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Abstract

Motivation: Capturing association patterns in gene expression levels under different conditions or

time points is important for inferring gene regulatory interactions. In practice, temporal changes in

gene expression may result in complex association patterns that require more sophisticated detection

methods than simple correlation measures. For instance, the effect of regulation may lead to time-

lagged associations and interactions local to a subset of samples. Furthermore, expression profiles of

interest may not be aligned or directly comparable (e.g. gene expression profiles from two species).

Results: We propose a count statistic for measuring association between pairs of gene expression

profiles consisting of ordered samples (e.g. time-course), where correlation may only exist locally

in subsequences separated by a position shift. The statistic is simple and fast to compute, and we

illustrate its use in two applications. In a cross-species comparison of developmental gene expres-

sion levels, we show our method not only measures association of gene expressions between the

two species, but also provides alignment between different developmental stages. In the second

application, we applied our statistic to expression profiles from two distinct phenotypic conditions,

where the samples in each profile are ordered by the associated phenotypic values. The detected

associations can be useful in building correspondence between gene association networks under

different phenotypes. On the theoretical side, we provide asymptotic distributions of the statistic

for different regions of the parameter space and test its power on simulated data.

Availability and implementation: The code used to perform the analysis is available as part of the

Supplementary Material.

Contact: msw@usc.edu or hhuang@stat.berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding complex regulatory relationships between genes is

one of the central themes of systems biology. As high-throughput

technologies continue to generate large-scale gene expression data-

sets, developing efficient computational and statistical tools to infer

or reconstruct gene interactions remains a highly relevant area of
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research. It is commonly assumed that co-regulation relationships

can be partially deduced from expression correlation patterns.

For example, when gene expression levels are measured in a time-

course experiment, similar expression profiles between gene pairs

suggest possible activation relationships, while inverted profiles may

imply inhibition. Extracting meaningful patterns from these expres-

sion profiles is often the first step toward analyzing functional

groupings of genes, annotating unknown genes and reconstructing

gene regulatory networks.

Treating the problem as that of detecting statistical correlation,

Pearson’s correlation (PC) has been one of the most widely used

measures for finding gene pairs with similar expression profiles

(Eisen et al., 1998; Stuart et al., 2003; Wolfe et al., 2005). Beyond

assessing linear dependence, another class of methods based on

mutual information measuring general statistical dependence has

also been extensively used (Basso et al., 2005; Daub et al., 2004;

Margolin et al., 2006; Steuer et al., 2002). For time-course data,

techniques in times series analysis (e.g. time-frequency analysis)

have been applied to improve the sensitivity of similarity measures

(Feng et al., 2004; Ramoni et al., 2002), often assuming explicit

models for generating the observed data.

Although an extensive collection of methods exists for measuring

global association between gene pairs, co-regulation and conse-

quently gene expression dependence may only exist across a subset

of the experimental conditions. Pei et al. (2014) addressed this prob-

lem by introducing a spline regression model and a penalized PC

score. Non-parametric methods comparing local expression patterns

were introduced in Roy et al. (2014) and Wang et al. (2014), with

the latter method applicable to both time series and more general

datasets. Biclustering offers an alternative line of approach by

simultaneously finding subsets of genes and subsets of experimental

conditions under which association patterns exist. However, biclus-

tering methods often come at a high computational cost and are for-

mulated using specific generative models such as the additive model

and the multiplicative model (Cheng and Church, 2000; Gao et al.,

2012; Hochreiter et al., 2010; Lazzeroni and Owen, 2002).

Although one advantage of biclustering is it outputs groups of genes

with potentially related functions, pairwise similarity measures pro-

vide a more direct way to rank and compare gene pairs in terms of

their functional relatedness.

Another prevalent feature of time series data is the presence of

time lags between association patterns, reflecting the fact that regu-

lation may take effect after a time delay. Early work to incorporate

this feature includes the time-shifted PC proposed in Kato et al.

(2001). Motivated by the large body of work in sequence alignment,

Kwon et al. (2003) summarized expression patterns as character

strings and used the Needleman-Wunsch algorithm to compute opti-

mal global alignment scores for gene pairs. Instead of matching pairs

of time points, another class of methods known as dynamic time

warping (DTW) aligns two time series globally based on Euclidean

distance minimization. Originally developed for speech recognition,

DTW has been widely applied in comparative analysis of temporal

gene expression data from different species (Aach and Church,

2001; Goltsev and Papatsenko, 2009; Smith et al., 2008; Yuan

et al., 2011). However, the DTW approach can only be applied to

genes with similar temporal profiles in order to correctly estimate

time shifts, thus limiting its use mostly to gene pairs filtered by a cor-

relation test or orthologous genes in cross-species comparison.

The above approaches for handling time shifts are designed to

measure global associations. To detect local correlation patterns,

one natural extension is to consider optimal local alignment of

expression subsequences where optimality is formulated as maximal

correlation or matching expression patterns (Balasubramaniyan

et al., 2005; Ji and Tan, 2005; Qian et al., 2001). However, such

methods may assign a low score when a gene pair has several seg-

ments of subsequences with strong correlation but the segments are

not sufficiently long.

In this article, we develop a count statistic for measuring associa-

tion between pairs of gene expression profiles with ordered samples

(including time-course data), where (i) correlation may only exist

locally in subsequences; (ii) the correlated subsequences can be sepa-

rated by a position shift; (iii) the size of shifts may also differ from

location to location—in this case the pair of expression profiles can-

not be aligned globally on the same scale. The statistic sums up the

number of subsequence pairs with matching ranks, thus has better

sensitivity for detecting multiple but relatively short correlated seg-

ments. The statistic is simple and fast to compute. As the statistics is

rank-based, it captures more information than methods that only

consider the rise and fall of expression levels (Ji and Tan, 2005;

Kwon et al., 2003) while being nonparametric and flexible. We pro-

vide asymptotic analysis for different regions of the parameter space

and examine the accuracy of the approximation by simulation. To

test the performance of the statistic as a measure of local associa-

tions, we compare the power of the statistic with Local Similarity

Analysis (LSA, Ruan et al., 2006; Xia et al., 2013) using simulated

data. LSA is a similarity metric originally designed for studying

interactions among microbial communities and detecting their tem-

poral associations. Using PC as a local similarity measure, LSA

belongs to the general class of methods that tries to align the most

similar subsequences. We show that our statistic has a better power

when there are multiple but short correlated subsequences.

In general, our statistic is useful for identifying associations

between expression profiles consisting of ordered samples, when the

samples are not aligned and contain local association patterns possi-

bly separated by gaps. In this paper, we demonstrate the utility of

our statistic in two different applications. In the first application, we

applied the statistic to compare developmental gene expression lev-

els in fly and worm. We demonstrate the statistic can be used as a

measure of association between a fly gene and a worm gene. In addi-

tion, the computation of our statistic naturally leads to direct align-

ment of subsequences indicating where strong correlations exist and

allows one time point in one sequence to be mapped to possibly mul-

tiple time points in the other. This feature makes the statistic a suit-

able tool for visualizing the temporal alignment and studying

correspondence between different time points in a cross-species

comparison. Previously the alignment between developmental stages

was done by identifying enrichment of orthologous genes Li et al.

(2014); last we show this can be achieved in a more general way and

extend the analysis to include general, non-orthologous gene pairs.

As a second application, we consider calculating associations

between gene expression profiles coming from two phenotypic

conditions. Taking RNA-seq data from the Cholesterol and

Pharmacogenetics (CAP) clinical trial (Simon et al., 2006), we

ordered the samples by the individuals’ low-density lipoprotein cho-

lesterol (LDLC) levels and identified a high and a low LDLC group.

We next used our statistic to compute gene cross-correlations

between these two phenotypic groups for a set of cholesterol metab-

olism genes. In this case, the samples in the two groups came from

different individuals and hence cannot be aligned directly. Given the

high degrees of coexpression between the gene pairs within the high

and low LDLC groups themselves, we expect a sensitive statistic

would find more cross-correlations between the two LDLC groups.

We show our method is more sensitive than global correlation meas-

ures and the local correlation measure LSA. This technique makes it
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possible to build correspondence between gene association networks

constructed under high and low LDLC levels.

2 Materials and methods

2.1 Defining the correlation measures
For two gene expression profiles with ordered samples (e.g. time-

course data) x ¼ x1; . . . ; xmð Þ; y ¼ y1; . . . ; ynð Þ, we define a correla-

tion measure for capturing local association patterns in x and y. To

motivate the definition, consider comparing gene expression levels

measured at different developmental stages in the two species

Drosophila melanogaster and Caenorhabditis elegans. Figure 1

shows the estimated mapping between the embryonic stages

(Li et al., 2014). Although the two timelines cannot be aligned glob-

ally with a simple time shift, subsequences of time points located at

different positions can be matched. This suggests functionally

related genes in these two species can have correlated expression

patterns between matched subsequences, thus their overall correla-

tion can be calculated. However, in practice the stage correspond-

ence is usually unknown a priori. In addition, the matching local

regions are separated by time shifts of different lengths, making it

hard for existing methods to detect these local patterns. Motivated

by the above observation, we design a statistic to compare subse-

quences of expression levels starting at different positions in the

time series (up to some maximal time shift).

We measure the association between a pair of subsequences by

comparing their rank patterns. Define a rank function / �ð Þ, which

describes the rank profile of a vector and returns the indices of ele-

ments in the vector after they have been sorted in an increasing

order. For example, for the vector (1, 5, 3), / returns (1, 3, 2). For

two subsequences of length k starting at position i and j in x and y

respectively, we check whether their rank patterns are identical or

reversed using the indicators

I
þ
i;jð Þ ¼ I / xi; . . . ; xiþk�1ð Þ ¼ / yj; . . . ; yjþk�1

� �� �
;

I
�
i;jð Þ ¼ I / xi; . . . ;xiþk�1ð Þ ¼ / �yj; . . . ;�yjþk�1

� �� �
:

The sum of the indicators over all possible position pairs i and j

measures the extent of co-variation between x and y. For conven-

ience denote �m ¼ m� kþ 1 and �n ¼ n� kþ 1. The correlation

measures are defined as

Vþ ¼
X

v2SI
þ
v ; V� ¼

X
v2SI

�
v ; V ¼ Vþ þ V�;

where v ¼ i; jð Þ and S ¼ fv ¼ i; jð Þ j1 � i � �m; 1 � j � �n; ji� jj
� dg for some maximum shift d. For example, given x¼ (1.2, 2.3,

3.5, 4.1, 5.8) and y¼ (3.1, 2.4, 0.9, 4.3, 5.5), then for k ¼ 3 and

maximal time shift d ¼ 1, I
þ
2;3ð Þ ¼ 1; Iþ3;3ð Þ ¼ 1, making Vþ ¼ 2;

I
�
1;1ð Þ ¼ 1; I�2;1ð Þ ¼ 1, making V� ¼ 2. Overalls V ¼ 4. We note that

V generalizes the measure W1 in Wang et al. (2014), which only

compares subsequences starting at the same positions in a pair of

expression profiles. V accounts for possible time shifts in gene inter-

actions, and d is the maximum time shift allowed for interactions to

take place. With this generalization, V can be used in situations

where the expression profiles of interest are not directly aligned. Vþ

and V– are one-sided counts to be used when the local associations

are believed to be all positive or all negative.

2.2 Asymptotic distributions
The measures defined above can be used directly to rank gene pairs

in terms of their association strength. With appropriate assumptions

on the distribution of x and y, we can further characterize the

asymptotic distribution of V on a pair of independent sequences,

which allows us to approximate P-values for long series. Depending

on how k (subsequence length) and d (maximal shift) varies in the

limit, we have a normal and a Poisson limiting regime for the

distribution of V. For notational convenience we consider the case

m ¼ n, although the conclusions remain true as long as m grows at

the same rate as n. The exact statement of the assumptions and

proofs can be found in the Supplementary Material. Although the

techniques used are similar to Wang et al. (2014), the inclusion of

the time lag d complicates the theoretical analysis.

2.2.1 Normal limit

Define the normalized statistic �V ¼ V � lnð Þ=rn. Here ln ¼ E Vð Þ ¼
2
k! nk;d with nk;d ¼ 2d þ 1ð Þ�n � d d þ 1ð Þ (see Supplementary

Material), which can be computed explicitly. The variance r2
n ¼ Var Vð Þ

needs to be estimated by Monte Carlo simulations. In particular,

one can simulate independent pairs of iid sequences (or exchange-

able sequences, see Assumption 2 in the Supplementary Material)

and approximate the variance of the statistic using sample variance.

As n!1, the limiting distribution of �V is standard normal, i.e.

�V!D N 0;1ð Þ (1)

when ln !1 and either of the following holds:

• k fixed, d3/n!0;
• d fixed, k/(log n)a!0 for a<1.

In other words, the approximation holds for small values of d and k.

As we will later demonstrate using simulated and real data, setting k

to be approximately log n often produces ideal results. The choice of

d depends more on specific applications and user knowledge of the

size of the maximal time shift.

2.2.2 Poisson limit

As k increases, subsequences with exact matches become increas-

ingly rare resulting in a Poisson limit regime. In this case, as n!1,

the distribution of V can be approximated by a Poisson random var-

iable with equal mean. i.e.

dTV V;Zð Þ ! 0; (2)

provided ln ¼ O 1ð Þ and d=k! 0, where Z � Poisson lnð Þ and dTV

is the total variation distance. Roughly the Poisson approximation

holds for large k and small d. In real applications, the Poisson

approximation is less useful than the normal one, since finding exact

matches of subsequences becomes increasingly rare and less practi-

cal with large k.

Fig. 1. Figure adapted with permission from Figure 5B in Li et al. (2014).

Correspondence between embryonic stages in D. melanogaster and
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2.3 Application to simulated data
Using simulated data, we compare our method with the LSA (Ruan

et al., 2006; Xia et al., 2013), which is one of the recent methods for

measuring local correlation with source code available. LSA uses

dynamic programing to align subsequences with a large PC in two

time series. We generated pairs of times series with 500 time points

containing locally correlated regions masked by time delays and

other noisy regions. To generate x, we obtained xi from a AR 1ð Þ
time series with coefficient 0.1. Next y was constructed as follows.

For a signal segment s, a set of indices I s associated with x, and a

time delay ds, we have

yiþds
¼ xi þ ei for i 2 I s

with ei being independent normal noise with standard deviation re.

Outside the signal regions, yi followed an independent AR(1)

time series with coefficient �0.2. For example, scenario (ii) in

Table 2 contains one correlated signal segment with s ¼ 1,

I1 ¼ f201; . . . ; 250g; jI1j ¼ 50; d1 ¼ 5; re ¼ 0:3.

For each simulated dataset, we computed the normalized statistic
�V and approximated the P-values using standard normal distribu-

tion. The method provided in Xia et al. (2013) was used to approxi-

mate P-values for the LSA scores. We compared the power of the

two methods rejecting the null hypothesis of independence at 5%

and 1% significance levels for different values of k and d on datasets

with different numbers of signal segments, segment lengths, and

noise levels. Under all scenarios, ds � 5 for all s.

2.4 Application to cross-species comparison of gene

expression in developmental stages
We illustrate the use of V in a cross-species comparison of gene

expression levels for two model organisms D. melanogaster (fly) and

C. elegans (worm). These two species are evolutionarily distant and

have morphologically distinct developmental stages. Since the align-

ment of their developmental timelines is unknown, genome-wide

comparison of gene expression across multiple stages is a challeng-

ing problem. Li et al. (2014) provided the first comprehensive study

using modENCODE (Celniker et al., 2009) data and orthologous

gene pairs to assess the similarity between different stages. We show

similar results can be achieved without limiting the analysis to

orthologous gene pairs.

We used the time-course RNA-seq data in Li et al. (2014). The

fly time-course data consists of 30 time points (embryos, L1–L3 lar-

vae, pupae, male and female adults); the worm time-course data

contains 35 time points (embryos, L1–L4 larval, young adults,

adults and dauer). Since male and female adults represent two paral-

lel stages of development in fly (Li et al., 2014, Fig. 1A), we further

split the fly data into dm_male (27 time points) and dm_female (27

time points). Similarly, as the dauer stage in worm is an alternative

development prior to the L4 larval stage (Li et al., 2014, Fig. 1B),

we split the worm data into ce_nd (32 time points, no dauer stage)

and ce_da (33 time points, with dauer stage).

Systematic comparisons of gene expression changes across differ-

ent time points between different species provide valuable informa-

tion on fundamental patterns and dynamic features conserved or

altered through evolution. Although it is natural to assume time

stages sharing similar transcriptional activities are related, the chal-

lenge remains in identifying patterns of similarity between gene

expression profiles when the time points are not aligned. Li et al.

(2014) circumvented this difficulty by assuming orthologous genes

have similar transcriptional characteristics; we showed such charac-

teristics can be directly measured using our statistic. To this end, we

first demonstrated our statistic is informative for measuring associa-

tion between orthologous genes, which tend to be more correlated

than non-orthologous ones. Then by identifying the locations of cor-

related subsequences in orthologous gene pairs, we constructed stage

correspondence maps similar to the ones in Li et al. (2014). Finally,

we were able to show this analysis can be extended to general gene

pairs, thus removing the dependence on extra annotation information

and making the approach applicable to less well-studied species.

2.4.1 Filtering gene pairs

Using the list of orthologous genes in Li et al. (2014), we first filtered

them and selected those that (i) have FPKM (Fragments Per Kilobase

of transcript per Million mapped reads) �1.0 across all time points

and (ii) have expression levels not always ranked in the top 30% or

the bottom 30% of all the genes satisfying (i), leaving us a total of

3116 fly genes and 3133 worm genes. 2761 pairs of these are orthol-

ogous. We note that criterion (ii) was used to select genes with a rea-

sonable amount of variation across all the time points.

In order to extend the same analysis to general gene pairs, we

used the same filtering criterion as earlier, but this time applied to

all the available genes, to obtain 5379 (fly) � 5368 (worm) general

gene pairs. Similar to the above, filtering was applied only to remove

genes with small or large variance; orthology information was not

used in this case.

2.4.2 Correlation calculation between orthologous gene pairs

Since we expect orthologous genes to be functionally related, we

next tested whether our statistic can be used to show orthologous

gene pairs tend to be more correlated than non-orthologous ones.

We used Vþ to measure how positively correlated the orthologous

pairs are compared with the rest of the gene pairs. Using k ¼ 5 and

maximum d, we computed Vþ for every pair of fly and worm genes

in the 3116 � 3133 matrix. For comparison, we also calculated all

the pairwise scores using LSA, again making the measure one-sided

by only calculating the positive scoring matrix. Using the scores to

rank all the gene pairs in a descending order, we compared the two

methods by counting the number of orthologous pairs included in

the top ranked pairs.

2.4.3 Construction of stage correspondence maps

Here we introduce an extended application of our statistic V þ to

identify correspondence between different time points. We consid-

ered building an �m � �n correspondence matrix, where each entry

represents a possible match between time points in the two species.

The matches can be obtained from the local similarity profiles con-

tained in the computation of Vþ. We first explored this idea using

orthologous pairs and then extended the analysis to general gene pairs.

We set k ¼ 5 and d to its maximum value to allow for all possible

time shifts. In the �m � �n correspondence matrix, for every ortholo-

gous pair, the entries f i; jð Þ; . . . ; iþ 4; jþ 4ð Þg received count 1 if

I
þ
i;jð Þ ¼ 1, indicating the existence of local similarity between all five

pairs of stages. The total counts were thresholded at the 85% quantile

and the final binary heatmaps allowed us to visualize matching

between different stages in the two species.

Next we extended our analysis of local similarity to the 5379

(fly) � 5368 (worm) general gene pairs. We used the V þ scores to

select gene pairs that are likely to be related in the two species. In

the 5379 � 5368 Vþ score matrix, we extracted gene pairs with the

highest scores sequentially, each time removing from the matrix the

row (the fly gene) and the column (the worm gene) that had been

chosen to avoid repetition. For every dataset combination (e.g.
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dm_male with ce_nd), about 1600 gene pairs were chosen. The same

count matrix for stage correspondence, as what we constructed for the

orthologous genes pairs, was computed as described before. The

thresholding value was set at the 85% quantile of all the counts.

2.5 Identifying interactions between lipid genes relative

to phenotypic variation
To further demonstrate the general utitlity of our method, we con-

sidered using it to find correspondence between two gene associa-

tion networks built under different conditions (e.g. two different

phenotypes). Within each network, the edge weights are assigned

using pairwise gene associations. Similarly, correspondence between

the two networks can be found by measuring association between

two genes, one from each network. Identifying such cross-network

associations (and thus functional correspondence or relevance) is

interesting as it would help better understand the functional rele-

vance and difference of gene networks across different biological

conditions. Traditional measures are usually not applicable to assess

such associations. Our method is applicable, because (i) it can meas-

ure similarity between two genes even when their expression profiles

consist of samples not directly aligned; (ii) it considers local similar-

ity patterns, which are more likely to exist than global trends when

the samples are not directly comparable.

We applied the statistic to an RNA-seq dataset consisting of

measurements from �400 lymphoblastoid cell lines from partici-

pants of the CAP clinical trial (Simon et al., 2006). Plasma lipid data

and clinical covariates (age, sex etc.) are also available in the cell

line donors. We focused on 21 highly coexpressed genes (specific to

lymphoblastoid cell lines, K.Liu, personal communication) that pri-

marily represent genes in the cholesterol synthesis pathway, and

examined their pairwise relationships relative to the plasma LDLC

levels in the individuals. We ordered the individuals by their LDLC

levels. Treating the LDLC levels as time points, we compared the

cross-correlations between 100 individuals with the lowest LDLC

and 100 individuals with the highest LDLC for the 21 genes. Since

in this case the ‘time points’ (or individuals) are not aligned, the

cross-correlations are difficult to detect using traditional measures.

2.5.1 Data normalization and computation of correlation measures

The whole RNA-seq dataset was normalized using DESeq2 (Love

et al., 2014) and adjusted for potential confounders using probabil-

istic estimation of expression residual (Stegle et al., 2012). The

LDLC levels were adjusted for clinical covariates using regression.

More detailed descriptions of the expression quantification,

normalization, and adjustment of LDLC can be found in the

Supplementary Material. We calculated PC, the LSA score and

the �V score for the 21 cholesterol synthesis genes both between

the two LDLC sets and within the sets themselves, and computed

their P-values.

3 Results

3.1 Agreement with asymptotic distributions
We first checked the accuracy of asymptotic approximation for dif-

ferent regions of d and k. Figure 2 shows the empirical quantiles of

simulated �V for different parameter settings. For each set, 1000 ran-

dom permutations were simulated from which �V was calculated. In

Figure 2a, the distribution starts to deviate as k increases for fixed d.

Similarly in Figure 2b, for fixed k larger d leads to more deviation

from the normal, although the difference is less obvious. This agrees

with our statement that the normal approximation (1) works well

for small values of k and d.

To test the agreement with the Poisson limit, Table 1 shows the

P-values obtained from the Kolmogorov-Smirnov test for different

parameter settings. The test measures the distance between the empiri-

cal distributions of V and simulated Poisson lnð Þ random variables,

recalling that ln is the expectation which can be explicitly calculated.

For larger values of k, we expect the empirical distribution to move

into the Poisson regime and the P-values to become larger. For the n

and k values shown, smaller d leads to better agreement with the

Poisson distribution since we require the ratio d/k to be small in (2).

3.2 Comparison with LSA on simulated data
Table 2 compares the power of �V and LSA rejecting at 5% and 1%

significance levels. 100 datasets were generated for each scenario

following the description in the last section. When the two time ser-

ies are independent, both methods have rejection rates around 0.05

as expected. Comparing scenarios (ii) and (iii), �V has better power

than LSA when the noise level is low. However, its power decreases

with increasing noise level while LSA remains very robust. This is

unsurprising noting that LSA uses PC as a measure of local signal

strength, which is less stringent than �V . �V requires local subsequen-

ces to have exact (or opposite) rank matches, which is equivalent to

locally having a perfect Spearman’s correlation. On the other hand,

when the signal segment is separated into two parts in scenario (iv),
�V performs much better than LSA. Since both methods have concep-

tual connections to finding optimal local alignments in sequence

matching, this scenario demonstrates that �V is more robust to the

insertion of noisy regions because unlike LSA which considers only

the most optimally aligned subsequences, �V includes contributions

from all correlated subsequences. The same idea is reiterated in sce-

nario (v), where there are three short signal segments separated

by noise regions. Regarding the choice of the tuning parameters for
�V , k ¼ 6 (�log 500) yields the best performance. Since the maximal

lag between correlated segments is 5 in scenarios (ii–v), d ¼ 5 leads

to better power for both �V and LSA.

3.3 Real data results
3.3.1 Cross-species comparison

3.3.1.1 Capturing correlation between orthologous genes. As

expected, the orthologous pairs tend to have higher Vþ scores, sug-

gesting that local correlations can be used as complementary evi-

dence to define orthology. On the datasets dm_male and ce_nd, the

Vþ values on 2761 pairs of orthologous gene pairs are statistically

larger than the other non-orthologous pairs in the 3116 � 3133

matrix. The shift in distribution has a P-value which is �0 using the

Wilcoxon rank sum test.

Ranking all the genes pairs in a descending order using Vþ and

LSA, we compared the two methods by counting the number of

orthologous pairs included in the top ranking pairs. As shown in

Figure 3, Vþ consistently chooses more orthologous pairs than LSA.

We note that although the proportion of identified orthologous gene

pairs appears low (around 300/800 000) for both methods, given

there exist only 2761 true positives among all 3116 � 3133 possible

pairs, this proportion identified is highly statistically significant with

a P-value of 1.7 � 10–6 using the binomial test. This suggests Vþ is

informative for measuring orthology to some extent, although could

be made more powerful if combined with other sources of informa-

tion such as sequence similarity. The results from the other dataset

combinations (e.g. dm_female with ce_da) are very similar and can

be found in Section 2 of the Supplementary Material.
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3.3.1.2 Correspondence between developmental stages in fly and

worm. Figure 4 shows the binary heatmaps constructed using the

method described in the last section for each dataset using ortholo-

gous pairs. Similar to the results in Li et al. (2014), two parallel pat-

terns exist between fly and worm from embryos to larvae, and

between fly pupae and worm embryos. As explained in Li et al.

(2014), the upper parallel line is consistent with the second wave

of cell proliferation and differentiation in the fly life cycle. The

dataset combination dm_female and ce_da is shown in Figure 4c.

Additional correspondence exists between fly pupae and worm

dauer. However, the mappings between fly female and the worm

stages are missing due to edge effects. We note that since LSA

looks for the optimal local alignment of subsequences, it is less

straightforward to extract correspondence between all pairs of

stages.

Extending the analysis to the general gene pairs chosen based on

their Vþ scores, the same count matrices were calculated and thresh-

olded. Figure 4b and d shows the stage mappings for the same data-

sets. It can be seen that the maps maintain the major features of

their orthologous counterparts with some noise, indicating the main

conclusions previously drawn on stage correspondence can be gener-

alized without restricting the analysis to orthologous genes.

3.3.1.3 Cross-correlations between low and high LDLC samples.

Our goal is to show �V can be used to identify correspondence

between two genes networks. In this dataset, all pairs in the 21 cho-

lesterol metabolism gene set show very strong PC in both conditions.

That is, the two networks are almost fully connected. Hence we

expect in general that gene pairs across the two networks (each from

one network) should be well connected, and we can use the number

of correlated gene pairs found to evaluate the performance of differ-

ent methods.

Table 3 compares the number of significant cross-correlations

found between the low and high LDLC samples for the 21 genes. To

compute the �V scores, we set k ¼ 4 [�log 100]; different lag values

d were tested for both �V and LSA. At both P-value cutoffs (0.05 and

0.01), �V tends to detect more correlations than LSA. The correla-

tions found by �V at k ¼ 4;d ¼ 10 are plotted in a bipartite network

in Supplementary Figure S3. We note that the most significant edges

in this network (e.g. the top 20 edges with the smallest P-values)

Fig. 2. Empirical quantiles for (a) n ¼ 500, d ¼ 20, varying k and (b) n ¼ 500,

k ¼ 5, varying d from 1000 simulated random permutations

Table 1. P-values from the Kolmogorov-Smirnov test measuring

the distance between the empirical distributions of V and simu-

lated PoissonðlnÞ random variables (2000 simulations)

d n ¼ 50;k ¼ 7 n ¼ 500; k ¼ 8 n ¼ 2000;k ¼ 9

1 0.056 0.118 0.452

2 0.002 0.097 0.427

3 0 0.001 0.187

4 0 0 0

5 0 0 0.06

Table 2. Fractions of P-values smaller than 0.05 and 0.01 out of 100 simulations when (i) xi and yi are independent; (ii) one signal segment of

length 50, re ¼ 0.3; (iii) one signal segment of length 50, re ¼ 0.5; (iv) two signal segments each of length 25, re ¼ 0.3; (v) three signal seg-

ments each of length 25, re ¼ 0.3

�V LSA

k ¼ 5, d ¼ 5 k ¼ 6, d ¼ 5 k ¼ 6, d ¼ 6 k ¼ 6, d ¼ 7 d ¼ 5 d ¼ 6 d ¼ 7

(i) Independent (P < 0.05) 0.02 0.04 0.05 0.04 0.04 0.03 0.03

(P < 0.01) 0.02 0.02 0.01 0.02 0.01 0.01 0.01

(ii) s ¼ 1, jI sj ¼ 50; re ¼ 0:3 (P < 0.05) 0.41 0.67 0.57 0.59 0.43 0.43 0.41

(P < 0.01) 0.30 0.49 0.42 0.38 0.14 0.14 0.13

(iii) s ¼ 1, jI sj ¼ 50; re ¼ 0:5 (P < 0.05) 0.21 0.29 0.24 0.24 0.41 0.39 0.36

(P < 0.01) 0.10 0.15 0.13 0.12 0.14 0.15 0.14

(iv) s ¼ 1, 2, jI sj ¼ 25; re ¼ 0:3 (P < 0.05) 0.43 0.58 0.53 0.48 0.11 0.10 0.10

(P < 0.01) 0.23 0.44 0.38 0.32 0.01 0.01 0.02

(v) s ¼ 1, 2, 3, jI sj ¼ 25; re ¼ 0:3 (P < 0.05) 0.58 0.85 0.83 0.79 0.53 0.42 0.39

(P < 0.01) 0.33 0.71 0.66 0.59 0.19 0.19 0.15

ds � 5 for all s under all the scenarios.
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could not be identified by PC using 0.05 as the P-value cutoff, high-

lighting the necessity to consider local correlation patterns in this

case. Computing PC for these genes within the low and high LDLC

samples themselves, we note that the correlations are uniformly high

for all gene pairs, suggesting these genes, which all have functions

related to cholesterol metabolism, have high levels of interaction

and the cross-correlations found are reasonable. Finally, we observe

that compared with PC, �V finds much fewer significant interactions

in the within-sample calculations. A similar observation holds

for LSA. This suggests PC remains an ideal measure for detecting

global association patterns when the samples are matched, but alterna-

tive measures targeting local correlations can provide complementary

information when there is no clear alignment between the samples.

4 Discussion

As the amount of high-throughput gene expression data continues

to accumulate, developing appropriate statistical tools to extract

meaningful association patterns remains an important problem

and has broader applications in general data mining. For time-

course expression data, the use of traditional correlation methods

is often limited by the presence of time shifts between correlated

time points and the fact that these association patterns may only

exist locally. Many existing methods designed to address these

problems have conceptual similarity to sequence alignment algo-

rithms. Optimal local alignments of expression subsequences are

found by maximizing some measure of association strength.

However, such methods may not be well suited to detect patterns

with multiple correlated segments, especially when these segments

are relatively short in length. In this article, we propose a count

statistic that sums up contribution from all subsequence pairs

of length k having matching ranks separated by a maximal

time shift d. We provide the asymptotic distributions of the statistic

Table 3. Number of significant correlations between low and high

LDLC samples for different choices the lag parameter d and P-value

cutoffs

d ¼ 8 d ¼ 10 d ¼ 12 d ¼ 14

P < 0.05 �V 22 25 20 25

LSA 14 22 19 18

P < 0.01 �V 5 5 3 5

LSA 2 4 3 6

Fig. 3. Number of orthologous pairs included in top gene pairs ranked by Vþ

(orange) and LSA (blue) (Color version of this figure is available at

Bioinformatics online.)

(a) (b)

(c) (d)

Fig. 4. Stage correspondence between fly and worm developmental stages using dataset combinations (a), (b) dm_male and ce_nd, and (c, d) dm_female and

ce_da, limited to orthologous gene pairs (a, c) and extending to general gene pairs (b, d)
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for different regions of k and d as the number of time points available

grows.

As demonstrated in simulation, our method has a better power

than LSA when correlated subsequences are broken into shorter seg-

ments separated by independent parts. On the other hand, on simple

patterns with only one pair of correlated subsequences, the power of

our method tends to decrease faster than LSA with increasing level

of noise due to the latter using PC to measure association locally. It

follows one natural extension of our method is to replace the indica-

tors requiring exact rank profile matches with PC or Spearman’s

correlation. Such statistics would be more robust, but analysis of

their asymptotic properties would be more challenging due to the

overlaps between subsequences.

Applying the method to compare gene expression across devel-

opmental stages between D. melanogaster and C. elegans, we dem-

onstrate in addition to being a measure of pairwise association, our

method also directly provides mappings between the developmental

timelines of the two species. The flexibility of our mappings allow-

ing many-to-many correspondence between various time points is

essential in cross-species analysis. The mapping results show two

collinear patterns of correspondence, which is consistent with the

findings in Li et al. (2014). More importantly, we are able to extend

our analysis beyond orthologous gene pairs and replicate the key

features of mappings using general gene pairs. As a measure of cor-

relation, our method can be used to show orthologous gene pairs

have stronger association statistically.

Last, the general applicability of our method is further illustrated

in the computation of cross-correlated gene pairs between individu-

als with low and high LDLC levels. In this case, the lack of direct

comparison between different individuals creates difficulties for

correlation measures that focus on global trends; local measures

including our method and the LSA are able to provide significant

improvement. On the other hand, the PC outperforms the two local

methods in the computation of within-sample correlations, suggest-

ing the choice of appropriate correlation measure is context-

dependent.
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