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RESEARCH ARTICLE
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Abstract

A fundamental challenge in neuroscience is to understand what structure in the world is rep-

resented in spatially distributed patterns of neural activity from multiple single-trial measure-

ments. This is often accomplished by learning a simple, linear transformations between

neural features and features of the sensory stimuli or motor task. While successful in some

early sensory processing areas, linear mappings are unlikely to be ideal tools for elucidating

nonlinear, hierarchical representations of higher-order brain areas during complex tasks,

such as the production of speech by humans. Here, we apply deep networks to predict pro-

duced speech syllables from a dataset of high gamma cortical surface electric potentials

recorded from human sensorimotor cortex. We find that deep networks had higher decoding

prediction accuracy compared to baseline models. Having established that deep networks

extract more task relevant information from neural data sets relative to linear models (i.e.,

higher predictive accuracy), we next sought to demonstrate their utility as a data analysis

tool for neuroscience. We first show that deep network’s confusions revealed hierarchical

latent structure in the neural data, which recapitulated the underlying articulatory nature of

speech motor control. We next broadened the frequency features beyond high-gamma and

identified a novel high-gamma-to-beta coupling during speech production. Finally, we used

deep networks to compare task-relevant information in different neural frequency bands,

and found that the high-gamma band contains the vast majority of information relevant for

the speech prediction task, with little-to-no additional contribution from lower-frequency

amplitudes. Together, these results demonstrate the utility of deep networks as a data anal-

ysis tool for basic and applied neuroscience.
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Author summary

It has been demonstrated that deep networks can achieve state of the art results on a num-

ber of classic machine learning tasks, but it is not currently clear whether deep networks

can enjoy the same success in science, where not only accuracy but scientific understand-

ing is desired. For example, the relationship between neural features and features of

speech is often examined through the use of single-layer statistical models. However, sin-

gle-layer models are unlikely to be able to describe the complex representations in higher-

order brain areas during speech production. In this study, we show that deep networks

achieve state of the art accuracy when classifying speech syllables from the amplitude of

cortical surface electrical potentials. Furthermore, deep networks reveal an articulatory

speech hierarchy consistent with previously studies which used hand-designed features.

We also report a novel positive coupling between the beta and high-gamma bands during

speech production in “active” cortical areas. However, using deep networks we show that,

compared to lower frequency bands, the high gamma amplitude is by far the most infor-

mative signal for classifying speech.

Introduction

A central goal of neuroscience is to understand what and how information about the external

world (e.g., sensory stimuli or behaviors) is present in spatially distributed, dynamic patterns

of brain activity. At the same time, neuroscience has been on an inexorable march away from

the periphery (e.g., the retina, spinal cord), seeking to understand higher-order brain function

(such as speech). The methods used by neuroscientists are typically based on simple linear

transformations, which have been successful predictors in early processing stages of the ner-

vous system for simple tasks [1–3]. However, linear methods are limited in their ability to rep-

resent complex, hierarchical, nonlinear relationships [4], which are likely present in the neural

activity of higher-order brain areas. This linear restriction may not only limit the predictive

accuracy of models but may also limit our ability to uncover structure in neural datasets.

Multilayer deep networks can combine features in nonlinear ways when making predic-

tions. This gives them more expressive power in terms of the types of mappings they can learn

at the cost of more model hyperparameters, more model parameters to train, and more diffi-

cult training dynamics [5]. Together with the recent success of deep learning in a number of

fields including computer vision, text translation, and speech recognition [6–8], the ability of

deep networks to learn nonlinear function from data motivates their use for understanding

neural signals. The success of deep learning in classic machine learning tasks has spurred a

growth of applications into new scientific fields. Other nonlinear methods such as random

trees/forests can also be used on nonlinear neural data but often require more feature selec-

tion/reduction and are not typically used on data with thousands or tens of thousands of

features [9]. Deep networks have recently been applied as classifiers for diverse types of physio-

logical data including electromyographic (EMG), electroencephalographic (EEG), and spike

rate signals [10–13], on stimulus reconstruction in sensory regions using electrocorticography

(ECoG) [14], as models for sensory and motor systems [15–19]. Compared to datasets used in

traditional machine learning, neuroscientif datasets tend to be very small. As such, models in

neuroscience tend to be smaller (fewer layers, units per layers) and in this sense more similar

to neural networks from previous decades. However, modern deep learning techniques such

as ReLUs, Dropout, and optimization algorithms like Nesterov momentum are crucial to

train them to high held-out performance. While these studies have demonstrated the superior
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performance of deep networks as black-box predictors, the utilization of deep networks to

gain understanding into brain computations is rare. Whether deep networks can be used to

elucidate the latent structure of scientific and neuroscientific datasets is still an open question.

Vocal articulation is a complex task requiring the coordinated orchestration of several parts

of the vocal tract (e.g., the larynx, tongue, jaw, and lips). To study the neural basis of speech

requires monitoring cortical activity at high spatio-temporal resolution (on the order of tens of

milliseconds) over large areas of sensorimotor cortex (�1300mm2) [20]. Electrocorticography

(ECoG) is an ideal method to achieve the simultaneous high-resolution and broad coverage

requirements in humans. Using such recordings, there has been a surge of recent efforts to

understand the cortical basis of speech production [20–25]. For example, analyzing mean

activity, Bouchard et. al. [20] demonstrated, much in the spirit of Penfield’s earlier work [26],

that the ventral sensorimotor cortex (vSMC) has a spatial map of articulator representations

(i.e. lips, jaw, tongue, and larynx) that are engaged during speech production. Additionally, it

was found that spatial patterns of activity across the vSMC network (extracted from trial aver-

age activity with principal components analysis at specific time points) organized phonemes

along phonetic features emphasizing the articulatory requirements of production.

Understanding how well cortical surface electrical potentials (CSEPs) capture the underly-

ing neural processing involved in speech production is important for revealing the neural basis

of speech and improving speech decoding for brain-computer interfaces [27, 28]. Previous

studies have used CSEPs and linear or single layer models to predict speech categories [23, 29–

32], or continuous aspects of speech production (e.g., vowel acoustics or vocal tract configura-

tions) [22, 25], with some success. However, given the challenge of collecting large number of

samples across diverse speech categories, it is not clear that we should expect high performance

from deep networks for speech classification. Exploring the use of deep networks to maximally

extract information for speech prediction is not only important for brain machine interfaces

which restore communication capabilities to people who are “locked-in”, but also for identify-

ing cortical computations which are the underlying basis for speech production.

In general, understanding information content across neural signals, such as different fre-

quency components of CSEPs, is an area of ongoing research [33–37]. A number of studies

have found relationships between different frequency components in the brains electrical

potentials. These can take the form of phase and amplitude structure of beta (β) waves [38, 39]

or correlations between lower frequency oscillations and spiking activity or high gamma (Hγ)

activity [37, 40]. One observation is that β band (14-30Hz) amplitude and coherence [33, 41]

often decreases during behavior, when the state is changing [42]. This has lead to the interpre-

tation that βmay be serving a “maintenance of state” function. However, often these effects

are not differentiated between functional areas that are active versus inactive during behavior.

Indeed, in other contexts, aggregation has been shown to mask structure in neural signals [43].

The somatotopic organization of speech articulator control in human vSMC, and the differen-

tial engagement of these articulators by different speech sounds, potentially provides the

opportunity to disentangle these issues. Furthermore, classifying behaviors, such as speech,

from CSEPs can be used as a proxy for information content in a signal, obfuscating the inter-

pretation of the results. However, this is often done using linear methods, which may not be

able to take full advantage of the information in a signal. Since deep networks are able to maxi-

mize classification performance, they are an ideal candidate for comparing information con-

tent across neural signals.

In this work, we investigated deep networks as a data analytics framework for systems neu-

roscience, with a specific focus on the uniquely human capacity to produce spoken language.

First, we show that deep networks achieve superior classification accuracy compared to linear

models, with increased gains for increasing task complexity. We then “opened the black box”
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and used the deep network confusions to reveal the latent structure learned from single trials,

which revealed a rich, hierarchical organization of linguistic features. Since deep networks

classified speech production from Hγ activity with higher accuracy that other methods, they

are also candidates for determining the relative information content across neural signals. We

explored the cross-frequency amplitude-amplitude structure in the CSEPs and discovered a

novel signature of motor coordination in β-Hγ coupling. Using deep networks, we then show

that although there is information relevant to speech production in the lower frequency bands,

it is small compared to Hγ. Critically, the lower frequency bands do not add significant addi-

tional information about speech production about and beyond Hγ. Furthermore, the correla-

tions are not tightly related to overall information content and improvements in accuracy.

Together, these results demonstrate the utilization of deep networks not only as an optimal

black-box predictor, but as a powerful data analytics tool to reveal the latent structure of neural

representations, and understanding the information content of different neural signals.

Materials and methods

Experimental data

The experimental protocol, collection, and processing of the data examined here have been

described in detail previously [20–22]. The experimental protocol was approved by the

Human Research Protection Program at the University of California, San Francisco. Briefly,

four native English speaking human subjects underwent chronic implantation of a subdural

electrocortigraphic (ECoG) array over the left hemisphere as part of their clinical treatment of

epilepsy. The subjects gave their written informed consent before the day of surgery. The sub-

jects read aloud consonant-vowel (CV) syllables composed of 19 consonants followed by one

of three vowels (/a/, /i/ or /u/), for a total of 57 potential consonant-vowel syllables. Subjects

did not produce each CV in an equal number of trials or produce all possible CVs. Across sub-

jects, the number of repetitions per CV varied from 10 to 105, and the total number of usable

trials per subject was S1: 2572, S2: 1563, S3: 5207, and S4: 1422. CVs for which there was not

enough data to do cross-validation (fewer than 10 examples) were excluded per-subject.

Signal processing

Cortical surface electrical potentials (CSEPs) were recorded directly from the cortical surface

with a high-density (4mm pitch), 256-channel ECoG array and a multi-channel amplifier

optically connected to a digital signal processor (Tucker-Davis Technologies [TDT], Alachua,

FL). The time series from each channel was visually and quantitatively inspected for artifacts

or excessive noise (typically 60 Hz line noise). These channels were excluded from all subse-

quent analysis and the raw CSEP signal from the remaining channels were downsampled to

400 Hz in the frequency domain and then common-average referenced and used for spectro-

temporal analysis. For each useable channel, the time-varying analytic amplitude was extracted

from 40 frequency domain, bandpass filters (Gaussian filters, logarithmically increasing center

frequencies and semi-logarithmically increasing band-widths, equivalent to a frequency

domain Morlet wavelet). The amplitude for each filter band was z-scored to a baseline window

defined as a period of time in which the subject was silent, the room was silent, and the subject

was resting. Finally, the amplitudes were downsampled to 200 Hz.

For each of the bands defined as: theta [4-7 Hz], alpha [8-14 Hz], beta [15-29 Hz], gamma

[30-59 Hz], and high gamma [70-150 Hz], individual bands from the 40 Gaussian bandpassed

amplitudes were grouped and averaged according to their center frequencies. The lower fre-

quency features are all highly oversampled at the Hγ rate of 200 Hz. To make comparisons

across frequency bands more interpretable, control for potential overfitting from training on
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oversampled signals, and to reduce the computational complexity of training deep networks

with concatenated input features, we downsampled each of the lower frequency bands in

time so that the center frequency-to-sampling rate ratio was constant (ratio = 112.5/200) for

each band. Given limited data, deep networks are tasked with deciding whether a change

across input features is relevant or irrelevant for prediction. The lower frequency bands are

highly oversampled at 200 Hz, however, the higher frequencies will not have exactly zero

amplitude do to numerical noise even though these are irrelevant signals. Downsampling the

bands to a fixed ratio makes comparing CV decoding accuracy across frequency bands more

interpretable.

Based on previous results [20–22], we focused on the electrodes in the ventral sensorimotor

cortex (vSMC). The activity for each of the examples in our data set was aligned to the acoustic

onset of the consonant-to-vowel transition. For each example, a window 0.5 seconds preceding

and 0.79 seconds following the acoustic onset of the consonant-to-vowel transition was

extracted. The mean of the first and last� 4% time samples was subtracted from the data per

electrode and trial (another form of amplitude normalization that is very local in time). This

defined the z-scored amplitude that is used for subsequent analyses.

Deep networks

Supervised classification models often find their model parameters, Ŷ, which minimize the

negative log-likelihood of the training data and labels, {x(i), y(i)}, under a model which gives the

conditional probability of the labels given the input data

Ŷ ¼ arg min
Y

� log PðYjX;YÞ; fxðiÞ; yðiÞg: ð1Þ

Deep networks typically parametrize this conditional probability with a sequence of linear-

nonlinear operations. Each layer in a fully-connected network consists of an affine transform

followed by a nonlinearity:

h1 ¼ f ðw1 � xþ b1Þ;

hi ¼ f ðwi � hi� 1 þ biÞ; with

Y ¼ fw1; . . . ;wn; b1; . . . ; bng

ð2Þ

where x is a batch of input vectors, wi and bi are trainable parameters (weights and biases,

respectively) for the ith layer, hi is the ith hidden representation, and f(�) is a nonlinearity

which can be chosen during hyperparameter selection. Single layer classification methods,

such as multinomial logistic regression, are a special case of deep networks with no hidden rep-

resentations and their corresponding hyperparameters.

For the fully-connected deep networks used here, the CSEP features were rasterized into

a large feature vector per-trial in a window around CV production. These feature vectors are

the input into the first layer of the fully connected network. The feature dimensionality is the

number of electrodes by 258 time points which corresponds to Subject 1: 22,188, Subject 2:

20,124, Subject 3: 21,414, and Subject 4: 25,542 features. The final layer non-linearity is chosen

to be the softmax function:

PðŷiÞ ¼ softmaxðhiÞ ¼
expðhiÞP
j expðhjÞ

ð3Þ

where hi is the ith element of the hidden representation. This nonlinearity transforms a vector

of real numbers into a vector which represents a one-draw multinomial distribution. It is the
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negative log-likelihood of this distribution over the training data which is minimized during

training.

To train and evaluate the networks, the trials were organized into 10 groupings (folds) with

mutually exclusive validation and test sets and 80-10-10% splits (training, validation, testing).

Since some classes may have as few as 10 examples, it was important to split each class propor-

tionally so that all classes were equally distributed. Training terminated when the validation

accuracy did not improve for 10 epochs and typically lasted about 25 epochs. Theano,

Pylearn2, and Scikit-learn [44–46] were used to train all deep and linear models.

As baseline models, we used multinomial logistic regression. Logistic regression required

no additional dimensionality reduction and had the highest classification accuracy compared

to other linear classifiers, i.e. linear support vector machines and linear discriminant analysis

on the Hγ features (10.4 ± 6.7% and 16.0 ± 10.0% respectively compared to 28.0 ± 12.9% for

logistic regression). Additionally, the conditional class distribution used in logistic regression

(multinomial) is the same as the one used for deep networks, which facilitated comparison of

confusions.

Hyperparameter search. Deep networks have a number of hyperparameters that govern

network architecture and optimization such as the number of layers, the layer nonlinearity,

and the optimization parameters. The full list of hyperparameters and their ranges is listed in

S1 Table.

For all results that are based on training networks, 400 models were trained with hyperpara-

meters selected with random search [47]. For each set of hyperparameters, 10 copies of the net-

work were trained on the respective 10 folds as described in Deep networks, for a total of 4000

networks per subject per task. For each task, optimal hyperparameters were selected by choos-

ing the model with the best mean validation classification accuracy across 10 folds. Since our

datasets were relatively small for training deep networks, we regularized the models in three

ways: dropout, weight decay, and filter norm-clipping in all layers of the model. The dropout

rate, activation-rescaling factor, max filter norm, and weight decay coefficient were all opti-

mized hyperparameters. The optimal values for the hyperparameters were selected indepen-

dently for each family of models in the paper, i.e. independently for each subject, model type

(logistic or deep), input data type (frequency bands), and amount (data scaling experiment).

The search space for hyperparameters was shared across all models, however, for the logistic

regression models, the number of hidden layers was set to zero and no other hidden layer

hyperparameters were used. The optimal hyperparameters for each model and links to trained

model files and Docker images for running preprocessing and deep network training are avail-

able in S1 Appendix.

Classification tasks. Each subject produced a subset of the 57 CV and the classification

methods were trained to predict the subset. Each CV can also be classified as containing 1 of

19 consonants or 1 of 3 vowels. Similarly, a subset of the constants can be grouped into 1 of

3 vocal tract constriction location categories or 1 of 3 vocal tract constriction degree catego-

ries. The CV predictions were then tabulated within these restricted labelings in order to

calculate the accuracy for consonant, vowel, constriction location, and constriction degree

accuracies.

As there are drastically different numbers of classes between the different tasks (between 3

and 57), as well as subtle differences between subjects, classification accuracies and changes in

accuracies are all normalized to chance. In each case, chance accuracy is estimated by assum-

ing that test set predictions are drawn randomly from the training set distribution. This pro-

cess was averaged across 100 random resamplings per fold, training fraction, subject, etc.

Estimating chance accuracy by training models on data with shuffled labels was not possible

for consonant constriction location and degree tasks since not all CVs were part of the
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restricted task and occasionally networks would predict 0 trials within the restricted task

which would give undefined chance accuracy.

On the CV task, we compared performance scaling of different models by training on dif-

ferent fractions of the training set. For each fraction of the data, each class was subsampled

individually to ensure all classes were present in the training set. The aggregate slopes were cal-

culated with ordinary least-squares regression. The validation and test sets were not subsam-

pled. Hyperparameters were chosen independently for each fraction of the training data.

Information content in neural signals. For a given experimentally defined behavior,

such as CV speech production, the information about the task is presumably present in the

activity of the brain, which we coarsely measure with different frequency components of the

recorded CSEPs. The information about the task in the measurements can be formalized by

the mutual information between the task variable Y and the neural measurement variable X
[48]

IðY;XÞ ¼
X

y;x

Pðy; xÞ log
2

Pðy; xÞ
PðyÞPðxÞ

� �

: ð4Þ

It is not possible to calculate this quantity directly because we do not know the joint distribu-

tion of neural measurements and speech tokens, P(X, Y) and cannot easily approximate it due

to the small number of samples (� 103) compared to the dimensionality of each measurement

(� 104). However, we can classify the behavior from the neural data using statistical-machine

learning methods, i.e. deep learning. For a supervised classification task, machine learning

methods typically generate conditional probabilities PðŶ jXÞ. Since we know the ground-truth

behavior for each measurement, we can use the classifier to compute the mutual information

between the behavior state, Y, and the predicted state, Ŷ

IðŶ ;YÞ ¼
X

y;ŷ

PðŷjyÞPðyÞ log
2

PðŷjyÞPðyÞ
PðyÞPðŷÞ

� �

: ð5Þ

The data processing inequality tells us that this quantity is a lower bound to I(Y;X).

Given this lower bound, if everything else is held constant, the classification method with

highest accuracy will lead the tightest estimate of the mutual information between the task

and neural data, I(Y; X), which is a quantity that is relevant for future experimental hardware,

methods, and data preprocessing development.

This quantity is closely related to a second measure of classifier performance, the Channel

Capacity (CC). To compare our results with previous speech classification studies, we report

estimated CC, which is measured in bits per symbol, in addition to classification statistics. CC

is a unified way of calculating the effectiveness of different speech classifiers, which can have

differing numbers of classes and modalities. The channel capacity, CC, between the ground

truth class, Y, and predicted class, Ŷ , is defined as:

CC ¼ supremum
PðYÞ

IðŶ ;YÞ ¼ supremum
PðYÞ

X

ŷ i ;yj

PðŷijyjÞPðyjÞ log2

PðŷijyjÞ
PðŷiÞ

� �

: ð6Þ

For previous work, we must approximate the channel capacity since we do not have access

to the details of the classification performance, PðŶ jYÞ. Wolpaw et. al. [49] suggest an approxi-

mation that assumes all classes have the same accuracy as the mean accuracy and all errors are

distributed equally (note that this second assumption is generally not true in speech, i.e. Fig

4C, also noted in [23]). To make a fair comparison, we compute this approximate value for

our results in addition to the exact value. For our data, we find that the approximation
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underestimates the true channel capacity for the CV and consonant task. The Information

Transfer Rate (ITR) is also commonly reported, which is the channel capacity divided by

the symbol duration in time. Since we are considering fixed length measurements (1.3 s), we

report channel capacity rather than ITR.

Structure of deep network predictions

Neuroscientists commonly study the model/confusions of linear analysis methods to gain

insight into the structure of neural data. Deep networks can learn high dimensional, nonlinear

features from data. Here, these features are learned by training the networks to perform classi-

fication, i.e. maximize PðŶ ijXi;YÞ where the subscript i indicates true class membership. It

has been shown that these features contain more information than the thresholded multino-

mial classification prediction [50, 51]. The off-diagonal values: PðŶ ijXj;YÞ, i 6¼ j, in this

learned distribution represent prediction uncertainty for a given CSEP measurement. Uncer-

tainty is learned during the training process and larger pairwise uncertainty between class

labels means that the model has a harder time distinguishing those classes. Since the uncer-

tainty (similarity) is not encoded in the supervised labels, this means that the neural data for

those class labels is more similar.

To gain insight into the nature of the vSMC neural activity, we analyzed the structure

of deep network predictions. The mean network prediction probabilities on the test set are

used as features for each CV. A dendrogram was computed from the hierarchical clustering

(Ward’s method) of these features. To aid visualization of these results, a threshold in the

cluster distance was chosen by visual inspection of when the number of clusters as a func-

tion of distance rapidly increased, and the linguistic features were labeled by hand. The CV

order from this clustering was used to order the features in the soft-confusion matrix and

accuracy per CV. The soft confusion matrix shows mean network prediction probabilities

on the test set rather than the aggregated thresholded predictions often shown in confusion

matrices.

To compare the articulatory features and the deep network features quantitatively across

subjects, pairwise distances between CVs were computed in both the articulatory and deep

network spaces (see S1 Fig for articulatory features). These pairwise distances were then corre-

lated per for each CV and subject and articulatory grouping.

Cross-band amplitude-amplitude correlations

To examine the relationship between the amplitudes of different frequency components of

recorded CSEPs, we first performed a correlation analysis. For this analysis, the data was trial-

averaged per CV then organized into a data-tensor, DCV,frequency,electrode,time. The frequency

bands were then either used individually or aggregated into canonical frequency components,

such as Hγ

�DðHgÞCV;electrode;time ¼ h
�DCV;frequency;electrode;timeifrequency2Hg: ð7Þ

�DðHgÞCV;electrode;time was correlated across time at 0 ms lag with each of the 40 Gaussian

bandpassed amplitudes averaged across CVs and electrodes. The correlation between

�DðHgÞCV;electrode;time and �DðbÞCV;electrode;time was computed and histogrammed across CVs and

electrodes. The average Hγ power was averaged in a window 70 ms before and 140 ms after the

CV acoustic transition and histogrammed across CVs and electrodes. This window was chosen

as it is the most active and informative time period for consonants and vowels.
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Resolved cross-band amplitude-amplitude correlation

Since the ECoG grid covers a large functional area of vSMC and the CV task differentially

engages articulators for different consonant and vowels, the correlations can be computed

independently for “active” versus “inactive” electrodes for each CV (averaged across trials). To

define active and inactive electrode groups for a band, B and Hγ, first, the B-Hg amplitude-

amplitude correlation, CðB;HgÞ and average Hγ amplitude, A(Hγ), with positive average

amplitude (greater than baseline) are used to fit one linear model with ordinary least-squares

regression

m̂; b̂ ¼ arg max
m;b

X

ij

ðCijðB;HgÞ � ðmAijðHgÞ þ bÞÞ2 ð8Þ

for all electrodes, i, and CVs, j. The electrodes were then divided into “active” and “inactive”

per CV by thresholding the average Hγ activity where the linear fit predicted 0 correlation.

AthreshðHgÞ ¼ �
b̂
m̂
: ð9Þ

Electrodes with average Hγ activity above threshold were active, and those with lower average

Hγ activity were inactive. The active and inactive electrodes per CV were separated and

�DðHgÞCV;electrode;time was correlated across time at 0 ms lag with each of the 40 Gaussian band-

passed amplitudes averaged across CVs and electrodes independently for the active and inac-

tive electrodes and for each subject.

Classification from other frequency bands

An extended sets of lower frequency features per trial were used in addition to the Hγ features

for each of the theta, alpha, low beta, high beta, and gamma bands. The lower frequency ampli-

tudes are highly oversampled at 200 Hz (the Hγ sampling frequency), and overfitting due to

this mismatch will confound the interpretations of signal content. To minimize overfitting, the

lower frequency amplitudes were downsampled as described in the Signal processing subsec-

tion. For each frequency band, fully-connected deep networks were trained first on the indi-

vidual bands’s features and then with the band’s features concatenated with the Hγ features.

Deep network training was done in the same manner at the networks trained solely on Hγ fea-

tures. The resulting classification accuracies were then compared with the baseline Hγ classifi-

cation accuracy and then with the band’s features concatenated with the Hγ features.

Results

A subset of the electrodes of the ECoG grid overlaid on the vSMC of Subject 1 is shown in Fig

1A. Cortical electric surface potentials (CSEPs) were recorded from the left hemisphere of 4

subjects during the production of a set of consonant-vowel syllables which engage different

section of the vocal tract, as shown in Fig 1B, to produce acoustics which are shown in Fig 1C.

The trial-averaged z-scored high gamma (Hγ) amplitude recorded during the production of

the syllables from Fig 1B show spatially and temporally distributed patterns of activity (Fig

1D). Here we see that cortical surface electrical potentials recorded from vSMC during the pro-

duction of CVs consists of multiple spatially and temporally overlapping patterns.

Spatiotemporal patterns of activity represent information about the produced syllables [20].

This is shown by training multinomial logistic regression models independently at each time

point using all electrodes in vSMC (Fig 1E). Across subjects, the consonant classification accu-

racy rises from chance approximately 250 ms before the consonant-vowel acoustic transition
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at 0 ms, which precedes the acoustic production of the consonants, indicating the motor

nature of the recordings. Consonant classification accuracy remains above chance for approxi-

mately 200 ms into vowel acoustics production. Vowel classification accuracy rises just before

the transition to vowel acoustics production and remains above chance for approximately 500

ms. These results show that the consonant and vowel identity is encoded in the Hγ amplitude

in partially-overlapping temporal segments.

Deep learning for speech classification

Deep networks outperform standard methods for consonant-vowel classification from

high gamma amplitude. It has been shown that CSEPs contain information about motor

control [20, 22, 23, 29, 31, 52] and variability [21]. Regressing CSEP time-frequency features

onto behavioral features with linear methods has been used to elucidate the information con-

tent. Linear decoders can put a lower bound on the behaviorally relevant information in a

measurement, but the restriction to linear mappings may limit the amount of information

they are able to extract from the neural signal.

Deep networks can learn more complex, nonlinear mappings, which can potentially extract

more information from a neural signal. Thus, they may be able to put a tighter lower bound on

the information relevant for speech classification contained in CSEP features. To test this, fully

connected deep networks and baseline multinomial logistic regression models were trained on

Fig 1. Human ECoG recordings from ventral sensorimotor cortex (vSMC) during speech production. A Electrodes overlaid on vSMC. Electrodes are

colored red-to-black with increasing distance from the Sylvian Fissure. B-D Task and data summary for three different consonant-vowel (CV) utterances. B

Vocal tract configuration and point of constriction (orange dot) during the consonant for the production of /ba/ (lips), /da/ (coronal tongue), and /ga/ (dorsal

tongue). C) The audio spectrogram aligned to the consonant-to-vowel acoustic transition (dashed line). D Mean across trials of the Hγ amplitude from a subset

of electrodes in vSMC aligned to CV transition. Traces are colored red-to-black with increasing distance from the Sylvian Fissure as in A. The syllables /ba/,

/da/, and /ga/ are generated by overlapping yet distinct spatio-temporal patterns of activity across vSMC. E Logistic regression accuracy for consonants and

vowels plotted against time aligned to the CV transition averaged across subjects and folds. Black and grey traces are average (± s.e.m., n = 40) accuracies for

consonants (18–19 classes) and vowels (3 classes) respectively.

https://doi.org/10.1371/journal.pcbi.1007091.g001
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z-scored Hγ amplitude from all electrodes in vSMC and time points in a window around CV

production. Fig 2 shows how the raw CSEP measurements are preprocessed into time-fre-

quency features across behavioral trials, selected and grouped into datasets, and are used in the

deep network hyperparameter cross-validation loop. The networks with the highest validation

accuracy, averaged across 10 folds, were selected and their results on a held-out test set are

reported.

Behaviorally, speech is organized across multiple levels. Even within the simple CV task

examined here, there are multiple levels of attributes that can be associated with each CV sylla-

ble. The simplest description of the CVs correspond to the consonant constriction location,

consonant constriction degree, or vowel labels (3-way tasks). Fig 3A–3C shows the accuracy

in these cases respectively. For these tasks, subjects with baseline accuracy close to chance see

little-to-no improvement and subjects with larger improvements are limited by the low com-

plexity of the 3-way classification task. In order to partially normalize task complexity across

tasks with very different numbers of outcome possibilities (and hence different chance levels),

accuracy/chance is shown in Fig 3. This normalization highlights performance on tasks with

higher complexity, e.g., CV classification, which would otherwise have lower accuracy than

Fig 2. Data processing and deep network training pipeline for ECoG data. A Cortical surface electrical potentials plotted against time for a subset of the

vSMC electrodes segmented to the CV production window. Electrodes have an arbitrary vertical offset for visualization. B Voltage for one electrode. C The z-

scored analytic amplitude is shown for a subset of the 40 frequency ranges used in the Hilbert Transform as a function of time. D The 40 ranges used in the

Hilbert Transform are grouped and averaged according to whether their center frequency is part of each traditional neuroscience band. E For a particular

analysis, a subset of the bands are chosen as features, and this process was repeated for each trial (sub-pane) and electrode (trace within each sub-pane) in

vSMC. Each data sample consists of one trial’s Hγ activity for all electrodes in vSMC. F Data were partitioned 10 times into training, validation, and testing

subsets (80%, 10%, and 10% respectively) with independent testing subsets. We trained models that varied in a large hyper-parameter space, including network

architecture and optimization parameters, symbolized by the 3 networks on the left with differing numbers of units and layers. The optimal model (right) is

chosen based on the validation accuracy and results are reported on the test set.

https://doi.org/10.1371/journal.pcbi.1007091.g002
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simpler tasks, e.g., vowel classification. S2 Fig shows this same data plotted as raw accuracy.

An intermediate level of complexity is the consonant label (18 or 19-way, Fig 3D). The highest

deep network accuracy for a single subject on the consonant task is for Subject 1 which is

59.0 ± 2.2% (11.1 times chance, 5.3%) and 51.2 ± 1.8% (9.7 times chance, 5.3%) for logistic

regression and deep networks respectively, which is a 15.3% improvement. Mean consonant

classification accuracy across subjects (19 way) with deep networks is 41.2 ± 14.3%. For logistic

regression, it is 36.5 ± 12.3%.

Finally, the most complex task is CV classification which has between 54 and 57 classes

across subjects. The highest deep network accuracy for a single subject on the consonant

vowel task is for Subject 1 which is 55.1 ± 2.3% (31.0 times chance, 1.8%) and 44.6 ± 3.2% (25.1

times chance, 1.8%) for logistic regression and deep networks respectively, which is a 24.0%

improvement (Fig 3E). Mean consonant vowel classification accuracy across subjects (54-57

way) with deep networks is 33.7 ± 16.4%. For logistic regression, it is 28.0 ± 12.9%. Per subject

improvements (change in accuracy normalized to chance) for Subjects 1 through 4 are 5.9x

(p< 0.05), 0.8x (n.s.), 1.6x (p< 0.05), and 4.3x (p< 0.05). For each subject, a Wilcoxon

Signed-Rank Test (WSRT) was performed and the resulting p value was Bonferroni corrected

(n = 4). For the 3 significant results, the p-value was at the floor for a WSRT with n = 10 sam-

ples and no equal differences.

Fig 3. Classification accuracy of logistic regression versus deep networks for different classification tasks. For A-E,

accuracies (± s.e.m., n = 10) are normalized to chance (chance = 1, dashed blue line) independently for each subject

and task. Points on the left are multinomial logistic regression accuracy and are connected to the points on the right

which are deep network accuracies for each subject. Subject accuracies have been left-right jittered to prevent visual

overlap and demarcated with color (legend in E). A-D Classification accuracy when CV predictions are restricted to

consonant constriction location (A), consonant constriction degree (B), vowel (C), or consonant (D) classification

tasks. E Classification of entire consonant-vowel syllables from Hγ amplitude features. �p< 0.05, WSRT, Bonferroni

corrected with n = 4. n.s., not significant. Significance was tested between deep network and logistic regression

accuracies.

https://doi.org/10.1371/journal.pcbi.1007091.g003
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Fig 4. Deep network predictions reveal a latent articulatory hierarchy from single-trial ECoG recordings. A The dendrogram

from a hierarchical clustering of deep network predictions on the test set averaged across all subjects. The threshold for the colored

clusters (dashed gray) is determined from inspection of the number of clusters as a function of distance cutoff shown in B. Clusters

centroids are labeled with articulatory features shared by leaf CVs. DT: dorsal tongue, CT: coronal tongue, BL: bilabial, LD:

labiodental, S: sibilant, A: alveolar. B Number of clusters (vertical axis) as a function of the minimum cutoff distance between cluster

centroids (horizontal axis). C Average predicted probability per CV for Subject 1. CVs are ordered from clustering analysis in A. D

Accuracy of individual CVs. E Correlation between pairwise distances in deep network similarity space from C compared to

distances in an articulatory/phonetic feature space for Major Articulator, Consonant Constriction Location, Consonant Constriction

Degree, and Vowel, aggregated across all subjects. Center bar is the median and boundaries are 50% confidence intervals. Colored

circles indicate subject medians. ��p< 1 × 10−10, WSRT, �p< 1 × 10−4 t-test, both Bonferroni corrected with n = 4.

https://doi.org/10.1371/journal.pcbi.1007091.g004
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The results described above contain many potential sources of variation. To test the signifi-

cance of these variations, we use an ANOVA with subject, model type (deep network versus

logistic regression), task complexity (CV versus consonant versus vowel, location, degree), and

model-task complexity interaction as categorical groupings. This model is significant (f-statis-

tic: 177.0, p< 1 × 10−10) and all coefficients were significant at p< 0.001 except for the deep

network-consonant interaction which was significant at p< 0.05 with Subject 1, CV task, and

logistic regression categories as the reference treatment (see S2 Table for details). This shows

that deep networks are able to provide better estimate of information contained in the Hγ
amplitude as compared to linear methods.

The number of speech tokens, duration of a task, and recording modality often differ from

study to study [49]. This means that quantifying the quality of speech classification from neural

signals using accuracy or accuracy normalized to chance can be misleading. The Information

Transfer Rate (ITR, bits per second) is a quantity that combines both accuracy and speech

in a single quantity [49]. Since we are comparing fixed length syllables, this is equivalent to cal-

culating the number of bits per syllable which can be calculated with the Channel Capacity (CC,

Eq 6). The ITR can be calculated by diving the CC by the syllable duration. A summary of the

accuracy results along with channel capacity estimates are summarized in Table 1 and compared

against the results of Mugler et al. [23] which has a similar task and used linear discriminant

analysis (LDA) as the classifier. Additional classification metrics are reported in S3 Table. Deep

networks achieve state of the art classification accuracy and have the highest CC, and therefore

ITR, on the full CV task. The state of the art accuracy and ITR are important quantities for

brain-computer interfaces, which often limit communication rates in clinical applications.

How the accuracy and precision of data analysis results scale with dataset size is an impor-

tant metric for designing future experiments. This is especially true when working with

human subjects and invasive or time consuming data collection methods. In the context of

brain-computer interface (BCI) research, maximizing BCI performance is a central goal and

so understanding how performance is limited by dataset size or decoding/classification meth-

ods is crucial for improving clinical use and understanding the potential role of deep networks

in BCIs.

Table 1. Classification and channel capacity results.

Model Accuracy Acc./Chance CC (Bits/Syllable)

Deep network, 57 CV, single subj. 55.1 ± 2.3% 31.0x 2.25 (3.92 exact)

Deep network, 57 CV, subj. average 33.7 ± 16.4% 18.6x 1.15 (2.94 exact)

Logistic Regression, 57 CV, single subj. 44.6 ± 3.2% 25.1x 1.63 (3.49 exact)

Logistic Regression, 57 CV, subj. average 28.0 ± 12.9% 15.5x 0.86 (2.71 exact)

Deep network, 19 cons., single subj. 59.0 ± 2.2% 11.1x 1.6 (2.42 exact)

Deep network, 19 cons., subj. average 41.2 ± 14.3% 7.7x 0.91 (1.63 exact)

Logistic Regression, 19 cons., single subj. 51.2 ± 1.8% 9.7x 1.25 (2.04 exact)

Logistic Regression, 19 cons., subj. average 36.5 ± 12.3% 6.8x 0.72 (1.41 exact)

LDA [23], 24 cons., single subj. 36.1% 4.9x 0.75

LDA [23], 24 cons., subj. average 20.4 ± 9.8% 2.8x 0.25

Deep network, 3 vowels, single subj. 85.9 ± 2.3% 2.6x 1.19 (0.87 exact)

Deep network, 3 vowels, subj. average 67.3 ± 13.1% 2.0x 0.63 (0.45 exact)

Logistic Regression, 3 vowels, single subj. 78.7 ± 2.6% 2.4x 0.91 (0.64 exact)

Logistic Regression, 3 vowels, subj. average 61.3 ± 11.8% 1.8x 0.46 (0.32 exact)

LDA [23], 15 vowels, single subj. 23.9% 1.9x 0.22

LDA [23], 15 vowels, subj. average 19.2 ± 3.7% 1.5x 0.12

https://doi.org/10.1371/journal.pcbi.1007091.t001
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Deep networks are well known for their performance on enormous machine learning data-

sets. Since neural datasets are typically much smaller, we sought to explore the data efficiency

of deep networks in the context of speech classification from CSEPs. We subsampled the train-

ing datasets by up to 50 percent in order to estimate accuracy improvements as a function of

dataset size. The subsampled training dataset sizes and resulting classification accuracies were

then used to estimate the slope of the accuracy as a function of dataset size.

As the fraction of the training set was changed from 0.5 to 1.0, deep network accuracies

improve (S3 Fig panel A, solid lines). The accuracy relative to chance is higher for deep net-

works than for logistic regression (S3 Fig panel A, dotted lines) across dataset fractions for

Subjects 1, 3, and 4. S4 Fig contains the same data plotted as raw accuracy and change in accu-

racy. Deep networks have slopes of Subject 1: 10.1 ± 0.9%, Subject 2: 8.1 ± 1.3%, Subject 3:

2.3 ± 0.3%, and 22.0 ± 2.9% change in accuracy per 1000 training examples (S3 Fig panel B)

which are not significantly different from logistic regression slopes. There is no visual indica-

tion that performance has saturated for any subject which means the accuracy of classified

speech production is in part limited by the amount of training data that can be collected.

Deep networks have classification confusions that reveal the latent

articulatory organization of vSMC

Despite being able to mathematically specify the computations happening everywhere in the

model, deep networks are often described as “black boxes”. What deep networks learn and

how it depends on the structure of the dataset is not generally understood. This means that

deep networks currently have limited value for scientific data analysis because their learned

latent structure cannot be mapped back onto the structure of the data. Many current uses of

deep networks in scientific applications rely on their high accuracy and do not inspect the net-

work computations [19, 53, 54], although there are results in low dimensional networks [15]

and early sensory areas [18]. Nevertheless, deep networks’ ability to consume huge datasets

without saturating performance means that expanding their use in science is limited by our

understanding of their ability to learn about the structure of data. For the dataset consider in

this work, previous studies have shown that an articulatory hierarchy can be derived from the

trial-averaged Hγ amplitude using principal components analysis at hand-selected points in

time [20]. Note that the articulatory structure of the consonants and vowels are not contained

in the CV labels nor are the individual consonant or individual vowel labels due to the CVs

being encoding in a one-hot fashion, i.e., /ba/ (label = 0) is as different from /bi/ (label = 1) as

it is from /gu/ (label = 8) according to the CV labels even though they share a consonant (like-

wise for shared vowels).

To explore whether deep networks can infer this latent structure from the training data, we

examined the structure of network output to better understand the organization of deep net-

work syllable representations extracted from vSMC. Deep networks used for classification pre-

dict an entire distribution over class labels for each data sample. This learned distribution has

been shown to be a useful training target in addition to the thresholded class labels [50, 51].

We clustered these learned representations and compared them to articulatory representations

of the CVs.

The dendrogram resulting from agglomerative hierarchical clustering on the trial averaged

output of the softmax of the deep network (i.e., before thresholding for classification) averaged

across subjects shows clusters spread across scales (Fig 4A). A threshold was chosen by inspec-

tion of when the number of clusters as a function of cutoff distance rapidly increased (Fig 4B)

and used to color the highest levels of the hierarchy. At the highest level, syllables are confused

only within the major articulator involved (lips, back tongue, or front tongue) in the syllable.
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This is followed by a characterization of the place of articulation within each articulator (bila-

bial, labio-dental, etc.). At the lowest level there seems to be a clustering across the consonant

constriction degree and vowel categories that capture the general shape of the vocal tract in

producing the syllable. When ordered by this clustering, the soft confusion matrix (Fig 4C)

resulting from the average output of the final layer softmax shows block-diagonal structure

corresponding to the articulatory hierarchy. In contrast, deep networks trained on the mel-

cepstral coefficients and their time-differences (similar dimensionality to the Hγ amplitude)

show a largely inverted hierarchy, results which mirror those found in more general studies of

deep network processing of spoken acoustics [55] (See S5 Fig for this analysis on the data pre-

sented here). There is a large amount of variation in the per-CV accuracies (Fig 4D).

This hierarchy can be quantified by comparing the space of deep network prediction proba-

bilities and the space of articulatory features associated with each CV. This comparison was

made by correlating pairwise CV distances in these two features spaces across all pairs of

CVs. The resulting structure of correlations is consistent with an articulatory organization in

vSMC (Fig 4C). The major articulators feature distances are most correlated with the distances

between CVs in deep network space, then consonant constriction location, and finally conso-

nant constriction degree and vowel.

Together, these results show that deep networks trained to classify speech from Hγ activity

are learning an articulatory latent structure from the neural data. Qualitatively similar hierar-

chies can be derived using PCA and logistic regression. Indeed, this structure is in agreement

with previous analyses of mean spatial patterns of activity at separate consonant and vowel

time points [20] while allowing the consonants and vowels to be part of the same hierarchy.

However, the deep network hierarchy has larger correlations and more separation between

levels than the hierarchy derived from the Logistic regression model (shown in S6 Fig).

Together, these results demonstrate the capacity of deep networks to reveal underlying struc-

ture in single-trial neural recordings.

The high gamma and beta bands show a diversity of correlations across

electrodes and CVs

Complex behaviors, such as speech, involve the coordination of multiple articulators on fast

timescales. These articulators are controlled by spatially distributed functional areas of cortex.

Lower frequency oscillations have been proposed as a coordinating signal in cortex. Previous

studies have reported movement- or event-related beta (β)-Hγ desynchronization or decorre-

lation [33, 34, 42]. The differential structure of these correlations across tasks and functions

areas is not commonly analyzed. Since cortex often shows sparse and spatially-differentiated

activity across tasks [22], averaging over electrodes and tasks may obscure structure in the

cross-frequency relationships.

The CV task and grid coverage allow average neural spectrograms (zscored amplitude as a

function of frequency and time) to be measured at two electrodes during the production of the

syllable \ga\ (Fig 5A and 5B, median acoustic spectrogram is shown above). In order to investi-

gate this, we measured cross frequency amplitude-amplitude coupling (correlation) for indi-

vidual lower frequency bands and Hγ. We also examine the aggregate β band. Some previous

studies attempt to distinguish band-limited and broadband signals in lower frequencies, e.g., β
[56–58]. However, methods for distinguishing these signals are generally not applied to high

sampling rate signals and often require hand-tuning and is an ongoing area of research. As

such, here, we are simply looking at correlations between bandpassed signals and not estimat-

ing and removing any broadband components. Further modeling would be needed to inter-

pret these signals as correlations between biophysical sources (see Discussion for discussion).
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Initially, we pool results across all electrodes and CVs in order to replicate methods from pre-

vious studies. The Hγ and β amplitudes show a diverse set of temporal relationships in these

regions (Fig 5C and 5D). Across frequencies, Hγ correlation is positive for low frequencies

(< 15Hz), then we see negative and near-zero correlations between Hγ and the β range

across subjects, and finally the correlation rises for the γ range (30–59 Hz) as the frequencies

approach Hγ (Fig 5E). However, these mean correlations mask a broad range of Hγ-β correla-

tions (Fig 5F) across Hγ activity (across CVs and electrodes). This includes a large number of

Fig 5. Hγ and β bands show diverse correlation structures across electrodes and CVs. A-B Average amplitude as a

function of frequency and time for an electrode with large activity during /ga/ production and for an electrode with no

activity during /ga/ production. C and D Normalized (-1 to 1) Hγ (red) and β (black) activity from A and B

respectively. Non-trivial temporal relationships can be seen in C which are not apparent in D. E The average

correlation (± s.e.m.) between the Hγ amplitude and the single frequency amplitude is plotted as a function of

frequency for each subject. Thickened region of the horizontal axis indicates the β frequency range. F Histogram of the

Hγ-β correlation coefficients for all CVs and electrodes for Subject 1. G Histogram of the z-scored Hγ power near the

CV acoustic transition (time = 0) for all CVs and electrodes for Subject 1.

https://doi.org/10.1371/journal.pcbi.1007091.g005
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positive correlations. Similarly, although most of the amplitudes measured are smaller than

baseline (Fig 5G), there is a long tail to amplitudes larger than baseline (above 0).

This diversity of correlations and amplitudes across CVs and electrodes indicates there is

potentially substructure in the data that is being averaged over. This motivates a disaggregated

analysis of the amplitude-amplitude correlations. Naïvely, one might expect to see different

cross-frequency relationships in areas that are actively engaged in a task compared to area

which are not engaged. The broad coverage of the ECoG grid and the diversity of articulatory

movements across the consonants and vowels in the task allow us to investigate whether there

is substructure in the amplitude-amplitude cross frequency correlations.

In order to investigate this, we grouped the Hγ activity for each electrode and CV into

“active” and “inactive” groups based on the average Hγ power and computed correlations for

these two groups. For the two subjects with high accuracy, we observe a positive correlation

between Hγ power and Hγ-β correlation (Fig 6A). For the two subjects with low CV classifica-

tion accuracy, we observe a generally negative correlation between Hγ power and Hγ-β ampli-

tude (Fig 6B).

Fig 6. Hγ and β bands show positive correlations at active electrodes which are not found in inactive electrodes

for subjects with high classification accuracy. A The trial-averaged Hγ-β correlation coefficient across electrodes and

CVs is plotted against the average Hγ power near the CV acoustic transition for Subjects 1 and 4. Solid lines indicate

the linear regression fit to the data with positive z-scored amplitude. The vertical dashed gray line indicates the division

in average Hγ power between ‘active’ and ‘inactive’ electrodes for subjects 1 and 4. Data is summarized in nine bins

plotted (± s.e.m.) per subject. B Same as A, but for Subjects 2 and 3, which have a much lower classification accuracy. C

For the two subjects in A, the average (± s.e.m.) correlation is plotted between the Hγ amplitude and the single

frequency amplitude as a function of frequency separately for active (white center line) and inactive (solid color)

electrodes. Thickened region of the horizontal axis indicates the β frequency range. D Same as C for subjects in B.

https://doi.org/10.1371/journal.pcbi.1007091.g006
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The Hγ correlation can be recomputed separately for active and inactive electrodes per CV.

For the subjects with high CV classification accuracy (Subjects 1 and 4), we find a novel signa-

ture of motor coordination in the active electrodes: a positive correlation in the β frequency

band (Fig 6C, lines with white centers). This is in contrast to the inactive electrodes, which

show small or negative correlation (Fig 6C, solid lines) which is similar to the aggregated

results (Fig 5E). For the two subjects with low CV classification accuracy (Subjects 2 and 3),

the disaggregated results (Fig 6D) show less dichotomous structure.

Overall, we find that there is structure across bands in addition to cross-frequency relation-

ship with the Hγ band which has been used in the preceding classification analysis. As far as

we are aware, this is the first observation of dichotomous amplitude-amplitude cross frequency

correlation during behavior. This observation was only possible because of the broad func-

tional coverage of the ECoG grid and the diverse behaviors represented in the CV task.

Classification relevant information in lower frequency bands

The gamma and Hγ band-passed CSEP amplitudes are commonly used both on their own and

in conjunction with other frequency bands for decoding produced and perceived speech in

humans due to their observed relation to motor and sensory tasks [14, 22, 23, 31, 59, 60].

Other frequency bands have been shown to have amplitude or phase activity which is corre-

lated with Hγ amplitude or spiking activity [37–40]. Indeed, in the data used in this study,

we find amplitude-amplitude correlation structure between Hγ and lower frequency bands.

Although these correlations imply that information is shared between Hγ and other CSEP fre-

quency bands, it is not known whether the other bands contain additional information about

motor tasks beyond Hγ or whether the information is redundant.

In order to understand the relative information content in CSEP frequency bands, we clas-

sified CVs from two different sets of features. Linear classification methods would not give a

satisfactory answer to this question since they are limited to simple hyper-plane segmentation

of the data which may trivially lead to the result of no information. Indeed, since we have

shown that deep networks can outperform linear methods when classifying from Hγ, they

are also candidates for showing whether there is any relevant information in these bands. For

the theta, alpha, beta, high beta, and gamma bands, each band’s features were first used for

classification and then concatenated with the Hγ features and used for classification. The raw

classification accuracy and improvement beyond Hγ are two measures that give insight into

information content in the other bands.

Fig 7 shows the accuracies, normalized to chance, across the four subjects. Fig 7A shows

the classification accuracies across subjects for single band features. Across subjects, all single

bands have CV classification accuracies greater than chance, although subject-to-subject varia-

tion is observed. Although this is significantly above chance, the ranges of improvements for

the subject means range between 1.5x to 2x chance, a small accuracies compared to Hγ accura-

cies which ranged from 6x to 21x chance. For the single band features, accuracy above chance

implies that there is relevant information about the task in the bands. Fig 7B shows the chance

in classification accuracy relative to Hγ accuracy, normalized to chance. No bands see a signifi-

cant improvement in accuracy over the baseline accuracy obtained by classifying from Hγ.

Indeed, all measured mean changes in accuracy are smaller than the cross-validation standard

deviations for the Hγ accuracy. Together, these results show that there is task-relevant infor-

mation in lower frequency bands, but the information is largely redundant to the information

contained in the Hγ amplitude.

The correlations observed in Figs 5 and 6 imply that there is some shared information

between the lower frequency bands and the Hγ band. However, the classification accuracies
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from Hγ alone (Fig 3) are much higher than any other individual frequency band and are not

improved by the addition of extra features from lower frequency bands. This shows that the

high frequency CSEPs (Hγ band), which is commonly used in motor decoding, are highly

informative signals.

Discussion

The structure or information content of neural data is often estimated by regressing neural

features against known features in the stimulus or behavior. Traditionally, this has been done

with linear models, which are often poorly matched to the structure of this relationship. Here,

we have shown that deep networks trained on high gamma (Hγ) cortical surface electrical

potentials (CSEPs) can classify produced speech with significantly higher accuracy than tradi-

tional linear or single layer models. When classifying syllables, deep networks achieved state-

of-the-art accuracy and channel capacity: for the subject with higher accuracy, this was 55.1%

and 3.92 bits per syllable. At word durations from Mugler et al. [23] and one CV syllable per

word duration, 3.92 bits per syllable corresponds to 7.5 bits per second or 75 words per minute

[61]. This could also be combined with a language model to improve accuracy in clinical

Fig 7. Lower frequency bands do not contribute significant additional information to the CV classification task beyond Hγ. A

The average accuracy (± s.e.m., n = 10) normalized to chance (chance = 1, dashed blue line) is shown for each frequency band and

subject. Subjects are left-right jittered to avoid visual overlap. The solid blue line is the mean across subjects for a single band. B

Average change in accuracy (± s.e.m., n = 10) from Hγ accuracy normalized to chance when band’s features are concatenated with

the Hγ features. The solid blue line is the mean across subjects for a single band. The Hγ accuracy cross-validation standard deviation

(n = 10) normalized to chance is plotted above and below zero in the right-most column for each subject for comparison. C Average

accuracy (± s.e.m., n = 10) normalized to chance (dashed blue line, chance = 1) plotted against the correlation coefficient between Hγ
and the lower frequency band for active electrodes for each band and subject. The blue dashed line indicates chance accuracy. D

Change in accuracy from Hγ accuracy normalized to chance plotted against the correlation coefficient between Hγ and the lower

frequency band for active electrodes for each band and subject. The blue dashed line indicates no change in accuracy. ��p< 0.001,
�p< 0.01, WSRT, n.s., not significant. All Bonferroni corrected with n = 5.

https://doi.org/10.1371/journal.pcbi.1007091.g007
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applications [31] towards the eventual goal of natural spoken speech rates (250-600 words per

minute). Generally, we expect that as neuroscientific datasets grow, more modern deep learn-

ing techniques and architectures will be used for higher precision such as Residual layers [6],

variational auto-encoders [62], and recurrent models for timeseries [7]. Together, these results

show that deep networks are a promising analytic platform for brain-computer interface (BCI)

for speech prosthetics, an application where high accuracy and high training sample efficiency

are crucial. Since deep networks are highly parameterized nonlinear models, their online inter-

actions with learning may be more complex than typical methods [63]. Studying how deep net-

works behave in an online BCI will be important future step in integrating them into clinical

settings.

Training the deep networks described here to high accuracy required an extensive hyper-

parameter search over model architectures including layer numbers, layer dimensions, and

nonlinearity, along with optimization hyperparameters like learning rate, momentum decay,

and dropout fraction. In general, the optimal hyperparameters may depend on the latent struc-

ture of the dataset being used, however, they may also depend strongly on the size of the data-

set in terms of the number of samples or the dimensionality of each sample. Understanding

the relationship between the optimal structure of deep networks and the structure of datasets

is a future direction of research.

We observed classification accuracies were highest, both relative to chance and linear mod-

els, for consonant-vowel syllables compared to the consonants or vowels individually. This is

consistent with previous reports on the presence of both anticipatory and perseverative coarti-

culation effects in vSMC (see also Fig 1E) [21, 23]. Coarticulation refers to the fact that, at a

behavioral level, the production of speech phonemes is systematically influenced by the sur-

rounding phonemic context. For communication prosthetics, one might hope to decode the

most atomic units, phonemes, and then express the combinatorial complexity of language

through combinations of the small number of phonemes. Combined with other studies, the

results presented here indicate that coarticulation is a feature of speech motor control that

must be accounted for in BCIs.

In contrast to many commercial applications of deep learning, where optimizing prediction

accuracy is often the primary goal, in science, it is also desirable to extract latent structure

from the data to advance understanding. In the context of the current study, we used deep net-

works to determine which features of speech production were extracted from the neural activ-

ity to solve the classification task. Examination of the consonant-vowel confusions made by

the deep networks reveal the underlying articulatory organization of speech production in

the vSMC. At the highest level, the deep networks cluster the CVs into the major articulator

involved in forming the consonant, i.e. lips, front tongue, or back tongue. The consonant con-

striction location, e.g. teeth-to-lips versus lips, is in the intermediate level of the hierarchy.

Finally, consonant constriction degree and vowel are clustered at the lowest level of the hierar-

chy. Crucially, the consonant articulatory hierarchy is not present in the CV labels which

means that the deep network is extracting this hierarchy from noisy, single-trial CSEPs during

training. The articulatory organization we find is consistent with previous studies, which used

PCA on the trial-averaged data at specific points in time [20]. However, we note that, while

consistent with previous findings, the hierarchy observed here reflects structure across conso-

nants and vowels together. This could not have been examined with the previous methodol-

ogy, which required analyses at separate time points. In this way, deep networks were able

to extract novel, more general structure from the data, and did so with much less human

supervision.

As with many studies of human ECoG, there was substantial variability across subjects.

Subjects 1 and 4 had the highest CV classification accuracy from Hγ and also showed similar
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patterns of Hγ correlations with lower frequencies (Fig 5) as well as Hγ-β correlation distinc-

tions in active versus inactive electrodes (Fig 6). Subjects 2 and 3 had lower accuracy and had

less consistently structured Hγ correlations. While the precise nature of cross-subject variabil-

ity is unknown, likely extrinsic contributors are uncontrollable variation in the degree of

contact of electrodes with cortex which could impact frequency specific SNR, differences in

variance across recording sessions blocks, or degree of subject engagement in task. Further

intrinsic sources of variability could include the lack or presence of particular articulator repre-

sentations in the recorded activity or differing levels of broadband signals in lower frequency

bands. However, the frequency specific bump in the β range observed in Subjects 1 and 4 is

unlikely to be explained by a change in broadband power in active electrodes. This would

require the power of the broadband signal to be mainly found in the β range and not in the fre-

quencies on either side, which is not consistent with broadband power fluctuations. Interest-

ingly, we found no clear relationship between CV decoding accuracy and the number of trials,

suggesting that the variance is due to differences with the underlying signal and not overfitting.

Developing machine learning techniques for training networks on CSEPs that generalize

across subjects (ECoG grid placement, underlying functional organization, differences in

spectral strucure, etc.) is an important direction of future research with broad applications for

BCIs [64].

Previous studies of motor cortex have claimed the existence of “beta-desynchronization”

(most commonly a decrease in beta amplitude) during motor production [33, 41]. This has led

to a variety of hypothesized functions of beta (β) band in motor preparation and control, with

little consensus across studies. A common methodology in many of these previous studies

(especially those done in humans, where the number of samples is small and function of cortex

is often sub-sampled) is to aggregate data across all electrodes and tasks. For the two subjects

for which there was high-quality decoding accuracy, and thus, likely higher quality CSEP

recordings, we found a novel positive coupling, i.e., correlation, between the β band and the

Hγ band amplitudes. The positive correlation was band-limited, occurring in the β range with

a peak near 23Hz, and present at electrode-syllable combinations in which the electrode was

active. Thus, uncovering this correlation required that we disaggregate the relation between β
and Hγ according to whether an electrode, i.e., articulator, was engaged in the production of a

given speech sound. The presence of this coupling is correlated with the classification accuracy

from the Hγ amplitude across subjects. The coupling in engaged functional areas is an example

of the possible pitfalls of aggregation across functional areas and specific behaviors or stimuli

when the combination of spatial specialization of function and task structure gives rise to

sparse activation patterns.

The structure and biophysical origin of broadband and band-limited signals in cortex is

an area of active research [35, 56, 57, 59, 65, 66]. In neural power spectra, it has been reported

that there are broadband fluctuations in power that can be considered as a separate signal

from band-limited signals, e.g., β power [56, 57, 67]. Since this signal is broadband, it may

mask or enhance cross-frequency correlations between underlying band-limited signals.

Several methods have been proposed for estimating broadband signals and separating them

from band-limited signals [56–58]. However, these methods are typically applied to�1 sec-

ond windows with a step size that corresponds to�1-2 Hz. In this study, the cross-frequency

analysis was performed at 200 Hz (although the lowest frequency bands have autocorrela-

tions due to the choice of bandwidths that correspond to�4 Hz). At 200 Hz, across the 4

subjects analyzed here, and across all electrodes in vSMC, there are approximately 250 mil-

lion points at which a broadband signal would need to be extracted. To our knowledge,

methods for estimating broadband signals at this scale that are computationally efficient

and do not require per-fit hand tuning have not been developed. Developing methods for
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estimating high sampling rate, continuous broadband signals is an important direction of

future research.

Frequency bands besides Hγ are known to contain information about stimuli, behavioral,

and state variables [33, 34, 36, 38, 40, 41, 59]. However, comparisons of task-relevant informa-

tion across neural signals are rarely made. Information theory provides a way of measuring the

amount of information about a task in a neural signal, the mutual information, but measuring

mutual information across continuous, high dimensional signals is notoriously difficult. In the

context of classifying discrete speech tokens, this information can be approximated through

the information transfer rate. Being able to compare information across features is particularly

useful for CSEPs which results from a variety of electrical processes in the brain [35]. Since

they achieved higher accuracy then linear or single layer methods, deep networks optimized

for accuracy can put a tighter bound on the task-relevant information in a set of neural fea-

tures. We found that, for the amplitudes of frequency bands lower than Hγ, it is possible to

decode speech syllables with above chance accuracy, though at relatively modest levels. Fur-

thermore, when combined with Hγ features, the relative improvement in accuracy above Hγ
accuracy is small compared to the cross-validation variance. Thus, for BCIs, these results

imply that, for the CV task examined here, only Hγ activity (or higher frequency signals) need

be acquired and analyzed: the other parts of the signal may profitably not be acquired to mini-

mize data acquisition hardware and signal-processing in the decoder.

Although deep networks have shown the ability to maximize task performance across scien-

tific and engineering fields, they are still largely black boxes [68]. While there has been some

initial investigations [69–73], theoretical and empirical studies have not yet shown how deep

networks disentangle the structure of a dataset during training. Currently, deep networks are

most commonly used in science in cases where understanding of the deep network’s hidden

representation is not needed. While we have taken some initial steps in that direction by exam-

ining the networks confusions, revealing how the deep networks disentangled articulatory fea-

tures from the neural data will be an important extension of this work. An unresoved question

is when we can expect deep networks to solve tasks through interpretable latent variables (like

phonetic features in the context of speech) and how we can extract these variables from all lay-

ers of the learned deep network features (here we only use the learned output probabilities). In

general, understanding the interaction between dataset structure and deep network training

will make deep networks more broadly useful as a tool for data analytics in science.

Neuroscientists continue to create devices that measure more features in the brain while

the stimuli or behavior during data collection become more complex and naturalistic. As the

complexity of datasets increase, the tools needed to disentangle and understand these datasets

must also evolve. Recently, deep networks have shown promise in analyzing and modeling

neural responses in this work and others [17–19]. Moving beyond their utility as high-accuracy

regression methods will require a more profound understanding of how deep networks learn

to represent complex structure from data sets, and tools to extract that structure so as to pro-

vide insights to humans. Indeed, many of the open theoretical and analytical challenges facing

deep networks are also core to understanding the brain.

Supporting information

S1 Table. Deep network hyperparameter ranges. Hyperparameters are listed in along with

their type and range or options. Nesterov momentum was used as an optimizer for all net-

works with fixed initial momentum fraction (0.5). The momentum fraction was linearly

increased per epoch, starting after the first epoch, to its saturation value. The initial learning

rate was exponentially decayed per epoch to a minimum value. Many float hyperparameters
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were searched in log-space since they typically range over a few orders of magnitude.

(PDF)

S2 Table. ANOVA tables. Summary tables for the ANOVA from subsection: Deep networks

outperform standard methods for consonant-vowel classification from high gamma ampli-

tude.

(PDF)

S3 Table. Classification metric comparison. For each subject and both logistic and deep

models, the accuracy, sensitivity, specificity, precision, and F1 score are tabulated for the CV

task.

(PDF)

S1 Appendix. Optimal deep network hyperparameters for all models, trained model files,

and scripts. The optimal hyperparameters for each subject and experiment stored in a YAML

file. This also includes a README with links to Docker images which can run the preprocess-

ing code and deep network code, trained model files, and plotting scripts and a link to down-

load the raw data.

(ZIP)

S1 Fig. Articulatory features for comparison to deep network prediction features. For each

consonant vowel pair (labeled along top and bottom, respectively), a binary feature vector is

shown (white indicates the presence of the feature). The grouping into major articulator, con-

sonant constriction location, consonant constriction degree, and vowel features is shown on

the right edge.

(TIF)

S2 Fig. Classification accuracy of logistic regression versus deep networks for different

classification tasks. For A-E, accuracies (± s.e.m., n = 10) are shown (chance is at the dashed

line) independently for each subject and task. Points on the left are multinomial logistic regres-

sion accuracy and are connected to the points on the right which are deep network accuracies

for each subject. Subject accuracies have been left-right jittered to prevent visual overlap and

demarcated with color (legend in E). A-D Classification accuracy when CV predictions are

restricted to consonant constriction location (A), consonant constriction degree (B), vowel

(C), or consonant (D) classification tasks. E Classification of entire consonant-vowel syllables

from Hγ amplitude features.

(TIF)

S3 Fig. Classification accuracy improvement normalized to chance as a function of train-

ing dataset size for logistic regression versus deep networks. Accuracies (± s.e.m., n = 10)

are normalized to chance (chance = 1, dashed blue line) independently for each subject. Sub-

ject error bars have been left-right jittered to prevent visual overlap and demarcated with color

(legend in A). A Average classification accuracy (± s.e.m., n = 10) normalized to chance for the

CV task as a function of the fraction of training examples used for logistic regression (dotted

lines) and deep networks (solid lines). B Change in classification accuracy normalized to

chance per 1,000 training examples. The total training set sizes vary significantly between sub-

jects so there is an additional per-subject normalization factor between the slopes in A and B.

p-values were Bonferroni corrected with n = 4. n.s., not significant.

(TIF)

S4 Fig. Classification accuracy improvement as a function of training dataset size for

logistic regression versus deep networks. Accuracies (± s.e.m., n = 10) are shown (chance is
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at the dashed lines) independently for each subject. Subject error bars have been left-right jit-

tered to prevent visual overlap and demarcated with color (legend in A). A Average classifi-

cation accuracy (± s.e.m., n = 10) for the CV task as a function of the fraction of training

examples used for logistic regression (dotted lines) and deep networks (solid lines). B

Change in classification accuracy per 1,000 training examples. The total training set sizes

vary significantly between subjects so there is an additional per-subject normalization factor

between the slopes in A and B.

(TIF)

S5 Fig. Deep network predictions reveal a latent acoustic hierarchy from single-trial acous-

tic recordings. Similar analysis as Fig 5 in the main text for networks trained on mel-cepstral

coefficients from Subject 1. A The dendrogram from a hierarchical clustering of deep network

predictions on the test set from Subject 1. The threshold for the colored clusters (dashed gray)

is determined from inspection of the number of clusters as a function of distance cutoff shown

in B. Clusters centroids are labeled with acoustic features shared by leaf CVs. B Number of

clusters (vertical axis) as a function of the minimum cutoff distance between cluster centroids

(horizontal axis). C Average predicted probability per CV for Subject 1. CVs are ordered from

clustering analysis in A. D Accuracy of individual CVs for Subject 1. E Correlation between

pairwise distances in deep network similarity space from C compared to distances in an articu-

latory/phonetic feature space for Major Articulator, Consonant Constriction Location, Conso-

nant Constriction Degree, and Vowel, aggregated across all subjects. Center bar is the median

and boundaries are 50% confidence intervals. Colored circles indicate subject medians.

(TIF)

S6 Fig. Logistic regression predictions reveal a latent articulatory hierarchy from single-

trial ECoG recordings to a lesser extent. Similar analysis as Fig 5 in the main text for Logistic

regression. A The dendrogram from a hierarchical clustering of deep network predictions on

the test set from Subject 1. The threshold for the colored clusters (dashed gray) is determined

from inspection of the number of clusters as a function of distance cutoff shown in B. Clusters

centroids are labeled with acoustic features shared by leaf CVs. B Number of clusters (vertical

axis) as a function of the minimum cutoff distance between cluster centroids (horizontal axis).

C Average predicted probability per CV for Subject 1. CVs are ordered from clustering analy-

sis in A. D Accuracy of individual CVs for Subject 1. E Correlation between pairwise distances

in deep network similarity space from C compared to distances in an articulatory/phonetic

feature space for Major Articulator, Consonant Constriction Location, Consonant Constric-

tion Degree, and Vowel, aggregated across all subjects. Center bar is the median and bound-

aries are 50% confidence intervals. Colored circles indicate subject medians.

(TIF)
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