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Deciphering nutritional stress responses via knowledge-enriched 
transcriptomics for microbial engineering 
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A B S T R A C T   

Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and 
biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex 
stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We 
computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics 
across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach 
led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how 
trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress re-
sponses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying 
the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have 
showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the 
transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering 
strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechno-
logical applications.   

1. Introduction 

Understanding microorganisms’ nutritional requirements and re-
sponses is a critical component of microbiology, essential for their 
growth and functionality. The nutrient environment has been shown to 
significantly impact numerous cellular responses (Roszak and Colwell, 
1987; Wang and Levin, 2009). These influences extend to the state of the 
transcriptional regulatory network (TRN), thereby affecting metabolic 
shifts (Balakrishnan et al., 2021; Basan et al., 2020; Erickson et al., 
2017). Furthermore, these nutritional factors can trigger stringent 
response activation (Irving et al., 2021), alter pathogenicity (Eisenreich 
et al., 2010), influence antibiotic resistance (Martínez and Rojo, 2011), 
and even modify interspecies interactions (Bajic and Sanchez, 2020). 

The emergence of genome-scale science, with available complete 
genome-wide profiling methods, allows the determination of the whole 
molecular state underlying an observed phenotypic state. In particular, 
after purification mRNA methods were established for bacteria 
(Croucher et al., 2009; Croucher and Thomson, 2010), a large number of 
transcriptomic profiles have become available in the public domain 

(Barrett et al., 2011; Leinonen et al., 2011). As transcriptomic 
compendia have grown, source signal extraction algorithms have been 
applied to identify independently modulated sets of genes (called iMo-
dulons). Independent component analysis (ICA), a machine learning 
method applied to transcriptomic compendia for various bacteria, has 
proved to be particularly effective (Saelens et al., 2018) for identifying 
quantitative and strain-specific TRNs (Rychel et al., 2021; Sastry et al., 
2019). iModulons are big data analogs of regulons, and mapping of 
known regulatory and molecular biology information has 
knowledge-enriched the ICA signals, leading to a deep understanding of 
the modularization of TRNs and determination of their activity states 
(Lamoureux et al., 2023; Rychel et al., 2021). 

We now have iModulons that ‘measure’ the activity states of 100s of 
cellular functions. These functions include metabolism, proteostasis, 
various stresses, two-component systems (Choudhary et al., 2020), 
antibiotic response (Rajput et al., 2022; Sastry et al., 2021a), adapta-
tions to stresses (Rychel et al., 2023) and activation of latent phages 
(Poudel et al., 2020). The activity states of iModulons are a direct 
measure of the functional state of the TRN and what the cell is sensing 
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and responding to in a particular environment. The abundance of 
transcriptomic data provides unprecedented opportunities to investigate 
and comprehend the intricate interactions across numerous organisms 
(Rychel et al., 2021). Notably, Vibrio natriegens (Vn), which has emerged 
as a novel chassis organism for molecular cloning and biotechnological 
applications (Thoma and Blombach, 2021), possesses the most extensive 
collection of single nutrient perturbation samples in minimal media 
among the ten species with available iModulon database. This collection 
spans a diverse range of substrates and stress conditions (Supplementary 
Figs. 1a and b). This extensive dataset enables a thorough investigation 
of cellular responses to various nutrient perturbations. 

Here, by utilizing a comprehensive transcriptomic compendium for 
Vn under diverse nutrient conditions, we delve into the activity states of 
iModulons to decode the bacterium’s responses to varying nutritional 
landscapes. Our investigation transcends traditional growth-centric ap-
proaches, offering a holistic view of the interplay between nutrient en-
vironments and the TRN. The insights gained deepen our understanding 
of microbial nutrition and stress responses and lay the groundwork for 
leveraging this knowledge in microbial research and biotechnology, 
guiding nutrient selection and informing genome engineering strategies. 

2. Results 

2.1. Modularization of the transcriptome to evaluate cellular responses to 
nutrients 

Investigating Vn’s cellular responses to media composition changes, 
we focus on iModulons related to carbon utilization, trace elements, 
stress responses, and uncharacterized iModulons to establish a 
comprehensive framework for evaluating the effects of various nutrients 
on cellular processes (Fig. 1a). 

We expanded the previous natPRECISE104 database (Shin et al., 
2023) to natPRECISE148 by adding samples from the use of diverse 
substrates and stress conditions and analyzed using an ICA pipeline 
(Sastry et al., 2021b), resulting in 64 iModulons that enhance our in-
sights into bacterial responses to nutritional and stress factors (Sup-
plementary Note and Supplementary Fig. 1). Each iModulon was 
assigned to one of 11 functional groups, providing a systems-level 
perspective (Fig. 1b and Supplementary Fig. 1h). Comparing the 64 
iModulons generated in this study with the 45 iModulons from our 
previous work (Shin et al., 2023), we found a substantial overlap, with 
84% of the previous iModulons (38 out of 45) showing a significant 
correlation (Pearson’s R > 0.5, P-value <0.0001) with the newly iden-
tified ones. This overlap effectively maps previously characterized reg-
ulatory signals to our latest findings (Supplementary Figs. 2a and b). 
This overlap suggests that the TRN structure remains robust to adding 
new data (Sastry et al., 2019). Despite its relatively small size compared 
to transcriptomic compendium for other bacterial species (Supplemen-
tary Fig. 1a), natPRECISE148 effectively captures unique catabolic 
iModulons (Supplementary Figs. 2c,d,e). The updated natPRECISE148 
compendium reveals an increase in most iModulon categories, including 
eight new catabolic processes, four stress responses, four element ho-
meostasis, two amino acid biosynthesis, two nitrogen and energy re-
sponses, and two natural competence, demonstrating comprehensive 
coverage of responses to changes in media composition (Supplementary 
Fig. 2a). 

Using these 64 iModulons, this study covers a spectrum of tran-
scriptional responses to diverse nutrient conditions (Fig. 1a). Our study 
covers various aspects of Vn nutrition, including nutrient uptake and 
catabolism, the involvement of metal ions as cofactors, their influence 
on protein synthesis and cell growth, and an array of specific stress re-
sponses. These stress responses include osmolarity and oxidative stress, 
challenges related to low glycolytic flux, and the activation of prophage 
genes. Condition-dependent iModulon activity levels allow us to decode 
intricate nutrient-cell response interactions and associated regulatory 
mechanisms. 

2.2. Transcriptomic responses to substrates reveal TTT- and TRAP-related 
functions 

We analyzed 15 substrate utilization iModulons in Vn across 21 
substrates (Fig. 2a). Most iModulons were activated under their specific 
growth condition (the highlighted boxes with a thick green border, 
Fig. 2a). Additionally, multiple substrates activated unexpected 
iModulons. 

Notably, the GalR and AGL iModulons, related to galactose and 
glycogen catabolism, showed a correlation (Pearson’s R = 0.62, P-value 
<0.0001), indicating potential co-regulation (Fig. 2b and Supplemen-
tary Fig. 3a). Among the seven putative transcription factors, the one 
most strongly correlated with these iModulons is PN96_RS22690 
(Pearson’s R = 0.69, P-value <0.0001) suggesting that it could poten-
tially regulate AGL iModulons (Supplementary Fig. 3b). 

These experiments identified the TTT (Transporters and Tripartite 
Tricarboxylate Transporters) and TRAP (Tripartite ATP-Independent 
Periplasmic) iModulons. These systems, transporting small organic 
molecules via ion-electrochemical gradients (Mulligan et al., 2011; Rosa 
et al., 2018), exhibit varied substrate specificities (Herrou et al., 2007; 
Rosa et al., 2018; Rucktooa et al., 2007). Despite their distinct functional 
annotations, they share a common structural configuration for substrate 
binding, involving small (tctC for TTT iM; dctP for TRAP iM; RS19570 for 
GntR iM) and large subunits (tctA and tctB for TTT iM; dctM and dctQ for 
TRAP iM; RS19560 and RS19565 for GntR iM) that form the trans-
membrane channel (Fig. 2c and d). The substrate-binding protein 
component, which moves freely within the periplasm, is responsible for 
varied substrate binding and its delivery to the transmembrane com-
ponents, enabling efficient transport across the membrane using sodium 
ion gradients. 

The GntR iModulon also contains other TRAP genes with varying 
amino acid similarities (Fig. 2d). Interestingly, the TTT and TRAP 
iModulons are highly activated under growth on more than eight sub-
strates, suggesting their pleiotropic role in the uptake of a broad range of 
substrates (Fig. 2a). 

The TTT and TRAP iModulons, unique to Vn (Supplementary 
Fig. 2d), were further investigated alongside uncharacterized trans-
porters in the GalR and Rhamnose iModulons. Comparing growth rates 
of knockout (KO) and WT (wild-type) strains revealed their roles in 
carbon utilization (Fig. 2e and Supplementary Fig. 3c). KO strains of TTT 
and TRAP iModulons exhibited significantly diminished growth rates 
(<0.85-fold, P-value <0.031) under four and seven carbon conditions, 
respectively. These findings suggest that the TTT and TRAP iModulons 
play a role in the uptake of certain carbon sources. 

Interestingly, the deletion of TTT and TRAP iModulons resulted in 
not only decreased growth rates under certain conditions, but also 
enhanced growth with specific carbon sources such as trehalose, 
glycogen, arabinose, glucose, and GlcNAc (Fig. 2e). Given the constant 
expression of these transporters under the specified conditions (Sup-
plementary Fig. 4a), this dual effect suggests that while these iModulons 
are important for the transportation of diverse substrates, their activity 
can occasionally impose an energetic burden, possibly by disrupting the 
optimal sodium ion gradient (Coppens et al., 2023). The alteration of 
this gradient, which is crucial for efficient ATP synthesis, highlights the 
complex relationship between transporter activity, ion homeostasis, and 
metabolic efficiency in Vn. 

The KO strains of GntR and TRAP iModulons demonstrated distinct 
nutrient impacts, excluding fumarate, highlighting the substrate speci-
ficity differences between these two TRAP genes (Fig. 2e). Deletion of 
uncharacterized transporter genes (RS09130–RS09145) in the GalR 
iModulon led to a significant decrease in growth rate (<0.44-fold; P- 
value <0.00015) under galactose and cellobiose, further emphasizing 
the role of GalR iModulon in cellobiose utilization. Notably, rhamnose 
utilization highly depended on the uncharacterized transporter 
(RS17440) in the Rhamnose iModulon and on both TTT and TRAP 
iModulons. We further corroborated that the growth rates did not 
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significantly deviate from those of the WT strain (0.91–1.34-folds, P- 
value >0.05) by supplementing each mutant with the expression of the 
deleted genes on a plasmid, as depicted in Supplementary Fig. 4b. The 
only exception to this was the ΔTRAP GntR iM strain (0.87-fold, P-value 
= 0.00017) under gluconate conditions. While our study provides in-
sights into certain functions of these transporters, further extensive 
research is necessary to fully understand the unique mechanisms and 
roles of uncharacterized transporters within the GalR iModulon and 
Rhamnose iModulon. 

Thus, iModularization of transcriptomic responses showed expected 
primary catabolic responses, revealed novel pleiotropic uptake mecha-
nisms, and showed substrate-specific activation of several cellular pro-
cesses. These substrate-specific responses were further delineated in the 
next section. 

2.3. iModulon activities reveal interactions of trace elements with 
substrates 

We examined the influence of trace elements in the medium on 
iModulon activity using various substrates in M9Na media, formulated 
without any supplementary trace element solutions. This approach 
revealed the significance of specific trace elements with specific sub-
strates. Among seven iModulons associated with trace elements ho-
meostasis (rows in Fig. 3a), the Zur iModulon, associated with Zn2+

transport, showed notable activation on many substrates, such as fruc-
tose and GlcNAc. In the assessment of trace element response, we noted 
distinct activities in the Zur and Fur2 iModulons across different repli-
cates, particularly evident with substrates such as fructose and GlcNAc 
(Fig. 3a). These variations may reflect rapid transcriptional responses to 

Fig. 1. Determining bacterial nutrition through deep transcriptome analysis. (a) The conceptual framework of this study. A matrix of detailed stress and nutrient 
transcriptomic responses can be evaluated for a large number of nutrient perturbations. The individual responses are characterized by the condition-dependent 
activity level of independently modulated sets of genes called iModulons. (b) Comprehensive map of the 46 iModulons identified using the natPRECISE148 com-
pendium. Each iModulon number is represented with gene names enclosed in a gray box, indicating their association with a transcriptional regulator or cellular 
function. If the removal of TTT and TRAP significantly influences the growth rate under a specific carbon source (Fig. 2e), the corresponding TTT and/or TRAP 
iModulons are indicated in each respective carbon uptake pathway with a box. The shades of gray represent the genes contained in each iModulon and are darker 
when the genes in each iModulon overlap (e.g., Enterobactin iM). For detailed information on each iModulon number, please explore further on the iModulonDB 
website (https://www.imodulondb.org/) (Rychel et al., 2021). This visualization excludes certain iModulons for clarity, namely three categorized as Null, nine as 
Uncharacterized, two as Prophage, as well as the specific iModulons Biofilm, FNR, HapR, and PhrR. 

Fig. 2. Transcriptomic responses of V. natriegens to commonly used substrates. (a) The activity of 15 identified transcriptomic responses (rows) to various carbon 
sources (columns). The conservation of these iModulons was determined by comparing them with iModulons from other species (Supplementary Fig. 2d). Green 
boxes highlight the anticipated pairing of a substrate with its primary iModulon counterpart. The TTT and TRAP iModulons were previously unknown and discovered 
in this study. (b) Relationship between the activity levels of the AGL and GalR iModulons, representing galactose and glycogen catabolism, respectively. The 
Pearson’s correlation coefficient (R) and the corresponding P-values are shown. (c) iModulon gene composition, described through gene weightings for the TTT, 
TRAP, and GntT iModulons and their genome position. The horizontal dashed lines indicate a cut-off threshold for gene weights. OM, outer membrane; IM, inner 
membrane. (d) Comparison between the TTT and TRAP iModulons within other TRAP genes in GntR iModulon. Connections between homologous genes are gray, 
with percentage sequence identity noted on the connecting lines. (e) Evaluation of the function of TTT iModulon, TRAP iModulon, and unknown transporters. To 
determine their role in growth, all genes within the TTT and TRAP iModulons, as well as selected gene members of the GntR, GalR, and Rhamnose iModulons, were 
deleted as detailed in Supplementary Fig. 3c. Each growth condition utilized a 15 mM concentration of the respective carbon source in M9Na minimal medium, with 
the exception of ethanol and formate conditions. Due to the inability of the wild-type (WT) strains to grow in the M9Na medium with the same carbon source 
concentration in ethanol and formate conditions, we instead used 1% wt/vol ethanol in M9Na and 40 g/L of sodium formate in LBv2. These conditions were 
consistent with those used in RNA-Seq generation conditions (Tian et al., 2023). The specific growth rates of these strains under various carbon conditions were 
measured, and the functions of deleted genes were inferred from the average relative growth rate (Relative GR) compared to the WT strain. 
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the minimal trace-element concentrations present in the M9Na medium, 
a phenomenon consistent with the swift bacterial adaptation to fluctu-
ations in metal ion availability (Miano et al., 2023). 

Further analysis showed correlations between the seven iModulons 
(Fig. 3b). The Zur iModulon exhibited low correlation with the other six 
(Pearson’s R < 0.37, P-value <0.0001). A strong correlation (Pearson’s 
R = 0.80, P-value <0.0001) was observed between the Enterobactin and 
the Fur-1 iModulons, which was anticipated due to the overlap in their 
gene membership (Fig. 1b). Moreover, the Fur-1 iModulon showed a 
moderate correlation (Pearson’s R = 0.53, P-value <0.0001) with the 
Thiosulfate iModulon activity. This indicates that Fur regulation may 
also affect thiosulfate uptake, creating a link between iron homeostasis 
and sulfur metabolism. 

After supplementing M9Na media with ZnCl2 at concentrations of 0, 
1, and 3 μM—a typical range for trace element solutions (Soma et al., 
2023) —we observed the effects on both substrates that activate the Zur 
iModulon and those that do not, assessing changes in growth rate. This 
approach revealed Zur iModulon activation’s relationship with zinc ion 
levels, clarifying Zn2+ regulation under various growth conditions 
(Fig. 3c and d). This result indicates Zur iModulon’s key role in Zn+2 

regulation under these growth conditions. The growth responses to zinc 
supplementation were categorized as enhanced, neutral, and inhibited. 
Interestingly, significant improvements in growth rate (P-value 
<0.0195, excepting for trehalose) and maximum OD600 (P-value 
<0.041) were observed in GlcNAc, glycerol, sucrose, and trehalose 
conditions (Fig. 3c and Supplementary Fig. 3d). This enhancement in-
dicates a Zn2+ dependency in pathways, such as GlcNAc catabolism 
involving the zinc-dependent NagA enzyme (Ferreira et al., 2006), 
contrasting with the non-zinc-dependent NagB enzyme, showing neutral 
growth response. Similar Zn2 dependencies in glycerol (Ruzheinikov 
et al., 2001) and trehalose (Schothorst et al., 2017) catabolic enzymes in 

other species suggest a comparable requirement for Vn (Supplementary 
Fig. 3e). 

Conversely, Zn2+ addition inhibited growth in fructose, glycogen, 
and fumarate conditions, evidenced by a decrease in growth rate 
(fructose, P-value <2.1 × 10− 5) or maximum OD600 values (glycogen 
and fumarate, P-value <3.4 × 10− 4) (Fig. 3c and Supplementary Fig. 3f). 
This inhibition suggests that Zn2+ negatively affected enzymes such as 
fructose kinase (Nocek et al., 2011) and glycogen debranching pul-
lulanase (Asha et al., 2013; Bertoldo et al., 1999; Niehaus et al., 2000; 
Wangpaiboon et al., 2023; Wei et al., 2015). Furthermore, the identifi-
cation of a putative inorganic ion transporter within the Zur iModulon 
(Supplementary Fig. 3g), a feature not observed in zinc-related iModu-
lons in other species (Supplementary Fig. 3h), suggests a dual func-
tionality in both zinc uptake and export, similar to that observed in 
Salmonella (Osman et al., 2017). In the Pseudomonas putida iModulon 
database (Lim et al., 2022; Rychel et al., 2021), a deactivation of Zur 
iModulon under the fructose indicates a potential Zn2+-mediated regu-
latory requirement for the FruR iModulon’s activities (Nocek et al., 
2011). 

Thus, iModulon analysis related to trace elements highlights the 
critical influence of trace elements in affecting iModulon activity and 
impacting bacterial growth across different substrates. Trace elemental 
composition of media may thus need alteration depending on the sub-
strate for optimal and stress free growth. 

2.4. iModulon activity suggests an impact of nutrients on membrane and 
prophage-related stresses 

The expansion of the natPRECISE148 database, which includes RNA- 
Seq stress conditions such as temperature (25 ◦C and 40 ◦C), oxidative 
stress (0–0.4 mM of H2O2 in WT and VN-ALE-1 strains), and osmolarity 

Fig. 3. Trace-element-related iModulon activity changes and cell growth variations across different substrates. (a) The activity of seven element homeostasis 
iModulons (rows) under various nutrient conditions (columns). (b) Activity correlation among the seven iModulons. (c, d) Growth profiles in various carbon con-
ditions with ZnCl2 treatment. For this, (c) 8 carbon sources known to induce Zur iModulon and (d) 6 carbon sources that do not induce Zur iModulon were utilized. 
Each condition uses a 15 mM concentration of the respective carbon source in M9Na minimal media. Data are presented as mean ± SD from four biologically in-
dependent samples. 
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stress (0–800 mM of NaCl), has facilitated the identification of previ-
ously undiscovered stress-related iModulons, such as CSP, OxyR, Low- 
osmolarity, and Ectoine iModulons (Supplementary Fig. 2b). 

The CSP and OxyR iModulons are responsible for the expression of 
cold-shock proteins and genes including dps, katG, ahpC, and ahpF that 
comprise the oxyR regulon, respectively (Supplementary Fig. 5). The 
CSP iModulon is deactivated under the 40 ◦C temperature condition 
(Supplementary Fig. 5a). The OxyR iModulon shows significant activa-
tion as a result of a mutated oxyR in the VN-ALE-1 strain, as illustrated in 
Supplementary Fig. 5b. This strain has adaptively evolved under H2O2 
conditions (Anand et al., 2020). Conversely, the weak OxyR iModulon 
activation in the WT strain under H2O2 conditions may indicate a po-
tential reason for the susceptibility of Vn to oxidative stress (Oliver, 
2010; Weinstock et al., 2016). 

In relation to membrane-associated stress, we identified two unique 
osmolarity-related iModulons: the Low-osmolarity and the Ectoine 
iModulons, responsible for putrescine and ectoine synthesis, 

respectively (Supplementary Figs. 6a and b). The Low-osmolarity iMo-
dulon, enhancing membrane stability, activates under low salt condi-
tions, whereas the Ectoine iModulon, an osmoprotectant, activates 
under high salt conditions (iModulon activity >30). KO strains for these 
iModulons, subjected to varied salt concentrations, revealed their 
crucial role in osmotic stress adaptation, as indicated by changes in 
growth rates (Supplementary Fig. 6c). 

Based on these findings, we employed nine stress-related iModulons 
to categorize substrates as stress-free (SF) or stress-inducing (SI) 
(Fig. 4a). While SI substrates typically exhibited lower growth rates 
compared to SF substrates (<0.63-fold, P-value <0.0001), an exception 
was noted in a ‘High’ group—comprising glycogen, succinate, and 
ribose—which did not follow this trend, maintaining relatively higher 
growth rates (1.17-fold, P-value = 0.004) (Fig. 4b). 

In addition, RpoE, Ribosome, and Chaperone iModulons responded 
to large changes in salt concentration (Supplementary Figs. 6d,e,f,g). 
Acetate and rhamnose notably induced these iModulons (Fig. 4a) due to 

Fig. 4. Nutrients affect activity levels of Ribosome and nine stress-related iModulons and impact proteostasis. (a) The activity of nine stress-related and 
Ribosome iModulons (rows) under various substrates (columns). iModulon activities >10 in rich and minimal media are summarized in column and row plots 
associated with the heat map. Nutrients are classified as stress-free (SF) or stress-inducing (SI) based on the stress-iModulon activity that they induce. (b) Specific 
growth rate comparison between SF and SI substrates. SI carbons were classified into three groups based on their growth rate, ranging from “High” to “Low.” 
Different color codes represent data from each substrate. WT V. natriegens were grown in 96-well plates, with OD600 measured using a Tecan Infinite 200Pro 
microplate reader. Each condition involved a 15 mM concentration of the respective carbon source in M9Na minimal media. The statistical significance was 
determined using Student’s t-test (**P < 0.01; ****P < 0.0001). (c) Correlation between Chaperone and Ribosome iModulon activities. (d) Comparison of relative 
growth rate, relative GFP rates, maximum OD600, and maximum cellular GFP signals (GFP/OD600) in various carbon conditions. Each nutrient condition was 
compared to the glucose sample for relative growth and relative GFP rates. A dashed line represents the level of the glucose 1 mM IPTG sample. Data are presented as 
mean ± SD from four biological replicates. The statistical significance for each carbon condition, in comparison to the glucose sample with the same IPTG con-
centration, was determined using Student’s t-test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001), except for the relative growth rate graph. (e) Fluorescence 
and growth profile in LBv2 and BHIN Media. V. natriegens carrying Ptac-GFP plasmid grown in black/clear 96-well plates. GFP signal and OD600 measured. Cellular 
GFP signals (GFP/OD600) were normalized to peak values. Mean ± SD from three independent samples. 
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the use of sodium acetate raising sodium levels in the medium (250 mM 
of M9Na +120 mM of Na+ = 370 mM; Supplementary Fig. 6b) and 
rhamnose causing low salt stress through sodium ion-gradient depen-
dent uptake via TTT and TRAP iModulons (Supplementary Fig. 6h). The 
RpoE iModulon’s response to extracytoplasmic stress in glycogen or 
ethanol conditions aligns with other species’ findings (Harty et al., 
2019). 

Furthermore, different substrates can activate Prophage-1 and 
Prophage-2 iModulons (iModulon activity >10, Fig. 4a and Supple-
mentary Fig. 6i). This observation suggests that specific nutrients can 
elicit prophage activation, a process that can be both stressful and 
resource-intensive for bacteria (Carey et al., 2019; Derdouri et al., 
2023). 

These results reveal intricate relationships between substrates and 
stresses that they inflict on the host. These relationships can be detailed 
mechanistically in future studies. 

2.5. Chaperone activation highlights protein expression and stress 
response dependence on media composition 

We examined the activities of the Chaperone iModulon, and 
observed that cellular stress responses, including low salt conditions, 
stimulate its activity (Supplementary Figs. 6g and j). When we compared 
the activity of the Chaperone iModulon with that of 10 stress iModulons 
(Supplementary Fig. 6j), we found significant correlations with not only 
the Ribosome iModulon (Pearson’s R < 0.51, P-value <0.0001) but also 
the low-osmolarity iModulon (Pearson’s R < 0.35, P-value <0.0001). 
The correlation between Chaperone and Ribosome iModulon activities 
(Fig. 4c) indicated that certain conditions, such as rhamnose or ribose, 
might 1) challenge protein folding (Voth and Jakob, 2017), or 2) 
necessitate an increase in ribosome concentration, subsequently influ-
encing the rate of protein synthesis in response to the intracellular 
nutritional state (Bosdriesz et al., 2015; Hidalgo et al., 2022). 

To assess how nutrients affect proteostasis, we measured GFP protein 
expression across various substrates in M9Na media (Fig. 4d and Sup-
plementary Fig. 7). Ribose showed a distinct pattern (Fig. 4d), with 
rhamnose activating Chaperone and Ribosome iModulons, this appeared 
to be an amplification due to the low-salt stress associated with rham-
nose uptake (Fig. 4c and Supplementary Figs. 6e,f,g). Ribose, while not 
enhancing growth as rapidly as glucose (0.65-fold, P-value = 1.1 ×
10− 9), showed the highest levels of relative fluorescence units (RFU; 1.9- 
fold, P-value = 7.7 × 10− 6) and RFU normalized by OD600 (1.2-fold, P- 
value = 0.027), indicating a significant increase in protein production 
within cells. Interestingly, ribose exhibited robust protein expression 
even without inducers (2.3-fold, P-value = 2.8 × 10− 5, compared to 
glucose) (Fig. 4d), suggesting that it may activate a stress response that 
enhances translation more effectively than other carbons. Therefore, 
choosing substrates activating Ribosome and Chaperone iModulons 
might enhance protein production. 

Additionally, our analysis revealed that the complex media BHIN 
(Brain Heart Infusion + 1.5% wt/vol NaCl) triggered several stress 
iModulons (Fig. 4a). This led to lower growth rates (0.5-fold, P-value =
1.5 × 10− 8, Supplementary Fig. 6k), slower rates of RFU increase (0.7- 
fold, P-value = 0.048), and lower maximum RFU/OD600 levels (0.41- 
fold, P-value = 0.0005) versus LBv2 medium (Fig. 4e). These findings 
suggest that BHIN might not be ideal for Vn cultivation. 

Thus, substrates can induce specific stresses, with substrate choice 
impacting translation and protein production. This shows that substrate 
selection is crucialin bacterial cultivation and strain development, 
influencing growth and protein synthesis efficiency. 

2.6. Nutrients affect acetate iModulon activity that is associated with 
glycolytic flux 

We observed striking behavior of the Acetate iModulon across 
various substrates (Fig. 2a and 4a), prompting a deeper analysis. The 

Acetate iModulon, involved in both carbon utilization and stress 
response, displayed patterns indicative of its involvement in low 
glycolytic flux states (Millard et al., 2023). This finding indicate the 
Acetate iModulon (Supplementary Fig. 8a) could be a biomarker for low 
flux glycolytic states (Fig. 5a). 

In Escherichia coli, acetate metabolism involves phospho-
transacetylase (Pta) and acetate kinase (Ack), with the acetate CoA- 
synthetase (AcsA) gene playing a pivotal role (Millard et al., 2021) 
(Fig. 5a). AcsA crucially converts acetate into acetyl-CoA, essential 
forthe acetate switch process. Similarly, the Acetate iModulon in Vn 
includes the Acs enzyme, the acetate symporter (ActP), acyl-CoA syn-
thetase, methylisocitrate lyase, and eight additional proteins with 
functions to be elucidated. Bacteria typically excrete acetate when uti-
lizing standard carbon sources, like sugars, then re-uptake it when 
depleted, particularly in the stationary phase (Wolfe, 2005) (Supple-
mentary Fig. 8b). SF substrates that promote high glycolytic flux tend to 
lead to acetate secretion, as acetate inhibits both the glycolytic pathway 
and the TCA cycle (Millard et al., 2021). Conversely, poor carbon 
sources inducing low glycolytic flux activate the Acetate iModulon, 
facilitating acetate reuse or limiting secretion (Millard et al., 2023). For 
instance, E. coli growing on glycerol, a poor carbon source, employs a 
“carbon source foraging strategy”, avoiding acetate production (Martí-
nez-Gómez et al., 2012). 

To further investigate this effect, we added 5 mM acetate (Millard 
et al., 2023) to various substrates in M9Na. This addition generally 
reduced growth rate (0.69–0.88-fold, P-value <0.0001) in SF carbon 
samples, except for glucosamine, but improved growth rate under SI 
conditions (1.15–5.51-fold, P-value = 0.0002) (Fig. 5b and Supple-
mentary Fig. 8c). Rhamnose and ribose, not inducing the Acetate iMo-
dulon, exhibited expected growth patterns. KO studies of the Acetate 
iModulon gene (RS14410–RS14420) indicated improved growth rate in 
SF carbons (1.11–1.28-fold, P-value <0.0001, except for gluconate and 
glucosamine) but reduced growth rate in SI conditions (0–0.89-fold, 
P-value <0.0001, except for ribose and succinate) (Fig. 5c and Supple-
mentary Fig. 8d). Notably, both acetate and, unexpectedly, galactose 
significantly depend on the Acetate iModulon (no growth with ΔAcetate 
iM, P-value <0.0001), underscoring its importance (Fig. 5d). 

Despite the limited availability of single nutrient perturbation sam-
ples (Supplementary Fig. 1a), consistent patterns in the Acetate iMo-
dulon have been identified across species in the iModulonDB (Rychel 
et al., 2021). In the Pseudomonas putida iModulon database, certain 
carbon sources such as ferulate, citrate, coumarate, fructose, and serine, 
and specific genomic modifications (Bentley et al., 2020) were found to 
activate the starvation-related BkdR iModulon (Lim et al., 2022) along 
with the Acetate iModulon. The simultaneous activation suggests a 
significant correlation (Pearson’s R = 0.57, P-value <0.001) between 
BkdR and Acetate iModulons (Supplementary Fig. 8e). Similarly, in 
E. coli, the Acetate iModulon is activated by carbon sources such as 
fructose, acetate, and glycerol, highlighting their limited role as 
general-use carbon sources without inducing acetate secretion (Chang 
et al., 1999; Farmer and Liao, 1997; Martínez-Gómez et al., 2012). 

Furthermore, we identified a novel interaction between the TTT and 
TRAP iModulons and SI substrates. These iModulons were significantly 
activated under SI conditions (average 21.1-fold for TTT iModulon and 
381.8-fold for TRAP iModulon, P-value <0.001) (Fig. 5e). Consequently, 
there is a correlation between Acetate iModulon activity and the TTT 
and TRAP iModulons (Fig. 5f). Comparisons revealed that the TRAP 
iModulon activation is growth phage-independent, unlike the TTT 
iModulon, and uncorrelate with the GntR iModulon’s different TRAP 
genes (Fig. 5f). Overall, our findings provide insights into cells adapta-
tion to poor carbon sources via the TTT/TRAP and Acetate iModulons 
(Supplementary Fig. 8f). 

In summary, the Acetate iModulon’s response to various nutrients 
reveals its importance as an indicator of low glycolytic flux, providing 
insights into bacterial metabolism and potential strategies for opti-
mizing substrate utilization. 
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2.7. Enhancing growth on poor carbon sources via acetate iModulon 
boosting 

Finally, we evaluated the potential use of the Acetate iModulon for 
strain engineering, aiming to elevate its activity without disrupting its 
natural regulation. This strategy aims to boost growth under most SI 
carbon sources (Fig. 6a), keeping the Acetate iModulon inactive under 
SF carbon conditions (Millard et al., 2021; Pinhal et al., 2019). 

Implementing this strategy, we integrated a ‘boost module’ genetic 
circuit adjacent to the original Acetate iModulon genes in the genome 
(Fig. 6b and Supplementary Fig. 8g). This circuit included araC posi-
tioned after the original Acetate iModulon genes, tasked with repressing 
the lacI gene. This lacI, in turn, represses an additional set of Acetate 
iModulon genes within the boost module. Such a design amplifies the 
Acetate iModulon activity specifically under poor carbon source con-
ditions. We engineered two strains, Boost-A and Boost-B, by integrating 
this booster module after the original Acetate iModulon genes. Boost-A 
included acsA, RS14450, and acsP, whereas Boost-B contained only the 
key enzyme acsA. 

Our experiments revealed minimal growth differences between the 
control and the two booster strains under SF conditions, except for 
Boost-B in glucosamine and mannitol conditions. However, under SI 
carbon sources, the engineered strains exhibited significant growth en-
hancements, as evidenced by increased growth rates (1.1–2.4-fold, P- 
value <0.034) and shorter lag times (0.47–0.81-fold, P-value <0.005) in 
the Boost-A strain (Fig. 6c and d and Supplementary Fig. 8h), except for 
ribose which did not induce the Acetate iModulon. Thus, activating the 
Acetate iModulon can substantially improve the utilization of poor 
carbon sources, demonstrating the practical application of iModulon 
information from nutrient change experiments for optimization of 
cellular functions. 

3. Discussion 

How can modern genome-scale methods enhance our understanding 
of microbial responses to nutritional stress for strain engineering? This 
study used advanced modularization methods to analyze the bacterial 
transcriptome, revealing the activation state of various cellular pro-
cesses in response to different nutrient states in Vn. These processes, 
which are independently modulated, include catabolism, trace elements 
use, proteostasis, phage activation, and various stress responses 
(Balakrishnan et al., 2021; Basan et al., 2020; Erickson et al., 2017). 

Analyzing catabolic iModulon activity revealed pathways activated 
by different nutrients, unearthing new iModulons linked to substrate 
uptake. Notable are the pleiotropic TTT and TRAP iModulons (Mulligan 
et al., 2011; Rosa et al., 2018), important for metabolizing nine sub-
strates such as rhamnose, cellobiose, and formate, underscoring their 
broad substrate utility in Vn (Thoma and Blombach, 2021). We also 
unraveled novel regulatory relationships and gene functions in catabo-
lism, such as interactions within specific substrates such as cellobiose, 
galactose, and glycogen, especially regarding the GalR and AGL iMo-
dulons activities. Additionally, we observed interconnections among 
Acetate, TTT, and TRAP iModulons under conditions inducing 
low-glycolytic flux, enhancing our understanding of Vn’s metabolic 
adaptability. 

iModulon analysis, mainly focusing on the Zur iModulon, illumi-
nated the complex interplay between trace elements like Zn2+ and 
various substrates. This analysis highlights the intricate regulatory 
mechanisms that control trace elements such as Zn2+, essential for 
bacterial metabolism and growth. Fine-tuning trace elements, as evi-
denced by the Zur iModulon activities, is shown to impact bacterial 
physiology substantially. This balancing includes influencing physio-
logical activities (Soma et al., 2023), optimizing large-scale cultivation 
processes (Soini et al., 2008), regulating the expression of heterologous 

Fig. 5. Functions of the Acetate iModulon under low-glycolytic flux conditions. (a) Graphical summary depicting the function of the Acetate iModulon in central 
carbon metabolism at low glycolytic flux states. A red dashed line indicates acetate-induced inhibition of glycolysis and TCA cycle enzymes. Inspired by the previous 
study (Millard et al., 2023). (b, c) Analysis of (b) acetate supplementation and (c) Acetate iModulon gene deletion effects in stress-inducing (SI) and stress-free (SF) 
carbon conditions. Specific growth rates were measured following these modifications in SI and SF conditions, compared to control conditions (no acetate or WT 
strain). Statistical significance in SI and SF environments was evaluated using the two-tailed Mann-Whitney test (***P < 0.001; ****P < 0.0001). Color coding 
distinguishes specific carbon conditions, and detailed growth rate changes for each carbon source are provided in Supplementary Figs. 8c and d. (d) Correlation 
between Acetate and GalR iModulons’ activities. Pearson’s R (R) and P-value (P) are displayed. (e) TTT and TRAP iModulons’ activity under SI and SF carbon 
conditions. Statistical significance was assessed using the two-tailed Wilcoxon matched-pairs signed rank test (***P < 0.001). (f) Interrelations among Acetate, TRAP, 
TTT, and GntR iModulons. Pearson’s R (R) and P-value (P) are shown. 
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proteins (Rosano and Ceccarelli, 2014; Shang et al., 2023), affecting 
anaerobic metabolism (Stadtman, 2005), and enhancing biochemical 
production (Nimbalkar et al., 2018). 

Stress-response iModulons analysis uncovers the diverse physiolog-
ical challenges of different nutrients, moving beyond the traditional 
focus on carbon starvation (Kolb et al., 1993; You et al., 2013) and the 
stringent response (Irving et al., 2021; Zhu and Dai, 2023). We identified 
stress responses related to protein-folding, oxidative, extracytoplasmic, 
and osmotic stress. This broadened understanding illuminates how 
bacteria adapt to nutritional changes. Notably, stresses in commonly 
used BHIN media for Vn studies (Eagon, 1962; Hoffart et al., 2017; Xu 
et al., 2021), such as oxidative and extracytoplasmic stress, are linked to 
reduced growth rates and protein synthesis. The high- and 
low-osmolarity stresses due to sodium acetate and rhamnose usage il-
lustrates the influence of carbon source types and their specific uptake 

mechanisms, particularly involving TTT and TRAP iModulons. These 
results reveal intricate relationships between substrates and the stresses 
they inflict on the host. Furthermore, activating the Acetate iModulon 
under certain conditions reveals insights into bacterial metabolic ad-
justments for low glycolytic flux (Millard et al., 2023). 

This study highlights the utility of iModulon analysis in selecting 
optimal nutrient and guiding strain engineering. By analyzing iModulon 
activities, we can select nutrients tailored to specific experimental ob-
jectives. A notable example is ribose, which stands out for its potential to 
boost protein expression in Vn. Ribose is pivotal in maintaining intra-
cellular redox balance and promoting efficient amino acid biosynthesis 
(Moritz et al., 2002; Sui et al., 2020). Its unique ability to activate 
Ribosome and Chaperone iModulons—without inducing the osmolarity 
stress responses observed with rhamnose—suggests a potential to in-
crease heterologous protein production. Stress-free growth conditions 

Fig. 6. Strain engineering with the Acetate iModulon. (a) Graphical overview of enhancing Acetate iModulon function with native regulation. AceiMBoost is 
activated in low glycolytic flux states to enhance the phenotype. (b) Schematic of the Acetate iModulon boosting circuit (top) and its genomic integration (bottom). 
AcetateiM-Boost modules (Boost-A and Boost-B) are integrated following the native acetate iModulon gene (RS14410). For simplicity, all constructs except araC and 
araC’s RBS are depicted on the same strand as araC, though actual integration is in the opposite direction. Boost-A contains two operons of the Acetate iModulon, 
while Boost-B includes the acsA gene with a terminator. (c, d) Changes in growth rate and lag-time due to the Acetate iModulon boosting module. Two Boost strains 
and a control strain were cultured in 15 mM carbon source in M9Na minimal media, with OD600 measured using a Tecan Infinite 200Pro microplate reader. (c) 
Relative growth rates compared to the control. (d) Lag times are compared to the control. Data are mean ± SD from three to four independent samples. Growth rate 
statistical significance was determined using Student’s t-test (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Lag-time significance was assessed with the two- 
tailed Mann-Whitney test (*P < 0.05). 
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are crucial for understanding bacterial pathogenicity (Fang et al., 2016), 
metabolism (Jozefczuk et al., 2010), and antibiotic resistance (Dawan 
and Ahn, 2022). Also, the detailed insights provided by gene member-
ship and iModulon activity dynamics across various conditions are 
invaluable for microbial engineering, such as using the Acetate iModu-
lon to boost growth on poor carbon sources. 

Taken together, this study underscores the pivotal role of knowledge- 
enriched transcriptomic analysis in deciphering the very intricate re-
lationships between the state of cellular processes and the nutritional 
environment. This approach advances our knowledge of bacterial 
nutrition and paves the way for future innovations in microbial research, 
offering new possibilities for understanding and manipulating the state 
of fundamental cellular responses in bacteria. 

4. Materials and methods 

4.1. Bacterial strains and growth conditions 

Bacterial strains, both utilized and generated for this study, are listed 
in Supplementary Table 1. This study used Vibrio natriegens ATCC 14048 
(Vn) as the wild-type strain. Routine cultivation of Vn was conducted at 
30 ◦C in LBv2 media (25 g/L LB Miller broth, 200 mM NaCl, 4.2 mM KCl, 
and 23.14 mM MgCl2), agitated at 180 RPM, or on LBv2 agar plates 
(LBv2 plus 1.5% wt/vol agar). Brain Heart Infusion broth with added 
NaCl (BHIN: 37 g/L, 1.5% wt/vol) served as a comparative medium to 
LBv2. For the construction of 44 RNA-Seq data, Vn strains were culti-
vated at 30 ◦C with agitation at 180 RPM. Unless stated otherwise, 
chemical reagents used for cell culture were sourced from Sigma-Aldrich 
(Burlington, MA). For additional RNA-Seq carbon samples, a range of 
carbon sources were added into M9Na medium (M9 minimal medium 
enriched with NaCl [42 mM Na2HPO4, 22 mM KH2PO4, 258.5 mM NaCl, 
18.6 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2]) at a uniform concen-
tration of 1.0% wt/vol, including sodium acetate, cellobiose, glycogen, 
and rhamnose, consistent with previous data (Shin et al., 2023). 
Oxidative stress conditions in M9Na were induced by adding H2O2 (0 
mM, 0.1 mM, 0.2 mM, and 0.4 mM) to WT and VN-ALE-1 strains, the 
latter being an evolved strain from adaptive laboratory evolution ex-
periments under oxidative stress (Anand et al., 2020). Low- and 
high-temperature stress conditions were set in M9Na at 25 ◦C and 40 ◦C, 
respectively. Osmolarity stress conditions were established by varying 
NaCl concentrations (0, 200, 500, and 800 mM) in M9woNa (M9 me-
dium without NaCl [42 mM Na2HPO4, 22 mM KH2PO4, 18.6 mM NH4Cl, 
2 mM MgSO4, 0.1 mM CaCl2]). When an antibiotic selection of Vn was 
required, the antibiotics were used at specified concentrations: 50 
μg/mL carbenicillin (Carb), 10 μg/mL chloramphenicol (Cm), or 360 
μg/mL spectinomycin (Spec). For plasmid cloning, NEB® 10-beta 
Competent Escherichia coli (New England BioLabs, Ipswich, MA) was 
cultivated aerobically at 37 ◦C in LB Miller broth (LB, #71753–6) with 
shaking at 180 RPM or on LB agar (LB with 1.5% wt/vol agar). When 
E. coli harbored a plasmid, appropriate antibiotics were used: 100 μg/mL 
ampicillin/carbenicillin, 25 μg/mL chloramphenicol, or 120 μg/mL 
spectinomycin. 

4.2. RNA extraction and transcriptomic data generation 

We produced a total of 44 new RNA-Seq datasets pertinent to carbon 
and stress-related conditions. For each of the 22 unique conditions, 
including various carbon sources (acetate, cellobiose, glycogen, and 
rhamnose), temperature stress (25 ◦C and 40 ◦C), oxidative stress (0, 0.1, 
0.2, and 0.4 mM H2O2), and salt stress (0, 200, 500, and 800 mM NaCl), 
we obtained transcriptomic data from two biological replicates. The 
RNA extraction and library preparation procedures were in accordance 
with the protocol established in our prior study (Shin et al., 2023). 
Briefly, samples were centrifuged for 10 min at 5000×g at 4 ◦C, and the 
supernatant was removed. RNA was isolated from the harvested cells 
using the Quick-RNA Fungal/Bacterial Microprep Kit (Zymo Research, 

Irvine, CA), according to the manufacturer’s guidelines. As previously 
described, ribosomal RNA and genomic DNA contaminants were elimi-
nated from 1 μg total RNA using the RiboRid method (Choe et al., 2021; 
Shin et al., 2023). rRNA depletion was verified via the 4150 TapeStation 
System (Agilent, Santa Clara, CA) with High Sensitivity RNA Screen-
Tape. The rRNA-depleted RNA was then converted into libraries using 
the KAPA RNA HyperPrep kit (Roche, Basel, Switzerland) following the 
manufacturer’s protocols. Library quality was assessed with the 4150 
TapeStation System (Agilent) using D1000 ScreenTape, and quantifi-
cation was done with the Qubit 2.0 Fluorometer (Thermo Fisher Sci-
entific, Waltham, MA) using the Qubit dsDNA HS Assay Kit. 
Subsequently, the libraries were combined and sequenced using a 100 
bp single-end protocol on the Illumina NovaSeq 6000 platform at the UC 
San Diego IGM Genomics Center. 

4.3. Compilation of natPRECISE148 dataset 

In this study, in addition to the 44 RNA-Seq datasets we generated, 
we also included 8 RNA-Seq samples from the NCBI Sequence Read 
Archive, accessed before March 1, 2023, using the fasterq-dump soft-
ware from https://github.com/ncbi/sra-tools. This expanded our 
collection to a total of 52 RNA-Seq samples. For data processing and 
quality control prior to Independent Component Analysis (ICA), we 
followed the procedures outlined in the Modulome workflow, detailed at 
https://github.com/avsastry/modulome-workflow (Sastry et al., 
2021b). Initially, raw read trimming was performed using Trim Galore, 
available at https://www.bioinformatics.babraham.ac.uk/projects/tri 
m_galore/, and FastQC, found at https://www.bioinformatics.babraha 
m.ac.uk/projects/fastqc/. The quality reads were then aligned to the 
Vn reference genome (GCA_001456255.1) (Lee et al., 2019) using 
Bowtie (Langmead et al., 2009). We converted the generated SAM files 
into BAM files using the sam2bam function of Samtools, available at htt 
p://www.htslib.org/. Gene read counts in each library were computed 
with RSeQC (Wang et al., 2012) and FeatureCounts (Liao et al., 2014). 
All quality control metrics were compiled using MultiQC at https://mult 
iqc.info/(Ewels et al., 2016). To maintain high data quality, we excluded 
datasets that failed to meet any of the following FASTQC criteria: per_-
base_sequence_quality, per_sequence_quality_scores, per_ba-
se_n_content, and adapter_content. Samples with fewer than 400,000 
reads mapped to coding sequences were also discarded. To minimize 
technical variability, samples were further filtered out based on three 
conditions: (a) deviation from the general expression pattern, as deter-
mined by hierarchical clustering, (b) weak correlation within biological 
replicates (R2 less than 0.90), and (c) absence of a biological replicate, as 
detailed in Supplementary Figs. 1b and c. After thorough quality control, 
our final natPRECISE148 (natrigens Precision RNA-seq Expression 
Compendium for Independent Signal Exploration) contained 148 
high-quality expression profiles: 104 from the previous natPRECISE104 
database (Rychel et al., 2021; Shin et al., 2023), 42 generated in this 
study, and 2 expression profiles (Tian et al., 2023) derived from public 
databases. The read counts were then normalized and presented as 
log2-transformed Transcripts per Million (log-TPM). 

4.4. Independent component analysis (ICA) 

We used the bioinformatics pipeline detailed in previous studies 
(Sastry et al., 2019, 2021b; Shin et al., 2023). ICA was utilized to 
decompose the transcriptomic data matrix (X, 4515 genes by 148 con-
ditions) into two components (M and A, representing iModulons and 
their activities, respectively). We calculated independent components 
(ICs) through 100 iterations with the FastICA algorithm (Hyvärinen, 
1999) and Scikit-Learn (Pedregosa et al., 2011) and then clustered these 
ICs using Scikit-Learn’s DBSCAN (Ester and Sander, 1996) to determine 
robust ICs. The optimal dimension for ICs was ascertained iteratively 
(McConn et al., 2021), testing dimensions from 10 to 150 in steps of 10 
as per (Sastry et al., 2019). The dimension of 140 was chosen based on 
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the consistency between the number of robust components and the final 
components at this dimension (Supplementary Fig. 1e). Consequently, 
we derived an M matrix with 64 robust iModulons and an A matrix 
detailing their activities across conditions. In the M matrix, each iMo-
dulon’s gene weighting was determined, though most were insignifi-
cant. Significant iModulon genes were identified by setting optimal 
thresholds based on the D’Agostino K2 test in Scikit-Learn, as delineated 
in previous studies (Sastry et al., 2019, 2021b; Shin et al., 2023). The 
process involved iteratively removing genes with the highest absolute 
weight until the remaining genes approximated a normal distribution 
(D’Agostino K2 test statistic <500). The genes and weights removed at 
this point were deemed significant, setting the iModulon thresholds. 

4.5. Functional characterization of iModulons 

The functional characterization of iModulons was conducted as 
described in a previous study (Shin et al., 2023). Briefly, we utilized the 
Pymodulon tool (https://github.com/SBRG/pymodulon) to examine 64 
identified iModulons. Our initial step involved augmenting the tran-
scriptional regulatory network (TRN) to ascertain the functions of these 
iModulons, utilizing 931 TF-gene interactions previously identified 
(Shin et al., 2023). We inferred the transcription regulators for each 
iModulon using Fisher’s Exact Test, applying a Benjamini-Hochberg 
correction to control the false discovery rate (FDR) below 10− 5. iMo-
dulons with significant overlap with the TRN were named according to 
the associated transcription factors (TFs). Furthermore, iModulon 
functions were deduced by gene annotation against the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017) and the 
Cluster of Orthologous Groups (COG) databases, utilizing the EggNOG 
mapper (Huerta-Cepas et al., 2019). KEGG modules with a statistically 
significant Benjamini-Hochberg corrected FDR of less than 10− 2 

(Fisher’s Exact test) were noted. We obtained Uniprot IDs through the 
Uniprot ID mapper (UniProt Consortium, 2021) and sourced operon 
information from BioCyc (Karp et al., 2019). Additionally, Gene 
Ontology (GO) annotations were acquired from AmiGO2 (Gene 
Ontology Consortium, 2021). Each iModulon was then named based on 
its significantly enriched functional traits. 

4.6. Optical density and fluorescence measurement 

For flask culture experiments, the optical density (OD600) at 600 nm 
of bacterial cultures was determined using the BioMate™ 3S Spectro-
photometer (Thermo Fisher Scientific, Waltham, MA). Additionally, the 
optical density for bacterial cultures was measured at 600 nm using the 
Infinite 200 Pro Plate Reader (Tecan, Männedorf, Switzerland). The 
measurements were conducted in Flat Bottom 96-well plates, with each 
well containing 100 μl of culture. For experiments involving Green 
Fluorescent Protein (GFP), fluorescence and/or OD600 were assessed 
using the same plate reader. This was done at 485/515 nm excitation/ 
emission wavelengths, utilizing Bio-One CELLSTAR μClear™ 96-well 
plates (Greiner, Kremsmünster, Austria). The plates were incubated at 
30 ◦C with orbital shaking. Measurements of OD600 or fluorescence 
signals were recorded at 10 to 15-min intervals. Relative fluorescence 
units (RFU) were adjusted by deducting the corresponding blanks, 
specifically the medium both with and without molecules. For the 
analysis of growth dynamics and GFP expression, parameters such as 
lag-time (λ), specific growth rate (μ), and GFP rate were calculated 
through linear regression. This analysis was facilitated by the QurvE 
web tool (Wirth et al., 2023). In some instances, we normalized the data 
on relative growth rates and GFP rates to make it simpler to compare 
with the control sample. 

4.7. Vector construction 

Oligonucleotides employed in this study are detailed in Supple-
mentary Table 1. We sourced these oligonucleotides from Integrated 

DNA Technologies (Coralville, IA). PrimeSTAR GXL DNA Polymerase 
(Takara Bio, Shiga, Japan) and Q5 High-Fidelity DNA Polymerase (New 
England Biolabs) were used for high-fidelity PCR amplifications and 
genetic analysis. PCR products and plasmids from E. coli were purified 
using the DNA Clean & Concentrator (Zymo Research) and the Monarch 
Plasmid DNA Miniprep Kit (New England Biolabs), respectively. Plasmid 
was constructed using the NEBuilder HiFi DNA Assembly Master Mix 
(New England Biolabs). To facilitate gene deletion, knockout (KO), and 
plasmids were created to generate transforming DNA (tDNA), in line 
with methods detailed in a previous study (Shin et al., 2023). Homology 
arms (HAs) of about 2 Kb adjacent to each target region were amplified 
from Vn genomic DNA, employing specific primers listed in Supple-
mentary Table 1. These HAs, together with the antibiotic resistance 
cassettes (CarbR or SpecR), were integrated into the pACYC184 DNA 
fragment using the NEBuilder HiFi DNA Assembly Master Mix (New 
England Biolabs), resulting in ptDNA-“Δstrain name” plasmids. The 
sequence of each tDNA plasmid was confirmed by Sanger sequencing at 
Eton Bioscience (San Diego, CA). For complementation experiments, 
each target gene was amplified using primer pairs “KO-strain-name"_fwd 
and “KO-strain-name"_rev from genomic DNA of Vn and then cloned into 
linearized pUC-SpecR-PRUT (pUC-Sm_PRUT_F2/_R2), resulting in five 
pUC-SpecR-"KO-strain-name” plasmids. 

4.8. Electroporation 

Electrocompetent Vn cells were prepared following a procedure as 
previously described (Shin et al., 2023). Vn cells were cultured over-
night in LBv2 medium at 30 ◦C with agitation at 180 RPM. The cultures 
were centrifuged at 5000×g for 5 min at 4 ◦C, washed in LBv2, and 
inoculated into fresh LBv2 medium at a 1:100 dilution. The culture was 
grown until an OD600 of 0.4 was reached. Afterward, cells were centri-
fuged and washed twice in cold 1M sorbitol. The final pellet was 
resuspended in 250 μL of cold 1M sorbitol and divided into 50 μL ali-
quots. For electroporation, a mixture of 100–200 ng of DNA and the 
electrocompetent cells was transferred to a 0.2 mm Gene Pulser cuvette 
(Bio-Rad Laboratories) and electroporated using the Bio-Rad Gene 
Pulser at 800 V, 25 μF, and 1000 Ω. The cells were then recovered in 1 
mL of LBv2 media for 1 h at 30 ◦C with shaking, plated on LBv2 agar 
plates with antibiotics, and incubated for at least 12 h at room tem-
perature or 8 h at 30 ◦C. Similarly, BAC DNA was electroporated into 
NEB 10-beta electrocompetent E. coli cells per the manufacturer’s in-
structions. The cells were recovered in 1 mL of SOC media for 1 h at 
37 ◦C with shaking, then plated on LB agar plates with 12.5 μg/mL 
chloramphenicol and incubated for at least 8 h at 37 ◦C. 

4.9. DNA assembly in Saccharomyces cerevisiae 

We developed the pcBAC15a shuttle vector for DNA assembly in 
yeast and protein expression in Vn, based on the design in the previous 
study (Jana et al., 2021). This vector includes a Bacterial Artificial 
Chromosome (BAC), S. cerevisiae replication centromere CEN, p15A 
origin, chloramphenicol resistance, HIS3 marker, and oriT, with con-
struction primers listed in Supplementary Table 1. For GFP expression, 
three vector variants were constructed: pcBAC-Ptac-GFP, pcBAC-P-
tet-GFP, and pcBAC-PBAD-GFP, utilizing primers also listed in Supple-
mentary Table 1. On these vectors, GFP expression can be induced by 
IPTG, anhydrotetracycline, or arabinose. Additionally, we developed 
two plasmids, pcBAC-tetR-Boost-GFP and pcBAC-araC-Boost-GFP, to 
investigate the function of booster genetic circuits in Vn. The former 
plasmid, pcBAC-tetR-Boost-GFP, exhibits GFP expression inhibition in 
the presence of anhydrotetracycline but activation in the absence of an 
inducer or under IPTG conditions. In contrast, the latter, 
pcBAC-araC-Boost-GFP, shows GFP expression inhibition with arabinose 
and activation in the absence of an inducer or with IPTG. Following 
initial experimentation, pcBAC-araC-Boost-GFP was chosen to advance 
the development of the Acetate Boost Module. To integrate the Acetate 
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Boost Module in the Vn genome, we assembled two shuttle vectors 
containing the modules. DNA fragments with 60–70 bp homologies, as 
detailed in Supplementary Table 1, were transformed and assembled in 
Saccharomyces cerevisiae VL6-48 using the LiAc/SS carrier DNA/PEG 
method (Gietz and Schiestl, 2007). Yeast clones harboring accurately 
assembled BACs were identified through colony PCR targeting the 
junctions of the constructs. The BACs were extracted using the Gentra 
Puregene Yeast/Bact. Kit (Qiagen) from validated yeast clones and 
electroporated into E. coli NEB 10-beta cells. Post-purification in E. coli, 
the sequence of BACs was further verified by the Whole Plasmid 
Sequencing service in Plasmidsaurus (Eugene, OR). 

4.10. Genome editing via natural transformation 

To delete genes or insert genetic modules into the genome precisely, 
we prepared the transforming DNA (tDNA) for natural competence, as 
previously described (Shin et al., 2023). For gene deletion, tDNA was 
PCR-amplified using the "Δstrain name"_Left_For/Right_Rev primer pair 
and corresponding knockout (KO) plasmids as templates, as detailed in 
Supplementary Table 1. The PCR products were treated with DpnI 
enzyme (New England Biolabs) and purified using the DNA Clean & 
Concentrator kit (Zymo Research). To insert the Acetate iModulon Boost 
Module into the genome, we amplified tDNA with Ace2_tDNA_F and 
Ace2_tDNA_R primer sets, using pcAceiMBoost-A-REV and 
pcAceiMBoost-B-REV, respectively. The amplified tDNA was further 
purified from agarose gels using the Zymoclean Gel DNA Recovery Kit 
(Zymo Research). Natural transformation assays followed the method 
previously described (Shin et al., 2023). For gene deletion experiments, 
the Vn-PTrc-TfoX strain (wild-type with pTrc-tfoX plasmid) was used, 
while ΔArabinose-PTrc-TfoX (ΔArabinose strain with pTrc-tfoX 
plasmid) was used for constructing AceiMBoost strains. To activate 
natural competence, these strains carrying the pTrc-tfoX plasmid 
(inducing tfoX expression under the Trc promoter with isopropyl 
ß-D-1-thiogalactopyranoside (IPTG)) were grown overnight in LBv2 
media supplemented with 10 μg/mL Cm and 100 μM IPTG. The cell 
culture’s OD600 was adjusted to 4.0, and 5 μL of this culture was 
transferred to 350 μL of competence buffer (28 g/L Instant Ocean Sea 
Salt) with 500 μM IPTG. 50 ng of tDNA was added to the cells and mixed 
gently. The mixtures were incubated at 30 ◦C for 4 h without shaking, 
then recovered in 1 mL of fresh LBv2 for 2 h at 30 ◦C. The cells were then 
plated on selective agar plates (LBv2 with 50 μg/mL Carb or 360 μg/mL 
Spec). Gene deletion (Supplementary Fig. 3c) and target DNA integra-
tion (Supplementary Fig. 8g) were verified by PCR using genomic DNA 
and primer set "Δstrain-name"_Val_For/Rev or AceiMBoost_Lef-
t/Right_Val_For/Rev (for left and right junction) and BoostSm_For/-
BoostPBAD_For (for internal region), as listed in Supplementary Table 1. 

4.11. Statistical analysis 

Beyond transcriptomic analysis and ICA, further statistical evalua-
tions were conducted using GraphPad Prism v10 software (GraphPad, 
San Diego, CA, USA). These included Pearson’s correlation coefficient, 
the two-tailed Student’s t-test, and the two-tailed Wilcoxon-Mann- 
Whitney test. Statistical significance was established at P-values less 
than 0.05. 
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