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DATA VISUALIZATION THROUGH
GRAPH DRAWING

GEORGE MICHAILIDIS AND JAN DE LEEUW

Abstract. In this paper the problem of visualizing categorical multivariate
data sets is considered. By representing the data as the adjacency matrix
of an appropriately defined bipartite graph, the problem is transformed to

one of graph drawing. A general graph drawing framework is introduced, the
corresponding mathematical problem defined and an algorithmic approach for
solving the necessary optimization problem discussed. The new approach is
illustrated through several examples.

1. Introduction

Advances in data collection, computerization of transactions and breakthroughs
in storage technology have allowed research and business organizations to collect
increasingly large amounts of data. In order to extract useful information from
such large data sets, a first step is to be able to visualize their global structure and
identify patterns, trends and outliers.

Graphs are useful entities since they can represent relationships between sets
of objects. They are used to model complex systems (e.g. computer and trans-
portation networks, VLSI and Web site layouts, molecules, etc) and to visualize
relationships (e.g. social networks, entity-relationship diagrams in database sys-
tems, etc). Graphs are also very interesting mathematical objects and a lot of
attention has been paid to their properties. In many instances the right picture is
the key to understanding. The various ways of visualizing a graph provide different
insights, and often hidden relationships and interesting patterns are revealed. An
increasing body of literature is considering the problem of how to draw a graph
(see for instance the book by [10] on Graph Drawing, the proceedings of the annual
conference on Graph Drawing, etc). Also, several problems in distance geometry
and in graph theory have their origin in the problem of graph drawing in high-
er dimensional spaces. Of particular interest in this paper are the representation
of data sets through graphs. This bridges the fields of multivariate statistics and
graph drawing.

Many of the algorithms that have appeared in the graph drawing literature serve
a different purpose; namely, to satisfy some aesthetic rules imposed on the final
layout such as symmetry, uniformity of edge lengths and distribution of vertices,
minimization of edge crossings, etc [5, 10, 17]. However, our main objective is to
use graph drawings to visualize data; thus, we are interested in drawings that show
important and invariant aspects of the data and whose structure and properties
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2 GEORGE MICHAILIDIS AND JAN DE LEEUW

we can examine analytically. In this paper, we provide a rigorous mathematical
framework for drawing graphs utilizing the information contained in the adjacen-
cy matrix of the underlying graph. At the core of our approach are various loss
functions that measure the lack of fit of the resulting representation, that need to
be optimized subject to a set of constraints that correspond to different drawing
representations. We then establish how the graph drawing problem encompasses
problems in multivariate statistics. We develop a set of algorithms based on the
theory of majorization to optimize the various loss functions and study their prop-
erties (existence of solution, convergence, etc). We demonstrate the usefulness of
our approach through a series of examples.

2. Data as Graphs

2.1. Graphs and the Adjacency Matrix. In this paper we consider an undi-
rected graph G = (V,E), where V = {v1, v2, . . . , vn} is the set of the n vertices and
E ⊂ V ×V the set of edges. It is assumed that the graph G does not contain either
self-loops or multiple edges between any pair of vertices. The set of edges can be
represented in matrix form through the adjacency matrix A = {aij |, i, j = 1, . . . , n}.
Thus, vertices i, j ∈ G are connected if and only if aij > 0, otherwise aij = 0. If
aij ∈ {0, 1} we are dealing with a simple graph, otherwise with a weighted graph.

In the following example the graph representation of a familiar data structure
from multivariate statistics is given. Consider the following dissimilarity matrix on
six objects 

0
7 0
2 3 0
8 6 1 0
5 9 6 3 0
3 1 2 5 12 0


It can be represented by a complete weighted graph on 6 vertices as shown in Figure
1.
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Figure 1. The graph representation of a dissimilarity matrix.
The numbered squares correspond to the objects, while the weights
on certain edges correspond to the dissimilarities

2.2. Bipartite Graphs. In two recent papers of de Leeuw and Michailidis [9,
19] the problem of representing categorical datasets through bipartite graphs is
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considered. For bipartite graphs, the vertex set V is partitioned into two sets V1

and V2, and the edge set E is defined on V1×V2 and indicates which vertices from V1

are connected to vertices in V2 and vice versa. In multidimensional data analysis,
the classical data structure where data on J categorical variables (with kj possible
values (categories) per variable) are collected for N objects, can be represented by
a bipartite graph. The N objects correspond to the vertices of V1, the K =

∑
j kj

categories to the vertices of V2 and there are N × J edges in E, since each object
is connected to J different categories.

The adjacency matrix of a bipartite graph takes the form

A =
[

0 W
W ′ 0

]
where W is the familiar superindicator matrix [12] from multiple correspondence
analysis (MCA). The superindicator matrix of a small example (discussed in [23]
and also [9]) and the corresponding graph representation are given in Table 1 and
Figure 2 respectively.
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Sleeping Bag Price Fiber Quality

1 One Kilo Bag 1 0 0 0 1 1 0 0
2 Sund 1 0 0 0 1 0 0 1
3 Kompakt Basic 1 0 0 0 1 1 0 0
4 Finmark Tour 1 0 0 0 1 0 0 1
5 Interlight Lyx 1 0 0 0 1 0 0 1
6 Kompakt 0 1 0 0 1 0 1 0
7 Touch the Cloud 0 1 0 0 1 0 1 0
8 Cat’s Meow 0 1 0 0 1 1 0 0
9 Igloo Super 0 1 0 0 1 0 0 1

10 Donna 0 1 0 0 1 0 1 0
11 Tyin 0 1 0 0 1 0 1 0
11 Travellers Dream 0 1 0 1 0 1 0 0
13 Yeti Light 0 1 0 1 0 1 0 0
14 Climber 0 1 0 1 0 0 1 0
15 Viking 0 1 0 1 0 1 0 0
16 Eiger 0 0 1 1 0 0 1 0
17 Climber light 0 1 0 1 0 1 0 0
18 Cobra 0 0 1 1 0 1 0 0
19 Cobra Comfort 0 1 0 1 0 0 1 0
20 Foxfire 0 0 1 1 0 1 0 0
21 Mont Blanc 0 0 1 1 0 1 0 0

Table 1. The superindicator matrix W of the sleeping bags data set

Another data structure that can be represented by a bipartite graph is the con-
tingency table, familiar from elementary statistics [1, 12], where the I categories
of the first variable correspond to the vertices in V1 and the J categories of the
second variable to those of V2. For this data structure the aij ’s are nonnegative
numbers that indicate how many observations fall in cell (i, j) in the contingency
table; thus, we are dealing with a weighted bipartite graph in this case. Finally,
data sets involving measurements on objects organized in a hierarchical structure
(e.g. students grouped by class or school, consumers grouped by geographical areas,
etc) can be represented by direct sums of bipartite graphs [20].
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Figure 2. The bipartite graph of the sleeping bags example. It
can be seen that the first object is cheap, made of synthetic fibres
and of good quality, while the last object is expensive, made of
down fibres and of good quality

3. Graph Drawing

The adjacency matrix represents a useful way to code the information in a data
set and moreover contains exactly the same information as the original data set;
however, it is hard to use it to uncover patterns and trends in the data. One way of
utilizing the information contained in the adjacency matrix is to draw the graph by
connecting the appropriate vertices. This goes in the direction of making a picture
of the data, and when things work out well, a picture is worth a lot of numbers,
especially when these numbers are just zeros and ones. But the “technique” of
drawing the coded graph, say in the plane, has a large amount of arbitrariness.
Since the graph only contains the qualitative information of which vertices are
connected, we can locate them anywhere in the plane and then draw the edges
corresponding with the nonzero elements of the adjacency matrix. The trick is to
manage to draw the graph in such a way so as the resulting picture becomes as
informative as possible.

The general problem of graph drawing discussed in this paper is to represent the
edges of a graph as points in Rs and the vertices as lines connecting the points.
Graph drawing is an active area in computer science, and it is very ably reviewed
in the recent book by [10]. The choice of Rs is due to its attractive underlying
geometry and the fact that it renders the necessary computations more manageable.
In practice, s is usually chosen equal to 2 or 3, in order to be able to visualize the
resulting representation.
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There are basically two different approaches to make such drawings. In the met-
ric or embedding approach we use the path-length distance defined between the
vertices of the graph and we try to approximate these distance by the Euclidean
distance between the points [4, 10]. A data analytic technique in this spirit is
Multidimensional Scaling [2, 7].

In this paper, we adopt primarily the adjacency model, i.e. we do not emphasize
graph-theoretical distances, but we pay special attention to which vertices are ad-
jacent and which vertices are not. Obviously, this is related to distance, but the
emphasis is different. We use objective (loss) functions to measure the quality of
the resulting embedding.

3.1. Force-Directed Techniques. The class of graph drawing techniques we are
most interested in here are the force-directed techniques. The vertices are bodies
that attract and repel each other, for instance because the edges are springs or
because the vertices have electric charges. This means that there are forces pulling
and pushing the vertices apart, and the optimal graph drawing will be the one in
which these forces are in equilibrium. In [10] (Chapter 10) force-directed graph
drawing means minimizing a loss function which incorporates both pushing and
pulling. A popular choice for pulling is Hooke’s law [11], i.e. the force is propor-
tional to the difference between the distance of the vertices and the zero-energy
length of the spring, while the repelling force follows an inverse square law. A
Bayesian framework for dynamic graph drawing by using force-directed methods is
provided in [3]. Force-directed algorithms are also employed in NicheWorks [29], a
visualization tool for the investigation of very large graphs.

In this paper we concentrate on pulling under constraints, which means that
we do not have explicit pushing components in the loss function. The constraints
normalize the drawing in order to prevent trivial solutions in which the whole graph
is pulled (collapses) into a single point.

Let us first define the following loss function, that represents in our study the
main tool for making the necessary graph drawings,

σφ(Z|A) =
n∑
i=1

n∑
j=1

aijφ(dij(Z)),(1)

where dij(Z) denotes the distance of points with coordinates zi and zj in R
s.

We assume that the weights aij ∈ {0, 1} and that φ is an increasing function.
Therefore, minimizing σφ means minimizing the weighted sum of the transformed
distances between the points that are connected in the graph. Notice that we do
not assume that the distances are Euclidean, they could be `1 (City Block) or `∞
(Chebyshev) or general `p distances. Moreover, the presence of the φ function
allows us to mitigate the effect of the distances on the graphical representation
we are seeking. For example, a convex φ function will reinforce large distances
by rendering them even larger, thus enabling us to detect unique features in the
data. On the other hand, a concave function will dampen the effect of outlier
objects (i.e. objects totally dissimilar to other objects in the data) in the final
representation and thus provide us with a picture of the most important basic
patterns in the data. Interesting choices of φ functions include among others: the
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class of homogeneous power transformations given by φ(d) = dγ , γ > 0, the logistic
function φ(d) = exp(d)/(1 + exp(d)), the logarithmic function φ(d) = log(d), the
Huber function φ(d) = d2/2 for d < c and φ(d) = cd − c/2 for d > c, for some
suitably chosen constant c > 0, etc. Also, the notation suggests that Z is the only
variable that we control; for a given problem both φ and A are fixed.

Minimizing the σφ function without further restrictions does not make much
sense. We can minimize it by simply collapsing all the points in the origin of the
space (zi = 0 for all i), and thus all corresponding distances become zero. This
provides the global minimum of σφ, but “Indeed, this is not a good drawing !” [10]
(page 310). In order to avoid such trivial solutions we need to impose normalization
restrictions. Our focus in this work is on imposing constraints on Z, so that the
resulting graph drawing problem is well posed. Some of the possible normalizations
are:

1. Tutte [26] suggests partitioning Z into (at least 3) fixed points X and free
points Y and minimize σφ over Y only.

2. Impose a constraint on Z (e.g. Z ′Z = I or trace(Z ′Z) = 1, etc).
3. Impose constraints on the distances (e.g.

∑
ij d

γ(zi, zj) = 1, γ > 0).

An alternative route would be to impose pushing constraints; i.e. vertices in the
graph not connected are repelled.

It is important to realize that the choice of normalization is not a trivial matter. It
will determine the shape and properties of the drawing. Thus it should be made in
an informed way. It is also important that the data influence the drawing through
σφ, while the constraints are usually chosen by considerations of mathematical
convenience or global properties of the drawing.

3.2. The special case of squared Euclidean distances. In this section we
examine in more depth the special case where φ(dij(Z) = d2

ij(Z)/2; that is, we
examine the loss function with squared Euclidean distances. This turns out to
be the most important case from the algorithmic point of view and many more
general cases can be reduced to this one. The following notation is convenient: let
d2
ij(Z) = trace(Z ′BijZ) with Bij = (ei − ej)(ei − ej)′ and where the ei’s are unit

vectors.

Define the matrix O by

O =
∑
ij

aijBij .(2)

Thus, O has the negative values −aij as its off-diagonal elements and the row-sums
(or column-sums) of the adjacency matrix A as its diagonal elements. Thus, O is
doubly-centered, and by construction positive semi-definite. We then have that

σ2(Z|A) = trace(Z ′OZ).(3)

If in addition we choose Z ′Z = I as the normalization, then the coordinates of the
points in the optimal drawing correspond to the s eigenvectors corresponding to
the smallest s non-zero eigenvalues. Thus, the solution to the problem becomes
algorithmically straightforward.
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On the other hand, if we decide to partition the coordinates of the solution
Z = [X ′ Y ′]′, according to the two vertex sets (with X containing the coordinates
of the vertices of the object points and Y those of the category points) and normalize
only X (i.e. X ′X = I) or only Y (i.e. Y ′Y = I), then the loss function becomes
identical to the one used in multiple correspondence analysis [12, 19]. In particular
we have,

σ2(X,Y |W ) =
N∑
i=1

K∑
k=1

wikd
2(xi, yk),(4)

subject to the normalization constraint X ′X = I, or equivalently in matrix form

σ2(X,Y |W ) = trace(JX ′X + Y ′DY − 2Y ′WX),(5)

where D = diag(W ′W ) and contains the univariate marginals of the categories
and J corresponds to the number of variables in the data. There are two methods
to minimize (5): (i) block relaxation and (ii) projection. In block relaxation the
(X,Y ) block structure is exploited. We alternate minimization over the variables
in block Y by keeping the values in block X fixed, then minimize the variables in
block X by keeping Y fixed and iterate between these two steps. This leads to the
following well known alternating least squares algorithm [19]:

Step 1: Ŷ = D−1W ′X
Step 2: X̂ = 1

JWY
Step 3: Orthonormalize X using the Gram-Schmidt procedure [13].

In projection methods, we have that for the optimal Y (X), the σ2 function can be
written as

σ2(X|A) = trace(X ′(I − P )X),(6)

where P = 1
JWD−1W ′ is the average between categories projector. Hence, the

optimal X corresponds to the solution of the above eigenvalue problem. For both
problems the solution at the optimum satisfies Ŷ = D−1W ′X; i.e. category points
are in the center of gravity of the objects belonging in a particular category. This
is known in the literature as the centroid principle [12, 19].

It can be seen that the special case of squared Euclidean distances under the
appropriate normalization recovers a well known multivariate technique.

The Sleeping Bag example. Using squared Euclidean distances to draw the graph
of the sleeping bag example and using both the Z ′Z = I and the X ′X = I normal-
izations (only the coordinates of objects are normalized) we get the representations
given in Figures 3 and 4, respectively.

The two representations reveal several things. First of all, the inherent rotational
invariance of the solution. Moreover, both solutions capture the presence of good,
expensive sleeping bags filled with down fibers and cheap, bad quality sleeping
bags filled with synthetic fibers and the absence of bad, expensive sleeping bags.
It also shows that there are some intermediate sleeping bags in terms of quality
and price filled either with down or synthetic fibers. However, the absence of
a centroid principle for the representation based on the Z ′Z = I normalization
results in placing most vertices (both objects and categories) on the periphery of
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Figure 3. The 2-dimensional graph drawing of the sleeping bags
using squared Euclidean distances and the Z ′Z = I normalization

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

bad

cheap

down fibres

synthetic fibres

acceptable

good

not expensive

expensive

Figure 4. The 2-dimensional graph drawing of the sleeping bags
using squared Euclidean distances and the X ′X = I normalization

the graph. On the other hand, the presence of the centroid principle improves the
representation aesthetically in Figure 4 and also serves as a guide to the data analyst
for uncovering the basic patterns present in the data. It is worth noting that for the
sleeping bag example a 3-dimensional representation (i.e. s = 3) does not reveal any
additional patterns in the data. A classical graph drawing algorithm is Sugiyama’s
[25], which computes layouts for arbitrary graphs by first converting them into k-
level graphs (where k in this example would correspond to the number of variables)
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and then attempts to reduce the number of crossings. Such a layout is given in
Figure 5; however, this representation mostly reveals bivariate relationships in the
data (see also Section 5), rather than a global map of both objects and categories.

cheap   not  expensive expensive

synthetic  fibres down  fibres

bad good acceptable

Figure 5. A graph drawing of the sleeping bags using Sugiyama’s algorithm

4. A General Optimization Framework

One of the challenges that our general framework poses is the large number of
possible configurations that we may encounter when optimizing the loss function
σφ. The different possibilities come about by the various combinations of param-
eters we can select, such as the type of distances (e.g. `1, `2, `∞), the shape of
the φ function, the form of the normalization constraint. We propose a ubiquitous
optimization scheme based on the principles of majorization that with few alter-
ations can achieve our goal. Majorization is discussed in general terms in a series
of papers [6, 8, 16, 18, 27].

Majorization algorithms use surrogate functions that render the optimization
problem under consideration easier to handle. The goal (in general notation) is
to optimize a function ψ(θ) over θ ∈ Θ, with Θ ⊆ Rs. Suppose that a function
v(θ, η) defined on Θ×Θ satisfies

ψ(θ) ≥ v(θ, η) for all θ, η ∈ Θ,(7)

ψ(θ) = v(θ, θ) for all θ ∈ Θ,(8)

Thus, for a fixed η, v(•, η) is below ψ and it touches ψ at the point (η, ψ(η)). We
then say that ψ(θ) majorizes v(θ, η) or that v(θ, η) minorizes ψ(θ). Two key results
in [6] show that: (i) if ψ attains its maximum on Θ at θ̂, then v(•, θ̂) also attains
its maximum of Θ at θ̂, and (ii) if θ̃ ∈ Θ and θ̂ maximizes v(•, θ̃) over Θ, then
ψ(θ̂) ≥ ζ(θ̃). These two results suggest the following algorithm for maximizing
ψ(θ).
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Step 1: Given a value θ(k) construct a minorizing function v(θ(k), η).
Step 2: Maximize v(θ(k), η) with respect to η and set θ(k+1) = ηmax.
Step 3: If |ψ(θ(k+1)−ψ(θ(k)| < ε for some predetermined small ε stop; else, go to Step

1.

In order for this algorithm to be of practical use, the minorizing function v should be
easily maximized. Obviously, in case we are interested in minimizing ψ a majorizing
function v that needs to be minimized in Step 2 needs to be identified.

For the problem at hand it can be shown that (details given in [21]) for almost
all choices of transformations that we are interested in, the loss function σφ(Z|A)
is majorized by trace(Z ′C(Z,A)Z) for an appropriately defined matrix C(Z,A).
This latter fact implies that under an orthonormality normalization constraint, at
every step of the algorithm we just have to solve an eigenvalue problem.

For example, suppose that we are interested in using φ = dγ with γ = [1, 2]. This
is a convex function with growth rate slower than the quadratic. It contains as
special cases both the σ2 function and the σ1 function that deals with Euclidean
distances (distances without the square). The corresponding minimization problem
can be easily solved by constructing a majorization function based on Young’s
inequality.

dγij(Z) ≤ 2− γ
2

dγij(Z̃) +
2

γd2−γ
ij (Z̃)

d2
ij(Z),(9)

which implies that we can construct a quadratic majorizing function, and hence get

σγ(Z) ≤
n∑
i=1

n∑
j=1

aij
(2− γ

2
dγij(Z̃) +

2
γd2−γ

ij (Y )
d2
ij(Z)

)
=

trace
(2− γ

2
Z̃ ′Cγ(Z̃, A)Z +

2
γ
Z ′Cγ(Z̃, A)Z

)
,

where

Cγ(Z̃, A) =
n∑
i=1

n∑
j=1

aij

d2−γ
ij (Z̃)

Aij , γ ∈ [1, 2].(10)

Thus, in an iteration we minimize trace(Z ′Cγ(Zprevious, A)Z) over normalized Z,
where Zprevious denotes the value of Z in the previous iteration.

5. Bipartite Graphs and Parallel Coordinate Plots

In this section it is shown how our graph drawing framework can help improve the
presentation of multivariate categorical data using parallel coordinates plots [28]. In
such plots, we draw J parallel straight lines, one for each variable. The objects are
then plotted on each of the lines, and points corresponding with the same objects
are connected by broken line segments (and perhaps colored with different colors).
These plots (implemented in many data visualization packages) capture bivariate
relationships and can reveal various interesting features in the data. However, the
parallel coordinate plot for nominal variables may not be particularly illuminating.
In this section we use the mammals dentition data set for illustration purposes



DATA VISUALIZATION 11

(the data are analyzed in [19]). A short description of the variables and their
frequencies are given in Appendix A. The parallel coordinates plot of this data set
from XGobi is given in Figure 6. The plot reveals certain interesting features, such

1
2

3
4

5

TI BI TC BC TP BP TM BM

Figure 6. Parallel coordinates plot of the mammals data set

as the presence of a group of mammals -the ruminants- that are characterized by
the absence of top incisors (TI1) and the presence of a large number of bottom
incisors (BI5) (see discussion in [19]), or all mammals with no top canines (TC1)
have also zero bottom canines (BC1), etc.

The question is whether some other arrangement of the category points would
reduce the number of crossings and thus lead to a cleaner and more informative
representation of the data. It has been found in usability studies [24] that reducing
the number of crossings is by far the most important aspect in graph drawings.
Suppose that we are allowed to place the category points of variables j at arbitrary
locations along the jth vertical lines. We propose to use the coordinates for the
categories found by the multiple correspondence analysis solution. Notice that each
object defines a line through J category points. Let qij be the induced quantification
of object i on variable j, which is the same value as the corresponding quantification
of the category of variable j that object i belongs in. We can partition the variance
in the induced quantifications, as in Table 2

Source Sum of Squares Matrix Expression

Within Objects, Between Variables
∑n
i=1

∑J
j=1(qij − qi•)2 q′(D − 1

J
C)q

Between Objects J
∑n
i=1(qi• − q••)2 1

J
y′Cy

Total Variance
∑n
i=1

∑J
j=1(qij − q••)2 q′Dq

Table 2. Partitioning Quantification Variance
where C = W ′W , D = diag(W ′W ) and q is a column vector containing the quan-
tifications of the category points of all the variables. This measures in how far the
lines connecting the objects deviate from horizontal lines, by computing the vari-
ance around the best fitting horizontal line, which is given by qi•. Minimizing the
ratio of the within-object variance q′(D− 1

JC)q to the total variance q′Dq amounts
to computing the first dimension of an MCA. Observe that this is the same as
maximizing the between-object variance 1

J y
′Cy for a given total variance, i.e. we

also want the horizontal lines to be as far apart as possible. This is discussed in
more detail in Chapter 3 in [12]. We illustrate the above with our mammals exam-
ple. It can be seen that in the layout shown in Figure 7 the number of crossings
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is significantly reduced compared to the original plot (20 crossings vs 30). More-
over, bivariate relationships in the data are uncovered. For example, the almost
straight lines between categories TM1-BM1 and TM2-BM2 indicate that most of
the objects belong to these combinations of categories (20 and 42) and very few
to TM1-BM2 and TM2-BM1 (3 and 1), respectively. A similar conclusion can be
reached for the variables TC and BC. On the other hand, the positioning of the
categories of variables BC and TP indicates that most of the objects that belong
to BC1 also belong to one of the first three categories of variable TP, while the
majority of the object in BC2 belong to TP4 and TP5. It is worth pointing out
that this representation does not quite reproduce the relationships that one would
find by analyzing each pair of variables with correspondence analysis [1], since the
quantifications of the categories come from an analysis of all eight variables and not
from separate analyses of the bivariate tables. It should also be noted that minimiz-
ing the number of crossings is one of the objectives, which can also be achieved by
algorithms for hierarchical graphs [15]; the other objective is to obtain information
about bivariate relationships, which standard graph drawing algorithms would not
provide due to their different focus.

TI BI TC BC TP BP TM BM
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Figure 7. Optimized parallel coordinates plots for the mammals
data. On the left axis the quantifications of the category points
are given, while the categories are numbered in the plot

6. Choice of Parameters

In this section we briefly look at the impact of the choice of some of the parame-
ters in our framework such as the normalization constraint and the transformation
function on the resulting representation. In Figures 8 and 9 the graph layouts
of the mammals dentition data set is given under the σ2 and σ1.6 loss functions,
respectively.

It can be seen that in the latter case the graph drawing exhibits a much stronger
clustering pattern of both the object and category points. This suggests that for
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Figure 8. The graph representation of the mammals data using
the σ2 loss function
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Figure 9. The graph representation of the mammals data using
the σ1.6 loss function

large data sets such a solution could focus on the most basic patterns present in
the data and ignore the minor ones. However, one should be careful, since under
the σ1 function the resulting representation consists of s + 1 points (s being the
embedding dimension) and thus leads to a rather trivial solution. As argued in [22]
this is due mostly to the choice of an orthonormality constraint.

On the other hand, the Tutte normalization heavily depends on the choice of the
points being fixed as Figures 10-12 indicate. For example, fixing the category points
of a single variable leads to a representation where all the other points are clumped
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near the center of the plot (e.g. Figures 10 and 11), while fixing the coordinates of
all the points of one of the vertex sets can lead to informative plots (e.g. Figure
12). In that case the position of the nodes of the other vertex set is guided by the
barycentric principle [17, 26]. For example, the object points in Figure 12 are in
the center of gravity of the categories they belong to. The main issue then becomes
of how to choose automatically and in an intelligent way the coordinates of the
category points, which is a topic of current research.
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Figure 10. Tutte solution with the points of variable Price fixed
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Figure 11. Tutte solution with the points of variable Quality fixed

7. Concluding Remarks

In this study a general framework of visualizing data sets through graph drawing
is considered. The underlying mathematical problem is rigorously defined and a
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Figure 12. Tutte solution with the points of all the variables fixed

ubiquitous optimization framework based on the concept of majorization is intro-
duced. It is further shown that the familiar technique of Multiple Correspondence
Analysis (MCA) is a special case of our general framework. The MCA solution can
also be used to improve the presentation of categorical data sets through parallel
coordinates plots. Moreover, the choice of normalizations, as well as the type of
distances and the transformation function φ have a significant impact on the result-
ing representation. An important future direction is the introduction of pushing
constraints in the framework and the analysis of weighted graphs that represent
data sets with numerical variables.
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8. Appendix A - Dentition of Mammals

The data for this example are taken from Hartigan’s book [14]. Mammals’ teeth
are divided into four groups: incisors, canines, premolars and molars. A description
of the variables with their respective coding is given next.

TI: Top incisors; 1: 0 incisors, 2: 1 incisor, 3: 2 incisors, 4: 3 or more incisors
BI: Bottom incisors; 1 : 0 incisors, 2: 1 incisor, 3: 2 incisors, 4: 3 incisors, 5: 4

incisors
TC: Top canine; 1: 0 canines, 2: 1 canine
BC: Bottom canine; 1: 0 canines, 2: 1 canine
TP: Top premolar; 1: 0 premolars, 2: 1 premolar, 3: 2 premolars, 4: 3 premo-

lars, 5: 4 premolars
BP: Bottom premolar; 1: 0 premolars, 2: 1 premolar, 3: 2 premolars, 4: 3

premolars, 5: 4 premolars
TM: Top molar; 1: 0-2 molars, 2: more than 2 molars
BM: Bottom molar; 1: 0-2 molars, 2: more than 2 molars

In Table 3 the frequencies of the variables are given.

Categories
Variable 1 2 3 4 5
TI 15.2 31.8 13.6 39.4
BI 3.0 30.3 7.6 43.9 15.2
TC 40.9 59.1
BC 45.5 54.5
TP 9.1 10.6 18.2 39.4 22.7
BP 9.1 18.2 15.2 36.4 21.2
TM 34.8 65.2
BM 31.8 68.2

Table 3. Mammals teeth profiles (in %, N=66)

The complete data set is given in [19].
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