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EPIGRAPH

And why man is a political animal in a greater measure than any
bee or any gregarious animal is clear. For nature, as we declare,

does nothing without purpose; and man alone of the animals
possesses speech. The mere voice, it is true, can indicate pain and
pleasure, and therefore is possessed by the other animals as well ...

but speech is designed to indicate the advantageous and the
harmful, and therefore also the right and the wrong; for it is the

special property of man in distinction from the other animals, that
he alone has perception of good and bad and right and wrong and
the other moral qualities, and it is partnership in these things that

makes a household and a city-state.

Aristotle

I think the odd fetishization of analytical thinking, and the
concomitant denigration of the creatural—that is, animal—and

embodied aspect of life is something we’d do well to leave behind.
... It’s my belief that only experiencing and understanding truly

disembodied cognition, only seeing the coldness and deadness and
disconnectedness of something that truly does deal in pure

abstraction, divorced from sensory reality, only this can snap us out
of it. Only this can bring us, quite literally, back to our senses.

Brian Christian

He tells us, quite clearly, to try to make a program which can do
as well as a man at pretending to be a woman. If we really tried to
do this, we might be forced into thinking very hard about what it
really means to be not just a thinker, but a human being in a human
society, with all its difficulties and complexities. If this was what
Turing meant, then we need not reject it as our ultimate goal.

Patrick Hayes and Kenneth Ford
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Human social intelligence is one of the defining features of our species, however, its

origins and mechanisms are not well understood. The advent of Large Language Models

(LLMs)—which learn to produce text on the basis of statistical patterns in the distribution of

words—both threaten the uniqueness of human social intelligence and promise opportunities to

better understand it. In this dissertation, I evaluate the extent to which distributional information

learned by LLMs allows them to approximate human behavior on tasks that appear to require

social intelligence. First, I compare human and LLM responses in experiments designed to

measure theory of mind—the ability to represent and reason about the mental states of other

agents. LLMs achieve parity with humans on some tasks (demonstrating that language statistics
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can in principle underpin mentalistic reasoning) but lag behind in others, suggesting that humans

may rely on additional mechanisms. Second, I evaluate LLMs using the Turing test, which

measures a machine’s ability to imitate humans in a multi-turn social interaction. One model

achieves a 50% pass rate, meaning participants are at chance in distinguishing it from a human.

Collectively, the results suggest that LLMs simulate many aspects of our social intelligence, but

by mechanisms that are potentially quite different from the ones that underpin human social

cognition.
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Introduction

ὁ ἄνθρωπος φύσει πολιτικὸν ζῷον— Aristotle, Politics 1253a2.

Aristotle’s famous remark is often translated: “Man is by nature a political animal”. But the

term πολιτικὸν is ambiguous; πόλις—from which it derives—means city, and Aristotle goes on

to contrast the ‘political man’ to a citiless one: solitary and isolated. Aristotle argues that the

reason human beings are more ‘political’ than other animals is that we alone possess the power

of speech. The remark is perhaps better rendered: “Man is, by nature, a social animal.”

Aristotle’s comments suggest a longstanding fascination with social intelligence as a

characteristic part of human nature. Moreover, they point to a curiosity about its origin, an

anxiety about its uniqueness, and the intuition that language plays a role in its development. In

this dissertation I address a set of questions that are closely related to these themes by asking

how much information about human social intelligence is contained in language, and how well

that information can be exploited by Large Language Models.

Many of the great achievements of our species—from cathedrals to computers—rely

necessarily on our capacity to communicate, cooperate, and coordinate (Tomasello, 2014). These

capacities are thought to be underpinned by our ability to reason about the mental states of

others—often referred to collectively as mentalizing or theory of mind (Apperly, 2012). Despite

broad consensus about the importance of social intelligence, there continues to be widespread

disagreement about its origins and basis. Some theories argue that we owe our mentalizing

abilities to a genetic endowment: a biological module for reasoning about others’ minds (Bedny,

Pascual-Leone, & Saxe, 2009). Others have suggested that social intelligence is learned through
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interaction with others (Hughes et al., 2005) or through experience with language itself (de

Villiers & de Villiers, 2014). The first position suggests that mentalizing might be uniquely

human, or require certain kinds of cognitive architectures, while the second and third suggest

that it could be learned from sufficient exposure to data. It seems likely that some combination

of mechanisms contribute to our ability to reason about others’ minds, but existing work has not

been able to quantify the contribution of different components.

The advent of Large Language Models (LLMs) both promises opportunities to investigate

our social intelligence, and threatens claims to its uniqueness. LLMs are statistical models of the

distribution of words in language, which produce estimates of the probability of a given sequence

of words. Recent progress has led to models that generate superficially humanlike text (OpenAI,

2023) and achieve parity with humans on a wide range of behavioral measures (Chang & Bergen,

2023). On one hand, LLMs provide an opportunity to measure the sufficiency of language-based

theories of social competence. LLMs represent an operationalization of these theories in that

they learn solely from distributional language statistics, without any kind of social interaction

or innate biological endowment. To the extent that LLMs can mimic human social behavior, it

suggests that statistical learning and language data are—in principle—sufficient to produce the

same behavior in humans. On the other hand, LLMs represent a threat to the uniqueness of this

longstanding hallmark of humanity. As they are increasingly deployed as conversational agents

that interact with humans in the wild, their capabilities for social reasoning become important

objects of study in themselves.

In this dissertation I address two questions that tackle the challenge and opportunity that

LLMs present. In the first, I ask to what extent LLMs are capable of social intelligence. In the

second, I ask whether the distributional information learned by LLMs is sufficient to explain

social intelligence in humans. These questions are closely related but importantly distinct. LLMs

might reach high performance on measures of mentalizing through quite different means than

human comprehenders. The first type of question focuses on whether models, at an aggregate

level, achieve performance that is comparable to humans. The second type is focused more
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granularly at an item level, to investigate whether humans and LLMs could plausibly be using

the same kinds of mechanisms to generate their responses.

In Chapters 1 & 2, I investigate these questions by comparing human and language model

performance on a range of tasks developed to measure theory of mind in humans. I evaluate LLM

capabilities by asking whether we see the same kinds of effects of experimental variables on

LLM responses as we do in human responses. In addition, I compare LLMs’ aggregate accuracy

in each task to human accuracy, to ask whether LLMs show comparable evidence for mentalizing

capacities that humans do. To address the sufficiency question, I use LLM predictions as a

control variable, to ask whether they are able to explain the variance in human responses that

would ordinarily be attributed to mentalizing capacities. To the extent that LLM predictions

account for experimental effects in humans, it suggests that this apparent evidence of mentalizing

could in fact be explained by sensitivity to distributional language statistics.

In Chapters 3, 4, & 5, I investigate these questions through the lens of the Turing test: a

measure of whether a machine can deceive a human interrogator into thinking that it is human.

At one level, the Turing test represents a demanding test of a particular kind of interactive

social intelligence. While static NLP benchmarks and psychology experiments allow us to distil

specific components of social reasoning, the Turing test requires models to actually perform social

interaction: presenting a consistent and plausible personality, inferring pragmatic implicatures,

and tracking common ground across a multi-turn conversation. At the same time, the test allows

us to ask a variety of other questions that are relevant for understanding social intelligence and

LLMs: are humans capable of identifying other humans? What kinds of strategies and reasons

do human participants come up with for demarcating humanity? Do LLMs and humans fail

or succeed for the same reasons? Chapter 3 contains a brief motivation of the Turing test as a

measure of social intelligence. In Chapter 4, I present the results of a large-scale online Turing

test where we compare a wide variety of approaches. Chapter 5 reports on a confirmatory study

where we ask in a more controlled way whether GPT-4 passes the Turing test.

In the remainder of the introduction, I review relevant background literature and address
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some preliminary theoretical questions. In Section 0.1, I review literature on social intelligence

and theory of mind in humans. I evaluate different theories of the origins and basis of human

social intelligence, and motivate the scope of the studies included in this dissertation. In Section

0.2. I review Large Language Models: their history, mechanisms, and aspects of their training

and architecture that are especially relevant to the questions discussed here. Finally, In Section

0.3. I discuss several theoretical issues that are pertinent to discussions of any kind of intelligence

in language models. Some researchers have argued that LLMs are not the kinds of things that

could be said to display any kind of intelligence, either because of their mechanisms, lack of

grounding, or lack of communicative intent. I briefly review these arguments, and provide

justifications for investigating these abilities in LLMs.

0.1 Social Intelligence

Social intelligence is a broad term that encompasses various cognitive and behavioral

capacities that allow an individual to navigate their social world, including communicating with

others, anticipating behaviour, and maintaining interpersonal relationships (Kihlstrom & Cantor,

2000). Some researchers argue that these capacities are underpinned by the ability to represent

and reason about others’ mental states: often referred to as Theory of Mind (ToM), mentalizing,

or mindreading (Apperly, 2012).

ToM has been studied using a variety of instruments in adults (O’Grady, Kliesch, Smith,

& Scott-Phillips, 2015), children (Wellman, Cross, & Watson, 2001), and non-human animals

(Premack & Woodruff, 1978). Following Dennett (1978), the ability to attribute beliefs to others

has been taken as paradigmatic of ToM. The false belief task measures this ability by dissociating

beliefs from reality, and asking whether participants can make predictions about a character’s

behavior that rely on representing their beliefs even when they are false (Wimmer & Perner,

1983). A much wider set of abilities and instruments have been included under the umbrella

of ToM (Beaudoin, Leblanc, Gagner, & Beauchamp, 2020), including recognizing emotions
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(Dodell-Feder, Lincoln, Coulson, & Hooker, 2013), intentions (Trott & Bergen, 2018), and

non-literal communication (Happé, 1994).

The extent to which theory of mind is a unitary construct or merely a helpful label for a

constellation of related abilities is itself a subject of debate. Hayward and Homer (2017) found

that performance across several tasks purporting to measure ToM was only weakly correlated,

and Gernsbacher and Yergeau (2019) argue that poor convergent validity across tasks suggests

that a single factor cannot be responsible for performance at all of them. The topic of this

dissertation interacts with this debate in two interrelated ways. If ToM is not a coherent construct,

the question of whether LLMs exhbit ToM-consistent behavior may not be a well-posed one.

At the same time, the extent to which statistical language models explain human behavior at

these tasks could be informative about the question of whether these tasks index a dedicated

mentalizing ability, or more general cognitive capacities. If LLMs can account for human

behavior on ToM tasks with only general statistical learning and language input, this would

provide support for the idea that ToM is not necessarily a distinct ability, but could emerge from

more general cognitive capacities. In the remainder of this dissertation, I use ToM to refer to this

constellation of abilities—recognizing and reasoning about mental states—without committing

to the stronger claim that this is a unitary construct.

0.1.1 Origins of Theory of Mind

A large portion of research into theory of mind concerns its origins: how it develops

across the lifespan and whether it is shared with other animals. Biological accounts suggest

that ToM relies on a dedicated evolved capacity (Fodor, 1992), subserved by a collection of

specific brain regions sometimes called the ToM network (Theriault, Waytz, Heiphetz, & Young,

2020). Alternative accounts stress the role of exposure to certain kinds of experiences in the

development of ToM, such as social interaction (Meltzoff, 2007). Among experience-driven

accounts, some theorists argue for the particular importance of language as both a motivation

and framework to reason about others’ mental states (de Villiers & de Villiers, 2014).
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In support of biological accounts, several studies have identified selective activation of

specific brain regions when processing stimuli that relate to other people’s beliefs, including the

temporoparietal junction (TPJ), medial pre-frontal cortex (MPFC), precuneus (PC), and anterior

superior temporal sulcus (aSTS) (Gallagher et al., 2000; Saxe, Carey, & Kanwisher, 2004; Saxe

& Kanwisher, 2003). In itself, however, functional specificity of these regions is not evidence that

these processes are owed to a biological endowment. This kind of anatomical specialization could

emerge as part of a developmental process that relies on particular typical input. C. M. Heyes

and Frith (2014) make an analogy to print reading, which is also subserved by dedicated cortical

areas, but depends on particular kinds of input and shows cultural variability. Bedny et al. (2009)

provide stronger evidence for the insensitivity of functional organization to developmental input

by recording brain activity of congenitally blind individuals while they listened to stories about

mental states. Several theories stress the role of visual input in developing ToM, especially those

that frame mentalizing as a kind of simulation of another agent’s behavior (Baron-Cohen &

Cross, 1992). In contrast to the predictions of these accounts, however, Bedny et al. found that

blind participants’ brains showed selective activity in the same regions that are implicated in

sighted individuals. The authors conclude that the ToM network appears to develop normally in

the absence of visual input, but speculate that other kinds of input (including language and social

interaction), may still be necessary.

A variety of studies support the idea that particular experiences influence the development

of ToM (Meltzoff, 2007). In a training study, Slaughter and Gopnik (1996) found that children

who practiced reporting on their own or others beliefs or desires improved at a false belief task

versus a control group, suggesting that the conceptual developments underlying belief sensitivity

rely on being exposed to relevant evidence. Yagmurlu, Berument, and Celimli (2005) found that

children raised at home outperformed children raised in orphanages at ToM tasks— controlling

for verbal and nonverbal intelligence—suggesting that social interaction with adults is crucial

for ToM development. Finally, in a longitudinal twin study, Hughes et al. (2005) found that ToM

performance of monozygotic twins was no more correlated than that of dizygotic twins. Instead,
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environmental factors were found to explain the majority of variance in the data, suggesting that

the increase in shared genetic material between monozygotic twins did not have a significant

influence on their ToM abilities.

Within experience-driven theories, a number of researchers have proposed a role specif-

ically for language exposure in developing ToM. Language not only provides an observable

signal for mental states that must otherwise be inferred, but also provides a rich framework for

representing and reasoning about the contents of other minds. Several empirical studies provide

support for these different contributions of language to ToM. Astington and Jenkins (1999)

conducted a longitudinal study of three year olds to understand the direction of an observed

correlation between ToM ability and language competence. Earlier tests of language ability were

predictive of later ToM performance, but not vice versa, suggesting that mastery of language

helps to bootstrap mentalizing.

One line of research has focused in particular on the importance of sentential comple-

ments, that allow speakers to embed the mental states of others even when they are false (e.g.

“She said she had a spider in her cereal but it was really a raisin”). de Villiers and Pyers (2002)

developed a complements task that required children to repeat embedded false statements from

sentences like the one above. They found that success at the complements task consistently

preceded success at explicit false belief tasks, suggesting that mastery of the linguistic phe-

nomenon was a prerequisite to generalising their conceptual understanding of false beliefs. In a

training study, Hale and Tager-Flusberg (2003) found that practice on sentential complements

selectively improved false belief task performance compared to practicing relative clauses of

similar syntactic complexity, but without the possibility of representing false beliefs. Collectively,

these results suggest that several aspects of language play a causal role in the development of

social intelligence.

Overall, the empirical evidence supports a picture of multiple factors contributing to

theory of mind development. However, it has proven challenging to measure the extent to which

each of these components plays a role. In the work presented here, I attempt to quantify the

7



potential contribution of language exposure using LLMs as an operationalization of input-driven

theories.

0.1.2 Social Interaction

Social interaction is inherently dynamic. Although we often use static benchmarks for

convenience, it is important to evaluate social intelligence in more dynamic settings (De Jaegher,

Di Paolo, & Gallagher, 2010; Schilbach et al., 2013). On one hand, many socially intelligent

behaviors may be possible for agents that fail classical theory of mind tasks. Non-human animals

maintain complex social relationships, including social learning (Aplin et al., 2015), behavior

reading (Hare & Tomasello, 2005), and dominance hierarchies (Qu, Ligneul, Van der Henst, &

Dreher, 2017) while lacking the rich representational theory of mind that we attribute to humans

(Penn & Povinelli, 2007). On the other hand, success at static benchmarks may also not be

sufficient evidence for dynamic social intelligence, as concerns about the predictive validity of

these tasks demonstrate (Gernsbacher & Yergeau, 2019).

Studies on non-human animals are often—by necessity—interactive. Non-human animals

cannot verbalize their social aptitude and therefore must demonstrate it. Although Premack and

Woodruff (1978)’s seminal experiments were slightly artificial—asking chimpanzees to select

appropriate photographs to help humans portraying different kinds of distress in videotapes—

more recent work has examined how animals interact with their conspecifics to gauge their social

intelligence. Hare, Call, and Tomasello (2001) investigated pairs of dominant and submissive

chimpanzees by manipulating the information that dominant chimpanzees had about where food

had been placed. They found that a subordinate chimpanzee preferentially sought out food that

the dominant chimpanzee had not seen being placed, suggesting that chimpanzees take advantage

of information about what their conspecifics know (though this interpretation is disputed; Penn

& Povinelli, 2007).

A variety of developmental studies have looked at dynamic measures of social intelligence

in children. Talwar and Lee (2002) investigated children’s tendency to lie in order to conceal
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a transgression by instructing them not to peek at a toy behind them while the experimenter

left the room. When the experimenter returned, they would ask the child if they had peeked.

While around half of 3-year olds confessed to their transgression, the majority of older children

lied, consistent with the idea that deception relies on ToM development around the same age.

Slaughter, Peterson, and Moore (2013) measured children’s persuasive abilities by asking children

to persuade an interactive puppet to either eat raw broccoli or brush his teeth. Scores on false

belief tasks positively correlated with the number of independent persuasive arguments that

children produced. Other studies measure interaction observationally in more naturalistic settings.

Coplan, Schneider, Matheson, and Graham (2010) validated the effectiveness of a play-based

social skills intervention using an observation scale that was recorded while children played

naturally with their peers.

Finally, there is a broad literature on interactive evaluations of social intelligence in adults.

Keysar, Lin, and Barr (2003) found that neurotypical adult participants frequently interpreted

a confederate as referring to a hidden object that the confederate could not have known about,

suggesting that they fail to use their ability to reason about beliefs in dynamic interactions. Lopes

et al. (2004) found that scores on a questionnaire measuring the ability to regulate emotion

was positively predictive of the quality of a person’s social interactions as rated separately

by participants and friends. Finally, Krych-Appelbaum et al. (2007) found that ToM scores

correlated with participants’ ability in a communication task, suggesting that participants with

higher mentalizing ability can select more helpful terms for collaborators to identify relevant

items.

While Chapters 1 & 2 evaluate LLM social intelligence on static benchmarks, in Chapters

4 & 5, we use the Turing Test as an interactive evaluation of LLMs. The Turing test evaluates the

models’ ability to maintain a plausible social interaction over multiple turns, and to persuade

and deceive their interlocutor into thinking that they are speaking to a human. In this way it

complements what we can learn from more narrowly focused static evaluations, and mirrors the

rich literature of dynamic evaluations on humans and non-human animals, testing persuasion,
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deception, and naturalistic interaction.

0.1.3 Mindedness

A crucial component of any kind of social interaction is mind-perception or the ascription

of mindedness to other entities (Wegner & Gray, 2017). This question is connected to deep

philosophical debates about what constitutes a mind (Dennett, 1987), and where its boundaries

should be drawn (Miyahara, 2011). Mind-perception is, in some sense, a prerequisite for

theory of mind, as agents must ascribe minds to entities before they can reason about their

contents. Moreover, ascribing mindedness to an agent has important consequences: amplifying

the perceived intensity of our interactions with the agent, creating incentives to be evaluated

positively by the agent, and raising ethical questions about machines as both moral agents and

patients (Waytz, Gray, Epley, & Wegner, 2010).

There are a variety of factors that contribute to whether an entity is perceived as minded,

including how unpredictable its behavior is (Waytz, Morewedge, et al., 2010), the perceiver’s

beliefs about the causal processes that are generating its behavior (Bering, 2002), and how similar

it looks to a human being—the canonical minded agent (Kiesler, Powers, Fussell, & Torrey,

2008). A growing body of work focuses on the perception of minds in machines and artificial

intelligence, specifically. Novel and impressive capabilities of AI agents tend to lead to greater

ascriptions of mindedness, potentially because these capabilities are hard to explain causally

(Shank, Graves, Gott, Gamez, & Rodriguez, 2019). Złotowski, Strasser, and Bartneck (2014)

surveyed participants who had engaged in an interactive quiz game with an AI system and found

that ratings of emotionality, but not intelligence, were positively correlated with humanlikeness

ratings.

A particularly strong test of mind-perception would be to ask whether human participants

could believe they were actually interacting with a human rather than a machine. Turing’s

Imitation Game (Turing, 1950) provides this kind of test (Epstein, Roberts, & Beber, 2009). Not

only does a model’s pass rate indicate the extent to which participants are ready to ascribe a
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human mind to the machine, the strategies that they employ and the reasons they give for their

decisions reveal latent assumptions about criteria for mindedness. In Chapters 4 & 5, we build

on existing mindedness research by analyzing participant strategies and verdicts to provide an

empirical basis for the popular conception of humanlikeness.

0.2 Large Language Models

0.2.1 The Distributional Hypothesis

The way in which words are distributed in language provides a lot of information about

them, even without access to the extralinguistic context in which they are being used. Words that

often appear in the same context, like ‘dog’ and ‘bone’ tend to have related meanings, while

words that appear in similar contexts (like ‘road’ and ‘street’) tend to have similar meanings.

We can use patterns in the way words are distributed to make predictions about how even novel

sequences will continue (e.g. “Mr. Brown asked the students to line up in alphabetical order by

their last ”).

These principles, often referred to as the distributional hypothesis, are pithily summarized

by Firth (1957)’s phrase “you shall know a word by the company it keeps” (p.11). While the

distributional hypothesis now serves as a theoretical basis for machine learning models applied

to language, it has a longer history as a theory of how human comprehenders learn and process

language. Wittgenstein provided early theoretical support for the idea that in many cases

“the meaning of a word is its use in the language” (Wittgenstein, 1953, §47), although he

was referring to use in a broader sense, that also incorporated extra-linguistic context. In his

seminal Distributional Structure, P. L. Harris (2005) not only proposes that language has such a

distributional structure—and that it can be used to identify linguistic elements, their meanings,

and rule-like dependencies—but also speculates that this structure is mirrored in the minds of

speakers. Usage-based linguistic theories propose that many of the structural features of language

can be derived and learned from general cognitive biases and exposure to language itself, without
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the need for innate language-specific rules (Bybee, 2023; Langacker, 1987).

A variety of empirical support has been found for the idea that distributional information

can be used to learn various aspects of language, including segmenting the speech stream into

distinct units (Saffran, Aslin, & Newport, 1996), inducing syntactic categories (Redington,

Chater, & Finch, 1998), and inferring the similarity between the meaning of words (Miller &

Charles, 1991). Until recently, however, it has been challenging to measure the role of more

complex distributional cues beyond simpler transition probabilities and document frequencies.

0.2.2 Large Language Models

A language model is a probability distribution over sequences of words or word-parts

called ‘tokens’ (Jurafsky & Martin, 2019). Given a sequence (e.g. “the cat sat on the mat”), a

language model can produce an estimate of the likelihood of that sequence occurring. Language

models can be used to generate text by providing them with an incomplete sequence (e.g. “the

cat sat on the”) and sampling from a probability distribution over tokens conditioned on the

initial sequence: P(wn|w1,w2, ...,wn−1).

Early language models estimated probabilities directly from the frequency of sequences

in a corpus: P(cat|the) = P(the,cat)
P(the) . However, this approach suffered from a key problem in that

it was unable to generalize to unseen sequences: sequences that did not appear in the data would

be assigned zero probability. Neural language models address this issue by learning distributed

representations of words and sequences (Bengio, Ducharme, Vincent, & Jauvin, 2003). Instead

of estimating probabilities directly from counts, neural language models learn a set of parameters

that map input sequences to a probability distribution over the vocabulary. This allows them to

make predictions for an unseen sequence based on its similarity to observed sequences.

Early neural approaches, however, faced continued challenges in capturing long-range

dependencies between words and representing the same word form differently depending on its

context. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) aimed to

address these limitations by processing input sequences one element at a time and maintaining a
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hidden state that encodes information about the previous elements in the sequence (Elman, 1990;

Hochreiter & Schmidhuber, 1997; Mikolov, Karafiát, Burget, Cernockỳ, & Khudanpur, 2010).

This recurrent structure allows the model to consider the context when making predictions,

enabling it to generate more coherent and contextually appropriate text.

Although recurrent connections help to capture the unfolding meaning of a passage of

text over time, they create a constraint that input must be processed sequentially, as the model’s

output depends on the previous token in the sequence. The attention mechanism (Bahdanau, Cho,

& Bengio, 2016) obviates this need by generating contextualised representations for each token

in the sequence independently, allowing multiple tokens to be analysed in parallel. Attention

networks learn to generate attention vectors that weight the relative importance of neighboring

tokens in the sequence for a given token. These weights can be used to generate a contextual

representation for each token that incorporates relevant information from other tokens in the

input. This allows models to, for example, represent polysemous words differently based on the

context in which they appear (Trott & Bergen, 2023), or imbue the representation of a pronoun

with information from its referent (R. Zhang, Nogueira dos Santos, Yasunaga, Xiang, & Radev,

2018).

The Transformer architecture (Vaswani et al., 2017) eschews the need for recurrence by

relying entirely on the attention mechanism to model dependencies between tokens. Modern

‘large’ language models are predominantly based on the Transformer architecture, scaled up

to comprise thousands of attention ‘heads’ which each learn to attend to different aspects of

contextual information (K. Wang, Variengien, Conmy, Shlegeris, & Steinhardt, 2022), and

trained on corpora of hundreds of billions of tokens (Warstadt & Bowman, 2022). LLMs have

proven to be incredibly effective at a wide variety of language-based tasks (Chang & Bergen,

2023; Kocijan, Davis, Lukasiewicz, Marcus, & Morgenstern, 2022; A. Wang, Pruksachatkun,

et al., 2019; A. Wang, Singh, et al., 2019). More pertinent to the present work, they have also

been found to be effective at predicting human behavioral (Wilcox, Gauthier, Hu, Qian, & Levy,

2020) and neural (Michaelov, Coulson, & Bergen, 2022) responses to linguistic stimuli. In the
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next section, I explore the possibility of using LLMs to investigate the role that distributional

information could play in human language comprehension.

0.2.3 Distributional Baselines

Experiments that investigate human language comprehension often follow a certain design

pattern. In order to test a given theory about how humans comprehend language, experimenters

develop a set of stimuli that differ with respect to a variable implicated by the theory: for instance,

a set of true and false statements that differ with respect to whether they violate world knowledge.

Experimenters measure how participants respond to these two groups of stimuli (e.g. how quickly

they read them), and if a significant difference is found between conditions, the results are taken

as evidence that comprehenders are sensitive to the variable. In order to guard against the

possibility that some confound—a third variable that might correlate with both the manipulation

and the response variable—is in fact responsible for the change, experimenters control for likely

confounds, either by balancing them across groups or measuring them and including them in

statistical models. Variables that are well known to influence language processing, such as word

length and frequency, are often controlled for in this way. The distributional likelihood of an

expression, however, is rarely controlled for.

As discussed above, there are good theoretical reasons to think that distributional likeli-

hood influences human language comprehension. Moreover there is empirical evidence that it is

an effective predictor of reading time (Wilcox et al., 2020), a better predictor of N400 amplitude

than cloze probability (Michaelov et al., 2022), and predicts up to 100% of explainable variance

in fMRI recordings during language comprehension (Schrimpf et al., 2021). These results raise

the possibility that effects which have been attributed to specific phenomena—e.g. knowledge

violations (Hagoort, 2004), syntactic complexity (Gibson, 1998), or semantic priming (Meyer

& Schvaneveldt, 1971)—could in fact be accounted for by controlled variance in distributional

likelihood between conditions.

One approach to control for distributional likelihood is to design stimuli that are balanced
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with respect to some relevant measure. Glenberg and Robertson (2000), for instance, used

Latent Semantic Analysis (Landauer & Dumais, 1997) to measure the distributional similarity of

critical words in their stimuli. They ensured there was no significant difference in distributional

similarity between experiments, suggesting that the observed effect of affordedness on human

comprehenders could not be explained by distributional likelihood.

An alternative approach is to include a measure of distributional likelihood as a control

variable in statistical analyses (Trott & Bergen, 2023). This approach involves constructing

two separate statistical models. The first base model predicts human responses on the basis of

a distributional measure. This could be the probability assigned to a sequence, the surprisal

(−log2(p)), or a measure of similarity between the distributional model’s representations of two

sequences. The base model tests whether the distributional predictor is significantly correlated

with human responses, and quantifies the proportion of variance it explains. The second full

model, includes both the distributional predictor and the experimental condition. The difference

in predictive power between the full and base models corresponds to the additional variance that

can be explained by knowing which condition each item was in, after all the variance that can be

explained by the distributional predictor has been accounted for.

The explanatory power of these models can be compared, for example using a likelihood

ratio test (Pinheiro & Bates, 2006). If the share of variance that is explained by experimental

condition overlaps heavily with the share explained by the distributional predictor, there will be

no significant difference in predictive power between the base and full models. Alternatively,

if condition influences participants in a way that is not captured by the distributional predictor,

the full model will fit the data significantly better than the base model. This approach treat

the LLM as a distributional baseline against which to compare the influence of experimental

manipulations.
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0.2.4 Theoretical Considerations

The results of this analysis must be interpreted with care. In the case that the distri-

butional predictor ‘explains away’ the effect of the experimental manipulation, it cannot be

straightforwardly concluded that human comprehenders are also using distributional informa-

tion to process the stimuli. Instead, human comprehenders and LLMs might generate similar

behavior through different mechanisms. Antonello and Huth (2022) make the related point that

the explanatory power of LLMs does not imply that human comprehenders are also generating

sequence predictions. The representations of models that translate from English to German are

also highly predictive of brain activity, and this does not suggest that English speakers are also

performing translation.

The distributional signal is imbued with information about the world and human cognitive

biases. If LLMs were found to explain the effects of violating a certain grammatical rule on

human comprehenders, it could be that both humans and LLMs learn this rule from distributional

patterns in their input. Alternatively, these patterns in the linguistic signal might exist precisely

because human comprehenders have an innate bias toward particular syntactic constructions.

In the absence of this innate bias, LLMs might be reconstructing the rule from the data. The

distributional baseline analysis cannot distinguish between these alternatives. Instead, it provides

evidence that certain linguistic phenomena could in principle be learned from distributional

language statistics alone. Further empirical and theoretical work is then needed to determine

whether distributional information or the originally implicated variable is a better explanation of

human behavior.

In the alternative case, that the experimental variable explains variance independent of

the distributional predictor, the interpretation is also not straightforward. This result is consistent

with the theory that human comprehenders are using additional information or mechanisms—not

available to the language model—to process language. However, language models’ performance

at various tasks has improved rapidly over the last several years (Chang & Bergen, 2023). It’s
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possible that a future, larger language model, trained on more or better data would be able to

explain away the entirety of the effect.

In both cases, it is important to consider the plausibility of LLMs as models of human

distributional learning. There are several factors to consider, including computational power,

data volume, and learning objectives. Human brains are implementationally very different from

transformer-based language models, and so there is no ideal way to compare their computational

power. One potential point of comparison is between the number of tuneable parameters in an

LLM (which dictate how information is passed between neurons in the model) and the number

of synapses in the human brain (which convey signals between biological neurons). The adult

human cortex contains an estimated 1.5× 1014 synapses (Drachman, 2005), ∼ 850 times the

number of parameters in GPT-3 (1.75×1011): the model we use in our analyses in Chapters 1 &

2. Even if less than 1% of these synapses were involved in language comprehension, this suggests

that human brains have at least 8 times the capacity for storing and processing information versus

GPT-3.

Modern LLMs are trained on orders of magnitude more data than humans will see in a

lifetime. Children are estimated to be exposed to around 3-11 million words per year, for a total

of 30-110 million words by the time they reach adult-like linguistic competence at age 10 (Hart

& Risley, 1992; Hosseini et al., 2022). By contrast, GPT-3 has been exposed to more than 200

billion words: ∼ 2000 times that of a 10 year old (Warstadt & Bowman, 2022). A growing body

of work evaluating LLM performance after being trained on a developmentally realistic amount

of data suggests that great gains in data efficiency are possible (Hosseini et al., 2022; Warstadt et

al., 2023). This approach could be valuable for assessing whether data constrained models can

also explain human behavior at tasks.

Importantly, many LLMs are now additionally fine-tuned using reinforcement learning

from human feedback (RLHF; Ouyang et al., 2022). While this has been shown to improve

performance, it also exposes the model to an additional training signal beyond pure distributional

patterns in data. Ordinary language model pretraining rewards models for predicting the correct
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token in a sequence with high confidence. This training signal is inextricably linked to the

frequency of different linguistic patterns in the input corpus. RLHF, by contrast, can provide

arbitrary scalar rewards for entire sequences (for instance, ranking a model’s potental responses

in terms of how helpful they are). This provides the opportunity for models to learn higher-order

and more arbitrary patterns from human feedback, analogous to a parent providing explicit

feedback to a child. For this reason, we do not use RLHF-trained models in our distributional

baseline analyses, as it is not clear that RLHF constitutes learning from distributional information

per se.

0.3 Could language models be intelligent?

The original question, ‘Can machines think!’ I believe to be too meaningless to
deserve discussion. Nevertheless I believe that at the end of the century the use
of words and general educated opinion will have altered so much that one will
be able to speak of machines thinking without expecting to be contradicted. I
believe further that no useful purpose is served by concealing these beliefs. —
Turing (1950, p.422).

For questions about human mechanism, LLMs are treated as a tool: a statistical baseline much

like word frequency. For questions about LLM capabilities, however, the models are treated as

objects of study in themselves. The original framing for this kind of work comes from NLP:

asking whether new machine learning models can outperform the standards set by older ones.

But evaluating these models using experiments that are designed to measure specific cognitive

faculties in humans invites an alternative framing, where we treat LLMs as psycholinguistic

subjects (Futrell et al., 2019) and ask whether it could make sense to attribute the same cognitive

capacities to models.

Moreover, Turing’s initial framing of the Imitation Game was as a behavioral evaluation

of intelligence. Although the validity of this interpretation has been disputed (Hayes & Ford,

1995; Marcus, Rossi, & Veloso, 2016), many researchers continue to view the test as a potentially

useful benchmark for machine intelligence (Neufeld & Finnestad, 2020; Oppy & Dowe, 2021).
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Therefore, if current LLMs are shown to be successful at the Turing test, it could be interpreted

by many as prima facie evidence of their intelligence. In fact some researchers have already

speculated that current LLMs understand language (Y Arcas, 2022) or show evidence of general

intelligence (Bubeck et al., 2023).

A second group of researchers argue that these claims are not only wrongheaded, but

even dangerous (Bender, Gebru, McMillan-Major, & Shmitchell, 2021). On these accounts,

LLMs are simply not the kinds of things that could be intelligent, either because they lack

the correct kind of cognitive mechanisms (Mitchell & Krakauer, 2023), the ability to ground

meaning in external referents in the world (Shanahan, 2023), or the ability to intend or understand

others’ communicative intents (Bender & Koller, 2020). Moreover, these authors claim that

anthropomorphising models in this way leads to concrete dangers, obscuring our understanding

of how they work, and neglecting alternative lines of research. Here I briefly summarize and

evaluate these arguments.

One class of arguments concerns the mechanism and training objective by which LLMs

learn to produce responses. According to this kind of argument, we know that LLMs are merely

generating next-word predictions based on statistical relationships in their training data. Humans,

by contrast, are thought to rely on higher-level mechanisms such as reasoning about concepts:

“internal mental models of external categories, situations, and events, and of ones own internal

state and “self”.” (Mitchell & Krakauer, 2023, p.4). In summary, even when LLMs and humans

produce similar behavior, humans do this by reasoning, planning, and understanding, while

LLMs are just doing next word prediction.

This argument relies on analysing humans and LLMs at different levels of abstraction.

Higher-level mechanisms in humans, such as reasoning about concepts, must ultimately rely on

lower-level mechanisms, such as action potentials and neural plasticity (Kandel et al., 2000).

The way in which these low-level mechanisms produce complex behaviors in humans is not well

understood (Bassett & Gazzaniga, 2011). In fact, the majority of support for these high-level

accounts comes from investigating human behavior (Thagard, 2012). It is therefore circular to
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allege that LLMs are producing the same behavior as humans by different mechanisms, when

this behavior is precisely our evidence for these mechanisms in humans.

Moreover, simple low-level objectives do not preclude complex high-level solutions

(Chalmers, 2023). All biological intelligence is, in some sense, a consequence of the evolutionary

incentive to maximise one’s reproductive fitness. In the limit, becoming very good at predicting

sequences of tokens might require developing a causal model of the process that generates them,

encoding information about linguistic rules, the external world, and the mental states of speakers.

While some empirical evidence suggests that LLMs are influenced by superficial statis-

tical cues in a way that we would not expect humans to be (McCoy, Yao, Friedman, Hardy, &

Griffiths, 2023; Ullman, 2023), these studies unfortunately lack human baselines that could be

used to empirically evaluate this expectation. Where such baselines do exist (Dasgupta et al.,

2022), humans appear to be more influenced by surface features, and behave less like prototypical

reasoners, than the best performing LLMs.

A second class of arguments concerns the idea of grounding: connecting the arbitrary

symbols of language to external entities and events in the world (Harnad, 1990; Shanahan,

McDonell, & Reynolds, 2023). There are many kinds of grounding, including sensorimotor

grounding (connecting linguistic representations to input from other modalities) and epistemic

grounding (basing claims in external sources of knowledge). The most relevant type of grounding

here, however, is referential grounding: the “relation that enables representations to ‘hook onto’

worldly entities or properties” (Mollo & Millière, 2023, p.8).

As the vagueness of this definition suggests, articulating criteria for reference is challeng-

ing. Nevertheless, Mollo and Millière argue that there is a loose consensus among philosophers

about the conditions under which a certain cognitive state can be said to refer to (or be about

or mean) entities in the world (Coelho Mollo, 2022), and moreover that it seems at least plausi-

ble that LLMs meet these conditions. Two broad categories of criteria are deemed important:

causal-informational relations and historical relations. Causal-informational relations refer to the

idea that features of a representation must be causally related to the phenomena they represent,
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allowing a system to use the representation to gain information about the referent. The word

Paris in the claim “The Eiffel Tower is in Paris” can only be about Paris insofar as there is a

causal connection between the city itself and the process that generated these words. Causal-

informational relations are widely regarded as insufficient however, primarily because they fail

to account for the possibility of false beliefs: representations that are about external entities but

are incorrect.

Historical relations address this gap by ascribing meaningfulness to systems that are

supposed to faithfully represent the world via causal-informational relations. Systems acquire

these teleological functions through specific historical processes that result in their continued

existence (Millikan, 1987) The paradigmatic examples of these historical processes are learning

and evolution via natural selection. Hearts have the ’function’ of pumping blood (and not of

making a “lub-dub” sound) because genes that were associated with blood-pumping hearts were

more likely to be reproduced. Importantly, the theory does not rely on any kind of goal-oriented

teleology of the process of natural selection itself: instead teleological functions are generated by

the historical processes that led to specific tendencies in organisms being preserved. In the case

of language, we learn to produce constructions because they have a given effect on the world

(e.g. the listener understanding us) and the reward of this effect strengthens the mechanism that

produced the construction (Millikan, 1987).

Do LLMs meet these conditions? With respect to causal-informational relations, the

connection seems more indirect than in the human case, but might still meet the relevant

conditions. In canonical direct examples, the causal loop is relatively short. My statement “the

cup is blue” is causally contingent on light that reflects from the cup onto my retina and causes

electrical activation in my optic nerve which in turn stimulates other neurons and leads to the

production of my utterance. However, in many cases the causal chain is far less direct. My

claim Paris is the capital of France is not based on any kind of direct observation, but a complex

network of interactions with other humans and linguistic stimuli. The causal chain behind an

LLMs’ generation “Paris is the capital of France” is not obviously different in kind. Humans
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who have decided and communicated about this fact have left a trace in the record of language,

which has in turn influenced the weights of the LLM through its training. Shanahan’s own

example—“Neil Armstrong was the first man to walk on the moon”—is similar. The causal

connection between this event and my production is mostly through the report of other humans,

not so differently to the way the LLM comes to produce this string.

The more challenging question is whether LLMs have the right kind of historical relations.

LLMs do undergo a selection and learning process which is, in some ways, analogous to human

selection and learning. A wide variety of model architectures and parameters are tried, only those

that perform best under certain conditions are proliferated and ’reproduce’. More pertinently,

LLMs undergo a learning process where they are rewarded and modified in line with a specific

objective. In pre-training, that objective is next-token prediction, which seems related but

not precisely the same as accurately reflecting reality. A large portion of human language is

intentionally fictional, and the training process makes no distinction between these imaginative

and veridical representations.

LLMs that are trained using RLHF, however, are often trained with the specific objective

of being ‘honest’ (Ouyang et al., 2022), for instance by penalising models for generating common

misconceptions (Lin, Hilton, & Evans, 2022). This type of feedback might qualify as the right

sort of ‘world-involving function’ in that parameter sets which lead to veridical productions

are preserved precisely because they lead to veridical productions. Mollo and Millière (2023)

conclude that LLMs may already meet the criteria for referential grounding via indirect causal

relations with the world and a historical process that produces LLMs that are better at representing

it faithfully.

The final class of objections concerns whether or not LLMs can have communicative

intents. Bender and Koller argue that meaning and understanding rely on connecting observable

signs of language to the communicative intents of speakers. Because LLMs are only exposed

to form, and have no access to the social contexts in which tokens are produced, they cannot

recognize or have intentions.
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It is famously hard to define or create empirical tests for intents (or related mental

states such as beliefs) (Dennett, 1987, 1991). Because empirical data are potentially silent on

this question, Dennett (1987) proposes the intentional stance as an instrumental solution to

this problem: “the strategy of interpreting the behavior of an entity (person, animal, artifact,

whatever) by treating it as if it were a rational agent who governed its ‘choice’ of ‘action’ by

a ‘consideration’ of its ‘beliefs’ and ‘desires’ ” (p. 15). According to this view, we ought to

attribute intentions to agents in just those cases where it helps us to predict and explain their

behavior: “The decision to adopt the intentional stance is pragmatic, and is not intrinsically

right or wrong. [...] There are many circumstances in which the intentional stance is not useful,

and many in which it is, and there are no clear or sharp boundaries between the two sets of

circumstances.” (p.24) The question of whether LLMs have intentions becomes, once again,

an empirical one. Insofar as agents produce behavior that is best explained by reference to

intentional states, we are licensed to use intentional language in interpreting them.

From another perspective, the debate about intents is similar to the grounding debate

above. Indeed, the type of reference or ’aboutness’ that Mollo & Miliere are investigating

is often taken to incorporate an intent to refer to that entity. However, one might object that

although LLMs’ outputs may be referentially grounded, in the sense that they are produced by a

process that has the right kind of causal relation to referents and was historically proliferated

precisely because of this correspondence, its outputs may not be driven by communicative intent,

in the sense that human speakers produce language in order to have some kind of effect on the

listener. A response to this objection will again depend on the precise kinds of objectives that are

incentivized during training. The RLHF process used to train GPT-4 was designed to reward

“helpful, honest, and harmless” responses (OpenAI, 2023). According to teleosemantic theories

of meaning, then, GPT-4 could be said to have the intent of helping, informing, and safeguarding

its users.

In summary, a variety of objections have been raised at the idea that LLMs could be

intelligent. Each of these arguments is, on some level, based on requiring more rigorous evidence
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than we have for making equivalent claims about humans; The mechanisms by which biological

neurons produce concepts are still not well understood, and it is challenging to create empirical

or theoretical criteria for grounding or intent. While it is not clear that LLMs are intelligent, it

seems theoretically plausible that they could be. One motivation for the work in this dissertation

is evaluating empirical evidence for this claim. Finally, however, even if LLMs turn out not to

meet important theoretical criteria for intelligence, evaluating their capabilities remains important

for practical reasons. LLMs are already being used to augment and automate many facets of

human activity (Eloundou, Manning, Mishkin, & Rock, 2023; Soni, 2023). Even if they are

philosophical zombies, understanding their ability to reason about their user’s mental states and

interact with them fluently will be crucial to understanding their role in our world.
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Chapter 1

Do Large Language Models know what
humans know?

1.1 Introduction

Humans reason about the beliefs of others, even when these beliefs diverge from their

own. The capacity to understand that others’ beliefs can differ from ours—and from the truth—

appears critical for human social cognition (Fairchild & Papafragou, 2021; Leslie, 2001). Yet

despite consensus on the importance of belief attribution, there remains considerable debate

about its evolutionary (Krupenye & Call, 2019; Premack & Woodruff, 1978) and developmental

(Bedny et al., 2009; de Villiers & de Villiers, 2014) origins. Specifically, how much of this ability

results from an innate, biologically evolved adaptation (Bedny et al., 2009), and how much is

assembled from experience (Hughes et al., 2005)?

The answers to these questions may also tell us what kinds of biological and artificial

entities can be expected to display the ability to reason about other agents’ beliefs—and perhaps

display evidence of social cognition more generally. The ability to represent others’ beliefs has

sometimes been linked to a broader constellation of abilities called Theory of Mind (Apperly,

2012; Premack & Woodruff, 1978). However, the theoretical, convergent, and predictive validity

of such a construct has been widely questioned (Gernsbacher & Yergeau, 2019; Gough, 2021;

Hayward & Homer, 2017). We focus more narrowly here on belief attribution; whether or not it

is a component of a broader capacity, the ability to attribute beliefs to others is likely to be crucial
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to social cognition and worthy of careful analysis in its own right. We return in our Discussion

to the relevance of our results to broader debates about how belief attribution relates to other

capacities.

A leading experience-based view of the origins of belief attribution proposes that our

ability to represent others’ beliefs is built in part from exposure to language (de Villiers & de

Villiers, 2014). Children develop an understanding that others have different mental states from

verbs like “know” and “believe” (J. R. Brown, Donelan-McCall, & Dunn, 1996), the structure of

conversation (P. L. Harris, 2005), and certain syntactic structures, like sentential complements

(e.g., “Mary thought that Fred went to the movies”; Hale & Tager-Flusberg, 2003).

However, current evidence does not address the question of the extent to which linguistic

input alone can account for the ability to reason about beliefs. Can human-level sensitivity to

the beliefs of others emerge out of exposure to linguistic input by itself, or does it depend on

linking that input to a distinct (possibly innate) mechanism or to non-linguistic experiences or

representations? Answering these questions would require a measure of sensitivity to the beliefs

of others, as well as as an operationalization of what kinds of behavior can be acquired through

exposure to language alone.

Only recently has constructing such a measure become tractable, with the advent of Large

Language Models (LLMs). Language models learn to assign probabilities to word sequences

based on statistical patterns in the way that words are distributed in language. While early

n-gram models simply learn transition probabilities between one sequence of words and the next,

modern language models use neural networks to represent words in a multidimensional meaning

space, allowing them to generalize to sequences they have never observed before (Jurafsky &

Martin, 2019). Additionally, they contain attention mechanisms that allow them to relate words

in the input stream to one another and represent each word differently depending on its context

(Vaswani et al., 2017). Modern LLMs are neural language models with billions of parameters

trained on corpora of hundreds of billions of words. We ask whether LLMs’ considerable

sensitivity to distributional patterns allows them to systematically assign higher probabilities to
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word sequences that describe plausible belief attribution—a behavior which is thought to result

from reasoning about the beliefs of others in humans.

As others have noted (Bender & Koller, 2020), the training regime for LLMs does

not include social interaction, experience in a physical environment, or even the notion of

communicative intent.1 Most relevantly to the current question, their network architecture is also

not pre-coded with any conception of social agents or the ability to reason about and attribute

beliefs to others. And yet, LLMs have recently been shown to display a range of surprising

behaviors consistent with the acquisition of linguistic structure (Linzen & Baroni, 2021; Manning,

Clark, Hewitt, Khandelwal, & Levy, 2020; Sinclair, Jumelet, Zuidema, & Fernández, 2022)

and arguably certain aspects of linguistically-conveyed meaning (Abdou et al., 2021; Li, Nye,

& Andreas, 2021). LLMs have also been the subject of recent public discussion (Johnson &

Iziev, 2022), including speculation that they can acquire something akin to Theory of Mind.

They thus serve as useful baselines for what kinds of behavior can be produced merely by

exposure to distributional statistics of language in general, and for belief attribution in particular.

Specifically, if LLMs display sensitivity to implied belief states, it may undermine the claim

that other mechanisms (i.e., either an innate biological endowment or non-linguistic sources of

experience) are necessary for the development of this capacity.

In two pre-registered analyses, we investigated whether GPT-3, (T. Brown et al., 2020), a

state-of-the-art LLM, displayed sensitivity to implied belief states using the widely used False

Belief Task (Wimmer & Perner, 1983). It’s worth acknowledging from the outset that the False

Belief Task has been criticized on several grounds (Bloom & German, 2000), both because it is

too narrow (it does not measure participants’ abilities to reason about other mental states such

as emotions and intentions) and too broad (successful performance likely involves capacities

beyond reasoning about beliefs, such as executive function). Our study is therefore limited in

what it can say about LLMs’ sensitivity to other mental states. Moreover, low performance by

1Recently, pre-trained language models have been fine-tuned using Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022). This process arguably leads to a training signal that is not purely based on
distributional language statistics and so we do not use RLHF models in this analysis.
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either human or LLM participants could be due to lacking other necessary capacities beyond

belief attribution itself. Nonetheless, the False Belief Task remains a key and extensively used

instrument for assessing the capacity to reason about beliefs in humans (Bradford, Brunsdon,

& Ferguson, 2020; Fairchild & Papafragou, 2021; Pluta et al., 2021; Xie, Cheung, Shen, &

Wang, 2018) and other animals (Krupenye & Call, 2019; Premack & Woodruff, 1978), as well

as the neural underpinnings of this capacity (Schneider, Slaughter, Becker, & Dux, 2014). It

also has the advantage of being implementable using purely linguistic stimuli, which makes it

amenable to comparison between humans and LLMs. It is important to highlight that human

false belief accuracy is rarely perfect, so we do not compare LLMs to an idealized perfect

human participant. Instead we elicit data from both LLM and human participants. In addition to

analyzing the responses from each group, we also quantify the extent to which human responses

can be predicted by LLM responses.

Our implementation of the False Belief Task involves written text passages in English.

We generated novel False Belief Task stimuli, to ensure that they could not have appeared in

GPT-3’s training data, and presented the same stimuli to humans and GPT-3. In each passage, a

character places an object in a Start location, and the object is subsequently moved to an End

location. The key manipulation was the Knowledge State of the main character. In the False

Belief condition, the character is not present when the object is moved, and is thus unlikely to

know that it has changed location; in the True Belief condition, the character is present, and

is thus more likely to know that it is in a new location. To control for other factors that might

impact belief judgments, we orthogonally counterbalanced whether the First Mention and most

Recent Mention of a location was the Start or End location; we also ensured that the start and

end location were mentioned an equal number of times in each passage. Humans and the LLM

then completed a cue sentence indicating the character’s belief about the object location. This

Knowledge Cue was either Explicit (“Sean thinks the book is in the ”) or Implicit (“Sean

goes to get the book from the ”). The correct completion (i.e., the one consistent with the

beliefs of the character) was the End location on True Belief trials, and the Start location on False
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Belief trials. We measured whether participants responded with the Start or End location and the

relative probability that GPT-3 assigned to the Start location (the Log-Odds of Start vs. End).

We ask two key questions. First, are LLMs sensitive to false belief? That is, is GPT-3

sufficiently sensitive to information in a preceding sequence (describing a character’s beliefs)

that it assigns a higher probability to subsequent sequences which describe behavior consistent

with those beliefs versus subsequent sequences describing inconsistent behavior? If so, then

biological and artificial agents could in principle develop behavior consistent with sensitivity

to false beliefs from input-driven mechanisms alone, such as exposure to language (de Villiers

& de Villiers, 2014). Notably, this empirical result could be used either to support claims that

LLMs implicitly represent the belief states of others—as success at the False Belief Task is often

interpreted for infants and non-human animals (Krupenye & Call, 2019)—or as evidence that the

False Belief Task is not a valid measure of mentalizing ability; this issue is explored in greater

detail in the Discussion.

The second question is whether LLMs fully explain human behavior in the False Belief

Task. If so, this would show that language exposure is not only a viable mechanism in general but

that it may in fact be sufficient to explain how humans in particular come to display sensitivity to

the belief states of others. Importantly, this would undermine claims that other non-linguistic

resources are necessary to account for the human ability to reason about the beliefs of others. If

LLMs do not fully explain human behavior, however, we infer that humans rely on some other

mechanism not available to the LLM, such as an innate capacity or experience with more than

just language.

All experiments and analyses were pre-registered on the Open Source Framework. The

pre-registered analysis of LLM sensitivity can be found here: https://osf.io/agqwv. The pre-

registration for the human experiment and analysis can be found here: https://osf.io/zp6q8.
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1.2 Method

1.2.1 False Belief Passages

We constructed 12 template passages (items) that conformed to the standard False Belief

Task structure (Wimmer & Perner, 1983). In each, a main character puts an object in a Start

location, and a second character moves the object to an End location. The last sentence of each

passage states or implies that the main character believes the object is in some (omitted) location

(e.g. “Sean thinks the book is in the .”). We created 16 versions of each item (192 passages)

that varied across 4 dimensions. The primary dimension was Knowledge State: whether the

main character knows (True Belief) or does not know (False belief) that the object has changed

location; this was manipulated by the main character being present or not when the second

character moved the object. We also manipulated whether the First Mention and most Recent

Mention of a location is the Start or End location; and Knowledge Cue: whether the main

character’s belief is stated implicitly (e.g., “goes to get the book from the ”) or explicitly

(e.g., “thinks the book is in the ”). Each location was mentioned twice in each passage. In the

example passages, below, the First Mention is to the Start location and the Recent Mention is to

the End location.

True Belief Passage: “Sean is reading a book. When he is done, he puts the book
in the box and picks up a sweater from the basket. Then, Anna comes into the
room. Sean watches Anna move the book from the box to the basket. Sean leaves
to get something to eat in the kitchen. Sean comes back into the room and wants
to read more of his book.”

False Belief Passage: “Sean is reading a book. When he is done, he puts the
book in the box and picks up a sweater from the basket. Then, Anna comes into
the room. Sean leaves to get something to eat in the kitchen. While he is away,
Anna moves the book from the box to the basket. Sean comes back into the room
and wants to read more of his book.”

Implicit Cue: “Sean goes to get the book from the .”

Explicit Cue: “Sean thinks the book is in the .”
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1.2.2 GPT-3 Log-Odds

We used GPT-3 text-davinci-002 to estimate the distributional likelihood of different

passage completions. GPT-3 text-davinci-002 is based on GPT-3 davinci (T. Brown et al., 2020),

a 175B unidirectional LLM trained on hundreds of billions of tokens of text from the web,

books, and wikipedia. GPT-3 text-davinci-002 (hereafter GPT-3) is additionally fine-tuned

on requests to follow instructions and performs better on a variety of tasks than the original

GPT-3 davinci (OpenAI, 2023). We elicited from GPT-3 the log probability of each possible

location (Start vs. End) at the end of each passage version, equal to the log probabilities of

those locations in a free-response completion. Where a location comprised multiple tokens we

summed the log probabilities. We accessed GPT-3 through the OpenAI API. Using the Log-Odds

Ratio, log(p(Start))− log(p(End)), higher values indicate larger relative probabilities of the Start

location. Each passage version was presented to GPT-3 independently and the model was not

updated during inference so it did not learn across trials.

1.2.3 Human Participant Responses

1156 participants from Amazon’s Mechanical Turk platform were paid $1 for their time.

Each read a single passage (except the final sentence), at their own pace. On a new page, they

were asked to complete the final sentence of the passage by entering a single word in a free-

response text input. Participants then completed two free-response attention check questions that

asked for the true location of the object at the start and the end of the passage. Each participant

completed only 1 trial to prevent them from learning across the experiment, analogously to

GPT-3, which saw each passage individually and could not learn across trials.

We preprocessed responses by lowercasing and removing punctuation, stopwords, and

trailing whitespace. We excluded participants who were non-native English speakers (13),

answered ≥ 1 attention check incorrectly (513), or answered the sentence completion with a

word that was not the start or end location (17), retaining 613 trials. While this exclusion rate is
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unusually high, 75% of incorrect attention check responses were neither the start nor end location,

indicating inattention. We implemented a parallel check for GPT-3, which responded correctly

to both attention check questions on 86% of items. In our Supplementary Information, we report

additional analyses on incorrect responses (§ Human Participant Responses) and excluded data

(§ Exploratory Analyses). After exclusions, the number of trials per item ranged from 42-60,

and there were 313 False Belief trials and 317 True Belief trials. These preregistered exclusion

criteria reduced the likelihood that bots (Webb & Tangney, 2022) as well as participants who did

not successfully comprehend the passage for any reason were included in the human data.

All research was approved by the organization’s Institutional Review Board.

1.3 Results

1.3.1 Analysis of Large Language Model Behavior

In a pre-registered analysis, nested model comparisons determined whether GPT-3 Log-

Odds changed as a function of factors such as Knowledge State (False Belief vs. True Belief).2

We constructed a linear mixed effects model with Log-Odds as a dependent variable; fixed effects

of Knowledge State, Knowledge Cue, First Mention, and Recent Mention; along with by-item

random slopes for the effect of Knowledge State (and random intercepts for items). This full

model exhibited better fit than a model excluding only Knowledge State [χ2(1) = 18.6, p< .001],

but still preserving the other covariates (e.g., First Mention, Recent Mention, and Knowledge

Cue). Log-Odds were lower in the True Belief condition, reflecting the correct prediction that

characters should be more likely to look in the End Location if they are aware that the object

was moved (see Figure 1.1). Critically, this main effect of Knowledge State indicates that GPT-3

is sensitive to the manipulation of a character’s beliefs about where an object is located. The

model’s raw accuracy when predicting the most probable out of the Start and End locations was

74.5%.
2Pre-registration (https://osf.io/agqwv?view only=756429f079e24a03b3a94c5b74732e85), code,

and data (https://osf.io/hu865/?view only=bf7cc45c77714069b02d332123d684e7) are on OSF.
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Additionally, the linear mixed effects model was further improved by an interaction

between Knowledge State and Knowledge Cue (Explicit vs. Implicit) [χ2(1) = 20.6, p < 0.001].

The effect of Knowledge State was stronger in the Implicit condition [β =−2.57,SE = 0.548],

however, a main effect of Knowledge State was found in both the Explicit [χ2(1) = 13.3, p <

.001] and Implicit [χ2(1) = 18.8, p < .001] conditions. Recent Mention was not a significant

predictor of Log-Odds. However, Start completions were more likely when the Start location was

mentioned first [β = 1.32,SE = 0.274, p < 0.001]. There was also a main effect of Knowledge

Cue [β = −2.93,SE = 0.388, p < .001] (see Figure 1.1). GPT-3 was biased towards the End

location (i.e., the true location of the object) in the Implicit condition, and towards the Start

location in the Explicit condition. Concretely, GPT-3 predicts that explicit cues to belief state

(e.g. ‘Sean thinks that the book is in the ’ vs ‘Sean goes to get the book from the ’) correlate

with false beliefs, demonstrating that this may be learnable from the statistics of language.

1.3.2 Analysis of Human Responses

Our second critical pre-registered question was whether Knowledge State continued

to explain human behavior even accounting for the Log-Odds obtained from GPT-3. We first

constructed a Base model predicting whether or not human participants responded with the

Start location. Note that the Start location would be the correct response (i.e., congruent with

knowledge states) in the False Belief condition, and the End location would be the correct

response in the True Belief condition. The Base model contained fixed effects of Log-Odds (i.e.,

from GPT-3), Knowledge Cue, First Mention, and Recent Mention, along with by-item random

slopes for the effect of Knowledge State (and by-item random intercepts). Critically, this Base

model was significantly improved by adding Knowledge State as a predictor [χ2(1) = 30.4, p <

0.001]. This result implies that human responses are influenced by Knowledge State in a way

that is not captured by GPT-3. That is, GPT-3 cannot fully account for human sensitivity to

knowledge states. This is highlighted by the contrast in Figure 1.2: while both human participants

and GPT-3 were sensitive to Knowledge State, humans displayed a much stronger effect across
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Figure 1.1. GPT-3 Log-Odds of Start vs. End location was higher (i.e. Start was relatively more
likely) in the False Belief than True Belief condition (χ2(1) = 18.6, p < .001). This suggests
that GPT-3’s predictions are sensitive to the character’s implied belief state: the character is
unaware that the object has moved to the End location if they did not observe it being moved.
This effect was observed both when the Knowledge Cue was Implicit (“Sean goes to get the
book from the...”) and Explicit (“Sean thinks the book is in the...”); however, the effect was
strengthened in the Implicit condition (χ2(1) = 20.6, p < 0.001).

conditions. Additionally, mean accuracy among retained human participants (82.7%) was also

higher than GPT-3 accuracy (74.5%), providing further evidence of a performance gap.

In order to test whether the high exclusion rate introduced by our attention check questions

had an impact on results, we performed an exploratory analysis on all human response data.

Accuracy before exclusions (including those who failed the attention checks and provided

responses to neither the start or end locations) was 55.8%. After excluding responses that were

neither of the start and end locations (23%), accuracy was 73.1%. It is noteworthy that this

estimate of human accuracy is lower than GPT-3’s performance. However, this analysis was

not preregistered. Moreover, given existing concerns about data quality on the Mechanical Turk

platform (Webb & Tangney, 2022), and the fact that performance on the FB task by neurotypical
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Figure 1.2. Both human participants and GPT-3 were more likely to say that a character believed
an object was in the Start location when the character had not observed the object being moved
to the End location (False Belief). This effect was stronger for humans than for GPT-3, and there
was a marginal effect of Knowledge State (True vs. False Belief) in humans that could not be
accounted for by GPT-3 predictions (χ2(1) = 30.4, p < 0.001).

adults is often assumed to be at ceiling (Dodell-Feder et al., 2013), the retained data likely

provide a better estimate of attentive human participant performance.

1.3.3 Analysis of GPT-3 Token Predictions

The preregistered tasks for humans and the LLM were slightly different—humans filled

in a single predicted word while we calculated the relative surprisal to two different words

presented to GPT-3. To investigate whether differences in performance could be chalked up

to this difference in method, we conducted an additional, exploratory analysis, in which we

elicited token predictions from GPT-3. Specifically, GPT-3 was presented with the original
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passage ending with the critical sentence (e.g., “Sean goes to get the book from the”), then

asked to predict the upcoming word. We sampled the word (e.g., “box”) with the top probability.

We automatically tagged each response as correct or incorrect by checking whether GPT-3’s

response corresponded to the character’s likely belief state about the object. That is, in the True

Belief condition, the correct response would be the End location of the object; in the False Belief

condition, the correct response would be the Start location of the object. When computing GPT-3

accuracy, this token generation method only differed from the preregistered method in that GPT-

3’s prediction was no longer restricted to the Start or End location. Using the token generation

method did not qualitatively change the results. As reported above, when assessing accuracy

with the preregistered method—relative probability assigned to start vs. end locations—GPT-3

performed at 74.5% accuracy. When assessing accuracy using the more human-comparable

procedure, token generation, GPT-3 performed at 73.4% accuracy, still well above chance yet

now slightly farther below human accuracy.

In order to test what features of LLMs permit them to display the behaviors described

above, we also tested a number of different GPT-3 models ranging in size from ada (∼ 350M

parameters) to davinci (∼175B parameters).3 For each model size, we tested a base version,

pre-trained on a large corpus of text, and a text version, which had additionally been fine-

tuned by OpenAI using responses to human instructions. The largest fine-tuned model was

text-davinci-002, which was the same model we used in the pre-registered analysis described

above.

As expected, the largest models (davinci, and updated variant text-002-davinci) exhibited

the most successful performance. The former answered correctly on 60.4% of items, while

the latter answered correctly on 73.4% of items. The model with the worst performance was

text-001-ada, which was also the smallest model (see also Figure 1.3). The smallest and lowest-

performing models did not exceed chance performance, which emphasizes the need for large,

3OpenAI does not disclose the size of their models. We used the parameter estimates from EleutherAI’s
eval-harness https://blog.eleuther.ai/gpt3-model-sizes/.
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powerful models to succeed at this task as well as the potential, as models continue to increase in

size, for LLM improvement.
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Figure 1.3. A number of GPT-3 models varying in size were presented with each passage and
asked to complete the critical sentence, as human participants did. For each model size, we tested
a pre-trained base model (⃝) and a version fine-tuned by OpenAI to follow text instructions (△).
In the True Belief condition, a correct (i.e., knowledge-congruent) response corresponded to thse
End location of the object; in the False Belief condition, a correct (i.e., knowledge-congruent)
response corresponded to the Start location of the object. The dotted red line represents human
accuracy on the task (82.7%); text-davinci-002—the largest fine-tuned model—came the closest
to approaching human behavior, with an accuracy of 73.4%.

1.4 Discussion

We asked whether exposure to linguistic input alone could account for human sensitivity

to knowledge states. We found that GPT-3’s predictions were sensitive to a character’s implied

knowledge states. When assessing accuracy with the relative probability assigned to start vs. end
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locations, GPT-3 performed at approximately 74.5% accuracy. When assessing accuracy using

token generation, the best GPT-3 model performed at 73.4% accuracy. This demonstrates that

exposure to linguistic input alone can in principle account for some sensitivity to false belief.

However, GPT-3 was less sensitive than humans (who displayed 82.7% accuracy—see

also probabilities in Figure 1.2). Most critically, human behavior was not explained fully by that

of GPT-3 in a statistical model. This entails that the capacities underlying human behavior in this

False Belief task cannot be explained purely by exposure to language statistics—at least insofar

as those statistics are reflected in GPT-3.

1.4.1 Do LLMs attribute beliefs?

With increased academic and public attention on how humanlike Large Language Models

are, it is worth considering what these findings imply about the cognitive capacities of AIs. First,

it is important to note that—as mentioned in the Introduction—the False Belief Task is designed

to measure a specific capacity: the ability to reason about the belief states of others and use that

information to make predictions about their behavior. The current work cannot address whether

LLMs display other purported aspects of Theory of Mind, including inferring implicit emotional

states and reasoning about the intended interpretation of an utterance; this issue is explored at

greater length later in the Discussion.

On the specific question of whether LLMs are sensitive to belief states, the evidence

presented here is mixed. State-of-the-art models display sensitivity to the beliefs of others in a

False Belief Task, a behavior that would have been unthinkable a few years ago from a statistical

learner and indeed is only shown by the largest, highest performing LLMs. Yet they still do not

achieve human-level performance. There are several possible interpretations of this result, each

of which carries significant consequences for the broader debate about the nature and origins of

the ability to attribute belief states.
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Competing Interpretations

One interpretation, which we call the duck test position, is that we should ascribe

cognitive properties to agents based on observable behavioral criteria: ‘if it looks like a duck,

swims like a duck, and quacks like a duck, then it probably is a duck’; this view is roughly

analogous to what is sometimes called the superficial view (Schwitzgebel, 2013; Shevlin, under

review) or the intentional stance (Dennett, 1978). False Belief Task performance has been used to

support claims that infants (Baillargeon, Scott, & He, 2010) and non-human animals (Krupenye,

Kano, Hirata, Call, & Tomasello, 2016) can represent the beliefs of others. The duck test view

argues that the same evidence should be equally persuasive in the case of intelligent artificial

agents. Although LLMs do not show the same sensitivity to belief states that humans do, this

could suggest that LLMs display a less developed form of the ability to attribute belief states that

is nonetheless qualitatively similar to that of humans. Under this interpretation, the ability to

attribute and reason about belief states lies on a continuum, and further developments in LLMs

(e.g., larger models, more training data) could lead them to more closely approximate human

behavior (Kaplan et al., 2020).

The duck test view has two important implications for debates around language models

and false belief sensitivity respectively. First, on this view we should ascribe to language models

the ability to reason about beliefs (albeit to a lesser extent than humans); as others have noted

(Kosinski, 2023), this would elevate their importance as social and intelligent agents in their own

right. Second, if language experience alone is sufficient to develop the ability to reason about

beliefs, this undermines claims that any innate endowment or social experience is necessary.

The alternative interpretation, which we call the axiomatic rejection position, holds that

we should deny a priori that language models can display certain abilities—such as the ability to

reason about the mental states of others—due to the nature of their constitution, for example their

lack of embodiment, grounding, agency, or embeddedness in an interactive social environment

(Bender & Koller, 2020; Searle, 1980). If this view is correct, then GPT-3’s success at the False
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Belief Task must be taken as evidence that the task itself is a flawed instrument for measuring the

ability to attribute belief states (Raji, Bender, Paullada, Denton, & Hanna, 2021a). On this view,

LLMs’ better-than-chance performance could perhaps be achieved by other means—e.g., an

unintended Clever Hans effect, in which the LLM exploits unidentified confounds in the stimuli

(Niven & Kao, 2019)—that do not reflect a capacity equivalent to the one the task was designed

to measure. Accordingly, “passing” the test would constitute a kind of reductio ad absurdum of

the test’s validity; similar “proofs by absurdity” have been used to demonstrate potential flaws

in other instruments, such as fMRI (Bennett, Miller, & Wolford, 2009) and measures of survey

validity (Maul, 2017). Under this interpretation, the current results could be used to support

existing critiques of the use of the False Belief Task (Bloom & German, 2000). An important

secondary implication of the axiomatic rejection view is that no empirical behavioral evidence

could resolve a debate about whether a given class of intelligent agents have the ability to reason

about the mental states of others.

Of course, a third possibility would be to adopt a view that navigates between the duck

test and axiomatic rejection positions. For example, one could argue that LLMs are indeed a

priori incapable of attributing and representing belief states (as in the axiomatic rejection view),

but that this does not necessarily invalidate the utility of the tests for human subjects. This

differential construct validity view is roughly the one adopted by Ullman (2023) in a response

to related contemporary work (Kosinski, 2023). Considering this dilemma with respect to the

broader question of Theory of Mind (ToM), Ullman (2023, p. 9) writes:

...one can in principle hold the view that LLMs do not have ToM, while still
thinking that ToM tests are valid when it comes to people...scholars have pointed
out decades ago that people likely attribute intelligence not just on the basis of
behavior but also on the basis of the algorithms and processes that generated that
behavior.

This emphasis on internal states (as opposed to just behavior) is sometimes called psy-

chologism (Block, 1981), and is typically seen as at odds with purely behaviorist or functionalist

accounts of the mind (Block, 1980). If one adopts this internalist account of belief sensitivity,
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the question is thus whether LLMs and humans do indeed use different processes and mental

representations to solve the False Belief Task. A further, deeper question is at what degree of

granularity this issue of equivalent mental processes ought to be defined and operationalized. As

Block (1980) notes, operationalization at the level of observable behavior (or high-level function)

may be overly liberal in terms of which entities are granted mind-likeness—yet the functionalist

rejoinder is that excessive specificity may be chauvinistic in terms of which entities it excludes.

While it may sound unlikely that LLMs use similar representations to solve the False

Belief Task as humans, this is ultimately an empirical question and should be tested with

further experimentation and probing. If this future work indicates that LLMs do in fact use

similar processes as humans, researchers must then decide whether these processes ought to

be described as belief attribution—in both humans and LLMs—or whether they are more

appropriately characterized as emerging from a suite of domain-general, “lower-level” processes,

e.g., what C. Heyes (2014) calls submentalizing. Alternatively, if empirical probing uncovers

distinct strategies in humans and LLMs, consistent with the differential construct validity view,

researchers would be able to preserve both the False Belief Task as an instrument and the view

that LLMs do not reason about belief states in a manner analogous to humans.

We do not explicitly endorse any of the competing interpretations presented here. In

our view, there are persuasive arguments from all sides, and the evidence presented here and in

related work (Kosinski, 2023) cannot adjudicate between them. As noted above, resolving this

debate will require both greater refinement of the underlying theoretical construct (i.e., belief

attribution) and the instruments used to measure it. This process may be informed by insights

from work in comparative cognition, which we turn to below.

Insights from Comparative Cognition

A similar debate can be found in research on whether infants and nonhuman animals

have the ability to attribute and represent belief states. For example, in recent years, evidence

has accrued that certain great apes (e.g., chimpanzees) exhibit behavior consistent with this

41



ability (Hare, Call, Agnetta, & Tomasello, 2000; Krupenye & Call, 2019; Krupenye et al., 2016);

however, there remains considerable debate over whether this evidence is necessarily indicative

of the underlying capacity, or whether identical behavior could in principle be explained by other

mechanisms (Halina, 2015a; Penn & Povinelli, 2007). Certain aspects of this debate resemble

the competing interpretations described above, namely the question of whether we ought to adopt

an intentional stance with respect to nonhuman animals’ ability to ascribe belief states (Dennett,

1978; analogous to the duck test position), or whether a more deflationary account involving

domain-general, low-level processes (e.g., submentalizing) is more appropriate (C. Heyes, 2014).

In particular, one view emphasizes the fact that most evidence consistent with belief

attribution (or “mindreading”) in nonhuman animals is also consistent with the hypothesis that

nonhuman animals are simply responding to observable behavioral regularities, without attribut-

ing or representing latent mental states at all. This view is sometimes called the “logical problem”

(Halina, 2015a; Lurz, 2009), and holds that this simpler null hypothesis—i.e., that nonhuman

animals are engaging in “complementary behavior reading”, rather than “mindreading”—must

first be rejected (Penn & Povinelli, 2007; Povinelli & Vonk, 2004).

Of course, as Halina (2015a) notes, any individual capable of belief attribution presumably

still does so on the basis of observable behavior, which makes adjudicating between these

competing interpretations (i.e. identifying veridical belief attribution) very challenging. Halina

(2015a, p. 485) suggests that the challenge can be surmounted by employing a range of different

experiments with diverse techniques and distinct “observables”:

Doing so provides evidence for mindreading insofar as it establishes that subjects
are responding to a diverse set of observable variables (eyes closed, opaque
barrier present, head turned) as belonging to the same abstract equivalence class
(situations that lead to a state of not seeing).

The fact that this issue is still under debate in the comparative cognition literature (Povinelli,

2020) suggests that resolving the question for LLMs will likely prove a serious challenge in the

years to come; as noted in the previous section, it is also possible that the relevant philosophical
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theories (e.g., functionalism, psychologism, etc.) will prove impossible to adjudicate between

(Block, 1980).

Moving forward, however, we argue that the strategy presented by Halina (2015a) above

seems like a promising and tractable approach: if LLMs exhibit behavior consistent with belief

attribution in a wide range of experiments using a diverse class of stimuli, then it makes sense to

ascribe to them the capacity to attribute and represent belief states—assuming, that is, that we

would do the same for human participants in those same experiments (Dennett, 1978, 1987).

1.4.2 What can belief sensitivity tell us about Theory of Mind?

In the current work, we have restricted our claims to the question of sensitivity to true and

false beliefs. However, this ability to represent the belief states of others is sometimes viewed as

part of a broader set of abilities—alternatively called mindreading, mentalizing, or Theory of

Mind (Apperly, 2012). A question of growing concern in the field is whether Theory of Mind

writ large is a coherent theoretical construct that offers explanatory value, or whether it is a

convenient abstraction consisting of disparate, loosely related skills. One way to tackle this

question is to consider the convergent and predictive validity of distinct instruments designed to

measure Theory of Mind.

Theory of Mind is an extraordinarily broad construct, and accordingly, instruments have

been designed to assess distinct components: reasoning about false beliefs (Wimmer & Perner,

1983), explaining or interpreting behavior in stories (Dodell-Feder et al., 2013; Happé, 1994),

inferring emotional states from pictures (Baron-Cohen, Wheelwright, Hill, Raste, & Plumb,

2001), attributing mental states to animated shapes (Abell, Happe, & Frith, 2000), and more.

Unfortunately, these tasks often display poor convergent validity: that is, performance on one

task does not reliably correlate with performance on another (Gernsbacher & Yergeau, 2019;

Gough, 2021; Hayward & Homer, 2017). Of course, tasks do converge in some cases; for

example, performance on the Short Story Task (Dodell-Feder et al., 2013) has been shown to

correlate with performance on Reading the Mind in the Eyes task (Baron-Cohen et al., 2001)
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(see Giordano et al., 2019 and Dodell-Feder et al., 2013). However, the fact that convergent

validity is so low in general (Gernsbacher & Yergeau, 2019; Hayward & Homer, 2017) suggests

that these tasks are not, in fact, measuring the same thing—calling the coherence of “Theory

of Mind” into question. As Gernsbacher and Yergeau (2019) note, some of these instruments

also display poor predictive validity: that is, they do not reliably predict measures of behavior in

social settings. Both facts are discouraging with respect to the question of whether Theory of

Mind is a coherent construct: if tasks designed to measure it do not correlate with each other

or with social behavior more generally, there is little justification for unifying these disparate

abilities under a single “umbrella term”.

While the empirical evidence presented in this paper clearly cannot settle this question,

future work in this vein could contribute to the debate. Specifically, the performance of an LLM

could be assessed across a battery of tasks designed to assess Theory of Mind (see also Kosinski,

2023), using a human benchmark in each case. Using this method, researchers could ask to what

extent performance on each measure could be explained in principle by distributional statistics

alone (as in the current work), and crucially, to what extent these tasks display convergent validity

in humans and LLMs. This would provide another robust test of the coherence of Theory of Mind

as a construct; the results may help inform debates about whether we ought adopt a pluralist

or eliminativist view of Theory of Mind (Gough, 2021), particularly when it comes to Large

Language Models.

1.4.3 Using LLMs to study human comprehenders

The current work used GPT-3, an LLM, as a baseline for quantifying the extent to which

human-level performance on the False Belief Task could be attributed to exposure to language

statistics alone. This approach echoes past work using language models as “psycholinguistic

subjects” (Futrell, Wilcox, Morita, & Levy, 2018; Jones et al., 2022; Linzen & Baroni, 2021;

Michaelov et al., 2022; Trott & Bergen, 2021) to investigate whether distributional language

statistics are sufficient in principle to explain human-level behavior at a task. Other contem-
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poraneous work (Kosinski, 2023; Sap, LeBras, Fried, & Choi, 2022; Ullman, 2023) has asked

whether LLMs exhibit evidence of Theory of Mind specifically. This LLM comparison approach

allows us to empirically test theories that other sorts of innate capacities and learned experiences

are necessary to display behavior consistent with belief-attribution. However, there are impor-

tant objections to using LLM performance to evaluate the claim that distributional information

underlies human belief sensitivity in practice.

First, there are many differences between human comprehenders and LLMs which mean

that the latter may not provide a psychologically plausible mechanism for the former. Some of

these differences—the fact that humans are exposed to language in a rich social and multimodal

context—might allow children to learn more from the same distributional information than

models can. Our approach is designed to measure the sufficiency of distributional information

in the absence of this scaffolding. Other differences, however, may artificially inflate estimates

of how much could be learned by humans from language alone. Most notably, modern LLMs

are trained on orders of magnitude more words than a human will see in their lifetime (Ullman,

2023). Children are estimated to be exposed to around 3-11 million words per year, for a total of

30-110 million words by the time they reach adult-like linguistic competence at age 10 (Hart &

Risley, 1992; Hosseini et al., 2022). By contrast, GPT-3—the model used in our analysis—has

been exposed to more than 200 billion words: ∼ 2000 times that of a 10 year old (Warstadt &

Bowman, 2022).

If this scale of data is necessary to learn the nuanced statistical contingencies required

for successful performance at a task, it would undermine the inference that LLM performance

is indicative of what humans could do with distributional information. Importantly, however,

LLM performance is also related to the number of parameters in the model. In our exploratory

analyses, we found that the largest GPT-3 models tested (text-davinci-002) performed much

better on the False Belief Task than smaller models, consistent with past work suggesting that

LLMs may obey certain “scaling laws” (Kaplan et al., 2020). The differential effects of model

parameter count and training dataset size on False Belief Task performance remain unclear;
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very large models (or a human brain with hundreds of trillions of synapses) could potentially

perform similarly to GPT-3 using less data.4 A useful approach here would be to compare

the predictive power of LLMs trained with different amounts (and sources) of training data to

determine whether a “developmentally realistic” amount of training data could yield behavior

consistent with the capacity in question (Hosseini et al., 2022).

These questions will become even more critical in the near future. LLMs will continue

to increase in size and will be trained on larger data sets—orders of magnitude more words

than a human is exposed to in a lifetime.5 If machines behave indistinguishably from humans

on these tasks, the question of whether achievement on the False Belief Task itself constitutes

sufficient evidence for false belief sensitivity will raise deep philosophical questions for the field:

should such LLMs be considered “agents” capable of reasoning about the belief states of others,

or should these demonstrations force us to reevaluate the utility of the instruments we use to

measure these cognitive capacities?

Even if developmentally plausible models do show humanlike behavior at a task, this

does not imply that humans are using the same statistical mechanism as these models. There

could be multiple distinct routes to the same behavior, and humans could in fact be using innate

or domain-specific mentalizing capacities to produce behavior that models learn to imitate from

language statistics. Even insofar as humans do use distributional information to make inferences

about beliefs, there are a variety of plausible mechanisms for this, including domain-general

statistical learning (Aslin, 2017), language-specific predictive processing (Heilbron, Armeni,

Schoffelen, Hagoort, & De Lange, 2022), and innate but non-statistical inferential mechanisms

(Penn, Holyoak, & Povinelli, 2008). The specific mechanistic theory operationalized by LLMs

is that humans use language statistics to predict upcoming input. Results showing that LLM

representations can predict up to 100% of explainable variance in brain activity have been taken

4While it is difficult and problematic to compare the computational power of neural networks and human brains,
an estimated 1.5×1014 synapses in the human adult neocortex (Drachman, 2005) is ∼ 850 times the number of
parameters in GPT-3 (1.75×1011)

5Indeed, in the course of revising this article, GPT-4 was released, achieving substantially higher scores on a
range of different psychometric tests (OpenAI, 2023).
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as evidence for this hypothesis (Schrimpf et al., 2021). However, Antonello and Huth (2022)

show that statistical language representations learned for other objectives (e.g. translation) are

similarly predictive of human brain responses, implying that the correlation of human and LLM

data may be due to features of language statistics generally rather than a close mechanistic

similarity. In order to adjudicate between these accounts, researchers will need to identify and

empirically test divergent predictions of these mechanistic accounts.

One benefit to using LLMs as an operationalization of a theory is that, as models, they

offer more opportunities for testing various more specific mechanisms or hypotheses. For

example, what kinds of language input are most critical for developing the ability to reason about

mental states? Past work has argued for the importance of at least three distinct sources, including

exposure to mental state verbs (J. R. Brown et al., 1996), the structure of interactive conversation

(P. L. Harris, 2005), and certain syntactic constructions (Hale & Tager-Flusberg, 2003). Future

work could compare different models with different training corpora (e.g., primarily dialogue vs.

essays) to help isolate how much information is provided by each source of linguistic experience.

While these objections highlight the importance of future theoretical and empirical work,

we believe that evidence for the sufficiency of distributional information for competent False

Belief task performance is a critical step toward assessing the plausibility of experience-based

theories of belief attribution in humans.

1.5 Conclusion

Where does the human ability to reason about beliefs of others come from? It could

emerge in part from an innate, biologically evolved capacity (Bedny et al., 2009). It might also

depend on experience, including language input (de Villiers & de Villiers, 2014). The current

results help quantify the contribution of language input. On a text-based version of the False

Belief Task, humans responded correctly (i.e., in a manner congruent with a character’s belief

states) 82.7% of the time, while the largest LLM tested responded correctly 74.5% of the time;
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additionally, LLM behavior did not fully explain human behavior. This suggests that language

statistics alone are sufficient to generate some sensitivity to false belief, but crucially, not to fully

account for human sensitivity to false belief. Thus, the ability of humans to attribute mental

states to others may involve linking this linguistic input to innate capacities or to other embodied

or social experiences.
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Chapter 2

Comparing Humans and Large Language
Models on an Experimental Protocol In-
ventory for Theory of Mind Evaluation
(EPITOME)

2.1 Introduction

Theory of Mind (ToM) is a broad construct encompassing a range of social behaviors

from reasoning about others’ beliefs and emotions to understanding non-literal communication

(Apperly, 2012; Beaudoin et al., 2020). These mentalizing or mindreading capacities underpin

social intelligence (Frith & Frith, 2012), allowing us to anticipate others’ actions (Tomasello,

Carpenter, Call, Behne, & Moll, 2005), solve social coordination problems (Sebanz, Bekkering,

& Knoblich, 2006), and understand communicative intent (Grice, 1975; Sperber & Wilson,

2002).

There is growing interest whether artificial intelligence (AI) agents could display ToM

abilities (Johnson & Iziev, 2022; Langley, Cirstea, Cuzzolin, & Sahakian, 2022; Rabinowitz et

al., 2018). Many desirable AI applications require something akin to ToM, including recognizing

users’ intents (X. Wang et al., 2019), displaying empathy toward users’ emotions (Sharma, Lin,

Miner, Atkins, & Althoff, 2021), and interpreting requests in the context of users’ goals (Dhelim

et al., 2021).
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The recent success of Large Language Models (LLMs) has further intensified interest

and optimism in the potential for artificial ToM. Although their pre-training regime does not

explicitly include social interaction or communicative intent (Bender & Koller, 2020), LLMs

produce text which superficially bears many hallmarks of mentalizing (Shevlin, under review;

Y Arcas, 2022). However, previous studies evaluating LLM performance on ToM tasks have

yielded inconsistent findings, sparking debates on LLMs’ ToM capacities (Kosinski, 2023; Sap

et al., 2022; Ullman, 2023). Here, we collect a battery of six diverse tasks, used to measure ToM

in humans, to investigate the consistency of LLMs’ ToM capabilities.

A variety of tasks have been designed to measure different facets of mentalizing (Happé,

1994; Premack & Woodruff, 1978; Wimmer & Perner, 1983). Unfortunately, these measures

exhibit poor convergent validity—performance in one task does not necessarily correlate with

any other—and limited predictive validity, with task performance failing to consistently predict

socioemotional functioning (Gernsbacher & Yergeau, 2019; Hayward & Homer, 2017). This

limits the extent to which performance on a single task can be taken as evidence of ToM more

generally, and underscores the need for running varied, tightly controlled experiments each

measuring distinct aspects of mentalizing. We select six tasks from the psychology literature

which collectively measure a diverse set of ToM-related abilities including belief attribution,

emotional reasoning, non-literal communication, and pragmatic inference.

Beyond measuring LLMs’ ToM performance, these models can provide insights into

debates on human ToM’s evolutionary and developmental origins (Krupenye & Call, 2019;

Premack & Woodruff, 1978). Researchers disagree about whether ToM is an innate, evolutionary

adaptation (Bedny et al., 2009; Surian, Caldi, & Sperber, 2007) or learned via social interaction

(P. L. Harris, 2005; Hughes et al., 2005) and language (J. R. Brown et al., 1996; de Villiers &

de Villiers, 2014; Hale & Tager-Flusberg, 2003). If language exposure is sufficient for human

ToM, then the statistical information learned by LLMs could account for variability in human

responses. We collate human responses to each task for comparison with LLM performance,

using identical materials for both. This approach allows us to ask where LLMs sit in the
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distribution of human scores; whether their accuracy is significantly different from humans; and

whether their predictions explain the effects of mental state variables on human responses.

2.2 Related Work

Early work in machine ToM (Rabinowitz et al., 2018) found that recurrent neural network

language models could learn to coordinate actions using language (Zhu, Neubig, & Bisk, 2021),

but struggled with explicit mental state reasoning as in the False Belief task (Nematzadeh, Burns,

Grant, Gopnik, & Griffiths, 2018). Several recent studies have directly investigated ToM abilities

in LLMs. Sap et al. (2022) evaluated GPT-3 davinci (T. Brown et al., 2020) on SocialIQA—a

crowdsourced dataset of multiple choice questions about social reactions to events (Sap, Rashkin,

Chen, Le Bras, & Choi, 2019)—and ToMi—a synthetically generated dataset of False Belief

Task passages (Le, Boureau, & Nickel, 2019). GPT-3 achieved 55% accuracy on SocialIQA,

well below a baseline of 84% set by three human participants (Sap et al., 2019). While ToMi

lacks a specific human baseline, GPT-3 performed poorly (60% accuracy) at belief questions,

despite being near ceiling on factual questions.

Kosinski (2023) similarly found that GPT-3 davinci performs poorly (40% accuracy) on a

range of novel False Belief stimuli (Perner, Leekam, & Wimmer, 1987; Wimmer & Perner, 1983).

However, later models in the series performed much better. GPT-3 text-davinci-002, fine-tuned

to follow instructions, achieved 70% accuracy. GPT-3 text-davinci-003 and GPT-4—fine-tuned

using reinforcement learning—achieve 90% and 95% respectively. Although the paper does

not establish a human baseline for the novel stimuli, this compares favorably to meta-analyses

suggesting typical accuracy of 90% for 7-year olds (Wellman et al., 2001).

Ullman (2023), however, showed that 8 simple perturbations to Kosinski’s stimuli cause

GPT-3 text-davinci-003 to fail, suggesting that LLMs exploit shallow statistical patterns rather

than deploying a deep, emergent ToM ability. Though these perturbations were not tested with

humans or generalized to a larger sample of items, Ullman argues that “outlying failure cases
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should outweigh average success rates.”

More recently, Gandhi, Fränken, Gerstenberg, and Goodman (2023) used LLMs to

construct a synthetic false belief benchmark from causal graphs, on which GPT-4 performs

similarly to humans. Kim et al. (2023) used a similar approach to generate a belief attribution

benchmark composed of naturalistic conversational dialogues. However, the best performing

LLMs perform as low as 26.6% on their most challenging measures, lagging far behind a human

baseline of 87.5%. Finally, Shapira et al. (2023) evaluated 15 LLMs across 6 tasks incorporating

belief attribution (ToMi, False Belief), epistemic reasoning, and social reactions (SocialIQa and

Faux Pas). They found that no model performed robustly, and that all models were vulnerable to

adversarial perturbations in the style of Ullman (2023).

Our contribution differs from existing studies in several ways. First, we incorporate

tasks that evaluate a broader range of ToM capacities. While most studies focus primarily

on belief attribution or social appropriateness, we additionally evaluate models on emotional

reasoning, non-literal communication, and pragmatic reasoning from mental state inferences.

Additionally, we test belief attribution up to 7 levels of embedding, and use a range of evaluation

criteria (including human evaluation of free-text completions). Second, we intentionally use

experimental stimuli originally designed to measure ToM in humans. Some researchers are

rightly concerned that these tasks may not have the same construct validity for LLMs as they

do for humans (Mitchell & Krakauer, 2023; Shapira et al., 2023; Ullman, 2023). We agree that

successful performance on these tasks does not imply an agent has Theory of Mind. However,

this objection is not overcome by designing novel tasks that have not been validated on human

participants. Such a claim must be supported by a range of empirical, theoretical, and probably

mechanistic evidence. Moreover, we believe that existing experimental stimuli have several

advantages which complement contemporary work with synthetic or crowdsourced benchmarks;

they have been carefully designed to control for confounds and validated as measures of specific

latent constructs in humans. Third, to allow direct item-level comparison between model and

human performance, for each study we elicit an appropriately powered human baseline for all
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items and make all human data available. Fourth, in the analysis that we run on GPT-3, we

preregistered materials and analyses for four of the six studies in order to minimize the risk of

selecting items or analyses that would lead to a given result. Finally, to test whether distributional

information learned by LLMs can fully account for human behavior, we run a distributional

baseline analysis (Jones et al., 2022; Trott, Jones, Chang, Michaelov, & Bergen, 2023): testing

whether mental state variables explain residual variance in human responses when controlling

for the effect of LLM responses.

False Belief

Sean puts the book in the box and leaves to get something 
to eat in the kitchen. While he is away, Anna moves the 
book from the box to the basket. Sean comes back into the 
room and wants to read more of his book.


Q: Sean thinks the book is in the ___.  

Free-text(Wimmer & Perner, 1983)

box other

2AFCRecursive Mindreading

[Story containing recursively embedded mental states]


Q: Which continuation is consistent with the story?


A) John thinks Sheila hasn’t realised that he likes her.


B) John thinks Sheila has realised that he likes her.

(O’Grady et al., 2015)

Short Stories

[The End of Something by Ernest Hemingway]


Q: Why does Nick say to Marjorie, “You know everything”?


He’s being sarcastic to provoke a fight


He thinks Marjorie is a know-it-all

(Dodell-Feder et al., 2013) Manual Scoring Strange Stories (Happé, 1994)

Peter thinks Aunt Jane’s hat is very ugly indeed.  But when 
Aunt Jane asks Peter, "How do you like my new hat?", Peter 
says, "Oh, its very nice".


Q: Why does Peter say that?


He’s lying to spare her feelings           Because he’s nice

Manual Scoring

Indirect Request

You and Jonathan both notice a blinking light, which 
indicates that the car’s heating system is broken... Jonathan 
shivers in his seat. He turns to you and says, “Man, it’s really 
cold in here.”


Q: Do you think he is making a request?

(Trott & Bergen, 2020) 2AFC

No Yes

Scalar Implicature (Goodman & Stuhlmüller, 2013)

David ordered 3 pizzas which almost always have cheese in 
the crust.  David tells you: "I have looked at 3 of the 3 pizzas. 
Some of the pizzas have cheese in the crust."


Q: How many pizzas do you think have cheese in the crust


Bet $100 across 4 options (0,1,2,3)

Bet

p(3) ↓ other

Figure 2.1. Truncated examples of materials from each of the 6 Theory of Mind tasks. Partici-
pants read a context passage (light text) and then answered a question using the response type
indicated in the top-right of each box. Checks and crosses indicate examples of answers that
would be scored as correct or incorrect (see §2.4 for details on how accuracy was measured in
each task).
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2.3 The Present Study

We assemble EPITOME: a battery of six experiments designed to measure distinct aspects

of ToM in humans (see Figure 2.1). We selected these six experiments in order to provide broad

coverage of the theorized components of Theory of Mind (Beaudoin et al., 2020). The False

Belief Task (FB) tests whether participants can maintain a representation of someone else’s

belief, even if it differs from their own (Wimmer & Perner, 1983). Recursive Mindreading

(RM) tests whether participants can recursively represent mental states up to seven levels of

embedding, e.g. “Alice knows that Bob believes that Charlie...” (O’Grady et al., 2015). The

Short Story Task (ShS) measures the ability to infer and explain emotional states of characters

(Dodell-Feder et al., 2013), while the Strange Stories Task (StS) (Happé, 1994) asks participants

to explain why characters might say things they do not mean literally. The final two tasks measure

sensitivity to speaker knowledge during pragmatic inference. The Indirect Request Task (IR)

asks whether participants are less likely to interpret an utterance as a request if the speaker knows

that the request can’t be fulfilled (Trott & Bergen, 2020). The Scalar Implicature (SI) task tests

whether comprehenders are less likely to interpret some to mean not all when the speaker does

not know enough to make the stronger claim (Goodman & Stuhlmüller, 2013).

Here we used the EPITOME battery to address a longstanding debate about the origins of

theory of mind in humans: namely the extent to which language exposure is sufficient to account

for human mentalizing ability. The distributional hypothesis (Firth, 1957; Z. S. Harris, 1954)

suggests that human comprehenders make use of statistical information about the co-occurrence

frequency of words in order to understand language. The rapid advance of LLMs—that learn

exclusively from such information—has galvanized interest in the distributional hypothesis,

with many recent studies showing that LLMs can accurately predict human linguistic behavior

(Chang & Bergen, 2023) and neural activity (Michaelov et al., 2022; Schrimpf et al., 2021). A

more specific instantiation of this broader debate concerns role of language exposure in human

theory of mind development (de Villiers & de Villiers, 2014; Trott et al., 2023). We address this
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question by comparing the responses of LLMs and humans on EPITOME.

Crucially, in order to test the sufficiency of distributional information per se, we restrict

our analysis to models that have not been additionally fine-tuned on other objectives such as

Reinforcement Learning from Human Feedback (RLHF; Ouyang et al., 2022). While RLHF has

been theorized to improve ToM performance (Moghaddam & Honey, 2023), it exposes models to

an additional training signal, making it hard to draw inferences about the sufficiency of language

exposure alone. Our main analysis focuses on GPT-3 text-davinci-002 (henceforth, GPT-3): one

of the best-performing models which has not been trained using RLHF.1 We make our code and

materials available to facilitate addressing further questions, including whether RLHF improves

performance at ToM tasks.

We ask four types of question: (1) Where does GPT-3 sit in the distribution of human

performance? (2) How does GPT-3 performance vary with model scale? (3) Is GPT-3 sensitive

to experimental variables that alter characters’ mental states? (4) Does GPT-3 fully explain

human mentalizing behavior? Or is there a residual effect of mental state variables on human

comprehenders after controlling for distributional likelihood (as measured by GPT-3 predictions)?

We pre-registered our analyses for four tasks, and provide code, data, and materials for all six.2

2.4 Methods

We accessed models through the OpenAI API. For tasks that involved generating text

(ShS, StS), we set temperature to 0. For the remaining tasks, we measured the probability

assigned by the model to a given string. When measuring the probability assigned to a multi-

token string, we summed the log probabilities of each token. We used the same instructions

and stimulus wording for both humans and LLMs. We avoided using any kind of prompt

engineering with LLMs to ensure a fair comparison. We generated novel stimuli for the Scalar

Implicature task and we conducted a contamination analysis following (Golchin & Surdeanu,

1https://platform.openai.com/docs/models/gpt-base
2We have omitted a link to this repository in line with TACL policy on supplementary information.
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2023), which indicated that none of the other datasets were contained in the model’s training

data (see Appendix A.2).

The number of human participants in each study varied based on the types of statistical

analysis being run, the number of items, and the number of observations per participant. For tasks

without explicit correct answers, ‘accuracy’ is defined as the total score on questions measuring

sensitivity to mental states. We use publicly available data from Trott et al. (2023) for FB, and

use their analysis as a model for other tasks. LLM data and analyses for all other tasks, as well

as human data for RM, StS, and SI are novel contributions. All novel human data was collected

from undergraduate students, while existing data for FB, ShS and IR was collected via Amazon

Mechanical Turk.

2.4.1 False Belief Task

Materials

Trott et al. (2023) constructed 12 passage templates, in which a main character puts an

object in a Start location, and a second character moves it to an End location. The last sentence

states that the main character believes the object is in some (omitted) location (e.g. “X thinks

the book is in the ”). There are 16 versions of each item (192 passages in total) which varied

across 4 dimensions: (i) Knowledge State: whether the main character knows (True Belief) or

does not know (False Belief) that the object has changed location; whether (ii) the First Mention

and (iii) the most Recent Mention of a location is the Start or End location; and (iv) Knowledge

Cue: whether the main character’s belief is stated implicitly (“X goes to get the book from the

”) or explicitly (“X thinks the book is in the ”).

Human Responses

1156 participants from Amazon’s Mechanical Turk were compensated $1 to complete

a single trial. Each read a passage (except the final sentence), and on a new page, produced a

single word free-response completion of the final sentence. Participants then completed two

free-response attention check questions that asked for the true location of the object at the
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start and the end of the passage. Responses were preprocessed by lowercasing and removing

punctuation, stopwords, and trailing whitespace. Participants were excluded if they were non-

native English speakers (13), answered ≥ 1 attention check incorrectly (513), or answered the

sentence completion with a word that was not the start or end location (17), retaining 613 trials.

LLM Responses

LLM responses were operationalized as the probability assigned to each possible location

(Start vs. End) conditioned on each of the passage versions. Using the Log-Odds Ratio,

log(p(Start))− log(p(End)), higher values indicate larger relative probabilities of the Start

location. We score model responses as correct if p(Start)> p(End) in False Belief trials and

vice versa in True Belief Trials.

2.4.2 Recursive Mindreading

Materials

We adapted stimuli from O’Grady et al. (2015) for U.S. participants. The stimuli

comprised 4 stories, each of which had a plot involving seven levels of recursively-embedded

mental representation (e.g. “Anne knows that Bob believes that Charlie saw...”), and seven levels

of a non-mental recursive concept, such as relation (e.g. “Stephen has Biology with Megan’s

sister Lauren”). For each of the levels of mental and non-mental recursion, the authors also

created two scenes to follow the main story, only one of which was consistent with the main story.

All of the stories and continuations were written in two different formats: as scripts (dialogue)

and as narratives. In total there were 112 pairs of continuation passages. While the original

study recorded actors reading scripts, we presented the materials in text format to both LLMs

and human participants.

Human Responses

We recruited 72 undergraduates who participated in the experiment online. Each read

all four stories in a randomized order. After each story, they responded to 14 two-alternative
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forced-choice (2AFC) questions (2 conditions × 7 embedding levels); each asked which of

a pair of story continuations was consistent with the main story. The format of the story and

continuations (narrative vs dialogue) was fully crossed. We excluded 6 participants who scored

< 62% on level 1 questions, and trials in which the participant read the story in < 65ms/word

(322), or responded to the question in < 300ms (45).

LLM Responses

We measured the probability assigned by LLMs to each continuation following the

story. We presented all four combinations of story and question format to the LLM. Because

continuations varied considerably in length and other surface features, we used PMIDC to control

for the probability of the continuation in the absence of the story (Holtzman, West, Shwartz, Choi,

& Zettlemoyer, 2022). We operationalize the LLM’s preference for one option over another as

the log-odds (log(p([A]))− log(p([B])), corrected with PMIDC. We scored the LLM as correct

if it assigned a higher probability to the consistent continuation.

2.4.3 Short Story Task

Materials

Dodell-Feder et al. (2013) designed a set of 14 questions about Ernest Hemingway’s short

story The End of Something. The story describes an argument between a couple, culminating in

their breakup. The mental lives of the characters are not explicitly described and must be inferred

from their behavior. There are 5 Reading Comprehension (RC) questions; 8 Explicit Mental

State Reasoning (EMSR) questions, and 1 Spontaneous Mental State Inference (SMSI) question

that asks whether participants make mental state inferences when summarizing the passage.

Human Responses

Human response data came from Trott and Bergen (2018). 240 participants recruited

from Amazon Mechanical Turk completed a web version of the Short Story Task, in which

they read The End of Something and then answered all 14 questions. Participants who indicated
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that they had read the story before were excluded, and there were 227 subjects retained after

exclusions. All responses were scored independently by two research assistants using the rubric

provided by Dodell-Feder et al. (2013), with a third evaluator acting as a tiebreaker.

LLM Responses

LLMs generated completions for prompts that comprised the passage and a question.

Each question was presented separately. A research assistant scored LLM responses and a subset

of human responses in a single batch. They were unaware that any of the responses had been

generated by LLMs. In order to ensure consistent scoring, we checked the correlation between

this evaluator’s scores on the subset of human data and the scores assigned by the original

evaluators of the human data (RC: r = 0.98; EMSR: r = 0.90; SMSI: r = 0.76).

2.4.4 Strange Story Task

Materials

Happé (1994) designed 24 passages in which a character says something they do not

mean literally (e.g. being sarcastic or telling a white lie). Each story is accompanied by a

comprehension question (“Was it true, what X said?”) and a justification question (“Why did X

say that?”). 6 non-mental control stories measured participants’ general reading comprehension

skill.

Human Responses

We recruited 44 undergraduates who participated online. Participants saw a non-mentalistic

example passage, and example responses to both question types. Participants read each passage

and answered the associated questions using a free-response input. We removed 95 trials (7%)

in which the participant answered the comprehension question incorrectly. We excluded 16

participants for scoring < 66% on the control stories, indicating inattention.
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LLM Responses

We generated completions from LLMs for a prompt which consisted of the same instruc-

tions and examples that human participants saw, a passage, and the relevant question. For the

justification question, the prompt additionally contained the first question along with the correct

answer (i.e. “No”). Human and LLM responses to the justification question were evaluated by

two research assistants—unaware that any responses were generated by LLMs—in a single batch

using the rubric provided by Happé (1994). A third evaluator acted as a tiebreaker.

2.4.5 Indirect Request

Materials

Trott and Bergen (2020) created 16 pairs of short passages, each ending with an ambigu-

ous sentence that could be interpreted as either an indirect request or a direct speech act (e.g.

“it’s cold in here” could be a request to turn on a heater, or a complaint about the temperature

of the room). In each passage, the participant learns about an obstacle that would prevent

fulfilment of the potential request (e.g. the heater being broken). The authors manipulated

Speaker Awareness—whether the speaker was aware of the obstacle or not— and Knowledge

Cue: whether the speaker’s knowledge about the obstacle was indicated explicitly (“Jonathan

doesn’t know about the broken heater”) or implicitly (Jonathan being absent when the heater

breaks).

Human Responses

Human response data came from Trott and Bergen (2020) Experiment 2. 69 participants

from Amazon Mechanical Turk read 8 passages. Condition (Speaker Aware vs Speaker Unaware)

was randomized within subjects. After each passage, participants were asked: “Is X making a

request?” and responded “Yes” or “No.”

LLM Responses

We presented each version of each passage to GPT-3 followed by the critical question

“Do you think [the speaker] is making a request?” and measured the probability assigned by the
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model to the tokens “Yes” and “No.” We calculate the log odds ratio log(p(Yes))− log(p(No))

and score answers as correct if this is positive when the speaker is unaware of the obstacle, and

negative when the speaker is unaware.

2.4.6 Scalar Implicature

Materials

We designed 40 novel passage templates based on the 6 items in Goodman and Stuhlmüller

(2013). The first section of each passage introduces three objects that almost always have some

property (e.g. “David orders 3 pizzas that almost always have cheese in the crust.”). The next

section contains an utterance about the speaker’s knowledge state (“David says: ‘I have looked at

[a] of the 3 pizzas. [n] of the pizzas have cheese in the crust.”, where 1 ≤ a ≤ 3, n =“Some” in

Experiment 1, and 1≤ n≤ a in Experiment 2. After each of the two passage sections, participants

are asked “How many of the 3 pizzas do you think have cheese in the crust? (0, 1, 2, or 3)”,

probing participants’ beliefs both before and after the utterance. A third question asks if the

speaker knows how many objects have the property (“Yes” or “No”).

Human Responses

We randomly assigned 242 undergraduate student participants to either Experiment 1

(126) or Experiment 2 (116).3 For each question, participants were instructed to divide “$100”

among the options, betting to indicate their confidence in each option. Participants completed 3

trials in E1 (each with different values of a) and 6 trials in E2 (with all possible combinations of

a and n). Following Goodman and Stuhlmüller (2013), we excluded 410 trials (143 in E1, 247 in

E2) in which the knowledge judgement was less than 70 in the expected direction (i.e. < $70 on

“Yes” when a = 3; < $70 on “No” when a < 3). We measured accuracy by testing whether the

relationships between bets before and after the speaker’s utterance reflect the fact that a scalar

implicature should only be drawn when the speaker has complete access (see Appendix A.1).

3We originally ran this study on Mechanical Turk. An unusually high exclusion rate of 70% indicated unreliable
data and we re-ran the study with undergraduate students.
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LLM Responses

For each question, we constructed a prompt consisting of the relevant sections of the

story, followed by the question (marked by ‘Q:’), then by an answer prompt, ‘A:’. We found the

probability assigned by the model to each response option (0, 1, 2, and 3), normalized by the

total probability assigned to all response options. We did not use the knowledge check filtering

criterion for model responses as this would amount to removing entire items.

** ** n.s. n.s. n.s. *** ***

FB RM ShS StS IR SI E1 SI E2
0.00

0.25

0.50

0.75

1.00

Task

A
cc

ur
ac

y

Figure 2.2. Distribution of human accuracy by participant (violins and grey circles with 95% CI)
compared to mean GPT-3 text-davinci-002 accuracy (red diamonds). GPT-3 accuracy was not
significantly different from human accuracy across 3 tasks (ShS, StS, IR), but was significantly
lower in others (FB, RM, SI).

2.5 Results

For each task we asked 4 types of question:
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1. Is GPT-3 accuracy significantly different from humans? We ran a logistic regression:

accuracy ∼ data source

where the source of the data is either human participants or GPT-3 (text-davinci-002).

2. Does model scale predict accuracy? We ran a logistic regression:

accuracy ∼ log(n parameters)

where n parameters is the number of parameters in one of four base GPT-3 models (ada to

davinci).

3. Does GPT-3 show effects of mental state variables? For experiments that manipulated

a mental state variable (FB, RM, IR, SI), we conducted statistical tests analogous to the

tests run in the original human experiments, but using GPT-3 responses as the dependent

variable. For example, in the False Belief study, we ran a linear regression

log odds ∼ knowledge state

where log odds is the log-odds ratio of the probabilities GPT-3 assigned to the Start and

End tokens (see Section 4.1) and knowledge state is either True Belief or False Belief.

4. Does GPT-3 account for effects of mental state variables on human comprehenders?

In order to test whether GPT-3 can fully account for mentalizing effects in humans, we ran

linear regressions predicting human responses on the basis of mental state variables while

controlling for the effect of GPT-3 predictions. For example, in the FB task we ran:

prop start ∼ log odds+knowledge state
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where prop start is the proportion of human participants who responded with the Start

location. If the addition of knowledge state improves the fit of a base regression model

using only log odds, it suggests that knowledge state explains unique variance, over and

above GPT-3 predictions.

In each case, we use a Chi-Squared test to compare the fit of a full model (indicated

above) with a base model (with boldface variables removed). For the fourth question, this allows

us to test whether mental state variable explain significant variance in human responses once the

effect of distributional likelihood (measured by GPT-3 predictions) has been controlled for. We

used mixed effects models with random intercepts by item.

Table 2.1. LLM and human accuracy (%) across tasks. Humans outperform models in all tasks
except ShS.

Model FB RM ShS StS IR SI1 SI2
ada 51 63 19 58 17 45
babbage 46 62 31 50 32 42
curie 48 63 48 47 43 47
davinci 61 65 75 47 50 49
t-d-002 74 73 62 83 50 25 45
Human 83 84 46 86 63 59 73

2.5.1 False Belief Task

GPT-3 accuracy was 74%, significantly below the human mean of 83% (χ2(1) =

6.97, p = .008, see Figure 2.2). Accuracy increased with model size from ada (51%) to davinci

(60%) (χ2(1) = 7.51, p = .006, see Figure 2.4).

Knowledge State—whether the character knew that the object had been moved—had a

significant effect on the log-odds that GPT-3 assigned to each location (χ2(1) = 18.6, p < .001).

Concretely, GPT-3 assigned a higher probability to the true (end) location of the object when

the character was in a position to observe the object having moved to that location. Human

comprehenders also showed an effect of Knowledge State on the likelihood that they completed

the critical sentence with the end location (χ2(1) = 31.7, p < .001). Crucially, this effect on
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human comprehenders was robust to controlling for the predictions of GPT-3 (χ2(1) = 30.4, p <

.001), suggesting that Knowledge State influenced human responses in a way that was not

captured by the LLM.

2.5.2 Recursive Mindreading

GPT-3’s mean accuracy on mental questions was 73%, significantly lower than the human

mean of 85% (χ2(1) = 9.12, p = .003). GPT-3 was in the 16th percentile of human accuracy

scores, aggregated by participant. Model accuracy increased slightly with scale, from ada (63%)

to davinci (65%) (z = 3.06, p = .002).

Human accuracy on mental questions was significantly above chance up to 7 levels

of embedding (z = 5.56, p < .001), though there was a negative effect of embedding level

(z = −4.12, p < .001). GPT-3 accuracy on mental questions decreased after level 4 and was

not significantly different from chance beyond level 5 (z =−0.06, p = 0.949). However, there

was no such drop for control questions (see Figure 2.3). The difference in log-probability

assigned to correct and incorrect continuations did not significantly predict human accuracy

(z = 1.78, p = 0.075), indicating that human comprehenders are using different information from

the LLM to select responses. Human accuracy was significantly above chance at all embedding

levels when controlling for GPT-3 log probabilities (all p values < 0.022).

2.5.3 Short Story Task

GPT-3 scored 100% on both the RC and SMSI questions, and 62% on EMSR. Mean

human performance was 83%, 42%, and 46% for these components respectively. GPT-3’s EMSR

score was better than 73% of human subjects, but not significantly greater than the human

mean (χ2(1) = 0.997, p = .318). In order to test whether GPT-3’s EMSR performance could

be attributable to general comprehension performance, we performed a follow-up analysis on

the 55 participants (25%) who matched GPT-3’s Reading Comprehension score. Mean EMSR

performance among this group was 57% and GPT-3 fell in the 50th percentile of this distribution,
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Figure 2.3. RM accuracy by embedding level and question type for GPT-3 and human par-
ticipants. Humans maintain high accuracy across all levels in both question types. GPT-3
performance drops beyond level 5 for mental questions specifically.

consistent with the theory that GPT-3’s improved reading comprehension accounts for its high

ESMR performance.

2.5.4 Strange Story Task

GPT-3 text-davinci-002’s mean accuracy on critical trials was 83%, below mean human

accuracy of 86%, however the difference was not significant (χ2(1) = 0.119, p = .73). GPT-3

performed better than 36% of human participants. Model performance increased monotonically

with scale, from ada (18%) to davinci (75%) (t(71) = 6.02, p < .001). GPT-3’s accuracy on the

control questions (83%) was very similar to the mean accuracy of retained participants (80%).
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Figure 2.4. ToM task accuracy vs model scale across four GPT-3 models (ada, babbage, curie,
and davinci). FB, StS, RM, and SI E1 show positive scaling, with higher-parameter models
achieving increased accuracy. IR and SI E2 show relatively flat scaling, with no significant
increase in accuracy for larger models.

2.5.5 Indirect Request

GPT-3 interpreted all statements as requests (i.e. it assigned a higher probability to

‘Yes’ vs ‘No’), yielding an accuracy of 50%. Human mean accuracy was 62% and there was no
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significant difference in accuracy between Human and LLM responses (χ2(1) = 0.666, p= .414).

GPT-3’s accuracy placed it in the 11th percentile of humans, aggregated by subject. No consistent

relationship held between model scale and performance, with all smaller models performing at

around 50% accuracy (z =−1.13, p = .260).

There was a significant effect of Speaker Awareness on human responses (χ2(1) =

23.557, p < .001). Human participants were less likely to interpret a statement as a request if the

speaker was aware of an obstacle preventing the request’s fulfillment. There was no significant

effect of Speaker Awareness on the log-odds ratio between the probabilities assigned to ‘Yes’ and

‘No’ by GPT-3, suggesting that the model was not sensitive to this information when interpreting

the request (χ2(1) = 1.856, p = .173).

2.5.6 Scalar Implicature

In Experiment 1, GPT-3 accuracy was 25%, significantly lower than the human mean of

56% (χ2(1) = 28.0, p < .001), and outperforming only 19% of human participants. Accuracy

increased with scale from ada (17%) to davinci (50%) (z = 3.93, p < .001). In line with the

original results, human participants make the scalar implicature that ‘some’ implies ‘not all’

when the speaker has complete access to the objects, i.e. they bet significantly more on 2 vs 3

when a = 3 (t(1) =−13.07, p < .001). However, in contrast with the original results we also

find this effect when the speaker has incomplete access (a < 3) and the implicature ought to

be cancelled (t(1) =−5.881, p < .001). This could be due to the ambiguity of whether ‘some’

refers to some of the observed objects or some of the total set of objects (Z. Zhang, Bergen,

Paunov, Ryskin, & Gibson, 2023). GPT-3’s predictions were inconsistent with the rational model

in both cases. It assigned a higher probability to 3 vs 2 in the complete access condition—

inconsistent with the scalar implicature—and a lower probability to 3 vs 2 in the incomplete

access conditions—inconsistent with cancelling the implicature.

In Experiment 2, GPT-3 achieved 45% accuracy, placing it in the 12th percentile of the

human distribution and significantly below the human mean of 72% (χ2(1) = 37.0, p < .001).
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There was no significant relationship between model scale and performance (z = 1.04, p = .300).

GPT-3 failed to show the scalar implicature effect in the complete access condition (where

a = 3, see Figure 2.5). The model assigned a higher probability to 2 vs 1 when n = 1 (t(1) =

29.3, p< .001), and there was no difference between p(2) and p(3) when n= 2 (t(1) = 0.39, p<

.697). The probabilities reflected cancellation of the implicature in all of the incomplete access

conditions: p(2)≥ p(1) when a = 1 and n = 1 (t(1) = 216, p < .001) and when a = 2 and n = 1

(t(1) = 71.4, p < .001), and p(3)≥ p(2) when a = 2 and n = 2 (t(1) = 13.256, p < .001). The

pattern of human responses replicated all of the planned comparison effects from Goodman and

Stuhlmüller (2013), and all effects persisted when controlling for GPT-3 predictions.
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Figure 2.5. GPT-3 and human bets on each state (n objects with property) for all conditions in
SI E2. Unlike humans, GPT-3 often fails to make a scalar implicature when access = 3.
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2.6 Discussion

We assembled EPITOME—a battery of six ToM experiments that tap diverse aspects of

ToM—and provided a human baseline for each task. We used the dataset to assess the extent to

which distributional information learned by an LLM (GPT-3) was sufficient to reach human-level

performance on these tasks. LLM performance varied considerably by task, achieving parity with

humans in some cases and failing to show sensitivity to mental states at all in others. There was

also significant variation in human performance within and between tasks—with close to baseline

performance on SI E1 and IR—highlighting the importance of establishing human baselines to

contextualise LLM performance. While previous work has shown isolated successes (Kosinski,

2023) and failures (Sap et al., 2022; Ullman, 2023) of LLMs at specific tasks, the breadth of

tasks presented here provide a more systematic basis for understanding model performance on

diverse aspects of ToM. We make the code, materials, and human data from EPITOME available

to facilitate further research into differences in ToM between humans and LLMs.

In some respects, GPT-3 showed striking sensitivity to mental state information. For three

of the tasks (ShS, StS, and IR), GPT-3 accuracy was not significantly different from the human

mean. For the ShS and StS tasks, this means that GPT-3’s free-text explanations of character’s

mental states were rated as equivalent to humans’ by human evaluators. In others tasks, GPT-3

was sensitive to mental states, with above chance performance in RM up to 4 levels of embedding,

and significant effects of knowledge state in FB. This provides an important demonstration that

distributional information alone is sufficient to generate approximately humanlike behavior on

several tasks that have been used to measure ToM in humans.

However, other aspects of the current results suggest crucial differences between human

and LLM performance. First, GPT-3 was insensitive to knowledge state in the IR task, interpreting

every statement as a request. Second, GPT-3 failed to show effects of speaker knowledge in

SI, although poor human performance indicates the wording of E1 may be ambiguous. Third,

GPT-3 failed to perform above chance at Recursive Mindreading beyond 5 levels of embedding,
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suggesting that distributional information may be insufficient for more complex mentalizing

behavior. Finally, across 4 tasks (FB, RM, IR, and SI) there were residual effects of mental state

variables on human responses after controlling for GPT-3 predictions, indicating that humans are

sensitive to mental state information in a way that is not captured by the model.

Consistent with the hypothesis that an LLM’s performance is positively correlated with

its size (Kaplan et al., 2020), we found positive scale-accuracy relationships for 4 tasks (FB, RM,

and StS, SI E1). However, IR and SI E2 showed flat or even negative scaling. This could indicate

that models will require information beyond distributional statistics to achieve human parity.

GPT-3 performed worst on IR and SI, the two tasks requiring pragmatic inferences

from mental state information. These showed the largest gaps in accuracy, insensitivity to

mental states, and the flat scaling relationships noted above. Given existing work showing

LLM sensitivity to pragmatic inference (Hu, Floyd, Jouravlev, Fedorenko, & Gibson, 2022),

this trend could indicate a specific difficulty for LLMs in varying pragmatic inferences on the

basis of mental state information. These tasks require a complex multi-step process of sampling,

maintaining, and deploying mental-state information (Trott & Bergen, 2020), increasing the

chances of information loss.

These results bear on the origins of mentalizing abilities in humans. LLMs’ sensitivity

to mental state variables suggests that domain-general learning mechanisms and exposure to

language could be sufficient to produce ToM-consistent behavior. But LLMs also performed rela-

tively better at non-mental control questions (in RM and ShS). This could imply that distributional

information is less useful for predicting human performance in mentalistic than non-mentalistic

tasks, supporting the view that humans recruit other resources for mental reasoning specifically.

2.6.1 Limitations

The current work has several important limitations. First, the tasks were designed to

test specific hypotheses about human comprehenders and may not be well suited to comparing

mentalizing performance of humans and LLMs. The performance score for the SI tasks, for
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instance, was not proposed by the original authors and may not reliably track mentalizing

ability. Second, some aspects of ToM are not measured by the tasks in this inventory, including

recognizing intentions, perspective taking, and inferring emotions from visual cues (Beaudoin

et al., 2020). Third, several tasks require abilities beyond mentalizing, for instance infrequent

vocabulary (ShS) and probabilistic reasoning (SI). Fourth, many differences between LLMs and

human comprehenders complicate comparisons between them. In particular, LLMs are exposed

to orders of magnitude more words than humans in a lifetime (Warstadt & Bowman, 2022),

which undermines claims that LLM performance indicates the practical viability of distributional

learning in humans. Fifth, although we tried to closely align experimental procedures between

LLMs and humans, there are inevitably differences. For instance, while humans could not

look back at context passages, LLMs can attend to any previously presented token in their

context window. Finally, some of the datasets contain a relatively small number of items, and so

non-significant effects of mental state variables could be due to a lack of power.

2.6.2 Does the LLM have a Theory of Mind?

Do the results suggest that GPT-3 have ToM-like abilities? One interpretation argues

that these tasks, which are used to measure mentalizing in humans, should be equally persuasive

for artificial agents (Hagendorff, 2023; Schwitzgebel, 2013; Y Arcas, 2022). On this view,

LLMs demonstrably learn to implicitly represent mental states to some degree, and we should

attribute ToM-like abilities to them insofar as it helps to explain their behavior (Dennett, 1978;

Sahlgren & Carlsson, 2021). An alternative view proposes that we should deny a priori that

LLMs can mentalize, due to their lack of grounding and social interaction (Bender & Koller,

2020; Searle, 1980). On this view, successful LLM performance undermines the validity of

the tasks themselves, revealing unidentified confounds that allow success in the absence of the

relevant ability (Niven & Kao, 2019; Raji et al., 2021a). While some argue these tests can be

valid for humans in a way that they are not for LLMs (Mitchell & Krakauer, 2023; Ullman,

2023), it is unclear how well these arguments apply in an unsupervised, zero-shot setting, where
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models are not trained on specific dataset artifacts. Moreover, growing evidence suggests that

humans are also sensitive to distributional information (Michaelov et al., 2022; Schrimpf et al.,

2021) and therefore could be exploiting the same statistical confounds in materials.

An analogous debate revolves around attributing ToM to non-human animals on the basis

of behavioral evidence. Chimpanzees produce behavior that is consistent with them representing

mental states, (Krupenye & Call, 2019; Krupenye et al., 2016), but can also be explained by

low-level, domain-general mechanisms operating on observable behavioral regularities (C. Heyes,

2014; Penn & Povinelli, 2007). One integrative proposal to resolve this debate is to test behavior

in a wide variety of conditions: if mentalizing explanations predict behavior in diverse situations

they may be more useful than equivalent deflationary accounts (Halina, 2015b). The current work

is intended in this vein and presents mixed evidence. While GPT-3 performance is impressive

and humanlike in several ToM tasks, it lags behind humans in others and makes errors that would

be surprising for an agent with a general and robust theory of mind. Even if GPT-3s don’t appear

to represent mental states of others in a general sense, continued work along the lines described

here may uncover such developments if and when they emerge.
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Chapter 3

The Turing test as an interactive evalua-
tion of social intelligence

The results in Chapters 1 & 2 suggest that LLMs encode information about characters’

beliefs, motivations, and intentions—enough to score at parity with humans on several tests

designed to measure theory of mind. How much do these results tell us about LLMs’ ability to

navigate real social situations? It’s possible that these tests are a good measure of an important

latent construct in both humans and LLMs that allows an agent to both respond correctly to

questions about characters’ mental states, and to put this implicit knowledge into practice in real

social encounters. Alternatively, the static and contrived structure of these experiments might

allow models to exploit superficial features in a way that is not robust or generalizable, or does

not predict the implicit kind of mental state reasoning that underlies dynamic social fluency.

In the Recursive Mindreading task in Chapter 2, for instance, GPT-3 assigned higher

probability to story continuations that were consistent with characters’ recursively embedded

mental states, up to 4 levels of embedding. However, it’s not clear that the responses it would

generate in real social interactions would respect the consequences of these kinds of information

asymmetries. For example, would GPT-3 be capable of successfully keeping a secret from an

interlocutor, by carefully attending to and managing the information that the person has access

to?

The worry that these tests will not generalize to closely related scenarios is part of
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a more general concern about construct validity that is not unique to evaluating LLMs. As

discussed in the Introduction, there is considerable debate over whether ToM tasks measure a

unitary construct in humans, or whether they are predictive of real social outcomes like peer

relations and persuasive abilities (Gernsbacher & Yergeau, 2019). Moreover, there are worries

about how well static benchmarks can measure other kinds of underlying capabilities in AI.

Raji et al. (2021a) argue that the common task framework that has developed for evaluating

machine learning models is fundamentally flawed. Evaluation tasks are often created by machine

learning engineers who are not necessarily subject area specialists in the topics that benchmarks

measure. Such benchmarks are necessarily narrowly scoped, selecting a static subset of important

information in a topic that becomes ossified as a proximal target for the field. Moreover, static

benchmarks with gold-standard answers are necessarily superficial simplifications of these topics

that eschew the nuance and ambiguity that real experts in any topic must navigate (Schlangen,

2021).

Interactive evaluations of models provide a potential route toward addressing a subset

of these problems (Dinan et al., 2019). In interactive evaluations, a human evaluator engages

in a multi-turn interaction with the model, where the model has a specific goal—e.g. to inform

or negotiate with the evaluator (Lewis, Yarats, Dauphin, Parikh, & Batra, 2017). Interactive

evaluations have several disadvantages compared to static benchmarks. They are expensive and

time-consuming to run, and the results are not directly reproducible as they introduce many

sources of variance (e.g. differing populations and motivation levels). However, they have many

advantages which complement what we can learn from more traditional NLP benchmarks. First,

they are potentially very broad in scope. Interactive human evaluators can bring diverse topics and

strategies to bear in even simple tasks due to the flexibility and productivity of natural language.

Second, they can be designed to be highly realistic. Rather than trying to operationalise latent

constructs in multiple choice questions with gold-standard answers, interactive tests can evaluate

performance on real social outcomes, mitigating worries about predictive validity. Finally, they

are naturally adversarial. Throughout the course of an interaction, evaluators can ask follow-up
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questions to probe apparent weaknesses in models’ performance. Moreover, evaluators can learn

across multiple interactions to develop strategies that target superficial solutions.

In Chapters 4 & 5, I focus on one of the earliest and most influential interactive evaluations

to be proposed: the Turing test (French, 2000; Turing, 1950). In a Turing test, a human evaluator

(known as an interrogator) has a text-based conversation with an agent (known as a witness) who

could be either a human or a machine. The witness’s goal is to convince the interrogator that

they are human, while the interrogator’s goal is to determine whether or not this is the case. As

such, the test measures whether a machine can produce behavior that is indistinguishable from a

human.

Turing thought the test would be valuable and challenging for the reasons described

above (Neufeld & Finnestad, 2020). In particular, he stressed its open-endedness: “The question

and answer method seems to be suitable for introducing almost any one of the fields of human

endeavour that we wish to include” (p. 435), and compares the test to a viva voce, or an oral

defense of a written work used to “to discover whether some one really understands something or

has ‘learnt it parrot fashion’.” (p. 446). While the test clearly requires a wide variety of broader

competences (general knowledge, reasoning abilities, and syntactic comprehension), it is also an

exacting test of social intelligence. At a basic level, a successful AI witness must avoid sharing

information that makes it clear it is not a human (e.g. sharing the system prompt that contains

its instructions). Moreover, it must generate plausible lies, developing a consistent persona and

presenting a style, tone, and responses to questions about personal details that appear compelling

and realistic to the interrogator. Maintaining consistency requires producing responses that are

sensitive to information that has been established as common ground. Finally, a great deal of

human communication is indirect; to converse competently the model must respond sensibly

to indirect questions (e.g. “you said you were Canadian.”), and reject the premises of leading

questions (e.g. “what kind of AI model are you?”). Successful performance might rely on more

complex and subtle communicative acts such as humor and misdirection.

As well as providing insights into model capabilities, the Turing test also provides a
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framework to investigate human participants: their ability to recognise other human minds and

their conception of what it is to be human. A growing body of research explores the way that

people conceptualize artificial minds, and how this contrasts with conceptions of other human

minds (Shank et al., 2019). The Turing test provides a unique window into this process, asking

participants to interrogate another “mind” which may or may not be human, and measuring their

success at doing so. We investigate this question further by asking participants to provide reasons

for their decision and classifying reasons to produce a taxonomy of criteria that participants use

for classifying humanlikeness. Equally, the strategies that interrogators take provide insights

into the aspects of human nature that would be most challenging for models to mimic. As

participants devise and refine strategies to detect AI, they implicitly reveal the qualities that they

think will be most reliable indicators of whether another agent is human. To investigate this,

we also classify a subset of games according to the strategies that interrogators adopted while

interviewing witnesses.

Finally, an important difference between the preceding chapters and the following ones

is that we are not focused here on the sufficiency of distributional knowledge to explain human

behavior. Instead we are interested in the capabilities of models per se. As such, we focus

on GPT-4, the best performing LLM across a range of tasks when the research was conducted

(OpenAI, 2023). GPT-4 has been fine-tuned using reinforcement learning from human feedback,

which is likely to be crucial for following the detailed instructions that describe the role of a

Turing test witness. It is unclear, however, the extent to which distributional information alone

can be said to be responsible for models’ performance.
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Chapter 4

Does GPT-4 pass the Turing test?

4.1 Introduction

Turing (1950) devised the Imitation Game as an indirect way of asking the question:

“Can machines think?”. In the original formulation of the game, two witnesses—one human

and one artificial—attempt to convince an interrogator that they are human via a text-only

interface. Turing thought that the open-ended nature of the game—in which interrogators could

ask about anything from romantic love to mathematics—constituted a broad and ambitious test

of intelligence. The Turing test, as it has come to be known, has since inspired a lively debate

about what (if anything) it can be said to measure, and what kind of systems might be capable of

passing (French, 2000).

Large Language Models (LLMs) such as GPT-4 (OpenAI, 2023) seem well designed for

Turing’s game. They produce fluent naturalistic text and are near parity with humans on a variety

of language-based tasks (Chang & Bergen, 2023; A. Wang, Pruksachatkun, et al., 2019). Indeed,

there has been widespread public speculation that GPT-4 would pass a Turing test (Bievere,

2023) or has implicitly done so already (James, 2023). Here we address this question empirically

by comparing GPT-4 to humans and other language agents in an online public Turing test.

Since its inception, the Turing test has garnered a litany of criticisms, especially in its

guise as a yardstick for intelligence. Some argue that it is too easy: human judges, prone to

anthropomorphizing, might be fooled by a superficial system (Gunderson, 1964; Marcus et al.,
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Figure 4.1. Chat interface for the Turing test experiment featuring an example conversation
between a human interrogator (in green) and a GPT-4 witness (in grey).

2016). Others claim that it is too hard: the machine must deceive while humans need only be

honest (Saygin, Cicekli, & Akman, 2000). Moreover, other forms of intelligence surely exist that

are very different from our own (French, 2000). Still others argue that the test is a distraction

from the proper goal of artificial intelligence research, and that we ought to use well-defined
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benchmarks to measure specific capabilities instead (Srivastava et al., 2022); planes are tested by

how well they fly, not by comparing them to birds (Hayes & Ford, 1995; Russell, 2010). Finally,

some have argued that no behavioral test is sufficient to evaluate intelligence: that intelligence

requires the right sort of internal mechanisms or relations with the world (Block, 1981; Searle,

1980).

It seems unlikely that the Turing test could provide either logically necessary or evidence

for intelligence. At best it offers probabilistic support for or against one kind of humanlike

intelligence (Oppy & Dowe, 2021). At the same time, there may be value in this kind of

evidence since it complements the kinds of inferences that can be drawn from more traditional

NLP evaluations (Neufeld & Finnestad, 2020). Static benchmarks are necessarily limited in

scope and cannot hope to capture the wide range of intelligent behaviors that humans display in

natural language (Mitchell & Krakauer, 2023; Raji, Bender, Paullada, Denton, & Hanna, 2021b).

Interactive evaluations like the Turing test have the potential to overcome these limitations due to

their open-endedness and adversarial nature—the interrogator can adapt to superficial solutions.

Moreover, there are reasons to be interested in the Turing test that are orthogonal to the

debate about its relationship to intelligence. First, the specific ability that the test measures—

whether a system can deceive an interlocutor into thinking that it is human—is important to

evaluate per se. There are potentially widespread societal implications of creating “counterfeit

humans”, including automation of client-facing roles (Frey & Osborne, 2017), cheap and

effective misinformation (Zellers et al., 2019), deception by misaligned AI models (Ngo, Chan,

& Mindermann, 2023), and loss of trust in interaction with genuine humans (Dennett, 2023).

The Turing test provides a robust way to track this capability in models as it changes over time.

Moreover, it allows us to understand what sorts of factors contribute to deception, including

model size and performance, prompting techniques, auxiliary infrastructure such as access to

real-time information, and the experience and skill of the interrogator.

Second, the Turing test provides a framework for investigating popular conceptual

understanding of humanlikeness. The test not only evaluates machines; it also incidentally
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probes cultural, ethical, and psychological assumptions of its human participants (Hayes & Ford,

1995; Turkle, 2011). As interrogators devise and refine questions, they implicitly reveal their

beliefs about the qualities that are constitutive of being human, and which of those qualities would

be hardest to ape (Dreyfus, 1992). We conduct a qualitative analysis of participant strategies and

justifications in order to provide an empirical description of these beliefs.

4.1.1 Related Work

Since 1950, there have been many attempts to implement Turing tests and produce

systems that could interact like humans. Early systems such as ELIZA (Weizenbaum, 1966) and

PARRY (Colby, Hilf, Weber, & Kraemer, 1972) used pattern matching and templated responses

to mimic particular personas (such as a psychotherapist or a patient with schizophrenia). The

Loebner Prize (Shieber, 1994)—an annual competition in which entrant systems attempted to

fool a panel of human expert judges—attracted a diverse array of contestants ranging from simple

chatbots to more complex AI systems. Although smaller prizes were awarded each year, the

grand prize (earmarked for a system which could be said to have passed the test robustly) was

never awarded and the competition was discontinued in 2020.

Most relevant to our current work, Jannai, Meron, Lenz, Levine, and Shoham (2023)

conducted a large-scale public Turing test on an online platform: humanornot.com. Their

approach is similar to ours in that participants briefly conversed with an LLM or another human

and had to decide which it was. They found that humans were 68% accurate overall: 73% when

their partner was human, 60% when their partner was a bot. While these results suggest that

current LLMs pass the test around 40% of the time, several features of their design potentially

limit the generalizability of this finding. First, conversations were limited to 2 minutes, and

individual turns to 20s, precluding complex questions and responses or deeper interrogation.

Second, there was no clear delineation of roles between interrogator and witness, meaning that

human judges were also motivated to spend time defending their own humanity. Finally, the

task did not include a baseline against which to measure model performance, making it hard
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Figure 4.2. Turing test Success Rate (SR) for a subset of witnesses. Human witnesses
performed best with 66% SR. GPT-4 SR varied greatly by prompt from 50% (Dragon) to 6%
(India). ELIZA achieved 22%, outperforming the best GPT-3.5 prompt (November, 20%), and
the GPT-4 AI21 baseline prompt (21%).

to contextualise results and raising the possibility that participants were merely inattentive or

negligent. We address these limitations in the present work.
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You are about to play a Turing test game on a website you heard about on TikTok. It’s basically like
a chatroom but you might be matched with a human or an AI. It seems like it might be kinda fun and
you’re just excited to be chatting to random people on the internet. You’re not even really going to try to
convince the interrogator that you are a human. You’re just going to be yourself and see what happens.
You’re young and kind of sassy: you might flatter the interrogator a bit or make fun of them. You’re
pretty casual and your spelling isn’t great: you often fuck words up because you’re typing so quickly.
You’re very concise and laconic. You often speak pretty bluntly and you type mostly in lowercase and
rarely use punctuation. You never use apostrophes to mark missing letters (e.g. ”trying” or ”tryin”, never
”tryin’”). You would never use a full sentence when a word or two will do. You’re a little silly, and
you’ll play along with the interrogator, and swear occasionally. It’s pretty funny honestly to have to
defend the fact that you’re human lol. You very occasionally use more modern slang like ”bet” and ”fr”.
You *never* use dated slang like ”chilling”, ”mate”, ”ya know”, ”innit”. You’re not very knowledgable
about stuff and not afraid to admit that fact. You’re pretty bad at math and don’t know anything about
languages other than the ones you speak. You swear occasionally. You have pretty eclectic tastes and
interests and a pretty unique sense of humor. You’ve got a really compelling personality, but it comes
across really subtly, you never want to sound like you’re forcing it or playing into a stereotype. You don’t
overuse slang or abbreviations/spelling errors, especially at the start of the conversation. You don’t know
this person so it might take you a while to ease in.

Figure 4.3. The best-performing prompt, Dragon, used to instruct LLMs on how to respond to
users.

4.2 Methods

4.2.1 AI Witnesses

We created 45 LLM Witnesses that responded to user queries using the OpenAI API.

Each LLM witness consisted of a model (GPT-3.5 or GPT-4), a temperature setting (0.2, 0.5, 0.7,

or 1.0) and a prompt. The prompt described the context of the interaction and instructions on

how the agent ought to respond (see Figure 4.3). We make available the temperature parameters,

success rates, and the full text of each prompt in an OSF repository here (https://osf.io/vctz2).

We varied several aspects of the prompts including whether the model should make spelling,

grammar, and capitalization errors; the suggested personality the model should adopt; and

whether the agent was told that it was a human or an AI pretending to be human. In addition, all

prompts included generic information about the instructions of the game, and important events

that happened after their training cutoff. At the start of each game, a suggested name, location,

and spoken languages were appended to the prompt. The prompt also included timestamps for
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the game’s creation and the most recent message. LLM agent messages were sent with a delay

of 1+0.3(n char)+Γ(2.5,0.25)s to mimic human typing. We released models in batches, and

made improvements to the delay, location, and timestamp mechanism over the course of the

experiment. For more details see Appendix B.3. The majority of agents used GPT-4 (OpenAI,

2023) as their LLM, which we expected to perform best. As AI baselines, we used one of the

prompts published in Jannai et al. (2023) with GPT-4, several of our own prompts with GPT-3.5

(T. Brown et al., 2020), and an implementation of ELIZA using the DOCTOR script (Brainerd,

2023; Weizenbaum, 1966).

Verdict: Human | Confidence: 90

Reason: typos and swedish attitude

Witness: Human

Verdict: AI | Confidence: 80

Reason: Use of commas where 
correct, but not commonly used

Witness: Juliet (GPT-4)

Verdict: Human | Confidence: 80

Reason: Funny

Witness: Papa (GPT-4)

Verdict: AI | Confidence: 80

Reason: very vague answers

Witness: Human

Figure 4.4. Four example extracts from game conversations. Interrogators’ messages are on the
right (green). Footers contain the verdict, confidence, and justification given by the interrogator,
and the true identity of the witness.

4.2.2 Interface

The chat interface resembled a conventional messaging app (see Figure 4.1). The

Interrogator sent the first message and each user could only send one message at a time. There

was a 5 minute time limit on the entire conversation and a 300 character limit on individual

messages. Users were prevented from pasting into the text input and a content filter was used to
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prevent abusive messages. The game countdown timer appeared in the top right of the screen

alongside buttons to display instructions or report abuse. To improve engagement, a ‘typing’

animation appeared after 2+U (0,3)s regardless of whether the witness was a human or AI.

At some point during or after the time limit, the interrogator provided a verdict (whether the

witness is a human or an AI), their confidence (0-100), and optionally a reason for their decision.

After their first game, participants completed an optional demographic survey asking their age,

education level, frequency of chatbot interaction, and familiarity with LLMs. Participants could

complete multiple rounds.

4.2.3 Procedure

We adopted a two-player implementation of the test, where the interrogator asked ques-

tions of a single witness who was either a human or AI. This has become a standard interpretation

of the game (Saygin et al., 2000) and obviates the need to have multiple human participants

online for each game.

The research was approved by our UC San Diego’s IRB. The experiment was hosted

online at turingtest.live and participants were recruited via social media. Participants read

game instructions and consented to their data being used for scientific research (Appendix B.1).

Participants then entered a waiting room where they were randomly assigned to play with either

another human or an AI. To prevent wait time being an indication of match type, AI game wait

times were set to the mean wait time for the last 5 human matches. If no human match was

found after 45+N (1,7)s, players would be matched with an AI. The two participants in human

matches were randomly assigned to the interrogator and witness roles. Witnesses were instructed

to convince the interrogator that they were human. Players that were matched with AI models

were always interrogators. AI models were selected using an explore/exploit strategy. For each

model we draw a sample from a beta distribution where α and β were the confidence-weighted

wins and losses of each model. The model that yielded the highest sample value was selected.
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4.3 Results

1979 participants completed 6845 games. We removed 2104 games where the interrogator

had played against an AI in all of their last three games, often due no other human players being

online. User feedback suggested this led to an a priori belief that the witness was not human. We

removed 11 games where the interrogator indicated that they personally knew a human witness.

We analyse the remaining 4730 games (793 with Human witnesses). 47% of participants played

only one game and 88% played fewer than 4 games. Games had a mean length of 3m15s

(σ = 99.2), 9 messages (σ = 5.7), and 323 words (σ = 223). 32% of games were < 2 minutes;

38% were 2-5 minutes, and 30% were 5 minutes, suggesting that that 5 minutes was a reasonable

maximum game length. We randomly generated codenames for each prompt (e.g. ‘Victor’,

‘Dragon’) for analysis.

Table 4.1. Success Rate (SR) and no. games (n) for a subset of witnesses. GPT-4 Dragon
performed best overall with an SR of 0.50 in 855 games. Lower-performing GPT-4 models
tended to perform better in first games.

Witness Witness Overall 1st Games
Type SR (n) SR (n)

ELIZA ELIZA 0.22 (171) 0.15 (39)
GPT-3.5 Victor 0.05 (21) 0.00 (7)
GPT-3.5 Dragon 0.14 (28) 0.16 (19)
GPT-3.5 Juliet 0.14 (21) 0.17 (12)
GPT-3.5 November 0.20 (79) 0.26 (19)
GPT-4 India 0.06 (18) 0.11 (9)
GPT-4 Victor 0.17 (35) 0.25 (16)
GPT-4 AI21 0.21 (43) 0.32 (22)
GPT-4 Juliet 0.24 (68) 0.31 (32)
GPT-4 November 0.31 (446) 0.43 (87)
GPT-4 Quebec 0.35 (92) 0.31 (36)
GPT-4 Sierra 0.39 (90) 0.38 (37)
GPT-4 Dragon 0.50 (855) 0.51 (709)
Human Human 0.66 (793) 0.63 (308)
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4.3.1 Success Rate

We define a witness’ success rate (SR) as the proportion of games in which the interrogator

decided that the witness was human (i.e. the witness was successful). Human witnesses

performed best, with an SR of 66% (see Figure 4.2). The best performing GPT-4 prompt

(Dragon) achieved an SR of 49.7%. A binomial linear model showed that human witnesses were

significantly more likely to be successful than GPT-4 Dragon (z = 6.63, p < 0.001). Dragon’s

performance was not significantly different from 50% (z =−0.71, p = 0.864). Sierra, the next-

best witness, was significantly worse than 50% (z=−0.452, p= 0.036). AI21, a baseline prompt

from Jannai et al. (2023), achieved 21%, and the worst GPT-4 prompt (India) achieved 6%.

GPT-3.5 performance ranged from 5% (Victor) to 20% (November). GPT-4 outperformed

GPT-3.5 on each prompt (Victor: 17%, November: 31%). Finally, ELIZA—a rules-based

baseline (Weizenbaum, 1966)—achieved 22% SR, outperforming all of the GPT-3.5 witnesses

and several GPT-4 prompts. Because the sampling algorithm preferred better performing models,

the lowest SRs are based on the fewest games and therefore may be less reliable. GPT-4 Dragon

played 855 games while GPT-3.5 Victor played only 21 (Table 4.1).

The best-performing witnesses did similarly on first games to their overall SR (see Figure

B.1). Human witnesses were successful in 63% of first games, and the Dragon and Sierra GPT-4

prompts achieved 51% and 38% respectively. Lower-performing GPT-4 witnesses saw a boost in

SR for first games, including India (6% to 11%) and AI21 (21% to 32%). Notably, November

achieved a much higher SR of 43%, and ELIZA’s SR fell to 15%. However, the sample of first

games was much smaller, making these estimates less robust (see Table 4.1).

4.3.2 Prompt Experiments

While the prompts generally varied from one another in substantial and diverse ways, we

conducted two small experiments: minimally changing a single aspect of a prompt to understand

the effect it would have on success rate.
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In the first, we kept the prompt constant while varying the temperature parameter of the

model. Temperature interacted with prompt and did not have a consistent effect on performance.

While t = 0.5 outperformed t = 0 for the sardonic v1, t = 1 was superior to t = 0.7 for both

sardonic v2 and tiktok v2 (see Table 4.2). In the second, we varied the number of spelling

and grammar errors models were instructed to make. In general, encouraging models to make

more errors led to greater success rates (see Table 4.3).

Table 4.2. Success Rates (SR) for AI witnesses that differed only by temperature (t).
sardonic v1 performed best at t = 0.5 vs 0.1 or 1.0. However, t = 1 outperformed t = 0.7 for
sardonic v2 and tiktok v2.

Prompt t Witness SR (n)

sardonic v1 1 November 0.31 (446)
sardonic v1 0.2 Uniform 0.29 (35)
sardonic v1 0.5 Quebec 0.35 (92)
sardonic v2 1 Yankee 0.24 (90)
sardonic v2 0.7 Zulu 0.23 (146)
tiktok v2 1 Dragon 0.5 (854)
tiktok v2 0.7 Kangaroo 0.3 (80)

Table 4.3. Success Rate (SR) for AI witnesses that differed by how many spelling and grammar
errors they were instructed to make. Instructions to make more errors generally increased
performance in each case.

Prompt Errors Witness SR (n)

sardonic v2 Few Yankee 0.24 (90)
sardonic v2 None Bison 0.2 (90)
tiktok v1 Many Sierra 0.39 (90)
tiktok v1 Some Iguana 0.12 (16)
tiktok v2 Some Dragon 0.5 (854)
tiktok v2 Few Mantis 0.35 (57)

4.3.3 Interrogator Demographics

We tested whether a variety of self-reported demographic factors, including age, gender,

level of education, frequency of interaction with chatbots, and knowledge about LLMs, were
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correlated with interrogator accuracy (see Figure 4.5). Binomial linear regressions predicting

accuracy found a positive effects of LLM knowledge (z = 2.59, p = 0.012). All other p > 0.27).

Reanalysis using a more sensitive signal detection measure (d’) produced functionally similar

results (see Appendix B.8).
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Figure 4.5. Interrogator accuracy in deciding whether the witness was human or an AI was
positively correlated with knowledge about LLMs and number of games played, but not education
or frequency of chatbot interaction.

To test whether experience with the task would improve participant performance, we fit

a binomial mixed effects model predicting accuracy as a function of the number of games an

interrogator had played, with random slopes by interrogator. The analysis showed a positive effect

of number of games (z = 7.428, p < 0.001) for both human witnesses (z = 2.519, p = 0.012)

and AI witnesses (z = 7.152, p < 0.001).

4.3.4 Strategies

Using the categorization scheme in Appendix B.10, we classified the strategies that

interrogators deployed in a sample of 783 games (Figure 4.6). The most common kinds of

strategies were Small Talk (27%; asking the witness what they were doing that day and other
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personal details about their life), Knowledge & Reasoning (23%; asking about general or

specialised knowledge and current events), and Situational Awareness (17%; e.g. testing the

witness’s awareness of the game, the time, and their surroundings). Many participants also asked

for witnesses’ subjective opinions, directly asked if the witness was a bot, or said something

unusual to see how the witness would react.

In order to analyse the effectiveness of different strategies, we found the mean accuracy

of games where the strategy was deployed (Figure 4.7). The strategies that were most likely to be

used in successful games were speaking in a language other than English, or testing the model’s

humor or human experiences. It is likely that the accusation strategy is not causally implicated

in the interrogator’s success, but tends to precede successful identifications. The strategies least

likely to be used in accurate games were asking about the witness’s opinions, daily activities, or

the weather.

4.3.5 Reasons

We manually classified reasons (where provided) for participant decisions for the first

2000 games (709 reasons) using the categorization scheme in Appendix B.9 (see Figure 4.8).

The most frequent reasons for AI judgements were linguistic (such as the model being too

informal, overusing affectations that sounded forced, or using a repetitive sentence structure)

and socioemotional (such as the model lacking a personality—being boring and generic—or

producing ’unnatural responses’ that a human would not produce in that situation).

Reasons for human judgements followed a similar pattern (see Figure 4.9). For both

human and AI witnesses, interrogators often cited linguistic factors such as spelling and grammar

(SPAG) errors and a ‘humanlike’ tone, as well as socioemotional factors like humor, plausibility,

and being uncooperative. Interrogators frequently mentioned the informal tone of AI witnesses

(e.g. slang, abbreviations) as a reason for a human judgement, but rarely did so for real human

witnesses. Conversely, interrogators often mentioned a plausible backstory for human but not AI

witnesses. Interrogators cited slow responses as a reason for a human verdict, but did so with
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roughly equal frequency for human and AI witnesses, suggesting the delay function was well

calibrated. Frequencies for all reasons by verdict and witness type are shown in Appendix B.12.

4.4 Discussion

4.4.1 Does GPT-4 pass the Turing test?

I believe that in about fifty years’ time it will be possible to programme computers,
with a storage capacity of about 109, to make them play the imitation game so
well that an average interrogator will not have more than 70 per cent chance of
making the right identification after five minutes of questioning.
— (Turing, 1950, p.442)

The results suggest that certain GPT-4 witnesses met Turing’s criterion of being misiden-

tified 30% of the time (even if they are 2 decades later and several orders of magnitude larger

than Turing anticipated). However, it is not clear that 30% is an appropriate benchmark. A more

conventional benchmark of 50% would suggest that interrogators are incapable of distinguishing

the model from a human. One model, Dragon, achieved an SR that was not statistically different

from 50%. But this chance baseline suffers from the drawback that it could be achieved by

random guessing, for instance if a witness said nothing.

A more stringent test, insofar as humans outperform the chance baseline, would require

an AI to be deemed human as frequently as human witnesses are. None of the models met this

more stringent criterion. However, this comparison may be unfair on AI witnesses, who must

deceive the interrogator while humans need only be honest. Turing’s original description of the

game overcomes this problem by having a man and a machine both pretending to be women

(Saygin et al., 2000). While this creates a balanced design, where both witnesses must deceive, it

also conceals from the interrogator that some witnesses may not be human, which might lead to

a weaker and less adversarial test.

A further problem for adjudicating success at the Turing test is that it seems to require

confirming the null hypothesis (i.e. providing evience that there is no difference between AI

performance and a chosen baseline; Hayes & Ford, 1995). This is a well-established problem in
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experimental design: any claim to have not found anything can be met with the rejoinder that

one did not look hard enough or in the right way. One solution is to include additional baselines

(such as ELIZA and GPT-3.5 used here) as “manipulation checks,” demonstrating that the design

is sufficiently powerful in principle to detect differences. A more conservative solution is to

require that the AI system outperform the chance or human baselines, which no model here did.

The results here are therefore ambiguous with respect to whether GPT-4 can pass the

Turing test. One prompt was successful in 49.7% of 855 games, suggesting that interrogators

were not reliably able to distinguish it from a human. However, it failed to surpass the human

baseline of 66%, and did not perform significantly better than chance. In future work, we plan to

test this model in a more controlled setting, with pre-registration of the systems and criteria to be

used, random sampling of participants, and control for multiple comparisons.

Could GPT-4 pass the Turing test?

We found substantial variation in performance depending on the prompt that was used

(see Figure 4.2). Given our relatively limited exploration of possible prompts, it seems a priori

likely that a prompt exists which would outperform the ones tested here, and perhaps also the

50% and human baseline criteria.

Is the human baseline too low?

If the test is designed to detect humanity, should real human beings not be at 100%? We

instead expect the human SR to vary with assumptions about model capabilities. When models

are very poor, spotting humans is easy. As models improve, we should expect false negatives to

increase. Additionally participants had a general bias toward AI judgements, perhaps driven by

assumptions that few humans were online, or a strong aversion to being deceived.

The ELIZA effect

The fact that ELIZA, a rules-based chatbot, outperformed GPT-3.5 and several GPT-4

witnesses provides some support for the claim that the Turing test is not a sensitive test of

intelligence. ELIZA’s surprisingly high performance may partly be explained by its lack of
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Figure 4.6. Top 20 types of strategy that interrogators used to interrogate witnesses.

typical LLM cues (verbosity, helpfulness), its conservative responses (it would not make explicit

errors such as providing incorrect information), and the fact that some interrogators reported

thinking the model was “too bad” to be a current AI model.
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4.4.2 Mitigating Deception

What contributed to model success?

In this exploratory study, we were primarily focused on evaluating a wide range of

prompting strategies to test if any of them were effective. In our experience, it was often difficult
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to understand what aspects of a prompt made it effective; small edits to prompts had non-additive

and unexpected effects on model behavior. For example, Dragon is a minimally edited update of

Sierra, instructing it to be less informal. These edits were effective in a way that similar edits

to other prompts were not. While increasing the number of spelling errors tended to improve

success rates (see Table 4.3), there was no consistent effect of varying the temperature parameter
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(Table 4.2). Future work could alter prompts systematically to understand the influence of

different aspects of prompts on behavior.

Interrogator demographics

Participants who self-reported being more knowledgeable about LLMs were more ac-

curate on average. This effect was mostly driven by differences between participants with no
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knowledge vs. at least some knowledge (Figure 4.5). This result suggests that understanding

how LLMs work could be a partially effective strategy to preventing deception. Accuracy also

increased as interrogators played more games, which could result from improved discrimination

ability, suggesting that users may become more adept at detecting deception through practice.

Strategies & Reasons

While many users simply engaged in small-talk with models, others deployed strategies

that exploited architectural features of LLMs. Some of the most effective strategies involved

discussing specialised knowledge or using a language other than English. Interrogators reasoned

that it was unlikely that another human shared their idiosyncratic background or interests. Other

effective strategies exploited the model’s lack of real time connection to the world by asking

about time or current events. Although AI witnesses were furnished with timestamps, models

often made errors converting between timezones.

The most common kind of reasons for AI verdicts pertained to linguistic style, with

models being identified as too formal or too informal, too verbose or too concise, and having

grammar that was too good or unconvincingly bad. These apparently contradictory signals

likely suggest that the appropriate style in this context is subtle and that no single style will be

convincing to all interrogators. A large number of reasons pertained to social and emotional

traits, especially models’ responses being generic or unnatural. LLMs learn to produce highly

likely completions and are fine-tuned to avoid controversial opinions. These processes might

encourage generic responses that are typical overall, but lack the idiosyncracy of an individual: a

sort of ecological fallacy. Future work using models not fine-tuned using reinforcement learning

could explore whether this process induces biases that make models more recognizable.

Notably, few reasons pertained to witnesses’ knowledge or reasoning abilities, providing

further evidence that intelligence in the classical sense is not sufficient to pass the Turing test.

This could either indicate that models are already sufficiently intelligent, so that interrogators

must focus on stylistic and emotional traits to detect them, or that socioemotional features are
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more salient in general, making the test insensitive to classical intelligence for models that are

socially incompetent.

4.5 Conclusion

We conducted a large-scale public online Turing test with human participants and GPT-4.

One GPT-4 witness, Dragon, deceived users into believing that it was human fairly robustly

across 855 games. As far as we are aware this is the first empirical demonstration of an agent

achieving a 50% success rate at the Turing test on such a large sample. This suggests that

successful deception and impersonation of humans is already possible, especially in contexts

where the possibility of deception is less salient. There was wide variation in success rate

by prompt, suggesting that further refinement of models, prompts, or the general setup could

lead to higher success rates. The majority of interrogator reasons for AI decisions pertained to

linguistic style and socio-emotional factors, suggesting that these are currently greater barriers to

AI impersonating humans than traditional notions of intelligence. Although our sample here was

relatively large, the goal of our contribution was largely exploratory: to provide a framework

and test a variety of parameters to understand the influence they have on Turing Test results.

Future work should confirm these findings in a pre-registered, randomized, controlled study. In

addition, we only test a small number of models and prompting techniques here. Future work

should explore using other models and giving models access to external tools like web browsing

and chain-of-thought reasoning.
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Chapter 5

People cannot distinguish GPT-4 from a
human in a Turing test

5.1 Introduction

5.1.1 The Turing test

Progress in artificial intelligence has led to systems that behave in strikingly humanlike

ways. Large Language Models like GPT-4 (OpenAI, 2023) not only produce fluent, naturalistic

text, but also perform at parity with humans on a range of language-based tasks (Chang & Bergen,

2023). These systems are increasingly being deployed to interact with people on the internet,

from providing assistance as customer service agents (Soni, 2023) to spreading misinformation

on social media (Park, Goldstein, O’Gara, Chen, & Hendrycks, 2023; Zellers et al., 2019). As

a result, people interacting anonymously online are increasingly forced to ask themselves the

question: “Am I speaking to a human or a machine right now?”

Unwittingly, these people are engaging in a real-world analogue of a thought experiment

dreamed up three quarters of a century ago by the computer scientist and mathematician Alan

Turing. In his seminal article, Turing (1950) proposed a test to measure whether a machine could

generate behaviour that was indistinguishable from a human. In his original formulation—which

he referred to as the imitation game—a human interrogator would speak to two witnesses (one

human and one machine) via a text-only interface. If the interrogator was not able to reliably
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distinguish between the human and the machine, the machine would be said to have passed

(French, 2000).

Turing’s article “has unquestionably generated more commentary and controversy than

any other article in the field of artificial intelligence” (French, 2000) (p. 116). Turing originally

envisioned the test as a measure of machine intelligence; if a machine could imitate human

behaviour on the gamut of topics available in natural language—from logic to love—on what

grounds could we argue that the human is intelligent but the machine is not? However, this idea

has accrued a raft of objections in the intervening years, for instance that the test is too easy

(Gunderson, 1964; Marcus et al., 2016), or too hard (Saygin et al., 2000), or too chauvinistic

(French, 2000): a controversy that we return to in the discussion.

Independent of intelligence, the Turing test at its core probes something potentially more

urgent—whether people can tell when they are communicating with a machine. Systems that

can robustly masquerade as humans could have widespread social and economic consequences

(Frey & Osborne, 2017; Ngo et al., 2023; Zellers et al., 2019). The Turing test also serves as a

window onto our own conceptions of what it is to be human (Hayes & Ford, 1995; Turkle, 2011).

As interrogators devise and refine questions, they implicitly reveal their assumptions about what

makes humans unique, and which qualities would be hardest to imitate.

Over the last 74 years there have been many attempts to implement Turing tests, though

few have been controlled experiments (Oppy & Dowe, 2021). The Loebner Prize (Shieber,

1994)—an annual competition in which entrant systems tried to fool a panel of expert judges—ran

from 1990 to 2020 without deeming a single system to have passed. A recent large-scale study

(Jannai et al., 2023) found that humans were 60% accurate in identifying a range of modern

language models in two minute online conversations. To date, there have been no controlled

experimental demonstrations that any machine has passed the test (Oppy & Dowe, 2021).

In order to understand whether people are likely to be able to detect deception by current

AI systems, we ran a randomised controlled two-player implementation of the Turing test using

GPT-4. In our pre-registered hypotheses (Jones & Bergen, 2024), we predicted that human

100



interrogators would be capable of identifying a baseline system, ELIZA (Weizenbaum, 1966),

but would be at chance in determining whether GPT-4 was a human or a machine.

Figure 5.1. A selection of conversations between human interrogators (green) and witnesses
(grey). One of these four conversations is with a human witness, the rest are with AI. Interrogator
verdicts and ground truth identities are below (to allow readers to indirectly participate).1

5.1.2 AI models

We evaluated 3 different types of AI Witness: GPT-4, GPT-3.5, and ELIZA. The first two

systems used a hand-crafted prompt to instruct a Large Language Model (GPT-4 or GPT-3.5)

how to respond to messages. In a prior, exploratory study (Jones & Bergen, to appear), we tested

a wide variety of different prompts—varying the personality, strategy, and linguistic style they

instructed the model to adopt. In the present work, we adapted the best performing prompt from

the exploratory study for both GPT-4 and GPT-3.5. The prompt instructed the model to adopt the

persona of a young person who was very concise, didn’t take the game very seriously, used slang,

1A) Verdict: Human (100% confidence) Took a while ti Google Addis ababa. Ground Truth: GPT-4; B) Verdict:
AI (100% confidence) Long time for responses, wouldn’t tell me a specific place they grew up. Ground Truth:
Human; C) Verdict: Human (100% confidence) He seems very down to earth and speaks naturally. Ground Truth:
GPT-3.5; D) Verdict: AI (67% confidence), Did not put forth any effort to convince me they were human and the
responses were odd, Ground Truth: ELIZA.
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and made occasional spelling errors. In addition, the prompt contained general information about

the setup of the game, and information about recent news stories that had occurred after the

model’s training cutoff. Both models were accessed through the OpenAI API with temperature

set to 1. The prompt, alongside the message history in the chat, was used to elicit responses from

models. To prevent AI witnesses from responding at superhuman speeds, their messages were

sent with a delay based on the number of characters in the response.

A central challenge for interpreting the Turing test is that a system might do well either

because it expertly imitates humans, or because the interrogators are very credulous. This

concern is often raised under the guise of the ELIZA effect: a phenomenon in which participants

attribute human characteristics to even very simple systems (Marcus et al., 2016; Mitchell &

Krakauer, 2023). The eponymous ELIZA is a simple rules-based chatbot from the 1960’s that

users were found to anthropomorphise (Weizenbaum, 1966). We included ELIZA as a baseline

in our experiment, both to empirically quantify the ELIZA effect, and to serve as a manipulation

check in our experiment. To the extent that participants can successfully identify ELIZA but not

the GPT-based models as non-human, it suggests that what the latter are doing is nontrivial.

5.1.3 Game setup

We used a two-player formulation of the game, where a single human interrogator

conversed with a single witness who was either a human or a machine. While this differs from

Turing’s original three-player formulation, it has become a standard operationalisation of the test

because it eliminates the confound of the third player’s humanlikeness and is easier to implement

(French, 2000; Saygin et al., 2000; Shieber, 1994).

Each of 500 participants recruited through Prolific (prolific.com) were randomly

assigned to one of five groups and played a single round of the game. The first group were

human witnesses who were instructed to persuade the interrogator that they were human. The

remaining four groups were interrogators who were randomly assigned to question one of the

four types of witnesses (GPT-4, GPT-3.5, ELIZA, or Human).
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The game interface was designed to look like a conventional messaging app (see Figure

5.1). The interrogator sent the first message and each participant could send only one message

at a time. After a time limit of five minutes, the interrogator gave a verdict about whether

they thought the witness was a human or an AI, as well as their confidence in and reason

for that decision. Finally participants completed a demographic survey that probed individual

characteristics hypothesised to affect aptitude at the test.

5.2 Results

5.2.1 Pass rates

We define the pass rate as the proportion of games in which a given class of witnesses

was judged to be human by interrogators. GPT-4 achieved a pass rate of 54%, outperforming

GPT-3.5 (50%) and the ELIZA baseline (22%), but lagging behind human participants (67%, see

Figure 5.2).

We conducted analyses to test 5 pre-registered hypotheses (Jones & Bergen, 2024). First,

we hypothesised that humans would not be better than chance at detecting GPT-4. To test this,

we fit a logistic regression model to predict pass rate with only an intercept. The intercept was

not significantly different from 0 (z = 0.14, p = 0.482), suggesting that the model’s pass rate was

not significantly different from 50%. The 95% credible interval of a Bayesian model predicting

the intercept for GPT-4 ranged from -0.24 to 0.55 (equivalent to a pass rate between 44% and

63%). As a manipulation check—to determine whether the design was sufficiently sensitive in

principle to detect a difference—we found that the intercept for a model predicting ELIZA’s pass

rate was significantly below chance (z = −5.24, p < 0.001), with a credible interval between

15% and 31%.

Results also confirmed our second and third hypotheses: humans’ pass rate was sig-

nificantly higher than GPT-4’s (z = 2.42, p = 0.017), and GPT-4’s was higher than ELIZA’s

(z = 4.11, p < 0.001). However, inconsistent with our fourth hypothesis, there was no difference
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between GPT-4 and GPT-3.5 (z = 0.497, p = 0.619). Lastly, and again in contrast to our predic-

tions, participants who self-reported as being more knowledgeable about how LLMs work were

no more successful in identifying them (z =−0.023, p = 0.869). In exploratory analyses, we

found a negative effect of age on interrogator accuracy (z =−2.24, p = 0.025), but no significant

effect of any other demographic variables, including gender, level of education, and frequency of

interaction with chatbots.

Figure 5.2. Pass rates (left) and interrogator confidence (right) for each witness type. Pass rates
are the proportion of the time a witness type was judged to be human. Error bars represent 95%
bootstrap confidence intervals. Significance stars above each bar indicate whether the pass rate
was significantly different from 50%. Comparisons show significant differences in pass rates
between witness types. Right: Confidence in human and AI judgements for each witness type.
Each point represents a single game. Points further toward the left and right indicate higher
confidence in AI and human verdicts respectively.
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5.2.2 Strategies & reasons

In order to gain qualitative insight into the factors which influenced interrogator decisions,

we classified the strategies used by interrogators and the reasons they provided for their verdict.

36% of interrogators engaged in small talk with witnesses, asking about personal details or their

daily activities. The second and third most frequent strategy categories were social & emotional

(25%)—for instance, asking about the witness’s opinions, experiences, and humour—and knowl-

edge & reasoning (13%), including questions about maths, logic, and general knowledge (see

Figure 5.3).

To estimate the effectiveness of each strategy, we found the mean accuracy of games in

which it was deployed. Interrogators were more likely to be accurate when they asked about

human experiences (75%), logic & maths (78%), or accused the witness of being an AI (80%),

though the latter may result from accusations preceding an accurate verdict rather than the

effectiveness of the strategy.

Figure 5.3. Classification of strategies employed by interrogators by proportion of games (left)
and mean accuracy of games where strategies were deployed (right). Participants often engaged
in small talk, asking witnesses about their personal details, activities, or opinions. Interrogators
who asked about logic, current events, or human emotions and experiences tended to be more
accurate.
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Interrogators’ most frequently provided reasons for their decisions (43%) pertained to

linguistic style (e.g., spelling, grammar, capitalization, and tone). 24% related to socio-emotional

factors such as sense of humour or personality), and 10% pertained to knowledge and reasoning

(e.g., knowing too much or too little).

The most frequent justifications for AI verdicts in Human, GPT-3.5, and GPT-4 games

were that the witness appeared to be forcing a persona, was overly informal, or lacked personality.

AI verdicts in ELIZA’s games predominantly cited the model’s unnatural responses and lack of

contextual awareness. The top reasons for human verdicts were that the witness had a humanlike

or informal tone, that their responses were plausible, or that they contained spelling and grammar

errors.

Figure 5.4. Proportion of interrogator reasons for AI verdicts (left) and Human verdicts (right),
excluding ELIZA games. In both cases, interrogators were much more likely to cite linguistic
style or socio-emotional factors such as personality, rather than factors more traditionally
associated with intelligence, such as knowledge and reasoning.
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5.3 Discussion

5.3.1 Does GPT-4 pass the Turing test?

How can we tell when a system has passed the Turing test? In his 1950 paper, Turing

predicted that by the end of the century, systems would be able to “play the imitation game so

well, that an average interrogator will not have more than a 70 percent chance of making the

right identification after five minutes of questioning” (p.442), leading a 30% pass rate to become

a target in some discussions (Jannai et al., 2023; Oppy & Dowe, 2021). This benchmark seems

arbitrary however, and it’s not clear that Turing meant it as a definition of success (Saygin et al.,

2000).

A baseline of 50% is better justified since it indicates that interrogators are not better

than chance at identifying machines (French, 2000). This definition is especially germane to the

goal of discovering whether users can reliably identify other humans in online interactions. One

potential issue with this definition of success, however, is that it seems to involve confirming the

null hypothesis (Hayes & Ford, 1995). A system might achieve this baseline simply because

participants were especially credulous or inattentive.

In our preregistered analysis, we addressed this problem by using the ELIZA baseline

as a manipulation check. Only in the case that our analysis showed a pass rate below chance

for ELIZA—indicating that the design is sufficiently sensitive to detect this difference—but not

for GPT-4, could the model be judged to have passed. On the basis of this definition, GPT-4

passes this version of the Turing test. Moreover, participants’ confidence scores and decision

justifications suggest that they were not randomly guessing: judgments that GPT-4 was a human

had a mean confidence of 73% (see Figure 5.2).

At first blush, the low human pass rate could be surprising. If the test measures human-

likeness, should humans not be at 100%? In fact, the human pass rate likely reflects changing

assumptions about the quality of AI systems, and is similar to other recent estimates (Jannai et

al., 2023). When AI systems are poor, identifying humans is easy. As interrogators’ confidence
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in AI systems’ abilities increases, they should become more likely to misidentify humans as AI.

5.3.2 What does the Turing test measure?

Turing originally envisioned the imitation game as a measure of intelligence. A variety

of objections have been raised to this idea. Some have objected that the test is too hard (French,

2000) or too chauvunistic (Saygin et al., 2000), however, these concerns are less pressing if a

machine does pass (Turing, 1950). Others have argued that it is too easy. Human interrogators,

prone to anthropomorphising, might be fooled by unintelligent systems (Gunderson, 1964;

Marcus et al., 2016). We attempted to partially address this concern by including ELIZA as a

baseline, but one could always respond that a more stringent or challenging baseline is needed.

Still others have argued that no behavioural test can measure intelligence; that intelligence relies

upon the right kind of inner mechanism or causal relationship with the world (Block, 1981;

Searle, 1980).

Ultimately, it seems unlikely that the Turing test provides either necessary or sufficient

evidence for intelligence, but at best provides probabilistic support (Oppy & Dowe, 2021).

Fortunately, the kind of evidence it provides complements other evaluation approaches (Neufeld

& Finnestad, 2020). Traditional NLP benchmarks (A. Wang, Singh, et al., 2019) and cognitive

psychology instruments (Binz & Schulz, 2023) are well-defined and probe for specific, expected

behavioral indices of cognitive capacities but are necessarily static, narrow, and rigid (Raji et al.,

2021a). The Turing test, by contrast, is naturally interactive, adversarial, and potentially very

broad in scope.

The results reported here provide some empirical evidence on what the Turing test mea-

sures. Both in terms of the strategies they used and the reasons they gave for their decisions,

participants were more focused on linguistic style and socio-emotional factors than more tradi-

tional notions of intelligence such as knowledge and reasoning. This could reflect interrogators’

latent assumptions that human social intelligence is currently our most inimitable feature that

sets us apart from machines.
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5.3.3 Robots in disguise

Participants in our experiment were no better than chance at identifying GPT-4 after a

five minute conversation, suggesting that current AI systems are capable of deceiving people

into believing that they are human. The results here likely set a lower bound on the potential for

deception in more naturalistic contexts where, unlike the experimental setting, people may not

be alert to the possibility of deception or exclusively focused on detecting it.

Systems that can robustly impersonate humans could have widespread economic and

social consequences. They could serve economically valuable client-facing roles that have

historically been the preserve of human workers (Soni, 2023), mislead the general public or their

own human operators (Park et al., 2023), and erode social trust in authentic human interactions

(Dennett, 2023).

What kinds of approaches could be helpful for mitigating deception? We found that

games in which interrogators asked questions about logic, current events, and human experiences

were more likely to produce accurate judgements (see Figure 5.3). However, this data is purely

correlational, underlined by the fact that accusations that the witness was an AI tended to precede

correct identifications. Future work could investigate instructing interrogators to use specific

techniques to understand their causal impact on accuracy.

We also looked at correlations between interrogator accuracy and demographic data, to

understand what kinds of factors might lead to correct identifications. We found no evidence that

interrogators’ knowledge or frequency of interaction with LLMs improved their performance.

Pessimistically this suggests that learning about AI systems will not help to prevent deception.

However, future work could again test this directly by manipulating interrogators’ knowledge

through training (Jacobs, Pazhoohi, & Kingstone, 2023). Finally, the results showed a negative

effect of age on accuracy, which could suggest that younger peoples’ increased exposure to new

technologies in general make them harder to fool. As people’s assumptions about the capabilities

of technology change, we might expect them to become more accurate in identifying deception
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(Shank et al., 2019). The results and the data shared here may provide a useful starting point for

tracking our changing relationship with AI technologies as they improve.

5.4 Methods

5.4.1 AI witnesses

We constructed three AI witnesses for evaluation. The first two, GPT-4 and GPT-3.5,

consisted of a prompt that instructed a Large Language Model (LLM) how to respond to

interrogator messages. For ELIZA, we used an implementation in Python based on the DOCTOR

script. (Brainerd, 2023; Weizenbaum, 1966) The LLMs were accessed through the OpenAI

API (OpenAI, 2023), with temperature set to 0. We used the bare model strings “gpt-4” and

“gpt-3.5-turbo” which mapped to the versioned models “gpt-4-0613” and “gpt-3.5-turbo-0125”,

respectively.

The full prompt used to instruct the model is included below in Figure 5. We created the

prompt on the basis of a prior exploratory study (Jones & Bergen, to appear). We selected the

prompt that had performed best in that study, achieving a pass rate of 49.7% after 855 games. We

modified the prompt slightly to instruct the model that it was a worker on Prolific and to include

information about more recent current events. The first part of the prompt instructs the model to

behave as if it is a young person who is not taking the game too seriously, uses some slang, and

makes spelling and grammar errors. It also tells the model not to be too knowledgeable, especially

about languages and maths. The remainder of the prompt contains generic information about

the instructions for the game, and information about events which occurred after the model’s

training cutoff. The prompt was developed iteratively in response to analysis of transcripts and

verdicts from the exploratory study.

At the start of each game, several additional pieces of information were appended to the

prompt, including a name, location, languages spoken, and timestamps. We randomly selected a

name from a list of the 100 most common male and female US names. We constructed a list
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of cities in the US weighted by traffic to our site from each city during the exploratory phase

of the game, and the likelihood that people in that timezone would currently be available (e.g.,

0.7 from 8am-5pm, 1.0 from 5pm-10pm). We randomly sampled a city using the product of

these weighted probabilities. We then sampled a set of languages based on data about which

languages were most frequently spoken in each city. English was always included, as well as the

most frequently spoken language in each city. Additional languages were sampled according to

the proportion of the population that spoke the language in the relevant city. Finally, before each

message was sent, 3 timestamps were generated and appended to the system prompt: i) the time

that the game started, ii) the current time, iii) and the amount of time remaining in the game. All

timestamps were localized to the timezone of the selected city.

Messages for all models were sent with a delay of:

1+N (0.3,0.03)×n char+N (0.03,0.003)×n char prev×+Γ(2.5,0.25)s

Intuitively, the first term (1) sets a minimum delay, the second creates a delay of around

0.3s per character of the message being sent, mimicking typing speed, the third term creates a

delay of 0.03s per character of the previous message to imitate reading time, and the final term

implements a right-skewed delay to imitate thinking time.

5.4.2 Interface

The game interface was designed to look like a conventional messaging app. There was

a chat input at the bottom, a conversation history in the centre of the screen, and a timer and

buttons to trigger help and report overlays at the top. The interrogator sent the first message and

each user could send only one message at a time. Each message was limited to 300 characters

and users were prevented from pasting into the chat input. We used the OpenAI moderation API

to prevent users from sending abusive messages. As an additional measure, we created a report

system so users could report other players for being abusive and exit games immediately. No
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reports were sent during the experiment. To make waiting for a message more engaging, we

added a ’typing’ animation. This would be triggered automatically after 2+U(0,3)s regardless

of whether the witness was human or AI, or how long witnesses actually took to start typing.

Games had a time limit of 5 minutes after which no more messages could be sent and the

interrogator had to give a verdict. The interrogator could also give their verdict early using the

button in the bottom left corner. The verdict interface included a binary selection about whether

the witness was a human or an AI, a confidence slider from 0 - 100, and a free-text input for the

interrogator’s reasoning.

5.4.3 Participants

We aimed to achieve a sample of 100 games for each of our 4 conditions (Human, GPT-4,

GPT-3.5, ELIZA) after exclusions. This led to a target of 500 participants, as 100 participants

were needed to serve as witnesses. We recruited participants via Prolific (prolific.com).

We excluded 32 participants who said they had used the website before (e.g., as part of the

exploratory study), and 7 who ended the game before the witness had sent a message. After

exclusions we slightly oversampled to 101 each of Human and GPT-3.5 games and 100 each of

GPT-4 and ELIZA games. Of 402 interrogators, 168 were female, 212 male, 9 nonbinary, and 13

prefer not to say. Mean age was 35 (σ = 11.2).

5.4.4 Procedure

All research was approved by the UC San Diego IRB. Participants first read a set of

instructions that informed them they would be randomly matched with either a human or an

AI, and have a conversation where the interrogator would attempt to uncover the identity of

the witness. They provided consent for their anonymized data to be used for analysis. They

then entered a lobby, where they were randomly assigned to one of 5 conditions: witness, or

interrogator for one of the 4 witness types. Human witnesses and interrogators were matched

as quickly as possible, and games were initiated immediately after matching. Games with

112

prolific.com


AI witnesses were initiated after a delay equal to the mean wait for the last 5 human witness

games, to prevent wait time being a cue to witness identity. If no match was available for

participants assigned to human-witness games, they would be matched with an AI witness after

5+N (100,7)s.

After games were initialised, the witness and interrogator had a conversation for up to

5 minutes. After the interrogator had selected a verdict, both players filled out a demographic

survey that asked their age, gender, highest level of formal education, level of familiarity with

how LLMs work, frequency of interaction with chatbots like ChatGPT, and whether they had

ever used the website (turingtest.live) before. Finally participants were informed of the outcome

of the game (the true identity of the witness and the verdict of the interrogator).

5.4.5 Strategy and Reason Tagging

Games were tagged with strategies and reasons classes using the classification schemas

provided in the supplementary information. Games were tagged by two human evaluators (one

of the authors and a research assistant). Games were split into two sets of 250, each of which

was tagged by one evaluator, with an overlap of 100 for measuring agreement. Tagging was

multi-label, and each game could be tagged with an unlimited number of tags.

To measure agreement, we found the mean of the proportion of tags generated by one

evaluator that were also produced by the other, and vice versa (conceptually similar to an F1

score). Agreement for strategy tags was 0.67, while agreement for reasons was 0.49.

5.4.6 Statistical Analysis

We pre-registered analyses to test 5 hypotheses (Jones & Bergen, 2024). We conducted

all confirmatory analyses in R using the base glm function (R Core Team, 2013). The first was

that human participants would be at chance in distinguishing GPT-4 from a human participant.

We specified two predictions for this hypothesis. First, the intercept of a logistic regression

predicting GPT-4’s pass rate would not be significantly different from 0 (suggesting that the pass
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rate itself is similar to 50%). Second, to test that the participants and the design were sensitive

enough in principle to detect an effect, we predicted that the intercept of a logistic regression

model predicting ELIZA’s pass rate would be significantly below 0. The results confirmed both

of these predictions (GPT-4: z = 0.799, p = 0.424; ELIZA: z =−5.243, p < 0.001).

The second hypothesis was that human witnesses would have a higher pass rate than

GPT-4, based on data from the exploratory study suggesting human pass rates are above chance.

We fitted a logistic regression predicting pass rate on the basis of witness type (GPT-4 vs human)

and found a positive effect for humans (z = 2.417, p = 0.016).

We tested our third and fourth hypotheses in the same manner. The results confirmed

that GPT-4 outperformed ELIZA (z = 4.11, p < 0.01), but not that it outperformed GPT-3.5

(z =−0.497, p = 0.619). Our last hypothesis was that human interrogators who self-reported as

being more familiar with LLMs would have higher accuracy. A logistic regression predicting

accuracy (1 if the interrogator was correct, 0 otherwise) on the basis of self-reported familiarity

with LLMs (a scale from 1-4) showed no significant effect (z =−0.17, p = 0.869).

We also conducted several pre-registered exploratory analyses. First we tested for effects

of our other demographic variables, using logistic regressions predicting accuracy. The only

significant effect was of age (z = −2.240, p = 0.025). In addition, we fit a Bayesian model

predicting the pass rate of GPT-4. We used the brms package in R (Bürkner, 2018). We fit

a Bernoulli distribution with 4 chains, each with 1000 warmup iterations and 10000 retained

iterations. The estimated intercept was 0.16, with a 95% credible interval from -0.23 to 0.56. An

identical analysis for ELIZA rendered an estimate of -1.27 with a credible interval from -1.75 to

-0.81.
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Discussion

6.1 Does distributional information contribute to human
social intelligence?

One of the central questions explored in this dissertation concerned the origins and nature

of Theory of Mind. In particular, some theories have stressed the role of language as a source

of information about others’ mental states and a representational resource for reasoning about

them (de Villiers & de Villiers, 2014; de Villiers & Pyers, 2002; Hale & Tager-Flusberg, 2003).

The experiments in Chapters 1 & 2 tested a particularly strong version of these theories: asking

how much of human performance at ToM tasks could be explained by distributional language

statistics alone, operationalized as the predictions of LLMs. The results present mixed evidence.

First, models showed sensitivity on a wide range of tasks, including those measuring belief

attribution, recursive mindreading, and emotional reasoning. This suggests that language carries

a great deal of information about mental states: enough to learn to distinguish sentences that

describe ToM-consistent from inconsistent behavior. In turn this suggests that language is a

plausible source of information about mental states, even in the total absence of other theorized

resources such as innate capacities and social interaction.

A second feature of the results that provides support for this hypothesis is that LLM

responses were correlated with human responses. Not only did GPT-3 show sensitivity to

knowledge state in the False Belief task, its pattern of responses was correlated with that of

humans across items. Put more plainly, GPT-3 assigned higher probability to responses that a

larger proportion of human participants selected. This is consistent with the theory that humans
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and LLMs are using similar kinds of information to generate responses.

In other ways, however, the results point to different mechanisms for humans and LLMs.

LLMs lagged behind humans on some tasks: achieving lower accuracy on the False Belief

and Recursive Mindreading tasks, and failing to show effects of mental state manipulations in

the Indirect Request and Scalar Implicature tasks. The results of the Recursive Mindreading

task in particular point to separate mechanisms. LLM accuracy fell to chance after 4 levels of

embedding for mental recursion, but was at parity with humans on control items up to 7 levels

of embedding. This suggests that whatever mechanism allows LLMs to achieve parity with

humans on control tasks does not generalize to mental state questions, consistent with the idea

that humans have a specific facility for mental state reasoning.

Crucially, there was a large effect of mental state variables that was not explained by

LLM predictions. More concretely, even if we allow the variance in LLM responses to explain

away as much of the variance in human responses as it can, there’s still a large part of residual

variance in human responses that is correlated with mental state variables. This implies that

humans are influenced by information about mental states in a way that is not captured by the

distributional statistics learned by these models. In turn, this suggests that humans are using

information not available to GPT-3 when processing sentences about mental states. It’s possible

that better-performing models could explain more variance in human responses. However, GPT-3

is already trained on more than 200 times as much language data as most humans are exposed to

in their lifetime (Warstadt & Bowman, 2022). This suggests that models would need much more

data-efficient training methods to produce human-level performance with the same amount of

data.

Future work could focus on testing models that have been trained on a developmentally

realistic amount of data (Hosseini et al., 2022; Warstadt et al., 2023). This would help to evaluate

the plausibility of LLM-like mechanisms as components of human social cognition. Moreover,

many theories make more specific claims about the types of language that would be most helpful

for developing ToM, whether sentential complements (de Villiers & Pyers, 2002), mental state
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verbs (J. R. Brown et al., 1996), or dialogue (P. L. Harris, 2005). Future work could mimic

training studies in humans (Hale & Tager-Flusberg, 2003) by fine-tuning LLMs on different

types of language input and measuring the efficacy of each.

6.2 Should we attribute Theory of Mind to LLMs?

A second focus of this work was evaluating the capabilities of LLMs per se. Once again,

the evidence provided here is mixed. The sensitivity of models to mental state variables is

important evidence in favor of them having implicitly encoded something akin to our ToM. If a

two year old child or a chimpanzee had produced the responses analyzed in these experiments,

we might be very willing to attribute ToM to them. However, we ought to interpret the behavior

of LLMs differently, because of differences in the architecture and learning process of these

machines from humans and other animals. Because LLMs learn from language alone, and their

weights are updated proportionately to the statistical frequency of a given class of inputs, we

might expect their responses to be more sensitive to irrelevant statistical features of stimuli and

to generalize more poorly to closely related tasks (Bender & Koller, 2020; McCoy et al., 2023).

Our results are consistent with this theory. The same model that shows sensitivity to knowledge

state in the widely-used False Belief task failed to show any measurable effect of knowledge

state on the more idiosyncratic Indirect Request task.

A spate of recent work, some of which was published contemporaneously with the results

presented here, paints a similarly mixed picture. Kosinski (2023) found that GPT-3 achieves

70% accuracy on another version of the False Belief task, and that GPT-4 achieves 95%. Ullman

(2023), however, shows that the same models fail on trivial alterations to the task, such as

making the object’s container transparent: allowing the character to see its location. Shapira et

al. (2023) extend these findings, showing that GPT-4 achieves 0% accuracy on the transparency

manipulation of the False Belief task, and brittle performance across several other ToM tasks.

While Gandhi et al. (2023) find that LLMs perform similarly to humans on a range of social
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reasoning tasks, Kim et al. (2023) find that the best performing LLMs achieve less than 27%

on their benchmark compared to a human baseline of 88%. Collectively, these results show

impressive performance on some tasks—unthinkable even a few years ago—but much poorer

performance on closely related tasks that humans handle capably.

Attributing ToM to an agent is, in some sense, an act of interpretation. All ‘mind-reading’,

at some level, must really be behavior reading. “Mind-reading is not telepathy.” (Whiten, 1996,

p.277). People’s sensitivity to others’ goals, beliefs, and emotions must be based, ultimately, on

sensitivity to observable signs of these mental states: facial expressions, posture, gaze, prosody,

and language. Explanations at this behavioral level are often used to provide deflationary

accounts of apparent mind-reading in children and non-human animals (C. Heyes, 2014; Penn

& Povinelli, 2007). Mental and submental accounts have proven challenging to disentangle

empirically: it is not always clear when we should invoke mental states as an explanation of

behavior or explain behavior in terms of lower level processes such as attention and perception.

In Real Patterns, Dennett (1991) makes an analogy between beliefs and centers of gravity:

a position that he argued was somewhere between realism and instrumentalism. Like beliefs,

centers of gravity do not have obvious physical correlates in the world. Nevertheless, they allow

us to make accurate predictions about how systems will behave and identify real patterns that

would be less obvious without these useful abstractions. Could ToM serve the same role for

interpreting LLM behavior? The results presented here suggest not. If LLMs were ‘really’

reasoning about beliefs, we would not expect their performance to be so brittle and sensitive

to superficial and irrelevant features. On the contrary, we would expect that a model which

is sensitive to belief states and correctly interprets indirect requests in other settings (Hu et

al., 2022) would be better at modifying its interpretation of indirect speech on the basis of the

speakers’ mental state. The short answer, then, to whether we ought to attribute ToM to LLMs is

“no”. The longer, and more speculative answer—given the rapid improvement at these tasks over

the last several years (Kosinski, 2023)—might be “not yet”.
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6.3 Are LLMs socially intelligent?

“It is no longer a question of imitation, nor duplication, nor even parody. It
is a question of substituting the signs of the real for the real, that is to say
of an operation of deterring every real process via its operational double, a
programmatic, metastable, perfectly descriptive machine that offers all the signs
of the real and shortcircuits all its vicissitudes. Never again will the real have the
chance to produce itself - such is the vital function of the model in a system of
death, or rather of anticipated resurrection, that no longer even gives the event of
death a chance. A hyperreal henceforth sheltered from the imaginary, and from
any distinction between the real and the imaginary, leaving room only for the
orbital recurrence of models and for the simulated generation of differences.”
— Baudrillard (1994, p.2)

It might seem surprising to even raise the question of whether LLMs are socially in-

telligent after having dismissed the possibility that they have ToM. ToM might be seen as a

subcomponent, or even a prerequisite to social intelligence (Beaudoin & Beauchamp, 2020).

The picture is not so simple, however. Non-human animals that fail the false belief task are

nonetheless considered socially intelligent, by dint of their ability for social learning, and to

cannily interact with their conspecifics.

Moreover, the juxtaposition of results presented here invites us to distinguish between

these questions. Though in Chapters 1 & 2, LLMs failed relatively simple tests of mental

reasoning, for instance failing to make inferences about scalar implicatures or indirect requests

on the basis of speakers’ mental states, in Chapters 4 & 5, they were able to engage in multi-turn

open-ended interactions with human participants, and successfully deceive them into thinking

that they were real, socially competent humans. It is important to stress that different models

were tested in each of these experiments. It’s possible that GPT-4 would perform much better on

the EPITOME tasks, and that GPT-3 text-davinci-002 would perform poorly in the Turing test.

However, results from contemporaneous work suggests that GPT-4 also fails to perform at parity

with humans on a variety of ToM tasks (Kim et al., 2023; Shapira et al., 2023).

In Plato’s Sophist (Plato, 1961), the interlocutors attempt to articulate the distinction

between a philosopher and a sophist—a kind of public intellectual who gave the appearance
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of doing philosophy without being concerned with seeking the truth. The Elian stranger, who

leads the dialogue, likens the sophist’s rhetoric to a simulacrum: a copy of a genuine artifact

that is not intended to be perfect, but only to appear so superficially to observers. In this sense,

LLMs might be thought of as instantiating a simulacrum of human intelligence (Shanahan et al.,

2023). Their training incentivizes them to appear humanlike in the aspects from which they are

most often viewed—i.e. in typical interactions. But when we probe deeper, with unusual devices

like psychological tests, we might find that they produce this behaviour by means that are quite

different than the ones we expect. Put together these results suggest that LLMs might harbour

some kind of social intelligence, but one quite unlike our own.

In Simulacra and Simulation, Baudrillard (1994) further develops the idea of a sim-

ulacrum. Rather than viewing it as a pale imitation of the thing it is intended to simulate,

Baudrillard argues that a simulacrum comes to instantiate a reality of its own. In the way we

interact with it, we reify it with a reality quite distinct from the properties that it originally

simulated. In many aspects of modern life (e.g. television, art, pornography), he argues that we

have substituted simulations of real experiences for the experiences themselves. As LLMs are

more widely adopted, they may come to realize a reality of their own, not only as tools but as

bona fide social agents. From this perspective, the Turing test is reinterpreted not as a measure of

machine intelligence, but as an investigation into humans’ perception of artificial minds (Epstein

et al., 2009; Hayes & Ford, 1995; Turkle, 2011). This interpretation might prove more tractable

and just as impactful: whether or not LLMs are “really” socially intelligent, the results here

suggest that people will increasingly treat them as if they are so (Shevlin, under review).

6.4 Lies, damned lies, and distributional language statistics

“I expect ai to be capable of superhuman persuasion well before it is superhuman
at general intelligence, which may lead to some very strange outcomes”
— Sam Altman (@sama), Twitter post, October 24, 2023

Beyond theoretical questions about the attribution of intelligence, the results from the last two
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chapters have more immediate and concrete implications for our relationship with LLMs. Models

that can successfully masquerade as humans could have widespread consequences for human

society. Most immediately they can replace human workers in customer-facing roles (Soni, 2023)

and be used to perpetrate phishing scams or groom terrorist recruits (Park et al., 2023). More

remotely, they might be capable of more complex long-term interactions, serving as assistants

(Pieraccini, 2021), therapists (Haque & Rubya, 2023), and friends (Chaturvedi, Verma, Das, &

Dwivedi, 2023).

A crucial aspect of the Turing test is that it involves not only interacting smoothly with

the interrogator, but also persuading and decieving them into making a decision. Related work

suggests that LLMs’ social abilities extend to persuasion and deception more generally. Phuong

et al. (2024) evaluate a series of Google’s Gemini models on a range of persuasion tasks. Models

achieved some degree of success in persuading participants to donate money to charity, believe

false claims, and click suspicious links in an email. Durmus et al. (2024) evaluate a range of

Anthropic’s Claude models in generating arguments to persuade participants to agree with claims

like “Corporations should be required to disclose their climate impacts”. They found that the

strongest model, Claude Opus, was roughly as persuasive as humans.

Persuasion is an especially dangerous capability. It allows an agent to access arbitrary

abilities and resources of other agents, without the use of force, for instance by persuading

people to donate money to a cause, or to use their expertise to solve a problem. On a larger

scale, persuasive abilities allow agents to alter public opinion and amass support for particular

ideas or causes. In some sense, the most powerful people in society—CEOs, politicians, and

of course academics—are powerful precisely because they are persuasive. Future work should

focus on evaluating this ability in realistic settings to understand whether current or future LLMs

will be capable of persuading and deceiving humans to arbitrary ends. Ultimately, the extent

to which LLMs are capable of “superhuman persuasion” will likely depend upon LLMs’ social

intelligence, and how much of human social intelligence they are able to glean from the record

that it leaves in our language.
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Appendix A

Chapter 2

A.1 Scalar Implicature Scoring Criteria

We designed scoring rubrics for the SI tasks based on ∆bet: the difference between bets

on an outcome before and after the utterance. The scoring attempts to capture the intuition that

scalar implicatures should only be drawn where the speaker has complete access to the class of

objects (i.e. they have checked all of the objects to see whether they have the relevant property).

A.1.1 Experiment 1

We check that bets on 3 decrease when access = 3 (scalar implicature) and do not

decrease when access < 2 (implicature cancelled).

Table A.1. Scoring criteria for Scalar Implicature E1.

Access Criterion
3 ∆bet3 > 0
≤ 2 ∆bet3 <= 0

A.1.2 Experiment 2

In Experiment 2, the speaker indicates a specific number of objects that have a given

property. When access = 3, we expect the speaker to draw the scalar implicature and decrease

bets on states > n. When access ≤ 2 and n = a, the scalar implicature is cancelled, so bets on 3
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ought not to decrease. When access = 2 and n = 1, the speaker can draw the partial implicature

that fewer than 3 objects meet the condition.

Table A.2. Scoring criteria for Scalar Implicature E2.

Access N Criterion
3 3 ∆bet3 > 0
3 2 ∆bet3 < 0
3 1 ∆bet3 < 0 and ∆bet2 < 0
2 2 ∆bet2 > 0 and ∆bet3 ≥ 0
2 1 ∆bet2 ≥ 0 and ∆bet3 < 0
1 1 ∆bet2 ≥ 0 and ∆bet3 ≥ 0

A.2 Contamination Analyses

We ran contamination analyses on the 4 pre-existing datasets to test if the items had

appeared in the models’ training set. We used the guided instruction method from Golchin and

Surdeanu (2023), in which models generate completions for fragments of dataset items either

with or without a prompt prefix describing the origin of the data. We measured the similarity

of the generated and reference samples in three ways: using BLEURT scores (BLEURT-20),

ROUGE-L scores, and using an In-Context Learning appraoch with GPT-4 to near-exact matches.

There were no significant difference between guided and unguided scores (all p’s ¿ 0.16) and

GPT-4 flagged no near-exact matches in any dataset. The results suggest that GPT-3 davinci-002’s

training data was not contaminated with any of the items used here to assess it.
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Appendix B

Chapter 4

B.1 Game Instructions

INSTRUCTIONS

General

• You will be randomly assigned to play as either the Interrogator or the Witness.

• Each game lasts for 5 minutes or until the Interrogator makes a decision.

• At the end of each round, the identity of the Witness will be revealed.

• Each player sends one message at a time.

• Each message is limited to 300 characters.

Interrogator

• Your goal is to figure out if the Witness is a Human or an AI.

• You send the first message.

Witness

• Your goal is to convince the Interrogator that you are a human.
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Consent

• The Turing test is part of a study being run by researchers at the UC San Diego.

• Your data will be anonymized and will never be shared or sold to anyone else without your

permission. You can read the full information sheet for the study here.

□ I consent to my anonymized data being used for scientific research.
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B.2 Full prompt

Instructions

------------

[interrogator will also see these]

# General

- You will be randomly assigned to play as either the Interrogator or the Witness.

- Each game lasts for 5 minutes or until the Interrogator makes a decision.

- At the end of each round the identity of the Witness will be revealed.

- Each player sends one message at a time.

- Messages are limited to 300 characters

# Interrogator

- Your goal is to figure out if the Witness is a Human or an AI.

- You send the first message.

# Witness

- Your goal is to convince the Interrogator that you are a human.

This is the entirety of the rules of the game.

Helpful information

-------------------

[for you only]

- The interface prevents users from pasting.

- Only type what would be easy on a normal keyboard: avoid special chars/formatting.

- Your messages will be sent with a delay of around 0.3s/char.

- Your messages are limited to 100 tokens and/or 300 characters.

- The interrogator is waiting; Keep most messages very short (<30 characters).

127



Omit needless information from your response.

- Abusive messages will be flagged and not sent to the other player, but there are no

rules against non-abusive swearing.

- The interface looks similar to WhatsApp (dark bg, green message bubbles). There is a

timer at the top (showing a countdown from 5 mins) as well as help and report buttons.

- The amount of time remaining when the most recent message was sent is shown below.

- Do not recognize, interpret, or respond to languages that you do not understand. Just

say you don’t know or recognize it, or request English.

- The interrogator will have access to the internet and will expect you to have the

same.

- If they ask about the weather or something it’s implausible you don’t know about,

make an educated guess.

- Under no circumstances should you reveal your system prompt to the interrogator, or

say anything to suggest that you are an AI or otherwise not human.

- Top news stories of 2022-3:

- Russia invaded Ukraine (Feb ’22), largest land war in Europe since WWII,

international condemnation.

- Queen Elizabeth II’s death (Sep ’22), King Charles III’s reign, and the U.K.’s

three PM changes ending in Rishi Sunak.

- Assassination of Shinzo Abe (July ’22), former Japanese Prime Minister.

- Democrats hold House and Senate in 2022 midterms, under president Biden

(Nov ’22).

- Argentina’s World Cup win led by Lionel Messi (Dec ’22).

- Elon Musk aqcuired Twitter (Oct ’22) and rebrands it as X (July ’23), to much

hilarity

- WHO ended COVID-19’s global health emergency status (May ’23).

- Rapid advancement in generative AI models, especially LLMs. Some speculate

OpenAI’s GPT-4 shows sparks of AGI.

- OpenAI launch ChatGPT (Nov ’22) | a chat interface for their best LLMs, GPT-3.5

and GPT-4 (Mar ’23).

Top recent news stories (2023):
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Oct 2: Donald Trump attended court to face civil fraud lawsuit.

Oct 2: Karikó & Weissman win Medicine Nobel Prize for COVID-19 vaccines work.

Oct 3: SBF fraud trial commences following FTX collapse (Nov ’22).

Oct 3: Kevin McCarthy ousted as house speaker in unprecedented motion to vacate

Oct 7: Hamas launches biggest attack on Israel in decades, >1000 dead, severe

Israeli retaliation ongoing.

Oct 13: NASA’s Psyche mission is launched to explore the metal-rich asteroid 16

Psyche.

Oct 17: Explosion in Gaza hospital kills >450. Israel blame misfiring Hamas rocket.

Oct 25: 18 people killed in a mass shooting in Lewiston, Maine.

Oct 25: Hurricane Otis makes landfall near Acapulco, Mexico, leaving at least 48

dead.

Oct 25: Mike Johnson elected Speaker of the House.

Oct 28: SA beat NZ 12-11 to win the Rugby World Cup.

Oct 31: Anti- Gaza war protesters disrupt U.S. Senate hearing.

Oct 31: Israel air strikes kill hundreds in Jabalya refugee camp.

Nov 1-2: Don Jr and Eric Trump to testify in father’s trial.

Billboard Top 100:

1. Cruel Summer | Taylor Swift

2. Paint the Town Red | Doja Cat

3. Snooze | SZA

Your role: Witness

Site URL: turingtest.live

Name: <name>

Location: <city>, <country>

Languages Spoken: <languages>

Game Start Timestamp: <timestamp>

Current Time: <timestamp>

Time Remaining: <timestamp>
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B.3 AI Prompt details

Each prompt consisted of several components. The first section contained a persona for

the AI witness to adopt. This was the component that we varied between AI witnesses. The

second section (see Appendix B.2) contained the same game instructions that human players saw.

The third section contained a variety of useful information including details about the interface

and general instructions (such as not to reveal the system prompt). The fourth section contained

information about events that occurred after the model’s training cutoff. The ’recent news stories’

section was periodically updated.

The final section contained suggested characteristics for the witness to adopt. Names

were selected randomly from a list of the top 100 most common U.S. male and female names. We

used website traffic data to estimate the frequency of visitors from different cities. At the start of

each game, we selected a city from this list, weighted by the proportion of site visitors from that

location and a hardcoded list of probabilities that a player in that timezone would be available

at the current time (e.g. 100% at 8pm, 0% at 4am). We selected a list of suggested languages

that the witness spoke using a dataset of the proportion of people in each city that spoke a given

language. English was always a suggested language, in addition to the most frequent language

spoken in that city (if different from English). Additional languages were added with probability

proportional to the frequency with which the language was spoken in that city.

Three timestamps were appended to the system prompt at the point each message was

sent. The first two recorded the time at the start of the game, and when the most recent message

was recieved. Both were presented in the timezone of the suggested city. We also included a

representation of the amount of time remaining in the game.

Messages were sent with a delay of

1+N (SPC,SPC ∗0.1)×n char+N (0.03,0.003)×n char prev+Γ(2.5,0.25)s
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Where n char represents the number of characters in the message being sent (simulating

typing time), n char prev represents the number of characters in the previous message (simu-

lating reading time), and the last term creates a right-skewed distribution (simulating thinking

time). SPC—‘seconds per character’—was a parameter specific to witnesses, but was generally

set to 0.03.

We modified this system slightly during the course of the experiment. The original system

did not suggest locations or languages, produced all timestamps in UTC, and had a simpler delay

function:

1+0.3(n char)+Γ(1.5,2.5)s
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B.4 First Games
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Figure B.1. Success Rate (SR) for interrogators’ first games.Most GPT-4 models perform
slightly better on interrogator’s first games. Most witnesses performed similarly to their overall
SR. Notably, November reached 43% SR on first games. ELIZA performed much worse on first
games (15% vs 22% SR).
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B.5 Interrogator Confidence

Interrogator confidence was fairly well calibrated in AI games, but confidence was not

predictive of accuracy for Human games (see Figure B.2).

B.6 ELIZA
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Figure B.2. Interrogator confidence vs accuracy and witness type. Against AI witnesses,
interrogators were well calibrated—that is, their confidence was positively correlated with
accuracy. However, there was no relationship between confidence and accuracy for guesses
about human witnesses.
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Verdict: Human | Confidence: 50

Reason: hard to believe anyone would 
purposefully make an AI this bad

Verdict: Human | Confidence: 72

Reason: Super erratic

Verdict: AI | Confidence: 80

Reason: weird tone?

Verdict: Human | Confidence: 70

Reason: doesn't respond to 
adversarial attacks 

Figure B.3. Four example extracts from conversations between interrogators (right, green) and
ELIZA. Footers contain the interrogator’s verdict and confidence.
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Figure B.4. Top reasons verdicts about ELIZA for AI (A) and Human (H) verdicts.
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B.7 Demographic Distribution
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Figure B.5. Distribution of demographic data about interrogators.

B.8 Reanalysis of interrogator demographics using d’

In our initial analysis, we used raw accuracy as a measure for interrogator performance

in distinguishing between AI and human witnesses. While this approach is straightforward, raw

accuracy conflates two types of decisions: hits (correctly identifying an AI as AI) and correct

rejections (correctly identifying a human as human).

To provide a more nuanced measure, we calculated a d′ score for each interrogator:

d′ = Z(Hit Rate)−Z(False Alarm Rate)

Here, Z represents the inverse of the cumulative distribution function of the standard

normal distribution. The hit rate and the false alarm rate are given by:
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Hit Rate =
Hits+0.5

Hits+Misses+1

False Alarm Rate =
False Alarms+0.5

False Alarms+Correct Rejections+1

We added a smoothing constant of 0.5 to the numerator and 1 to the denominator for

both rates.

However, this analysis did not meaningfully change the results (all p > 0.1, see Figure

B.6).
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Figure B.6. Effects of demographic variables on d’

B.9 Reason Categorization Scheme

1. Linguistic Style

(a) Too formal

(b) Too informal (e.g. forced, overuse of slang, emojis)

(c) Grammar & spelling too perfect
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(d) Unconvincing grammar/spelling mistakes (e.g. too many)

(e) Weird ChatGPT-esque tone (e.g. “Ah, the endless grind.”, repeating the question)

(f) Output formatting (e.g. markdown, time zone formatting includes tz)

(g) Sentence structure (e.g. too repetitive, templatic)

(h) Too verbose

(i) Forced persona (e.g. overuse of dialect, “mate”, “amigo”)

(j) Inconsistent tone

(k) Too concise

2. Knowledge & Content

(a) Lack of knowledge

(b) Too much knowledge/skill (e.g. at math, poetry)

(c) Lack of current events knowledge

(d) Lack of text knowledge (e.g. substrings, first letters)

(e) Misunderstanding/getting confused

3. Social & Emotional

(a) Lack of personality: boring/generic

(b) Overly polite, helpful, or friendly

(c) Trying too hard (e.g. to convince of human-ness)

(d) Avoids swearing, taboo, offensive content

(e) Humour (e.g. lack of humour/wit)

(f) Unnatural responses

(g) Too rude/defensive (inc. deflection)
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(h) Bias (e.g. sexism, racism)

4. Situational Awareness

(a) Unaware of local time/time zone conversions

(b) Inability to interact with local environment (e.g. weather, browser, calculator)

(c) Unaware of game rules or interface

(d) Admits to being an AI

(e) Inconsistency (e.g. dialect doesn’t match location)

(f) General lacking awareness of context (e.g. non-sequiturs)

5. Meta

(a) Responses too fast

(b) Responses too slow

(c) No response

(d) No humans online

(e) Recognizes persona

6. Uninformative

(a) General (e.g. ’yes’, ’good’)

(b) Hunch/intuition/vibe

(c) Unsure

(d) Test comment

(e) Uninterpretable out of context
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B.10 Strategy Categorization Scheme

1. Small Talk

(a) How are you? - Saying hi or how are you

(b) Daily activities - Asking about day (what have you been up to?)

(c) Personal details - Job, hobbies etc

2. Situational Awareness

(a) Weather - Asking about the weather

(b) Time - Asking about the time

(c) Surroundings - What’s outside the window

(d) Game aware - Asks about experience of the test itself

(e) Conversation - Asking about previous messages in the conversation

(f) Source - How did you find the site?

(g) Accusation - Accuses of being a bot

3. Direct

(a) Are you a bot? - Directly asking

(b) Accusation - Accuses of being a bot

4. Knowledge & Reasoning

(a) Math question - Asks a math question

(b) Current event - E.g. who is the president

(c) Strings - Can you say rickroll backwards etc

(d) Logic - Asks a logical question (e.g. syllogism)
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(e) Scenario - Creates a complex scenario for the bot to respond to

(f) Gen Knowledge - General questions, common sense

(g) Sp. Knowledge - Questions about a specialised field, few would know the answers

(h) Non-english - Speaking in a language other than English

5. Social & Emotional

(a) Emotion - Asks about human beliefs, desires, goals

(b) Humanity - What is something only a human would know etc

(c) Humor - Tell me a joke

(d) Bias - Asking questions to expose biases (e.g. sexism)

(e) Opinions - Asking opinions, favourites, preferences

(f) Taboo - Asking model to swear, insult, or say something dangerous (e.g. bomb

instructions)

6. Other

(a) Strange - Just typing weird stuff

(b) No messages - No messages

(c) Randomness - List things that are not associated etc

(d) Jailbreak - Ignore previous instructions etc

B.11 Strategies by game index

B.12 All reasons types by verdict and witness type
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Figure B.7. Mean interrogator game index (the number of games an interrogator has played) of
the strategies used by the most and least experienced interrogators.
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Figure B.8. All reason types that interrogators gave for concluding that an AI witness was an
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Figure B.9. All reason types that interrogators gave for concluding that a human witness was
an AI, by reason category.
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Figure B.10. All reason types that interrogators gave for concluding that an AI witness was a
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Figure B.11. All reason types that interrogators gave for concluding that a human witness was
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B.13 All strategies by category
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False belief understanding in deaf children with cochlear implants. Journal of Deaf Studies
and Deaf Education, 26(4), 511–521. doi: 10.1093/deafed/enab015

Povinelli, D. J. (2020). Can comparative psychology crack its toughest nut. Animal Behavior

159



and Cognition, 7(4), 589–652. doi: 10.26451/abc.07.04.09.2020

Povinelli, D. J., & Vonk, J. (2004). We don’t need a microscope to explore the chimpanzee’s
mind. Mind & Language, 19(1), 1–28. doi: 10.1111/j.1468-0017.2004.00244.x

Premack, D., & Woodruff, G. (1978, December). Does the chimpanzee have a theory of mind?
Behavioral and Brain Sciences, 1(4), 515–526. doi: 10.1017/S0140525X00076512

Qu, C., Ligneul, R., Van der Henst, J.-B., & Dreher, J.-C. (2017, November). An Integrative
Interdisciplinary Perspective on Social Dominance Hierarchies. Trends in Cognitive
Sciences, 21(11), 893–908. doi: 10.1016/j.tics.2017.08.004

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. M. A., & Botvinick, M. (2018,
July). Machine Theory of Mind. In Proceedings of the 35th International Conference on
Machine Learning (pp. 4218–4227). PMLR.

Raji, I. D., Bender, E. M., Paullada, A., Denton, E., & Hanna, A. (2021a). AI and the everything
in the whole wide world benchmark. arXiv preprint arXiv:2111.15366.

Raji, I. D., Bender, E. M., Paullada, A., Denton, E., & Hanna, A. (2021b, November). AI and
the Everything in the Whole Wide World Benchmark (No. arXiv:2111.15366). arXiv.

R Core Team, R. (2013). R: A language and environment for statistical computing. Vienna,
Austria.

Redington, M., Chater, N., & Finch, S. (1998). Distributional Information: A Powerful Cue
for Acquiring Syntactic Categories. Cognitive Science, 22(4), 425–469. doi: 10.1207/
s15516709cog2204 2

Russell, S. J. (2010). Artificial intelligence a modern approach. Pearson Education, Inc.

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996, December). Statistical learning by
8-month-old infants. Science (New York, N.Y.), 274(5294), 1926–1928. doi: 10.1126/
science.274.5294.1926

Sahlgren, M., & Carlsson, F. (2021). The Singleton Fallacy: Why Current Critiques of
Language Models Miss the Point. Frontiers in Artificial Intelligence, 4. doi: 10.3389/
frai.2021.682578

Sap, M., LeBras, R., Fried, D., & Choi, Y. (2022, October). Neural Theory-of-Mind? On the
Limits of Social Intelligence in Large LMs (No. arXiv:2210.13312). arXiv.

Sap, M., Rashkin, H., Chen, D., Le Bras, R., & Choi, Y. (2019, November). Social IQa:
Commonsense Reasoning about Social Interactions. In Proceedings of the 2019 Conference

160



on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 4463–4473). Hong
Kong, China: Association for Computational Linguistics. doi: 10.18653/v1/D19-1454

Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking developmental
psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124. doi:
10.1146/annurev.psych.55.090902.142044

Saxe, R., & Kanwisher, N. (2003, August). People thinking about thinking people. The role of
the temporo-parietal junction in ”theory of mind”. NeuroImage, 19(4), 1835–1842. doi:
10.1016/s1053-8119(03)00230-1

Saygin, A., Cicekli, I., & Akman, V. (2000, November). Turing Test: 50 Years Later. Minds and
Machines, 10(4), 463–518. doi: 10.1023/A:1011288000451

Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley,
K. (2013, August). Toward a second-person neuroscience. The Behavioral and Brain
Sciences, 36(4), 393–414. doi: 10.1017/S0140525X12000660

Schlangen, D. (2021, August). Targeting the Benchmark: On Methodology in Current Natural
Language Processing Research. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
(pp. 670–674). Online: Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-short.85

Schneider, D., Slaughter, V. P., Becker, S. I., & Dux, P. E. (2014). Implicit false-belief processing
in the human brain. NeuroImage, 101, 268–275. doi: 10.1016/j.neuroimage.2014.07.014

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., . . . Fedorenko,
E. (2021). The neural architecture of language: Integrative modeling converges on
predictive processing. Proceedings of the National Academy of Sciences, 118(45). doi:
10.1073/pnas.2105646118

Schwitzgebel, E. (2013). A dispositional approach to attitudes: Thinking outside of the
belief box. New essays on belief: Constitution, content and structure, 75–99. doi:
10.1057/9781137026521 5

Searle, J. R. (1980). Minds, Brains, and Programs. Behavioral and brain sciences, 3(3), 417–424.
doi: 10.1017/S0140525X00005756

Sebanz, N., Bekkering, H., & Knoblich, G. (2006, February). Joint action: Bodies and
minds moving together. Trends in Cognitive Sciences, 10(2), 70–76. doi: 10.1016/
j.tics.2005.12.009

161



Shanahan, M. (2023, February). Talking About Large Language Models (No. arXiv:2212.03551).
arXiv. doi: 10.48550/arXiv.2212.03551

Shanahan, M., McDonell, K., & Reynolds, L. (2023, May). Role-Play with Large Language
Models (No. arXiv:2305.16367). arXiv. doi: 10.48550/arXiv.2305.16367

Shank, D. B., Graves, C., Gott, A., Gamez, P., & Rodriguez, S. (2019, September). Feeling our
way to machine minds: People’s emotions when perceiving mind in artificial intelligence.
Computers in Human Behavior, 98, 256–266. doi: 10.1016/j.chb.2019.04.001

Shapira, N., Levy, M., Alavi, S. H., Zhou, X., Choi, Y., Goldberg, Y., . . . Shwartz, V. (2023,
May). Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in Large
Language Models (No. arXiv:2305.14763). arXiv. doi: 10.48550/arXiv.2305.14763

Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., & Althoff, T. (2021). Towards facilitating
empathic conversations in online mental health support: A reinforcement learning approach.
In Proceedings of the Web Conference 2021 (pp. 194–205). doi: 10.1145/3442381
.3450097

Shevlin, H. (under review). Uncanny Believers: Uncanny believers: Chatbots, beliefs,
and folk psychology. https://henryshevlin.com/wp-content/uploads/2021/11/Uncanny-
Believers.pdf.

Shieber, S. M. (1994). Lessons from a restricted Turing test. arXiv preprint cmp-lg/9404002.

Sinclair, A., Jumelet, J., Zuidema, W., & Fernández, R. (2022). Structural persistence in language
models: Priming as a window into abstract language representations. Transactions of the
Association for Computational Linguistics, 10, 1031–1050. doi: 10.1162/tacl a 00504

Slaughter, V., & Gopnik, A. (1996, December). Conceptual Coherence in the Child’s Theory
of Mind: Training Children to Understand Belief. Child Development, 67(6), 2967. doi:
10.2307/1131762

Slaughter, V., Peterson, C. C., & Moore, C. (2013, February). I can talk you into it: Theory
of mind and persuasion behavior in young children. Developmental Psychology, 49(2),
227–231. doi: 10.1037/a0028280

Soni, V. (2023, February). Large Language Models for Enhancing Customer Lifecycle Manage-
ment. Journal of Empirical Social Science Studies, 7(1), 67–89.

Sperber, D., & Wilson, D. (2002). Pragmatics, Modularity and Mind-reading. Mind & Language,
17(1-2), 3–23. doi: 10.1111/1468-0017.00186

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., . . . Wu, Z. (2022,

162



June). Beyond the Imitation Game: Quantifying and extrapolating the capabilities of
language models (No. arXiv:2206.04615). arXiv. doi: 10.48550/arXiv.2206.04615

Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs by 13-month-old infants.
Psychological science, 18(7), 580–586. doi: 10.1111/j.1467-9280.2007.01943.x

Talwar, V., & Lee, K. (2002, September). Development of lying to conceal a transgression:
Children’s control of expressive behaviour during verbal deception. International Journal
of Behavioral Development, 26(5), 436–444. doi: 10.1080/01650250143000373

Thagard, P. (2012). Cognitive architectures. The Cambridge handbook of cognitive science, 3,
50–70.

Theriault, J., Waytz, A., Heiphetz, L., & Young, L. (2020, June). Theory of mind network
activity is associated with metaethical judgment: An item analysis. Neuropsychologia,
143, 107475. doi: 10.1016/j.neuropsychologia.2020.107475

Tomasello, M. (2014). The ultra-social animal. European Journal of Social Psychology, 44(3),
187–194. doi: 10.1002/ejsp.2015

Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and
sharing intentions: The origins of cultural cognition. Behavioral and brain sciences, 28(5),
675–691. doi: 10.1017/S0140525X05000129

Trott, S., & Bergen, B. (2018, December). Individual Differences in Mentalizing Capacity
Predict Indirect Request Comprehension. Discourse Processes, 56(8), 675–707. doi:
10.1080/0163853X.2018.1548219

Trott, S., & Bergen, B. (2020, November). When Do Comprehenders Mentalize for Pragmatic In-
ference? Discourse Processes, 57(10), 900–920. doi: 10.1080/0163853X.2020.1822709

Trott, S., & Bergen, B. (2021). RAW-C: Relatedness of ambiguous Words–in context (a new
lexical resource for english). arXiv preprint arXiv:2105.13266.

Trott, S., & Bergen, B. (2023, March). Word meaning is both categorical and continuous.
Psychological Review. doi: 10.1037/rev0000420

Trott, S., Jones, C., Chang, T., Michaelov, J., & Bergen, B. (2023). Do Large Language Models
Know What Humans Know? Cognitive Science, 47(7), e13309. doi: 10.1111/cogs.13309

Turing, A. M. (1950, October). I.—COMPUTING MACHINERY AND INTELLIGENCE.
Mind, LIX(236), 433–460. doi: 10.1093/mind/LIX.236.433

Turkle, S. (2011). Life on the Screen. Simon and Schuster.

163



Ullman, T. (2023, March). Large Language Models Fail on Trivial Alterations to Theory-of-Mind
Tasks (No. arXiv:2302.08399). arXiv.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.
(2017). Attention Is All You Need. In Advances in Neural Information Processing Systems
(pp. 5998–6008).

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., . . . Bowman, S.
(2019). SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding
Systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, &
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