SRAM
cell by using two voltage sources as shown in Figure 2(a). Conventional SNMs measure
the largest differential voltage noise that can be tolerated at the two storage nodes
[Seevinck et al. 1987; List 1986]. In standby, as shown in Figure 2(b), the SNM is
determined as the side of largest square that can be inscribed between the mirrored
DC voltage transfer curves (VTCs) of the cross-coupled inverters. The SNM in read can
be defined similarly by including the two access transistors as part of the inverter pair
VTCs. The SNM in read represents the largest DC voltage perturbation that can be
tolerated without a state flip. During write, the SNM is found by inscribing the largest
square in between the two VTCs as shown in Figure 2(c).

An SNM metric describes the maximum voltage (or current) perturbation the SRAM
circuit can tolerate without resulting in a state flip. However, such a measure is in-
trinsically unable to characterize the dynamic process that leads to state flips, which
is critical for understanding the complete stability picture. In this article, stability will
be defined by examining both the magnitude and duration of the injected current noise
required to flip the SRAM state. As such, our new stability margin concepts funda-
mentally capture the temporal aspects of the state flip and provide immediate design
insights for enhancing dynamic stability.

Clearly, as SNMs are characterized by finding the largest static voltage noise that
can be tolerated in standby, read, or write, they are not positioned in capturing the
essential dynamic properties of these operations, as further discussed in the following
sections.

2.2. Noise Injection in the Standby Mode

In the standby mode, state flips may occur if certain coupling noise, in the form of a
noisy current, strikes one of the bit-lines. This noise injection process is illustrated in
Figure 3, where it is assumed that nodal voltages V1 and V2 correspond to logic “1” and
“0”, respectively. The same process has been analyzed to study the SRAM’s immunity to
single even upsets [Garg et al. 2008, 2006; May and Woods 1979; Pickle and Blandford
1981; Massengill et al. 1993].
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Fig. 4. (a) Noise injection during a read operation; (b) its equivalent model.

Fig. 5. (a) Noise injection during a write operation; (b) its equivalent model.

Generally, the following scenarios can cause the SRAM state flip: a noise current
going away from the high-voltage node (Figure 3(a)), a noise current going into a
low-voltage node (Figure 3(b)), or both. For the purpose of characterization, the noise
currents may be described by a simple square pulse with certain amplitude (In) and
duration (Tn),

InoiseL,noiseR(t) =
{

In 0 ≤ t ≤ Tn

0 otherwise
. (1)

Naturally, to characterize the noise immunity of the cell, one may seek to find the
minimum noise current amplitude and/or duration that renders a state flip. Clearly,
the traditional SNM is unable to capture the dynamic characteristics of this process.

2.3. Current Injection in Read/Write Mode

Consider the read operation shown in Figure 4(a). In this case, pass transistor M6 is
on and channels a charging current into node V2. In other words, the NMOS transistor
in the inverter at the bottom pulls the bit-line voltage down. The resulting voltage
difference between the two bit-lines may be detected by a sense amplifier in order to
read out the stored value.

From a stability point of view, it can be seen that the access transistor on the right
injects a current into one of the critical storage nodes of the SRAM cell, as illustrated
in Figure 4(b). It is the magnitude and duration of this injected current that determine
the stability of the read operation. The successful or stable read occurs if the current
passing through M6 does not flip the state.

On the other hand, the write operation, shown in Figure 5(a), injects current into the
SRAM cell at one side and extracts current at the other. The simulated pass transistor
currents are shown in Figure 5(b), where the currents through access transistors M5
and M6 are denoted as I5 and I6, respectively.

The foregoing discussion clearly demonstrates the dynamic nature of basic SRAM
operations. The stability in each operation mode critically depends on the way noisy
currents are injected into the cell. To derive a measure of dynamic stability, it is instruc-
tive to examine the stability of the cell under stereotyped noise current injections, that
is, idealistic current pulses with a fixed amplitude (IR2, IW1, IW2) and finite duration
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(TR2, TW1, TW2), namely,

IR2,W1,W2(t) =
{

IR2,W1,W2 0 ≤ t ≤ TR2,W1,W2

0 Otherwise
. (2)

In the rest of the article, we focus on studying the dynamic conditions that lead to
a state flip under a single current pulse injection, which corresponds to the situation
shown in Figures 3(b) and 4(b). This basic approach may be extended in a straightfor-
ward way to cases of multiple noisy current injections.

3. SRAM STABILITY AND BIFURCATION STUDY

As a first step towards our goal, we derive a lower bound for the amplitude of the
injected current pulse that flips the state. Considering a current injected into V2 node
as shown in Figure 3(b) and Figure 4(b), there exists a threshold on In magnitude that
can flip the cell state. This threshold current amplitude is referred to as the critical
current (IC). As shown later, the significance of IC is that any injected current pulse with
amplitude less than IC would not be able to flip the state, regardless of its duration.
On the other hand, for a current pulse with the amplitude above IC , the occurrence of
a state flip is conditional on the duration of the current pulse. The critical current IC
is derived based on the concept of saddle-node bifurcation from the nonlinear system
theory [Khalil 2002].

Generally, an SRAM cell has three equilibrium points. Among the three equilib-
ria, two are stable and one is unstable, which is called the saddle. Consider again
Figure 4(b), assuming a DC current (In2) is injected to the V2 node as shown in (2),
varying the magnitude of the injected DC current In2 will change the SRAM equilib-
ria. To see how these equilibria will change as functions of In2, we show a sequence
of butterfly curves on the 2D space defined by the voltages V1 and V2 obtained from
transistor-level circuit simulation for the SRAM cell in Figure 6(a). The equilibria cor-
respond to the intersections between the voltage transfer curves of the back-to-back
connected inverter pairs. At In2 = 0, the equilibria are labeled as “1”, “2”, and “3”.
Among these, “1” and “3” are stable equilibria and “2” is the unstable saddle.

The stability boundary, also called separatrix [Huang et al. 2007; Dong et al. 2008],
is important for understanding the transition between two stable equilibria, hence the
dynamic stability of the cell. On the 2D state space defined by V1 and V2, the separatrix
splits the regions of attraction of the two stable equilibria. For the symmetric 6-T cell
we study here, the separatrix is the 45o line passing through the saddle. Starting from
any initial state above the separatrix, the SRAM state will eventually go to the stable
equilibrium “1”. Similarly, the state will be driven towards the other stable equilibrium
“3” if starting from a point below the separatrix.

The preceding discussion assumes that there exist two stable equilibria and hence the
separatrix. The dynamic property of the cell will change with injected current. As the
magnitude of In2 increases to 150uA, the three equilibra change their location as shown
in Figure 6(b). The saddle (marked as “2”) and the stable equilibrium point (marked
as “3”) come closer to each other. In Figure 6(c), the saddle collapses with the stable
equilibrium. The collapse results in saddle-node bifurcation [Khalil 2002]. The location
where the bifurcation happens is called the bifurcation point, denoted by (V1B, V2B). In
Figure 6(d), the injected current increases to In2 = 200uA, yielding only one equilibrium
point (marked as “1”) in the entire state space. Starting from any point in the state
space, the SRAM state will eventually go to this remaining stable equilibrium.

As shown in Figure 6(c), the occurrence of saddle-node bifurcation marks a critical
structural change of the dynamic property of the SRAM cell. When the injected current
In2 is above 192uA, there is only one stable equilibrium. When the injected current In2
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Fig. 6. (a) Illustration of saddle-node bifurcation as In2 increases from zero to 200uA; (b) SRAM butterfly
curve when In2 = 150uA; (c) SRAM butterfly curve when In2 = 192uA; (d) SRAM butterfly curve when
In2 = 200uA.

is less than 192uA, there are still two stable equilibria although their precise locations
may be altered by the current. To possibly flip the state, say, in the standby or read
operation, the injected DC (constant) current must be above 192uA such that the
starting stable equilibrium collapses with the saddle and hence disappears, and then
the state is attracted to the remaining stable equilibrium.

In conclusion, the critical current (IC) we are seeking would be 192uA in this example.
As Figure 6(c) shows, the voltage transfer curves of the two inverters in the cell become
tangent to each other at the bifurcation point. Evidently, two curves that are tangent
to each other also have the same slope at that tangent point. It can be shown that the
Jacobian matrix corresponding to the differential equation of the SRAM cell becomes
singular at this point [Lohstroh et al. 1983; Seevinck 1980]. This theoretical result is
leveraged to develop a model for IC in our work.

4. BASIC TRANSISTOR-LEVEL AND DYNAMICAL MODELING FOR SRAMS

Before deriving the proposed models for dynamic stability, we first discuss the basic
transistor-level modeling of SRAMs and how a cell can be modeled as a dynamic system.
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Table I. Basic Transistor Drain Current Equations

NMOS PMOS
Cut-off Vgs < Vthn

Ids = 0
Vsg < |Vthp|
Isd = 0

Linear Vgs > Vthn
Vds < Vgs − Vthn
Ids =
Kn(2(Vgs − Vthn)Vds − V 2

ds)

Vsg > |Vthp|
Vsd < Vsg − |Vthp|
Isd = Kp(2(Vsg − |Vthp|)Vsd − V 2

sd)

Saturate Vgs > Vthn
Vds > Vgs − Vthn

Ids = Kn(Vgs − V 2
thn)

Vsg > |Vthp|
Vsd > Vsg − |Vthp|
Isd = Kp(Vsg − |Vthp|)2

To accurately account for transistor behaviors, sophisticated device models, for
example, BSIM3/4 models [Hu 2010; Liu and Hu 1998, 2011; Morshed et al. 2010; Cheng
et al. 1997], are usually adopted. These device models, however, make it impossible to
derive closed-form design models and prevent development of useful design insights. In-
stead, in this article, we adopt the popular simple Shichman-Hodges (level-1) transistor
models [Nassif 2006; Shichman and Hodges 1968] for developing the targeted dynamic
stability models. This choice, nevertheless, allows us to rather accurately predict the
scaling trends of dynamic stability as will be shown by the experimental results.

A circuit may be described using a modified nodal analysis formulation in the time
domain

Q̇(x) = F(x) + u, (3)

where u ∈ RN is the input, x ∈ RN are the state variables, F describes the resistive
devices of the circuit, and Q are the capacitive devices of the circuit. For the SRAM cell
in Figure 1, for simplicity, we only consider two state variables, voltage (V1) and its
complement (V2). The circuit equations for the SRAM cell are{

C11(V1, V2) · V̇1 + C12(V1, V2) · V̇2 = f1(V1, V2) + u1

C21(V1, V2) · V̇1 + C22(V1, V2) · V̇2 = f2(V1, V2) + u2
, (4)

where the Cs are the capacitances associated with the two storage nodes, f1 and f2
represent the currents of the transistors in the two cross-coupled inverters, and u1
and u2 represent additional currents injected to the two storage nodes. We assume the
coupling effect between V1 and V2 is small, thus C12 and C21 are neglected. Note that
physically C11 and C22 are mostly contributed by gate and drain parasitic capacitances
at V1 and V2 nodes. For simplicity, we use circuit simulation to extract averaged small-
signal capacitance values C1 and C2 by averaging C11 and C22 over a range of operating
points, and finally arrive at {

C1 · V̇1 = f1(V1, V2) + u1

C2 · V̇2 = f2(V1, V2) + u2
. (5)

In (5), f1(·) and f2(·) are determined by the drain currents of the transistors, which are
modeled using the level-1 device equations in Table I.

One of the key difficulties in deriving analytical dynamic stability models lies in the
fact that different equations are typically used for determining drain currents in the
cut-off, linear, and saturation regions. To resolve this problem, we adopt the equivalent
Shichman-Hodges representation of the drain currents shown in Table II [Ho 2008].
We further define the S-function

S(x) =
{

0 X ≤ 0
X X > 0

. (6)
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Table II. Shichman-Hodges Representation

NMOS PMOS
Cutoff Ids = 0 Isd = 0
Linear Ids = Kn((Vgs − Vthn)2

−(Vgd − Vthn)2)
Isd = Kp((Vsg − |Vthp|)2

−(Vdg − |Vthp|))2

Saturate Ids = Kn(Vgs − Vthn)2 Isd = Kp(Vsg − |Vthp|)2

Using S(x) and Table II, it is not difficult to derive the following equations for the
drain currents for NMOS and PMOS transistors:

Idsn = Kn · (S2(Vgs − Vthn) − S2(Vgd − Vthn)), (7)

Isdp = Kp · (S2(Vsg − |Vthp|) − S2(Vdg − |Vthp|)). (8)

Note (7) and (8) are valid for all regions of operation. This constitutes an important step
towards deriving the proposed analytical dynamic stability models. Furthermore, note
that the threshold voltage of typical enhancement mode PMOS transistors is negative.
For simplicity of presentation, with some abuse of notation, throughout the rest of the
article we use a variable such as Vthp to indicate the absolute value of the threshold
voltage of a PMOS transistor, which is positive. As such, the dynamic equations for
SRAM become

C1V̇1 = K1[S2(Vdd − V2 − Vth1) − S2(V1 − V2 − Vth1)]

−K2[S2(V2 − Vth2) − S2(V2 − V1 − Vth2)] − In1, (9)

C2V̇2 = K3[S2(Vdd − V1 − Vth3) − S2(V2 − V1 − Vth3)]

−K4[S2(V1−, Vth4) − S2(V1 − V2 − Vth4)] + In2, (10)

where In1 and In2 represent the injected DC currents. For instance, In2 can be used
to model the injected noisy current in Figure 3 or the read current through M6 in
Figure 4(a). The parameters K1 to K4 are the MOS device parameters of transistor M1
to M4

K1,2,3,4 = 1
2

μn,p · COX · W1,2,3,4
/

L1,2,3,4, (11)

where μn,p is the carrier mobility (μn or μp), COX is the per-unit area gate capacitance,
and W1,2,3,4 and L1,2,3,4 are the effective channel width and length of the transistor,
respectively. Eqs. (9) and (10), which are the dynamic equations of the SRAM, have
already integrated operation states of each transistor.

The voltage transfer curve, called nullcline, is the set of points satisfied dV1/dt = 0
(V1-nullcline) in (9) or dV2/dt = 0 (V2-nullcline) in (10). According to nonlinear theory,
equilibrium points are found by solving functions dV1/dt = 0 and dV2/dt = 0. In other
words, the points of intersection on the V1-nullcline and V2-nullcline are exactly the
equilibrium points.

5. ANALYTICAL MODEL FOR THE CRITICAL CURRENT (IC)

The critical current is highly related to the bifurcation point since it causes equilibra to
collapse. That is, the critical current can be found once the bifurcation point is known.
In order to have analytical form expression for the bifurcation point and critical current,
we introduce region analysis [Ho 2008]. Each region in this analysis corresponds to one
particular combination of transistor regions of operation (states) (e.g., M1: Linear; M2:
Cut-off; M3: Cut-off; M4: Linear). Through the region analysis, the transistor states at
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Fig. 7. The nullclines and region formation of an SRAM. The V1B−2D represents all the possilbe ranges
represents for V1 to have bifurcation in region 2D [C = Cut-off; L = Linear; S = Saturation].

the bifurcation can be determined and critical current can therefore be expressed in
terms of system parameters.

The V1 and V2 voltages physically swing between zero to Vdd. This creates a state
space. The entire state space can be partitioned into many small disjoint small areas.
Each small area is a region. The lines separating the state space are based on the tran-
sistor threshold voltages. In other words, every region has its corresponding dynamic
equation based on (9) and (10), and certain S(.) terms are on or off in that particular
region. Using region 7 in Figure 7 as an example, the transistor state combination
[L,C;S,L] reads M1 = Linear, M2 = Saturation, M3 = Cut-off, and M4 = Linear. Ev-
ery point in this region has such a state combination and the corresponding dynamic
equations are {

C1V̇1 = f1(V1, V2) − In1

C2V̇2 = f2(V1, V2) + In2
, (12)

and {
f1(V1, V2) = Isdp1

LIN − Idsn2
SAT

f2(V1, V2) = Isdp3
CU T − Idsn4

LIN, (13)

where Isdp1
LIN and Idsn2

SAT are

Isdp1
LIN = K1[(Vdd − V2 − Vth1)2 − (V1 − V2 − Vth1)2]; Idsn2

SAT = K2(V2 − Vth2)2.

Isdp3
CU T = 0; Idsn4

LIN = K4[(V1 − Vth4)2 − (V1 − V2 − Vth4)2] (14)

Changing the threshold voltages or Vdd would shift the region lines and change the
number of regions. As an example shown in Figure 8, the state space would change
from (a) to (b) by decreasing Vdd. As we can see regions 2A, 2B, 2C, and 2D no longer

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 4, Article 41, Pub. date: August 2014.
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Fig. 8. (a) An example of assigned regions for an SRAM; (b) the assigned regions when Vdd is reduced.

exist. This means the transistor combinations that correspond to those regions cannot
happen under low Vdd. Further decrease of Vdd can make region 2 disappear. When
that happens, the output of one of the inverters will be floating.

The equilibria of an SRAM cell, denoted as (V1e, V2e), are the solutions found by
solving dV1/dt = 0 and dV2/dt = 0. When In1 = In2 = 0, region 1 and region 3 each
have a stable equilibrium strictly at (Vdd, 0) and (0, Vdd), and the saddle can fall onto
one of the regions: 2A, 2B, 2, 2C, or 2D. For convenience, we assume that the SRAM
cell is symmetric, that is, the two inverters in the cell are identical. For a symmetrical
SRAM design, it can be shown that the saddle is located in region 2. Let the location
of the saddle denoted by (V1saddle, V2saddle) be(√

K3(Vdd − Vth3) + √
K4Vth4√

K3 + √
K4

,

√
K1(Vdd − Vth1) + √

K2Vth2√
K1 + √

K2

)
. (15)

5.1. The Regions of Bifurcation

The region of bifurcation is the region where bifurcation happens, in other words, the
region of bifurcation contains the bifurcation point. The region of bifurcation will be
selected from the candidate regions for bifurcation and the candidate regions can be
mathematically determined by the numbers of equilibrium points.

5.1.1. The Candidate Regions for Bifurcation. Not all the regions in the phase portrait
can happen to have bifurcation. Some regions can never have a bifurcation point for
all possible parameter sets. The candidate regions for bifurcation are those regions
that have bifurcation, and only one region in the candidate regions is the region of
bifurcation.

Every region can be classified as having 2, 1, or 0 equilibrium points (e.p.). Those
regions can only have 0 e.p. and the mathematical equations in that region cannot
have any equilibrium solutions. For those regions that have 1 e.p., there would be
mostly one equilibrium solution that can satisfy the region equations. The equilibrium
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Table III. Summary of Regions of Bifurcation

INJECTION
CONDITION

THE CANDIDATE
REGIONS FOR
BIFURCATION

THE REGION OF BIFURCATION
BASED ON SYMMETRICAL DESIGN

Single-Side IN1 = 0, IN2 > 0
IN1 = 0, IN2 < 0
IN1 > 0, IN2 = 0
IN1 < 0, IN2 = 0

2D and 7
2A and 4
2D and 6
2A and 5

7
4
6
5

Double-Side IN1 > 0, IN2 > 0
IN1 < 0, IN2 < 0
IN1 < 0, IN2 > 0
IN1 > 0, IN2 < 0

2D, 3, 6, and 7
1, 2A, 4 and 5

2A, 2D, 5 and 7
2A, 2D, 4 and 6

2D
2A

5 (|IN1|>|IN2|), 7 (|IN1|<|IN2|)
4 (|IN1|<|IN2|), 6 (|IN1|>|IN2|)

solution can therefore be symbolically examined. Those regions can have more than
one equilibrium point and are the regions of bifurcation; they are in the category of
having 2 equilibrium points. The equation complexity reaches forth-order polynomial
form for the regions of bifurcation.

Table III summarizes the region of bifurcation where Figure 4(b) illustrates one-
sided current injection and Figure 5(b) illustrates the double-sided current injection
scenario. Based on the result from Table III, we see that the region of bifurcation would
not happen in the “strap-regions”, meaning regions 2, 2B, 2C, 4A, 4B, 5A, 5B, 6A, 6B,
7A, 7B, 8, 9, 9A, and 9B combined in Figure 8.

5.1.2. Choose the Region of Bifurcation from the Candidate Regions. The region analysis
eliminates all the impossible regions for bifurcation. However, it does not give the
specific one region of bifurcation. Judgment based on transistor knowledge needs to be
made to pick the region of bifurcation from the candidate regions. Using the first case
as an example, we select region 7 instead of region 2D. Since transistor M3 can only
conduct negligible drain current in region 2D, we assume it is in cut-off. By selecting
region 7 as the region of bifurcation, we are taking the chance that M3 is in cut-off
when bifurcation happens. In addition, this assumption is valid because the bifurcation
point is likely to be at the curviest point of the transfer curve and the curviest point is
usually in region 7. Here we complete the column for the region of bifurcation assuming
the SRAM is symmetrically designed.

Due to the limited space, we will mainly focus on SRAM stability under the case of
(In1 = 0 and In2 > 0); the other cases can be followed in a similar manner.

5.2. The Analytical Formula for Critical Current

The analytical expression of critical current (IC) involves solving for the bifurcation
point in the region of bifurcation. Let the notation f and g be: f = dV1/dt and
g = dV2/dt. As illustrated in Section 3, the system instability happens when the
equilibria collapse. It is proven that the Jacobian matrix of (12) becomes a singular
matrix at bifurcation point. [Loshtroh et al. 1983] Therefore, the following formulae
can be established. {

f = f1(V1, V2) − In1 = 0
g = f2(V1, V2) + In2 = 0

(16)

and

h = (∂ f /∂V1) · (∂g/∂V2) − (∂ f /∂V2) · (∂g/∂V1) = 0. (17)

Let (V1B, V2B, IC1, IC2) be the solution of (V1, V2, In1, In2) that satisfies the previous f- g-,
and h-functions, where (V1B, V2B) is the bifurcation point and (IC1, IC2) are the critical
currents. In the case of SRAM, there can be many sets, of (V1B, V2B, IC1, IC2) for one
system parameter, but only one set of (IC1, IC2) will correspond to one bifurcation point
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(V1B, V2B) and vice versa. We will demonstrate the simplest case assuming In1 = 0 and
In2 > 0, and the other cases can be followed in a similar manner. The critical current
(IC) means the In2 magnitude level that causes the bifurcation. Then, (16) and (17)
become⎧⎨

⎩
f (V1B, V2B, IC) = f1(V1B, V2B) = 0
g(V1B, V2B, IC) = f2(V1B, V2B) + IC = 0
h(V1B, V2B, IC) = ((∂ f /∂V1) · (∂g/∂V2) − (∂ f /∂V2) · (∂g/∂V1))|V1B,V2B = 0

. (18)

The problem becomes that of solving three equations for three variables (V1B, V2B, IC).

Following are the summarized steps to solve (V1B, V2B, IC):

(1) Determine the transistor states at the bifurcation point.
(2) Formulate continuous f-, g-, and h-functions based on the transistor states from

step 1, where f and g the are the differential equations for the region of bifurcation
and h is given in (17).

(3) Solve f = 0 and h = 0 for (V1B, V2B) since f and h are independent of IC.
(4) Once the analytical form of (V1B, V2B) is known, solve g = 0 for IC .

The preceding steps are applicable to any transistor models including the BSIM4
model. However, obtaining an analytical solution with complex transistor models is
quite difficult. Hence, we use the simple L-1 model to demonstrate.

Solving for (V1B, V2B) and IC symbolically in the L-1 model is involved. For the case
in Figure 4(b), In1 = 0 and In2 = IC , the simplest analytical formula for IC without any
approximation is

IC = K4[(V1B − Vth4)2 − (V1B − V2B − Vth4)2], (19)

where V1B and V2B are the bifurcation point and can be expressed as follows.

V1B = V2B + Vth1 +
√

(Vdd − V2B − Vth1)2 − K2

K1
(V2B − Vth2)2 (20)

V2B = K1(Vdd + V1B − Vth1 − Vth4) − K2 · Vth2

2(K1 − K2)

−
√(

K1(Vdd + V1B − Vth1 − Vth4) − K2 · Vth2

2(K1 − K2)

)2

− K1(V1B − Vth1)(V1B − Vth4)
K1 − K2

.

(21)

As can be seen, V1B and V2B are cross-coupled. Solving them would involve a forth-
order polynomial, with polynomial roots having more than 10 symbolic terms.

Because the bifurcation point is always found in between V2saddle and Vth2 as illus-
trated in Figure 9(a), we simplified the expression for V2B by approximating V2B as a
weighted sum of V2saddle and Vth2 as: w.(Vsaddle − Vth2). The weighting factor w is chosen
by averaging over more than 30 different parameter settings. It was observed that
the weight factor for the exact value of V2B is within 8% of w = 2/3 as illustrated in
Figure 9(b). With that, we have

V2B = w · (V2saddle − Vth2) + Vth2 w = 2/3, (22)
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Fig. 9. (a) The plot of SRAM equilibrium points as In2 changes. Increasing the magnitude of In2 will make
the saddle (in region 2 when In2 = 0) collapse with the stable node (in region 3 when In2 = 0) and resulting
saddle node bifurcation in region 7; (b) illustration showing that the bifurcation point is approximately 2/3
of the height between V2saddle and Vth2 on the same phase portrait.

where V2saddle is

V2saddle =
√

K1(Vdd − Vth1) + √
K2Vth2√

K1 + √
K2

. (23)

Therefore, the critical current, IC can be expressed in terms of system parameters
by plugging the V1B and V2B expressions given in (20) and (22) into (19).

6. ANALYTICAL MODEL FOR THE CRITICAL TIME

The SRAM cell will flip if the cell state crosses the stability boundary. During the
operation of the SRAM cell, if a stable state is perturbed across that boundary, a state
flipping will result. For a perfectly symmetric SRAM cell, the stability boundary can
be simply defined by passing a 45◦ line through the origin on the phase portrait of the
SRAM cell. The stability boundary of the SRAM is also called separatrix because the
stability boundary separates two stability regions [Ho 2008; Zhang et al. 2006; Wang
et al. 2008; Jahinuzzaman et al. 2009; Song et al. 2013]. If the injected noise current is
higher than the critical current, the state of the cell will drive from the initial stability
and eventually go across the separatrix. The time it takes from the initial state to go
into the separatrix is called critical time (TC). After the trajectory across the separatrix,
the cell state will fall into the stability region of the other stable equilibrium and result
in a state flip.

An example is demonstrated in Figure 10. Assume the SRAM cell is symmetric; the
separatrix is the 45◦ line passing through the origin. In Figure 10(a), the cell state
initially starts at (0.9, 0) in region 3 (R3) at time 0. It enters region 7 (R7) at time t1
and enters region 7A (R7A) at time t2. The state will eventually reach the separatrix
in region 7B (R7B) at time t4. Once the state passes the separatrix, the state can never
be recovered even if the noise injections disappear. The total time taken for a state to
reach the separatrix is the critical time, which is t4 in this case.

Figure 10(b) shows the timing diagram for that cell state. The state transits through
many regions to flip the state. The rigorous way to find the critical time is to separately
find the time spent in each region then sum each together. However, this results in
symbolic expressions that are very cumbersome. The way we simplify the analytical
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Fig. 10. (a) The simulated phase portrait of a 65nm SRAM based on the S-H model. It shows a cell state
crosses the separatrix (45◦ line through the origin) and flips to the other side; (b) the timing diagram of the
cell state.

formula is based on the observation that the vector field strength around the bifurcation
point is weak so that the trajectory takes up more time in the region of bifurcation.
In this regard, it is efficient to focus on the time spent in the region of bifurcation to
arrive at a simple but physically meaningful expression for the critical time. In other
words, we find the expression of the time spent in the region of bifurcation to be the
critical time analytical formula. As demonstrated in Figure 10(b), the trajectory spends
most of the time in the region of bifurcation, region 7 (R7), as opposed to any other
regions. The analytical formula for TC is to solve the nonlinear ODE corresponding to
the transistor combination in region 7 (R7) that is mentioned in (12).

However, solving the cross-coupled nonlinear ODE in (12) is cumbersome. Mathe-
matically, there is no good technique to directly solve this type of ODE. The way we
bypass the nonlinearity is to linearize the ODE at the bifurcation point. In this regard,
we preserve the characteristics of the cell state trajectory around the bifurcation point
and simplify the complexity of the equation at the same time. By doing that, the system
can be modeled using two cross-coupled linear ODEs as shown. we have{

C1 · V̇1(t) = g11(V1 − V1B) + g12(V2 − V2B) − (In1(t) − f1(V1B, V2B))
C2 · V̇2(t) = g21(V1 − V1B) + g22(V2 − V2B) + (In2(t) + f2(V1B, V2B))

(24)

or {
V̇1(t) = a1 · V1(t) + b1 · V2(t) + I1(t)
V̇2(t) = a2 · V1(t) + b2 · V2(t) + I2(t)

, (25)

where [
g11 g12

g21 g22

]
=

[
∂ f1/∂V1 ∂ f1/∂V2

∂ f2/∂V1 ∂ f2/∂V2

]∣∣∣∣ V 1 = V 1B
V 2 = V 2B

, (26)

[
a1 b1

a2 b2

]
=

[
C1 0
0 C2

]−1

·
[

g11 g12

g21 g22

]
, (27)

[
I1(t)
I2(t)

]
=

[ −(a1 · V1B + b1 · V2B) − (In1(t) − IC1)/C1

−(a2 · V1B + b2 · V2B) + (In2(t) − IC2)/C2

]
, (28)
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and

IC1 = f1(V1B, V2B)
IC2 = − f2(V1B, V2B).

(29)

The coefficients (g11, g12 . . . , etc.) are functions of system parameters, and f are the
functions from (12). Since the Jacobian matrix (27) is singular at the bifurcation point,
the eigenvalues will be 0 and λ, and λ is a negative value. The singular Jacobian matrix
means to determine zero,

a1b2 − a2b1 = 0. (30)

Solving (25) yields the following general solution using the Laplace transform.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V1(t) = ( b2
λ

+ a1
λ

eλ·t) · V1(0) + (− b1
λ

+ b1
λ

eλ·t) · V2(0)

+ ( b2
λ

+ a1
λ

eλ·t) ∗ I1(t) + (− b1
λ

+ b1
λ

eλ·t) ∗ I2(t)

V2(t) = (−a2
λ

+ a2
λ

eλ·t) · V1(0) + (a1
λ

+ b2
λ

eλ·t) · V2(0)

+ (−a2
λ

+ a2
λ

eλ·t) ∗ I1(t) + (a1
λ

+ b2
λ

eλ·t) ∗ I2(t)

, (31)

where

λ = a1 + b2. (32)

The (V1(0), V2(0)) is the initial condition and (∗) is the convolution integral. In our
case, we treat the injected current as constant. Thus, the expression becomes{

V1(t) = AP1 + BP1 · eλt + CP1 · t
V2(t) = AP2 + BP2 · eλt + CP2 · t

, (33)

where

CP1 = −1
λ

(
b1(In2 − IC2)

C2
+ b2(In1 − IC1)

C1

)
, BP1 = V̇1(0) − C p1

λ
, AP1 = V1(0)−BP1, (34)

CP2 = 1
λ

(
a1(In2 − IC2)

C2
+ a2(In1 − IC1)

C1

)
, BP2 = V̇2(0) − C p2

λ
, AP2 = V2(0) − BP2, (35)

(V̇1(0), V̇2(0)) is acquired by evaluating (25) at t = 0. The trajectory in (33) will cross
the separatrix at

V1(TC) = V2(TC) (36)

since the separatrix is a 45◦ line through the origin.
We assume the exponential terms in (33) become negligible by the time the state

trajectory reaches the separatrix due to the exponential decay, so the formula for the
critical time TC is

TC = AP1 − AP2

CP2 − CP1
. (37)

And it leads to

TC = (−λ · (V1(0) − V2(0)) + (V̇1(0) − V̇2(0)) − (Cp1 − Cp2))
λ(Cp1 − Cp2)

. (38)

We eliminate (V̇1(0) − V̇2(0)) and (CP1 − CP2) on the numerator because together
they are close to cancelling each other and become insignificant. That simplifies the
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equation to

TC = (C2 · g11 + C1 · g22) · (V1(0) − V2(0))
(g11 + g12) · (In2 − IC2) + (g21 + g22) · (In1 − IC1)

. (39)

For the single-sided current injection case, we repeat the process from (24) to (39)
without considering the In1 injected current and the result will be the same as dropping
the term (In1 − IC1). Moreover, the critical time formula is derived as follows after
evaluating (39) at the initial condition (V1(0) = Vdd, V2(0) = 0) as

TC = (C2 · g11 + C1 · g22) · Vdd

(g11 + g12) · (In2 − IC2)
(40)

or

TC = (C2 · K1(V1B − V2B − Vth1) + C1 · K4(V1B − V2B − Vth4))
(K1(Vdd − V2B − Vth1) + K2(V2B − Vth2))

·
(

Vdd

In2 − IC2

)
, (41)

where the coefficients (g11, g12 . . . , etc.) are acquired from evaluating (26) in the region
of bifurcation. If full symmetry is assumed, the capacitances at each internal storage
node are the same, namely C = C1 = C2, and

TC = C ·
(

Vdd

In2 − IC

)
·
(

K1(V1B − V2B − Vth1) + K4(V1B − V2B − Vth4)
K1(Vdd − V2B − Vth1) + K2(V2B − Vth2)

)
. (42)

Furthermore, if taking the exponential terms in (33) into account, the critical time
equation can be simpler if we substitute the exponential term (eλt) by its Taylor expan-
sion 1 + λt. The formula becomes

TC = (AP1 − AP2) + (BP1 − BP2)
(CP2 − CP1) + λ · (BP2 − BP1)

= V1(0) − V2(0)
V̇1(0) − V̇2(0)

= V1(0) − V2(0)
In2−IC2

C2
+ In1−IC1

C1

, (43)

and equivalently

TC = C2 · Vdd

In2 − IC2
(44)

after evaluating (43) at the initial condition (V1(0) = Vdd, V2(0) = 0) and dropping the
(In1 − IC1) term. Eq. (44) is a good approximation if the injected current magnitude (In2)
is more than five times its critical current (IC2). If In2 goes beyond eight times of IC2, the
formula can be shown as TC = C .

2Vdd/In2, which is the same formula shown in [Zhang
et al. 2006].

The following are the summarized steps to solve critical time (TC):

(1) Solve the critical current and bifurcation point formula (V1B, V2B, IC).
(2) Formulate the linearized ODE at the bifurcation point.
(3) Solve the general solution and in particular the solution for the linearized ODE.
(4) Find the critical time TC by solving V1(TC) = V2(TC) for symmetrical designs.

In summary, the simplification was made to the dynamic system formulation at the
bifurcation point (linearization) to obtain two linear ODEs, from which an analytic
solution was found for the critical time (the time from the initial state to the stability
boundary).
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Table IV. The Parameter Values Used in
Shichman-Hodges Model on a 65nm SRAM

(VDD = 0.9)

NMOS PMOS
W 130nm 84.5nm
K 2.46e-4 (A/V 2) 5.33e-5 (A/V 2)
Vth 0.24 (V) 0.24 (V)

Fig. 11. (a) Critical current (IC ); (b) critical time (TC ) vs. Vdd.

7. SIMULATION

The analytical models developed in the previous sections provide insightful under-
standing of the SRAM dynamic stability. In this section, we use industrial commercial
software (Cadence) to investigate the SRAM dependency on design parameters and the
scaling trends of the SRAM dynamic stability.

The setup for this section will be comparing our analytical models with SPICE
simulation using Cadence Spectre with a 65nm BSIM4 PTM (Predictive Technology
Model) [Cao 2012]. We performed least-square fitting with the BSIM4 model data to
derive the level-1 device model parameters. Table IV shows the fitted level-1 device
model parameter values used for our nominal values.

7.1. Dependency on Design/Technology Parameters

The designers can simply plug in the key design and technology parameters to predict
important dynamic properties of a targeted SRAM design. By leveraging these analyti-
cal models, we systematically study the dependencies of the critical current and critical
time have on design and device parameters on supply voltage and transistor width.

7.1.1. Dependency on Supply Voltage (Vdd). The effect of supply voltage scaling is shown
in Figure 11(a). The analytical formula on critical current is shown to have a square
dependency on Vdd. As can be seen, our analytical model matches well with SPICE
simulation.

The scaling of the critical time as a function of Vdd is shown in Figure 11(b). Interest-
ingly, in the considered range of supply voltage, TC shows an approximate quadratic
dependency on Vdd. From a design perspective, this clearly shows that supply voltage
is a critical design knob for controlling SRAM dynamic stability.

7.1.2. Dependencies on Transistor Width (Wn/Wp). The NMOS/PMOS transistor width is
embedded in variable Kn/Kp as described in (11). Thus, the change of K reflects the
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Fig. 12. (a) Critical curent (IC ); (b) critical time (TC ) vs. NMOS/PMOS width scaling.

dependency on the width. The critical current is in the form of drain current (Ids)
of the NMOS transistor M4 in the linear region. In the read operation, the NMOS
transistor M4 plays a role of draining out the current from the access transistor, thus
pulling down the bit-line. As such, the injected current may be sufficiently large to
offset the pull-down current of M4 in order to create a state flip. This makes the critical
current have high dependency on Kn. Knowing this dependency on Kn also allows us
to straightforwardly determine the effects of the parameters on which Kn depends. For
example, increasing the NMOS channel width will increase Kn by the same factor. This
will proportionally increase the critical current.

As shown in Figure 12(a), the dependency on the PMOS width is rather weak com-
pared to the dependency on NMOS width, and smaller Wp leads to a reduced IC .

The critical time has a stronger dependency on Wn than on Wp as shown in
Figure 12(b). Practically speaking, increasing the channel width of the pull-down
NMOS transistors or decreasing Vthn will increase the pull-down strength and make
TC longer. As the cell state approaches the stability boundary, the NMOS transistor
(such as M4) acts to pull the cell state back and slows down the state flipping process.
As a result, a stronger pull-down NMOS transistor will increase the time needed to flip
the state.

7.2. Process Variations

Process variations can be classified into two main categories: intra-die variation (local
variation) and inter-die variation (global variation). In this section, we will analyze the
impacts of inter-die and intra-die variations and compare the results of the analytical
model and BSIM4 model.

7.2.1. Intra-Die Variations (Local Variations). Intra-die variations (local variations) are
variations within a single chip and can lead to a mismatch across different transis-
tors in the SRAM cell. To analyze intra-die variability, we first label the transistor
individually (M1 to M4) according to Figure 1 and apply perturbation to each of the
four transistor Vth’s and widths. Table V shows some simulation results. For this
mismatch analysis, the widths are varied by ±10% and Vths are varied by ±30%.

The first case (no. 1) in Table V is the nominal/symmetrical case. The case no. 2
and no. 3 are the cases in which the transistor widths have been perturbed off from
the nominal value. From the data in case nos. 2 and 3, IC does not get affected by
perturbing W3 in both the analytic and BSIM4 model. As Section 5 mentioned, the
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Table V. Few Cases to Demonstrate Inter-Die Variation (VDD = 0.9; TC is evaluated at
In = 120μA)

W1/ W3/ Vth1/ Vth3/ Analytic BSIM4
W2 W4 Vth2 Vth4 IC TC IC TC

# (nm) (nm) (V ) (V ) (uA) (ps) (uA) (ps)
1 84.5/130 84.5/130 0.24/0.24 0.24/0.24 70.46 14.15 70.94 14.48
2 92.5/117 84.5/143 0.24/0.24 0.24/0.24 78.93 18.27 79.46 18.20
3 92.95/117 101.4/143 0.24/0.24 0.24/0.24 78.93 18.27 79.46 18.66
4 84.5/130 84.5/130 0.21/0.25 0.25/0.21 76.89 16.26 76.44 16.33
5 92.95/117 76.05/143 0.21/0.25 0.25/0.21 86.14 21.67 85.49 20.81
6 92.95/117 76.05/143 0.18/0.3 0.3/0.18 99.5 36.76 95.95 29.08
7 76.05/143 92.95/117 0.3/0.18 0.18/0.3 47.21 9.24 48.26 9.87

Fig. 13. Critical curent (IC ) vs. (a) PMOS; (b) NMOS threshold voltages.

SRAM reaches instability (or the moment bifurcation happens) with the following
transistor combination: (M1:Linear; M2: Saturate; M3:Cut-off; M4:Linear). Since the
transistor M3 is in cut-off mode, changing M3 parameters (Vth3 and W3) does not
affect the IC . Because we simplified the analytic model by ignoring the switching time
other than the bifurcation region, there is no change on critical time (TC) on the analytic
model but a small change on BSIM4 critical time is observed.

The case no. 6 shows the best case, meaning that the perturbations give the highest
critical current (IC) out of all combinations of transistor width variation of ±10% and
Vths variation of ±30%. If we want IC to be higher, we need to make M1 and M4 stronger
and M2 and M3 weaker. To maintain an SRAM (V1 = Vdd, V2 = 0) not flipping its state,
we want strong M1 and week M2 to maintain the high voltage at V1 as well as weak M3
and strong M4 to drain the voltage at V2. Therefore, the best case would be: size up W1
and W4; size down W2 and W3; decrease Vth1 and Vth4; increase Vth2 and Vth3. Likewise,
to have the worst case wherein perturbations give the lowest critical current (IC), we
must do the best-case sizing in the opposite way. The case no. 7 shows the worst case.

7.2.2. Inter-Die Variations (Global Variations). Inter-die variations cause global cross-chip
variations. We examine the impacts of inter-die variations by varying NMOS/PMOS
threshold voltages (Vthn and Vthp) and transistor lengths (LN and LP) for different
transistors in the same way, and compare the results from the analytic model- and
BSIM4-based transistor-level simulation. Overall, the analytic model may not perfectly
fit the BSIM4-based simulation, but our analytic model shows a reasonable trend for
predicting the device variations.
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Fig. 14. Critical time (TC ) vs. NMOS/PMOS threshold voltages.

—Dependencies on Transistor Threshold Voltages. The dependencies on the PMOS and
NMOS threshold voltages are shown in Figure 13(a) and Figure 13(b). As we can see,
the critical current IC has an approximate linear relationship with Vthp around the
nominal parameter values, but the relationship with Vthn is more nonlinear when
compared with Vthp.

The critical time is more sensitive to the change of Vthn than Vthp. An interesting
phenomenon we observed is that changing Vthp does not significantly affect TC as
shown in Figure 14. When Vthp is varying ±30%, TC is changing less than ±1%.
Based on the SRAM state trajectory shown in Figure 10(a), the SRAM state transi-
tion from initial state to the stability boundary passes the following regions: region
3 → region 7 → region 7A → region 7B, and the corresponding transistor combi-
nations are: R3 (M1:Linear; M2:Cut-off; M3:Cut-off; M4:Linear) → R7 (M1:Linear;
M2:Saturate; M3:Cut-off; M4:Linear) → R7A (M1:Linear; M2:Saturate; M3:Cut-off;
M4:Saturate) → R7B (M1:Saturate; M2:Saturate; M3:Cut-off; M4:Saturate). Notice
that transistor M3 is in cut-off mode throughout the transition. Since only Vth1, and
Vth3 are PMOS threshold voltages, the change of TC is caused by Vth1,, not Vth3. From
the derived critical time equation in (37), the Vth1 appears in both the numerator
and the denominator. Since other parameters such as K and IC have low sensitivity
to Vth1, increasing Vth1 would not influence TC too much.

—Dependencies on the Channel Length. The dependencies on the NMOS/PMOS channel
length are shown in Figure 15(a). The critical current seems to be increased when the
transistor lengths decrease. It is also observed that IC is more sensitive to NMOS
channel length variation than on that of PMOS. On the other hand, as shown in
Figure 15(b), the variation of NMOS and PMOS channel length seems to have the
same influence on critical time.

7.3. Technology Trend Scaling

Lastly, we study how the critical current and critical time change with technology
scaling. We examined IC and TC in a wide range of technology nodes from 130nm down
to 22nm by using Predictive Technology Models (PTMs) [Cao 2012], and we plot the
results using SPICE simulation against the derived formula as shown in Figure 16. We
performed least-square fitting with the BSIM4 model data to derive the level-1 device
model parameters; we adopted suggested Vdd levels and transistor sizes from Ramesh
et al. [2011], Arnaud et al. [2003], Utsumi et al. [2005], Toh et al. [2010], Chang et al.
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Fig. 15. (a) Critical current (IC ); (b) critical time (TC ) vs. NMOS/PMOS channel lengths.

Fig. 16. (a) Critical current (IC ); (b) critical time (TC ) vs. various technology nodes (from 130nm to 22nm).

[2005], Wang et al. [2009], and Haran et al. [2008]. Table VI summarizes the fitted
results. The capacitance C is calculated by adding all the coupling capacitance at the
storing node. The KN, KP and supply voltage Vdd noticeably get smaller as the transistor
size reduces from one technology node to the next. Based on the derived analytical
formula, we expect a decrease in critical current as the transistor size goes smaller. As
we can see from Figure 16, in reference to SPICE simulation using the BSIM4 device
models, the derived analytical formulas are able to predict the trends of scaling.

7.4. The Computational Efficiency

We use a transistor-level circuit simulator, in this case Cadence Spectre, to find both
IC and TC as follows: IC is found by incrementing the injected current until an SRAM
state flip results, while TC is acquired by doing a transient simulation. On average,
it takes the Cadence Spectre simulator 0.777 seconds to compute the critical current
with a nano-amp precision. In addition, the average runtime for the critical time
is 48 milliseconds. In comparison, for our C-based analytical models, the average
runtime for IC is 0.25 microseconds and 0.02 microseconds for TC . As a result, the
overall runtime speedup of our models over transistor-level circuit simulation is about
6 orders of magnitude.
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Table VI. The Least-Square Fitted Parameter Values across the Technology Nodes (130nm–22nm)

nm WN /WP (nm) Vdd(V ) Vthn(V ) Vthp(V ) KN(A/V 2) KP (A/V 2) C(F)
130 260/169 1.3 0.2 0.2 2.48e-4 6.53e-5 1.0e-15
90 180/117 1 0.2 0.2 2.43e-4 5.43e-5 6.0e-16
65
45
32
22

130/84.5
90/58.5
64/41.6
44/28.6

0.9
0.9
0.85
0.8

0.18
0.18
0.16
0.16

0.18
0.18
0.16
0.16

1.95e-4
1.54e-4
1.23e-4
7.48e-5

4.59e-5
3.27e-5
2.76e-5
1.95e-5

3.7e-16
2.2e-16
1.3e-16
7.3e-17

Table VII. Summary on the Sensitivity of the System Parameters

Vdd Vthn Vthp KN KP

IC Very Strong Weak Very Weak Strong Weak
TC Very Strong Weak Very Weak Strong Weak

7.5. Summary

In summary, the dependencies of critical time and critical current on several key design
and technology parameters are evaluated. We also examine the effect of temperature
and process variation effect on IC and TC . Furthermore, we studied the IC and TC
dependencies on the system parameters shown in the equations in the Appendix. The
simplification is done by keeping the targeted parameter as a variable while plug-
ging nominal values of the other parameters into the equation. This provides us an
immediate understanding of the parametric dependency of the targeted parameter. A
short summary and key observation on sensitivity of system parameters with respect
to global variation are as follows.

(1) Both IC and TC have very high dependency on Vdd. They grow approximately
quadratically with Vdd.

(2) Both IC and TC also have high dependency on Kn. IC tends to increase linearly with
Kn, but TC increases more rapidly with Kn.

(3) Both IC and TC have low dependency on the rest of the parameters.
(4) Both IC and TC increase as Kn and Kp increase but decrease as Vthn and Vthp

increase.
(5) IC does not depend on C, but TC is highly dependent on the capacitance at stored

nodes.

The critical time is approximately proportional to 1/(In-IC). Clearly, a current injec-
tion must be greater than IC in order to flip the state. Intuitively, a larger injection
would make the cell to flip its state faster and the time to flip the state is inversely
proportional to the difference between the amplitude of the current noise and IC .

Furthermore, we rank the sensitivity of the system parameters (Vdd, Vthn/Vthp
and Kn/Kp) as summarized in Table VII. TC and IC both depend on the same sets
of device parameters such as transistor threshold voltages, which create correlation
between the two.

In addition, we generate 500 samples on a level-1 MOSFET transistor model and
on the derived analytical formula as shown in Figure 17. In the same figure, the
data marked with a triangle are some design points simulated using the BSIM4
model (42 samples). In each of the 500 random samples, the system parameter values
(Vdd, Vthn, Vthp, Wn, Wp, Ln, and Lp) are independently generated. Each system param-
eter follows the uniform distribution within ±30% of its nominal value. Based on the
observation in Figure 17, critical time and critical current are highly correlated. By
comparing the results with the design choice in BSIM4 marked in triangle in Figure 17
(42 samples; 6 samples for each parameter at ±10%, ±20, and ±30% with others re-
main at the nominal value; there are 7 parameters, so 6 × 7 = 42), the 500 analytical
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Fig. 17. Critical current (TC ) vs. critical current (IC ) (500 samples).

data fit the BSIM4 data well. Therefore, the analytical formula is able to capture the
IC-TC relationship in BSIM4.

8. CONCLUSION

In conclusion, this article explores an analytical approach to the evaluation of dynamic
stability analysis for SRAMs. The concepts of critical current and critical time, based on
theoretically rigorous stability analysis of the dynamic behaviors of SRAM cells, provide
physical characterizations of SRAM stability. While simple device models have been
employed to derive the analytical dynamic stability models, our experimental results
show that the models can provide good prediction of various parametric dependencies of
dynamic stability and its technology scaling trends. Furthermore, the analytic requires
less computational power. Compared with the transistor-level simulation, the derived
analytic provides a speedup of six orders of magnitude. Lastly, the derived analytical
models are also able to provide useful design insights and aid the designers to perform
SRAM design optimization while considering the key dynamic stability property.
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